

ANNUAL GROUNDWATER MONITORING REPORT

SCRIPP PIT (AP-25)
INCIDENT NO. NAUTOFAB000640
UNIT M, SECTION 26, TOWNSHIP 18S, RANGE 26E
EDDY COUNTY, NEW MEXICO
32.713408, -104.342746
RANGER REFERENCE NO. 5375

PREPARED FOR:

EOG RESOURCES, INC.
MIDLAND DIVISION
5509 CHAMPIONS DRIVE
MIDLAND, TEXAS 79706

PREPARED BY:

RANGER ENVIRONMENTAL SERVICES, LLC P.O. BOX 201179 AUSTIN, TEXAS 78720

MARCH 27, 2024

Patrick K. Finn, P.G. (TX)
Project Geoscientist

William Kierdorf, REM Project Manager

TABLE OF CONTENTS

1.0	SITE LOCATION AND BACKGROUND	1
2.0	SITE CHRONOLOGY	2
2.1	Yates Acquisition and Pit Closure (1997 – 2000)	2
2.2	Additional Assessment Activities and Stage I & II Abatement Plans (2000 – 2005)	2
2.3	2020 SESI Soil Investigation	4
2.4	Groundwater Monitoring (2005 through 2022)	5
3.0	GROUNDWATER MONITORING (2023)	7
3.1	Groundwater Monitoring Methodologies	7
3.2	2023 Groundwater Monitoring Results Summary	8
4.0	CURRENT SITE COMMUNICATIONS AND CORRESPONDENCE	. 10
5.0	REGULATORY GUIDANCE REQUEST	. 10
6.0	RECOMMENDATIONS	.11

FIGURES

- Topographic Map
- Area Map
- Site Map
- ETGI October 21, 2000 Soil Boring Location Map
- Groundwater Gradient Map
- Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps
- Proposed Monitor Well Location Map

TABLES

- Current Event Well Gauging Data
- Current Event Groundwater EPA Method 300.0: Anions
- Current Event Groundwater Dissolved Metals (Table 1 of 2)
- Current Event Groundwater Dissolved Metals (Table 2 of 2)
- Current Event Groundwater TPH and VOC Data Summary
- Current Event Groundwater Specific Conductance, pH, Alkalinity, and TDS
- Cumulative Well Gauging Data
- Cumulative Groundwater EPA Method 300.0: Anions
- Cumulative Groundwater Dissolved Metals (Table 1 of 2)
- Cumulative Groundwater Dissolved Metals (Table 2 of 2)
- Cumulative Groundwater TPH and VOC Data Summary
- Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

TABLE OF CONTENTS (CONTINUED)

ATTACHMENTS

- Attachment 1 Site Photographs
- Attachment 2 Laboratory Analytical Report
- Attachment 3 NMOCD Correspondence
- Attachment 4 GSI Mann-Kendall Toolkit: MW-4 Benzene Trend Analysis

ANNUAL GROUNDWATER MONITORING REPORT SCRIPP PIT (AP-25) INCIDENT NO. NAUTOFAB000640 UNIT M, SECTION 26, TOWNSHIP 18S, RANGE 26E EDDY COUNTY, NEW MEXICO 32.713408, -104.342746 RANGER REFERENCE NO. 5375

1.0 SITE LOCATION AND BACKGROUND

The Scripp Pit (Site) is a historic oil and gas production pit formerly located at the Scripp Battery, an oil and gas production facility located on private land, approximately 9.44 miles south-southwest of Artesia, within Eddy County, New Mexico. The Site is situated in Unit M, Section 26, T18S-R26E at GPS coordinates 32.713408, -104.342746. The Scripp Battery is currently active and is being operated by Silverback Operating II (Silverback). Based on the site history and transaction history, EOG Resources, Inc. (EOG) maintains environmental responsibility for the impacts to native media at the Site.

The Scripp Battery was historically operated by H&S Oil Company (H&S) and an unlined earthen pit was formerly utilized by H&S for oil and gas fluid storage/impoundment. In 1997, Yates Petroleum Corporation (Yates) acquired the Scripp Battery and associated pit from H&S. While operated by Yates, the pit underwent closure and assessment of the former pit location was conducted. The pit closure and assessment activities completed by Yates documented impacts to the native media. Due to the documented conditions at the Site, coordination with the New Mexico Oil and Gas Division (NMOCD) was initiated. In September 2016, EOG acquired Yates and its associated assets including the Scripp Battery which included the subject Scripp Pit.

Communication and coordination between the NMOCD and Yates regarding the subject pit continued until 2005 when a Stage I & II Abatement Plan was submitted to the NMOCD. Based on available information, no response was ever received from the NMOCD regarding this plan. During the 2005 to 2022 timeframe, a total of 13 groundwater monitoring events were conducted at the Site.

EOG has engaged Ranger Environmental Services, LLC (Ranger) to assist in the continuation of the assessment and remediation efforts at the Site as well as to re-establish communications with the NMOCD regarding the Site. In May 2023, Ranger personnel established communications with the NMOCD, and began discussion of the Site and the steps needed to bring the Site into compliance with the current regulatory criteria and New Mexico Administrative Code (NMAC). Initial communications were completed with NMOCD representative Mr. Nelson Velez who, at the time of discussion, reported to Ranger that he would be the NMOCD representative in charge of the Site. During discussion on the Site, Mr. Velez directed that a report be prepared summarizing the Site's history and current status, as well as providing formal submittal of all data collected at the Site from 2005 to 2023. Additionally, Mr. Velez directed that a groundwater sampling event be conducted in the fourth quarter of 2023, with the results to be included in an annual groundwater monitoring report.

STATE OF TEXAS PROFESSIONAL GEOSCIENTIST FIRM NO. 50140 • STATE OF TEXAS PROFESSIONAL ENGINEERING FIRM NO. F-6160

Based on the communications with Mr. Velez, a comprehensive *Site Chronology and Status Update* report was prepared and sent to Mr. Velez in draft form on September 13, 2023 for review and further discussion. Prior to receiving a response on the draft *Site Chronology and Status Update* report, on November 16, 2023, Ranger was informed by Mr. Velez that Mr. Mike Buchanan of the NMOCD would be assuming responsibility for the oversight of the project. It was also reported that the draft report pending review would be discussed and provided to Mr. Buchanan for review. As of February 2024, a response from the NMOCD regarding the draft *Site Chronology and Status Update* report had not been received. As such, on February 22, 2024, the *Site Chronology and Status Update* report was submitted to the NMOCD.

Groundwater monitoring activities were continued at the subject site with the directed groundwater monitoring event completed in November 2023. This report has been prepared to document the completion of the 2023 site groundwater monitoring activities.

A *Topographic Map* and *Area Map* noting the location of the subject Site and surrounding areas are attached. A *Site Map* depicting the pertinent site features is also attached.

2.0 SITE CHRONOLOGY

Below is a chronology of the activities undertaken at the Site to date. The information presented below is derived from the proposals, work plans, and other correspondence available to Ranger. All information presented in this section is available via the NMOCD online imaging portal (https://ocdimage.emnrd.nm.gov/imaging/).

2.1 Yates Acquisition and Pit Closure (1997 – 2000)

As previously stated, Yates acquired the Scripp Battery and subject Scripp Pit from H&S in 1997. At the time of the acquisition, the subject pit remained open and was documented to have dimensions of approximately 90 feet by 65 feet by 10 feet deep. The pit was noted to be of earthen construction with no liner present. Under Yates' direction, an undated "*Pit Closure*" proposal was submitted to the NMOCD. In June 1998, the NMOCD approved of the proposed closure activities, with conditions of approval that included the vertical delineation of the soil conditions at the Site and directives for sample analysis.

In May 1998, Bioremediation Contractors & Consultants, Inc. (BCC) initiated closure of the pits. The activities completed by BCC included the removal of bird netting, debris, and fluids within the pit location. The pit was then ripped, tilled, sprayed with a BCC microbial product, treated with nutrients, and was then managed to assist in the bioremedial process. Soil samples were collected in September 1999 and January 2000 and the pit was subsequently backfilled.

In February 2000, a closure report/request was submitted to the NMOCD. In August 2000, the NMOCD denied the closure request citing lack of pertinent closure details, inadequate soil sampling, and lack of soil chloride analyses.

2.2 Additional Assessment Activities and Stage I & II Abatement Plans (2000 – 2005)

In October 2000, Yates contracted Environmental Technology Group, Inc. (ETGI) to perform additional soil delineation activities at the Site. On October 21, 2000, ETGI and a drilling subcontractor installed two soil borings at the Site (SB's 1 & 2). During the installation process multiple soil samples and a groundwater sample (from boring SB-2) were collected for laboratory

analysis. Additionally, a background sample was collected from a location outside of the apparent impacted areas at the Site.

Elevated soil chloride concentrations were documented to be present in both soil borings completed at the site. The groundwater sample, collected from soil boring SB-2, was noted to contain elevated benzene and chloride concentrations.

The findings of the October 2000 site assessment activities were documented in the ETGI-prepared *Preliminary Site Investigation Report* dated November 2000. In December 2000, Yates submitted the ETGI report and previous BCC report to the NMOCD and petitioned for site closure. On March 7, 2001, the NMOCD denied site closure due to the fact that the groundwater contained benzene and chloride concentrations in excess of the New Mexico Water Quality Commission (WQCC) standards. The NMOCD directed that an abatement plan for the site be prepared and submitted to the NMOCD.

In July 2001, a *Stage 1 Abatement Plan Proposal* prepared by Harding ESE (Harding) was submitted to the NMOCD. The proposal included provisions for the installation and sampling of three soil borings and the conversion of the soil borings into permanent monitor wells to allow for the collection of representative groundwater samples for laboratory analysis. On September 25, 2001, the NMOCD responded to the proposal with the statement that the plans were "administratively complete" and that prior to the NMOCD review of the proposed activities public notification was to be completed.

On October 19, 2001, Yates submitted documentation of the required public notification to the NMOCD with the request that the Harding-prepared *Stage 1 Abatement Plan Proposal* be reviewed. On February 1, 2002, the NMOCD granted approval of the proposed activities with conditions of approval including the requirement that a Stage I Investigation report be submitted to the NMOCD by April 1, 2002. Due to various reasons, including the transfer of the project from Harding back to ETGI, multiple project timeline extension requests were submitted and approved by the NMOCD.

A June 2003 ETGI-prepared Preliminary Site Investigation Report, documenting the installation and sampling of four monitor wells, was subsequently submitted to the NMOCD. The information provided in the report confirmed that impacts to soil and groundwater were present at the Site. Soils containing elevated chloride concentrations were documented in all four soil borings completed at the Site. Elevated benzene, toluene, ethylbenzene, and total xylenes (BTEX) and total petroleum hydrocarbon (TPH) soil concentrations were documented during the installation of monitor well MW-4. Groundwater samples collected from monitor wells MW-1, MW-2 and MW-3 were documented to contain nondetectable BTEX concentrations. However, the groundwater sample collected from monitor well MW-4 was documented to contain benzene at a concentration in exceedance of the applicable WQCC standard. The groundwater samples collected from all four monitor wells were documented to contain chloride at concentrations in excess of the applicable WQCC standards. The groundwater samples collected from all four monitor wells were also documented to contain total dissolved solids (TDS) concentrations greater than 10,000 milligrams per liter (mg/L). Within the report ETGI highlighted that the due to the elevated TDS concentrations "the shallow aquifer is not considered to be of foreseeable beneficial use." Based on this information, ETGI proposed that site specific risk-based closure criteria be established, a long-term groundwater monitoring plan be implemented, and that the site be deed restricted to prevent unintended human exposure.

Based on the information presented in the June 2003 ETGI report, the NMOCD issued a response dated October 6, 2004. The NMOCD response stated that the extent of the groundwater impacts at the Site had not been delineated and requested that a groundwater delineation work plan be submitted by December 31, 2004. Prior to the submittal of the NMOCD-directed plan, ETGI was replaced by Safety & Environmental Solutions, Inc. (SESI) who had been retained by Yates to conduct the additional site investigative activities. During the transfer of the project from ETGI to SESI, a 45-day extension request was submitted and approved by the NMOCD to allow for the project transition.

In February 2005, an SESI-prepared *Amended Stage 1 Abatement Plan Proposal*, dated February 15, 2005, was submitted to the NMOCD. The amended plan included a summary of SESI's review of the previously collected Site data and conditions and a proposal for additional site investigation activities. The proposed site activities included the resurveying of the existing monitor wells and the installation of two additional monitor wells, one in an undisturbed area located upgradient from the former pit area and one in a downgradient location. The plan also proposed the plugging of monitor well MW-4 located within the footprint of the historic pit. SESI detailed the concern that MW-4 was acting as a pathway for the vertical migration of contaminants.

On July 18, 2005, the NMOCD responded to SESI's *Amended Stage 1 Abatement Plan Proposal* and denied the proposed activities. The NMOCD response cited a lack of adequate characterization of the impacts at the Site, insufficient proposed delineation locations, lack of required water sample analysis for WQCC metals, and lack of proposed remedial actions to address the documented impacts. Additionally, the proposed plugging of monitor well MW-4 was denied. The NMOCD requested submittal of a revised Stage 1 Abatement Plan by August 19, 2005.

As requested by the NMOCD, an *Amended Stage 1 Abatement Plan Proposal*, prepared by SESI and dated August 19, 2005, was subsequently submitted to the NMOCD. The updated plan revisited the information presented in the February 15, 2005 version and proposed additional site activities to address the NMOCD concerns and requests. The plan proposed four soil borings (with the possibility for additional borings, if needed) to be installed in the pit interior to assist in the characterization/delineation of the soil impacts. The plan also included provisions for the installation of a minimum of two additional monitor wells. Additional proposed activities included the determination of hydraulic conductivity and transmissivity via groundwater slug tests and the continued monitoring and sampling of the Site monitor wells.

Based on available information, it does not appear that the NMOCD ever replied to SESI's August 19, 2005 *Amended Stage 1 Abatement Plan Proposal*. The final correspondence available via the NMOCD online resources is noted to be a cover letter that appears to have been submitted with the August 19, 2005 amended plan. EOG also conducted an internal review of the project files transferred to them by Yates and an NMOCD response to the August 19, 2005 plan was not discovered.

2.3 2020 SESI Soil Investigation

In May 2021, additional soil investigation activities were completed at the Site by SESI. SESI installed a total of 59 test excavations, collected a total of 115 samples for field screening, and submitted a total of 32 soil samples to the laboratory for analysis. One sample location (Map ID #59) was completed approximately 300 feet to the northwest of the former pit in an area believed

to be representative of background conditions. The test excavations were installed to depths ranging from 4' to 8' below ground surface (bgs).

SESI's soil investigation activities documented exceedances of the 19.15.29.12 NMAC *Table 1 Closure Criteria for Soils Impacted by a Release (GW* \leq 50') for TPH and chloride. Based on the soil sample laboratory analytical results and field readings collected by SESI representatives, the extent of the elevated chloride and TPH concentrations was not defined during the May 2021 soil investigation. The two soil samples collected at the "*Background*" location were documented to contain chloride concentrations ranging from 720 - 900 mg/Kg, potentially indicating that naturally occurring elevated chloride concentrations are present in the site vicinity. Based on this information, further evaluation of the site background conditions appears warranted. Details of this investigation were provided in the *Site Chronology and Status Update* report submitted to the NMOCD in draft form in September 2023, and in final form in February 2024.

2.4 Groundwater Monitoring (2005 through 2022)

During the 2005 through 2022 timeframe, a total of 13 groundwater monitoring events were conducted at the Site. The site monitoring wells were gauged and sampled during each event. No light nonaqueous phase liquid (LNAPL) was found to be present at the site; however, exceedances of the New Mexico WQCC standards were documented in the groundwater. The groundwater analytical data primarily documented the presence of elevated chloride, sulfate and TDS concentrations, as well as less frequent detections of other constituents of concern. Monitor well MW-4, located within the former pit boundaries, was documented to contain low levels of benzene in exceedance of the applicable WQCC standard. Below is a brief summary of the groundwater monitoring results through 2022.

Well Gauging (2005 through 2022)

No LNAPL was documented to be present in the site monitoring wells. The depth to groundwater in the site monitoring wells was documented to range from a minimum of approximately 34.61' below top-of-casing (btoc) in MW-1 to a maximum of approximately 42.90' btoc in MW-3. The site groundwater gradient and flow direction was documented to be predominantly to the west and southwest with gradients ranging from approximately 0.003 - 0.008 ft/ft. Minor flow to the northwest was also observed at the Site.

Groundwater Anions (2005 through 2022)

Concentrations of chloride above the NMAC 20.6.2.3103 criteria were documented in every sample collected from the four site monitoring wells. Due to the site monitor well configuration, it was difficult to discern if the elevated chloride concentrations were related to the former pit operations, background conditions, and/or another source area to the east of the pit. On multiple occasions, upgradient to cross-gradient monitor well MW-1 was found to contain the highest site chloride concentration, a condition that did not comport with that which would be expected if these constituents were from historic releases from the former pit. On other sampling dates, however, the site chloride data were suggestive of impacts from the historic pit operations.

Sulfate concentrations in exceedance of the NMAC 20.6.2.3103 criteria were also documented in every sample collected from the four site monitoring wells. The wells with the highest sulfate concentrations (MW-1 and MW-2) were located outside of the pit. The pit did not appear to be a source area for the sulfate in the groundwater. The sulfate concentrations in the monitoring well network showed decreasing concentrations in variable directions (to the west, east and northeast)

on the varying sample dates which did not comport with that which would be expected from a historic release from the pit.

Elevated Nitrate+Nitrite (as N) concentrations were documented in the samples collected from upgradient to cross-gradient monitor well MW-1 during the last six sampling events. Again, this did not appear to be an issue related to the former pit operations. The groundwater sample collected from monitor well MW-4 during the May 17, 2012 sampling event was reported to contain a fluoride concentration slightly in exceedance of the WQCC criteria. No fluoride exceedances were observed in this well after that.

