

September 12, 2024

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Remediation Work Plan ConocoPhillips Company (COG Production, LLC) Windward Federal #002H FL Release Unit Letter D, Section 30, Township 24 South, Range 32 East Lea County, New Mexico Incident ID# NAPP2413732369

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips Company (ConocoPhillips) to assess a COG Production, LLC (Concho) release that occurred at a water transfer line associated with the Windward Federal #002H (fAPP2132638253). The release footprint is located in Public Land Survey System (PLSS) Unit Letter D, Section 30, Township 24 South, Range 32 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.194511°, -103.719572°as shown on Figures 1 and 2.

BACKGROUND

According to the New Mexico Oil Conservation Division (NMOCD) C-141 Initial Report, the release was discovered on May 3, 2024 and caused by a hole in a water transfer line. The release consisted of 4.1217 barrels (bbls) of produced water, of which 0 bbls were reported recovered. The release occurred off pad. The NMOCD received the initial C-141 on May 16, 2024, and subsequently assigned the release the Incident ID nAPP2413732369. The initial C-141 form is included in Appendix A.

The May 2024 release partially overlaps a prior release that occurred on April 1, 2024. The April 2024 release is associated with the Windward West CTB and was assigned Incident ID nAPP2409948979. According to the NMOCD C-141 Initial Report, the nAPP2409948979 release was caused by a hole in a water transfer line and consisted of 12.7488 barrels (bbls) of produced water, of which 10 bbls were reported recovered.

A separate Release Characterization and Remediation Work Plan will be submitted to the NMOCD for Incident ID nAPP2409948979.

LAND OWNERSHIP

According to the NMOCD Oil and Gas Map, the Site is located on federal lands managed by the Bureau of Land Management (BLM). This Work Plan will be provided to the BLM for review and approval prior to the commencement of remedial activities.

SITE CHARACTERIZATION

A site characterization was performed and no sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, stream bodies, wetlands, incorporated

Remediation Work Plan September 12, 2024

municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there is one (1) water well located within ½ mile (800 meters) of the Site at a depth of 120 feet bgs with no groundwater elevation reported. This dry water well provides a reasonable determination to establish groundwater as greater than 100 bgs in the ½ mile radius. The minimum depth to groundwater based on data from one (1) well located approximately 1.26 miles (2,028 meters) away from the Site is 135 feet below ground surface (bgs). The site characterization data are presented in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chloride in soil.

Based on the site characterization, depth to groundwater, and in accordance with Table I of 19.15.29.12 NMAC, the recommended remedial action levels (RRALs) for the Site are as follows:

Constituent	Site RRALs
Chloride	20,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (GRO+DRO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
ТРН	100 mg/kg

ASSESSMENT ACTIVITIES

Tetra Tech, on behalf of ConocoPhillips, conducted assessment sampling in the vicinity of the coincidental release extent to evaluate current soil concentration levels and guide the anticipated remediation. On July 24, 2024, Tetra Tech personnel oversaw the installation of six (6) boreholes (BH-1 through BH-6) and six (6) hand auger borings (AH-24-1 and H-1 through H-6) within and around the combined release extent. The July 2024 sampling locations are presented in Figure 3. Photographic documentation of the Site is included in Appendix C.

A total of thirty-four (34) soil samples were collected and sent to Cardinal Laboratories in Midland, Texas to be analyzed for chloride via Method SM4500CI-B, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix D.

Analytical results from the July 2024 soil assessment are summarized in Table 1. Chloride concentrations were detected in surface soils (0-4 feet bgs) at five boring locations at levels above the reclamation limit of 600 mg/kg. There were no analytical results exceeding the chloride RRAL of 20,000 mg/kg. All analytical results were below the reclamation limits and Site RRALs for all other constituents.

On behalf of ConocoPhillips, Tetra Tech requested a 90-day extension on August 1, 2024, to complete site characterization, additional sampling and reporting of assessment results for this incident. The extension request was approved by Shelly Wells on August 1, 2024, and the remediation due date was updated to October 30, 2024. A copy of the regulatory correspondence is included in Appendix E.

REMEDIATION WORK PLAN

As previously mentioned, the Windward Federal #002H (NAPP2413732369) footprint partially coincides with the previous Windward West CTB (NAPP2409948979) release footprint. Therefore, the following proposed remedial action will address both incidents.

Based on the collected analytical results, ConocoPhillips proposes to remove the impacted material as shown in Figure 4. Impacted soils will be excavated using heavy equipment (backhoes, hoe rams, and track hoes) to a maximum depth of 4 feet below surface grade or until a representative sample from the excavation floor is below the applicable reclamation limits. Heavy equipment will be utilized to excavate areas outside the immediate vicinity of pressurized lines and will come no more than 4 feet from any pressurized lines. Impacted soils within the vicinity of the surface and subsurface lines will be removed to the maximum extent practicable using non-aggressive excavation methods.

Excavated soils will be transported offsite and disposed of at an NMOCD-approved or permitted facility. Confirmation bottom and sidewall samples will be collected for verification of remedial activities, and analyzed for TPH, BTEX, and chlorides. The responsible party will notify the OCD two (2) business days prior to conducting final confirmation sampling pursuant to 19.15.29.12.D(1)(a) NMAC, using a Notification of Sampling (C-141N) application. The estimated volume of material to be remediated is approximately 332 cubic yards.

ALTERNATIVE CONFIRMATION SAMPLING PLAN

Confirmation bottom and sidewall samples representative of no more than 400 square feet will be collected and analyzed for TPH (Method 8015 modified), BTEX (Method 8021B), and chloride (Method SM4500Cl-B) as shown in Figure 5. Six (6) confirmation floor samples and ten (10) confirmation sidewall samples for verification of remedial activities. The proposed excavation encompasses a surface area of approximately 2,383 square feet. Once results are received, the excavation will then be backfilled with clean material to surface grade.

SITE RECLAMATION AND MONITORING PLAN

Based on 19.15.29.13 NMAC, all areas disturbed by the remediation and closure will be reclaimed once confirmation sampling results below the reclamation requirements (or RRALs, respectively, for areas below 4 feet bgs) are received. Once acceptable confirmation sample results are received, the excavation will be backfilled with clean material to pre-release grade. In accordance with 19.15.29.12 NMAC, the reclaimed area will contain a minimum of 4 feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg as verified by analysis of backfill source material via Method SM4500CI-B. The soil cover will include a top layer consisting of 1 foot of suitable material to establish vegetation at the site.

The backfilled areas in the pasture will be seeded following backfilling, to aid in revegetation. Based on the soils at the site, areas will be seeded with the BLM seed mixture for LPC Sand/Shinnery Sites and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

Reclamation activities will be implemented in consultation with the BLM. ConocoPhillips will notify the BLM when reclamation and revegetation are complete.

Remediation Work Plan September 12, 2024

ConocoPhillips

CONCLUSION

Based on the results of the July 2024 release assessment and characterization, ConocoPhillips will remediate soils within the release extent impacted above reclamation limits. The proposed remedial activities will be conducted within 120 days of NMOCD plan approval.

If you have any questions concerning the additional assessment activities for the Site or the proposed remediation work plan, please call me at (512) 596-8201 or Christian at (512) 338-2861.

Sincerely, Tetra Tech, Inc.

Lisbeth Chavira Staff Geoscientist

Christian M. Llull, P.G. Program Manager

cc: Mr. Ike Tavarez, RMR – ConocoPhillips Crisha Morgan, BLM

.

