<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party					OGRID			
Contact Nam	ne			Contact T	Contact Telephone			
Contact emai	il			Incident #	(assigned by OCI	D)		
Contact mail	ing address			<u> </u>				
			Location	of Release S	Source			
Latitude				Longitude				
			(NAD 83 in dec	cimal degrees to 5 deci	imal places)			
Site Name				Site Type				
Date Release	Discovered			API# (if ap	pplicable)			
Unit Letter	Section	Township	Range	Cou	nty	_		
Surface Owner	r: State	☐ Federal ☐ Tr	ribal Drivata ()	Nama		,		
Surface Owner	i. State	rederar 11	ibai 🔲 Fiivate (1	vame)		
			Nature and	d Volume of	Release			
	Materia	l(s) Released (Select al	ll that annly and attach	calculations or specifi	e justification for th	ne volumes provided below)		
Crude Oil		Volume Release		curculations of specifi	Volume Recovered (bbls)			
Produced	Water	Volume Release	ed (bbls)		Volume Recovered (bbls)			
			tion of dissolved c	hloride in the	☐ Yes ☐ No			
	4.	produced water			Volume Recovered (bbls)			
Condensa		Volume Release				` ′		
	Natural Gas Volume Released (Mcf)				Volume Recovered (Mcf)			
Other (describe) Volume/Weight Released (provide u			e units)	Volume/We	ight Recovered (provide units)			
Cause of Rele	ease							

Received by OCD: 9/24/2024 7:41:35 AM Form C-141 State of New Mexico Page 2 Oil Conservation Division

73	~		<i>c</i> ^	_	٠,
Pago		n	r ,	n	
1 46	And .	\boldsymbol{v}_{l}	-	v	٠

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the	e responsible party consider this a major release?
release as defined by 19.15.29.7(A) NMAC?		
☐ Yes ☐ No		
100		
If YES, was immediate no	otice given to the OCD? By whom?	To whom? When and by what means (phone, email, etc)?
	Initi	ial Response
The responsible p	party must undertake the following actions im	nmediately unless they could create a safety hazard that would result in injury
☐ The source of the rele	ease has been stopped.	
☐ The impacted area has	s been secured to protect human hea	Ith and the environment.
Released materials ha	we been contained via the use of ber	ms or dikes, absorbent pads, or other containment devices.
☐ All free liquids and re	ecoverable materials have been remo	oved and managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, e	xplain why:
		nence remediation immediately after discovery of a release. If remediation
		medial efforts have been successfully completed or if the release occurred IAC), please attach all information needed for closure evaluation.
		e to the best of my knowledge and understand that pursuant to OCD rules and
		ase notifications and perform corrective actions for releases which may endanger by the OCD does not relieve the operator of liability should their operations have
		se a threat to groundwater, surface water, human health or the environment. In rator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	or a consequence and open	
Printed Name		Title:
Signature:	tanizopanza	Date:
		Telephone:
		•
OCD Only		
		D. (
Received by:		Date:

August 19, 2024

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Addendum
Cabo Wabo Federal Com 801H
Incident Number NAPP2304550164
Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Closure Request Addendum* to document depth to groundwater determination and soil sampling activities performed at the Cabo Wabo Federal Com 801H (Site), in response to the denial of a *Closure Request* submitted to the New Mexico Oil Conservation Division (NMOCD) on July 11, 2023. Based on laboratory analytical results from the soil sampling events and confirmation of depth to groundwater at the Site, COG is submitting this *Closure Request Addendum*, describing remediation that has occurred and requesting closure for Incident Number NAPP2304550164.

Details regarding the release, Site characterization, and remediation activities can be referenced in the original *Closure Request* (Appendix D) submitted on July 11, 2023. COG received the denial notice from the NMOCD on December 27, 2023. In the denial, NMOCD stated:

The Remediation Closure Report is Denied. The borehole located 0.8 miles away from the release area is outside of the ½ mile requirement. There are no wells within a 1/2 radius of the well location over 100' depth to groundwater. If you feel the depth to groundwater is >100', a shallow borehole can be drilled to 105' allowing for verification of the depth. If water is not visible after reaching bottom-hole and waiting 72 hours, the OCD will accept this as evidence. We would just need a copy of the driller's log. Sidewall/edge samples need to be conducted on the edge of the excavation and not 20 feet away from the edge of the excavation. The release should be horizontally delineated on all sides, including up against the secondary containment walls. Please, verify that the release did not go under the secondary containment.

BACKGROUND

The Site is located in Unit A, Section 24, Township 25 South, Range 29 East, in Eddy County, New Mexico (32.1222°, -103.9325°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On January 28, 2023, a temporary tank malfunctioned and released 9.0594 barrels (bbls) of produced water within the secondary containment and onto the well pad. A vacuum truck was dispatched to the site and recovered 9.0 bbls of freestanding fluids from within the containment. COG reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on February 14, 2023. The release was assigned Incident Number NAPP2304550164.

Ensolum, LLC | Environmental, Engineering & Hydrogeologic Consultants 3122 National Parks Highway | Carlsbad, NM 88220 | ensolum.com

COG Operating, LLC Closure Request Addendum Cabo Wabo Federal Com 801H

DEPTH TO GROUNDWATER DETERMINATION

On August 6, 2024, a borehole (BH01) was advanced to a depth of 110 feet below ground surface (bgs) via air rotary drill rig. The borehole was located approximately 0.45 miles west of the Site and is depicted on Figure 1. A field geologist logged and described soils continuously. The borehole lithologic/soil sampling log is included in Appendix A. The borehole was left open for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 100 feet bgs. The borehole was properly abandoned using hydrated bentonite chips. Based on the confirmed depth to water greater than 100 feet bgs, the Table I Closure Criteria identified in the original *Closure Request* are applicable and appropriate for protection of groundwater at this Site. A copy of the Soil Boring/Monitoring Well Log is included in Appendix A.

SOIL SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

Between January 31, 2024, and February 24, 2024, Ensolum personnel were at the Site to collect additional assessment soil samples to laterally delineate the release. Soil samples SS18 through SS24 were collected around the release at an approximate depth of 0.25 feet bgs to confirm the lateral extent of the release. The release extent and assessment soil sample locations are presented on Figure 2. Additionally, one 5-point composite soil sample SW01 was collected from the sidewall of the excavation at depths ranging from the ground surface to 0.5 feet bgs. The excavation extent and excavation soil sample locations are presented on Figure 3. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride utilizing Hach® chloride QuanTab® test strips. Photographic documentation is included in Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): benzene, toluene, ethylbenzene, and total xylenes (BTEX) following United States Environmental Protection Agency (EPA) Method 8021B; total petroleum hydrocarbons (TPH)-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for all soil samples (SS18 through SS24 and SW01) indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and confirmed the lateral extent of the release. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix C.

Approximately 4,178 square feet of soil with chloride concentrations exceeding 600 mg/kg and TPH concentrations exceeding 100 mg/kg, but are compliant with the Site-specific Closure Criteria, remain in place. A maximum of 155 cubic yards of soil will be removed when the well pad is reclaimed. The proposed reclamation extent is presented on Figure 4.

CLOSURE REQUEST

A soil boring installed within 0.45 miles of the Site confirmed depth to groundwater greater than 100 feet bgs; therefore, the Site-specific Closure Criteria presented in the original *Closure Request* was correctly applied. Laboratory analytical results for the additional soil samples collected within and around the release indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria

COG Operating, LLC Closure Request Addendum Cabo Wabo Federal Com 801H

and successfully defined the vertical and lateral extent of the release. Based on the remediation activities completed at the Site, COG respectfully requests closure for Incident Number NAPP2304550164.

If you have any questions or comments, please contact Ms. Hadlie Green at (432) 557-8895 or hgreen@ensolum.com.

Sincerely, Ensolum, LLC

Hadlie Green **Project Geologist** Daniel R. Moir, PG (Licensed in TX & WY) Senior Managing Geologist

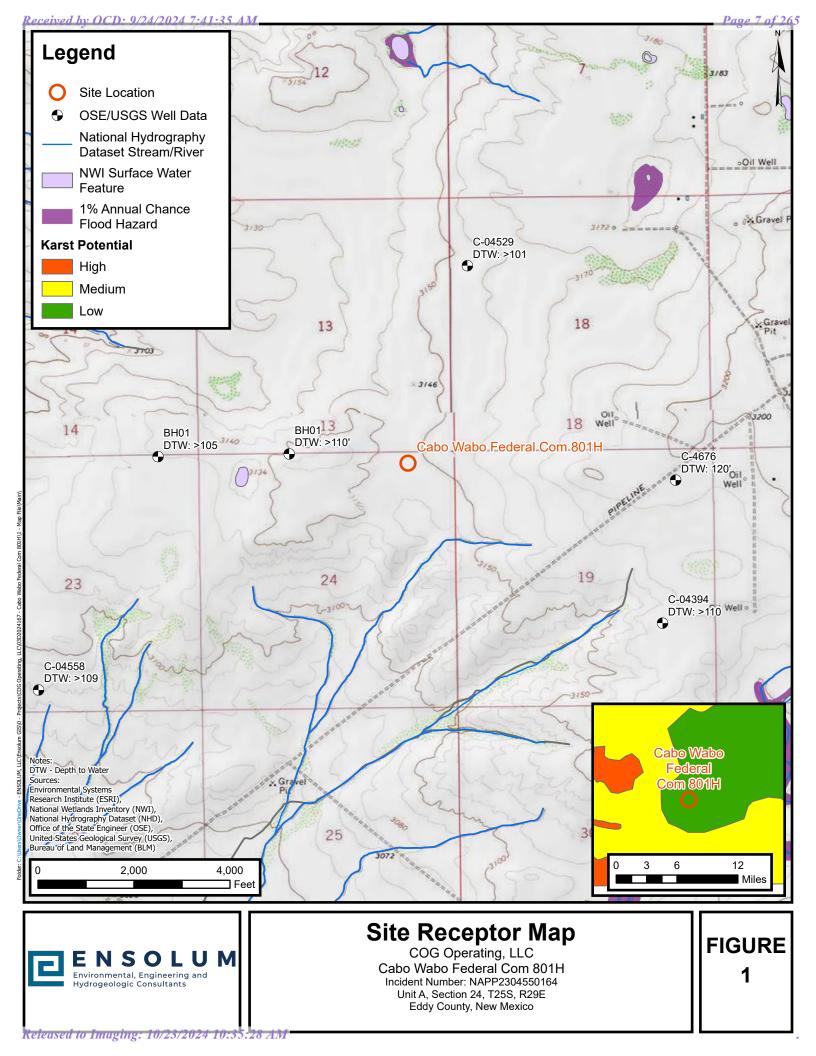
Justin Carlile, COG Operating, LLC CC:

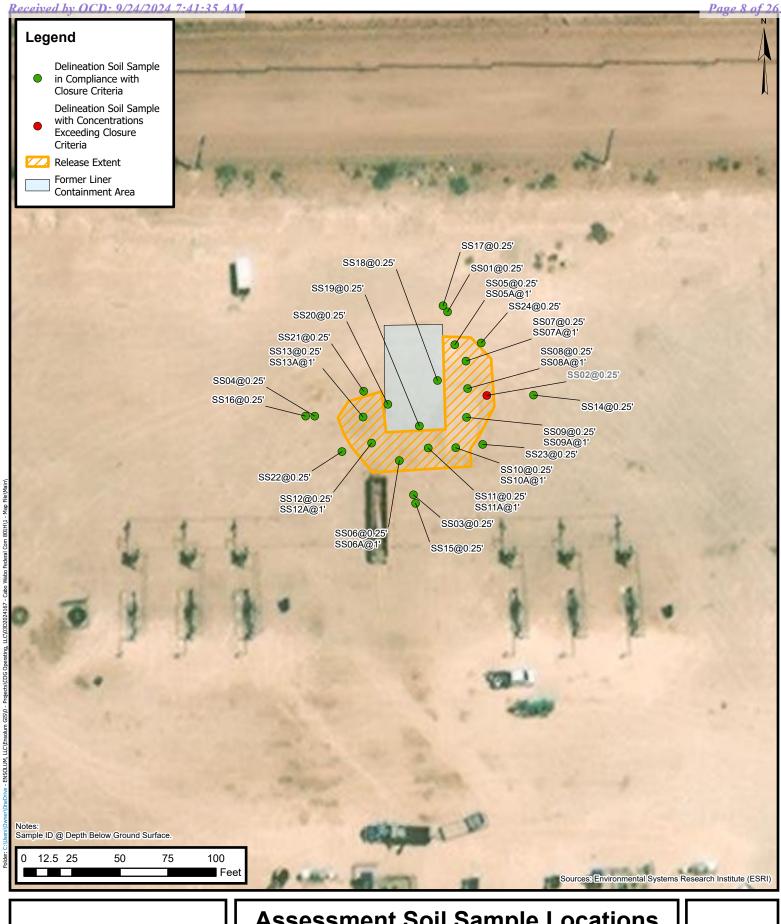
Bureau of Land Management

Appendices:

Figure 1 Site Receptor Map Assessment Soil Sample Locations Figure 2 Figure 3 Excavation Soil Sample Locations Figure 4 Proposed Reclamation Extent Soil Sample Analytical Results Table 1

Soil Boring/Monitoring Well Log Appendix A


Photographic Log Appendix B


Laboratory Analytical Reports & Chain-of-Custody Documentation Appendix C

Closure Request, July 11, 2023 Appendix D

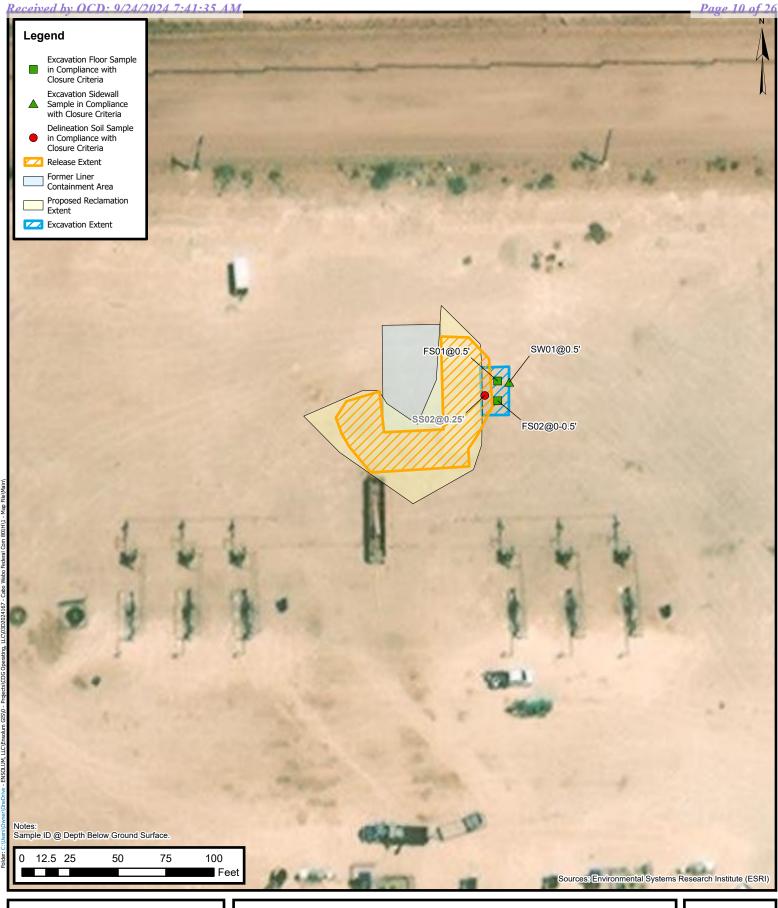
FIGURES

Assessment Soil Sample Locations

COG Operating, LLC Cabo Wabo Federal Com 801H Incident Number: NAPP2304550164 Unit A, Section 24, T25S, R29E Eddy County, New Mexico

FIGURE 2

Released to Imaging: 10/23/2024 10:35:28 AM



Excavation Soil Sample Locations

COG Operating, LLC
Cabo Wabo Federal Com 801H
Incident Number: NAPP2304550164
Unit A, Section 24, T25S, R29E
Eddy County, New Mexico

FIGURE 3

Released to Imaging: 10/23/2024 10:35:28 AM

Reclamation Soil Sample Locations

COG Operating, LLC
Cabo Wabo Federal Com 801H
Incident Number: NAPP2304550164
Unit A, Section 24, T25S, R29E
Eddy County, New Mexico

FIGURE 4

Released to Imaging: 10/23/2024 10:35:28 AM

TABLES

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS

Cabo Wabo Federal Com 801H COG Operating, LLC Eddy County, New Mexico

	Eddy County, New Mexico									
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria ((NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Asse	essment Soil San	nples				
SS01	03/13/2023	0.25	<0.00201	<0.00402	<49.9	139	<49.9	139	139	109
SS02	03/13/2023	0.25	<0.00202	<0.00403	<50.0	2640	<50.0	2,640	2,640	429
SS03	03/13/2023	0.25	<0.00199	<0.00398	<49.9	71.4	<49.9	71.4	71.4	451
SS04	03/13/2023	0.25	<0.00200	<0.00399	<49.9	987	<49.9	987	987	503
SS05	03/13/2023	0.25	<0.00200	<0.00401	<49.9	427	<49.9	427	427	8,870
SS05A	05/12/2023	1	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	216
SS06	03/13/2023	0.25	<0.00199	<0.00398	<50.0	430	<50.0	430	430	3,590
SS06A	05/12/2023	1	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	229
SS07	03/13/2023	0.25	<0.00199	<0.00398	<50.0	965	<50.0	965	965	1,960
SS07A	05/12/2023	1	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	226
SS08	03/13/2023	0.25	<0.00200	<0.00399	<49.9	169	<49.9	169	169	8,150
SS08A	05/12/2023	1	<0.00198	<0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	236
SS09	03/13/2023	0.25	<0.00201	<0.00402	<49.9	678	<49.9	678	678	1,500
SS09A	05/12/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	317
SS10	03/13/2023	0.25	<0.00200	<0.00401	<49.9	88.5	<49.9	88.5	88.5	335
SS10A	05/12/2023	1	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	310
SS11	03/13/2023	0.25	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	1,100
SS11A	05/12/2023	1	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	313
SS12	03/13/2023	0.25	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	587
SS12A	05/12/2023	1	<0.00200	<0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	332
SS13	03/13/2023	0.25	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	4,270
SS13A	05/12/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	335