Dissolved Metals (2005 through 2022)

Based upon available information, groundwater dissolved metals analyses were initiated at the site during the March 2012 sampling event. Elevated concentrations of various dissolved metals were subsequently documented in all four monitor wells. Monitor well MW-1 was documented to contain slightly elevated concentrations of selenium and uranium in the more recent sampling events. Isolated exceedances of silver and/or arsenic were also found in MW-1 during the June 2013 and March 2018 sampling events.

Monitor well MW-2 was documented to contain exceedances of arsenic and/or selenium during the sampling events conducted in 2013 and 2018; however, these COCs remained within the WQCC standards through 2022. MW-3 was documented to contain exceedances of arsenic and/or manganese in sampling events conducted in 2013 and 2018; however, these COCs remained within the WQCC standards through 2022. Monitor well MW-4 was documented to contain slightly elevated concentrations of boron and/or manganese since the 2013 to 2020 timeframe. Between 2012 to 2019 this well was also occasionally found to contain elevated concentrations of other metals including beryllium, silver, arsenic, mercury, and selenium.

In summary, while there were elevated concentrations of various metals in the site monitoring well network between 2005 and 2022, there were no clear indications of metals impacts due to the historic pit operations. The majority of the metals exceedances were found in upgradient to crossgradient monitor well MW-1, and in pit monitor well MW-4. The WQCC standard exceedances in monitor well MW-1 have been primarily related to selenium and uranium, while the WQCC standard exceedances in monitor well MW-4 have been primarily related to manganese and boron. In general, the pattern and concentrations of the metals exceedances do not point to an obvious release source area.

<u>VOCs</u>

No volatile organic compounds (VOCs) were detected in the site monitoring wells in exceedance of the WQCC standards except for benzene in pit monitor well MW-4. Benzene was detected in this well in exceedance of the WQCC standard during 12 out of the 15 sampling events conducted between 2002 and 2022. The benzene concentrations in this well ranged from a low of 0.0017 mg/L (in 2021) to a high of 0.069 mg/L (during the initial sampling event in 2002). Overall, the benzene concentrations in monitor well MW-4 appeared suggestive of a stable to declining plume condition. Based upon the available data, the benzene impacts in MW-4 appeared to be related to the historic pit operations. During the drilling and sampling of MW-4, elevated soil TPH impacts were documented to a depth of 20 feet below ground surface (bgs), and significantly elevated PID readings were observed to a depth of at least 25 feet bgs.

Specific Conductance, pH, Alkalinity, and TDS

Concentrations of total dissolved solids (TDS) above the NMAC 20.6.2.3103 criteria were documented in every sample collected from the four site monitoring wells. As discussed above, with the current site monitor well configuration, it was difficult to discern if the elevated TDS concentrations were related to the former pit operations, background conditions, and/or another source area to the east of the pit. On multiple occasions, such as on March 28, 2018, March 11, 2019, and September 18, 2020, upgradient to cross-gradient monitor well MW-1 was found to contain the highest site TDS concentration, a condition that does not comport with that which would be expected if these constituents were from historic releases from the former pit. On other sampling dates, however, the site TDS data were suggestive of impacts from the historic pit operations. Additional monitor well installation and sampling activities were determined to be necessary to enable a more thorough evaluation of the site groundwater conditions.

3.0 GROUNDWATER MONITORING (2023)

On November 29, 2023, an annual groundwater monitoring event was conducted at the Site. The site monitoring wells were gauged and sampled.

Ranger has compiled and attached both current (2023) and cumulative tables of the Site well gauging and groundwater analytical data. Also attached are November 2023 isoconcentration maps for the primary groundwater constituents of concern at the Site (chloride, sulfate and TDS), as well as a copy of the laboratory analytical report for the November 2023 annual groundwater sampling event. Below is a summary of the 2023 annual groundwater monitoring activities and results.

3.1 Groundwater Monitoring Methodologies

Upon arrival at the Site, the monitor wells were opened and allowed to equilibrate for approximately 30 minutes prior to the performance of any well gauging or sampling activities. Prior to sampling the groundwater in each monitor well, the wells were first gauged with a decontaminated interface probe to determine the depth to groundwater in each monitor well, and LNAPL thicknesses, if any. This data was utilized to determine the site groundwater flow direction and gradient.

Groundwater samples were subsequently collected using low-flow sampling techniques. The wells were purged and sampled using a low flow rate (0.026 to 0.264 gpm) that minimized drawdown. The pump-intake was located in the middle or slightly above the middle of the saturated screened interval. The monitoring wells were purged until the field water quality parameters (i.e., pH, temperature, and conductivity) stabilized. Parameters were considered to have stabilized if, over three consecutive readings, the following criteria were met:

- pH ±0.1 unit
- Temperature within 3%
- Conductivity within 3%

All sample containers were filled with minimal turbulence. Due to sample turbidity, the samples collected for dissolved metals analysis were first field-filtered through a 10-micron pore size filter. Ranger personnel wore new nitrile gloves while handling each sample in order to prevent cross-contamination of samples.

All samples were containerized using properly selected and cleaned containers, which were preserved by the laboratory as needed for the particular analysis to be performed. All VOC sample vials were filled completely to minimize head space. The samples were subsequently sealed in one or more ziplock bags and stored in a sample shuttle containing ice until arrival at the laboratory for chemical analysis. All sample containers were labeled with the project name, sample identification, date of sample collection, samplers' initials, and time sampled collected. Chain-of-custody forms were completed to document sample transport to the analytical laboratory. The groundwater samples were subsequently analyzed for the following:

- EPA Method 200.8: Antimony, arsenic, lead, selenium, thallium and uranium
- **EPA Method 300.0:** Fluoride, chloride, bromide, phosphorus, orthophosphate (as P), sulfate, and nitrate+nitrite as N.
- **SM2510B:** Conductivity
- **SM2320B:** Bicarbonate (as CaCO3), carbonate (as CaCO3), and total alkalinity (as CaCO3)
- SM2540C MOD: Total dissolved solids
- SM4500-H+B / 9040C: pH
- **EPA METHOD 200.7:** Aluminum, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, silver, sodium, and zinc
- **EPA METHOD 8260B:** Benzene, toluene, ethylbenzene, and total xylenes (BTEX); naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

A trip blank was included in the sampling cooler to assess the potential cross-contamination of field samples during shipment to, and storage in, the laboratory. The trip blank was analyzed for BTEX, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene using Method 8260. All trip blank results were non-detectable. A temperature blank was also included in the sample shipping container. The temperature blank was received by the laboratory at a temperature below 6°C.

All purge water generated during the well purging process was placed in a sealed and labeled 55-gallon drum and was temporarily stored on-site pending off-site disposal.

3.2 2023 Groundwater Monitoring Results Summary

Well Gauging Results

No LNAPL was documented to be present in the site monitoring wells. The depth to groundwater in the site monitoring wells was documented to range from approximately 33.58' below ground surface (bgs) in MW-1 to a maximum of approximately 35.40' bgs in MW-3. As illustrated on the attached groundwater gradient map, the November 29, 2023 site groundwater gradient and flow direction was documented to range from approximately 0.001 - 0.003 ft/ft predominantly to the northwest. This groundwater flow direction is consistent with the historical well gauging results which have documented groundwater flow at the site to the west, southwest and northwest.

Groundwater Analytical Results

 Groundwater Anions: Concentrations of chloride and sulfate above the NMAC 20.6.2.3103 criteria were documented in all four site monitoring wells. Upgradient to cross-gradient monitor well MW-1 was found to contain the highest site chloride and

sulfate concentrations, a condition that does not comport with that which would be expected if these constituents were from historic releases from the former pit. The chloride concentration in MW-1 (34,000 mg/L) was significantly higher than any prior chloride results from this well. Prior to 2023, the highest chloride concentration in this well was 18,000 mg/L (in 2019). Monitor well MW-1 was also found to contain an elevated Nitrate+Nitrite (as N) concentration, consistent with the analytical results from this well since the 2019 timeframe.

- Dissolved Metals: Exceedances of the NMAC 20.6.2.3103 criteria for arsenic were documented in all four monitoring wells. Consistent with historical analytical results, upgradient to cross-gradient monitor well MW-1 was also found to contain elevated selenium and uranium concentrations.
- VOCs: There were no groundwater VOC exceedances of the NMAC 20.6.2.3103 criteria. This was the first time that the benzene concentration in monitor well MW-4 was reported as nondetectable. To evaluate the benzene trend in MW-4, Ranger input the historic MW-4 benzene data into the GSI Mann-Kendall Toolkit. A copy of the toolkit spreadsheet is provided in Attachment 4. It should be noted that the U.S. Environmental Protection Agency suggests setting non-detects to a common value lower than any of the detected values (USEPA, 2009). As such, and as recommended in the GSI Mann-Kendall Toolkit User's Manual, Ranger substituted one-half of the value of the MW-4 benzene detection limit for the non-detect result obtained from this well in November 2023.

As summarized in the attached GSI Mann-Kendall Toolkit spreadsheet for the MW-4 benzene data, the MW-4 benzene data was reported to be decreasing with a 99.8% confidence factor. When the confidence factor is greater than 95%, the data are considered to be demonstrating a strong trend. Based upon this analysis, the benzene plume associated with the former pit appears to be in a declining condition and to be naturally attenuating over time.

• Specific Conductance, pH, Alkalinity, and TDS: Elevated TDS concentrations were documented in all four monitor wells at the site. Upgradient to cross-gradient monitor well MW-1 was found to contain the highest site TDS concentration (33,100 mg/L), a condition that does not comport with that which would be expected from historic releases from the former pit. Ranger notes, however, that pit monitor well MW-4 has historically contained groundwater TDS concentrations ranging from 22,900 – 57,400 mg/L. The November 29, 2023 MW-4 TDS result was only 7,700 mg/L. Future TDS results from this well should be evaluated to determine whether MW-4 is demonstrating a declining TDS trend or whether the November 29, 2023 TDS concentration was an anomalous result.

In summary, the historic pit operations do appear to have resulted in a low-level benzene impact to the groundwater immediately underlying the former pit area. Analysis of the historic pit monitor well MW-4 benzene data was conducted using the GSI Mann-Kendall Toolkit. Based upon this analysis, the benzene plume associated with the former pit appears to be in a declining condition and to be naturally attenuating over time. The current (Nov. 2023) benzene concentration in MW-4 was reported as nondetectable.

Based upon the available data and the current site monitor well configuration, it is difficult to discern if the elevated chloride and TDS concentrations at the site are related to the former pit operations, background conditions, and/or another source area to the east of the pit. There are no clear indications that the remainder of the site COC exceedances of the WQCC standards are related to the historic pit operations. The overall water quality data are suggestive of naturally occurring brackish water. Further site investigation activities are needed to more thoroughly evaluate the site groundwater conditions.

4.0 CURRENT SITE COMMUNICATIONS AND CORRESPONDENCE

In 2023, EOG engaged Ranger to assist in the continuation of the assessment and remediation efforts at the Site, as well as to re-establish communications with the NMOCD regarding the Site. In May 2023, Ranger personnel established communications with the NMOCD, and began discussion of the Site with Mr. Nelson Velez of the NMOCD including the steps needed to bring the Site into compliance with the current regulatory criteria and New Mexico Administrative Code (NMAC). The call included a review of the Site history, the presentation of data collected since 2005, review of the current status of the Site, and a discussion of the appropriate regulatory path forward.

Based on Ranger's communications with the NMOCD, on August 13, 2023, a draft comprehensive *Site Chronology and Status Update* report was submitted to Mr. Velez to provide the NMOCD with a summary of the Site history and the cumulative soil and groundwater data so that a regulatory path forward could be established. Additional directives included the completion of a fourth quarter groundwater monitoring event and the preparation of an annual report to be submitted by April 1, 2024.

On November 16, 2023, Ranger was informed by Mr. Velez that Mr. Mike Buchanan of the NMOCD would be assuming responsibility for the oversight of the project. Since no response has been received from the NMOCD to date with regard to the draft *Site Chronology and Status Update* report submitted to the NMOCD in August 2023, the report was formally submitted to the NMOCD on February 15, 2024.

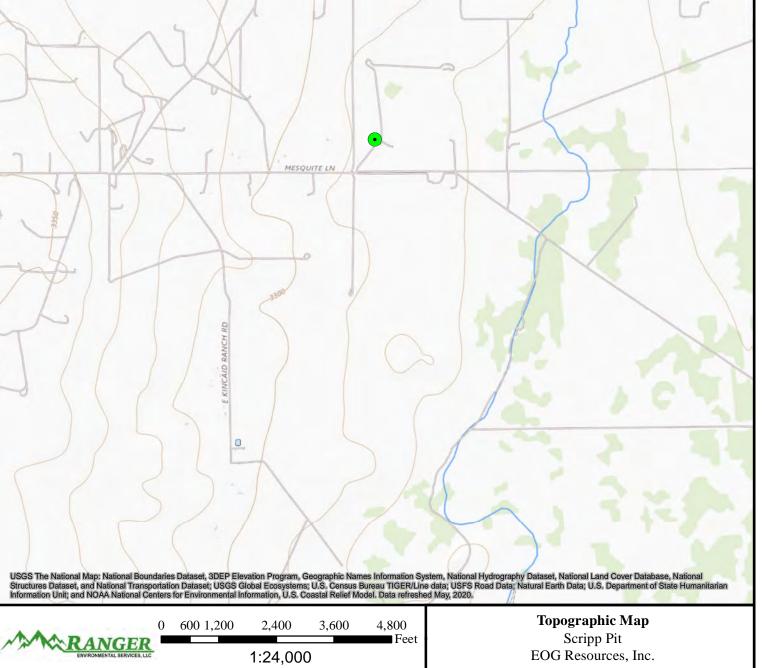
Based upon the above, groundwater monitoring activities were continued at the subject site in 2023, with an annual groundwater monitoring event completed in November 2023. On November 21, 2023, EOG provided notice to the NMOCD of the planned annual groundwater monitoring event. A copy of this notification is attached. No NMOCD representatives were present on the day of sampling.

5.0 REGULATORY GUIDANCE REQUEST

In the *Site Chronology and Status Update* report submitted to the NMOCD in August 2023, EOG requested NMOCD guidance regarding the appropriate regulatory reporting/proposal format that will be required for the next phase of site activities.

6.0 RECOMMENDATIONS

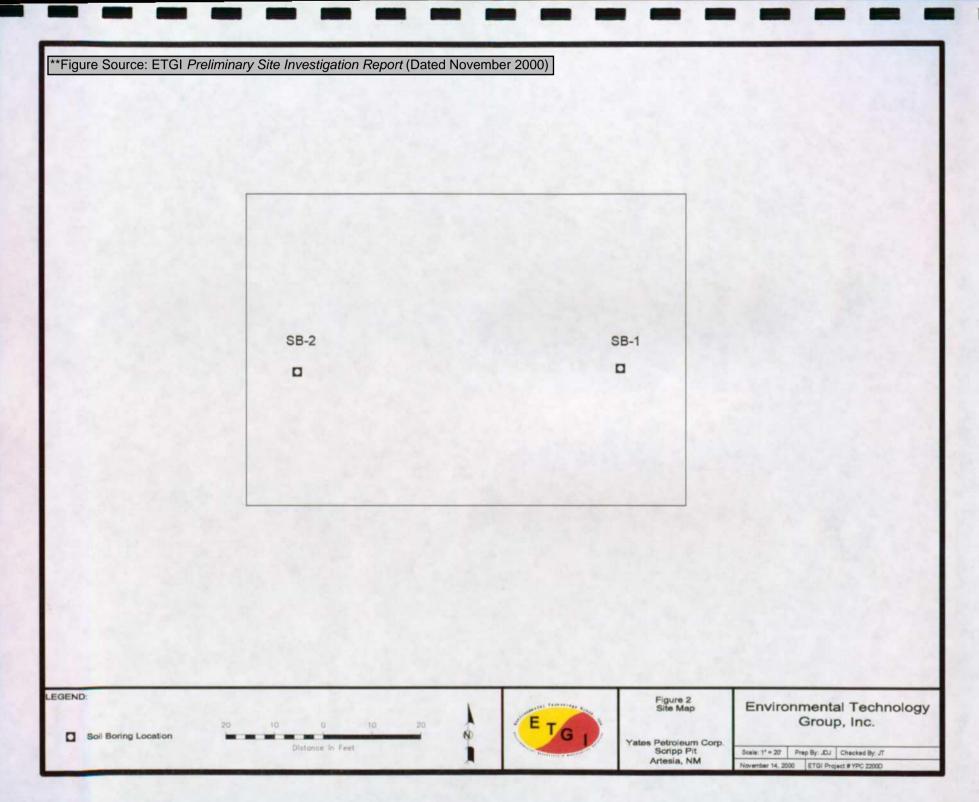
- To assist in determining if the elevated chloride and TDS concentrations at the site are related to the former pit operations, background conditions, and/or another source area to the east of the pit, further site investigation activities are recommended. At this time, Ranger recommends the installation of an additional monitoring well located to the west (downgradient) of the pit, and the installation of a background water quality monitoring well to the east (upgradient) of the pit. These two wells will help refine and confirm the site groundwater flow direction, and the eastern proposed well will provide site-specific background water quality data.
- Upon NMOCD determination of the appropriate regulatory mechanism and reporting format for the site, Ranger will prepare a detailed work plan for NMOCD review. Since the benzene impact to the groundwater is currently below the NMAC 20.6.2.3103 criteria and the plume is in a declining condition, and it is unclear whether the pit has resulted in any other groundwater COC impacts, Ranger believes that it may be beneficial to first complete the proposed monitor well installations and to sample these wells prior to making the determination of the appropriate regulatory mechanism and reporting format for the site.
- Until such time that the NMOCD provides the requested project guidance and direction, EOG will initiate quarterly groundwater monitoring activities beginning in the second quarter of 2024. Based upon the cumulative site groundwater monitoring results, Ranger recommends that the site chemicals of concern (COCs) for future groundwater monitoring events be reduced to the following constituents which have been detected in exceedance of the NMAC 20.6.2.3103 criteria on at least one or more occasions:
 - o Arsenic
 - o Benzene
 - o Beryllium
 - o Boron
 - Chloride
 - o Fluoride
 - o **Manganese**
 - Mercury
 - Nitrate
 - o Nitrite
 - o Selenium
 - Silver
 - Sulfate
 - Total Dissolved Solids
 - Uranium