Remediation Work Plan September 12, 2024

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

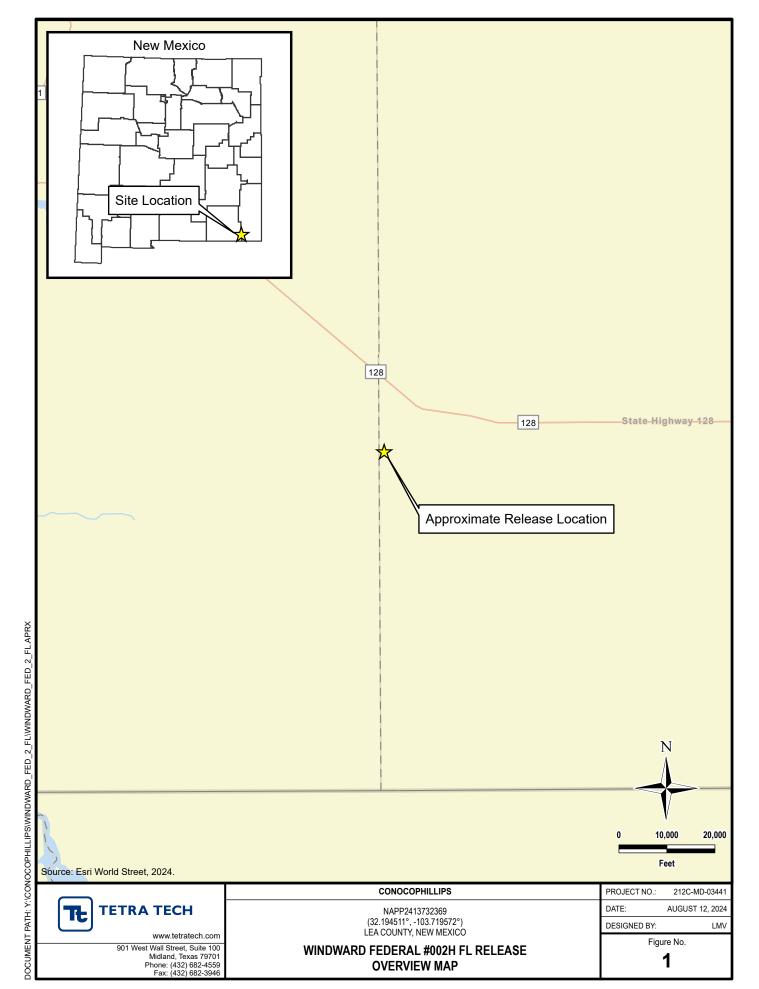
Figure 1 – Overview Map

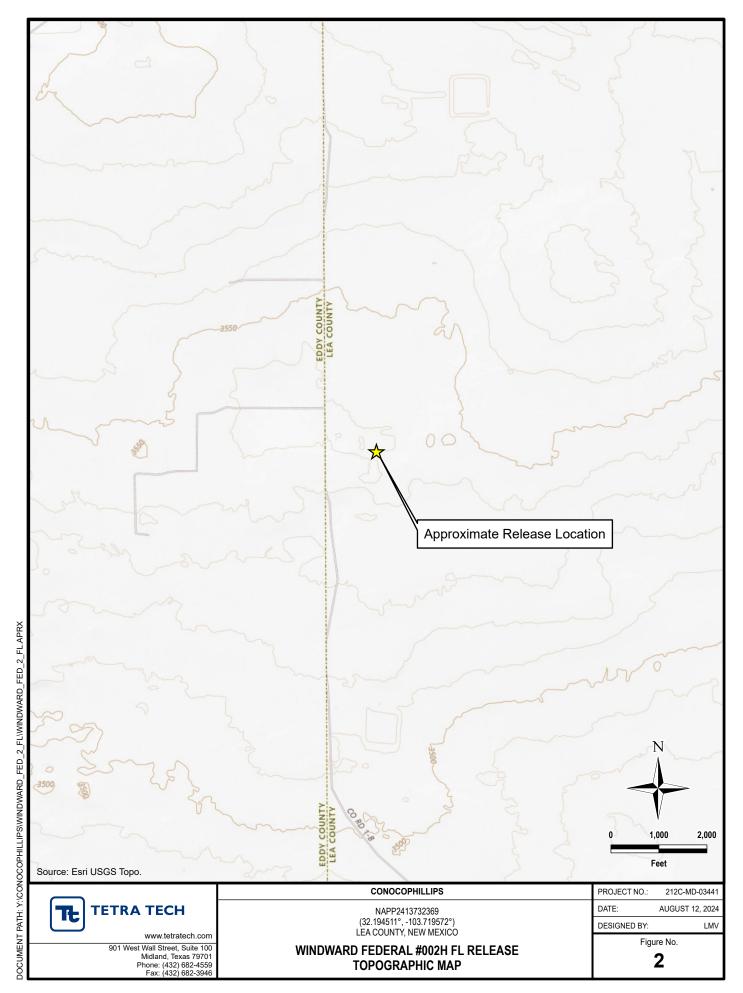
Figure 2 – Topographic Map

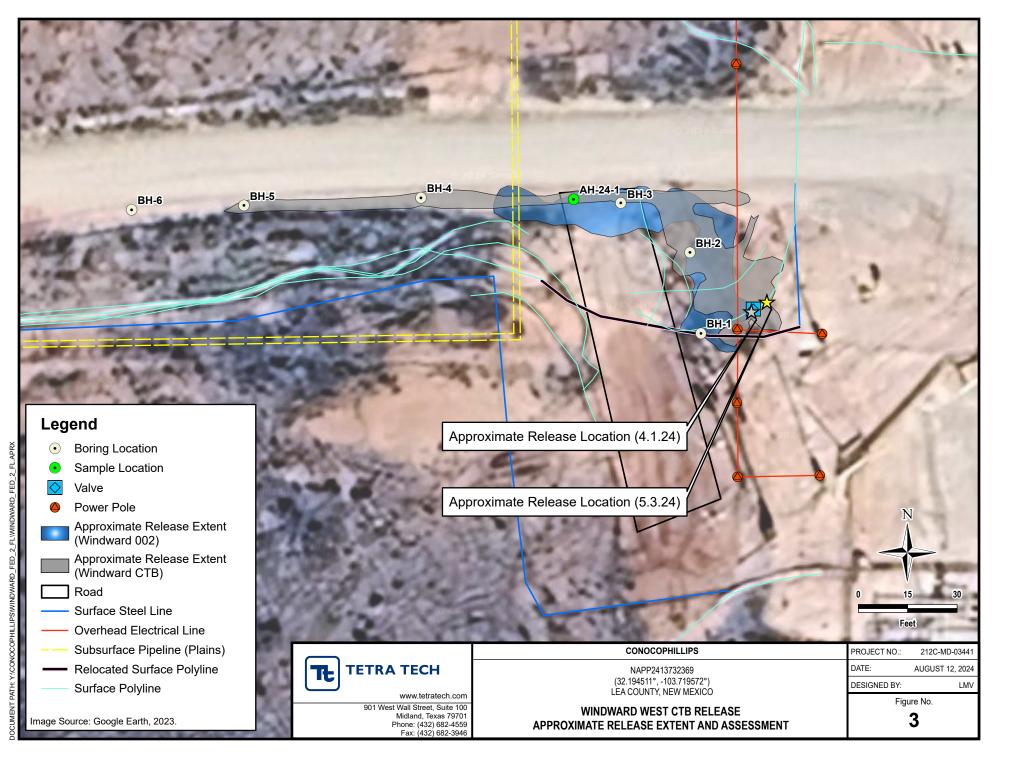
Figure 3 – Approximate Release Extent and Additional Assessment

Figure 4 – Proposed Remediation

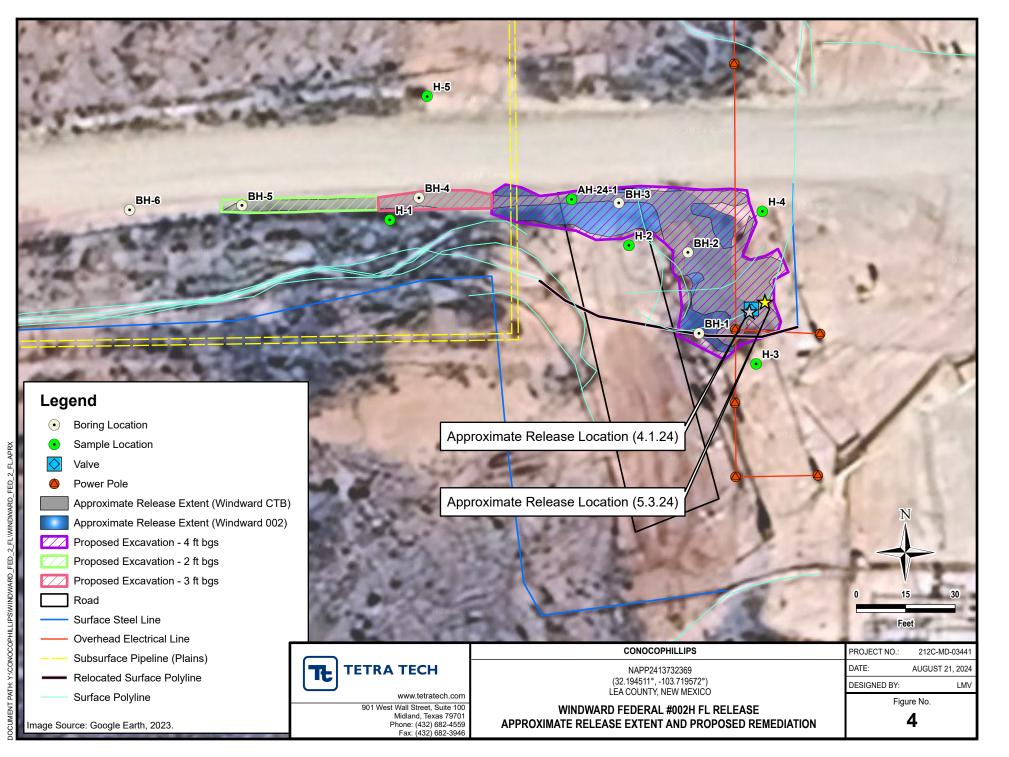
Figure 5 – Proposed Remediation and Alternative Confirmation Sampling

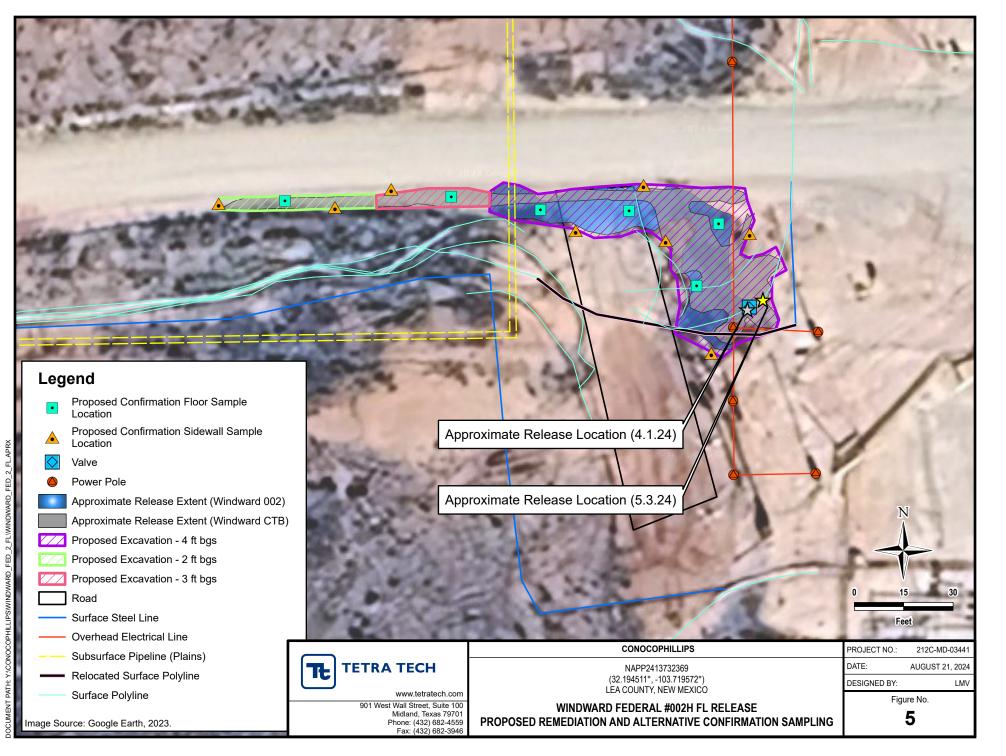

Tables:


Table 1 – Summary of Analytical Results – 2024 Soil Assessment


Appendices:

Appendix A – C-141 Forms Appendix B – Site Characterization Data Appendix C – Photographic Documentation Appendix D – Laboratory Analytical Data Appendix E – Regulatory Correspondence


FIGURES



Released to Imaging: 9/17/2024 4:11:50 PM

Released to Imaging: 9/17/2024 4:11:50 PM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT- NAPP2413732369 CONOCOPHILLIPS WINDWARD FEDERAL #002H FL RELEASE LEA COUNTY, NM

/				4						BTEX	2								TP	۲H ³		
Sample ID	Sample Date	Sample Depth	Field Screening Resu	Chloric	de	Benzei	20	Toluer		Ethylben		Total Xyl	onoc	Total B	TEV	GRO		DRO		EXT DR	0	Total TPH
Sample ID	Sample Date		Chloride PID			Belizei	lie	Toluer	le	Ethylbenz	lene	TOtal Ayı	enes	TOTALDIEX		C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		(GRO+DRO+EXT DRO)
		ft. bgs	ppm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
R	Reclamation Closure Cr	iteria for Soils 0-4 ft b	ogs:	<u>600 mg/</u>	<u>/kg</u>	<u>10 mg/</u>	<u>ˈkɡ</u>							<u>50 mg/</u>	<u>'kq</u>							<u>100 mg/kg</u>
C	Closure Criteria for Soi	ls >4 ft bgs (GW >100	ft):	<u>20,000 m</u>	<u>q/kq</u>	<u>10 mg/</u>	<u>ˈkɑ</u>							<u>50 mg/</u>	<u>′kq</u>							<u>2,500 mg/kg</u>
						_		V	ERTICAL I	DELINEATION												-
		0-1		5,920		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		181		46.8		227.8
		2-3		7,730		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		10.5		<10.5		10.5
		4-5		976		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
BH-1	7/24/2024	6-7		3,520		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		51.1		19.0		70.1
		9-10		3,760		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		35.9		12.0		47.9
		14-15	3,000	2,600		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		20-23	273	80.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		0-1		12,800		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		2-3		5,300		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		4-5		3,840		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
BH-2	7/24/2024	6-7		3,240		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		9-10	3,500	6,800		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		18.0		<10.0		18.0
		13	2,200	2,000		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		18-20	300	160		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
AH-24-1	7/24/2024	0-1	10,000	9,200		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		11.9		<10.0		11.9
		0-1	3,500	7,200		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		2-3	-	848		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		43.2		<10.0		43.2
BH-3	7/24/2024	4-5	800	2,240		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		6-7	530	192		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
		9-10	430	688		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		0-1	10,000	11,800		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
BH-4	7/24/2024	1-2	-	7,360		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		43.2		<10.0		-
ВП-4	//24/2024	2-3	-	3,680		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		3-4	68	320		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
		0-1	2,500	2,080		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
	7/24/2024	1-2	-	4,840		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		43.2		<10.0		-
BH-5	7/24/2024	2-3	-	384		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
		3-4	543	400		<0.050		<0.050		<0.050		<0.150		< 0.300		<10.0		<10.0		<10.0		-
BH-6	7/24/2024	0-1	73	32.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-

.