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS

Cabo Wabo Federal Com 801H COG Operating, LLC Eddy County, New Mexico

	Eddy Southly, North Moxico									
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I Closure Criteria (NMAC 19.15.29)			10	50	NE	NE	NE	1,000	2,500	20,000
SS14	05/12/2023	0.5	<0.00198	<0.00396	<49.8	<49.8	<49.8	<49.8	<49.8	326
SS15	05/12/2023	0.5	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	353
SS16	05/12/2023	0.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	285
SS17	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	293
SS18	01/31/2024	0.25	<0.00200	<0.00401	<50.3	56.4	<50.3	56.4	56.4	386
SS19	01/31/2024	0.25	<0.00199	<0.00398	<50.1	97.7	<50.1	97.7	97.7	380
SS20	01/31/2024	0.25	<0.00199	<0.00398	<50.2	77.0	<50.2	77.0	77.0	348
SS21	01/31/2024	0.25	<0.00200	<0.00399	<50.4	88.6	<50.4	88.6	88.6	370
SS22	01/31/2024	0.25	<0.00201	<0.00402	<49.9	92.2	<49.9	92.2	92.2	368
SS23	01/31/2024	0.25	<0.00199	<0.00398	<50.0	90.3	<50.0	90.3	90.3	404
SS24	01/31/2024	0.25	<0.00199	<0.00398	<49.7	87.6	<49.7	87.6	87.6	397
Excavation Soil Samples										
FS01	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	386
FS02	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	472
SW01	02/24/2024	0 - 0.5	0.000709	<0.00101	35.1	26.5	<15.2	61.6	61.6	353

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

Concentrations in bold exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

Grey text represents samples that have been excavated

APPENDIX A

Soil Boring / Monitoring Well Log

ENSOLUM

SOIL BORING/MONITORING WELL LOG:

PROJ	ECT NUMBI	ER O	204	524	167	DRILLING DATE 8 6. 24		This log for field use only
CLIEN	IT COG	CAB	ou	ABO	810	DRILLER WTWW	WELL DIAMETE	R 63/4
LOCA	TION Z.J.	11	^ .			LATITUDE 32.122633	TOTAL DEPTH	110
DDO	TION Z J.	4,0					CASING N	A
PROJ	ECT MANA	GER /	Hed	lie 6	100	TOC Elevation W/A	SCREEN NA	
							SURFACE COM	PLETION N/A
COMM	IENTS State	e drillin	a tech	nnology	usda	outside auger diameter, sampler type, and		22110117577
sample	er diameter.	2.	1-0	11	1	outside auger diameter, sampler type, and	LOGGED BY 5	10
		01	7-6		A	R/	CHECKED BY	
				, ,				
PID	Samples	% Recovery	Water	Depth (ft)	Graphic Log	Material Description State lithology, color, plasticity (fine grain soils only) density, and odor.	, moisture,	Well Completion Grout Interval Bentonite Interval:
				-				Sand Interval:
						SAND, Fine grand, Pink, 91	moly San	/
						2 11 21	0019 2077	
				10		Dry, No Odor		
				-				
	-			2				
				20		51- 111	,	
	1			A		sand, Fine grained, Porty	501700	
						Sand, Finegrained, Porty	1101	
				30		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NoOsto	
	-			180				
				′		SAA		
	1			-				
	-			80		544		
				1				
	-							
				50		54A		
	1			10		21/1		
	1							
				60				
	1			121		SAA		
				1				
]			70		SAND, Light Brown Pouls	acred .	
				14		JAND, Light Brown, Poorly S. Dry No Odo	,	
	-			-		ury po coo,		
				80				
	1			16		SAA		
	1							
				90		2 4/ /-	, ,	
	1			-18		SAND, Light Reddish BAN, P.	0.0 rly 50	red
						Dry No odor		
	1			100				
				20		51A		
				F				
				110		1 /. /	011	BRN
				1 2		SAND Fine grained, light	Keddisi	
						Dry, No Odo		
						Dry , 7- 0 0 36 87		
				24				

ENSOLUM

SOIL BORING/MONITORING WELL LOG:

This log for field use only

								,,
PROJE	TCOG	CAB	ou	AB		LATITUDE 32 122633	VELL DIAMETER TOTAL DEPTH	10
LOCAT	ION Z	4,0	· N	m		0.00	CREEN NA	
PROJE	CT MANA	GER ,	Hed	Vie 6	100	TOC Elevation w/A	SURFACE COMPL	ETION N/A
1	ENTS State	-	ng tech		/ /	/	OGGED BY 54	0
OI4	Samples	% Recovery	Water	Depth (ft)	Graphic Log	Material Description State lithology, color, plasticity (fine grain soils only), ri density, and odor		Well Completion Grout Interval. Bentonite Interval Sand Interval.
						SAND, Fine grand, Pak, 9 Poo	orly Sorre	/
				10		Dry, No Odor		
				20		Sand, Finegrained, Porty & Light reddish BRN, Dry	Larra	
						Light redd sh BRN, Dry	No Odo	•
				32		5 A A		
				8		541		
				50		2.4		
				50		54A		
				121				
				12		SAA		
				70		SAND, Light Brown , Poorly So.	red,	
				14		Dry No Odo		
				80		2		
				100		SAA		
				90		SAND, Light Reddish BRN, Po.	2-1-6	
				-18		Dry No odos	10 r 7 3 3 7 1	red
				100				
				20		SAA		
				110			111	BRN
				1/2		SAND Fine grained, Light	Kodolisk	DK
						Dry, No Odo		
				24				

APPENDIX B

Photographic Log

Photographic Log

COG Operating, LLC
Cabo Wabo Federal Com 801H
Incident Number NAPP2304550164

Photograph 1 Date: January 31, 2024

Description: Delineations activies with secondary containment liner removed, view southwest

Photograph 2 Date: January 31, 2024

Description: Delineation activities with secondary containment liner removed, view northwest

Photographic Log

COG Operating, LLC
Cabo Wabo Federal Com 801H
Incident Number NAPP2304550164

Photograph 1

Date: August 6, 2024

Description: Depth to water drilling activities, view north-northeast

Photograph 2

Date: August 9, 2024

Description: Plugging and abandonment of depth to water boring following field

measurement of dry hole

APPENDIX C

Laboratory Analytical Reports & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green

Ensolum

601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 2/13/2024 12:20:08 PM

JOB DESCRIPTION

Cabo Wabo Federal Com 801H 03D2024167

JOB NUMBER

890-6078-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/13/2024 12:20:08 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Laboratory Job ID: 890-6078-1 SDG: 03D2024167

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Racaint Chacklists	28

		'n.

Definitions/Glossary

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Qualifiers

GC	VOA
Qua	lifier

F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

Presumptive **PRES Quality Control** QC

RPD

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum Job ID: 890-6078-1

Project: Cabo Wabo Federal Com 801H

Job ID: 890-6078-1 Eurofins Carlsbad

Job Narrative 890-6078-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/31/2024 11:49 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS18 (890-6078-1), SS19 (890-6078-2), SS20 (890-6078-3), SS21 (890-6078-4), SS22 (890-6078-5), SS23 (890-6078-6) and SS24 (890-6078-7).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS18 (890-6078-1), SS19 (890-6078-2) and SS21 (890-6078-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS20 (890-6078-3), SS22 (890-6078-5) and (890-6078-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 870-17831 and analytical batch 870-17833 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-72129 and analytical batch 880-72321 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

2

3

4

5

7

10

12

13

1

Client Sample Results

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS18 Lab Sample ID: 890-6078-1

Date Collected: 01/31/24 10:45 Matrix: Solid Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.00401	mg/Kg		02/11/24 13:26	02/12/24 12:15	
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	,
Xylenes, Total	<0.00401	U F2	0.00401	mg/Kg		02/11/24 13:26	02/12/24 12:15	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	150	S1+	70 - 130			02/11/24 13:26	02/12/24 12:15	1
1,4-Difluorobenzene (Surr)	115		70 - 130			02/11/24 13:26	02/12/24 12:15	
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			02/12/24 12:15	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	•	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	56.4		50.3	mg/Kg			02/08/24 09:47	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.3	U	50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	1
Diesel Range Organics (Over	56.4		50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	1
C10-C28) OII Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
o-Terphenyl	93		70 - 130			02/02/24 16:37	02/08/24 09:47	1
1-Chlorooctane	89		70 - 130			02/02/24 16:37	02/08/24 09:47	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	386		4.96	mg/Kg			02/05/24 14:47	

Client Sample ID: SS19 Lab Sample ID: 890-6078-2

Date Collected: 01/31/24 10:50 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130			02/11/24 13:26	02/12/24 12:42	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/11/24 13:26	02/12/24 12:42	1

Eurofins Carlsbad

Matrix: Solid

Sample Depth: 0.25'

Client: Ensolum Job ID: 890-6078-1

Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS19 Lab Sample ID: 890-6078-2 Date Collected: 01/31/24 10:50 Date Received: 01/31/24 11:49

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 12:42	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	97.7		50.1	mg/Kg			02/08/24 10:08	1
Method: SW846 8015B NM - Dies Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
					— Б			DII Fac
Gasoline Range Organics (GRO)	<50.1	U	50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
Diesel Range Organics (Over C10-C28)	97.7		50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	98		70 - 130			02/02/24 16:37	02/08/24 10:08	1
1-Chlorooctane	90		70 - 130			02/02/24 16:37	02/08/24 10:08	1

Client Sample ID: SS20 Lab Sample ID: 890-6078-3

RL

5.02

Unit

mg/Kg

D

Prepared

Date Collected: 01/31/24 10:55 Date Received: 01/31/24 11:49

Released to Imaging: 10/23/2024 10:35:28 AM

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

380

Sample Depth: 0.25'

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130			02/11/24 13:26	02/12/24 13:08	1
1,4-Difluorobenzene (Surr)	72		70 - 130			02/11/24 13:26	02/12/24 13:08	1
•								
: Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX		Qualifier	RL	<mark>Unit</mark> mg/Kg	<u>D</u>	Prepared	Analyzed 02/12/24 13:08	Dil Fac
Analyte Total BTEX	<0.00398	Qualifier U	0.00398		<u>D</u>	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Dies	Result <0.00398	Qualifier U	0.00398		<u>D</u>	Prepared Prepared		Dil Fac Dil Fac
Analyte	Result <0.00398	Qualifier U ics (DRO) (Qualifier	0.00398 GC)	mg/Kg			02/12/24 13:08	1
Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	Result <0.00398 sel Range Organ Result 77.0	Qualifier U ics (DRO) (Qualifier	0.00398 GC) RL 50.2	mg/Kg			02/12/24 13:08 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	Result <0.00398 sel Range Organ Result 77.0 esel Range Orga	Qualifier U ics (DRO) (Qualifier	0.00398 GC) RL 50.2	mg/Kg			02/12/24 13:08 Analyzed	1

Eurofins Carlsbad

Dil Fac

Matrix: Solid

Analyzed

02/05/24 14:52

Matrix: Solid

Lab Sample ID: 890-6078-3

Job ID: 890-6078-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS20 Date Collected: 01/31/24 10:55

Date Received: 01/31/24 11:49 Sample Depth: 0.25'

Method: SW846 8015B NM - Diesel	Range Organics (DRC) (GC) (Continued)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	77.0	50.2	mg/Kg		02/02/24 16:37	02/08/24 10:28	1
Oll Range Organics (Over C28-C36)	<50.2 U	50.2	mg/Kg		02/02/24 16:37	02/08/24 10:28	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	92	70 - 130	02/02/24 16:37	02/08/24 10:28	1
1-Chlorooctane	87	70 - 130	02/02/24 16:37	02/08/24 10:28	1

Method: EPA 300.0 - Anions, Ion Ch	romatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	348	5.01	mg/Kg			02/05/24 14:57	1

Client Sample ID: SS21 Lab Sample ID: 890-6078-4 Date Collected: 01/31/24 11:00 Matrix: Solid

Date Received: 01/31/24 11:49

anla Danthi 0 25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	182	S1+	70 - 130			02/11/24 13:26	02/12/24 13:35	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/11/24 13:26	02/12/24 13:35	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	П	0.00399	mg/Kg			02/12/24 13:35	

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	88.6	50.4	mg/Kg			02/08/24 10:49	1

-	00.0		33. .	9/9			02/00/21 10:10	
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.4	U	50.4	mg/Kg		02/02/24 16:37	02/08/24 10:49	1
Diesel Range Organics (Over C10-C28)	88.6		50.4	mg/Kg		02/02/24 16:37	02/08/24 10:49	1
OII Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		02/02/24 16:37	02/08/24 10:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	88		70 - 130			02/02/24 16:37	02/08/24 10:49	1

70 - 130

Eurofins Carlsbad

02/08/24 10:49

02/02/24 16:37

1-Chlorooctane

Job ID: 890-6078-1

Matrix: Solid

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS21 Lab Sample ID: 890-6078-4

Date Collected: 01/31/24 11:00 Matrix: Solid Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Method: EPA 300.0 - Anions, Ion Chro							
Analyte	Result Qualif	fier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	370	5.03	mg/Kg			02/05/24 15:02	1

Client Sample ID: SS22 Lab Sample ID: 890-6078-5

Date Collected: 01/31/24 11:05 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130			02/11/24 13:26	02/12/24 14:02	1
1,4-Difluorobenzene (Surr)	93		70 - 130			02/11/24 13:26	02/12/24 14:02	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/12/24 14:02	1
 Method: SW846 8015 NM - Diesel F	Pango Organ	ice (DRO) (ec)					

method. 544646 6615 km - Dieser Kange Organics (DRO) (GO)								
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	92.2	49.9	mg/Kg			02/08/24 11:09	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<49.9	U	49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
Diesel Range Organics (Over C10-C28)	92.2		49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	98		70 - 130			02/02/24 16:37	02/08/24 11:09	1

1-Chlorooctane	90	70 - 130			02/02/24 16:37	02/08/24 11:09	1
Method: EPA 300.0 - Anions, Ion Cl	hromatography - Soluble	•					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	368	4.99	mg/Kg			02/05/24 15:07	1

Client Sample ID: SS23 Lab Sample ID: 890-6078-6

Date Collected: 01/31/24 11:10 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Method: SW846 8021B - Volatile Organic Compounds (GC)									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-6078-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS23 Date Collected: 01/31/24 11:10

Date Received: 01/31/24 11:49 Sample Depth: 0.25'

Lab Sample ID: 890-6078-6

Matrix: Solid

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	(Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			02/11/24 13:26	02/12/24 14:28	
1,4-Difluorobenzene (Surr)	82		70 - 130			02/11/24 13:26	02/12/24 14:28	1
- Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 14:28	1
Method: SW846 8015 NM - Diese	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH	90.3		50.0	mg/Kg			02/08/24 11:30	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 11:30	
Diesel Range Organics (Over C10-C28)	90.3		50.0	mg/Kg		02/02/24 16:37	02/08/24 11:30	,
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 11:30	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
o-Terphenyl	97		70 - 130			02/02/24 16:37	02/08/24 11:30	1
1-Chlorooctane	90		70 - 130			02/02/24 16:37	02/08/24 11:30	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	404	F1	5.02	mg/Kg			02/05/24 15:12	1

Lab Sample ID: 890-6078-7 Client Sample ID: SS24 Date Collected: 01/31/24 11:15 Matrix: Solid

Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			02/11/24 13:26	02/12/24 14:55	1
1,4-Difluorobenzene (Surr)	99		70 - 130			02/11/24 13:26	02/12/24 14:55	1

Client Sample Results

Client: Ensolum Job ID: 890-6078-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS24 Lab Sample ID: 890-6078-7

Date Collected: 01/31/24 11:15
Date Received: 01/31/24 11:49
Matrix: Solid

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 14:55	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	87.6		49.7	mg/Kg			02/08/24 11:51	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<49.7	U	49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
Diesel Range Organics (Over C10-C28)	87.6		49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
OII Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	93		70 - 130			02/02/24 16:37	02/08/24 11:51	1
1-Chlorooctane	87		70 - 130			02/02/24 16:37	02/08/24 11:51	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	397		4.99	mg/Kg		-	02/05/24 15:32	1

Surrogate Summary

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

-			
		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-6078-1	SS18	150 S1+	115
890-6078-1 MS	SS18	107	79
890-6078-1 MSD	SS18	132 S1+	105
890-6078-2	SS19	142 S1+	96
890-6078-3	SS20	132 S1+	72
890-6078-4	SS21	182 S1+	96
890-6078-5	SS22	132 S1+	93
890-6078-6	SS23	115	82
890-6078-7	SS24	130	99
LCS 880-72819/1-A	Lab Control Sample	124	82
LCSD 880-72819/2-A	Lab Control Sample Dup	128	77
MB 880-72819/5-A	Method Blank	84	109
Surrogate Legend			
BFB = 4-Bromofluorobei	nzene (Surr)		
DFBZ = 1,4-Difluoroben:	zene (Surr)		

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		OTPH1	1CO1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6065-A-1-I MS	Matrix Spike	76	79	
890-6065-A-1-J MSD	Matrix Spike Duplicate	72	75	
890-6078-1	SS18	93	89	
890-6078-2	SS19	98	90	
890-6078-3	SS20	92	87	
890-6078-4	SS21	88	82	
890-6078-5	SS22	98	90	
890-6078-6	SS23	97	90	
890-6078-7	SS24	93	87	
LCS 870-17831/1-A	Lab Control Sample	102	107	
LCSD 870-17831/2-A	Lab Control Sample Dup	101	107	
MB 870-17831/3-A	Method Blank	106	102	

OTPH = o-Terphenyl

1CO = 1-Chlorooctane

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-72819/5-A

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 72819

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		02/11/24 13:26	02/12/24 11:49	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepar	red	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130	02/11/24	13:26	02/12/24 11:49	1
1,4-Difluorobenzene (Surr)	109		70 - 130	02/11/24	13:26	02/12/24 11:49	1

Lab Sample ID: LCS 880-72819/1-A

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 72819

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09323 mg/Kg 93 70 - 130 Toluene 0.100 0.1125 mg/Kg 113 70 - 130 0.100 Ethylbenzene 0.1134 mg/Kg 113 70 - 130 0.200 0.2559 128 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1187 o-Xylene mg/Kg 119 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	82		70 - 130

Lab Sample ID: LCSD 880-72819/2-A

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 72819

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Limit Benzene 0.100 0.08552 mg/Kg 86 70 - 130 9 35 Toluene 0.100 0.09515 mg/Kg 95 70 - 130 17 35 Ethylbenzene 0.100 0.1075 mg/Kg 108 70 - 130 5 35 0.200 m-Xylene & p-Xylene 0.2537 mg/Kg 127 70 - 130 35 0.100 0.1023 102 o-Xylene mg/Kg 70 - 130 15 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	128		70 - 130
1.4-Difluorobenzene (Surr)	77		70 - 130

Lab Sample ID: 890-6078-1 MS

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: SS18 Prep Type: Total/NA

Prep Batch: 72819

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.0996	0.09774		mg/Kg		98	70 - 130	
Toluene	<0.00200	U	0.0996	0.09090		mg/Kg		91	70 - 130	