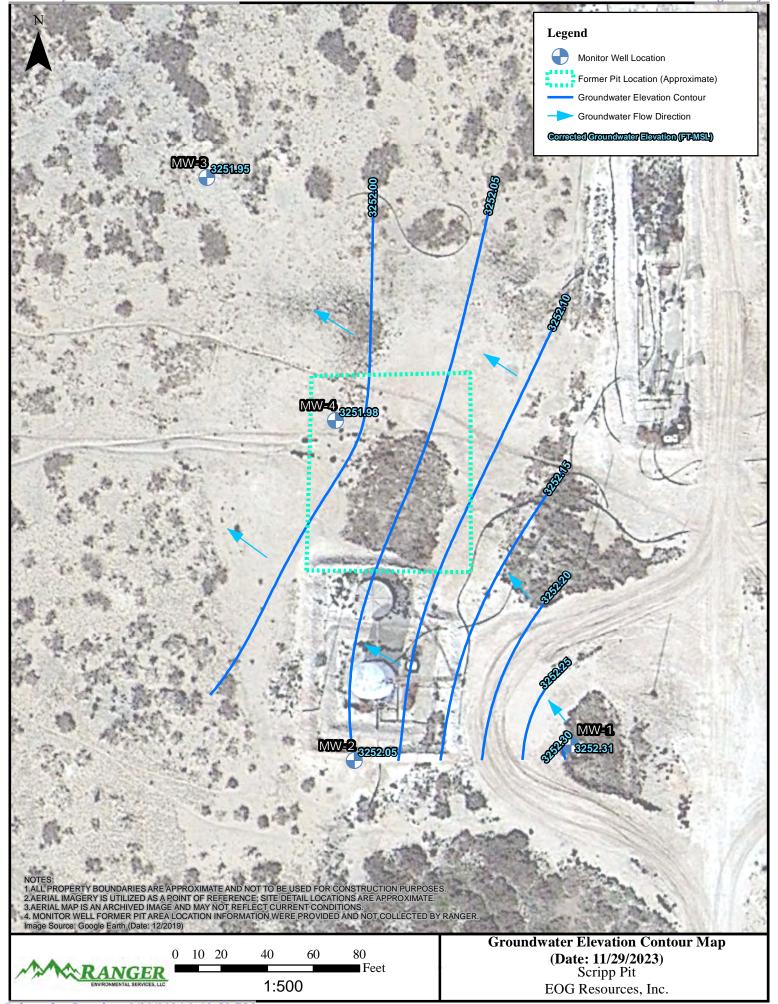

Upon NMOCD review of this report and the *Site Chronology and Status Update* report, the above-recommended subset of the site groundwater monitoring COCs will be modified if requested by the NMOCD.

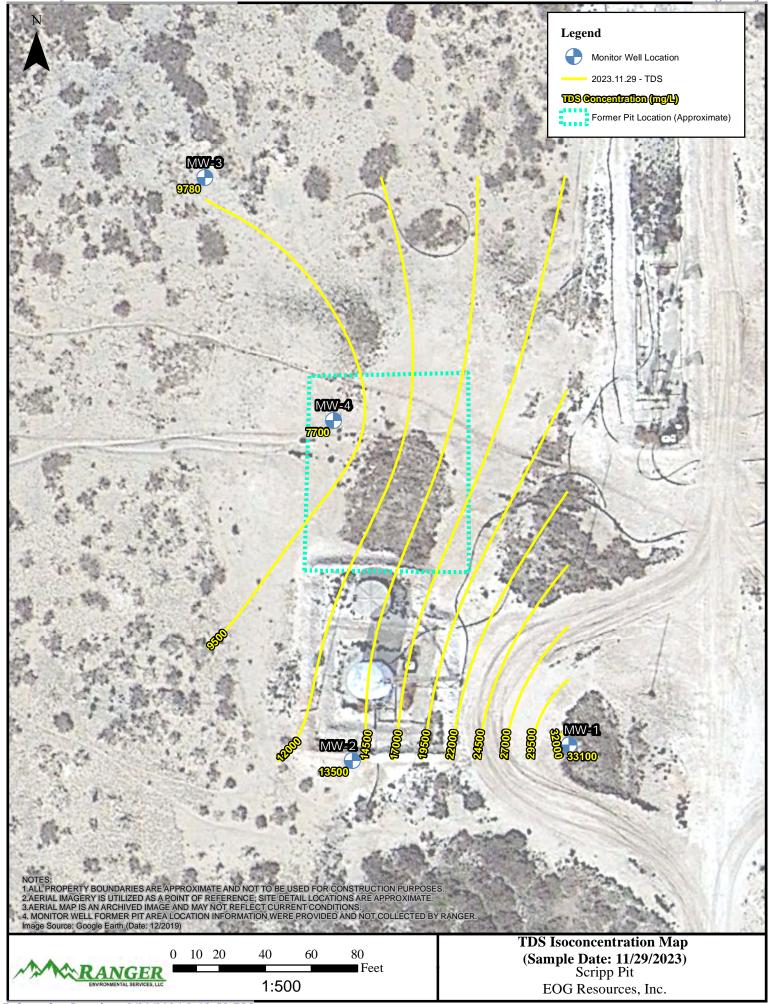
FIGURES

Topographic Map Area Map Site Map

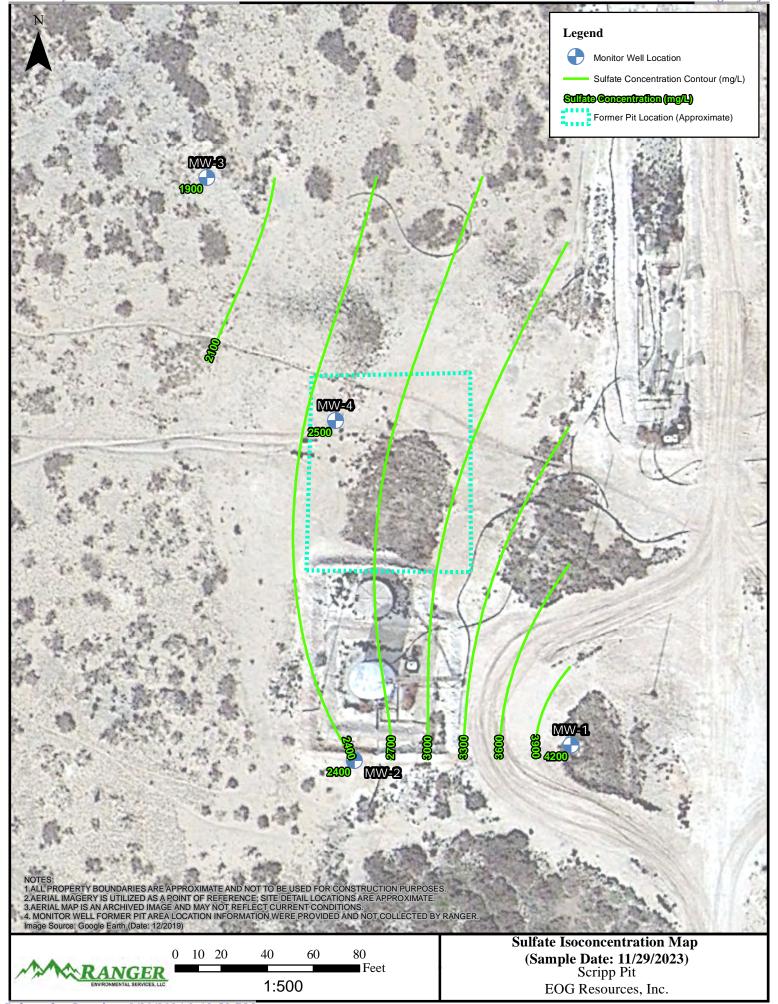
ETGI October 21, 2000 Soil Boring Location Map Groundwater Gradient Map Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps Proposed Monitor Well Location Map

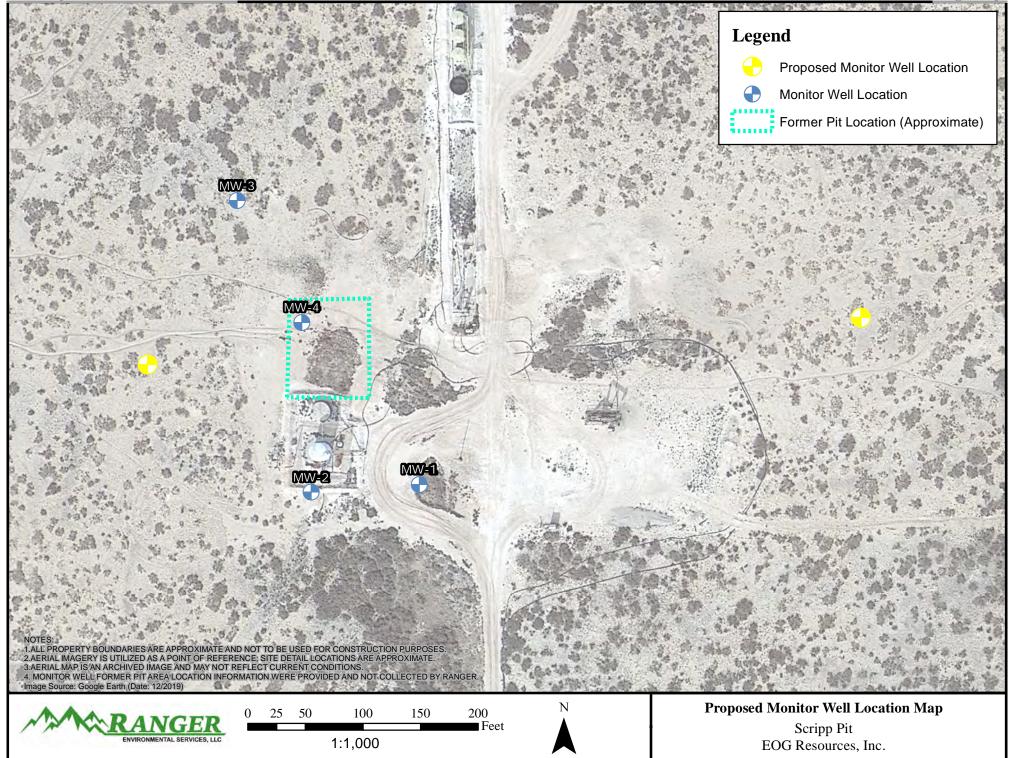

0 250 500 1,000 1,500 2,000 Feet 1:10,000


Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Area Map Scripp Pit EOG Resources, Inc.




Received by OCD: 4/3/2024 12:10:45 PM



TABLES

Current Event Well Gauging Data
Current Event Groundwater EPA Method 300.0: Anions
Current Event Groundwater Dissolved Metals (Table 1 of 2)
Current Event Groundwater Dissolved Metals (Table 2 of 2)
Current Event Groundwater TPH and VOC Data Summary
Current Event Groundwater Specific Conductance, pH, Alkalinity, and TDS

Cumulative Well Gauging Data
Cumulative Groundwater EPA Method 300.0: Anions
Cumulative Groundwater Dissolved Metals (Table 1 of 2)
Cumulative Groundwater Dissolved Metals (Table 2 of 2)
Cumulative Groundwater TPH and VOC Data Summary
Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

CURRENT EVENT TABLES

CURRENT EVENT WELL GAUGING DATA SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-1	11/29/2023	3,288.79	36.48	0.00	3252.31	23'-38'
MW-2	11/29/2023	3289.17	37.12	0.00	3252.05	30'-45'
MW-3	11/29/2023	3290.08	38.13	0.00	3251.95	35'-50'
MW-4	11/29/2023	3289.52	37.54	0.00	3251.98	40'-55'

Notes:

^{1.} Elevations referenced to a temporary on-site benchmark.

^{2.} BTOC = below top of casing

CURRENT EVENT GROUNDWATER EPA METHOD 300.0: ANIONS SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrit as N
MW-1	11/29/2023	<2.0	34,000	13	< 10	4,200			20
							_		
MW-2	11/29/2023	< 2.0	6,100	3.7	<0.50	2,400			< 4.0
MW-3	11/28/2023	< 2.0	4,000	2.8	< 0.50	1,900			< 4.0
MW-4	11/29/2023	< 2.0	20,000	8.9	< 10	2,500			< 20

(<10,000 mg/L) A. Human Health Standards

B. Other Standards for Domestic Water Supply

1.6

250

600

10¹

Received by OCD: 4/3/2024 12:10:45 PM

C. Standards for Irrigation Use

Notes:

- 1. This standard is for nitrate. The nitrite standard is 1.0 mg/L.
- 2. Exceedances of the listed closure criteria are highlighted in bold, red type.

CURRENT EVENT GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-1	11/29/2023	0.025	0.021	< 0.0020	0.27	< 0.0020	2,500	< 0.0060	< 0.0060	< 0.020	2,000	< 0.0020	< 0.0080	< 0.010	5.6	0.042	4,500	<0.010
	·				•					•								
MW-2	11/29/2023	< 0.020	0.0099	< 0.0020	0.41	< 0.0020	720	< 0.0060	< 0.0060	< 0.020	410	0.0091	< 0.0080	< 0.010	13	0.015	3,600	< 0.010
MW-3	11/29/2023	< 0.020	0.011	< 0.0020	0.22	< 0.0020	680	< 0.0060	< 0.0060	0.077	410	0.071	< 0.0080	< 0.010	8.2	0.012	2,100	< 0.010
				1														
MW-4	11/29/2023	0.023	0.019	< 0.0020	0.74	< 0.0020	2,500	< 0.0060	< 0.0060	< 0.20	840	0.085	< 0.0080	< 0.010	22	0.040	9,800	< 0.010
20.6.2.3103 NMAC GW (<10,000 mg/																		
A. Human Health St	tandards		2	0.004		0.005		0.05								0.05		
B. Other Standards for Dome	estic Water Supply									1.0		0.2						10
C. Standards for Irrig	ation Use	5.0			0.75				0.05				1.0	0.2				
Notes:																		

Notes:

1. Exceedances of the listed closure criteria are highlighted in bold, red type.

Received by OCD: 4/3/2024 12:10:45 PM

CURRENT EVENT GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uranium
MW-1	11/29/2023	<0.0050	0.048	< 0.0060	< 0.0025		0.093	< 0.0012	0.031
MW-2	11/29/2023	< 0.0050	0.014	< 0.0060	< 0.0025		0.017	<0.0012	0.011
MW-3	11/29/2023	< 0.0050	0.012	< 0.0060	< 0.0025		0.011	< 0.0012	0.0069
		•						•	•
MW-4	11/29/2023	< 0.0050	0.041	< 0.0060	< 0.0025		0.0078	< 0.0012	0.016

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)

 A. Human Health Standards
 0.006
 0.01
 0.015
 0.002
 0.05
 0.002
 0.03

 B. Other Standards for Domestic Water Supply
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 1.0
 <t

C. Standards for Irrigation Use

Notes:

^{1.} Exceedances of the listed closure criteria are highlighted in bold, red type.

Received by OCD: 4/3/2024 12:10:45 PM

CURRENT EVENT GROUNDWATER TPH AND VOC DATA SUMMARY SCRIPP PIT **EDDY COUNTY, NEW MEXICO** AP-25

All Values Presented in Parts Per Million (mg/L)

DATE	TPH TOTAL	TPH GRO	TPH DRO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthaler
11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
	11/29/2023 11/29/2023 11/29/2023	11/29/2023 11/29/2023 11/29/2023	11/29/2023 11/29/2023	11/29/2023 11/29/2023	11/29/2023 11/29/2023	DATE TOTAL TPH GRO TPH DRO WITBE Benzene 11/29/2023 <0.001	DATE TOTAL TPH GRO TPH DRO MTBE Benzene Totuene 11/29/2023 <0.001	DATE TOTAL TPH GRO IPH DRO WTBE Benzene Total Ethylbenzene 11/29/2023 <0.001	DATE TOTAL TPH GRO TPH DRO MTBE Benzene Total Ethyloenzene Xylenes 11/29/2023 <0.001	DATE TOTAL TPH GRO TPH DRO WI BE Benzene Totuene Etnylbenzene Aylenes Trimetryl benzene 11/29/2023 <0.001	TOTAL TPH GRO TPH GRO MTBE Benzene Totuene Ethylbenzene Xylenes Trimethyl benzene	TOTAL TOTA	TOTAL TPH GRO TPH DRO MTBE Benzene Toluene Ethylbenzene Aylenes Trimethyl benzene benzene benzene haphthalene haph

20.6.2.3103 NMAC GW STANDARDS

(<10,000 mg/L)

A. Human Health Standards 0.005 0.7 0.62 0.03 ¹ 0.03 ¹ 0.03¹

0.1

B. Other Standards for Domestic Water Supply

C. Standards for Irrigation Use

Notes:

1. The 0.03 mg/L standard is for total naphthalene plus monomethylnaphthalenes 2. Exceedances of the listed closure criteria are highlighted in bold, red type.

1,000

Received by OCD: 4/3/2024 12:10:45 PM

CURRENT EVENT GROUNDWATER SPECIFIC CONDUCTANCE, pH, ALKALINITY, AND TDS SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

		Conductivity µmhos/c					
SAMPLE ID	DATE		рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)
MW-1	11/29/2023	50,000	7.00	173.3	< 2.000	173.3	33,100
MW-2	11/29/2023	24,000	7.37	216.4	< 2.000	216.4	13,500
MW-3	11/29/2023	17,000	7.36	228.8	< 2.000	228.8	9,780
MW-4	11/29/2023	65,000	7.11	227.2	< 2.000	227.2	7,700

6 to 9

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)

A. Human Health Standards

B. Other Standards for Domestic Water Supply

C. Standards for Irrigation Use

Notes:

^{1.} Exceedances of the listed closure criteria are highlighted in bold, red type.