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT- NAPP2413732369 CONOCOPHILLIPS WINDWARD FEDERAL #002H FL RELEASE LEA COUNTY, NM

		Field Screenii	na Doculto						BTEX	2								TF	۶H³		
Sample Date	Sample Depth		ng Results	Chlorid	e	Ponton		Toluono	Ethylhon	7000	Total Vula	200	Total PT	·ΕV	GRO		DRO		EXT DR	0	Total TPH
Sample Date		Chloride	PID				e	Toluene	Ethyldenzene		i otal Xylenes		TOLAIBIEX		C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		(GRO+DRO+EXT DRO)
	ft. bgs	ppm	n	mg/kg	Q	mg/kg	Q	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
HORIZONTAL DELINEATION																					
7/24/2024	0-1			80.0		<0.050		<0.050	<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
7/24/2024	0-1			16.0		<0.050		<0.050	<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
7/24/2024	0-1			96.0		<0.050		<0.050	<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
7/24/2024	0-1			32.0		<0.050		<0.050	<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
7/24/2024	0-1			16.0		<0.050		<0.050	<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
	7/24/2024 7/24/2024 7/24/2024	Image: second	Chloride ft. bgs ppn 7/24/2024 0-1 1 7/24/2024 0-1 1 7/24/2024 0-1 1 7/24/2024 0-1 1 7/24/2024 0-1 1	Chloride PID ft. bgs ppm 7/24/2024 0-1 1 7/24/2024 0-1 1 7/24/2024 0-1 1 7/24/2024 0-1 1	Chloride PID ft. bgs ppm mg/kg 7/24/2024 0-1 1 80.0 7/24/2024 0-1 16.0 16.0 7/24/2024 0-1 96.0 32.0	Chloride PID ft. bgs ppm mg/kg Q 7/24/2024 0-1 80.0 16.0 7/24/2024 0-1 16.0 1 7/24/2024 0-1 96.0 1 7/24/2024 0-1 32.0 1	Image Date Image D	Image Date Image D	Image Date Image Date Image Date Benzene Toluene ft. bgs ppm mg/kg Q mg/kg Q mg/kg Q 7/24/2024 0-1 1 80.0 <0.050	Image DateImage Date	Image DateImage Date	Image: Date of the base o	Image DateImage date	$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Image: Angle DateChloridePIDBenzerToluerreToluerreEthylbenzerTotal XylersTotal BTEXft. bgsppmmg/kgQmg/kgQmg/kgQmg/kgQmg/kgQmg/kgQmg/kgQ7/24/20240-1Image: Second Seco	Image baseImage base	Image base Image	$ \begin{array}{ c c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \begin{array}{ c c c c c } \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Ample Date Othoride PID PID Tolue \sim	Image base in the base inthe base in the base in the base in the base in the b

<u>NOTES:</u> ft. Feet

bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics

1 Method SM4500Cl-B

2 Method 8021B

3 Method 8015M

Bold and italicized values indicate exceedance of the applicable RRALs and/or Reclamation Requirements. Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

.

•

APPENDIX A C-141 Forms

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 16cof 104

Incident ID	nAPP2413732369
District RP	
Facility ID	fAPP2132638253
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Production, LLC	OGRID	229137		
Contact Name	Jacob Laird	Contact Telephone	(575) 703-5482		
Contact email	Jacob.Laird@ConocoPhillips.com	Incident # (assigned by OCD)	nAPP2413732369		
Contact mailing address	600 West Illinois Avenue, Midland, Texas 79701				

Location of Release Source

Latitude ____32.1945

Longitude -103.7195

(NAD 83 in decimal degrees to 5 decimal places)

					Site Type	Tank Battery
Date Release	Discovered	May 3, 202	4		API# (if applicable)	
Unit Letter	Section	Township	Range		County	
D	30	24S	32E		Lea	

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Materia	al(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 4.1217	Volume Recovered (bbls) 0
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a hole in a water transfer line.

This release was off pad.

Evaluation will be made of the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Page	2
rage	4

Oil Conservation Division

Incident ID	nAPP2413732369
District RP	
Facility ID	fAPP2132638253
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🔳 No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name. Brittany N. Esparza	Title: Environmental Technician
Signature:_ Partian Jopange	<u>5/16/2024</u>
email: Brittany.Esparza@ConocoPhillips.com	Telephone: (432) 221-0398
OCD Only	
Received by:	Date:

Received by OCD: 9/12/2024 3:18:32 PM Spill Calculation - Subsurface Spill - Rectangle					Remediatio	on Recommendation				
Convert Irregular shape		530,005	Average Depth (in.)	On/Off Pad (dropdow n)	Soil Spilled-Fluid Saturation (%.)	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)			Page 18 of 104 – Current Rule of Thumb - RMR Handover Volume, (yd ³ .)
Rectangle A	25.0	15.0	3.0	Off-Pad~	15.02%	16.69	2.51		4.34	
Rectangle B	45.0	5.0		Off-Pad∨	15.02%	10.01	1.50		2.60]
Rectangle C	10.0	5.0	1.0	Off-Pad~	15.02%	0.74	0.11		0.19	
Rectangle D	1	a 16	20	>	1	0.00			0.00	
Rectangle E				>		0.00			0.00	750
Rectangle F	1			<	20	0.00			0.00	150
Rectangle G				<		0.00			0.00	
Rectangle H				<		0.00			0.00]
Rectangle I				<	0	0.00			0.00]
- Released to Imaging	• 9/17/2	021 1.1	1.50 DM	~		0.00			0.00	
- Acteused to Imaging	10/2	044 4.1.		270	Total Sub	surface Volume Released:	4.1217		7.14	BU

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 19eof 104

Action 345017

QUESTIONS

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	345017
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS Proroquisitos

Incident ID (n#)	nAPP2413732369	
Incident Name	NAPP2413732369 WINDWARD FEDERAL 002H @ 0	
Incident Type	Produced Water Release	
Incident Status	Initial C-141 Received	
Incident Facility	[fAPP2132638253] WINDWARD FED 2H - BATTERY	

Location of Release Source

Please answer all the questions in this group.			
Site Name	Windward Federal 002H		
Date Release Discovered	05/03/2024		
Surface Owner	Federal		

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Not answered. Crude Oil Released (bbls) Details

Crude On Released (bbis) Details	NOL ANSWEIEU.
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Injection Produced Water Released: 4 BBL Recovered: 0 BBL Lost: 4 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	345017
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Nature and Volume of Release (continued)				
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.			
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Unavailable.			
Reasons why this would be considered a submission for a notification of a major release	Unavailable.			
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.				

Initial	Response
---------	----------

The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.	
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	Тгие	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
	liation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of sted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.	
to report and/or file certain release notifications and perform corrective actions for rele the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 05/16/2024	

Action 345017

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	345017
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. What is the shallowest depth to groundwater beneath the area affected by the Not answered. release in feet below ground surface (ft bgs)

release in leet below ground surface (it bgs)	
What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 345017

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	345017
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

CONDITIONS

Created By		Condition Date
nvelez	None	5/16/2024

Page 22eof 104

Action 345017

Received by OCD: 9/12/2024 3:18:32 PM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

Incident ID		
District RP		
Facility ID		
Application ID		

Page 23 of 104

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/12/20	D24 3:18:32 PM State of New Mexico		Page 24 of 104					
			Incident ID					
Page 4	Oil Conservation Division		District RP					
			Facility ID					
			Application ID					
regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations.	9	ications and perform c CD does not relieve the t to groundwater, surfa esponsibility for comp	orrective actions for rele e operator of liability sh ace water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws				
email:		Telephone:						
OCD Only								
Received by:		Date:						

Received by OCD: 9/12/2024 3:18:32 PM Form C-141 State of New Mexico

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

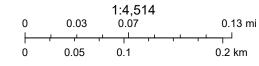
Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.1 Proposed schedule for remediation (note if remediation plan time 	2(C)(4) NMAC
Deferral Requests Only: Each of the following items must be con	firmed as part of any request for deferral of remediation.
Contamination must be in areas immediately under or around prodeconstruction.	oduction equipment where remediation could cause a major facility
Extents of contamination must be fully delineated.	
Contamination does not cause an imminent risk to human health	, the environment, or groundwater.
I hereby certify that the information given above is true and complet rules and regulations all operators are required to report and/or file c which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases nee of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, neceptance of a C-141 report does not relieve the operator of
	Title:
Signature: /4 775	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved
Signature:	Date:

.

APPENDIX B Site Characterization Data

OCD Land ownership



7/16/2024, 9:58:44 AM Mineral Ownership

Land Ownership

A-All minerals are owned by U.S.

BLM

New Mexico Oil Conservation Division

U.S. BLM, Esri, HERE, Garmin, iPC, Maxar

Released to Imaging: 9/17/2024 4:11:50 PM

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

New Mexico Office of the State Engineer Water Column/Average Depth to Water

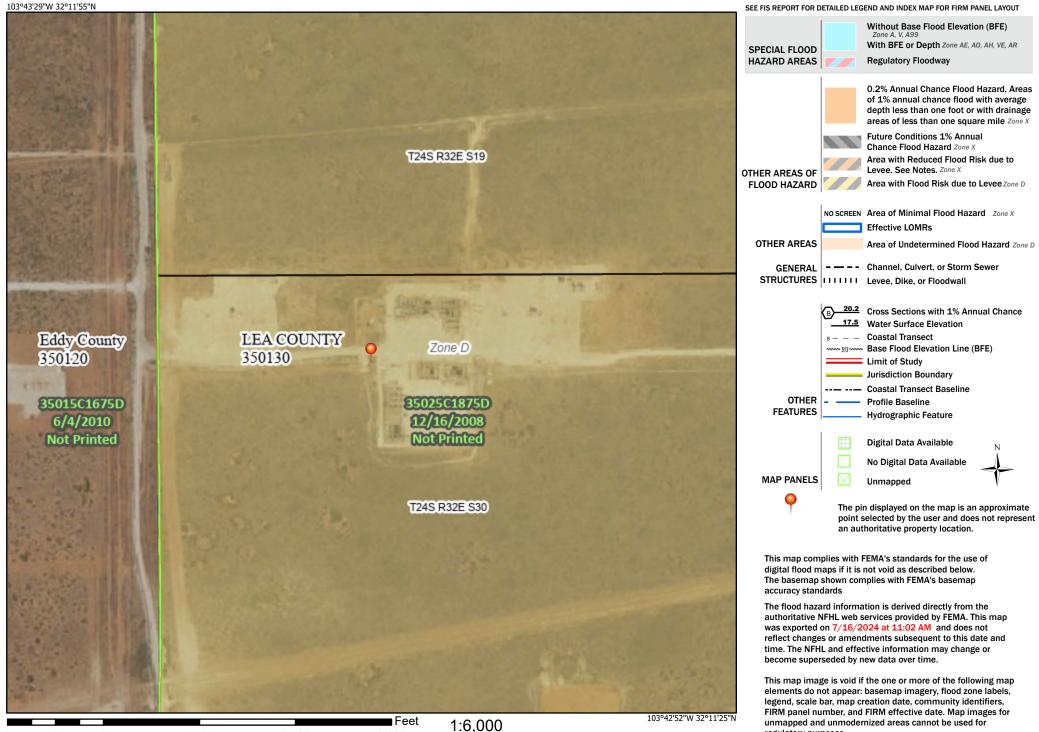
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(2=NE 3 est to lar	3=SW 4=SE) gest) (NA) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin C	ounty	-	Q (16 /	-	ec Tws	Rng	Х	Y	Distance	-	Depth Water	Water Column
C 04665	CUB	LE					32E	621350	3562798 🌍	663	120		
C 04654 POD1	CUB	ED	3	3	4 2	245	31E	619764	3561226 🌍	1753	55		
C 04636 POD1	CUB	ED	3	4	32	248	31E	619200	3561279 🌍	2070			
C 04643 POD1	С	ED	4	2	2 0	5 235	27E	619200	3561279 🌍	2070	305	135	170
									Avera	ge Depth to	Water:	135	feet
										Minimum	Depth:	135	feet
										Maximum	Depth:	135	feet
Record Count: 4													
UTMNAD83 Radius	Search (in meter	rs):											

Easting (X): 620691.62

Northing (Y): 3562714.68

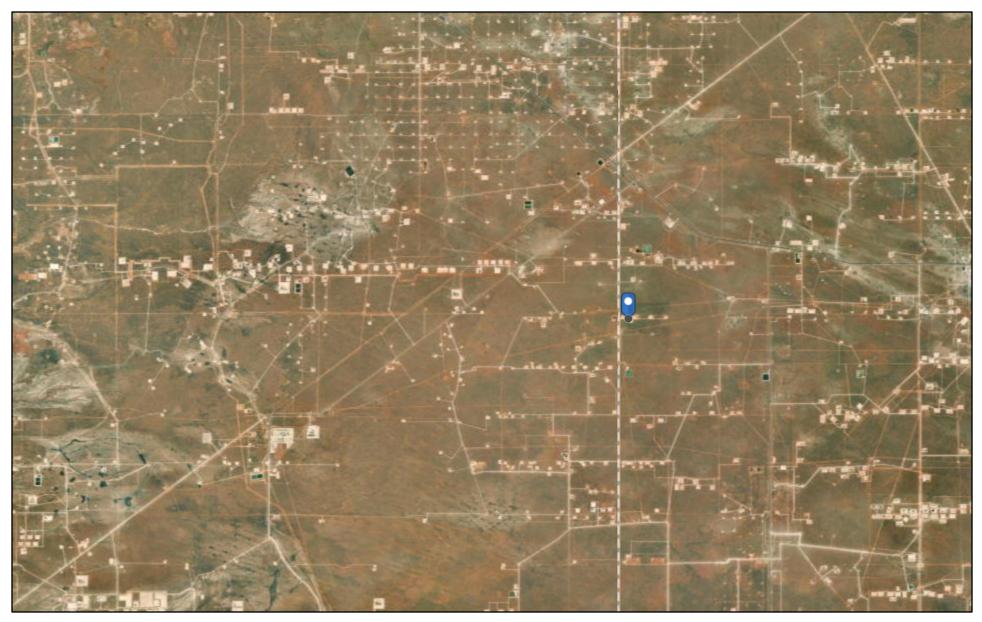
Radius: 3000

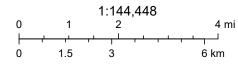
The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


Received by OCD: 9/12/2024 3:18:32 PM National Flood Hazard Layer FIRMette

Legend

regulatory purposes.