QC Sample Results

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-6078-1 MS **Matrix: Solid**

Analysis Batch: 72833

Prep Batch: 72819 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene <0.00200 U 0.0996 0.08805 88 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00401 U F2 F1 0.199 0.2238 mg/Kg 112 70 - 130

0.09037

mg/Kg

0.0996

MS MS

<0.00200 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	79		70 - 130

Lab Sample ID: 890-6078-1 MSD

Matrix: Solid

o-Xylene

Analysis Batch: 72833

Client Sample ID: SS18

Prep Type: Total/NA Prep Batch: 72819

Client Sample ID: SS18

70 - 130

91

Prep Type: Total/NA

Sample Sample Spike MSD MSD Result Qualifier Result Qualifier %Rec RPD Limit Analyte Added Unit Limits 0.0990 Benzene <0.00200 U 0.09057 mg/Kg 91 70 - 130 8 35 <0.00200 U 0.09825 Toluene 0.0990 mg/Kg 99 70 - 130 8 35 Ethylbenzene <0.00200 U 0.0990 0.09332 mg/Kg 94 70 - 130 6 35 0.198 0.2400 70 - 130 35 m-Xylene & p-Xylene <0.00401 U F2 F1 mg/Kg 121 <0.00200 U 0.0990 0.1040 70 - 130 o-Xylene mg/Kg 105 14

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 870-17831/3-A

Matrix: Solid

Analysis Batch: 17833

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 17831

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	106		70 - 130	02/02/24 16:37	02/08/24 03:55	1
1-Chlorooctane	102		70 - 130	02/02/24 16:37	02/08/24 03:55	1

Lab Sample ID: LCS 870-17831/1-A

Matrix: Solid

Analysis Batch: 17833

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 17831

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	1020	773.6		mg/Kg		76	70 - 130	
Diesel Range Organics (Over	1010	960.6		mg/Kg		95	70 - 130	
C10-C28)								

Job ID: 890-6078-1

SDG: 03D2024167

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 870-17831/1-A

Project/Site: Cabo Wabo Federal Com 801H

Matrix: Solid

Client: Ensolum

Analysis Batch: 17833

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 17831

LCS LCS Surrogate %Recovery Qualifier

o-Terphenyl 102 70 - 130 1-Chlorooctane 107 70 - 130

Lab Sample ID: LCSD 870-17831/2-A Client Sample ID: Lab Control Sample Dup

Limits

Matrix: Solid

Analysis Batch: 17833

Prep Type: Total/NA Prep Batch: 17831

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics (GRO) 1020 776.7 76 70 - 130 0 20 mg/Kg Diesel Range Organics (Over 1010 969.3 mg/Kg 96 70 - 130 20

C10-C28)

LCSD LCSD

MS MS

Sample Sample

<49.8 U F1

<49.8 U F1

Result Qualifier

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	101		70 - 130
1-Chlorooctane	107		70 - 130

Client Sample ID: Matrix Spike Lab Sample ID: 890-6065-A-1-I MS

Matrix: Solid

Analysis Batch: 17833

Prep Type: Total/NA

Prep Batch: 17831

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	<49.8	U F1	1020	620.6	F1	mg/Kg		61	70 - 130	
Diesel Range Organics (Over	<49.8	U F1	1010	735.9	F1	mg/Kg		69	70 - 130	
0.40, 0.00)										

C10-C28)

	III S	INIS			
Surrogate	%Recovery	Qualifier	Limits		
o-Terphenyl	76		70 - 130		
1-Chlorooctane	79		70 - 130		

Lab Sample ID: 890-6065-A-1-J MSD Client Sample ID: Matrix Spike Duplicate

Spike

Added

1020

1010

MSD MSD

650.7 F1

696.1 F1

Result Qualifier

Unit

mg/Kg

mg/Kg

Matrix: Solid

Analysis Batch: 17833

Gasoline Range Organics (GRO)

Diesel Range Organics (Over

Prep Type: Total/NA

70 - 130

64

65

Prep Batch: 17831

20

%Rec RPD RPD Limit %Rec Limits 70 - 130 20 5

C10-C28)

Analyte

	MSD	MSD	1			
Surrogate	%Recovery	Qualifier	Limits			
o-Terphenyl	72		70 - 130			
1-Chlorooctane	75		70 130			

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: SS23

Client Sample ID: SS23

Prep Type: Soluble

Prep Type: Soluble

QC Sample Results

Client: Ensolum Job ID: 890-6078-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72129/1-A

Matrix: Solid

Analysis Batch: 72321

MB MB

 Analyte
 Result Chloride
 Qualifier
 RL Unit
 Unit
 D mg/Kg
 Prepared
 Analyzed Dil Fac Dil Fac

Lab Sample ID: LCS 880-72129/2-A

Matrix: Solid

Analysis Batch: 72321

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 244.2 mg/Kg 98 90 - 110

Lab Sample ID: LCSD 880-72129/3-A

Matrix: Solid

Analysis Batch: 72321

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 244.2 90 - 110 mg/Kg

Lab Sample ID: 890-6078-6 MS

Matrix: Solid

Analysis Batch: 72321

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 404 F1 251 625.8 F1 88 90 - 110 mg/Kg

Lab Sample ID: 890-6078-6 MSD

Matrix: Solid

Analysis Batch: 72321

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 404 F1 251 640.5 mg/Kg 94 90 - 110 20

Eurofins Carlsbad

2

Л

5

7

8

10

12

1 /

14

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

GC VOA

Prep Batch: 72819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	5035	
890-6078-2	SS19	Total/NA	Solid	5035	
890-6078-3	SS20	Total/NA	Solid	5035	
890-6078-4	SS21	Total/NA	Solid	5035	
890-6078-5	SS22	Total/NA	Solid	5035	
890-6078-6	SS23	Total/NA	Solid	5035	
890-6078-7	SS24	Total/NA	Solid	5035	
MB 880-72819/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6078-1 MS	SS18	Total/NA	Solid	5035	
890-6078-1 MSD	SS18	Total/NA	Solid	5035	

Analysis Batch: 72833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8021B	72819
890-6078-2	SS19	Total/NA	Solid	8021B	72819
890-6078-3	SS20	Total/NA	Solid	8021B	72819
890-6078-4	SS21	Total/NA	Solid	8021B	72819
890-6078-5	SS22	Total/NA	Solid	8021B	72819
890-6078-6	SS23	Total/NA	Solid	8021B	72819
890-6078-7	SS24	Total/NA	Solid	8021B	72819
MB 880-72819/5-A	Method Blank	Total/NA	Solid	8021B	72819
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	8021B	72819
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	72819
890-6078-1 MS	SS18	Total/NA	Solid	8021B	72819
890-6078-1 MSD	SS18	Total/NA	Solid	8021B	72819

Analysis Batch: 73047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	Total BTEX	
890-6078-2	SS19	Total/NA	Solid	Total BTEX	
890-6078-3	SS20	Total/NA	Solid	Total BTEX	
890-6078-4	SS21	Total/NA	Solid	Total BTEX	
890-6078-5	SS22	Total/NA	Solid	Total BTEX	
890-6078-6	SS23	Total/NA	Solid	Total BTEX	
890-6078-7	SS24	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 17831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015NM Prep	
890-6078-2	SS19	Total/NA	Solid	8015NM Prep	
890-6078-3	SS20	Total/NA	Solid	8015NM Prep	
890-6078-4	SS21	Total/NA	Solid	8015NM Prep	
890-6078-5	SS22	Total/NA	Solid	8015NM Prep	
890-6078-6	SS23	Total/NA	Solid	8015NM Prep	
890-6078-7	SS24	Total/NA	Solid	8015NM Prep	
MB 870-17831/3-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 870-17831/1-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

2

4

6

8

9

. .

Н

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC Semi VOA (Continued)

Prep Batch: 17831 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 870-17831/2-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6065-A-1-I MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-6065-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 17833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015B NM	17831
890-6078-2	SS19	Total/NA	Solid	8015B NM	17831
890-6078-3	SS20	Total/NA	Solid	8015B NM	17831
890-6078-4	SS21	Total/NA	Solid	8015B NM	17831
890-6078-5	SS22	Total/NA	Solid	8015B NM	17831
890-6078-6	SS23	Total/NA	Solid	8015B NM	17831
890-6078-7	SS24	Total/NA	Solid	8015B NM	17831
MB 870-17831/3-A	Method Blank	Total/NA	Solid	8015B NM	17831
LCS 870-17831/1-A	Lab Control Sample	Total/NA	Solid	8015B NM	17831
LCSD 870-17831/2-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	17831
890-6065-A-1-I MS	Matrix Spike	Total/NA	Solid	8015B NM	17831
890-6065-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	17831

Analysis Batch: 17893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015 NM	
890-6078-2	SS19	Total/NA	Solid	8015 NM	
890-6078-3	SS20	Total/NA	Solid	8015 NM	
890-6078-4	SS21	Total/NA	Solid	8015 NM	
890-6078-5	SS22	Total/NA	Solid	8015 NM	
890-6078-6	SS23	Total/NA	Solid	8015 NM	
890-6078-7	SS24	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72129

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Soluble	Solid	DI Leach	
890-6078-2	SS19	Soluble	Solid	DI Leach	
890-6078-3	SS20	Soluble	Solid	DI Leach	
890-6078-4	SS21	Soluble	Solid	DI Leach	
890-6078-5	SS22	Soluble	Solid	DI Leach	
890-6078-6	SS23	Soluble	Solid	DI Leach	
890-6078-7	SS24	Soluble	Solid	DI Leach	
MB 880-72129/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72129/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72129/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6078-6 MS	SS23	Soluble	Solid	DI Leach	
890-6078-6 MSD	SS23	Soluble	Solid	DI Leach	

Analysis Batch: 72321

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Soluble	Solid	300.0	72129
890-6078-2	SS19	Soluble	Solid	300.0	72129
890-6078-3	SS20	Soluble	Solid	300.0	72129

Eurofins Carlsbad

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

HPLC/IC (Continued)

Analysis Batch: 72321 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-4	SS21	Soluble	Solid	300.0	72129
890-6078-5	SS22	Soluble	Solid	300.0	72129
890-6078-6	SS23	Soluble	Solid	300.0	72129
890-6078-7	SS24	Soluble	Solid	300.0	72129
MB 880-72129/1-A	Method Blank	Soluble	Solid	300.0	72129
LCS 880-72129/2-A	Lab Control Sample	Soluble	Solid	300.0	72129
LCSD 880-72129/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72129
890-6078-6 MS	SS23	Soluble	Solid	300.0	72129
890-6078-6 MSD	SS23	Soluble	Solid	300.0	72129

1

4

5

7

0

9

11

13

SDG: 03D2024167

Client Sample ID: SS18

Lab Sample ID: 890-6078-1

Matrix: Solid

Date Collected: 01/31/24 10:45 Date Received: 01/31/24 11:49

Total/NA

Soluble

Soluble

Analysis

Leach

Analysis

8015B NM

DI Leach

300.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 12:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 12:15	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 09:47	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 09:47	WP	EET DAL
Soluble	Leach	DI Leach			5.04 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 14:47	CH	EET MID

Client Sample ID: SS19

Date Collected: 01/31/24 10:50

Matrix: Solid

Date Collected: 01/31/24 10:50
Date Received: 01/31/24 11:49

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 72819 Total/NA 5.02 g 5 mL 02/11/24 13:26 MNR EET MID Total/NA 8021B 5 mL 72833 02/12/24 12:42 **EET MID** Analysis 1 5 mL MNR Total/NA Total BTEX 73047 02/12/24 12:42 EET MID Analysis SM 1 Total/NA Analysis 8015 NM 17893 02/08/24 10:08 CC EET DAL Total/NA 17831 02/02/24 16:37 WP EET DAL Prep 8015NM Prep 9.98 g 10 mL

Client Sample ID: SS20 Lab Sample ID: 890-6078-3

1 uL

4.98 g

1 uL

50 mL

17833

72129

72321

02/08/24 10:08

02/01/24 11:18

02/05/24 14:52

WP

SMC

СН

EET DAL

EET MID

EET MID

Date Collected: 01/31/24 10:55 Matrix: Solid
Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 13:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 13:08	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 10:28	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 10:28	WP	EET DAL
Soluble	Leach	DI Leach			4.99 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 14:57	CH	EET MID

Client Sample ID: SS21 Lab Sample ID: 890-6078-4

Date Collected: 01/31/24 11:00 Matrix: Solid
Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 13:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 13:35	SM	EET MID

Eurofins Carlsbad

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Job ID: 890-6078-1

SDG: 03D2024167

Client Sample ID: SS21

Date Collected: 01/31/24 11:00 Date Received: 01/31/24 11:49

Lab Sample ID: 890-6078-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			17893	02/08/24 10:49	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 10:49	WP	EET DAL
Soluble	Leach	DI Leach			4.97 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:02	CH	EET MID

Client Sample ID: SS22 Lab Sample ID: 890-6078-5

Date Collected: 01/31/24 11:05 Date Received: 01/31/24 11:49

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:09	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:09	WP	EET DAL
Soluble	Leach	DI Leach			5.01 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:07	CH	EET MID

Client Sample ID: SS23 Lab Sample ID: 890-6078-6

Date Collected: 01/31/24 11:10 Date Received: 01/31/24 11:49

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:28	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:30	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:30	WP	EET DAL
Soluble	Leach	DI Leach			4.98 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:12	CH	EET MID

Client Sample ID: SS24 Lab Sample ID: 890-6078-7

Date Collected: 01/31/24 11:15 Date Received: 01/31/24 11:49

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:51	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:51	WP	EET DAL

Eurofins Carlsbad

Matrix: Solid

Lab Chronicle

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS24 Lab Sample ID: 890-6078-7

Date Collected: 01/31/24 11:15 Matrix: Solid Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:32	CH	EET MID

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Laboratory: Eurofins Dallas

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704295-23-34	06-30-24

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
• ,	•	ut the laboratory is not certif	fied by the governing authority. This lis	st may include analytes
for which the agency	does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
			7 than y to	

А

5

_

8

10

11

13

Method Summary

Client: Ensolum Job ID: 890-6078-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method **Method Description** Protocol Laboratory 8021B Volatile Organic Compounds (GC) SW846 EET MID **Total BTEX Calculation** Total BTEX TAL SOP EET MID 8015 NM Diesel Range Organics (DRO) (GC) SW846 EET DAL 8015B NM Diesel Range Organics (DRO) (GC) SW846 EET DAL 300.0 Anions, Ion Chromatography EPA **EET MID** 5035 Closed System Purge and Trap SW846 EET MID 8015NM Prep Microextraction SW846 EET DAL

Protocol References:

DI Leach

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Deionized Water Leaching Procedure

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

3

4

7

EET MID

ASTM

a

10

12

Sample Summary

Client: Ensolum

Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6078-1	SS18	Solid	01/31/24 10:45	01/31/24 11:49	0.25'
890-6078-2	SS19	Solid	01/31/24 10:50	01/31/24 11:49	0.25'
890-6078-3	SS20	Solid	01/31/24 10:55	01/31/24 11:49	0.25'
890-6078-4	SS21	Solid	01/31/24 11:00	01/31/24 11:49	0.25'
390-6078-5	SS22	Solid	01/31/24 11:05	01/31/24 11:49	0.25'
890-6078-6	SS23	Solid	01/31/24 11:10	01/31/24 11:49	0.25'
890-6078-7	SS24	Solid	01/31/24 11:15	01/31/24 11:49	0.25'

Motice: Signature of this document and relinquishment of samples of service. Eurofins Xenco will be liable only for the cost of samples of Eurofins Xenco. A minimum charge of \$85,00 will be applied to a Relinquished by: (Signature) Relinquished Talk Talk Signature)	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	h 255 22.55 22.55	\$518 \$519 \$570	Project Number: 05 Project Location: 32 Sampler's Name: 166 PO #: SAMPLE RECEIPT Samples Received Intact: Cooler Custody Seals: Sample Custody Seals: Total Containers:	Project Manager: Company Name: Address: City, State ZIP: Phone: Project Name: Address: Ad	eurofins
relinquishment of samples constitutes a valid purchase order from only for the cost of samples and shall not assume any responsibility of \$55.00 will be applied to each project and a charge of \$55 for each project. Received by: (Signature) Alludh	200.8 / 6020: 8RCRA 13PPM ttal(s) to be analyzed TCLP / SPLP	1100	Matrix Sampled Sampled Co. (1.31-24 104 5 0.) 1050 1055	Due Date: TAT starts the d the lab, if receive the lab, if receiv	b. Mariewield St. #400 J. Mariewield St. #400 J. Mariewield St. #400 Land TX 79701 Email: Webs Federal (an Bit Tum of the time)	S Environment Testing
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. Ambirinum charge of \$55.00 will be applied to each prolect and a charge of \$55 for each sample submitted to Eurofine Xenco, but not analyzed. These terms will be sufferzed unless proviously not Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) 1 1 . U. J. J. 4	A 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo NTCLP/SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U		repth comp Cont P	Parameters & & & & & & & & & & & & & & & & & & &	Bill to: (if different) Company Name: Address: City, State ZIP: Appreare Chechen	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199
terms and conditions s beyond the control mean previously negotisted. Received by: (Signature) Date/Time	Mg Mn Mo Ni K Se.Ag SiO ₂ Na Sr Tl Sn U V Zn Ni Se Ag Tl U Hg:1631/245.1/7470/7471		Sample Comments	Cool: HCL: H ₂ SO NaHS Na 2S Zn Aa	Work Order Comments rogram: UST/PST PRP Brownfields RRC tate of Project: leporting: Level Level PST/UST TRRP Other: peliverables: EDD ADaPT Other:	Work Order No: Work Order No: Of Page 1 of

Eurofins Midland

1211 W. Florida Ave Midland, TX 79701 1

2

3

5

8

11 12

13

Chain of Custody Record

ŴŦ.	

eurofins

Environment Testing

State, Zip: TX, 75220 Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, SS21 (890-6078-4) SS19 (890-6078-2) Dallas Shipping/Receiving Empty Kit Relinquished by SS24 (890-6078-7) SS20 (890-6078-3) SS18 (890-6078-1) Sample Identification - Client ID (Lab ID) Cabo Wabo Federal Com 801H **Eurofins Environment Testing South Centr** Client Information Relinquished by: Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification SS23 (890-6078-6) SS22 (890-6078-5) 214-902-0300(Tel) 9701 Harry Hines Blvd, Phone: 432-704-5440 telinquished by: Relinquished by: oject Name: Custody Seals Intact: Yes △ No Custody Seal No (Sub Contract Lab) 89000145 Phone: Primary Deliverable Rank: 2 **%**0 Due Date Requested: 2/6/2024 PO # Sampler Sample Date (AT Requested (days) 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 C Mountain 10:50 Date: Mountain 11:15 Mountain 11:10 Mountain 11:05 Mountair 11:00 Mountain 10:55 Mountair Sample 10:45 Time (C=comp G=grab) Sample Preservation Code: Type BT=Tissue, A=Alr Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Lab PM: Kramer, Jessica E-Mail: Jessica.Kramer@et.eurofinsus.com Time: Field Filtered Sample (Yes or No) NELAP - Texas Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monte Perform MS/MSD (Yes or No) Special Instructions/QC Requirements itations Required (See note): Cooler Temperature(s) °C and Other Remarks: Received by: 8015MOD_Calc Received by Received by × × \times × \times × \times × × × × × × × 8015MOD_NM/8015NM_S_Prep Analysis Requested 2 State of Origin: New Mexico Method of Shipment: Tracking No(s): Date/Time ... _4 Total Number of containers ---1 J - DI Water K - EDTA L - EDA B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH COC No: 880-9114.1 Page: Page 1 of 1 G - Amchlor H - Ascorbic Acid A - HCL Preservation Codes: 390-6078-1 Special Instructions/Note: M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 U - Acetone
V - MCAA
W - pH 4-5
Y - Trizma Z - other (specify) T - TSP Dodecahydrate S - H2SO4 Company Company Ver: Company Months 06/08/202

Client: Ensolum Job Number: 890-6078-1 SDG Number: 03D2024167

Login Number: 6078 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Client: Ensolum Job Number: 890-6078-1 SDG Number: 03D2024167

Login Number: 6078 **List Source: Eurofins Dallas** List Number: 3

List Creation: 02/06/24 10:39 AM

Creator: Sharp, Michael

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Released to Imaging: 10/23/2024 10:35:28 AM

<6mm (1/4").