CUMULATIVE TABLES

CUMULATIVE WELL GAUGING DATA SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

***	<u> </u>		DEPTH TO	LNAPL	GW	SCREENED
WELL NUMBER	DATE	CASING ELEV. (FT)	WATER (FT-BTOC)	THICKNESS (FT)	ELEVATION (FT)	INTERVAL (FT-BGS)
MW-1	9/18/2002	3,287.52	41.18	0.00	3246.34	23'-38'
MW-1	9/19/2002	3,287.52	41.25	0.00	3246.27	23'-38'
MW-1	11/8/2004	3,287.52	41.16	0.00	3246.36	23'-38'
MW-1	12/1/2004	3,287.52	41.00	0.00	3246.52	23'-38'
MW-1	12/15/2004	3,287.52	40.91	0.00	3246.61	23'-38'
MW-1	12/21/2004	3,287.52	40.87	0.00	3246.65	23'-38'
MW-1	12/30/2004	3,287.52	40.84	0.00	3246.68	23'-38'
MW-1	3/6/2018	3,287.52	34.72	0.00	3252.80	23'-38'
MW-1	3/28/2018	3,287.52	34.61	0.00	3252.91	23'-38'
MW-1	3/11/2019	3,288.79	35.44	0.00	3253.35	23'-38'
MW-1	10/29/2019	3,288.79	35.86	0.00	3252.93	23'-38'
MW-1	9/18/2020	3,288.79	36.60	0.00	3252.19	23'-38'
MW-1	8/24/2021	3,288.79	34.72	0.00	3254.07	23'-38'
MW-1	11/29/2023	3,288.79	36.48	0.00	3252.31	23'-38'
				•	•	
MW-2	9/18/2002	3287.91	41.95	0.00	3245.96	30'-45'
MW-2	9/19/2002	3287.91	41.95	0.00	3245.96	30'-45'
MW-2	11/8/2004	3287.91	42.00	0.00	3245.91	30'-45'
MW-2	12/1/2004	3287.91	41.81	0.00	3246.10	30'-45'
MW-2	12/15/2004	3287.91	41.73	0.00	3246.18	30'-45'
MW-2	12/21/2004	3287.91	41.72	0.00	3246.19	30'-45'
MW-2	12/30/2004	3287.91	41.68	0.00	3246.23	30'-45'
MW-2	3/6/2018	3287.91	35.65	0.00	3252.26	30'-45'
MW-2	3/28/2018	3287.91	35.52	0.00	3252.39	30'-45'
MW-2	3/11/2019	3289.17	36.34	0.00	3252.83	30'-45'
MW-2	10/29/2019	3289.17				30'-45'
MW-2	9/18/2020	3289.17	37.42	0.00	3251.75	30'-45'
MW-2	8/24/2021	3289.17	35.88	0.00	3253.29	30'-45'
MW-2	11/29/2023	3289.17	37.12	0.00	3252.05	30'-45'
MW-3	9/18/2002	3288.79	42.84	0.00	3245.95	35'-50'
MW-3	9/19/2002	3288.79	42.86	0.00	3245.93	35'-50'
MW-3	11/8/2004	3288.79	42.90	0.00	3245.89	35'-50'
MW-3	12/1/2004	3288.79	42.73	0.00	3246.06	35'-50'
MW-3	12/15/2004	3288.79	42.65	0.00	3246.14	35'-50'
MW-3	12/21/2004	3288.79	42.58	0.00	3246.21	35'-50'
MW-3	12/30/2004	3288.79	42.52	0.00	3246.27	35'-50'

CUMULATIVE WELL GAUGING DATA SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-3	3/6/2018	3288.79	36.08	0.00	3252.71	35'-50'
MW-3	3/28/2018	3288.79	35.92	0.00	3252.87	35'-50'
MW-3	3/11/2019	3290.08	36.85	0.00	3253.23	35'-50'
MW-3	10/29/2019	3290.08	37.78	0.00	3252.30	35'-50'
MW-3	9/18/2020	3290.08	38.12	0.00	3251.96	35'-50'
MW-3	8/24/2021	3290.08	36.21	0.00	3253.87	35'-50'
MW-3	11/29/2023	3290.08	38.13	0.00	3251.95	35'-50'
MW-4	9/18/2002	3288.25	41.28	0.00	3246.97	40'-55'
MW-4	9/19/2002	3288.25	42.32	0.00	3245.93	40'-55'
MW-4	11/8/2004	3288.25	42.37	0.00	3245.88	40'-55'
MW-4	12/1/2004	3288.25	42.26	0.00	3245.99	40'-55'
MW-4	12/15/2004	3288.25	42.15	0.00	3246.10	40'-55'
MW-4	12/21/2004	3288.25	42.12	0.00	3246.13	40'-55'
MW-4	12/30/2004	3288.25	42.08	0.00	3246.17	40'-55'
MW-4	3/6/2018	3288.25	35.67	0.00	3252.58	40'-55'
MW-4	3/28/2018	3288.25	35.51	0.00	3252.74	40'-55'
MW-4	3/11/2019	3289.52	36.36	0.00	3253.16	40'-55'
MW-4	10/29/2019	3289.52	37.27	0.00	3252.25	40'-55'
MW-4	9/18/2020	3289.52	37.62	0.00	3251.90	40'-55'
MW-4	8/24/2021	3289.52	35.62	0.00	3253.90	40'-55'
MW-4	11/29/2023	3289.52	37.54	0.00	3251.98	40'-55'

Notes:

^{1.} Elevations referenced to a temporary on-site benchmark.

^{2.} BTOC = below top of casing

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

		All Values Pr	esented in Parts	Per Million (mg/	L) unless otherwise	noted			
SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N
SB-2	10/21/2000		25,170						
MW-1	9/19/2002		8,150						l
MW-1	11/8/2004		3,999						
MW-1	3/17/2012	< 2.0	10,000	5.6	< 10	1,500			< 10
MW-1	6/18/2012	< 2.0	13,000	4.8	< 10	1,700			< 10
MW-1	9/12/2012	< 2.0	11,000	7	< 25	1,500			< 10
MW-1	12/7/2012	< 2.0	9,500	3.6	< 10	1,400			< 20
MW-1	3/12/2013	< 2.0	15,000	7.9	< 10	1,600			< 10
MW-1	6/27/2013	< 2.0	9,100	8.6	< 10	1,300			< 4.0
MW-1	3/28/2018	< 2.0	17,000	15	< 10	1,900			< 20
MW-1	3/11/2019	< 2.0	18,000	12	< 10	3,000			27
MW-1	10/29/2019	< 2.0	12,000	5	< 10	10,000			16
MW-1 MW-1	9/18/2020 8/24/2021	< 0.50 < 2.0	14,000 12,000	14 7.2	< 2.5 < 10	2,000 6,200			15 16
MW-1	3/22/2022	< 2.0	16,000	12	< 10	3,000			20
MW-1	8/3/2022	< 2.0	14,000	14	< 10	2,400			20
MW-1	11/29/2023	<2.0	34,000	13	< 10	4,200			20
1V1VV - 1	11/20/2020	~£.U	0-1,000	10	- 10	7,200	1		20
MW-2	9/19/2002		6,560						
MW-2	11/8/2004		4,699						
MW-2	3/17/2012	< 2.0	7,300	2.5	< 10	2,600			< 4.0
MW-2	6/18/2012	< 2.0	6,500	2.2	< 10	2,600			< 4.0
MW-2	9/12/2012	< 2.0	6,900	2	< 50	2,700			< 4.0
MW-2	12/7/2012	< 2.0	5,300	< 2.0	< 10	2,400			< 10
MW-2	3/12/2013	< 2.0	6,000	3.7	< 10	2,600			< 4.0
MW-2	6/27/2013	< 2.0	5,500	< 2.0	< 10	2,700			< 4.0
MW-2	3/28/2018	< 2.0	9,600	4.3	< 10	2,800			< 10
MW-2	3/11/2019	< 2.0	8,100	3.3	< 10	2,300			< 10
MW-2	10/29/2019								
MW-2	9/18/2020	< 2.0	5,800	3.5	< 0.50	2,400			< 4.0
MW-2	8/24/2021	< 2.0	8,300	3.5	< 10	2,400			< 10
MW-2	3/22/2022	< 2.0	9,000	5	< 10	2,400			< 10
MW-2 MW-2	8/3/2022	< 2.0	8,200	5.2 3.7	< 10 <0.50	2,900			< 10
MVV-2	11/29/2023	< 2.0	6,100	3.7	<0.50	2,400			< 4.0
MW-3	9/19/2002		4,700				T		
MW-3	11/8/2004		5,098						
MW-3	3/17/2012	< 2.0	4,000	2.2	< 10	2,400			< 4.0
MW-3	6/18/2012	< 2.0	4,000	2	< 10	2,400			< 4.0
MW-3	9/12/2012	< 2.0	3,900	< 2.0	< 25	2,400			< 4.0
MW-3	12/7/2012								
MW-3	3/12/2013	< 2.0	4,100	3.1	< 10	2,500			< 4.0
MW-3	6/27/2013	1.3	3,200	2.7	< 5.0	2,300			< 4.0
MW-3	3/28/2018	< 1.0	3,000	2.3	< 5.0	2,200			< 1.0
MW-3	3/11/2019	< 2.0	3,100	2.1	< 10	2,000			< 2.0
MW-3	10/29/2019	0.53	3,600	2.3	< 2.5	2,100	<2.0	<0.50	
MW-3	9/18/2020	< 2.0	3,300	2.4	< 0.50	2,000			< 4.0
MW-3	8/24/2021	< 2.0	3,000	1.9	< 0.50	1,800	<2.0	0.41	
MW-3	3/22/2022	< 2.0	3,000	< 2.0	< 10	1,700			< 4.0
MW-3	8/3/2022	< 2.0	3,400	2.6	< 10	2,000			< 4.0
MW-3	11/28/2023	< 2.0	4,000	2.8	< 0.50	1,900			< 4.0
100	0/46/2222		00.100	ı	 		_		1
MW-4	9/19/2002		38,100						
MW-4	11/8/2004		32,990			2.000			
MW-4	3/17/2012	2.2	17,000	6.4	< 10	2,600			< 20
MW-4	6/18/2012	< 2.0	21,000	< 2.0	< 10	2,600			< 10
MW-4	9/12/2012	< 2.0	23,000	6.3	< 50	2,500			< 20
MW-4 MW-4	12/7/2012 3/12/2013	< 2.0 < 2.0	19,000 19,000	< 2.0 7.7	< 10 < 10	2,400 2,500			< 20 < 10
MW-4	6/27/2013	< 1.0	16,000	7.7	< 5.0	2,300			< 10
MW-4	3/28/2018	< 1.0	16,000	5.7	< 5.0	2,500			< 10
IVIVV-4	3/28/2018	< 1.0	10,000	5./	V.C >	∠,500			< 10

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS **SCRIPP PIT** EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N
MW-4	3/11/2019	< 2.0	12,000	4.4	< 10	2,500			< 10
MW-4	10/29/2019	< 0.50	15,000	4.3	< 2.5	2,100			< 10
MW-4	9/18/2020	< 0.50	13,000	5.6	< 2.5	2,100			< 20
MW-4	8/24/2021	< 0.50	20,000	7.2	< 2.5	2,600			< 20
MW-4	3/22/2022	< 2.0	18,000	8.1	< 25	2,700			< 20
MW-4	8/3/2022	< 2.0	18,000	13	< 10	2,600			< 20
MW-4	11/29/2023	< 2.0	20,000	8.9	< 10	2,500			< 20

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)

A. Human Health Standards 1.6

10 ¹

10

B. Other Standards for Domestic Water Supply

C. Standards for Irrigation Use

1. This standard is for nitrate. The nitrite standard is 1.0 mg/L.
2. Exceedances of the listed closure criteria are highlighted in bold, red type.

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-1	3/17/2012		0.047			< 0.0020	3,300	< 0.0060		0.024	1,300	< 0.0020			6.7	< 0.0050	930	0.041
MW-1	6/18/2012		0.044			< 0.0020	3,300	< 0.0060		0.045	1,200	< 0.0020			5.2	< 0.0050	970	0.016
MW-1	9/12/2012		0.044			< 0.0020	3,100	< 0.0060		0.027	1,200	< 0.0020			6.2	< 0.0050	970	0.014
MW-1	12/7/2012		0.049			< 0.0020	2,700	< 0.0060		0.028	1,000	< 0.0020			10	< 0.0050	910	0.025
MW-1	3/12/2013		0.046			< 0.0020	3,200	0.0068		< 0.020	1,200	< 0.0020			6.7	< 0.0050	900	0.016
MW-1	6/27/2013		0.047			< 0.0020	3,600	0.0074		< 0.020	1,200	< 0.0020			6.6	< 0.25	1,000	0.019
MW-1	3/28/2018	< 0.10	0.04	< 0.010		< 0.010	3,500	< 0.030	< 0.030	< 0.10	2,600	< 0.010	< 0.040	< 0.050	6.8	0.11	5,500	< 0.050
MW-1	3/11/2019	< 0.020	0.024	< 0.0020	0.17	< 0.0020	1,900	< 0.0060	< 0.0060	0.035	2,800	< 0.0020	< 0.0080	< 0.010	6.3	0.028	6,400	0.017
MW-1	10/29/2019	< 0.020	0.013	0.0024		< 0.0020	810	< 0.0060	< 0.0060	< 0.020	2,200	0.0046	< 0.0080	< 0.010	22	0.019	7,500	0.047
MW-1	9/18/2020	< 0.10	0.034	< 0.010	0.21	< 0.010	2,500	< 0.030	< 0.030	< 0.10	1,900	0.015	< 0.040	< 0.050	7.1	< 0.025	4,400	0.056
MW-1	8/24/2021	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	900	< 0.060	< 0.060	< 0.10	1,900	< 0.020	< 0.080	< 0.10	6.4	< 0.050	6,200	< 0.10
MW-1	3/22/2022	< 0.10	0.019	< 0.010	0.29	< 0.010	1,800	< 0.030	< 0.030	< 0.10	2,200	< 0.010	< 0.040	< 0.050	6.5	< 0.025	6,400	< 0.05
MW-1	8/3/2022	< 0.020	0.028	< 0.0020	0.24	< 0.0020	2,300	< 0.0060	< 0.0060	< 0.020	2,100	< 0.0020	< 0.0080	< 0.010	6.5	0.038	5,100	0.098
MW-1	11/29/2023	0.025	0.021	< 0.0020	0.27	< 0.0020	2,500	< 0.0060	< 0.0060	< 0.020	2,000	< 0.0020	< 0.0080	< 0.010	5.6	0.042	4,500	<0.010
MW-2	3/17/2012		0.016			< 0.0020	1,000	< 0.0060		0.058	540	0.017			12	< 0.0050	3,500	0.019
MW-2	6/18/2012		0.018			< 0.010	1,000	< 0.030		< 0.10	480	0.022			10	< 0.025	3,400	< 0.050
MW-2	9/12/2012		0.014			< 0.0020	950	< 0.0060		0.054	510	0.0097			8.8	< 0.0050	3,100	< 0.010
MW-2	12/7/2012		0.015			< 0.0020	840	< 0.0060		0.056	480	0.014			16	< 0.0050	3,300	< 0.010
MW-2	3/12/2013		0.014			< 0.0020	830	< 0.0060		0.06	460	0.026			12	< 0.0050	3,100	0.012
MW-2	6/27/2013		0.015			< 0.0020	1,100	< 0.0060		0.05	550	0.019			8.1	< 0.10	3,500	< 0.01
MW-2	3/28/2018	< 0.10	0.02	< 0.010		< 0.010	860	< 0.030	< 0.030	< 0.10	460	0.071	< 0.040	< 0.050	15	0.04	5,400	< 0.05
MW-2	3/11/2019	< 0.020	0.015	< 0.0020		< 0.0020	840	< 0.0060	< 0.0060	0.047	450	0.13	< 0.0080	< 0.010	13	0.014	4,600	0.043
MW-2	10/29/2019																	
MW-2	9/18/2020	< 0.10	0.013	< 0.010	0.45	< 0.010	980	< 0.030	< 0.030	< 0.10	520	0.041	< 0.040	< 0.050	12	< 0.025	3,300	< 0.05
MW-2	8/24/2021	< 0.10	0.014	< 0.010	0.57	< 0.010	940	< 0.030	< 0.030	< 0.020	500	0.021	< 0.040	< 0.050	19	< 0.025	4,700	< 0.05
MW-2	3/22/2022	< 0.10	0.012	< 0.010	0.64	< 0.010	1,100	< 0.030	< 0.030	< 0.020	560	0.015	< 0.040	< 0.050	21	< 0.025	6,200	< 0.05
MW-2	8/3/2022	< 0.020	0.015	< 0.0020	0.61	< 0.0020	1,100	< 0.0060	< 0.0060	0.086	540	0.024	< 0.0080	< 0.010	16	0.02	5,300	0.052
MW-2	11/29/2023	< 0.020	0.0099	< 0.0020	0.41	< 0.0020	720	< 0.0060	< 0.0060	< 0.020	410	0.0091	< 0.0080	< 0.010	13	0.015	3,600	< 0.01

Notes:

1. Exceedances of the listed closure criteria are highlighted in bold, red type.

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID DATE Aluminum Barium Boron Cadmium Calcium Chromium Cobalt Iron Magnesium Magnesium Molybdenum Nickel Potassium Silver MW/-3 3/17/2012 0.016 <0.0020 610 <0.0060 0.15 370 0.057 9 <0.025 MW/-3 9/12/2012 0.015 <0.010 610 <0.030 0.15 370 0.057 9 <0.025 MW/-3 19/12/2012	Sodium																	
MW-3 6/18/2012 0.014 < 0.010	1	Silver	Potassium	Nickel	Molybdenum	Manganese	Magnesium	Iron	Cobalt	Chromium	Calcium	Cadmium	Boron	Beryllium	Barium	Aluminum	DATE	SAMPLE ID
MW-3 9/12/2012 0.015 < 0.0020 550 < 0.0060 0.039 340 0.041 7.5 < 0.0050 MW-3 12/7/2012	2,400	< 0.0050	8.6			0.12	350	0.43		< 0.0060	610	< 0.0020			0.016		3/17/2012	MW-3
MW-3	2,200	< 0.025	9			0.057	370	0.15		< 0.030	610	< 0.010			0.014		6/18/2012	MW-3
MW-3 3/12/2013 0.015 < 0.0020 560 < 0.0060 0.043 340 0.058 10 < 0.0050 MW-3 6/27/2013 0.015 < 0.0020 680 < 0.0060 0.082 400 0.029 7.9 < 0.25 MW-3 3/28/2018 < 0.10 0.019 < 0.010 < 0.010 580 < 0.030 < 0.030 0.38 380 0.36 < 0.040 < 0.050 6.6 0.027 MW-3 3/11/2019 < 0.020 0.012 < 0.0020 < 0.0020 560 < 0.0060 < 0.030 0.38 380 0.36 < 0.040 < 0.002 6.6 0.027 MW-3 10/29/2019 < 0.020 0.014 0.0028 < 0.0020 760 < 0.0060 < 0.0060 0.28 460 0.16 < 0.0080 < 0.011 8.5 0.0	2,200	< 0.0050	7.5			0.041	340	0.039		< 0.0060	550	< 0.0020			0.015		9/12/2012	MW-3
MW-3 6/27/2013 0.015 < 0.0020 680 < 0.0060 0.082 400 0.029 7.9 < 0.25 MW-3 3/28/2018 < 0.10																	12/7/2012	MW-3
MW-3 3/28/2018 < 0.10 0.019 < 0.010 580 < 0.030 < 0.030 0.38 380 0.36 < 0.040 < 0.050 6.6 0.027 MW-3 3/11/2019 < 0.020	2,100	< 0.0050	10			0.058	340	0.043		< 0.0060	560	< 0.0020			0.015		3/12/2013	MW-3
MW-3 3/11/2019 < 0.020 0.012 < 0.0020 560 < 0.0060 < 0.0060 0.32 350 0.18 < 0.0080 < 0.010 7 0.01 MW-3 10/29/2019 < 0.020	2,700	< 0.25	7.9			0.029	400	0.082		< 0.0060	680	< 0.0020			0.015		6/27/2013	MW-3
MW-3 10/29/2019 < 0.020 0.014 0.0028 < 0.0020 760 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0060 < 0.0064 < 0.01 < 0.0080 < 0.0050 8.4 < 0.025 MW-3 3/22/2022 < 0.10	1,900	0.027	6.6	< 0.050	< 0.040	0.36	380	0.38	< 0.030	< 0.030	580	< 0.010		< 0.010	0.019	< 0.10	3/28/2018	MW-3
MW-3 9/18/2020 < 0.10 0.011 < 0.010 0.36 < 0.010 680 < 0.030 < 0.030 < 0.10 410 0.07 < 0.040 < 0.050 8.4 < 0.025 MW-3 8/24/2021 < 0.020	1,800	0.01	7	< 0.010	< 0.0080	0.18	350	0.32	< 0.0060	< 0.0060	560	< 0.0020		< 0.0020	0.012	< 0.020	3/11/2019	MW-3
MW-3 8/24/2021 < 0.020 0.014 < 0.0020 0.33 < 0.0020 610 < 0.0060 0.0064 0.21 360 0.14 < 0.0080 < 0.010 9.5 < 0.0050 MW-3 3/22/2022 < 0.10	2,100	0.019	8.5	< 0.010	< 0.0080	0.16	460	0.28	< 0.0060	< 0.0060	760	< 0.0020		0.0028	0.014	< 0.020	10/29/2019	MW-3
MW-3 3/22/2022 < 0.10 0.015 < 0.0020 0.32 < 0.0020 640 < 0.0060 0.0075 0.16 400 0.085 < 0.0080 < 0.010 9.6 < 0.0050 MW-3 8/3/2022 < 0.020	1,900	< 0.025	8.4	< 0.050	< 0.040	0.07	410	< 0.10	< 0.030	< 0.030	680	< 0.010	0.36	< 0.010	0.011	< 0.10	9/18/2020	MW-3
MW-3 8/3/2022 < 0.020 0.014 < 0.0020 0.29 < 0.0020 650 < 0.0060 < 0.0060 0.086 380 0.065 < 0.0080 < 0.010 8.7 0.013 MW-3 11/29/2023 < 0.020 0.011 < 0.0020 0.22 < 0.0020 680 < 0.0060 < 0.0060 0.077 410 0.071 < 0.0080 < 0.010 8.2 0.012	1,800	< 0.0050	9.5	< 0.010	< 0.0080	0.14	360	0.21	0.0064	< 0.0060	610	< 0.0020	0.33	< 0.0020	0.014	< 0.020	8/24/2021	MW-3
MW-3 11/29/2023 < 0.020 0.011 < 0.0020 0.22 < 0.0020 680 < 0.0060 < 0.0060 0.077 410 0.071 < 0.0080 < 0.010 8.2 0.012	1,800	< 0.0050	9.6	< 0.010	< 0.0080	0.085	400	0.16	0.0075	< 0.0060	640	< 0.0020	0.32	< 0.0020	0.015	< 0.10	3/22/2022	MW-3
	2,000	0.013	8.7	< 0.010	< 0.0080	0.065	380	0.086	< 0.0060	< 0.0060	650	< 0.0020	0.29	< 0.0020	0.014	< 0.020	8/3/2022	MW-3
MW-4 3/17/2012 0.035 < 0.020 1,700 < 0.060 < 1.0 670 0.18 37 < 0.050	2,100	0.012	8.2	< 0.010	< 0.0080	0.071	410	0.077	< 0.0060	< 0.0060	680	< 0.0020	0.22	< 0.0020	0.011	< 0.020	11/29/2023	MW-3
MW-4 3/17/2012 0.035 <0.020 1,700 <0.060 <1.0 670 0.18 37 <0.050							•		•									
	8,600	< 0.050	37			0.18	670	< 1.0		< 0.060	1,700	< 0.020			0.035		3/17/2012	MW-4
MW-4 6/18/2012 0.028 < 0.0020 2,000 < 0.0060 0.043 690 0.11 36 < 0.0050	10,000	< 0.0050	36			0.11	690	0.043		< 0.0060	2,000	< 0.0020			0.028		6/18/2012	MW-4
MW-4 9/12/2012 0.027 < < < < < < <	11,000	< 0.050	31			0.085	780	< 0.20		< 0.060	2,200	< 0.020			0.027		9/12/2012	MW-4
MW-4 12/7/2012 0.028 < 0.0020 1,800 < 0.0060 0.071 670 0.15 55 < 0.0050	8,400	< 0.0050	55			0.15	670	0.071		< 0.0060	1,800	< 0.0020			0.028		12/7/2012	MW-4
MW-4 3/12/2013 0.027 < 0.0020 1,500 < 0.0060 0.038 550 0.21 45 < 0.0050	9,300	< 0.0050	45			0.21	550	0.038		< 0.0060	1,500	< 0.0020			0.027		3/12/2013	MW-4
MW-4 6/27/2013 0.027 < < < < < < < < <-	10,000	< 0.25	41			0.21	600	0.036		< 0.0060	1,700	< 0.0020			0.027		6/27/2013	MW-4
MW-4 3/28/2018 < 0.10 0.02 < 0.010 < 0.010 1,500 < 0.030 < 0.030 < 0.10 620 1 < 0.040 < 0.050 38 0.056	11,000	0.056	38	< 0.050	< 0.040	1	620	< 0.10	< 0.030	< 0.030	1,500	< 0.010		< 0.010	0.02	< 0.10	3/28/2018	MW-4
MW-4 3/11/2019 < 0.020 0.016 < 0.0020 < 0.0020 790 < 0.0060 < 0.0060 0.036 320 0.76 < 0.0080 < 0.010 27 0.014	7,100	0.014	27	< 0.010	< 0.0080	0.76	320	0.036	< 0.0060	< 0.0060	790	< 0.0020		< 0.0020	0.016	< 0.020	3/11/2019	MW-4
MW-4 10/29/2019 < 0.10 0.018 0.015 < 0.010 1,700 < 0.030 < 0.030 < 0.10 610 0.53 < 0.040 < 0.050 29 0.059	8,600	0.059	29	< 0.050	< 0.040	0.53	610	< 0.10	< 0.030	< 0.030	1,700	< 0.010		0.015	0.018	< 0.10	10/29/2019	MW-4
MW-4 9/18/2020 < 0.10 0.038 < 0.010 1.4 < 0.010 2,000 < 0.030 < 0.030 < 0.10 700 0.79 < 0.040 < 0.050 42 < 0.025	10,000	< 0.025	42	< 0.050	< 0.040	0.79	700	< 0.10	< 0.030	< 0.030	2,000	< 0.010	1.4	< 0.010	0.038	< 0.10	9/18/2020	MW-4
MW-4 8/24/2021 < 0.10 0.028 < 0.010 1.3 < 0.010 2,200 < 0.030 0.031 < 0.020 690 0.43 < 0.040 < 0.050 43 < 0.025	10,000	< 0.025	43	< 0.050	< 0.040	0.43	690	< 0.020	0.031	< 0.030	2,200	< 0.010	1.3	< 0.010	0.028	< 0.10	8/24/2021	MW-4
MW-4 3/22/2022 < 0.10 0.021 < 0.010 1.5 < 0.010 2,100 < 0.030 < 0.030 < 0.10 690 0.66 < 0.040 < 0.050 37 < 0.025	10,000	< 0.025	37	< 0.050	< 0.040	0.66	690	< 0.10	< 0.030	< 0.030	2,100	< 0.010	1.5	< 0.010	0.021	< 0.10	3/22/2022	MW-4
MW-4 8/3/2022 < 0.20 0.027 < 0.020 1.1 < 0.020 2,500 < 0.060 < 0.060 < 0.20 860 0.16 < 0.080 < 0.10 24 < 0.050	9,600	< 0.050	24	< 0.10	< 0.080	0.16	860	< 0.20	< 0.060	< 0.060	2,500	< 0.020	1.1	< 0.020	0.027	< 0.20	8/3/2022	MW-4
MW-4 11/29/2023 0.023 0.019 < 0.0020 0.74 < 0.0020 2,500 < 0.0060 < 0.0060 < 0.20 840 0.085 < 0.0080 < 0.010 22 0.040	9,800	0.040	22	< 0.010	< 0.0080	0.085	840	< 0.20	< 0.0060	< 0.0060	2,500	< 0.0020	0.74	< 0.0020	0.019	0.023	11/29/2023	MW-4
20.6.2.3103 NMAC GW STANDARDS																	IDARDS	
A. Human Health Standards 2 0.004 0.005 0.05		0.05								0.05		0.005		0.004	2		ards	A. Human Health Stand
her Standards for Domestic Water Supply 1.0 0.2						0.2		1.0									Water Supply	ner Standards for Domestic
C. Standards for Irrigation Use 5.0 0.75 0.05 1.0 0.2																		

Page 39 of 76

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

	<u> </u>	A	II Values Present	ed in Parts Per N	lillion (mg/L)		1	1	
SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uran
MW-1	3/17/2012		< 0.0050	< 0.0060	< 0.0050	< 0.00020	0.031		0.0
MW-1	6/18/2012		< 0.010	< 0.0060	< 0.0050	< 0.00020	0.045		0.0
MW-1	9/12/2012		0.0071	< 0.0060	< 0.0050	< 0.00020	0.033		0.0
MW-1	12/7/2012		0.0067	< 0.0060	< 0.010	< 0.00020	0.041		0.0
MW-1	3/12/2013		< 0.010	< 0.0060	< 0.0050	< 0.00020	0.031		0.0
MW-1	6/27/2013		0.023	< 0.0060	< 0.0050	< 0.00020	0.11		0.0
MW-1	3/28/2018		0.033	< 0.010	< 0.0050	< 0.00020	0.11		0.0
MW-1	3/11/2019	< 0.020	< 0.010	0.0077	< 0.0050	< 0.00020	0.088	< 0.0050	0.0
MW-1	10/29/2019	< 0.020	< 0.020	< 0.0060	< 0.010		0.074	< 0.010	0.0
MW-1	9/18/2020		< 0.010	< 0.030	< 0.0050		0.076	< 0.0050	0.0
		< 0.010							
MW-1	8/24/2021	< 0.010	< 0.010	< 0.060	< 0.0050		0.076	< 0.0025	0.0
MW-1	3/22/2022	< 0.020	< 0.020	< 0.020	< 0.010		0.1	< 0.0050	0.0
MW-1	8/3/2022	< 0.010	< 0.010	< 0.010	< 0.0050		0.11	< 0.0025	0.0
MW-1	11/29/2023	<0.0050	0.048	< 0.0060	< 0.0025		0.093	< 0.0012	0.0
MW-2	3/17/2012		< 0.0050	< 0.0060	< 0.0050	< 0.00020	0.019		0.0
MW-2	6/18/2012		< 0.0050	< 0.030	< 0.025	< 0.00020	0.024		0.0
MW-2	9/12/2012		< 0.0050	< 0.0060	< 0.0050	< 0.00020	0.028		0.0
MW-2	12/7/2012		0.0034	< 0.0060	< 0.0050	< 0.00020	0.028		0.0
MW-2							0.027		
	3/12/2013		< 0.0050	< 0.0060	< 0.0050	< 0.00020		1	0.0
MW-2	6/27/2013		0.012	< 0.0060	< 0.0050	< 0.00020	0.055		0.0
MW-2	3/28/2018		0.012	< 0.0050	< 0.0050	< 0.00020	0.014		0.0
MW-2	3/11/2019	< 0.0050	< 0.0050	< 0.0060	< 0.0025	< 0.00020	0.016	< 0.0025	0.0
MW-2	10/29/2019								
MW-2	9/18/2020	< 0.010	< 0.010	< 0.030	< 0.0050		0.013	< 0.0050	0.0
MW-2	8/24/2021	< 0.010	< 0.010	< 0.030	< 0.0050		0.017	< 0.0025	0.0
MW-2	3/22/2022	< 0.0050	< 0.020	< 0.020	< 0.010		< 0.020	< 0.0050	0.0
MW-2	8/3/2022	< 0.010	< 0.010	< 0.010	< 0.0050		0.014	< 0.0025	0.0
MW-2	11/29/2023	< 0.0050	0.014	< 0.0060	< 0.0025		0.017	<0.0012	0.0
	•					•			
MW-3	3/17/2012		< 0.0050	< 0.0060	< 0.0050	< 0.00020	0.011		0.0
MW-3	6/18/2012		< 0.0050	< 0.030	< 0.025	< 0.00020	0.017		0.0
MW-3	9/12/2012		< 0.0050	< 0.0060	< 0.0050	< 0.00020	0.026		0.0
MW-3	12/7/2012								
MW-3							0.014		0.0
	3/12/2013		< 0.0050	< 0.0060	0.0073	< 0.00020			
MW-3	6/27/2013		0.011	< 0.0060	< 0.0050	< 0.00020	0.047		0.0
MW-3	3/28/2018		0.0058	< 0.0050	< 0.0025	< 0.00020	< 0.0050		0.0
MW-3	3/11/2019	< 0.0050	< 0.0050	< 0.0060	< 0.0025	< 0.00020	0.0079	< 0.0025	0.0
MW-3	10/29/2019	< 0.010	< 0.010	< 0.0060	< 0.0050		< 0.010	< 0.0050	0.0
MW-3	9/18/2020	< 0.010	< 0.010	< 0.030	< 0.0050		< 0.010	< 0.0050	0.0
MW-3	8/24/2021	< 0.010	< 0.010	< 0.0060	< 0.0050		< 0.010	< 0.0025	0.0
MW-3	3/22/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		0.013	< 0.0012	0.0
MW-3	8/3/2022	< 0.0050	< 0.010	< 0.010	< 0.0025		0.014	< 0.0012	0.0
MW-3	11/29/2023	< 0.0050	0.012	< 0.0060	< 0.0025		0.011	< 0.0012	0.0
			•		•		•		
MW-4	3/17/2012		< 0.0050	< 0.060	< 0.050	0.0014	0.019		0.0
MW-4	6/18/2012		< 0.020	< 0.0060	< 0.0050	0.00092	0.032		< 0.
MW-4	9/12/2012		0.014	< 0.060	< 0.010	0.0012	0.025		0.0
MW-4	12/7/2012		0.0066	< 0.0060	< 0.020	0.0028	0.029		< 0.
MW-4	3/12/2013		< 0.010	< 0.0060	< 0.0050	0.00097	0.013		0.0
MW-4	6/27/2013		0.023	< 0.0060	< 0.0050	0.0015	0.094		0.0
MW-4	3/28/2018		0.019	<0.010	< 0.0050	0.00042	< 0.010		0.0
IVIVY "T	3/11/2019		< 0.019	< 0.0060	< 0.0050	0.00042	< 0.010		0.0
MANA/ 4		< 0.020						< 0.0050	
MW-4		< 0.020	< 0.020	< 0.030	< 0.010		< 0.020	< 0.010	0.0
MW-4	10/29/2019	4			< 0.0050		< 0.010	< 0.0050	0.0
MW-4 MW-4	9/18/2020	< 0.010	< 0.010	< 0.030					
MW-4 MW-4 MW-4	9/18/2020 8/24/2021	< 0.010	< 0.010	< 0.030	< 0.0050		< 0.010	< 0.0025	
MW-4 MW-4 MW-4	9/18/2020 8/24/2021 3/22/2022	< 0.010 < 0.020		< 0.030 < 0.020			< 0.010 < 0.020	< 0.0050	
MW-4 MW-4 MW-4	9/18/2020 8/24/2021	< 0.010	< 0.010	< 0.030	< 0.0050	1			0.0 0.0