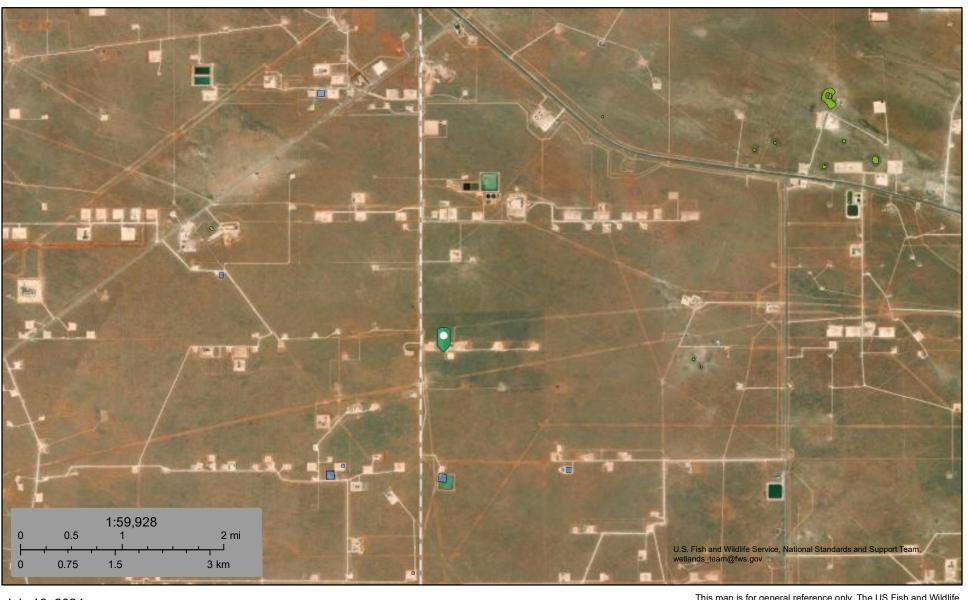

Page 29 of 104


Releasea to Imaging: 9/17/2024 4991:50 PM 1,500 2,000

Basemap Imagery Source: USGS National Map 2023

OCD Water Bodys

7/16/2024, 10:00:32 AM



Esri, HERE, Garmin, Earthstar Geographics

1/10/2024 2.10.22 DL Received by OCD

U.S. Fish and Wildlife Service National Wetlands Inventory

National Wetlands Inventory

July 16, 2024

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

Released to Imaging: 9/17/2024 4:11:50 PM

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

OCD Karst Areas

7/16/2024, 10:03:30 AM Karst Occurrence Potential

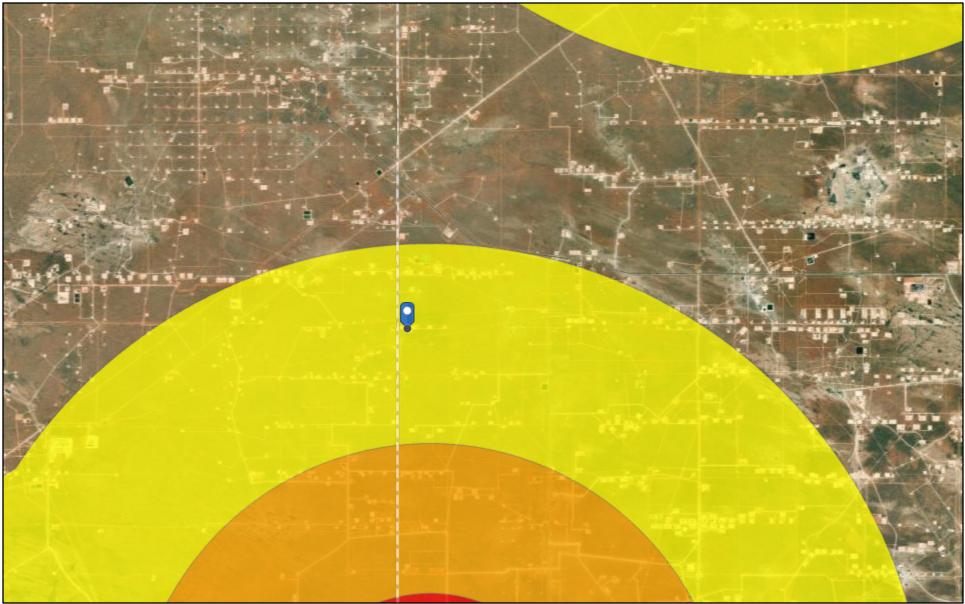
Low

1:18,056 0 0.13 0.25 0.5 mi ├ + + + / / / / 0 0.2 0.4 0.8 km

New Mexico Oil Conservation Division

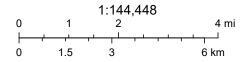
BLM, OCD, New Mexico Tech, Esri, HERE, Garmin, iPC, Maxar

EMNRD Active Mines



Released to Imaging: 9/17/2024 4:11:50 PM

NM Energy, Minerals and Natural Resources Department (http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=1b5e577974664d689b47790897ca2795)


EMNRD MMD GIS Coordinator

OCD Induced Seismicity Area

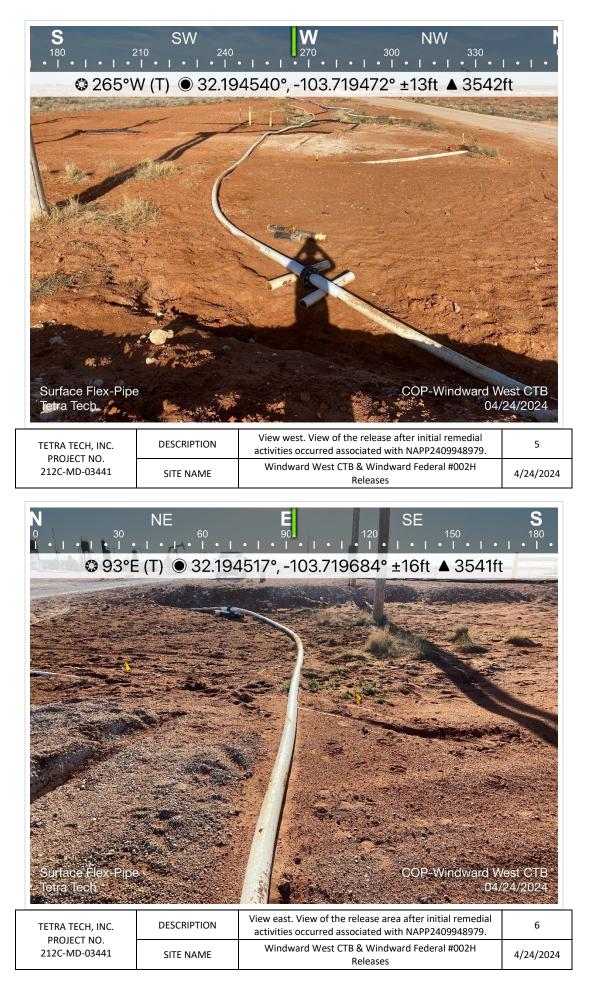
7/16/2024, 10:08:42 AM Seismic Response 3.0 to 3.4

New Mexico Oil Conservation Division

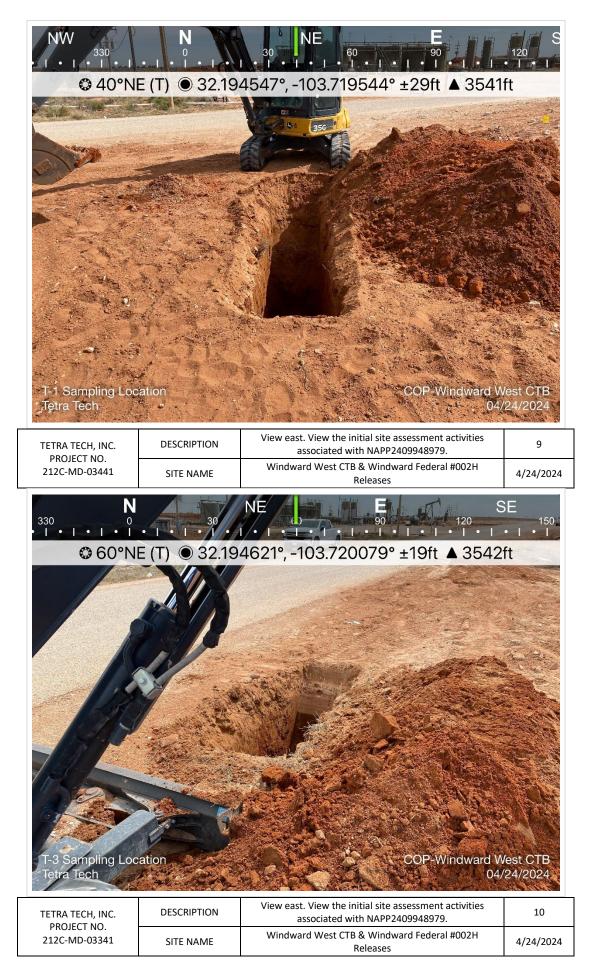
Oil Conservation Division (OCD), Energy, Minerals and Natural Resources Department (EMNRD), Esri, HERE, Garmin, Earthstar Geographics

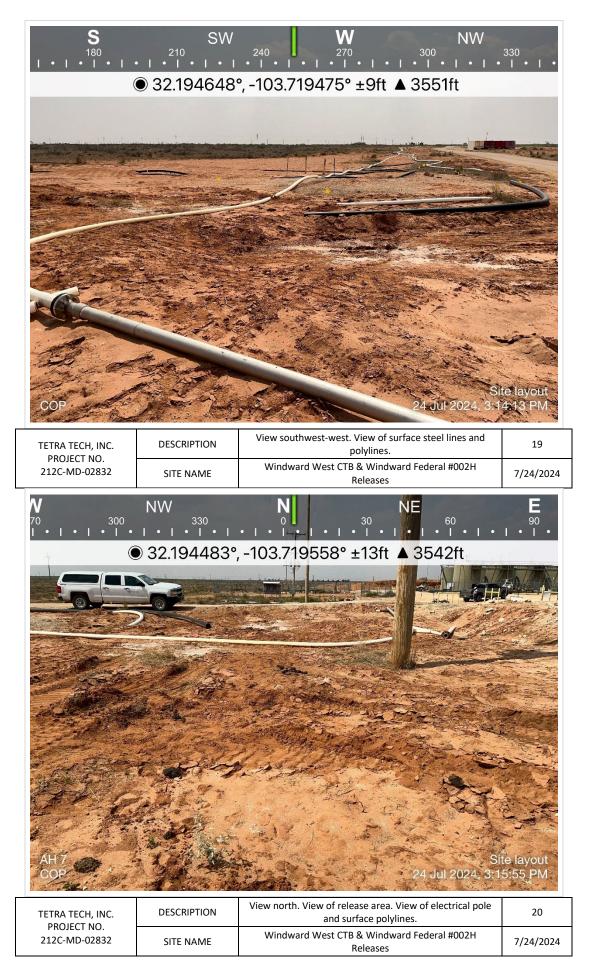
Page 34 of 104

Released to Imaging: 9/17/2024 4:11:50 PM


3 mi.