Client: Ensolum Job Number: 890-6078-1 SDG Number: 03D2024167

List Source: Eurofins Midland

Login Number: 6078 List Number: 2 List Creation: 02/01/24 11:02 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum

601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 3/5/2024 12:45:14 PM

JOB DESCRIPTION

Cabo Wabo Federl Com 801H Eddy County

JOB NUMBER

880-40020-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/5/2024 12:45:14 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

14

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 19

3/5/2024

Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H Laboratory Job ID: 880-40020-1

SDG: Eddy County

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	8
	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
	18
Receipt Checklists	19

ی

4

6

8

9

10

12

13

Qualifier Description

Definitions/Glossary

Job ID: 880-40020-1 Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Qualifiers

GC	VOA
Qual	lifier

В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1-	Surrogate recovery exceeds control limits, low biased.

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description	

Indicates the analyte was analyzed for but not detected.

Indicates the analyte was analyzed for but not detected.

Glossary

MDC

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
n	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							
DER	Duplicate Error Ratio (normalized absolute difference)							
Dil Fac	Dilution Factor							
DL	Detection Limit (DoD/DOE)							

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum Job ID: 880-40020-1

Project: Cabo Wabo Federl Com 801H

Eurofins Midland Job ID: 880-40020-1

Job Narrative 880-40020-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/27/2024 4:47 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C.

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SW01 (880-40020-1).

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-74453 recovered under the lower control limit for Benzene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-74452 and analytical batch 880-74453 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SW01 (880-40020-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The method blank for preparation batch 880-74452 and 880-74472 and analytical batch 880-74453 contained Benzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method TX 1005: The surrogate recovery for the blank associated with preparation batch 880-74530 and analytical batch 880-74564 was outside the upper control limits.

Method TX 1005: The method blank for preparation batch 880-74530 and analytical batch 880-74564 contained C6-C12 Range Hydrocarbons above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method TX 1005: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-74530 and analytical batch 880-74564 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-74240 and analytical batch 880-74484 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was

Case Narrative

Client: Ensolum Job ID: 880-40020-1

Project: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 (Continued)

Eurofins Midland

within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

2

3

1

5

7

9

10

12

13

Matrix: Solid

Lab Sample ID: 880-40020-1

Client Sample Results

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Client Sample ID: SW01

Date Collected: 02/27/24 12:00 Date Received: 02/27/24 16:47

Sample Depth: 0-0.5'

Metrica. Syvoto ouz 1D - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.000709	J B	0.00200	0.000386	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Toluene	<0.00200	U	0.00200	0.000457	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Ethylbenzene	<0.00200	U	0.00200	0.000566	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	0.00101	mg/Kg		03/01/24 08:42	03/03/24 04:06	
o-Xylene	<0.00200	U	0.00200	0.000345	mg/Kg		03/01/24 08:42	03/03/24 04:06	
Xylenes, Total	<0.00401	U	0.00401	0.00101	mg/Kg		03/01/24 08:42	03/03/24 04:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				03/01/24 08:42	03/03/24 04:06	
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130				03/01/24 08:42	03/03/24 04:06	
Total BTEX	<0.00401	U	0.00401	0.00101	mg/Kg			03/03/24 04:06	
Method: TCEQ TX 1005 - Texas	- Total Petroleu			0.00101 MDL		D	Prepared	03/03/24 04:06 Analyzed	Dil Fa
Method: TCEQ TX 1005 - Texas Analyte	- Total Petroleu	m Hydrocai Qualifier	rbon (GC)	MDL		<u>D</u>	Prepared 03/03/24 00:37		Dil Fac
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons	- Total Petroleu Result	m Hydrocai Qualifier	rbon (GC)	MDL 15.2	Unit	<u>D</u>		Analyzed	Dil Fa
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons	- Total Petroleu Result 35.1	m Hydrocal Qualifier J B	rbon (GC) RL 50.5	MDL 15.2 15.2	Unit mg/Kg	<u>D</u>	03/03/24 00:37	Analyzed 03/04/24 14:50	
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons	- Total Petroleu Result 35.1 26.5	m Hydrocal Qualifier J B	rbon (GC) RL 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg	D	03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50	
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons	- Total Petroleu Result 35.1 26.5 <50.5	M Hydrocal Qualifier J B	rbon (GC) RL 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50	
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35)	- Total Petroleu Result 35.1 26.5 <50.5 61.6	M Hydrocal Qualifier J B	rbon (GC) RL 50.5 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50	Dil Fa
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate 1-Chlorocctane (Surr)	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery	M Hydrocal Qualifier J B	rbon (GC) RL 50.5 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed	Dil Fa
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery 101 104	M Hydrocal Qualifier J B U Qualifier	rbon (GC) RL 50.5 50.5 50.5 50.5 Limits 70 - 130 70 - 130	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37 Prepared 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed 03/04/24 14:50	Dil Fa
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate 1-Chlorocctane (Surr) o-Terphenyl (Surr)	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery 101 104 n Chromatograp	M Hydrocal Qualifier J B U Qualifier	rbon (GC) RL 50.5 50.5 50.5 50.5 Limits 70 - 130 70 - 130	MDL 15.2 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	D	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37 Prepared 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed 03/04/24 14:50	Dil Fac

Surrogate Summary

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Rec
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-40020-1	SW01	82	67 S1-	
LCS 880-74452/1-A	Lab Control Sample	124	102	
LCSD 880-74452/2-A	Lab Control Sample Dup	111	117	
MB 880-74452/5-A	Method Blank	73	91	
MB 880-74472/5-A	Method Blank	78	84	
Surrogate Legend				
BFB = 4-Bromofluorobenze	ene (Surr)			
DFBZ = 1,4-Difluorobenzer	ne (Surr)			

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO	ОТРН	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-40020-1	SW01	101	104	
LCS 880-74530/2-A	Lab Control Sample	102	110	
LCSD 880-74530/3-A	Lab Control Sample Dup	101	113	
MB 880-74530/1-A	Method Blank	123	142 S1+	

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1

SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-74452/5-A

Lab Sample ID: LCS 880-74452/1-A

Analysis Batch: 74453

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74452

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0007257	J	0.00200	0.000385	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Toluene	<0.00200	U	0.00200	0.000456	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Ethylbenzene	<0.00200	U	0.00200	0.000565	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
o-Xylene	<0.00200	U	0.00200	0.000344	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Xylenes, Total	< 0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 08:42	03/02/24 20:50	1

MB MB

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73	70 - 130	03/01/24 08:42	03/02/24 20:50	1
1,4-Difluorobenzene (Surr)	91	70 - 130	03/01/24 08:42	03/02/24 20:50	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 74452

Matrix: Solid **Analysis Batch: 74453** Spike LCS LCS

						,	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Benzene	0.100	0.09161	mg/Kg		92	70 - 130	
Toluene	0.100	0.09911	mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.1253	mg/Kg		125	70 - 130	
m-Xylene & p-Xylene	0.200	0.2501	mg/Kg		125	70 - 130	
o-Xylene	0.100	0.1258	mg/Kg		126	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 74453

Lab Sample ID: LCSD 880-74452/2-A

Prep Type: Total/NA Prep Batch: 74452

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08061		mg/Kg		81	70 - 130	13	35
Toluene	0.100	0.1001		mg/Kg		100	70 - 130	1	35
Ethylbenzene	0.100	0.1084		mg/Kg		108	70 - 130	14	35
m-Xylene & p-Xylene	0.200	0.2175		mg/Kg		109	70 - 130	14	35
o-Xylene	0.100	0.1087		mg/Kg		109	70 - 130	15	35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1,4-Difluorobenzene (Surr)	117	70 - 130

Lab Sample ID: MB 880-74472/5-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 74472

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0007213	J	0.00200	0.000385	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
Toluene	<0.00200	U	0.00200	0.000456	mg/Kg		03/01/24 11:44	03/02/24 09:39	1

Eurofins Midland

Page 9 of 19

QC Sample Results

Job ID: 880-40020-1 Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-74472/5-A **Matrix: Solid**

Analysis Batch: 74453

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74472

-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.00200	U	0.00200	0.000565	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
o-Xylene	<0.00200	U	0.00200	0.000344	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
Xylenes, Total	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

78

84

Lab Sample ID: MB 880-74530/1-A

Matrix: Solid

Analysis Batch: 74564

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Client Sample ID: Method Blank

03/02/24 09:39

03/02/24 09:39

03/01/24 11:44

03/01/24 11:44

Prep Type: Total/NA

Prep Batch: 74530

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	23.62	J	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1
>C12-C28 Range Hydrocarbons	<50.0	U	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1
	MB	MB							

Surrogate %Recovery Qualifier Limits 1-Chlorooctane (Surr) 123 70 - 130 o-Terphenyl (Surr) 142 S1+ 70 - 130

Prepared Dil Fac Analyzed 03/03/24 00:37 03/04/24 09:03 03/03/24 00:37 03/04/24 09:03

Lab Sample ID: LCS 880-74530/2-A

Lab Sample ID: LCSD 880-74530/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 74564

Analysis Batch: 74564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 74530

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C12 Range Hydrocarbons	1000	1011		mg/Kg		101	75 - 125	
>C12-C28 Range Hydrocarbons	1000	935.4		mg/Kg		94	75 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	102		70 - 130
o-Terphenyl (Surr)	110		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 74530

	Spike	e LCSD	LCSD				%Rec		RPD
Analyte	Added	l Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C12 Range Hydrocarbons	1000	1037		mg/Kg	_	104	75 - 125	3	25
>C12-C28 Range Hydrocarbons	1000	992.8		mg/Kg		99	75 - 125	6	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	101		70 - 130
o-Terphenyl (Surr)	113		70 - 130

Dil Fac

QC Sample Results

Client: Ensolum Job ID: 880-40020-1 Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Client Sample ID: Method Blank

RPD

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-74240/1-A

Lab Sample ID: LCS 880-74240/2-A

Matrix: Solid

Analyte

Chloride

Analyte

Chloride

Chloride

Matrix: Solid

Analysis Batch: 74484

Analysis Batch: 74484

MB MB

Result Qualifier

<5.00 U

RL 5.00

MDL Unit 0.395 mg/Kg

LCSD LCSD

252.5

Result Qualifier

D

Analyzed 03/03/24 12:20

Prepared

Prep Type: Soluble

Client Sample ID: Lab Control Sample Prep Type: Soluble

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits 250 254.9 mg/Kg 102 90 - 110

Unit

mg/Kg

Lab Sample ID: LCSD 880-74240/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid**

Spike

Added

250

Analysis Batch: 74484

Analyte

%Rec Limits 101

RPD Limit 90 - 110 20

Prep Type: Soluble

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 SDG: Eddy County

GC VOA

Prep Batch: 74452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	5035	
MB 880-74452/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-74452/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-74452/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 74453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	8021B	74452
MB 880-74452/5-A	Method Blank	Total/NA	Solid	8021B	74452
MB 880-74472/5-A	Method Blank	Total/NA	Solid	8021B	74472
LCS 880-74452/1-A	Lab Control Sample	Total/NA	Solid	8021B	74452
LCSD 880-74452/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	74452

Prep Batch: 74472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-74472/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 74726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 74530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX_1005_S_Pre	
				p	
MB 880-74530/1-A	Method Blank	Total/NA	Solid	TX_1005_S_Pre	
				р	
LCS 880-74530/2-A	Lab Control Sample	Total/NA	Solid	TX_1005_S_Pre	
				р	
LCSD 880-74530/3-A	Lab Control Sample Dup	Total/NA	Solid	TX_1005_S_Pre	
				р	

Analysis Batch: 74564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX 1005	74530
MB 880-74530/1-A	Method Blank	Total/NA	Solid	TX 1005	74530
LCS 880-74530/2-A	Lab Control Sample	Total/NA	Solid	TX 1005	74530
LCSD 880-74530/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005	74530

Analysis Batch: 74800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX 1005	

HPLC/IC

Leach Batch: 74240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Soluble	Solid	DI Leach	
MB 880-74240/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-74240/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-74240/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

HPLC/IC

Analysis Batch: 74484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Soluble	Solid	300.0	74240
MB 880-74240/1-A	Method Blank	Soluble	Solid	300.0	74240
LCS 880-74240/2-A	Lab Control Sample	Soluble	Solid	300.0	74240
LCSD 880-74240/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	74240

1

F

6

8

9

11

13

Lab Chronicle

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Client Sample ID: SW01

Lab Sample ID: 880-40020-1

Matrix: Solid

Date Collected: 02/27/24 12:00 Date Received: 02/27/24 16:47

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			74452	EL	EET MID	03/01/24 08:42
Total/NA	Analysis	8021B		1	74453	MNR	EET MID	03/03/24 04:06
Total/NA	Analysis	Total BTEX		1	74726	SM	EET MID	03/03/24 04:06
Total/NA	Prep	TX_1005_S_Prep			74530	TKC	EET MID	03/03/24 00:37
Total/NA	Analysis	TX 1005		1	74564	SM	EET MID	03/04/24 14:50
Total/NA	Analysis	TX 1005		1	74800	SM	EET MID	03/04/24 14:50
Soluble	Leach	DI Leach			74240	SMC	EET MID	02/28/24 10:03
Soluble	Analysis	300.0		1	74484	CH	EET MID	03/03/24 16:47

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

5

8

9

11

13

Accreditation/Certification Summary

Client: Ensolum Job ID: 880-40020-1 Project/Site: Cabo Wabo Federl Com 801H

SDG: Eddy County

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELAI	AP T104704400-23-26		06-30-24
The following analytes	are included in this report, bu	t the laboratory is not certif	ied by the governing authority. This lis	t may include analyt
for which the agency d	oes not offer certification.			,,
for which the agency d Analysis Method	oes not offer certification. Prep Method	Matrix	Analyte	,

Method Summary

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 SDG: Eddy County

Method **Method Description** Protocol Laboratory 8021B Volatile Organic Compounds (GC) SW846 EET MID **Total BTEX Calculation** Total BTEX TAL SOP EET MID TX 1005 Texas - Total Petroleum Hydrocarbon (GC) **TCEQ EET MID** 300.0 Anions, Ion Chromatography EPA **EET MID** 5035 Closed System Purge and Trap SW846 **EET MID** DI Leach **Deionized Water Leaching Procedure EET MID ASTM** TX_1005_S_Prep Extraction - Texas Total petroleum Hyrdocarbons TCEQ EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

TCEQ = Texas Commission of Environmental Quality

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

5

9

4 4

Sample Summary

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1

SDG: Eddy County

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-40020-1	SW01	Solid	02/27/24 12:00	02/27/24 16:47	0-0.5'

3

4

O

R

9

11

12

P

Revised Date: 08/25/2020 Rev. 2020.2

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

1-27-14 Date/Time

13,7

ofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

Received by: (Signature)

Relinquished by: (Signature)

Chain of Custody

Midland, TX (432) 704-5440 San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550 Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Dulch Indunation