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)

A. Human Health Standards 0.006 0.01 0.015 0.002 0.05 0.002 0.03 1.0

B. Other Standards for Domestic Water Supply

C. Standards for Irrigation Use

Notes:

1. Exceedances of the listed closure criteria are highlighted in bold, red type.

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
SB-2	10/21/2000	<1.00	<0.50	<0.50		0.015	<0.001	0.001	0.003					
MW-1	9/19/2002					<0.001	<0.001	<0.001	<0.001					
MW-1	11/8/2004					<0.002	<0.002	< 0.002	<0.006					
MW-1	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-1	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	12/7/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/28/2018					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-1	3/11/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	10/29/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-1	9/18/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/24/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	3/22/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/3/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
	•	•	•	•		•	•	•		•		•	•	
MW-2	9/19/2002					<0.001	<0.001	<0.001	<0.001					
MW-2	11/8/2004					<0.002	<0.002	<0.002	<0.006					
MW-2	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-2	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	12/7/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/28/2018					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-2	3/11/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	10/29/2019													
MW-2	9/18/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	8/24/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	3/22/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	8/3/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
14144 7	11/20/2020	l	I .	<u>I</u>	L	30.001	10.001	\0.001	30.0010	I.	l	₹0.002	\U.UUT	₹0.00∓
MW-3	9/19/2002					<0.001	<0.001	<0.001	<0.001					
MW-3	11/8/2004					0.004	<0.002	<0.001	<0.006					
MW-3	3/17/2012				<0.001	<0.001	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-3	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
										1				
MW-3	12/7/2012													

Received by OCD: 4/3/2024 12:10:45 PM

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY SCRIPP PIT **EDDY COUNTY, NEW MEXICO** AP-25

All Values Presented in Parts Per Million (mg/L)

SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthaler
MW-3	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	6/27/2013					<0.001	<0.001	<0.001	<0.002			< 0.002		
MW-3	3/28/2018					0.0013	<0.001	<0.001	<0.0015			< 0.002		
MW-3	3/11/2019					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	<0.004
MW-3	10/29/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-3	9/18/2020					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	<0.004
MW-3	8/24/2021					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	< 0.004
MW-3	3/22/2022					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	<0.004
MW-3	8/3/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-3	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
					_						_	_		-
MW-4	9/19/2002					0.069	0.008	0.01	0.016					
MW-4	11/8/2004					0.051	<0.002	0.005	<0.006					
MW-4	3/17/2012				<0.001	0.01	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	< 0.004
MW-4	6/18/2012				<0.001	0.0074	<0.001	<0.001	<0.002			< 0.002		
MW-4	9/12/2012					0.0095	<0.001	<0.001	<0.002			< 0.002		
MW-4	12/7/2012					0.0097	<0.001	<0.001	<0.002			<0.002		
MW-4	3/12/2013					0.01	<0.001	<0.001	<0.002			< 0.002		
MW-4	6/27/2013					0.0052	<0.001	<0.001	<0.002			<0.002		
MW-4	3/28/2018					0.014	<0.001	<0.001	<0.0015			<0.002		
MW-4	3/11/2019					0.0074	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-4	10/29/2019					0.0021	<0.001	<0.001	<0.0015			<0.002		
MW-4	9/18/2020					0.002	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-4	8/24/2021					0.0017	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	3/22/2022					0.019	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	8/3/2022					0.0056	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
20.6.2.3103 NMAC GW STAN	IDARDS													
(<10,000 mg/L)														
A. Human Health Standa	ards					0.005	1	0.7	0.62			0.03 ¹	0.03 ¹	0.03
. Other Standards for Domestic	Water Supply				0.1									
C. Standards for Irrigation	- II													

^{1.} The 0.03 mg/L standard is for total naphthalene plus monomethylnaphthalenes 2. Exceedances of the listed closure criteria are highlighted in bold, red type.

CUMULATIVE GROUNDWATER SPECIFIC CONDUCTANCE, pH, ALKALINITY, AND TDS SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

		O a made a disable a			TDC		
SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)
MW-1	9/19/2002						18,400
MW-1	11/8/2004						7,800
MW-1	3/17/2012	28000	6.98	130	< 2.0	130	19,400
MW-1	6/18/2012	47000	6.99	150	< 2.0	150	23,900
MW-1	9/12/2012	31000	6.99	130	< 2.0	130	21,000
MW-1	12/7/2012	36000	6.83	130	< 2.0	130	21,300
MW-1	3/12/2013	49000	7.01	150	< 2.0	150	27,000
MW-1	6/27/2013	32000	7.12	130	< 2.0	130	23,100
MW-1	3/28/2018	64000		162.7	< 2.000	162.7	36,900
MW-1	3/11/2019	56,000	7.11	236.4	< 2.000	236.4	32,600
MW-1	10/29/2019	53,000	7.60	353.7	< 2.000	353.7	36,500
MW-1	9/18/2020	57,000	7.10	166.3	< 2.000	166.3	31,400
MW-1	8/24/2021	51,000		293.5	< 2.000	293.5	31,900
MW-1	3/22/2022	54,000	7.43	213.7	< 2.000	213.7	31,900
MW-1	8/3/2022	58,000	7.09	186.7	< 2.000	186.7	36,900
MW-1	11/29/2023	50,000	7.00	173.3	< 2.000	173.3	33,100
	ı				·	<u> </u>	
MW-2	9/19/2002						14,800
MW-2	11/8/2004						9,400
MW-2	3/17/2012	24,000	7.26	190	< 2.0	190	14,100
MW-2	6/18/2012	29,000	7.20	190	< 2.0	190	14,900
MW-2	9/12/2012	24,000	7.29	200	< 2.0	200	14,600
MW-2	12/7/2012	25,000	7.12	200	< 2.0	200	13,400
MW-2	3/12/2013	26,000	7.17	200	< 2.0	200	13,600
MW-2	6/27/2013	26,000	7.42	200	< 2.0	200	14,500
MW-2	3/28/2018	31,000		243.3	< 2.000	243.3	19,800
MW-2	3/11/2019	29,000	7.18	223	< 2.000	223	16,900
MW-2	10/29/2019						
MW-2	9/18/2020	25,000	7.26	206	< 2.000	206	14,100
MW-2	8/24/2021	37,000		214.4	< 2.000	214.4	20,300
MW-2	3/22/2022	37,000	7.5	224.8	< 2.000	224.8	21,300
MW-2	8/3/2022	37,000	7.3	220.2	< 2.000	220.2	18,700
MW-2	11/29/2023	24,000	7.37	216.4	< 2.000	216.4	13,500
IVIVE A	11/20/2020	21,000	7.01	210.4	` 2.000	210.7	.5,550
MW-3	9/19/2002					T T	10,700
MW-3	11/8/2004						6,800
MW-3	3/17/2012	16,000	7.31	260	< 2.0	260	9,780
MW-3	6/18/2012	21,000	7.36	260	< 2.0	260	10,300
MW-3	9/12/2012	16,000	7.35	250	< 2.0	250	9,100
MW-3	12/7/2012		7.33	250		250	3,100
MW-3	3/12/2013	15,000	7.25	270	< 2.0	270	10,800
MW-3	6/27/2013	16,000	7.54	260	< 2.0	260	9,440
MW-3	3/28/2018	14,000	7.54	265.9	< 2.000	265.9	8,840
MW-3	3/11/2019	14,000	7.27	243.3	< 2.000	243.3	8,680
MW-3	10/29/2019	18,000	7.54	290.2	< 2.000	290.2	10,600
MW-3						t	•
MW-3	9/18/2020	17,000	7.46	252.6	< 2.000	252.6	9,840
MW-3	8/24/2021	16,000	7.62	235.3	< 2.000	235.3	8,450
	3/22/2022	16,000	7.63	220.9	< 2.000	220.9	8,570
MW-3 MW-3	8/3/2022 11/29/2023	18,000 17,000	7.45 7.36	224.6 228.8	< 2.000 < 2.000	224.6 228.8	10,600 9,780

CUMULATIVE GROUNDWATER SPECIFIC CONDUCTANCE, pH, ALKALINITY, AND TDS SCRIPP PIT EDDY COUNTY, NEW MEXICO AP-25

All Values Presented in Parts Per Million (mg/L)

					Alkalinity (mg/L))	
SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)
MW-4	9/19/2002						57,400
MW-4	11/8/2004						44,400
MW-4	3/17/2012	63,000	7.15	260	< 2.0	260	33,400
MW-4	6/18/2012	73,000	7.02	240	< 2.0	240	38,400
MW-4	9/12/2012	75,000	7.10	230	< 2.0	230	42,000
MW-4	12/7/2012	62,000	6.95	240	< 2.0	240	31,600
MW-4	3/12/2013	63,000	7.06	250	< 2.0	250	33,800
MW-4	6/27/2013	60,000	7.30	240	< 2.0	240	35,500
MW-4	3/28/2018	64,000		289	< 2.000	289	33,600
MW-4	3/11/2019	38,000	7.20	298.2	< 2.000	298.2	22,900
MW-4	10/29/2019	52,000	7.40	248.7	< 2.000	248.7	33,700
MW-4	9/18/2020	52,000	7.37	327.8	< 2.000	327.8	24,900
MW-4	8/24/2021	76,000		254.1	< 2.000	254.1	40,700
MW-4	3/22/2022	61,000	7.24	276.7	< 2.000	276.7	36,300
MW-4	8/3/2022	74,000	7.08	251.5	< 2.000	251.5	38,000
MW-4	11/29/2023	65,000	7.11	227.2	< 2.000	227.2	7,700

20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)

A. Human Health Standards

B. Other Standards for Domestic Water Supply

6 to 9

1,000

C. Standards for Irrigation Use

Notes:

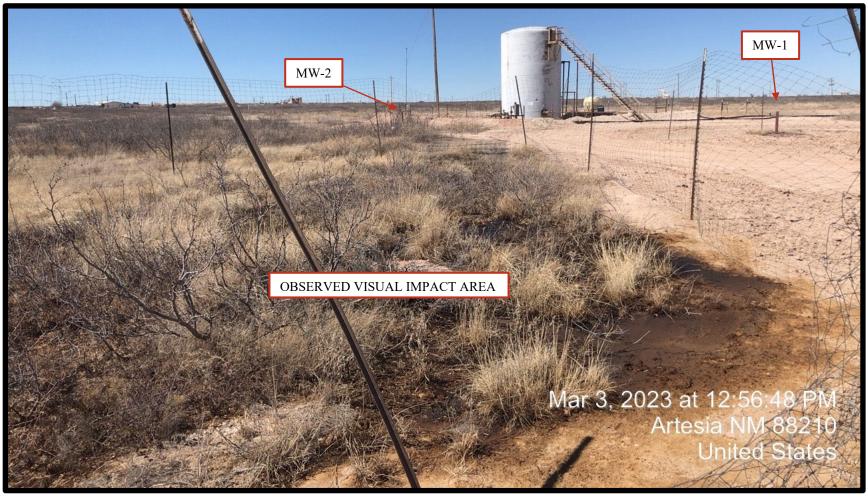

1. Exceedances of the listed closure criteria are highlighted in bold, red type.

ATTACHMENT 1 - SITE PHOTOGRAPHS

Released to Imaging: 9/20/2024 3:12:52 PM

PHOTOGRAPH NO. 1 – A current view of the Site with the former pit location and two monitor wells visible. The view is towards the northwest.

(Approximate GPS: 32.713321, -104.342552)



PHOTOGRAPH NO. 2 – A view of monitor well MW-1 and the area of observed visual impact. The view is towards the south. (Approximate GPS: 32.713235, -104.342473)

PHOTOGRAPH NO. 3 – A view of monitor well MW-2. The view is towards the north. (Approximate GPS: 32.723580, -104.348184)

Released to Imaging: 9/20/2024 3:12:52 PM

PHOTOGRAPH NO. 4 – A view of visually impacted area located south of MW-1. The view is towards the northwest. (Approximate GPS: 32.712780, -104.342345)

ATTACHMENT	2 - LABORATORY	ANALYTICAL
	REPORT	

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 08, 2024

Will Kierdorf
EOG
105 South Fourth Street
Artesia, NM 88210
TEL:
FAX:

RE: Scripps Pit OrderNo.: 2312012

Dear Will Kierdorf:

Eurofins Environment Testing South Central, LLC received 5 sample(s) on 12/1/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2312012**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 1/8/2024

CLIENT: EOG Client Sample ID: Trip Blank

Project: Scripps Pit Collection Date:

Lab ID: 2312012-001 **Matrix:** TRIP BLANK **Received Date:** 12/1/2023 7:45:00 AM

Analyses	Result	RL Qı	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES SHO	RT LIST				Analyst	: CCM
Benzene	ND	1.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
Toluene	ND	1.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
Ethylbenzene	ND	1.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
Naphthalene	ND	2.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
1-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
2-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 9:30:00 PM	R101602
Xylenes, Total	ND	1.5	μg/L	1	12/5/2023 9:30:00 PM	R101602
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	12/5/2023 9:30:00 PM	R101602
Surr: Toluene-d8	93.4	70-130	%Rec	1	12/5/2023 9:30:00 PM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 18

Lab Order **2312012**

Date Reported: 1/8/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EOG Client Sample ID: MW-1

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 11:10:00 AM

 Lab ID:
 2312012-002
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: DISSOLVED METALS						Analyst	: bcv
Antimony	ND	0.0050		mg/L	5	12/4/2023 5:01:08 PM	D101582
Arsenic	0.048	0.0025	*	mg/L	5	12/4/2023 5:01:08 PM	D101582
Lead	ND	0.0025		mg/L	5	12/4/2023 5:01:08 PM	D101582
Selenium	0.093	0.0050	*	mg/L	5	12/4/2023 5:01:08 PM	D101582
Thallium	ND	0.0012		mg/L	5	12/4/2023 5:01:08 PM	D101582
Uranium	0.031	0.0025	*	mg/L	5	12/4/2023 5:01:08 PM	D101582
EPA METHOD 300.0: ANIONS						Analyst	: JMT
Fluoride	ND	2.0		mg/L	20	12/4/2023 12:51:38 PM	R101597
Chloride	34000	1000	*	mg/L	2E+	+ 12/15/2023 8:44:06 AM	R101873
Bromide	13	2.0		mg/L	20	12/4/2023 12:51:38 PM	R101597
Phosphorus, Orthophosphate (As P)	ND	10	Н	mg/L	20	12/4/2023 12:51:38 PM	R101597
Sulfate	4200	1000	*	mg/L	2E+	+ 12/15/2023 8:44:06 AM	R101873
Nitrate+Nitrite as N	20	10	*	mg/L	50	12/15/2023 2:21:19 PM	R101873
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: MCA
Conductivity	50000	100	D	µmhos/c	10	12/14/2023 1:35:33 PM	R101850
SM2320B: ALKALINITY						Analyst	: MCA
Bicarbonate (As CaCO3)	173.3	20.00		mg/L Ca	1	12/6/2023 3:25:35 PM	R101661
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 3:25:35 PM	R101661
Total Alkalinity (as CaCO3)	173.3	20.00		mg/L Ca	1	12/6/2023 3:25:35 PM	R101661
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	33100	250	*D	mg/L	1	12/7/2023 12:11:00 PM	79151
SM4500-H+B / 9040C: PH						Analyst	: MCA
pH	7.00		Н	pH units	1	12/6/2023 3:25:35 PM	R101661
EPA METHOD 200.7: DISSOLVED METALS						Analyst	: VP
Aluminum	0.025	0.020		mg/L	1	12/12/2023 9:08:24 AM	A101766
Barium	0.021	0.0030		mg/L	1	12/12/2023 9:08:24 AM	A101766
Beryllium	ND	0.0020		mg/L	1	12/12/2023 9:08:24 AM	A101766
Boron	0.27	0.040		mg/L	1	12/12/2023 9:08:24 AM	A101766
Cadmium	ND	0.0020		mg/L	1	12/12/2023 9:08:24 AM	A101766
Calcium	2500	100		mg/L	100	12/12/2023 12:07:23 PN	1 A101766
Chromium	ND	0.0060		mg/L	1	12/12/2023 9:08:24 AM	A101766
Cobalt	ND	0.0060		mg/L	1	12/12/2023 9:08:24 AM	A101766
Copper	ND	0.0060		mg/L	1	12/12/2023 9:08:24 AM	A101766
Iron	ND	0.020		mg/L	1	12/12/2023 9:08:24 AM	A101766
Magnesium	2000	100		mg/L	100	12/12/2023 12:07:23 PN	
Manganese	ND	0.0020		mg/L	1	12/12/2023 9:08:24 AM	A101766

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 18

Lab Order **2312012**Date Reported: **1/8/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EOG Client Sample ID: MW-1

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 11:10:00 AM

 Lab ID:
 2312012-002
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED METALS					Analys	t: VP
Molybdenum	ND	0.0080	mg/L	1	12/12/2023 9:08:24 AM	A101766
Nickel	ND	0.010	mg/L	1	12/12/2023 9:08:24 AM	A101766
Potassium	5.6	1.0	mg/L	1	12/12/2023 9:08:24 AM	A101766
Silver	0.042	0.0050	mg/L	1	12/12/2023 9:08:24 AM	A101766
Sodium	4500	100	mg/L	100	12/12/2023 12:07:23 PI	M A101766
Zinc	ND	0.010	mg/L	1	12/12/2023 9:08:24 AM	A101766
EPA METHOD 8260B: VOLATILES SHORT LIS	T				Analys	t: CCM
Benzene	ND	1.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
Toluene	ND	1.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
Ethylbenzene	ND	1.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
Naphthalene	ND	2.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
1-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
2-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 9:54:00 PM	R101602
Xylenes, Total	ND	1.5	μg/L	1	12/5/2023 9:54:00 PM	R101602
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	12/5/2023 9:54:00 PM	R101602
Surr: Toluene-d8	91.7	70-130	%Rec	1	12/5/2023 9:54:00 PM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 18