NM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division


APPENDIX C Photographic Documentation


TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View south. View of the release area associated with Windward Federal #002H (NAPP2413732369).	11
212C-MD-03341	SITE NAME	Windward West CTB & Windward Federal #002H Releases	5/4/2024
	SW	VV NW 2'5 300 330 2°11'40"N, 103°43'10"W ±13ft ▲ 3541ft	
		et May 2024, 06:36:23	
TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west. View of the release area associated with Windward Federal #002H (NAPP2413732369).	12
212C-MD-03341	SITE NAME	Windward West CTB & Windward Federal #002H Releases	5/4/2024

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southeast. View of the release point associated with Windward Federal #002H (NAPP2413732369).	13
212C-MD-03441	SITE NAME	Windward West CTB & Windward Federal #002H Releases	5/4/2024
	S 180	SIV W 210 240 270 3	
	○ 227°SW (T) ● 3	2°11'40"N, 103°43'10"W ±36ft ▲ 3543ft	
		All and a second se	
	No.	A STATE OF THE STA	
	Person and	K. The Carlos and	
		No. Contraction	
		The Martin State	
	12		
		A REPECT	
	Augent and		
		04 May 2024, 06:36:17	
		View southwest. View of the release area associated with	
TETRA TECH, INC. PROJECT NO.	DESCRIPTION	Windward Federal #002H (NAPP2413732369).	14
212C-MD-03441	SITE NAME	Windward West CTB & Windward Federal #002H Releases	5/4/2024

APPENDIX D Laboratory Analytical Data

August 13, 2024

CHRISTIAN LLULL TETRA TECH 901 WEST WALL STREET , STE 100

MIDLAND, TX 79701

RE: WINDWARD WEST CTB / WINDWARD FED #002

Enclosed are the results of analyses for samples received by the laboratory on 07/25/24 11:47.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project: WINDW Project Number: 212C - N Project Manager: CHRIST Fax To: (432) 68	TAN LLULL	Reported: 13-Aug-24 12:14	
---	---	-----------	------------------------------	--

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH 1 (0-1')	H244430-01	Soil	24-Jul-24 07:00	25-Jul-24 11:47
BH 1 (2-3')	H244430-02	Soil	24-Jul-24 07:05	25-Jul-24 11:47
BH 1 (4-5')	H244430-03	Soil	24-Jul-24 07:10	25-Jul-24 11:47
BH 1 (6-7')	H244430-04	Soil	24-Jul-24 07:15	25-Jul-24 11:47
BH 1 (9-10')	H244430-05	Soil	24-Jul-24 07:20	25-Jul-24 11:47
BH 1 (14-15')	H244430-06	Soil	24-Jul-24 07:25	25-Jul-24 11:4
BH 1 (20-23')	H244430-07	Soil	24-Jul-24 07:30	25-Jul-24 11:47
BH 2 (0-1')	H244430-08	Soil	24-Jul-24 07:35	25-Jul-24 11:47
BH 2 (2-3')	H244430-09	Soil	24-Jul-24 07:40	25-Jul-24 11:47
BH 2 (4-5')	H244430-10	Soil	24-Jul-24 07:45	25-Jul-24 11:47
BH 2 (6-7')	H244430-11	Soil	24-Jul-24 07:50	25-Jul-24 11:47
BH 2 (9-10')	H244430-12	Soil	24-Jul-24 08:10	25-Jul-24 11:47
BH 2 (13')	H244430-13	Soil	24-Jul-24 08:20	25-Jul-24 11:4
BH 2 (18-20')	H244430-14	Soil	24-Jul-24 08:25	25-Jul-24 11:4
BH 3 (0-1')	H244430-15	Soil	24-Jul-24 08:30	25-Jul-24 11:4
BH 3 (2-3')	H244430-16	Soil	24-Jul-24 08:40	25-Jul-24 11:4
BH 3 (4-5')	H244430-17	Soil	24-Jul-24 08:50	25-Jul-24 11:47
BH 3 (6-7')	H244430-18	Soil	24-Jul-24 08:55	25-Jul-24 11:47
BH 3 (9-10')	H244430-19	Soil	24-Jul-24 09:00	25-Jul-24 11:4
BH 4 (0-1')	H244430-20	Soil	24-Jul-24 09:15	25-Jul-24 11:47
BH 4 (1-2')	H244430-21	Soil	24-Jul-24 10:00	25-Jul-24 11:47
BH 4 (2-3')	H244430-22	Soil	24-Jul-24 10:35	25-Jul-24 11:47
BH 4 (3-4')	H244430-23	Soil	24-Jul-24 10:45	25-Jul-24 11:47
BH 5 (0-1')	H244430-24	Soil	24-Jul-24 11:00	25-Jul-24 11:47
BH 5 (1-2')	H244430-25	Soil	24-Jul-24 11:15	25-Jul-24 11:47
BH 5 (2-3')	H244430-26	Soil	24-Jul-24 11:30	25-Jul-24 11:47
BH 5 (3-4')	H244430-27	Soil	24-Jul-24 11:45	25-Jul-24 11:47

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701		Project Number: Project Manager:	WINDWARD WEST CTB / WINDWA 212C - MD - 03441 CHRISTIAN LLULL (432) 682-3946	Reported: 13-Aug-24 12:14
BH 6 (0-1')	H244430-28	Soil	24-Jul-24 11:50	25-Jul-24 11:47
AH - 24 - 1 (0-1')	H244430-32	Soil	24-Jul-24 13:15	25-Jul-24 11:47
H-1 AH-5(0-1')	H244430-33	Soil	24-Jul-24 14:15	25-Jul-24 11:47
H - 2 AH - 6 (0-1')	H244430-34	Soil	24-Jul-24 15:15	25-Jul-24 11:47
H - 3 AH - 7 (0-1')	H244430-35	Soil	24-Jul-24 16:15	25-Jul-24 11:47
H - 4 AH - 8 (0-1')	H244430-36	Soil	24-Jul-24 17:15	25-Jul-24 11:47
H-5 AH-9(0-1')	H244430-37	Soil	24-Jul-24 17:30	25-Jul-24 11:47

08/13/24 - Client changed sample ID on -32 and the project number (see COC). This is the revised report and will replace the one sent on 07/30/24.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946					Reported: 13-Aug-24 12:14		
				1 (0-1' 430-01 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	5920		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	QM-07
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	QM-07
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЈН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		130 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
<u>Petroleum Hydrocarbons by</u>	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072528	MS	26-Jul-24	8015B	
DRO >C10-C28*	181		10.0	mg/kg	1	4072528	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	46.8		10.0	mg/kg	1	4072528	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			99.9 %	48.2	-134	4072528	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			115 %	49.1	-148	4072528	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project:WINDWARD WEST CTB / WINDWAProject Number:212C - MD - 03441Project Manager:CHRISTIAN LLULLFax To:(432) 682-3946					Reported: 13-Aug-24 12:14		
				1 (2-3' 430-02 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	7730		16.0	mg/kg	4	4072636	НМ	26-Jul-24	4500-Cl-B	
Volatile Organic Compounds		8021	1010	6 6						
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	'D)		130 %	71.5	-134	4072534	ЛН	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	10.5		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			139 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project:WINDWARD WEST CTB / WINDWAProject Number:212C - MD - 03441Project Manager:CHRISTIAN LLULLFax To:(432) 682-3946					Reported: 13-Aug-24 12:14		
				1 (4-5' 430-03 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	976		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		125 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			118 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			142 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946					Reported: 13-Aug-24 12:14		
				1 (6-7' 430-04 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	3520		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		127 %	71.5	-134	4072534	ЈН	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	51.1		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	19.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			112 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			140 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Page 54 of 104

Analytical Results For:

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946					Reported: 13-Aug-24 12:14		
				1 (9-10' 430-05 (So						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
<u>Inorganic Compounds</u> Chloride	3760		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		129 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									S-04
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	35.9		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	12.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	4072523	MS	26-Jul-24	8015B	_
Surrogate: 1-Chlorooctadecane			151 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Page 55 of 104

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946						Reported: 13-Aug-24 12:14		
				(14-15 430-06 (So	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	2600		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	8021									
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЛН	26-Jul-24	8021B		
Surrogate: 4-Bromofluorobenzene (Pl	D)		122 %	71.5	-134	4072534	ЛН	26-Jul-24	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
Surrogate: 1-Chlorooctane			114 %	48.2	-134	4072523	MS	26-Jul-24	8015B		
Surrogate: 1-Chlorooctadecane			134 %	49.1	-148	4072523	MS	26-Jul-24	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHR		Reported: 13-Aug-24 12:14				
				l (20-23	<i>,</i>					
			H244	430-07 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		119 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			110 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			129 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	iber: 212 ager: CHF		WINDWA	Reported: 13-Aug-24 12:14			
				2 (0-1' 430-08 (Se	/					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
<u>Inorganic Compounds</u> Chloride	12800		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		138 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			129 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 58 of 104

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Nun Project Mana	nber: 212 ager: CHF		WINDWA	Reported: 13-Aug-24 12:14			
				2 (2-3' 430-09 (Se	<i>,</i>					
			11211	400 00 (50	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	tories					
Inorganic Compounds										
Chloride	5300		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		125 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			106 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

٦

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHF		, 3441 ULL	WINDWA	1	Reported: 3-Aug-24 12:	14
				2 (4-5' 430-10 (So						
			П244	430-10 (30)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	3840		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		131 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			117 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			141 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHF		WINDWA	Reported: 13-Aug-24 12:14			
				2 (6-7' 430-11 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	tories					
Inorganic Compounds										
Chloride	3240		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		132 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			115 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			142 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	iber: 212 ager: CHF		WINDWA	Reported: 13-Aug-24 12:14			
				2 (9-10' 430-12 (Se	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	6800		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	PID)		132 %	71.5	-134	4072534	ЈН	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B	
DRO >C10-C28*	18.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B	
Surrogate: 1-Chlorooctane			91.2 %	48.2	-134	4072523	MS	29-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	4072523	MS	29-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 62 of 104

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	nber: 212 ager: CHF		WINDWA	Reported: 13-Aug-24 12:14			
				[2 (13') 430-13 (Se						
			112-14	400 10 (5	511)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	tories					
Inorganic Compounds										
Chloride	2000		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		132 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			122 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			145 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946						Reported: 13-Aug-24 12:14		
				2 (18-20 430-14 (So	<i>,</i>						
				10011(50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	160		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B		
Surrogate: 4-Bromofluorobenzene (P	ID)		122 %	71.5	-134	4072534	ЈН	26-Jul-24	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B		
Surrogate: 1-Chlorooctane			118 %	48.2	-134	4072523	MS	26-Jul-24	8015B		
Surrogate: 1-Chlorooctadecane			145 %	49.1	-148	4072523	MS	26-Jul-24	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 64 of 104