Project Namesor Hold Project Project Namesor Hold Project Project Namesor Hold Project	The second secon		S COOL		880-40020 Chain of Custody	stody
UST/PST □ PRP □ Brownfields □ RRC □ Section Level II □ Level III □ PST/UST □ TRRP □ Section Section Other Preservative Co None No DI Cool Cool Me HCL. HC HN H₂SO₄ H₂ NaBIS Na4SO₃ NaSO₃ NaSO₃ NaSO₃ NaSO₃ NaSO₃ NaSO₃ NaOH+AScorbic Acid Semple Comm Sample Comm Sample Comm If K Se Ag SiO₂ Na Sr Ti Sn U V Zn Hg 1631/2451/7470 /7471	1	Neer!	Bill to: (if different)	10	Work Order Commer	1(5
level II		272	Company Name:		UST/PST PRP	Bac
LevelIII LevelIIII PST/UST TRPP SEDD ADaPT Other Preservative None NO Cool Cool HCL. HC H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NAHSO 4 NABIS NA ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic Ac Sample Corr Sample Corr NaOH-Ascorbic Ac NaOH-Ascorbic Ac Sample Corr NaOH-Ascorbic Ac NaOH-Ascorb	2 103	anienfeld By Str	"Waddress:	- Constant]]
Preservative None NO Cool Cool H2504 H2 H3PO4 HP NaHSO 4 NABIS Na2,5,2,3 NASO 3 Zn Acetate+NaOH NaOH+Ascorbic Ac Sample Con Sample Con Nado Acetate NaOH NaOH Acetate NaOH	Mala	107.97	City, State ZIP			TRRP Level IV
Preservative None NO Cool Cool H ₂ SO ₄ H ₂ H ₃ PO ₄ HP H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic Ac Sample Corr Sample Corr In K Se Ag SiO ₂ Na Sr 71 Sn U V Zn Hg 1631/2451/7470 /7471	432-557	L	5	& WSOLUMICOM	EDD 🗌 AC	Other:
None NO Cool Cool HCL. HC H ₂ S0 ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic AC Sample Cor			Turn Around			Preservative Codes
Cool Cool HCL. HC H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO ₃ Zn Acetate-NaOH NaOH+Ascorbic Ac Sample Corr Sample Corr IN K Se Ag SiO ₂ Na Sr 71 Sn U V Zn Hg 1631/245 1 / 7470 / 7471		PRou	L		ano _N	2
HCL. HC H204 HP NaHSO 4 NABIS Na5,203 NASO 3 Zn Acetate+NaOH NaOH+Ascorbic A Sample Cor Sample Cor Sample Cor H K Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg 1631/245 1 / 7470 / 7471	Gads (te:	an reliable		
H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic A Sample Cor	er's Name: Tala Live	Kan	ts the day received by	CO SI	, COS	ς.
I. K Se Ag 5/0 ₂ Na Sr Hg 1631/2451/	02020	10	if received by 4:30pm	1	H ₂ S0 4	7
II K Se Ag SiO ₂ Na Sr Hg 1631/2451/		YES NO	\dashv	Z	Ode	H.
II K Se Ag SiO ₂ Na Sr Hg 1631/2451/	Yes	_	F 60	00 50 70	SHEN	, NARIS
II K Se Ag SiO ₂ Na Sr 7	Yes No	, ,	07:-)] } }	, v. e.Z.	OseN O
II K Se Ag SiO ₂ Na Sr ⁷ Hg 1631/2451/	Yes No	_	0	2L >×	22.22	ica itazo a
II K Se Ag SiO ₂ Na Sr Hg 1631/2451/	Total Containers.	Corrected Temperati	ài	Ha Maria	HOEN	+Ascorbic Acid SAPC
II K Se Ag SiO ₂ Na Sr Ti Sn Hg 1631/2451/7470		Date	Danth Grab/	カリング		
SW 0 S 2 27 24 1200 0-0.5" K K K K K K K K K		Sampled	Comp			sample Comments
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO ₂ Na Sr 71 Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg 1631 / 245 1 / 7470 / 7471	SNO	2/27/2K	0.0.5	メメメ		
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg 1631 / 245 1 / 7470 / 7471						
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U Hg 1631 / 245 1 / 7470 / 7471						
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg 1631 / 245 1 / 7470 / 7471		CETA ANAMA DE L'ARTINITATION D	withtenschannenbarnen dalla U.Orenopenyri dalana kalipa johan pananannen dalla u.Orenopenyri dalana kalipa johan joha			
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag 510, Na Sr 71 Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag 71 U Hg 1631 / 245 1 / 7470 / 7471	The state of the s					
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631 / 245 1 / 7470 / 7471			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni Se Ag Ti U Hg 1631 / 245 1 / 7470 / 7471	2					
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631 / 245 1 / 7470 / 7471		WARRAN AND AND AND AND AND AND AND AND AND A				100
Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631/2451/7470 /7471			111	ئ - ئ	E SP W CM	11 1/7 7
Norther Cransh no debts dammars and the state of the stat	Circle Method(s) and Metal(s) to t		6010	00 1	Mn Mo Ni Se Ag TI U Hg 1631/2451/7470	7471
INVESTIGATION OF THE PROPERTY	Notice: Stanature of this document and relinanishmen	tofeamole confittitions	and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
THE PARTY OF THE P		of VI Shiriping with the second second second	y responsibility for any roccory	מן פאלספואפא ווזרחונפת ואל חופ רוופונר וו אחרנו ומאאפא מופ מחפ ני	o circumstances beyond the control	

Client: Ensolum

Job Number: 880-40020-1

SDG Number: Eddy County

List Source: Eurofins Midland

Login Number: 40020 List Number: 1

Creator: Wheeler, Jazmine

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

y 203

<6mm (1/4").

APPENDIX D

Closure Request, July 11, 2023

July 3, 2023

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request

Cabo Wabo Federal Com 801H Incident Number NAPP2304550164 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of COG Operating, LLC (COG), has prepared this *Closure Request* to document assessment, excavation, and soil sampling activities performed at the Cabo Wabo Federal Com 801H (Site). The purpose of the Site assessment, excavation, and soil sampling activities was to assess for the presence or absence of impacts to soil following a produced water release at the Site. Based on excavation activities and laboratory analytical results from the soil sampling events, COG is submitting this *Closure Request*, describing remediation that has occurred and requesting closure for Incident Number NAPP2304550164.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit A, Section 24, Township 25 South, Range 29 East, in Eddy County, New Mexico (32.1222°, -103.9325°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On January 28, 2023, a temporary tank malfunctioned and released 9.0594 barrels (bbls) of produced water within the secondary containment and onto the well pad. A vacuum truck was dispatched to the site and recovered 9.0 bbls of freestanding fluids from within the containment. COG reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on February 14, 2023. The release was assigned Incident Number NAPP2304550164.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is the New Mexico Office of the State Engineer (NMOSE) well C-04529, located approximately 0.8 miles north of the Site. The soil boring was drilled during May 2021 to a depth of 101 feet bgs and no groundwater was encountered. Four additional soil borings were drilled in all directions around the Site between February 2020 and November 2022. The soil borings were located between

COG Operating, LLC Closure Request Cabo Wabo Federal Com 801H

0.9 miles and 1.7-miles from the Site and were drilled to depths ranging from 105 feet to 120 feet bgs. No groundwater was encountered in any of the soil borings. Based on the soil boring data, regional depth to groundwater in the area is confirmed to be greater than 100 feet bgs. All wells used for depth to groundwater determination are presented on Figure 1. The associated well records are included in Appendix A.

The closest significant watercourse to the Site is an intermittent stream, located approximately 1,794 feet southeast of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- Total Petroleum Hydrocarbons (TPH): 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On March 13, 2023, Ensolum personnel were at the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. Assessment soil samples SS01 through SS13 were collected within and around the release extent at a depth of 0.25 feet bgs, to assess for the presence or absence of impacted soil resulting from the release and confirm the lateral extent of the release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach® chloride QuanTab® test strips. The soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included as Appendix B.

The soil samples were placed into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and placed on ice. The soil samples were transported under chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following chemicals of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH- DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment soil sample SS02 indicated TPH concentrations exceeded the Site Closure Criteria. Laboratory analytical results for assessment samples SS01 and SS03 through SS13 indicated all COC concentrations were compliant with the Site Closure Criteria.

On May 12, 2023, Ensolum personnel returned to the Site to oversee additional delineation activities. Nine boreholes were advanced via hand-auger to a depth of 1-foot bgs within the release extent at the location of assessment samples SS05 through SS13. One soil sample was collected from each borehole at a depth of 1-foot bgs (SS05A through SS13A). Soil from the boreholes was field screened for VOCs and chloride. Field screening results and observations for the boreholes were documented on

COG Operating, LLC Closure Request Cabo Wabo Federal Com 801H

lithologic/soil sampling logs, which are included in Appendix C. The soil samples were collected, handled, and analyzed following the same procedures as described above. The delineation soil sample locations are depicted on Figure 2.

Laboratory analytical results for borehole delineation soil samples SS05A through SS13A indicated all COC concentrations were compliant with the Site Closure Criteria and provided vertical delineation of the release to the most stringent Table I Closure Criteria. Based on laboratory analytical results for assessment sample SS02, excavation activities were warranted.

EXCAVATION ACTIVITIES AND LABORATORY ANALYTICAL RESULTS

On May 12, 2023, in coordination with delineation activities, Ensolum personnel were onsite to oversee excavation activities based on laboratory analytical results for assessment sample SS02. Excavation activities were performed using a backhoe and transport vehicles. To direct excavation activities, soil was screened for VOCs and chloride. The excavation was completed at a depth of 0.5 feet bgs. Photographic documentation of the excavation activities is included in Appendix B.

Following removal of impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Due to the shallow depth of the excavation, the sidewalls were incorporated into the floor samples. Composite soil samples FS01 and FS02 were collected from the floor of the excavation at a depth of 0.5 feet bgs. The soil samples were collected, handled, and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations are presented on Figure 3. Four additional assessment soil samples (SS14 through SS17) were collected around the release extent in each cardinal direction at a depth of approximately 0.5 feet bgs to confirm the lateral extent of the release. The assessment soil sample locations are presented on Figure 2.

Laboratory analytical results for the excavation floor samples indicated all COC concentrations were compliant with the Site Closure Criteria. Laboratory analytical results for assessment soil samples SS14 through SS17, collected around the release extent, were compliant with most stringent Table I Closure Criteria and successfully defined the lateral extent of the release. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

The excavation measured approximately 350 square feet in areal extent. A total of approximately 10 cubic yards of impacted soil was excavated, transported, and properly disposed at R360 Environmental Solutions in Hobbs, New Mexico. After completion of confirmation sampling, the excavation was backfilled.

CLOSURE REQUEST

Site assessment and excavation activities were conducted at the Site to address the impacted soil resulting from the January 28, 2023, produced water release. Laboratory analytical results for the delineation and excavation soil samples indicated all COC concentrations were compliant with the Site Closure Criteria. In addition, the release was laterally and vertically delineated to the most stringent Table I Closure Criteria by assessment soil samples SS01, SS03, SS14 through SS17 and SS05A through SS13A.

Initial response efforts and excavation of impacted soil have mitigated impacts at this site. Depth to groundwater has been estimated to be greater than 100 feet bgs and no other sensitive receptors were identified near the release extent. As such, COG respectfully requests closure for Incident Number

COG Operating, LLC Closure Request Cabo Wabo Federal Com 801H

NAPP2304550164. NMOCD Notifications are included in Appendix E and the Final C-141 is included in Appendix F.

If you have any questions or comments, please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, **Ensolum, LLC**

Peter Van Patten Project Geologist

Aimee Cole

Senior Managing Scientist

cc: Justin Carlile, COG Operating, LLC

Bureau of Land Management

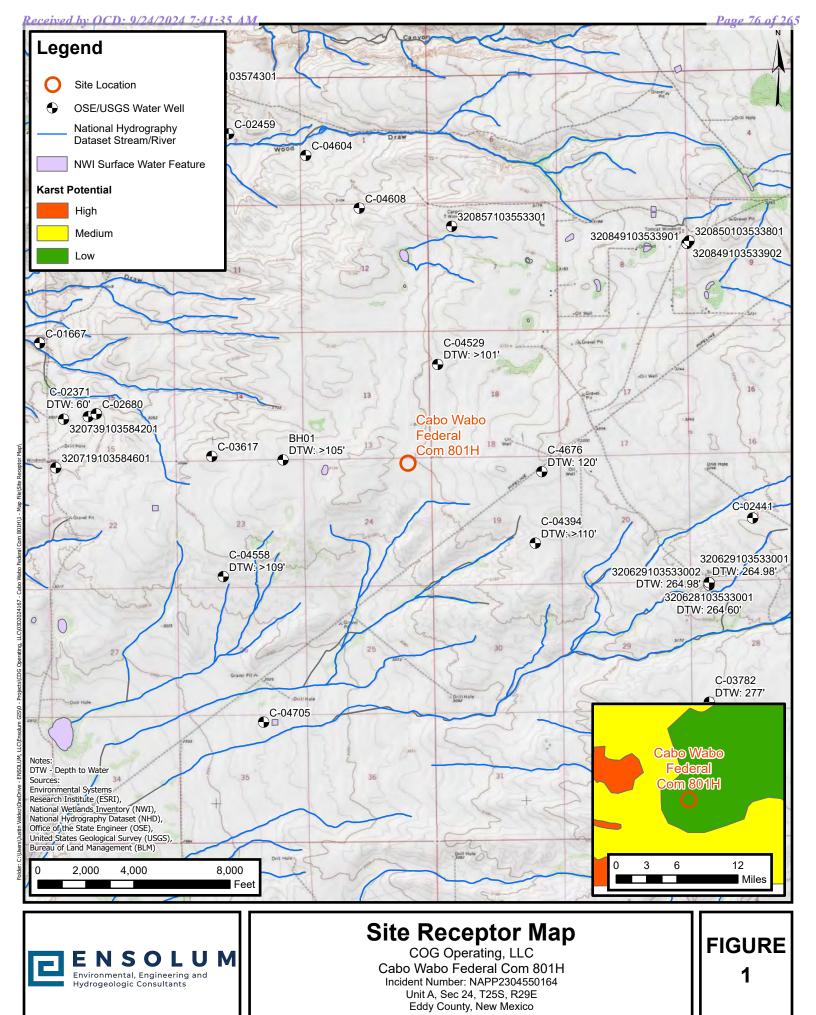
Appendices:

Figure 1 Site Receptor Map

Figure 2 Assessment Soil Sample Locations
Figure 3 Excavation Soil Sample Locations
Table 1 Soil Sample Analytical Results
Appendix A Referenced Well Records

Appendix B Photographic Log

Appendix C Lithologic Soil Sampling Logs

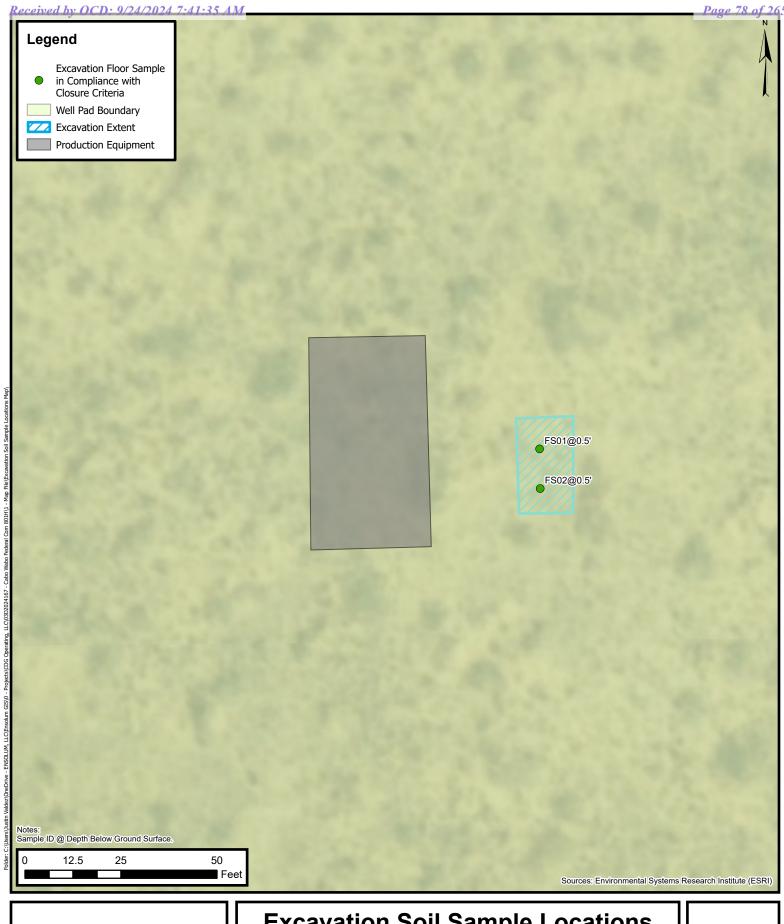

Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

Appendix E NMOCD Notifications

Appendix F Final C-141

FIGURES

Released to Imaging: 10/23/2024 10:35:28 AM



Assessment Soil Sample Locations

COG Operating, LLC Cabo Wabo Federal Com 801H Incident Number: NAPP2304550164 Unit A, Sec 24, T25S, R29E Eddy County, New Mexico

FIGURE 2

Released to Imaging: 10/23/2024 10:35:28 AM

Excavation Soil Sample LocationsCOG Operating, LLC

COG Operating, LLC
Cabo Wabo Federal Com 801H
Incident Number: NAPP2304550164
Unit A, Sec 24, T25S, R29E
Eddy County, New Mexico

FIGURE 3

TABLES

				Cabo \ C	TABLE 1 LE ANALYTICA Wabo Federal Co OG Operating, LI y County, New Mo	m 801H _C				
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Asse	essment Soil San	nples				
SS01	03/13/2023	0.25	<0.00201	<0.00402	<49.9	139	<49.9	139	139	109
SS02	03/13/2023	0.25	<0.00202	<0.00403	<50.0	2640	<50.0	2,640	2,640	429
SS03	03/13/2023	0.25	<0.00199	<0.00398	<49.9	71.4	<49.9	71.4	71.4	451
SS04	03/13/2023	0.25	<0.00200	<0.00399	<49.9	987	<49.9	987	987	503
SS05	03/13/2023	0.25	<0.00200	<0.00401	<49.9	427	<49.9	427	427	8,870
SS05A	05/12/2023	1	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	216
SS06	03/13/2023	0.25	<0.00199	<0.00398	<50.0	430	<50.0	430	430	3,590
SS06A	05/12/2023	1	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	229
SS07	03/13/2023	0.25	<0.00199	<0.00398	<50.0	965	<50.0	965	965	1,960
SS07A	05/12/2023	1	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<49.9	226
SS08	03/13/2023	0.25	<0.00200	<0.00399	<49.9	169	<49.9	169	169	8,150
SS08A	05/12/2023	1	<0.00198	<0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	236
SS09	03/13/2023	0.25	<0.00201	<0.00402	<49.9	678	<49.9	678	678	1,500
SS09A	05/12/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	317
SS10	03/13/2023	0.25	<0.00200	<0.00401	<49.9	88.5	<49.9	88.5	88.5	335
SS10A	05/12/2023	1	<0.00198	<0.00397	<50.0	<50.0	<50.0	<50.0	<50.0	310
SS11	03/13/2023	0.25	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	1,100
SS11A	05/12/2023	1	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	313
SS12	03/13/2023	0.25	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	587
SS12A	05/12/2023	1	<0.00200	<0.00401	<49.8	<49.8	<49.8	<49.8	<49.8	332
SS13	03/13/2023	0.25	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	4,270
SS13A	05/12/2023	1	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	335
SS14	05/12/2023	0.5	<0.00198	<0.00396	<49.8	<49.8	<49.8	<49.8	<49.8	326
SS15	05/12/2023	0.5	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	<50.0	353
SS16	05/12/2023	0.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	285
SS17	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	293
				Exc	avation Soil Sam	ples				
FS01	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	386
FS02	05/12/2023	0.5	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	472