Analytical Report

Lab Order **2312012**

Date Reported: 1/8/2024

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-2

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 10:28:00 AM

 Lab ID:
 2312012-003
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Result **RL Oual Units DF** Date Analyzed Batch Analyses **EPA 200.8: DISSOLVED METALS** Analyst: bcv Antimony ND 0.0050 mg/L 5 12/4/2023 5:03:26 PM D101582 Arsenic 0.014 0.0025 5 12/4/2023 5:03:26 PM D101582 mg/L Lead ND 0.0025 mg/L 5 12/4/2023 5:03:26 PM D101582 Selenium 0.017 0.0050 5 12/4/2023 5:03:26 PM D101582 mg/L **Thallium** ND 0.0012 mg/L 5 12/4/2023 5:03:26 PM D101582 Uranium 0.011 0.0025 mg/L 5 12/4/2023 5:03:26 PM D101582 **EPA METHOD 300.0: ANIONS** Analyst: JMT Fluoride ND 2.0 mg/L 20 12/4/2023 1:19:13 PM R101597 Chloride 6100 250 500 12/15/2023 8:56:58 AM R101873 mg/L **Bromide** 3.7 2.0 mg/L 12/4/2023 1:19:13 PM R101597 ND 0.50 Phosphorus, Orthophosphate (As P) Н mg/L 1 12/4/2023 1:04:29 PM R101597 Sulfate 2400 250 mg/L 12/15/2023 8:56:58 AM R101873 Nitrate+Nitrite as N ND 4.0 mg/L 12/15/2023 2:34:11 PM R101873 **SM2510B: SPECIFIC CONDUCTANCE** Analyst: MCA Conductivity 24000 100 D µmhos/c 10 12/14/2023 1:38:23 PM R101850 **SM2320B: ALKALINITY** Analyst: MCA Bicarbonate (As CaCO3) 216.4 20.00 mg/L Ca 1 12/6/2023 5:36:59 PM R101661 Carbonate (As CaCO3) ND 2.000 mg/L Ca 12/6/2023 5:36:59 PM R101661 216.4 20.00 mg/L Ca 1 R101661 Total Alkalinity (as CaCO3) 12/6/2023 5:36:59 PM SM2540C MOD: TOTAL DISSOLVED SOLIDS Analyst: KS **Total Dissolved Solids** *D 12/7/2023 12:11:00 PM 13500 250 mg/L 79151 SM4500-H+B / 9040C: PH Analyst: MCA 12/6/2023 5:36:59 PM R101661 7.37 pH units 1 **EPA METHOD 200.7: DISSOLVED METALS** Analyst: VP Aluminum NΠ 0.020 12/11/2023 4:28:48 PM D101749 mg/L 0.0099 0.0030 Barium mg/L 1 12/12/2023 9:24:03 AM A101766 Beryllium ND 0.0020 mg/L 1 12/12/2023 9:24:03 AM A101766 Boron 0.41 0.040 mg/L 1 12/12/2023 9:24:03 AM A101766 Cadmium ND 0.0020 mg/L 1 12/12/2023 9:24:03 AM A101766 Calcium 720 10 mg/L 12/12/2023 12:10:34 PM A101766 Chromium ND 0.0060 mg/L 1 12/12/2023 9:24:03 AM A101766 Cobalt ND 0.0060 mg/L 1 12/12/2023 9:24:03 AM A101766 Copper ND 0.0060 mg/L 1 12/12/2023 9:24:03 AM A101766 Iron ND 0.020 mg/L 1 12/12/2023 9:24:03 AM A101766 Magnesium 410 5.0 12/12/2023 9:27:40 AM A101766 mg/L Manganese 0.0091 0.0020 mg/L 12/12/2023 9:24:03 AM A101766

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 18

Analytical Report

Lab Order **2312012**Date Reported: **1/8/2024**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-2

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 10:28:00 AM

 Lab ID:
 2312012-003
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED METALS					Analyst	: VP
Molybdenum	ND	0.0080	mg/L	1	12/12/2023 9:24:03 AM	A101766
Nickel	ND	0.010	mg/L	1	12/12/2023 9:24:03 AM	A101766
Potassium	13	1.0	mg/L	1	12/12/2023 9:24:03 AM	A101766
Silver	0.015	0.0050	mg/L	1	12/12/2023 9:24:03 AM	A101766
Sodium	3600	50	mg/L	50	12/12/2023 12:13:36 PM	A101766
Zinc	ND	0.010	mg/L	1	12/12/2023 9:24:03 AM	A101766
EPA METHOD 8260B: VOLATILES SHORT LI	ST				Analyst	: CCM
Benzene	ND	1.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
Toluene	ND	1.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
Ethylbenzene	ND	1.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
Naphthalene	ND	2.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
1-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
2-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 10:18:00 PM	R101602
Xylenes, Total	ND	1.5	μg/L	1	12/5/2023 10:18:00 PM	R101602
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	12/5/2023 10:18:00 PM	R101602
Surr: Toluene-d8	91.4	70-130	%Rec	1	12/5/2023 10:18:00 PM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
 P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 18

Analytical Report

Lab Order 2312012

Date Reported: 1/8/2024

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-3

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 8:56:00 AM

 Lab ID:
 2312012-004
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: DISSOLVED METALS						Analyst	bcv
Antimony	ND	0.0050		mg/L	5	12/4/2023 5:05:44 PM	D101582
Arsenic	0.012	0.0025	*	mg/L	5	12/4/2023 5:05:44 PM	D101582
Lead	ND	0.0025		mg/L	5	12/4/2023 5:05:44 PM	D101582
Selenium	0.011	0.0050		mg/L	5	12/4/2023 5:05:44 PM	D101582
Thallium	ND	0.0012		mg/L	5	12/4/2023 5:05:44 PM	D101582
Uranium	0.0069	0.0025		mg/L	5	12/4/2023 5:05:44 PM	D101582
EPA METHOD 300.0: ANIONS						Analyst	: JMT
Fluoride	ND	2.0		mg/L	20	12/4/2023 1:46:23 PM	R101597
Chloride	4000	250	*	mg/L	500	12/15/2023 9:09:50 AM	R101873
Bromide	2.8	2.0		mg/L	20	12/4/2023 1:46:23 PM	R101597
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	12/4/2023 1:32:03 PM	R101597
Sulfate	1900	250	*	mg/L	500	12/15/2023 9:09:50 AM	R101873
Nitrate+Nitrite as N	ND	4.0		mg/L	20	12/15/2023 2:47:03 PM	R101873
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: MCA
Conductivity	17000	100	D	µmhos/c	10	12/14/2023 1:46:46 PM	R101850
SM2320B: ALKALINITY						Analyst	: MCA
Bicarbonate (As CaCO3)	228.8	20.00		mg/L Ca	1	12/6/2023 5:49:14 PM	R101661
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 5:49:14 PM	R101661
Total Alkalinity (as CaCO3)	228.8	20.00		mg/L Ca	1	12/6/2023 5:49:14 PM	R101661
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	9780	250	*D	mg/L	1	12/7/2023 12:11:00 PM	79151
SM4500-H+B / 9040C: PH						Analyst	: MCA
рН	7.36		Н	pH units	1	12/6/2023 5:49:14 PM	R101661
EPA METHOD 200.7: DISSOLVED METALS						Analyst	: VP
Aluminum	ND	0.020		mg/L	1	12/11/2023 4:31:12 PM	D101749
Barium	0.011	0.0030		mg/L	1	12/12/2023 9:31:06 AM	A101766
Beryllium	ND	0.0020		mg/L	1	12/12/2023 9:31:06 AM	A101766
Boron	0.22	0.040		mg/L	1	12/12/2023 9:31:06 AM	A101766
Cadmium	ND	0.0020		mg/L	1	12/12/2023 9:31:06 AM	A101766
Calcium	680	10		mg/L	10	12/12/2023 12:16:39 PM	1 A101766
Chromium	ND	0.0060		mg/L	1	12/12/2023 9:31:06 AM	A101766
Cobalt	ND	0.0060		mg/L	1	12/12/2023 9:31:06 AM	A101766
Copper	ND	0.0060		mg/L	1	12/12/2023 9:31:06 AM	A101766
Iron	0.077	0.020		mg/L	1	12/12/2023 9:31:06 AM	A101766
Magnesium	410	5.0		mg/L	5	12/12/2023 9:34:58 AM	A101766
Manganese	0.071	0.0020	*	mg/L	1	12/12/2023 9:31:06 AM	A101766

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 18

Lab Order **2312012**Date Reported: **1/8/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EOG Client Sample ID: MW-3

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 8:56:00 AM

 Lab ID:
 2312012-004
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED META	LS				Analyst	: VP
Molybdenum	ND	0.0080	mg/L	1	12/12/2023 9:31:06 AM	A101766
Nickel	ND	0.010	mg/L	1	12/12/2023 9:31:06 AM	A101766
Potassium	8.2	1.0	mg/L	1	12/12/2023 9:31:06 AM	A101766
Silver	0.012	0.0050	mg/L	1	12/12/2023 9:31:06 AM	A101766
Sodium	2100	50	mg/L	50	12/12/2023 12:19:38 PM	1 A101766
Zinc	ND	0.010	mg/L	1	12/12/2023 9:31:06 AM	A101766
EPA METHOD 8260B: VOLATILES SHOR	T LIST				Analyst	CCM
Benzene	ND	1.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
Toluene	ND	1.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
Ethylbenzene	ND	1.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
Naphthalene	ND	2.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
1-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
2-Methylnaphthalene	ND	4.0	μg/L	1	12/5/2023 10:43:00 PM	R101602
Xylenes, Total	ND	1.5	μg/L	1	12/5/2023 10:43:00 PM	R101602
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	12/5/2023 10:43:00 PM	R101602
Surr: Toluene-d8	91.9	70-130	%Rec	1	12/5/2023 10:43:00 PM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 18

Analytical Report

Lab Order 2312012

Date Reported: 1/8/2024

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-4

Project: Scripps Pit Collection Date: 11/29/2023 9:42:00 AM

Lab ID: 2312012-005 **Matrix:** AQUEOUS **Received Date:** 12/1/2023 7:45:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: DISSOLVED METALS						Analyst	bcv
Antimony	ND	0.0050		mg/L	5	12/4/2023 5:08:03 PM	D101582
Arsenic	0.041	0.0025	*	mg/L	5	12/4/2023 5:08:03 PM	D101582
Lead	ND	0.0025		mg/L	5	12/4/2023 5:08:03 PM	D101582
Selenium	0.0078	0.0050		mg/L	5	12/4/2023 5:08:03 PM	D101582
Thallium	ND	0.0012		mg/L	5	12/4/2023 5:08:03 PM	D101582
Uranium	0.016	0.0025		mg/L	5	12/4/2023 5:08:03 PM	D101582
EPA METHOD 300.0: ANIONS						Analyst	: JMT
Fluoride	ND	2.0		mg/L	20	12/4/2023 2:12:05 PM	R101597
Chloride	20000	1000	*	mg/L	2E+	+ 12/15/2023 9:22:38 AM	R101873
Bromide	8.9	2.0		mg/L	20	12/4/2023 2:12:05 PM	R101597
Phosphorus, Orthophosphate (As P)	ND	10	Н	mg/L	20	12/4/2023 2:12:05 PM	R101597
Sulfate	2500	1000	*	mg/L		+ 12/15/2023 9:22:38 AM	R101873
Nitrate+Nitrite as N	ND	20		mg/L	100	12/15/2023 2:59:55 PM	R101873
SM2510B: SPECIFIC CONDUCTANCE						Analyst	MCA
Conductivity	65000	100	D	µmhos/c	10	12/14/2023 1:49:34 PM	R101850
SM2320B: ALKALINITY						Analyst	MCA
Bicarbonate (As CaCO3)	227.2	20.00		mg/L Ca	1	12/6/2023 6:14:32 PM	R101661
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 6:14:32 PM	R101661
Total Alkalinity (as CaCO3)	227.2	20.00		mg/L Ca	1	12/6/2023 6:14:32 PM	R101661
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	7700	50.0	*	mg/L	1	12/7/2023 12:11:00 PM	79151
SM4500-H+B / 9040C: PH						Analyst	MCA
рН	7.11		Н	pH units	1	12/6/2023 6:14:32 PM	R101661
EPA METHOD 200.7: DISSOLVED METALS						Analyst	: VP
Aluminum	0.023	0.020		mg/L	1	12/12/2023 9:38:15 AM	A101766
Barium	0.019	0.0030		mg/L	1	12/12/2023 9:38:15 AM	A101766
Beryllium	ND	0.0020		mg/L	1	12/12/2023 9:38:15 AM	A101766
Boron	0.74	0.040		mg/L	1	12/12/2023 9:38:15 AM	A101766
Cadmium	ND	0.0020		mg/L	1	12/12/2023 9:38:15 AM	A101766
Calcium	2500	100		mg/L	100	12/12/2023 12:26:09 PM	1 A101766
Chromium	ND	0.0060		mg/L	1	12/12/2023 9:38:15 AM	A101766
Cobalt	ND	0.0060		mg/L	1	12/12/2023 9:38:15 AM	A101766
Copper	ND	0.0060		mg/L	1	12/12/2023 9:38:15 AM	A101766
Iron	ND	0.020		mg/L	1	12/12/2023 9:38:15 AM	A101766
Magnesium	840	10		mg/L	10	12/12/2023 12:22:40 PM	
Manganese	0.085	0.0020	*	mg/L	1	12/12/2023 9:38:15 AM	A101766

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 18

Analytical Report

Lab Order **2312012**Date Reported: **1/8/2024**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-4

 Project:
 Scripps Pit
 Collection Date: 11/29/2023 9:42:00 AM

 Lab ID:
 2312012-005
 Matrix: AQUEOUS
 Received Date: 12/1/2023 7:45:00 AM

Result **RL Qual Units DF** Date Analyzed Batch Analyses **EPA METHOD 200.7: DISSOLVED METALS** Analyst: VP 12/12/2023 9:38:15 AM ND A101766 Molybdenum 0.0080 mg/L 1 Nickel ND 0.010 mg/L 12/12/2023 9:38:15 AM A101766 Potassium 22 1.0 mg/L 1 12/12/2023 9:38:15 AM A101766 Silver 0.0050 12/12/2023 9:38:15 AM A101766 0.040 mg/L Sodium 9800 100 mg/L 100 12/12/2023 12:26:09 PM A101766 0.010 Zinc ND mg/L 12/12/2023 9:38:15 AM A101766 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: CCM 12/5/2023 11:07:00 PM Benzene ND 1.0 R101602 μg/L 1 Toluene ND 1.0 μg/L 1 12/5/2023 11:07:00 PM R101602 ND Ethylbenzene 1.0 μg/L 1 12/5/2023 11:07:00 PM R101602 Naphthalene ND 2.0 µg/L 1 12/5/2023 11:07:00 PM R101602 1-Methylnaphthalene ND 4.0 μg/L 1 12/5/2023 11:07:00 PM R101602 2-Methylnaphthalene ND 4.0 μg/L 1 12/5/2023 11:07:00 PM R101602 Xylenes, Total ND 1.5 μg/L 12/5/2023 11:07:00 PM R101602 Surr: 4-Bromofluorobenzene 102 70-130 %Rec 1 12/5/2023 11:07:00 PM R101602 Surr: Toluene-d8 92.6 70-130 %Rec 12/5/2023 11:07:00 PM R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312012 08-Jan-24

Client: EOG
Project: Scripps Pit

Sample ID: MB-D SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: D101749 RunNo: 101749

Prep Date: Analysis Date: 12/11/2023 SeqNo: 3749970 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Aluminum ND 0.020

Sample ID: LCS-D SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: D101749 RunNo: 101749

Prep Date: Analysis Date: 12/11/2023 SeqNo: 3749972 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Aluminum 0.48 0.020 0.5000 0 97.0 85 115

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: PBW Batch ID: A101766 RunNo: 101766

Prep Date: Analysis Date: 12/12/2023 SeqNo: 3750832 Units: mg/L

Analyte Result POI SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual I owl imit ND 0.020 Aluminum Barium ND 0.0030

Beryllium ND 0.0020 Boron ND 0.040 Cadmium ND 0.0020 Calcium ND 1.0 ND 0.0060 Chromium Cobalt ND 0.0060 0.0060 Copper ND ND 0.020 Iron Magnesium NΩ 1.0 Manganese ND 0.0020 0.0080 Molybdenum ND

 Nickel
 ND
 0.010

 Potassium
 ND
 1.0

 Silver
 ND
 0.0050

 Sodium
 ND
 1.0

 Zinc
 ND
 0.010

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals

Client ID: LCSW Batch ID: A101766 RunNo: 101766

Prop Date: Analysis Date: 4040/0000 Carbles 0750007 Units and

Prep Date: Analysis Date: 12/12/2023 SeqNo: 3750837 Units: mg/L HighLimit %RPD SPK Ref Val %REC **RPDLimit** Analyte Result PQL SPK value LowLimit Qual Aluminum

 Aluminum
 0.46
 0.020
 0.5000
 0
 92.6
 85
 115

 Barium
 0.48
 0.0030
 0.5000
 0
 95.3
 85
 115

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312012** *08-Jan-24*

Client: EOG
Project: Scripps Pit

Sample ID: LCS-A	Samp	Туре: LC :	s	Tes	tCode: EF	PA Method	200.7: Dissolv	ed Metals	5	
Client ID: LCSW	Bato	ch ID: A10	01766	F	RunNo: 10	01766				
Prep Date:	Analysis	Date: 12	/12/2023	5	SeqNo: 3	750837	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Beryllium	0.48	0.0020	0.5000	0	95.7	85	115			
Boron	0.48	0.040	0.5000	0	95.7	85	115			
Cadmium	0.47	0.0020	0.5000	0	94.5	85	115			
Chromium	0.48	0.0060	0.5000	0	95.7	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.0	85	115			
Copper	0.48	0.0060	0.5000	0	95.4	85	115			
Iron	0.49	0.020	0.5000	0	97.2	85	115			
Manganese	0.48	0.0020	0.5000	0	95.2	85	115			
Molybdenum	0.47	0.0080	0.5000	0	94.8	85	115			
Nickel	0.48	0.010	0.5000	0	95.0	85	115			
Silver	0.48	0.0050	0.5000	0	96.1	85	115			
Zinc	0.48	0.010	0.5000	0	95.3	85	115			