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: WINDWARD WEST CTB / WINDWA Project Number: 212C - MD - 03441 Project Manager: CHRISTIAN LLULL Fax To: (432) 682-3946						Reported: 13-Aug-24 12:14			
				3 (0-1' 430-15 (So	·							
			11244	450-15 (50	,m)							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Inorganic Compounds												
Chloride	7200		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B			
Volatile Organic Compound	s by EPA Method	8021										
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B			
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B			
Surrogate: 4-Bromofluorobenzene (P.	ID)		129 %	71.5	-134	4072534	ЈН	26-Jul-24	8021B			
Petroleum Hydrocarbons by	GC FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	29-Jul-24	8015B			
Surrogate: 1-Chlorooctane			97.0 %	48.2	-134	4072523	MS	29-Jul-24	8015B			
Surrogate: 1-Chlorooctadecane			120 %	49.1	-148	4072523	MS	29-Jul-24	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701		Project Num Project Mana	nber: 212 ager: CHR		WINDWA	Reported: 13-Aug-24 12:14				
			вн	3 (2-3')					
			H244	430-16 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	848		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЈН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		135 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	43.2		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			130 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	iber: 212 ager: CHF		, 3441 ULL	WINDWA	1	Reported: 3-Aug-24 12:	14
				3 (4-5'	, ,					
			П244	430-17 (So)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ll Laborat	ories					
Inorganic Compounds										
Chloride	2240		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		133 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			110 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			129 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		, 3441 ULL	WINDWA	1	14	
				3 (6-7' 430-18 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	192		16.0	mg/kg	4	4072636	HM	26-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		129 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			107 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			125 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Nun Project Mana	nber: 212 ager: CHF		, 3441 ULL	WINDWA	1	14	
				3 (9-10' 430-19 (So	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	688		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		134 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			111 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			131 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Nun Project Mana	nber: 212 ager: CHR	DWARD WEST CTB / WINDWA C - MD - 03441 ISTIAN LLULL 2) 682-3946			Reported: 13-Aug-24 12:14		
			BH	4 (0-1')					
			H244	430-20 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	11800		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method	8021								S-04
Benzene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072534	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072534	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		142 %	71.5	-134	4072534	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			116 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			140 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHF		, 3441 ULL	WINDWA	Reported: 13-Aug-24 12:14		
				4 (1-2' 430-21 (Se						
			11211	100 21 (5	,,,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	7360		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		111 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			118 %	48.2	-134	4072523	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			142 %	49.1	-148	4072523	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		, 3441 ULL	WINDWA	1	14	
				4 (2-3' 130-22 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	3680		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЈН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		110 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			103 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Nun Project Mana	nber: 212 ager: CHR	DWARD WEST CTB / WINDWA C - MD - 03441 ISTIAN LLULL C) 682-3946			Reported: 13-Aug-24 12:14		
				4 (3-4'	·					
			H244	430-23 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	al Laborat	ories					
Inorganic Compounds										
Chloride	320		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		111 %	71.5	-134	4072535	ЛН	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			100 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			99.0 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ager: CHR		Reported: 13-Aug-24 12:14				
				5 (0-1'	·					
			H244	430-24 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	ıl Laborat	ories					
Inorganic Compounds										
Chloride	2080		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		111 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			99.7 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			98.6 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	STE 100		Project Num Project Mana	ber: 212 ger: CHF		Reported: 13-Aug-24 12:14				
				5 (1-2' 430-25 (Se	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	4840		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		110 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			98.6 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			97.7 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHR		Reported: 13-Aug-24 12:14				
				5 (2-3'	·					
			H244	430-26 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	384		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (Ph	ID)		107 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			98.1 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			95.1 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	iber: 212 Iger: CHF		Reported: 13-Aug-24 12:14				
				5 (3-4' 430-27 (So						
			11211	100 1 7 (50	, n ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	400		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		110 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			97.3 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			94.0 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHR		Reported: 13-Aug-24 12:14				
				6 (0-1')	, ,					
[H2444	430-28 (So)))					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		112 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			89.5 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			87.8 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701		Project Num Project Mana	ber: 212 ger: CHF		Reported: 13-Aug-24 12:14					
				4 - 1 (0· 130-32 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	9200		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		109 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	11.9		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			92.8 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			91.7 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 13-Aug-24 12:14					
				AH - 5 ((<i>,</i>					
			11244-	-30-33 (St)II)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 802	21								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		112 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			84.5 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			82.3 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana	ber: 212 ger: CHF		Reported: 13-Aug-24 12:14				
				AH - 6 ((430-34 (So	<i>,</i>					
			П2444	130-34 (30)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		115 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			93.0 %	48.2	-134	4072533	MS	26-Jul-24	8015B	_
Surrogate: 1-Chlorooctadecane			91.3 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 13-Aug-24 12:14					
				AH - 7 (0	<i>,</i>					
			H244	430-35 (So)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	96.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		112 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			81.5 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			78.8 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701		Project Num Project Mana	, ber: 212 ger: CHR		Reported: 13-Aug-24 12:14					
				AH - 8 (0 430-36 (So	<i>,</i>					
					,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 80	21								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		115 %	71.5	-134	4072535	JH	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			78.2 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			74.8 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701		Project Num Project Mana	ber: 212 ger: CHF		Reported: 13-Aug-24 12:14					
				AH - 9 ((430-37 (So	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	16.0		16.0	mg/kg	4	4072626	AC	29-Jul-24	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4072535	ЛН	26-Jul-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4072535	JH	26-Jul-24	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		113 %	71.5	-134	4072535	ЛН	26-Jul-24	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctane			81.9 %	48.2	-134	4072533	MS	26-Jul-24	8015B	
Surrogate: 1-Chlorooctadecane			77.8 %	49.1	-148	4072533	MS	26-Jul-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Inorganic Compounds - Quality Control Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4072626 - 1:4 DI Water										
Blank (4072626-BLK1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	ND	16.0	mg/kg							
LCS (4072626-BS1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	448	16.0	mg/kg	400		112	80-120			
LCS Dup (4072626-BSD1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	448	16.0	mg/kg	400		112	80-120	0.00	20	
Batch 4072636 - 1:4 DI Water										
Blank (4072636-BLK1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	ND	16.0	mg/kg							
LCS (4072636-BS1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	416	16.0	mg/kg	400		104	80-120			
LCS Dup (4072636-BSD1)				Prepared &	Analyzed:	26-Jul-24				
Chloride	432	16.0	mg/kg	400		108	80-120	3.77	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project: WINDWARD Project Number: 212C - MD - Project Manager: CHRISTIAN Fax To: (432) 682-39	LLULL	4
---	--	-------	---

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4072534 - Volatiles										
Blank (4072534-BLK1)				Prepared: 2	5-Jul-24 A	nalyzed: 26	Jul-24			
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0603		mg/kg	0.0500		121	71.5-134			
LCS (4072534-BS1)				Prepared: 2	5-Jul-24 A	nalyzed: 26	Jul-24			
Benzene	2.20	0.050	mg/kg	2.00		110	82.8-130			
Toluene	2.60	0.050	mg/kg	2.00		130	86-128			BS-
Ethylbenzene	2.63	0.050	mg/kg	2.00		132	85.9-128			BS
m,p-Xylene	5.51	0.100	mg/kg	4.00		138	89-129			BS
o-Xylene	2.70	0.050	mg/kg	2.00		135	86.1-125			BS
Total Xylenes	8.22	0.150	mg/kg	6.00		137	88.2-128			BS
Surrogate: 4-Bromofluorobenzene (PID)	0.0617		mg/kg	0.0500		123	71.5-134			
LCS Dup (4072534-BSD1)				Prepared: 2	5-Jul-24 An	nalyzed: 26	Jul-24			
Benzene	2.13	0.050	mg/kg	2.00		107	82.8-130	2.96	15.8	
Toluene	2.34	0.050	mg/kg	2.00		117	86-128	10.4	15.9	
Ethylbenzene	2.33	0.050	mg/kg	2.00		116	85.9-128	12.2	16	
m,p-Xylene	4.83	0.100	mg/kg	4.00		121	89-129	13.1	16.2	
o-Xylene	2.38	0.050	mg/kg	2.00		119	86.1-125	12.8	16.7	
Total Xylenes	7.21	0.150	mg/kg	6.00		120	88.2-128	13.0	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0577		mg/kg	0.0500		115	71.5-134			

Batch 4072535 - Volatiles

Blank (4072535-BLK1)			Prepared: 25-Jul-24 Analyzed: 26-Jul-24
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	WINDWARD WEST CTB / WINDWA 212C - MD - 03441 CHRISTIAN LLULL (432) 682-3946	Reported: 13-Aug-24 12:14
---	-------------------------------------	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Laboratories
----------	--------------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4072535 - Volatiles										
Blank (4072535-BLK1)				Prepared: 2	25-Jul-24 A	nalyzed: 20	5-Jul-24			
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0568		mg/kg	0.0500		114	71.5-134			
LCS (4072535-BS1)				Prepared: 2	25-Jul-24 A	nalyzed: 20	5-Jul-24			
Benzene	2.30	0.050	mg/kg	2.00		115	82.8-130			
Toluene	2.35	0.050	mg/kg	2.00		117	86-128			
Ethylbenzene	2.52	0.050	mg/kg	2.00		126	85.9-128			
m,p-Xylene	5.05	0.100	mg/kg	4.00		126	89-129			
o-Xylene	2.51	0.050	mg/kg	2.00		125	86.1-125			
Total Xylenes	7.55	0.150	mg/kg	6.00		126	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0515		mg/kg	0.0500		103	71.5-134			
LCS Dup (4072535-BSD1)				Prepared: 2	25-Jul-24 A	nalyzed: 20	5-Jul-24			
Benzene	2.16	0.050	mg/kg	2.00		108	82.8-130	6.25	15.8	
Toluene	2.18	0.050	mg/kg	2.00		109	86-128	7.32	15.9	
Ethylbenzene	2.34	0.050	mg/kg	2.00		117	85.9-128	7.72	16	
m,p-Xylene	4.67	0.100	mg/kg	4.00		117	89-129	7.79	16.2	
o-Xylene	2.32	0.050	mg/kg	2.00		116	86.1-125	7.78	16.7	
Total Xylenes	6.99	0.150	mg/kg	6.00		116	88.2-128	7.78	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0514		mg/kg	0.0500		103	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project: WIN Project Number: 2120 Project Manager: CHR Fax To: (432	ISTIAN LLULL	Reported: 13-Aug-24 12:14	
---	--	--------------	------------------------------	--

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4072523 - General Prep - Organics										
Blank (4072523-BLK1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	5-Jul-24			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	49.1		mg/kg	50.0		98.1	48.2-134			
Surrogate: 1-Chlorooctadecane	57.7		mg/kg	50.0		115	49.1-148			
LCS (4072523-BS1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	5-Jul-24			
GRO C6-C10	183	10.0	mg/kg	200		91.7	66.4-123			
DRO >C10-C28	180	10.0	mg/kg	200		90.1	66.5-118			
Total TPH C6-C28	364	10.0	mg/kg	400		90.9	77.6-123			
Surrogate: 1-Chlorooctane	52.8		mg/kg	50.0		106	48.2-134			
Surrogate: 1-Chlorooctadecane	62.2		mg/kg	50.0		124	49.1-148			
LCS Dup (4072523-BSD1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	5-Jul-24			
GRO C6-C10	191	10.0	mg/kg	200		95.7	66.4-123	4.26	17.7	
DRO >C10-C28	186	10.0	mg/kg	200		92.8	66.5-118	2.99	21	
Total TPH C6-C28	377	10.0	mg/kg	400		94.2	77.6-123	3.64	18.5	
Surrogate: 1-Chlorooctane	55.6		mg/kg	50.0		111	48.2-134			
Surrogate: 1-Chlorooctadecane	66.6		mg/kg	50.0		133	49.1-148			
Batch 4072528 - General Prep - Organics										
Blank (4072528-BLK1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	5-Jul-24			
GRO C6-C10	ND	10.0	mg/kg							
DPO >C10 C28	ND	10.0	ma/ka							