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

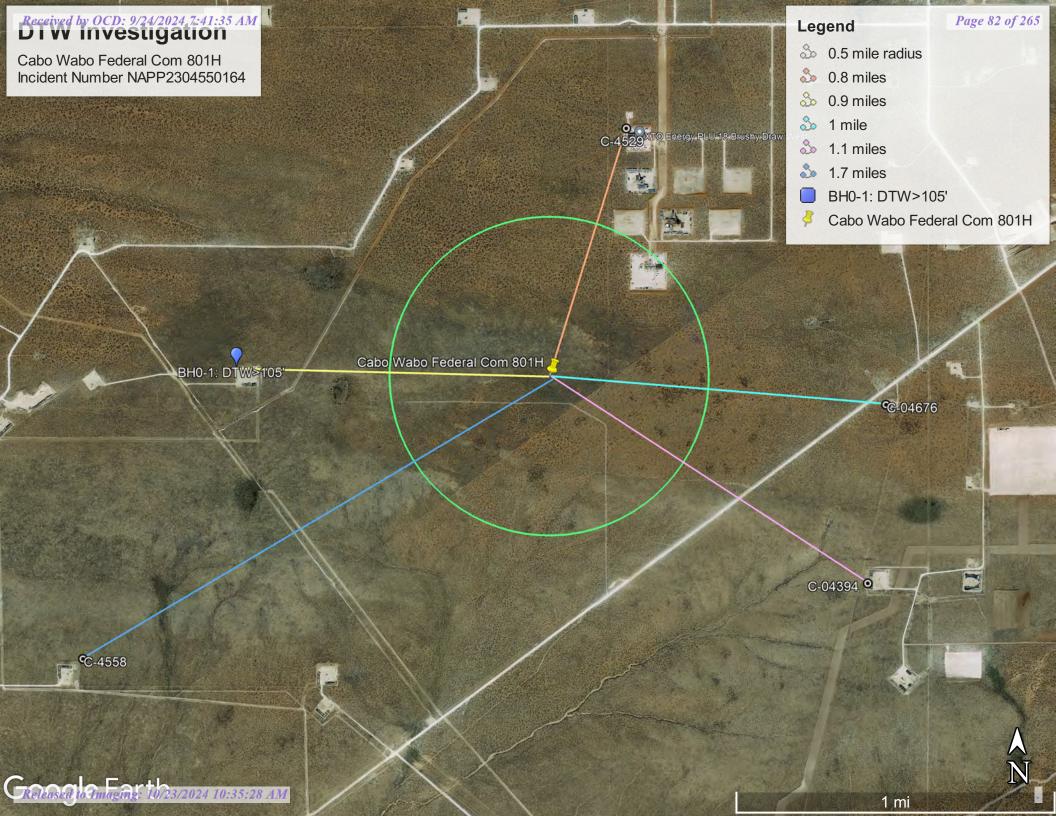
BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon


Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

Grey text represents samples that have been excavated

APPENDIX A

Referenced Well Records

7-	OSE POD NO. ()		/ELL TAG ID NO.			OSE FILE NO(S).			
TIOF	WELL OWNER			l ⁿ	ra .			PHONE (OPTIO	ONAL			
GENERAL AND WELL LOCATION	XTO Energy							PHONE (OPTR	UNAL			
TTI	WELL OWNER 6401 Holida							CITY Midland	***	STATE TX	79707	ZIP
D WE	O-TOT TIONGS	y 11111 D						IVIIdialid				
LAN	WELL LOCATION			grees 32°	MINUTES 8'	SECON 2.07		* ACCURACY	REQUIRED: ONE TENT	TH OF A SI	ECOND	
ERAI	(FROM GPS)	.	TTUDE	103°	55'	42.2		• DATUM REC	QUIRED: WGS 84			
GEN	DESCRIPTION		G WELL LOCATION TO	STREET ADDRES	S AND COMMON	LANDMA	ARKS – PL	SS (SECTION, TO	WNSHJIP, RANGE) WHI	ERE AVAI	LABLE	
.	NW NW See	c. 18 T2:	5S R30E									
	LICENSE NO. 1249		NAME OF LICENSED		kie D. Atkins				NAME OF WELL DRI		MPANY Associates, I	20
	DRILLING STA		DRILLING ENDED		PLETED WELL (FT)		DODE UC	LE DEPTH (FT)	DEPTH WATER FIRS			IC.
	05/14/20		05/14/2021		y well material		DOIL IN	101	DEITH WATERIA	n/a	1112CD (11)	
_	COMPLETED	WELL IS:	ARTESIAN	DRY HOLE	SHALLOW	V (UNCO	NFINED)		STATIC WATER LEV	EL IN COI n/a	MPLETED WE	LL (FT)
2. DRILLING & CASING INFORMATION	DRILLING FLU	Л D :	✓ AIR	MUD MUD	ADDITIVE	S – SPEC	IFY:					
RMA	DRILLING ME	THOD:	ROTARY	HAMMER	CABLE TO	OOL	✓ OTH	ER – SPECIFY:	Hollo	w Stem	Auger	
NFO	DEPTH (f	eet bgl)	BORE HOLE		ATERIAL AND	OR		ASING	CASING	CASI	NG WALL	SLOT
E E	FROM	то	DIAM		GRADE th casing string, a	and	CON	NECTION TYPE	INSIDE DIAM.	THIC	CKNESS	SIZE (inches)
CAS	0	101	(inches)		ctions of screen)		(add cou	oling diameter)	(inches)	(11)	nches)	(11101108)
\$ 5]			10.5		ang mon							
LLIN					***							
DRI												
7						-						
										<u> </u>		
	Drawer (2		<u> </u>							<u> </u>		<u> </u>
T.	DEPTH (f	TO	BORE HOLE DIAM. (inches)		' ANNULAR SE. EL PACK SIZE-I				AMOUNT (cubic feet)		METHO: PLACEM	
ANNULAR MATERIAL	FROM	10							, ,			
MAT												
AR												
[DNI)												
3. AI												
	OSE INTERN	AL USE	<u> </u>				•		0 WELL RECORD	LOG	Version 06/3	0/17)
	NO.		1529	-6 20	POD NO.		-l,	TRN	4 1 2	134	- D. CE	1.05.3
LOC	ATION P	(1)	15	55.30(<u> </u>	<u> </u>		WELL TAG I	D NO	-	PAGE	1 OF 2

	DEPTH (f	eet bgl)		COLOR AN	D TYPE OF MATERIAL	ENCOL	NTERED -		WAT	TED	ESTIMATED
			THICKNESS		R-BEARING CAVITIES			s	BEAR	ING?	YIELD FOR WATER-
	FROM	то	(feet)	(attach sup	plemental sheets to fully	describ	e all units)		(YES	NO)	BEARING ZONES (gpm)
İ	0	4	4	SAND, poorly graded	, fine-very grained, calic	ne gravel	, Reddish-brown,	, dry	Y	√N	
	4	29	25	CALICHE, poorly cor	solidated, with sand med	ium grain	ed, tan-off white	, dry	Y	√N	
	29	39	10	SAND, poorly graded,	fine-very grained, some	caliche g	ravel, Tan-brown	ı, dry	Y	√N	
	39	54	15	SILTY SAND, p	oorly graded, very- fine g	rained, L	ight brown, dry		Y	√N	
	54	59	5	SILTY SAND, poorly	graded, very- fine grained	, caliche	gravel Light brov	vn, dr	Y	√N	
13	59	73	14	SANDY CLAY, very-f	fine grained sand, low plas	sticity, B	own- Red Brown	ı, moi	Y	√N	
4. HYDROGEOLOGIC LOG OF WELL	73	79	6	CLAYEY SAND, low	plasticity, very-fine grain	ed sand,	Brown/Red Brow	vn, mo	Y	√N	
OF	79	83	4	SANDY CLAY, very-f	ine grained sand, low pla	sticity, B	own- Dark Brow	n, mo	Y	✓ N	
90	83	94	9	SANDY CLAY, very-	fine grained sand, low pla	asticity, F	leddish Brown, n	noist	Y	✓ N	
12:	94	99	5	SANDY CLAY, very-f	fine grained sand, low plan	sticity, B	own-Dark Brow	n, dry	Y	√ N	
701	99	101	2	SANDY CLAY, ve	ry-fine grained sand, low	plasticity	, Earth Brown, d	гy	Y	√N	
GEO									Y	N	
80									Y	N	
HA									Y	N	
4			·						Y	N	
									Y	N	
								i	Y	N	
				-					Y	N	
								İ	Y	N	
									Y	N	
									Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING	G STRATA:			TOTA	AL ESTIM	IATED	
	PUMI	, [] VI	R LIFT	BAILER OT	HER - SPECIFY:			WEL	L YIELD	(gpm):	0.00
		TROT	DECITE ATT	ACH A CORV OF DAT	A COLLECTED DURIN	C WELL	TESTING INC	TIDD	VC DISC	HADCEA	(ETUOD
NO	WELL TES				HOWING DISCHARGE						
VISION	MISCELLA	NEOUS INF	ORMATION:		.1	11	1 1. 611 - 4		44!	£ 4	1 1 1
PER			fe	emporary well materia et below ground surfa	als removed and the soi	n boring onite chi	ps from ten fee	ig anıı t belov	w ground	from tot surface	to surface.
ns:			Lo	ogs adapted from WSI	P on-site geologist.						
TEST; RIG SUPER											
EST	PRINT NAM	(F(S) OF DE	RIL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPER	VISION	OF WELL CON	STRIK	TION O	THER TH	AN LICENSEE:
5. T			lo Trevino, Can		·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01 1122 0011				
E-J					EST OF HIS OR HER K ID THAT HE OR SHE W						
E					PLETION OF WELL DR			ŒCOR	D WIID	IRE SIA	TE ENGINEER
LAN:	Jack A	thing									1
6. SIGNATURE	Jack XV	Kins		Jac	ckie D. Atkins				06/09	/2021	
Ý		SIGNATI	URE OF DRILLE	R / PRINT SIGNEE	NAME					DATE	
FOR	OSE DITER	NAI IIOD					W/D_26 W/D	11 00/	70PD & 1	1 OG W~	mion 06/30/2017)
	R OSE INTERI E NO. /	THE USE	1525		POD NO.		TRN NO.	<u> </u>	1000	736	rsjon 06/30/2017)
-	CATION	<u> </u>	<i>, ,,,,,</i>		·	WEI	L TAG ID NO.	- <i>U</i>	-1	/	PAGE 2 OF 2

WELL RECORD & LOG OFFICE OF THE STATE ENGINEER www.ose.state.nm.us

OSE DII AUG 17 2021 PHG: 21

	OSE POD NO)		WELL TAG ID NO	D .		OSE FILE NO() C-4558	S).			
ő	POD1 (B)				n/a							
GENERAL AND WELL LOCATION	WELL OWNE	•	•					PHONE (OPTIC	ONAL)			
) TO	WELL OWN		ŕ					CITY		STATE		ZIP
VELI	6401 Holid							Midland		TX	79707	ZII
ě			DI	EGREES	MINUTES	SECO	NDS					
LA	WELL LOCATIO	N LA	TITUDE	32	6	33	.90 _N	* ACCURACY	REQUIRED: ONE TENT	TH OF A	SECOND	
ERA	(FROM GP	s)	NGITUDE	103	57	27	.03 W	DATUM REC	QUIRED: WGS 84			
GEN	DESCRIPTION	ON RELATE	NG WELL LOCATION TO	STREET ADD	RESS AND COMMO	N LANDA	IARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVA	AILABLE	
1.(SE SW Sec	c. 23 T25	S R29E									
	LICENSE NO		NAME OF LICENSED					-	NAME OF WELL DR			
	124	19			Jackie D. Atkin						g Associates, l	
	DRILLING S' 07/21/		07/21/2021		OMPLETED WELL (rary well mater		1	LE DEPTH (FT) 109	DEPTH WATER FIRE	T ENCO n/a		
									STATIC WATER LEV	EL IN CO	OMPLETED WE	ELL (FT)
Z	COMPLETE	O WELL IS:	ARTESIAN	DRY HO	LE SHALL	OW (UNC	ONFINED)			n/a	1	
ATI(DRILLING F	LUID:	AIR	MUD	ADDIT	VES - SPE	CIFY:					
& CASING INFORMATION	DRILLING M	ETHOD:	ROTARY	П намме	R CABLE	TOOL	✓ OTHE	R – SPECIFY:	Hollo	w Sten	Auger	
I N	DEPTH	(feet bgl)	BORE HOLE	CASING	MATERIAL AN	D/OR	C/	ASING	CASING	CAS	ING WALL	SLOT
NG	FROM	TO	DIAM	(include	GRADE each casing string	g, and		NECTION TYPE	INSIDE DIAM.		ICKNESS	SIZE
CAS		100	(inches)	note	sections of screen	n)	(add coup	ling diameter)	(inches)	,	(inches)	(inches)
3	0	109	±6.5		Boring- HSA							ļ <u>-</u>
DRILLING												
RIL												
2. D												
					'							
						***						<u> </u>
												
	 			<u>. </u>			<u> </u>		<u> </u>	<u> </u>		<u> </u>
١,,	DEPTH	(feet bgl)	BORE HOLE	1	IST ANNULAR				AMOUNT		METHO	
ANNULAR MATERIAL	FROM	то	DIAM. (inches)	GRA	VEL PACK SIZ	E-RANG	E BY INTE	ERVAL	(cubic feet)		PLACE	MENI
MA										\dashv		
3												
N				 								
3. A.				 						-+		
"				 						$\neg +$		
FOR	OSE INTER	NAI IICE						TL/D 2	0 WELL RECORD	e i na	(Version 06/2	:0/1 <i>7</i>)
					PODN	io. (TRN I			(+ CLOIDII (U)/3	· · · · · · ·
	CATION	255	58 -29E-23	343		-		WELL TAG I			PAGE	1 OF 2

OSE 011 AUG 17 2021 PKS:21

	DEPTH (i	feet bgl)	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATE R-BEARING CAVI plemental sheets to	TIES O	R FRAC	TURE ZONE	S	WAT BEAR (YES	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	5	5	Calich	nem moderate conso	lidation,	Off Wh	ite		Y	√ N	
	5	23	18		poorly graded, som					Y	√ N	
	23	39	16		m grain, poorly grad					Y	✓N	
	39	44	5	Sand, Fine-medium gr				_ _		Y	√N	
	44	65	21		medium grain, poor					Y	✓N	
,	65	70	5		and, poorly graded,					Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL	70	108	28		medium grain, poor					Y	√ N	
F 🛠	108	109	1		poorly sorted, inter						√ N	
96	100	109	<u> </u>	Salidswile,	poorty sorted, inter	bedded v	viui ciay	, moist			N	
77.0							•	•		Y	N	
Š	<u> </u>									Y		
io.									_		N	
OGE										Y	N	
(DR			1							Y	N	
H	ļ									Y	N	
•										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
										Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING	STRATA:					L ESTIN		
	PUM	Р 🔲 А	IR LIFT	BAILER OT	HER - SPECIFY:				WELL	. YIELD	(gpm):	0.00
TEST; RIG SUPERVISION	WELL TES	STAR	T TIME, END TI FORMATION: To fe	ACH A COPY OF DAT ME, AND A TABLE SH emporary well materia et below ground surfa ogs adapted from WSI	ls removed and th	e soil b	oring b	WDOWN OV	er THE	TESTIN	G PERIO	D. tal depth to ten
T; F				·								
	PRINT NAM	ME(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PRO	VIDED ONSITE SU	PERVI	SION OI	F WELL CON	STRUC	LION O.	THER TH	IAN LICENSEE:
vi	Shane Eldri	dge, Carme	elo Trevino, Car	neron Pruitt								
SIGNATURE	CORRECT	RECORD O	F THE ABOVE I	TIES THAT, TO THE B DESCRIBED HOLE AN 00 DAYS AFTER COM	D THAT HE OR SI	HE WIL	L FILE 7	GE AND BEL THIS WELL I	IEF, THE	E FORE	GOING I THE STA	S A TRUE AND ATE ENGINEER
6. SIGN	Jack 1	Atkins		Jac	kie D. Atkins					08/16	5/2021	
تّ		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE	NAME						DATE	
E^	R OSE INTER	NAT HEE						WD-20 WE	II DEC	י אַ תּקּה	. OG 0/~	rsion 06/30/2017)
	ENO.	455	8		POD NO.			TRN NO.	<u> </u>	91	95	101011 00/30/2017)
LC	CATION 2		9E-23	343			WELL	TAG ID NO.			- 0	PAGE 2 OF 2

LT Environ	mental, Inc.		5	08 Wes	ronment st Steven	s Street	•		Identifier: MWDI C 4394	Date: 2/4/2020	
	56				Vew Mexi				Project Name:	RP Number:	1
-			Compl	iance · E	ngineerin	g · Remea	liation		PLU 423	ZRP-3790	Ш
		LITHO	LOGIC	/ SOI	LSAMP				Logged By: FS	Method: SONIC	
Lat/Long	2				Field Scree	ening : CHIL	ORIDES, P	ID.	Hole Diameter: 4"/6"	Total Depth:	1
Commen	ts: No	sam	plin	9.6	thola	9yr	emarl	s on			1
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology/	Remarks	
					1			hyd	rovac excavate	(refusal@11)	#
D			2		3 -		sw.s	2.5	light brw no odor	ine graded, ine graind, n-tan, nostain,	
٥			7		5			s'	reddish b		
D			7		7		SP	· 6'	SAND, dr graded, lie brun, fin	y, poorly the brun- e-very fine	2
D			7		9 -		รพ-ร	7.5	' some mod light brur rounded	consolss - brwn, sub	
					11 _ 12 _ 13 _		sP	10'	abundant ss gravel	ss 10-11' color absent tan-	ch
D			7		14				ant.	no 1. LL abune	Pr
D			7		16 - 17 - 18		SW-S	23	brun-tan, consolida	dry, mod well	
D		*1	7		19				absent		
			(i)		20						
							,) (
D			N		21 22		*				
					23						
D			7		24						

Per	mmental, Inc.		Ca	508 We Irlsbad,					Identifier: MWOI C 4394 Project Name: PLU 423	Date: 2/4/2020 RP Number: 2RP-2674 7 289-3790
		LITH	OLOGIC	c /soi		LING L			Logged By: FS	Method: SONIC
Lat/Long	Ç.				Field Scre	ening : CHL	ORIDES, P	ID	Hole Diameter: 44/6	Total Depth:
Commen	its:								1,70	,
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology/	Remarks
٥			7		26] 27 _ 28] 29	† †	SP	27.9	tan, poor fine-very	nt biwn lavi
D			7	ä	30			31		publics (gravel)
D			7		32					change rwn-teddisl
m			2		34 35 36			0	-34' abun. chunks	dant ss mod consol
m			N		37		SW-S	36	someclay reddish brw rounded - s grey-light	pockets n, few pebbles ubrounded,
m		<i>y</i> •	N		39 40 41				lamination caliene,	dolomite?
M			7		42 43		7		trace, redo	lish brun
m	3		N		44 45 46	3.	88	44 , , -	gons ILTY same	ge, light brwi cindin Prilight brwn
D			N	~	46 47 48				cohesive to	sticity, non race high plas es, reddish
5			N		49		- 1	49.5 49.5	lowplas clas	w band.