Sample ID: LCS_CAT-A	Samp1	ype: LC	S	Tes	5					
Client ID: LCSW	Batcl	n ID: A1 0	01766	F	RunNo: 10	01766				
Prep Date:	Analysis [Date: 12	/12/2023	5	SeqNo: 3	750839	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	102	85	115			
Magnesium	51	1.0	50.00	0	102	85	115			
Potassium	50	1.0	50.00	0	101	85	115			
Sodium	51	1.0	50.00	0	102	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#:

2312012 08-Jan-24

Client: EOG **Project:** Scripps Pit

Sample ID: MB SampType: MBLK TestCode: EPA 200.8: Dissolved Metals Client ID: PBW Batch ID: **D101582** RunNo: 101582 Prep Date: Analysis Date: 12/4/2023 SeqNo: 3740702 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Result LowLimit Antimony ND 0.0010 Arsenic ND 0.00050 ND 0.00050 Selenium ND 0.0010 Thallium 0.00025 ND 0.00050 Uranium

Sample ID: LCS	SampT	ype: LC	S	TestCode: EPA 200.8: Dissolved Metals						
Client ID: LCSW	Batch	ID: D10	1582	F	RunNo: 10	1582				
Prep Date:	Analysis D	ate: 12	/4/2023	5	SeqNo: 37	740704	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.024	0.0010	0.02500	0	97.1	85	115			
Arsenic	0.025 0	0.00050	0.02500	0	99.0	85	115			
Lead	0.013 0	0.00050	0.01250	0	100	85	115			
Selenium	0.024	0.0010	0.02500	0	97.3	85	115			
Thallium	0.012 0	0.00025	0.01250	0	99.7	85	115			
Uranium	0.012 0	0.00050	0.01250	0	99.3	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 12 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312012

08-Jan-24

Client: EOG Project: Scripps Pit

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R101597 RunNo: 101597

Prep Date: Analysis Date: 12/4/2023 SeqNo: 3741802 Units: mg/L

SPK value SPK Ref Val %RPD **RPDLimit** Analyte PQL %REC LowLimit HighLimit Qual Fluoride ND 0.10

Bromide ND 0.10 Phosphorus, Orthophosphate (As P) ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R101597 RunNo: 101597 Prep Date: Analysis Date: 12/4/2023 SeqNo: 3741803 Units: mg/L Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride 0.50 0.10 0.5000 0 100 90 110 0 97.7 90 Bromide 2.4 0.10 2.500 110 0 Phosphorus, Orthophosphate (As P) 48 0.50 5.000 96.9 90 110

Sample ID: MB TestCode: EPA Method 300.0: Anions SampType: MBLK Client ID: Batch ID: R101873 PBW RunNo: 101873 Prep Date: Analysis Date: 12/15/2023 SeqNo: 3756389 Units: mg/L **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC %RPD Qual LowLimit HighLimit

Chloride ND 0.50 Sulfate ND 0.50 Nitrate+Nitrite as N ND 0.20

Sample ID: LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R101873 RunNo: 101873 Prep Date: Analysis Date: 12/15/2023 SeqNo: 3756390 Units: mg/L LowLimit HighLimit **RPDLimit** PQL SPK value SPK Ref Val %REC %RPD Qual Analyte Result 0.50 5.000 97.2 90 Chloride 4.9 0 110 Sulfate 9.9 0.50 10.00 0 99.3 90 110

Nitrate+Nitrite as N 0 3.6 0.20 3.500 102 90 110

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R101873 RunNo: 101873

Prep Date: Analysis Date: 12/15/2023 SeqNo: 3756424 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit Chloride ND 0.50

Sulfate ND 0.50 Nitrate+Nitrite as N ND 0.20

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 13 of 18

Hall Environmental Analysis Laboratory, Inc.

08-Jan-24

2312012

WO#:

Client: EOG
Project: Scripps Pit

Sample ID: LCS	SampType: LCS			Tes	tCode: EF	PA Method				
Client ID: LCSW	Batch	1D: R1 0	01873	F	RunNo: 10	01873				
Prep Date:	Analysis D	ate: 12	/15/2023	5	SeqNo: 37	756425	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50	5.000	0	96.7	90	110			
Sulfate	9.8	0.50	10.00	0	98.2	90	110			
Nitrate+Nitrite as N	3.5	0.20	3.500	0	101	90	110			

Sample ID: MB	SampT	ype: MB	LK	Tes	tCode: E	PA Method	300.0: Anions			
Client ID: PBW	Batch	1D: R1 0	01873	F	RunNo: 10	01873				
Prep Date:	Analysis D	ate: 12	/15/2023	5	SeqNo: 3	756452	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0.20								

Sample ID: LCS	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID: LCSW	Batch	1D: R1	01873	F	RunNo: 10	1873				
Prep Date:	Analysis D	ate: 12	/15/2023	5	SeqNo: 3	756453	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50	5.000	0	97.5	90	110			
Sulfate	9.9	0.50	10.00	0	98.9	90	110			
Nitrate+Nitrite as N	3.6	0.20	3.500	0	102	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312012** *08-Jan-24*

Client: EOG
Project: Scripps Pit

Sample ID: 100ng Ics 3	Samp	Гуре: LC	S	Tes	TestCode: EPA Method 8260B: Volatiles Short List						
Client ID: LCSW	Batcl	h ID: R1	01602	F	RunNo: 10	01602					
Prep Date:	Analysis [Date: 12	/5/2023	5	SeqNo: 3742765						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	20	1.0	20.00	0	98.8	70	130				
Toluene	19	1.0	20.00	0	94.3	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130				
Surr: Dibromofluoromethane	10		10.00		102	70	130				
Surr: Toluene-d8	9.4		10.00		94.0	70	130				

Sample ID: mb 3	SampType: MBLK Batch ID: R101602		Tes	TestCode: EPA Method 8260B: Volatiles Short List						
Client ID: PBW			F	RunNo: 10	01602					
Prep Date:	Analysis D	ate: 12	/5/2023	5	SeqNo: 37	742766	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	9.3		10.00		92.8	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: 2312012 08-Jan-24

Client: EOG Project: Scripps Pit

Sample ID: LCS-1 99.8uS eC

SampType: LCS

TestCode: SM2510B: Specific Conductance

Client ID: LCSW

Batch ID: R101850

RunNo: 101850

Analysis Date: 12/14/2023

SeqNo: 3755143 Units: umhos/cm

Analyte

SPK value Result PQL

LowLimit

HighLimit %RPD **RPDLimit** Qual

Conductivity

99

100

Result

SPK Ref Val 99.80 n

%REC 99.5

85 115

Prep Date:

Sample ID: LCS-2 99.8uS eC

SampType: Ics

TestCode: SM2510B: Specific Conductance RunNo: 101850

Client ID: LCSW Batch ID: R101850

10

SeqNo: 3755169

Units: µmhos/cm

115

HighLimit

Prep Date: Analyte

Analysis Date: 12/14/2023 Result PQL SPK value

10

%REC SPK Ref Val

LowLimit

85

%RPD

RPDLimit Qual

Conductivity

Sample ID: LCS-3 99.8uS eC

SampType: Ics

102

TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R101850

RunNo: 101850

Units: umhos/cm

Analyte

Analysis Date: 12/14/2023 POI

SPK value SPK Ref Val

SeqNo: 3755195 %REC I owl imit

HighLimit

%RPD

RPDLimit

Qual

99.80

0

104

Conductivity

Prep Date:

10 99.80

100

Qualifiers: Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated.

Analyte detected in the associated Method Blank

Above Quantitation Range/Estimated Value

Analyte detected below quantitation limits Sample pH Not In Range

RL Reporting Limit Page 16 of 18

Hall Environmental Analysis Laboratory, Inc.

08-Jan-24

2312012

WO#:

Client: EOG

Project: Scripps Pit

Sample ID: MB-1 Alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R101661 RunNo: 101661

Prep Date: Analysis Date: 12/6/2023 SeqNo: 3744722 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-1 Alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R101661 RunNo: 101661

Prep Date: Analysis Date: 12/6/2023 SeqNo: 3744723 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 76.56 20.00 80.00 0 95.7 90 110

Sample ID: MB-2 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R101661 RunNo: 101661

Prep Date: Analysis Date: 12/6/2023 SeqNo: 3744746 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: LCS-2 Alk SampType: Ics TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R101661 RunNo: 101661

Prep Date: Analysis Date: 12/6/2023 SeqNo: 3744747 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 74.08 20.00 80.00 0 92.6 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 18

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312012** *08-Jan-24*

Client: EOG
Project: Scrip

Project: Scripps Pit

Sample ID: MB-79151 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 79151 RunNo: 101673

Prep Date: 12/5/2023 Analysis Date: 12/7/2023 SeqNo: 3745133 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-79151 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: **LCSW** Batch ID: **79151** RunNo: **101673**

Prep Date: 12/5/2023 Analysis Date: 12/7/2023 SeqNo: 3745134 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1090 50.0 1000 0 109 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 18

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 9/20/2024 3:12:52 PM

Website: www.hallenvironmental.com Client Name: **EOG** Work Order Number: 2312012 RcptNo: 1 Received By: 12/1/2023 7:45:00 AM Juan Rojas Completed By: Cheyenne Cason 12/1/2023 9:03:05 AM Ju12/1/23 Reviewed By: Chain of Custody No 🗌 Not Present Yes 🗹 1. Is Chain of Custody complete? 2. How was the sample delivered? Courier Log In No 🗌 NA 🗌 Yes 🔽 3. Was an attempt made to cool the samples? No 🗌 NA 🗌 Yes 🗹 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🔽 No \square 5. Sample(s) in proper container(s)? No \square Yes 🗹 6. Sufficient sample volume for indicated test(s)? No 🗌 Yes 🗸 7. Are samples (except VOA and ONG) properly preserved? NA 🗆 No 🔽 Yes 🗌 8. Was preservative added to bottles? NA 🗌 No 🗌 Yes 🔽 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes □ No 🗹 10. Were any sample containers received broken? # of preserved bottles checked Yes 🗸 No 🗌 for pH: 11. Does paperwork match bottle labels? or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? 12. Are matrices correctly identified on Chain of Custody? Yes 🗹 No 🗌 No 🗌 13. Is it clear what analyses were requested? Yes 🔽 Checked by: 500 No 🗌 Yes 🗹 14. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes NA 🔽 No 🗌 15. Was client notified of all discrepancies with this order? Person Notified: Date: eMail Phone Fax In Person By Whom: Via: Regarding: Client Instructions: 16. Additional remarks: TRIP BLANKS NOT PROVIDED BY EUROFING SOUTH CENTRAL 17. Cooler Information Cooler No Temp °C Condition Seal Intact | Seal No Seal Date Signed By

3.0

Good

Not Present

0
1
-
07
6
0
Se

Received by OCD. 4/3/2024 12:10:45 PM	CD: 4/	3/2024 12	10:45 PM Record	Turn-Around	nd Time:										Pag	Page [1.0.
Client: E	OG-Art	Client: EOG-Artesia / Ranger Env.	nger Env.	3			U	Ц	Ì	T	M	HALL ENVIRONMENTAL	Z		AL	
				Standard	Rush	ų		П	4	M	YSI	ANALYSIS LABORATORY	BOR	Š	OR.	
				Project Name: Scarpos pz7	SCRIPPS	PIT			\$	ww.hal	enviro	www.hallenvironmental.com	Eo C			
Mailing A	ddress:	EOG - 105	Mailing Address: EOG - 105 S 4th St, Artesia NM, 88210				4	901 H	awkins	Ä.	Albug	4901 Hawkins NE - Albuquerque, NM 87109	VM 871	60		
Ranger	PO Box	201179, Ai	Ranger: PO Box 201179, Austin TX 78720	Project #: 5375	5			Tel. 50	505-345-3975	3975	Fax	505-345-4107	5-4107			
Phone #	t: 521-3;	Phone #: 521-335-1785								∢	nalysis	Analysis Request	ts.			
email or	Fax#: \	/∕ill@Ran	email or Fax#: Will@RangerEnv.com	Project Manager: W. Kierdorf	ger: W. Kier	dorf	"	11	210	M	-					
QA/QC Package: ■ Standard	ackage: dard		☐ Level 4 (Full Validation)				Jawi	2211AL / C	_							
Accreditation: NELAC	tation:	☐ Az Co	□ Az Compliance □ Other	Sampler: ^{W.} /L_C_COOLE On Ice: PYes	TEROORE DAYES	□ No	Jau / C		דמינוצא	מיבטין פררב		37~b)				
■ EDD (Type)	(Type)	Excel		# of Coolers:		1000				<u> </u>		Onc				
				Cooler Temp(including CF):	ncluding CF): 7	ato1=7:0					5	יטית ב				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO.) X3T8	TPH:80		Ma	OT Mq					
1/29/23	1	AR	TRIP BLANK	& 2VMS	Mul	100)			X							
24/23	0111	AQ	1- W W	9	SEE MIES				メメ	X	8	7.				
11/29/23	1038	AR	WW-3	و		000			X X	<i>y</i>	メ	Х				
11/29/23	0856	ρβ	W.W - 3	٥		boo 4			×	ķ	X	7				
11/20/23	2460	AR	7-MW	ھا	_	900			×	χ	X	7				
									Н							
									1						+	\Box
Date:	Time: 083A	Relinquished by:	ed by:	Received by:	Via:	Date Time	Remar Contra	ks: Bil	Remarks: Bill to EOG Artesia	G Arte	Sia					
\$		$\overline{}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WALLAND	3	FCON CILICI	2×5	312	3x 40 mc Mcc VOAS	٠ ٧	_					
12 28 33	7 00 0	Relinquished by:	1	Received of	Via.	C	S X Z	JW DOS	1x SOO ML (LOSTEC (WW))	なくない	(3	(2000) (2000) (2000)	5 - 1 0	/4CT26	MAG	
		7474	www.		(00%:4%		\ \ \	7 7 7	1			A Particular	7 7 1	7 ecit.) 	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited

ATTACHMENT 3 - NMOCD CORRESPONDENCE

Released to Imaging: 9/20/2024 3:12:52 PM

To: Miriam Morales < Miriam Morales@eogresources.com >; Buchanan, Michael, EMNRD < Michael Buchanan@emnrd.nm.gov >

Cc: Artesia Regulatory Artesia Regulatory@eogresources.com; Velez, Neison, EMNRD Neison,Velez@emnrd.nm.gov; Bratcher, Michael, EMNRD mike bratcher@emnrd.nm.gov

Subject: RE: [EXTERNAL] Scripps Pit (NAUTOFAB000640) Sampling Notification

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Miriam

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|Shelly,Wells@emnrd.nm.gov

From: Miriam Morales < Miriam Morales@eogresources.com>

Sent: Tuesday, November 21, 2023 9:24 AM

http://www.emnrd.state.nm.us/OCD/

To: Enviro, OCD, EMNRD < OCD, Enviro@emnrd.nm.gov>; Velez, Nelson, EMNRD < Nelson, Velez@emnrd.nm.gov>; Buchanan, Michael, EMNRD < Michael, Buchanan@emnrd.nm.gov>

Cc: Artesia S&E Spill Remediation < Artesia S&E Spill Remediation@eogresources.com>; Artesia Regulatory < Artesia Regulatory@eogresources.com>

Subject; [EXTERNAL] Scripps Pit (NAUTOFAB000640) Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

EOG Resources, Inc. respectfully submits notification (2) business days prior to conducting sampling on the following location. (Due to the holiday this week, this is going out early)

Scripps Pit M-26-18S-26E Eddy County, NM NAUTOFAB000640

Sampling will begin at 8:00 a.m. on Wednes were weekle 29, 2023

Thank you,

Miriam Morales

ATTAC	HMEN ⁻	Γ 4 – GSI N	IANN-KE	ENDALL	-
TOOLKIT:	MW-4	BENZENE	TREND	ANALY	'SIS

Released to Imaging: 9/20/2024 3:12:52 PM

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 5-Mar-24 Job ID: 5375 Facility Name: SCRIPP PIT (AP-25) Constituent: Benzene Concentration Units: mg/L Conducted By: P. Finn Sampling Point ID: MW-4 BENZENE CONCENTRATION (mg/L) 19-Sep-02 0.069 8-Nov-04 0.051 3 17-Mar-12 0.014 18-Jun-12 0.0074 12-Sep-12 0.0095 6 0.0097 7-Dec-12 12-Mar-13 0.01 8 27-Jun-13 9 28-Mar-18 0.014 10 11-Mar-19 0.0074 11 29-Oct-19 0.0021 12 18-Sep-20 0.002 13 24-Aug-21 0.0017 14 22-Mar-22 0.019 15 3-Aug-22 0.0056 16 11/29/2023 0.0005 17 18 19 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Decreasing MW-4 MW-4 Concentration (mg/L) 0.1 0.01 0.001 0.0001 01/00 01/00 01/00 01/00 01/00 01/00 01/00 01/00 01/00 01/00 Sampling Date

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 329525

CONDITIONS

Operator:	OGRID:		
EOG RESOURCES INC	7377		
5509 Champions Drive	Action Number:		
Midland, TX 79706	329525		
	Action Type:		
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)		

CONDITIONS

(Created By	Condition	Condition Date
	michael.buchanan	Scripp Pit Annual Groundwater Report for calendar year 2023 accepted as part of the record. App ID: 329525	9/20/2024