GRO C6-C10	ND	10.0	mg/kg				
DRO >C10-C28	ND	10.0	mg/kg				
EXT DRO >C28-C36	ND	10.0	mg/kg				
Surrogate: 1-Chlorooctane	46.2		mg/kg	50.0	92.5	48.2-134	
Surrogate: 1-Chlorooctadecane	47.1		mg/kg	50.0	94.3	49.1-148	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4072528 - General Prep - Organics										
LCS (4072528-BS1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	Jul-24			
GRO C6-C10	195	10.0	mg/kg	200		97.7	66.4-123			
DRO >C10-C28	184	10.0	mg/kg	200		91.8	66.5-118			
Total TPH C6-C28	379	10.0	mg/kg	400		94.8	77.6-123			
Surrogate: 1-Chlorooctane	50.1		mg/kg	50.0		100	48.2-134			
Surrogate: 1-Chlorooctadecane	50.6		mg/kg	50.0		101	49.1-148			
LCS Dup (4072528-BSD1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	Jul-24			
GRO C6-C10	197	10.0	mg/kg	200		98.6	66.4-123	0.931	17.7	
DRO >C10-C28	187	10.0	mg/kg	200		93.3	66.5-118	1.59	21	
Total TPH C6-C28	384	10.0	mg/kg	400		95.9	77.6-123	1.25	18.5	
Surrogate: 1-Chlorooctane	51.7		mg/kg	50.0		103	48.2-134			
Surrogate: 1-Chlorooctadecane	51.8		mg/kg	50.0		104	49.1-148			
Batch 4072533 - General Prep - Organics										
Blank (4072533-BLK1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	Jul-24			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	44.7		mg/kg	50.0		89.4	48.2-134			
Surrogate: 1-Chlorooctadecane	43.9		mg/kg	50.0		87.9	49.1-148			
LCS (4072533-BS1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	Jul-24			
GRO C6-C10	183	10.0	mg/kg	200		91.7	66.4-123			
DRO >C10-C28	178	10.0	mg/kg	200		88.9	66.5-118			
Total TPH C6-C28	361	10.0	mg/kg	400		90.3	77.6-123			
Surrogate: 1-Chlorooctane	47.6		mg/kg	50.0		95.2	48.2-134			
Surrogate: 1-Chlorooctadecane	45.1		mg/kg	50.0		90.2	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4072533 - General Prep - Organics										
LCS Dup (4072533-BSD1)				Prepared: 2	25-Jul-24 A	nalyzed: 26	Jul-24			
GRO C6-C10	185	10.0	mg/kg	200		92.3	66.4-123	0.648	17.7	
DRO >C10-C28	174	10.0	mg/kg	200		86.9	66.5-118	2.25	21	
Total TPH C6-C28	358	10.0	mg/kg	400		89.6	77.6-123	0.767	18.5	
Surrogate: 1-Chlorooctane	49.0		mg/kg	50.0		98.0	48.2-134			
Surrogate: 1-Chlorooctadecane	46.9		mg/kg	50.0		93.7	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 9/12/2024 3:18:32 PM

Page 45 of 48

Released to Imaging: 9/17/2024 4:11:50 PM

Page 91 of 104

)

-

-aboratories 101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 9/17/2024 4:11:50 PM

<i>Received by OCD: 9/12/2024 3:18:32</i>	PM
---	----

Company Name: TetrA Project Manager: Address: City: Phone #:	CA Loch BILL P.O. # Company: State: Zip: Fax #: Address: Project Owner: City:	170	ANALYSIS REQUEST
• •		R	
Project Location:	Phone #:		
Sampler Name:	Fax #:		
FOR LAB USE ONLY	MATRIX PRESERV.	SAMPLING	
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	TP4	BTEX
BH 2 (L 80	- ×
		C4 : 8	
		5:25	
15 BH 3 (0-1)		04 'S 06 'S	*
~		1:50	
18 (6-7)		9:55	
H HO OT	P F F	2	V
E: Liability at baims include event shall C	s exclusive temedy for any totam assing whether based in contract or tot, shall be winted to the annuml padd by the client for the so whatseever shall be deemed waved unless made in writing and received by Cardinal within 30 days after completion of the app retair damages, including without imitation, business hierupdens, loss of use on toos of profits incurred by client, its substantes, renaries how works for Cardinal momentume of valuetive such clience is based	30 days after completion of the applicable incurred by client, its subablaries, one etion reserve or otherwise	
Relinquished Sy:	Date: 7/25/2 J Received By:	Verbal Result: Verbal Result: Yes All Results are emailed. P	Verbal Result:
Relinquished By:	Time: 147 NUMBO IN A	REMARKS:	
Delivered By: (Circle One) . Obse	Observed Temp. °C 0.1 Sample Condition CHECKED By Cool Intact (Initials)	BY Turnaround Time:	Standard & Bacteria (only) Sample Condition Rush Cool Infact Observed Temp

Page 46 of 48

aboratories ARDINAL

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

loss of use, or loss of Fax #: Phone #: ACID/BASE PRESERV × ICE / COOL a (Initials ECKED OTHER 6 7/24/24 BY DATE SAMPLING client, its sub t by the client for the 200 11:45 11:30 11:15 10:00 11:50 10:35 Thermometer ID #140 Correction Factor 0°C **Turnaround Time:** All Results are emailed. Please provide Email address: 11:00 54:01 REMARKS Verbal Result: 17:10 TIME of the ap K Chloride D Yes K BTEX Standard Rush **TPH** 4 ON D T **D**S Add'I Phone #: Bacteria (only) Sample Condition Cool Intact Observed Temp Yes Yes No Ocrrected Temp Observed Temp. Corrected Temp. ô ô

Received by OCD: 9/12/2024 3:18:32 PM

Alles Davo

Relinquished By:

24 Received By

Sampler - UPS - Bus - Other:

Delivered By: (Circle One)

Obse

ved Temp.

å

Corrected Temp. °C

A No No

Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Relinquished Sy:

Date: 7/25/24 10:30

Received By:

0000

in no event shall Car All claims including those

200 R R

BH

0-1

(3-4' 2-3

30

2-3 1-2

6

101 East Marland, Hobbs, NM 88240

Project Manager:

Company Name:

(575) 393-2326 FAX (575) 393-2476

retra

hech

P.O. #:

BILL TO

ANALYSIS REQUEST

City:

Address:

Project #: Phone #:

Fax #:

State:

Zip

Project Owner:

City:

Address: Attn: Company:

State:

Zip

Project Location Project Name:

Sampler Name:

FOR LAB USE ONLY

MATRIX

644430

BH

1

(1-27)

20000

2

BH

S

(0-1)

1-2

¥

4-6) (2-5) Lab I.D.

Sample I.D.

GT (G)RAB OR (C)OMP

CONTAINERS GROUNDWATER

WASTEWATER

< SOIL OIL SLUDGE

OTHER

Page 47 of 48

D 50

ef. 9

Released to Imaging: 9/17/2024 4:11:50 PM

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Received by OCD: 9/12/2024 3:18:32 PM

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	eene@cardinallabsnm.com	hanges to celey.ke	Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com	t Cardinal	FORM-000 A 3.4 0771112	
Burly Name Far.k State: Zip: Company: Company: Attract of the state of the stat		Thermometer ID #14	Cool Intact		- Bus -	
BILL TO AMAXYSIS RECUEST as: Stat: Nor AMY as: Stat: Company: as: Stat: Company: Ann: Company: as: Stat: Company: Bit: Project Come: Company: Company: Company: Stat: Company: Bit: Project Come: Company: Company: Stat: Company: Stat: Project Come: Company: Mark: Project Come: Company: Stat: The Stat: Company: Stat: Mark: Company: Company: Company: Company: Stat: Company: Company: Company: Compa	Bacteria (only) Sample Condition	Turnaround Time:	Sample Condition	Diserved Temp. *C	elivered By: (Circle One)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Jugrusted ID chan	REMARKS: 4	Received By:	Date	HUNG DUCAN	
BILL TO BILL TO ANALYSIS ess: State: Zip: Company: ess: State: Zip: Attm: ess: Fax #: Project Owner: City: et Name: Fax #: Project Owner: City: et Name: Fax #: Project Owner: City: et Name: Fax #: Project Owner: City: austown: Fax #: Project Owner: State: austown: Sample I.D. Sample I.D. Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Sample I.D. Gip Rab or (Ci OMP) Fax #: austown: Gip Rab or (Ci OMP) Fax #: Fax #: austown: Gip Rab or (Ci OMP) Fax #: Fax #: austown: Gip Rab or (Ci OMP) Fax #: Fax #: austown: Gip Rab or (Ci OMP) Fax #: Fax #: austown: <th>□ Yes □ Noi Add'l Phone #: ailed. Please provide Email address:</th> <th>All Results are ema</th> <th>Received By:</th> <th>Late:</th> <th>alinquished 3y:</th>	□ Yes □ Noi Add'l Phone #: ailed. Please provide Email address:	All Results are ema	Received By:	Late:	alinquished 3y:	
BILL TO Analysis State: Zip: ess: State: Zip: Attm: Project Owner: Cip: Attm: Project Owner: Cip: Attm: Project Owner: Cip: Attm: Project Owner: Cip: Project Owner: State: Zip: Project Owner: State: Distate: Distate: Distate: Distate: Distate: Distate: Distate: Distate: Distate: Cip: Distate: <th c<="" th=""><th></th><th>mpletion of the application (, its subwidiances, to or otherwise.</th><th>sde in writing and received by Cardinal within 30 days ss interruptions, loss of use, or loss of profits incurred thet such claim is based,</th><th>nce and incidenta to the pe</th><th>lyses. All claims including those for neglige rice. In no event shall Cardinal be liable for lates or successor,</th></th>	<th></th> <th>mpletion of the application (, its subwidiances, to or otherwise.</th> <th>sde in writing and received by Cardinal within 30 days ss interruptions, loss of use, or loss of profits incurred thet such claim is based,</th> <th>nce and incidenta to the pe</th> <th>lyses. All claims including those for neglige rice. In no event shall Cardinal be liable for lates or successor,</th>		mpletion of the application (, its subwidiances, to or otherwise.	sde in writing and received by Cardinal within 30 days ss interruptions, loss of use, or loss of profits incurred thet such claim is based,	nce and incidenta to the pe	lyses. All claims including those for neglige rice. In no event shall Cardinal be liable for lates or successor,
pany Name: I. \mathcal{L} PLL TO BILL TO ess: State: Zip: Atta:: Project Owner: Company: ess: Fax #: Fax #: Project Owner: City: Atta:: est: Fax #: Project Owner: City: State: Zip: et Location: Fax #: Project Owner: City: State: Zip: et Location: Fax #: Project Owner: State: Zip: et Location: Gitta: Project Owner: State: Zip: et Location: Gitta: Project Owner: Project Owner: State: gas: Gitta: Project Owner: State: Zip: gas: Gitta: Gitta: Project Owner: State: gas: Gitta: Gitta: Project Owner: State: gas: Gitta: Gitta: Project Owner: Project Owner: gas: Gitta: Gita: Project Owner: Project Owner		200	wher based in contract or lort,	nal's liability and client's exclusive remady for a	21	
BILL TO ANALYSIS Poly BILL TO ANALYSIS ess: State: Zip: Attn: Company: ess: State: Zip: Attn: ess: Fax #: City: est: Fax #: City: Est: Fax #: Project owner: City: est: Fax #: Project owner: City: Est: State: Zip: Bit: City: State: Zip: Est: State: Zip: Est: State: Zip: Bit: City: State: Zip: Bit: City: Sit: City: Sit: City: Sit: City: Sit: City: <td></td> <td></td> <td></td> <td></td> <td></td>						
pany Name: Total Total BILL TO est: State: Zip: est: Fax #: Project Owner: est: Fax #: Project Owner: et Name: Project Owner: State: et Name: Fax #: Project Owner: et Name: Project Owner: State: et Name: Sample I.D. Presserv sause own Soil. Oil. sause own GROUNDWATER Presserv sause: Time: Time: dt H: Tot. Time: sause: Time: Time: sause: Time: Time: sause: Time: Time: sause: Time: Time: sause: <td></td> <td><</td> <td></td> <td>11</td> <td>T</td>		<		11	T	
pany Name: Tetra Lech BILL TO ANALYSIS state: To: State: To: State: To: Company: ess: State: To: Attn: Company: est: Fax #: Project Owner: City: Attn: est: Fax #: Project Owner: City: Attn: et location: Et Name: State: Tp: et location: Et Name: State: Tp: et location: Gipting GROUNDWATER source out Source S				00	Ŧ	
pany Name: I. J. C. J. C. J. C. J. C. J. C. J. J. C. J. Company: BILL TO AMALYSIS ess: State: Zip: Athn: Company: Company: ess: Fax #: Project Owner: City: Athn: Company: est: Fax #: Project Owner: City: State: Zip: eft Hame: Fax #: Project Owner: City: State: Zip: eft Hame: Fax #: Project Owner: City: State: Zip: eft Hame: Fax #: Project Owner: City: State: Zip: eft Hame: Fax #: Project Owner: Proster State: Zip: eft Hame: Fax #: Project Owner: Proster State: Zip: eft Hame: Fax #: Proster Proster State: Zip: eft Name: Gig RAD OR (C)OMP. MATRIX PRESERV. SAMPLING auter own Soil OIL D. Gig RAD OR (C)OMP. Soil Soil auter own Soil Soil DATE Time Material # C. J.		1615		AH 71	F	
me: I atta I atta Pill TO ger: State: Zip: State: Zip: Fax #: Project Owner: Fax #: Project Owner: Fax #: Project Owner: Fax #: Project Owner: Sample I.D. ROUTHERS Sample I.D. GROUNDWATER VALUE Pax #: Project Owner: State: Zip: Project Owner: Sample I.D. GROUNDWATER VALUE Pax #: Project Owner: Fax #: Project Owner:		1315		AH - 6 1	++	
pany Name: $I_{a} + f_{a}$ $I_{a} + f_{a} + f_{a} + f_{a} + f_{a}$ $I_{a} + f_{a} + f_$		1415 .		SC	24 HA	
pany Name: CH Ch / Ls u/c BILL TO pany Name: CA / L CA P.O. # ctt Manager: State: Zip: state: Zip: Attn: ref #: Project Owner: Address: ref #: Project Owner: City: ref Name: City: State: ref Name: Project Owner: City: ref Name: Project Owner: City: ref Name: Project Owner: State: ref Name: Presserv State: ref Name: Presserv State: ref Name: Presserv State: soil Oil State: soil Oil State: ref Name: Presserv Stateeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	- *	1500 X			3/ 8424	
pany Name: Tet To BILL TO ANALYSIS ctt Manager: Tet To State: Zip: P.O. #: Company: ess: State: Zip: Attn: Fax #: Project Owner: Company: ict Name: Fax #: Project Owner: Attn: Attn: Attn: Fax #: Project Owner: City: City: Attn: Fax #: Project Owner: City: Fax #: Project Owner: Fax #: Project Owner: City: Fax #: Project Owner: City: Fax #: Project Owner: Fax #: Fax #: Project Owner: Fax #: Fax #: <td< td=""><td></td><td>TIME</td><td># C GR WA SO OIL SLU OT AC ICE OT</td><td></td><td>DEHHH30</td></td<>		TIME	# C GR WA SO OIL SLU OT AC ICE OT		DEHHH30	
pany Name: I a frain lucch BILL TO ANALYSIS cct Manager: I a frain lucch P.O. #: Company: Company: ess: State: Zip: Attn: Company: Company: ess: Fax #: Project Owner: Attn: Address: City: ct Name: Project Owner: City: City: Address: ct Location: Project Owner: State: Zip: ct Location: Project Name: Fax #: Phone #: oler Name: G(O)OMP MATRIX PRESERV SAMPLING Auseowry MATRIX PRESERV Sampling	TPH	Chl	ONTAII OUNDV ASTEWA IL UDGE HER : ID/BASI E / COO HER :	ampie i.u.		
pany Name: I of rail ucch BILL TO ANALYSIS ect Manager: I of rail P.O. #: Company: P.O. #: ess: State: Zip: Attn: Company: I of rail ess: Fax #: Fax #: Address: Address: I of rail ict #: Project Owner: City: City: I of rail ict Location: Project Owner: Phone #: I of rail oler Name: I of rail Preservity SAMPLING ause own I of rail I of rail I of rail	¢	sude	NERS WATER ATER E:			
pany Name: I of rail local BILL TO ANALYSIS sct Manager: I of rail local P.O. #: P.O. #: ess: State: Zip: Company: ess: I of rail local Attn: I of rail local ess: Fax #: Attn: I of rail local ess: Fax #: Project Owner: Attn: et #: Project Owner: City: et Location: Project Owner: State: ct Location: Phone #: oler Name: Fax #:			MATRIX		FOR LAB USE ONLY	
pany Name: I of railed BILL TO ANALYSIS cct Manager: P.O. #: P.O. #: Company: ess: State: Zip: Company: ess: Fax #: Attn: Attn: ie #: Froject Owner: Attn: Attr: ict #: Project Owner: City: Image: ict Name: Project Owner: City: ict Location: Phone #: Image:			Fax #:		ampler Name:	
pany Name: I of called BILL TO ANALYSIS sct Manager: P.O. #: P.O. #: Company: ess: State: Zip: Attn: ess: Fax #: Address: Atdress: et #: Fax #: Address: et #: Project Owner: City: ct Name: Value: Zip:			Phone #:		roject Location:	
pany Name: I of railed BILL TO ANALYSIS cct Manager: P.O. #: P.O. #: Company: ess: State: Zip: Company: e #: Fax #: Attn: re #: Project Owner: City:					roject Name:	
pany Name: I of callect BILL TO ANALYSIS rct Manager: P.O. #: P.O. #: Extended to the second to the sec				Project Owner	roject #:	
pany Name: 1 of railed P.O. #: ess: State: Zip: Attn:			Address:	Fax #:	hone #:	
P.O. #: Company:			4	State:	ty:	
P.O. #: BILL TO ANALYSIS	2		Company:		ddress:	
Tetra lech BILL TO ANALYSIS	, ×		P.O.共		roject Manager:	
	ANALYSIS REQUEST			1 8		
	12 Jo 4 0		40	Varland Hohhs NM 882	101 East N	
Cost Marland Hobbe NM 99940			U		- rate	