good y

LT Enviror	Primental, Inc.		C	508 We	vironment est Steven New Mexi	Street	0		Identifier: MWOI C 4394	Date: 2/4/2020
2	5				Engineerin				Project Name: PLU 423	RP Number: ZRP - 3750
Lat/Long		LITHO	LOGI	C / SO	IL SAMP		OG ORIDES, P		Logged By: FS Hole Diameter: 1 /10	Method: Sonic Total Depth: 110
Commen							-		Hole Diameter: 4 /6"	(10)
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type		Lithology/	Remarks
D			И		51 1		SP (i)			gh plas clay
D			N		53 _				consolitions consolitions	ilty ss, poorly dated pange fan -
M			N		55 _				grey ba	nd (30mm)
M			N		57 - 58 - 59	×			brwn - br	oun, light run, moist, non cohesive
W		2	7	1	60		sm	6	Z' more co	nsolidated
D			7		62 63		s m-s	6	d' dark be change clay no	erwn color 2, silty odules of silty
m			N		65			68	i lowple	s clay pock
m			2		66 67 68			71'		few low plas aminations and, dry,
η	N 69 70 70 71 71 72 72 7							X	no plas, r	non cohesive,
							74'	light gre	aliche pebbles y-grey	
					73 74			X		46
2			1		75					

-	mental, Inc.		Car	508 We dsbad,	ironmen st Steven New Mex Engineerin	s Street ico 8822			Identifier: MW0 Project Name: PLU 423	C 4394	Date: 2/4/2020 RP Number: 2RP - 3796	
		LITHOL	ogic	/SOI	- 1 1 1				Logged By: F5,	88	Method: sonic	
Lat/Long	5				Field Scre	ening: CHI	ORIDES, F	10.	Hole Diameter: 6/	4"	Total Depth:	
Commen	its:											
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth			Lith	ology/Rem	arks	
D			2		* 1	76 77	SM				as clay dish brwn	
D			7			78 79		82	plast	nish ricity	t, brwn- grey, low, cohesive,	9
D			N			80		851	SILT	tain, conso	no odor lidated d, dry,	
m			N		•	82 83 84	CL-S		no pla	as, no	n-brun, on cohesive, no oder	
D		//	v		•	25	sm	87			nge tan-	
D			И		•	88	m-s		SILTST Wholay plas			
D	1	1	٧			90			1.0		y pocklets	
2		1	ı		•	92		94.	5' band plas	Yell	ow low	
2		1			• ‡	ne-	SW H	2/5/2		1	nd@95' 2/4	/2
n			,			76	9	5'-101 6	LAY, maist, 1	orown -	derk brown,	
n		\ \ \ \			- T	97		nigh p	lesticity, continuity, continu	the Ca	1 + 2/	1
		\ N	- 1	1	• †	78		- 95'	ten fine sta	tin no	2 443/	
1		/	/		- 11	00		5+	Tinger.	2	7.77	

LI Environm			Can	08 We Isbad,	rironment st Stevens New Mexi Engineering	Street co 8822			Identifier: Mu Project Name:	10 F 4394 423	Date: 7/5/2020 RP Number: 2RP-3790
		LITHO	LOGIC	/ SOI	L SAMP				Logged By: BP		Method: Sonie
at/Long:					Field Scree	ning: CHL	ORIDES, PI	D.	Hole Diameter:	1/4"	Total Depth:
comment	s.										
Moisture	Chloride (ppm)	Vapor (ppm)	Staining	Sample #	Depth (ft. bgs.)	Sample Depth	Soil/Rock Type			Lithology/Re	emarks
			6		101		CH SP-S	101'-	ins' s	Anston	/E, ten-light boun,
0			N		102		>>				
D			N		103		× ×	1	mented, f	poorly gra	ilidated, calcurrous Med, no strik,
٥			1		104				so oder.		
U			٦		105			105'-	110' CL	AY, mo	st, duk brown - y, cohesine, true
M			N		106		CH	te.	sond 1	plustich	y, cohesine, true
P			N		107			60	ler.	mine tion	s, no stain, no
			67		108		ķ II	w7'-	109' to	- 1:5H	bown well
0			~		109			1	ansolidate	d fine s	vem sondstone
M			N		110				stringer,		7
					111		TOPIO			,	
					112			T	D & 110		
					113						
					114						
					115						
					116						
					117						
					118						
					119						
					120						
					121						
					122						
					123						
					124						
					125						

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

QSE DIF DEC 21 2022 PM3:14

	OSE POD NO. (W	FII NO	1)		WELL TAG ID NO	0		OSE FILE NO	(C)		
NO	C-04676 POD				WELL INGIDING			C-04676	ω,		
OCATI	WELL OWNER Y	5 UC 494 765						PHONE (OPTI 575-200-072			
GENERAL AND WELL LOCATION	WELL OWNER I							CITY CARLSBAI	D	STATE NM 88220	ZIP
NO	WELL	T	DE	GREES	MINUTES	SECON					
KAL /	LOCATION (FROM GPS)	LA	TITUDE	-103	12 54	32.6	N		REQUIRED: ONE TEN QUIRED: WGS 84	TH OF A SECOND	
ENE			NGITUDE NG WELL LOCATION TO			50.9				EBE AVAILABLE	
1.6	POKER LAK			STREET ADDR	ESS AND COMMO	I LANDMA	ikks – PLS	ss (SECTION, TO	wnshif, kange) wh	ERE AVAILABLE	
	LICENSE NO.		NAME OF LICENSED			2 (0.07)			NAME OF WELL DR		5.53
	WD-118				LL SOUTHER					S WATER WELL SEI	14400
	DRILLING STAR 11/22/22		DRILLING ENDED 11/22/22	DEPTH OF CO	MPLETED WELL (1 120	FT)	BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FT)	
7	COMPLETED W	ELL IS:	☐ ARTESIAN	DRY HOL	E SHALL	OW (UNCON	NFINED)		STATIC WATER LEV	VEL IN COMPLETED WE N/A	LL (FT)
TIO	DRILLING FLUI	D;	✓ AIR	☐ MUD	ADDITI	VES - SPEC	IFY:				
RMA	DRILLING METI	IOD:	▼ ROTARY	HAMMER	_ CABLE	TOOL	ОТНЕ	R - SPECIFY:			
INFO	DEPTH (fee	t bgl)	BORE HOLE	CASING	MATERIAL AN	D/OR	C	ASING	CASING	CASING WALL	SLOT
CASING INFORMATION	FROM	то	DIAM (inches)		GRADE each casing string sections of screen		CON	NECTION TYPE ling diameter)	INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)
2. DRILLING & C				NO C	ASING IN HOL	E					
HEL											
2. DI											
		-									
	DEPTH (fee	t bgl)	BORE HOLE	LIS	ST ANNULAR S	SEAL MAT	TERIAL A	AND	AMOUNT	метно	
RIAL	FROM	то	DIAM. (inches)	GRA	VEL PACK SIZE	E-RANGE	BY INTE	ERVAL	(cubic feet)	PLACEN	MENT
ATE						N/A				-	
IR M						27.22					
3. ANNULAR MATERIAL											
.AN		_									
FOR	OSE INTERNA	L USE						WR-2	0 WELL RECORD	& LOG (Version 04/3	0/19)
	ENO. C- 0	46	76		POD N	o. l		TRN			
LOC	CATION ZL	(5.	30E.19.1.	2.2				WELL TAG I	D NO.	PAGE	1 OF 2

	DEPTH (feet bgl)		COLOR AN	ND TYPE OF MA	TEDIAL ENCO	MINITEDED		-	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WAT		AVITIES OR FI	RACTURE ZONES	BEA	TER RING? (/NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	1			CALICI	HE PAD		Y	✓ N	
M	1	120			RED	SAND		Y	✓ N	
								Y	N	
								Y	N	
	>							Y	N	
Ţ								Y	N	
4. HYDROGEOLOGIC LOG OF WELL								Y	N	
OF								Y	N	
000								Y	N	
210								Y	N	
CO								Y	N	
GEO								Y	N	
RO								Y	N	
HXI								Y	N	
4								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	1							Y	N	
								Y	N	
	METHOD U		The second second	OF WATER-BEARIN	G STRATA: THER – SPECIFY	:DRY HOLE		TOTAL ESTI		0.00
NOIS	WELL TES			ACH A COPY OF DA ME, AND A TABLE S						
TEST; RIG SUPERVIS			FORMATION: PRILL RIG SUPER	VISOR(S) THAT PRO	OVIDED ONSITE	SUPERVISIO		SE DII DEC		
5.	RUSSELL S		717X/1 L							
6. SIGNATURE	RECORD O	P THE ABO	OVE DESCRIBED ALSO BE FIZED	hxx	PTY THAT THE HOLDER WITHI	WELL TAG, II N 30 DAYS AF	REQUIRED, HAS	S BEEN INSTA ETION OF WI	ALLED AT ELL DRIL	ND THAT THIS
	"	SIGNAT	UKE OF DRILLE	PRINT SIGNEE	NAME				DATE	
	R OSE INTER	NAL USE				_	III II			rsion 04/30/2019
FIL		0467			POD NO.	1	TRN NO.	7362	86	1
LO	CATION 2	45.3	1.91.70	.2.2.		WI	ELL TAG ID NO.			PAGE 2 OF

Soil Boring/Temporary Monitor Well BH-1

Company: COG Operating, LLC **Site:** Patron 23 Federal #004H

NMOCD Reference #: nRM2034558291

Location: Eddy Co., NM

PLSS: UL 'A' (NE/NE), Sec. 23, T25S, R29E

Well/Borehole ID: BH-1

Coordinates (NAD 83): 32.122593,-103.949262

Drilling Date: 2/24/2021 Depth of Boring (ft): 105 Depth to Groundwater (ft): >105

Plugging Date: 2/27/2021

Drilling Company: Scarborough Drilling, Inc.

Driller: L. Scarborough
Drilling Method: Air Rotary
Logged By: L. Scarborough
Drafted By: B. Arguijo

Draft Date: 4/9/2021

Completion: N/A Casing: N/A Screen: N/A

Comments: N/A

Commi							
Depth (ft)	Groundwater	Lithology	Material Description	Chloride Field Test	Lab	PID	Well Construction
=		7777	\Caliche	<u> </u>	_	_	
_ 5		[Topsoil				
Ξ		 		-	-	-	
_ 10		3 3 3 3					
15		0.000	Caliche	-	-	-	
- 10		0.000		_	_	_	
_ 20		0 000					
- 05		:.0°		-	-	-	
_ 25			Sand	┨ _	_	_	
30			Cand	-	_	_	
E				-	-	-	
_ 35							
_ _ 40				-	-	-	
- 10			Sand with w/ sandy shale streaks	┪ .	_	_	
- 45							sing
				-	-	-	Č
50							2
_ _ 55				-	· -	_	Open Hole, No Casing
E				-	-	-	
60							
- - 65				-	-	-	
- 03			Sand	┪ _	_	_	
- 70							
<u> </u>				-	-	-	
- 75		. • • .					
80				-	_	_	
E			Sandy shale	7 -	-	-	
85							
90		<u> </u>		-	-	-	
- 30				_	_	_	
95							
=				-	-	-	
100							
105						-	
Ξ			Notes: Lines between material types represent approximate boundaries. Actual transitions				
110			may be gradual.				
_ _ 115							
113							
<u> </u>	l						

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Date:

Project:

Patron 23 Federal #004H

Project Number:

13625

Latitude:

32.122

Longitude:

-103.9486

Sample ID	PID/Odor	Chloride Conc.	GPS
NHe O-d'inches		2440	
NHel.	_	364	
EH & O'- b inches		1412	
EHel'	200	148	
SHe D'-b"inches		948	
2 H «),	-	1184	
NHe O'- binches		572	
VH = 1'	~	148	
SPleas D'-b'inches	irtia ot	D2440	
SP1e1.	ned -	516	
SP2- 0'-binches	Mild	> 2.440	
SP 2 . 1.		1.5'28-R	Ref. ! Hard to dig RICK
SPJe (1"-b"inches	Mild	>2,440	<i></i>
SP3 = 1'	~	316	
SP4 e a DO Binere	Milel	>2440	
SP4 = 1'		364	
SP5 en 0"-6" spices	Mild	>2.440	
595e1'	_	572 - R	Hard digging toget 3'
			3- 3- 3
_	_		
	<u> </u>		
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = 5W #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Areas
			,, <u></u>

Date:	2/12/21

Pro		
PIOI	I⊕CT	-

Patron 23 Federal #004H

Project Number: 1

13625 Latitude:

32.122___

Longitude:

-103.9486

Sample ID	PID/Odor	Chloride Conc.	GPS
FIQ1	now	4; 12	
F260 2"	11.50.5	508	
F3@2'	MORE	>120	
=4.521	var.e	456	
F5@ 1	aree	612	
F6@1	none	4376	
(70)	none	2472	
F9@1'	word	2 2 9 6 3,988	
F9@1'	none	3,988	
F10@11'	none.	728 196	
F1(3)	none	196	
F12@1'	none	368	
F13641	none	4,905	
* 15 (2) 5 ·	none	1,236	
F1601 5150,11	none	1 <u>4</u> 2 <i>0</i>	
WWI	MOVIE	168	
NWI	BOM C	4,700 3,022	
NW2	8.22 C. C.	3,022	
NW3	none	2,2.70	
May be	non e	1,740	
F6301'	rone	728	
F713@1'	none	929 568	
F8801	none	366	
F98@1'	rose	2,140	
<u> </u>			
		<u>-</u>	
Court Print CD 44 C 44 A			

Sample Point = SP #1 @ ## etc

Floor = FL #1 etc

Sidewall = SW #1 etc

Test Trench = TT #1 @ ##

Refusal = SP #1 @ 4'-R

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Resamples= SP #1 @ 5b or SW #1b Stockpile = Stockpile #1

GPS Sample Points, Center of Comp Areas

Date:	3-1-21	

Project: Patron	23 Fed 414			
Project Number:	13625	Latitude:	Longitude:	

Sample ID	PID/Odor	Chloride Conc.	GPS
FLI@I'			
FL201'			
FL3@1'			
FLYPI			
F1_5@1'			
EL 601'			
FL7@1'			
FL8@1'			
FLARI'			
FL 10 PT			
WI			
W2			
JWI			
NW2			
NW3			
WWi	-		
11/42	~	5992	
FL 11/21'	_	38505	
FL IIPI'	-	1740	
FL 12/21'		1628	
L 13 @1'		1864	
L 1301'	-	1740	
L 15 A1'	_	1864	
WY!		7572	
บพ3		1740	
<i>w</i> l		3064	
W 2		3064	
w 3		2308	
1 16 @ 1'		1988	
L 1701'		1740	
-L 18 @ 1'	-	1740	
2 19 01	_	1860	
2 20 61		1988	
2 zi ei	_	1860	
1 22 e i	_	1860	
£ 23 e1	-	2440	
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or SW #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	
Sidewall = SW #1 etc		South treated to be believed = 37 #1 @ 4 In-Situ	GPS Sample Points, Center of Comp Areas

Longitude:

Patron 23 Fed 4H

Der: 13625 Latitude:

Project Number:

Date:

Sample ID	PID/Odor	Chloride Conc.	GPS
FL 24 e 1'	•	2124	
FL 25 e 1'		2124	
PL 26 e 1'		2276	
2701	•	1988	
2 28 e 1'	-	1978	
1 29 @ 1	,	1983	
L 30 P 1.		1632	
EL 31 e 1		1582	
2 32 0 1'		1632	
FL 33 • 1'	•	1860	
FL 34 e 1'		1988	
FL 35 e 1'		1988	
FL 36 @ 1'	1	1360	
FL 37 @ 1'		1360	
FL 38 @ 1'	-	1860	
FL 39 @ 1'	-	1740	
7 40 € 1'		1746	
FL 41 @ 6"	_	1637	
-L 42 0 6"	` -	1740	
FL 43 € 6	-	2124	·
PL 44 @ 6" PL 45 @ 6"		2124	
2 45 86	-	2276	
1 46 66"		7440	
2 47 0 6"		2440	
FL 48 e 6"		2276	
7L 49 8 6	•	2276	
2 50 e 6	•	2174	
FL 51 e 6"	-	1988	
P 52 e 6" P 53 e 6" P 54 e 6" P 55 e 6"	-	19 33	
9 53 e 6° 2 54 e 6° 2 55 e 6°	,	2124	·
€ 54 € 6.	-	77.76	
2 55 € 6"	_	22.76	
2 52 e 6" 2 53 e 6" 2 54 e 6" 2 55 e 6" 2 57 e 6" 2 58 e 6"	-	2440	
7 57 e 6° 7 58 e 6°		ZYUU	
		2124 22.76 22.76 2440 2440 1988	
7 59 e 1		1988	

Sample Point = SP #1 @ ## etc

Test Trench = TT #1 @ ##

Resamples= SP #1 @ 5b or SW #1b

Released to Imaging: 10/23/2024/10/35/28/AM

Floor = FL #1 etc Sidewall = SW #1 etc Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1

Received by OCD:

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

GPS Sample Points, Center of Comp Areas

Sample Log

Date:

3/8/21

TON 23 Fed 4H

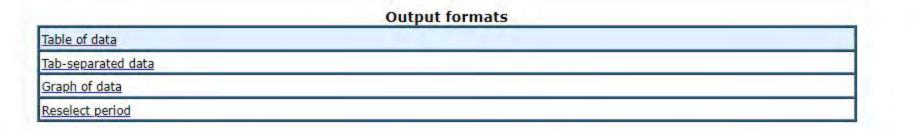
_13625 Latitude:

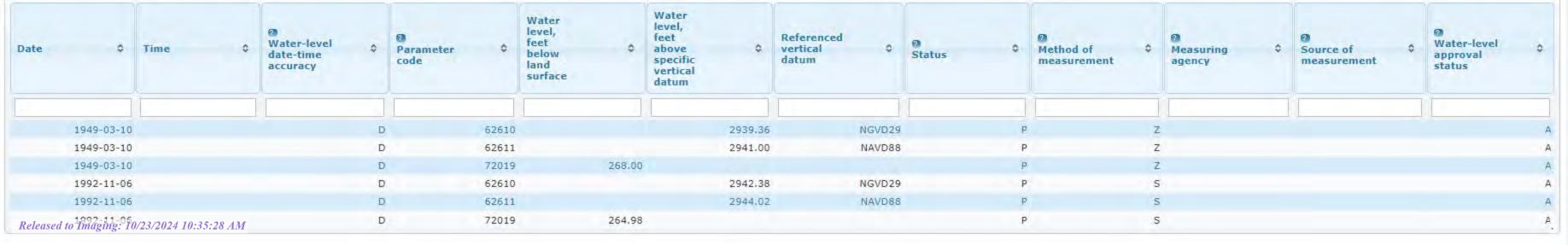
Longitude:

Sample ID	PID/Odor	Chloride Conc.	GPS
60 € 6"	-	1988	
1-1 6 1"	-	1860	
62 € 6	-	2124	
1 63 € 6°	•	1860	
- 64 e 6"		1740	
- 65 e 6"	-	1860	
66 6 6		1740	
67 e 6"		1632	
68 e 6"			
		1740	
· 69 e 6"			Day
- 70 e 6"		1740	
Cample Delet - 20 M @ M - 1		Tank Transh - TT M - G M	Becomples CD #4 @ Ch CH #41
Sample Point = SP #1 @ ## etc		Test Trench = TT #1 @ ##	Resamples= SP #1 @ 5b or 5W #1b
Floor = FL #1 etc		Refusal = SP #1 @ 4'-R	Stockpile = Stockpile #1
Sidewall = SW #1 etc		Soil Intended to be Deferred = SP #1 @ 4' In-Situ	GPS Sample Points, Center of Comp Area

Unaswa 4,062992426234954455.30E.21.33342 A

Eddy County, New Mexico


Latitude 32°06'29", Longitude 103°53'30" NAD27 Land-surface elevation 3,209 feet above NAVD88


The depth of the well is 280 feet below land surface.