Page 94 of 104

Page 48 of 48

APPENDIX E Regulatory Correspondence

Chavira, Lisbeth

From:	Wells, Shelly, EMNRD <shelly.wells@emnrd.nm.gov></shelly.wells@emnrd.nm.gov>
Sent:	Thursday, August 1, 2024 4:55 PM
То:	Chavira, Lisbeth
Cc:	Llull, Christian; Abbott, Sam; Bratcher, Michael, EMNRD
Subject:	RE: [EXTERNAL] Extension Request - Windward Federal #002H FL Release (NAPP2413732369)

CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Good afteroon Lisbeth,

The extension request for NAPP2413732369 WINDWARD FEDERAL 002H is approved. The new due date to submit your remediation closure report to the OCD is October 30, 2024. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Kind regards,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520<u>|Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Chavira, Lisbeth <LISBETH.CHAVIRA@tetratech.com>
Sent: Thursday, August 1, 2024 3:25 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Llull, Christian <Christian.Llull@tetratech.com>; Abbott, Sam <Sam.Abbott@tetratech.com>
Subject: [EXTERNAL] Extension Request - Windward Federal #002H FL Release (NAPP2413732369)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom it May Concern,

On behalf of ConocoPhillips, Tetra Tech is requesting a 90-day extension (until October 30, 2024) to complete result evaluation and reporting for the Windward Federal #002H FL Release (**NAPP2413732369**).

The Initial C-141 was submitted via the OCD portal system on May 16, 2024.

According to the NMOCD C-141, the date of the release was May 3, 2024. The release was reportedly caused by a hole in a water transfer line.

Approximately 4.1217 bbls of produced water were reported released, of which none were recovered. For this release, ConocoPhillips immediately commenced pursuing a 90-day (August 1, 2024) release characterization and closure per 19.15.29.11(A) NMAC. This release footprint is largely coincident with a previous release in this vicinity, the Windward West CTB Release - NAPP2409948979.

On April 24, 2024, Tetra Tech personnel were on Site to assess the previous Windward West CTB - NAPP2409948979 release via a combination of trenching and hand auger borings.

During the assessment, a hard caliche lithified layer at 8 ft bgs was encountered, and further vertical delineation was not feasible due to the equipment limitations.

The subject line Windward Federal 002H Release (NAPP2413732369) occurred after these assessment activities, on May 3, 2024, in the same relative release footprint as the prior Windward West CTB Release - NAPP2409948979. Due to numerous subsurface and surface lines and additional overhead powerlines in close proximity of the release a traditional drilling rig could not be used for vertical delineation due to concerns for a possible line strike. Given the numerous hazards at the Site, these releases are now being handled by the ConocoPhillips Risk Management group.

After site evaluation, and in lieu of a traditional rig, a track-mounted Geoprobe rig was instead utilized. On July 24, 2024, Tetra Tech personnel were on Site to conduct additional assessment of the area with the direct push rig. A total of six (6) bore holes and six (6) hand auger borings were installed around and within the release for vertical and horizontal delineation. Analytical results for the release were received on July 30, 2024.

Thus, Tetra Tech is requesting additional time to tabulate and evaluate the results and complete the release characterization and associated reporting which will be submitted to the OCD.

Thank you in advance.

Lisbeth Chavira | Geoscientist

Direct Mobile +1 (512) 596-8201 | Lisbeth.chavira@tetratech.com

Tetra Tech | Leading with Science® | OGA

8911 N. Capital of Texas Highway | Bldg. 2, Suite 2310 | Austin, TX 78759 | tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

f 🗹 in 🞯 Please consider the environment before printing. <u>Read more</u>

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 383265

Operator:		OGRID:
	COG PRODUCTION, LLC	217955
6	i00 W. Illinois Ave	Action Number:
Ν	/lidland, TX 79701	383265
		Action Type:
		[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2413732369
Incident Name	NAPP2413732369 WINDWARD FEDERAL 002H @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Plan Received
Incident Facility	[fAPP2132638253] WINDWARD FED 2H - BATTERY

Location of Release Source

Please answer all the questions in this group.	
Site Name	WINDWARD FEDERAL 002H
Date Release Discovered	05/03/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission Crude Oil Released (bbls) Details Not answered. Cause: Corrosion | Flow Line - Injection | Produced Water | Released: 4 BBL | Recovered: 0 Produced Water Released (bbls) Details BBL | Lost: 4 BBL Is the concentration of chloride in the produced water >10,000 mg/l Yes Condensate Released (bbls) Details Not answered.

Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

•

QUESTIONS, Page 2

Action 383265

Page 99 of 104

QUES I IONS (continued)	
Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	383265
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Unavailable.
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial	Response
---------	----------

The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Christian LLuLL Title: Project Manager Email: christian.llull@tetratech.com Date: 09/12/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 383265

Page 100 of 104

QUESTIONS (continued	J)
----------------------	----

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	383265
	Action Type:
	IC 1411 Site Char / Remediation Plan C 141 (C 141 v Plan)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 12800 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 227 GRO+DRO (EPA SW-846 Method 8015M) 181 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 12/09/2024 On what date will (or did) the final sampling or liner inspection occur 12/11/2024 On what date will (or was) the remediation complete(d) 12/13/2024 What is the estimated surface area (in square feet) that will be reclaimed 2383 What is the estimated volume (in cubic yards) that will be reclaimed 332 What is the estimated surface area (in square feet) that will be remediated 2383 What is the estimated volume (in cubic yards) that will be remediated 332 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 383265

QUESTIONS (continued)

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	383265
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [FEEM0112334510]	
OR which OCD approved well (API) will be used for off-site disposal Not answered.		
OR is the off-site disposal site, to be used, out-of-state Not answered.		
OR is the off-site disposal site, to be used, an NMED facility Not answered.		
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered.		
(In Situ) Soil Vapor Extraction Not answered.		
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered.		
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered.		
n Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered.		
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process) Not answered.		
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Christian LLuLL Title: Project Manager Email: christian.llull@tetratech.com	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 383265

QUESTIONS (continued)		
Operator: COG PRODUCTION, LLC	OGRID: 217955	
600 W. Illinois Ave Midland, TX 79701	Action Number: 383265	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 103 of 104

Action 383265

QUESTIONS (continued)		
Operator: COG PRODUCTION, LLC	OGRID: 217955	
600 W. Illinois Ave Midland, TX 79701	Action Number: 383265	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Sampling Event Information		
Last sampling notification (C-141N) recorded	/Ilnavailable 1	

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.

No

Requesting a remediation closure approval with this submission

Released to Imaging: 9/17/2024 4:11:50 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG PRODUCTION, LLC	217955
600 W. Illinois Ave	Action Number:
Midland, TX 79701	383265
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By Condition Condition Date Remediation plan approved with conditions. Confirmation samples are to be collected at a frequency of every 200 square feet from the base and walls of the 9/17/2024 scwells excavation. Submit remediation closure report to the OCD by 12/16/2024.

CONDITIONS

Action 383265