This well is associated in the Peace Biven Basic allowing and for (No.

This well is completed in the Pecos River Basin alluvial aquifer (N100PCSRVR) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

APPENDIX B

Photographic Log

Photographic Log
COG Operating, LLC
Cabo Wabo Federal Com 801H
NAPP2304550164

Photograph 1 Date: 01/28/2023 Photograph 2 Date: 03/13/2023

Description: Initial Release Staining

View: North View: West

Photograph 3 Date: 05/12/2023 Photograph 4 Date: 05/12/2023

Description: Excavation Activities Description: Completed Excavation

View: West View: West

APPENDIX C

Lithologic Soil Sampling Logs

								Sample Name: SS05	Date: 5/12/2023			
7	7						B.4	Site Name: Cabo Wabo Federal Co				
			N	5	U	U	V	Incident Number: NAPP23019332				
						Job Number: 03D2024167						
		LITHOL	OGI	r / sou s	SAMPLING	ine		Logged By: Peter Van Patten	Method: Hand Auger			
Coordi		2.122608			AIVII LIIVO	100		Hole Diameter:	Total Depth: 1.0 foot			
					rith HACH Ch	loride Test S	trips and		·			
	Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included.											
Moisture Content	Content Conten				Lithologic De	scriptions						
Dry	173	1.6	N	SS05	0.2 <u> </u>	0	CHHE	Caliche: off white, light tan	/pinkish			
Dry	240	0.6	N	SS05A	1	1	СННЕ	SAA (same as above), trace TD 1' bgs	sand/gravel			
					- -	2						
					- - -	- - _ 3						
					-	_						
					-	- 4 -						
					- -	5						
					- - -	- - 6						
					- - -	- - 7						
					- - -	- - - 8						
					- - -	- - - 9						
					- - -	- - _ 10						
					- - -	- - - 11						
						12						

								Sample Name: SS06	Date: 5/12/2023		
7	7										
ENSOLUM								Site Name: Cabo Wabo Federal Com 801H Incident Number: NAPP2301933240			
								Job Number: 03D2024167			
		IITHOI	OGI	C / SOIL S	SAMPLING	Logged By: Peter Van Patten	Method: Hand Auger				
Coord		2.122443			AIVII LIIVO	Hole Diameter:	Total Depth: 1.0 foot				
					rith HACH Ch	PID for chloride and vapor, respec	· ·				
	performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included. Non-Detect: <173 ppm (ND)										
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs) OSA SSO OSA OSA OSA OSA OSA OSA OSA OSA			Lithologic Descriptions			
Dry	ND	1.7	N	SS06	0.2 <u> </u>	0	CHHE	Caliche: off white, light tan,	/pinkish		
Dry	280	0.5	N	SS06A	1 _	1	СННЕ	SAA (same as above), trace TD 1' bgs	sand/gravel		
					_	2					
					- -	-					
					-	_ 3 -					
					- -	4					
					- - -	- - 5 -					
					- - -	- - 6 -					
					- - -	7					
					- - -	- - 8 -					
					- - -	- - 9					
						10					
					- - - -	- _ 11					
						12					

									1	
								Sample Name: SS07	Date: 5/12/2023	
		F	N	5			M	Site Name: Cabo Wabo Federal (
ENSOLUM										
						Job Number: 03D2024167				
					SAMPLING	Logged By: Peter Van Patten	Method: Hand Auger			
		2.122584			tale 114 Circ Cir	Hole Diameter:	Total Depth: 1.0 foot			
			_				•	PID for chloride and vapor, respendant Infactor included.	ectively. Chloride test	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs) October 100 October			Lithologic D	escriptions	
Dry	240	1.8	Ν	SS07	0.2	<u> </u>	СННЕ	Caliche: off white, light tar	n/pinkish	
Dry	240	0.7	N	SS07A	1 _	1	СННЕ	SAA (same as above), trac TD 1' bgs	e sand/gravel	
					- - -	2				
					-	- _ 3				
					_ - -	- - 4				
					-	- - - 5				
					-	- - 6				
					-	- - 7				
					-	- - 8				
					_ -	- - 9				
					-	10				
					- - -	_ 11 1				
					-	- 12				

								Sample Name: SS08	Date: 5/12/2023	
1	7							Site Name: Cabo Wabo Federal C		
			N	5	OL	_ U	V	Incident Number: NAPP23019332		
						Job Number: 03D2024167				
		LITHOI	OGI	c / sou s	SAMPLING	Logged By: Peter Van Patten	Method: Hand Auger			
Coord		2.122545			, Liive	Hole Diameter:	Total Depth: 1.0 foot			
					rith HACH Ch	PID for chloride and vapor, respec	•			
II			_					n factor included.	,	
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions		
Dry	8150	1.0	N	SS08	0.2	<u> </u>	СННЕ	Caliche: off white, light tan	/pinkish	
Dry	280	0.6	N	SS08A	1 _	1	СННЕ	SAA (same as above), trace TD 1' bgs	sand/gravel	
					- -	2				
					- -	3				
					- - -	- - _ 4				
					- -					
					- -	_ 5 -				
					- - -	6				
					- -	7				
					- - - -	- _ 8 -				
					-	- _ 9 -				
					- - -	10				
					- - -	- 11				
					_	_ 12				

l									<u> </u>		
-								Sample Name: SS09	Date: 5/12/2023		
		F	N	S			M	Site Name: Cabo Wabo Federal C			
 			_			Job Number: 03D2024167					
					SAMPLING	Logged By: Peter Van Patten	Method: Hand Auger				
		2.122504				Hole Diameter:	Total Depth: 1.0 foot				
			_					PID for chloride and vapor, respect factor included.	ctively. Chloride test		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions			
Dry	1500	1.0	Ν	SS09	0.2	0	СННЕ	Caliche: off white, light tan	/pinkish		
Dry	240	0.6	N	SS09A	1	1	СННЕ	SAA (same as above), trace TD 1' bgs	<u>re), trace sand/gravel</u>		
					-	2					
					_ -	- - _ 3					
					_ - -	- - - 4					
					- - -	- - 5 -					
					- - -	- - 6					
					- - -	- - - 7					
					-	- - 8 -					
					- - -	- - 9 -					
					- - -	_ 10					
					- - -	- 11					
					-	12					

								Sample Name: SS10	Date: 5/12/2023		
	7						B.4	Site Name: Cabo Wabo Federal C			
			N	5	OL	U	M	Incident Number: NAPP2301933.			
		<u></u>	_	_		. —		Job Number: 03D2024167	£70		
1		IITHOI	OGI	^ / SOIL 9	SAMPLING	ille		Logged By: Peter Van Patten	Method: Hand Auger		
Coord		2.122460			AIVIF LIIVC	1100		Hole Diameter:	Total Depth: 1.0 foot		
			reening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respe					· ·			
			-					factor included.	etivery. emorrae test		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions		
Dry	335	1.0	N	SS10	0.2 <u> </u>	<u> </u>	СННЕ	Caliche: off white, light tar	n/pinkish		
Dry	240	0.5	N	SS10A	1 _	1	СННЕ	SAA (same as above), trace TD 1' bgs	e sand/gravel		
					- - -	2					
					- - -	- - 3					
					- - -	4					
						5					
					- - -	6					
					- - -	- - 7					
					- - -	- - 8					
					_ - -	- - 9					
						10					
						11					
					-	<u> </u>					

								Sample Name: SS11	Date: 5/12/2023
1	7							Site Name: Cabo Wabo Federal C	
			N	5	OL	_ U	V	Incident Number: NAPP23019332	
								Job Number: 03D2024167	
		LITHOI	OGI	c / sou s	SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger
Coord		2.122460			, Liive			Hole Diameter:	Total Depth: 1.0 foot
					ith HACH Ch	loride Test S	Strips and	PID for chloride and vapor, respec	•
II			_					n factor included.	,
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
Dry	1100	1.0	N	SS11	0.2	<u> </u>	СННЕ	Caliche: off white, light tan	/pinkish
Dry	280	0.5	N	SS11A	1 _	1	СННЕ	SAA (same as above), trace TD 1' bgs	sand/gravel
					-	<u> </u>			
					- - -	3			
					-	-			
					-	_ 4 - -			
					- - -	_ 5 _			
					- - -	<u> </u>			
					-	- - - 7			
					-	- _ 8			
					-	- - - 9			
					- - -	10			
					- - -	11			
					-	- 12			

								Sample Name: SS12	Date: 5/12/2023		
							B.4	Site Name: Cabo Wabo Federal C			
			N	5	U	U	M	Incident Number: NAPP2301933.			
		<u></u>	_	_		. —		Job Number: 03D2024167	£70		
1		IITHOI	UCI	C / SOIL 9	SAMPLING	ille		Logged By: Peter Van Patten	Method: Hand Auger		
Coord		2.122460			AIVIF LIIVC	1100		Hole Diameter:	Total Depth: 1.0 foot		
					ith HΔCH Ch	loride Test S	trins and	PID for chloride and vapor, respe	· ·		
			-					n factor included.	curery. emorrae test		
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions		
Dry	587	1.0	N	SS12	0.2 <u> </u>	0	CHHE	Caliche: off white, light tan	n/pinkish		
Dry	280	0.5	N	SS12A	1 _	1	СННЕ	SAA (same as above), trace TD 1' bgs	e sand/gravel		
					- -	2					
					- -	3					
					- - -	4					
					- - -	- - - 5					
					- - -	- - - 6					
					_ _ _	7					
					- - -	- _ 8 -					
					- - -	- - 9					
					- - - -	10					
						11					
					_	<u> </u>					

·		_						Sample Name: SS13	Date: 5/12/2023			
			N	S	OL		M	Site Name: Cabo Wabo Federal C				
<u> </u>								Job Number: 03D2024167	1			
					SAMPLING	LOG		Logged By: Peter Van Patten	Method: Hand Auger			
		2.122506						Hole Diameter:	Total Depth: 1.0 foot			
			_					PID for chloride and vapor, respect factor included.	ctively. Chloride test			
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions			
Dry	4270	1.0	Ν	SS13	0.2	0	СННЕ	Caliche: off white, light tan	/pinkish			
Dry	319	0.5	N	SS13A	1	1	СННЕ	SAA (same as above), trace TD 1' bgs	e sand/gravel			
					-	- - 2						
					-	- - _ 3						
					- - -	- - - 4						
					-	- - 5						
					_ - -	<u>-</u> _ 6						
					- - -	- - - 7						
					- - -	- - 8						
					- - -	- - 9 -						
					- - -	- - 10						
					 - -	- - 11						
					-	_ 						

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St.

Suite 400 Midland, Texas 79701

Generated 3/28/2023 7:59:09 AM

JOB DESCRIPTION

Cabo Wabo Federal Com 801H SDG NUMBER 03D2024167

JOB NUMBER

890-4322-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Released to Imaging: 10/23/2024 10:35:28 AM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/28/2023 7:59:09 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Laboratory Job ID: 890-4322-1 SDG: 03D2024167

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	17
QC Sample Results	18
QC Association Summary	22
Lab Chronicle	26
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	35

2

3

4

6

8

10

11

13

14

Definitions/Glossary

Job ID: 890-4322-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Qualifiers

GC VOA

Qualifier **Qualifier Description**

S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NFG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum

Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Job ID: 890-4322-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4322-1

Receipt

The samples were received on 3/15/2023 2:29 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-4322-1), SS02 (890-4322-2), SS03 (890-4322-3), SS04 (890-4322-4), SS05 (890-4322-5), SS06 (890-4322-6), SS07 (890-4322-7), SS08 (890-4322-8), SS09 (890-4322-9), SS10 (890-4322-10), SS11 (890-4322-11), SS12 (890-4322-12) and SS13 (890-4322-13).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS04 (890-4322-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike duplicate (MSD) recoveries for preparation batch 880-49264 and 880-49264 and analytical batch 880-49491 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The associated samples are: SS01 (890-4322-1), SS02 (890-4322-2) and SS03 (890-4322-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 890-4322-1

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS01 Date Collected: 03/13/23 13:25

Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/23/23 12:25	03/24/23 13:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130			03/23/23 12:25	03/24/23 13:49	1
1,4-Difluorobenzene (Surr)	92		70 - 130			03/23/23 12:25	03/24/23 13:49	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			03/25/23 16:19	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total TPH			•	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/22/23 16:11	Dil Fac
	Result 139	Qualifier	RL 49.9		<u>D</u>	Prepared		
Total TPH	Result 139 sel Range Orga	Qualifier	RL 49.9		<u>D</u>	Prepared Prepared		1
Total TPH Method: SW846 8015B NM - Dies	Result 139 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 49.9 (GC)	mg/Kg	_ =		03/22/23 16:11	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result 139 sel Range Orga Result	Qualifier nics (DRO) Qualifier	RL 49.9 (GC)	mg/Kg	_ =	Prepared	03/22/23 16:11 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 139 sel Range Orga Result <49.9	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9	mg/Kg Unit mg/Kg	_ =	Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 21:04	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 139 sel Range Orga Result <49.9 139	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 21:04 03/21/23 21:04	Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 139 sel Range Orga Result < 49.9 139 449.9	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 21:04 03/21/23 21:04	Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 139	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared	03/22/23 16:11 Analyzed 03/21/23 21:04 03/21/23 21:04 03/21/23 21:04 Analyzed	Dil Fac 1 1 Dil Fac 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 139	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 21:04 03/21/23 21:04 Analyzed 03/21/23 21:04	Dil Fac 1 1 Dil Fac Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result 139	Qualifier nics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 21:04 03/21/23 21:04 Analyzed 03/21/23 21:04	1 1 1 Dil Fac 1

Client Sample ID: SS02 Lab Sample ID: 890-4322-2

Date Collected: 03/13/23 12:30 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
Toluene	<0.00202	U	0.00202	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
m-Xylene & p-Xylene	<0.00403	U	0.00403	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
Xylenes, Total	<0.00403	U	0.00403	mg/Kg		03/23/23 12:25	03/24/23 14:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130			03/23/23 12:25	03/24/23 14:10	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4322-2

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS02

Date Collected: 03/13/23 12:30 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Method: SW846 8021B -	Volatile Organic	Compounds (GC)	(Continued)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	94	70 - 130	03/23/23 12:25	03/24/23 14:10	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00403	U	0.00403	mg/Kg			03/25/23 16:19	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	2640		50.0	mg/Kg			03/22/23 16:11	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

		(=::=)	()					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/21/23 22:11	1
Diesel Range Organics (Over C10-C28)	2640		50.0	mg/Kg		03/20/23 14:02	03/21/23 22:11	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/21/23 22:11	1
Surrogate	%Pecovery	Qualifier	l imite			Propared	Analyzod	Dil Eac

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	104	70 - 130	03/20/23 14:02	03/21/23 22:11	1
o-Terphenyl	103	70 - 130	03/20/23 14:02	03/21/23 22:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	429		5.03	mg/Kg			03/25/23 18:15	1

Client Sample ID: SS03 Lab Sample ID: 890-4322-3

Date Collected: 03/13/23 13:05 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

 Mathad.	CIMO 4C	0024B	Valatila Ossania	Compounds (GC)
viernoa:	SVVA4n	AUZID .	· voiatile Organic	: Compounds (GC)

Method. Syvoto 002 ID - Volat	ne Organic Comp)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
Toluene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
o-Xylene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 14:30	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	112		70 - 130			03/23/23 12:25	03/24/23 14:30	1			
1 4-Diffuorobenzene (Surr)	95		70 130			03/23/23 12:25	03/24/23 14:30	1			

Method: TAL SOP Total RTEX - Total RTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/25/23 16:19	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	71.4		49.9	mg/Kg			03/22/23 16:11	1

Eurofins Carlsbad

Matrix: Solid

Lab Sample ID: 890-4322-3

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS03

Date Collected: 03/13/23 13:05 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 22:33	1
Diesel Range Organics (Over C10-C28)	71.4		49.9	mg/Kg		03/20/23 14:02	03/21/23 22:33	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 22:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130			03/20/23 14:02	03/21/23 22:33	1
o-Terphenyl	84		70 - 130			03/20/23 14:02	03/21/23 22:33	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
					_			D:: F
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SS04 Lab Sample ID: 890-4322-4 Date Collected: 03/13/23 12:40 Matrix: Solid

Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 16:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	61	S1-	70 - 130			03/23/23 12:25	03/24/23 16:01	1
1,4-Difluorobenzene (Surr)	85		70 - 130			03/23/23 12:25	03/24/23 16:01	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			03/25/23 13:13	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	987		49.9	mg/Kg			03/22/23 16:11	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 22:55	1
Diesel Range Organics (Over C10-C28)	987		49.9	mg/Kg		03/20/23 14:02	03/21/23 22:55	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 22:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130			03/20/23 14:02	03/21/23 22:55	1

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS04

Date Collected: 03/13/23 12:40 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Lab Sample ID: 890-4322-4

Matrix: Solid

Method: EPA 300.0 - Anions, Ion Ch	hromatograph	ny - Soluble						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	503		5.05	mg/Kg			03/25/23 18:24	1

Client Sample ID: SS05 Lab Sample ID: 890-4322-5 Matrix: Solid

Date Collected: 03/13/23 13:00 Date Received: 03/15/23 14:29

Method: TAL SOP Total BTEX - Total BTEX Calculation

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		03/23/23 12:25	03/24/23 16:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/23/23 12:25	03/24/23 16:22	1
1,4-Difluorobenzene (Surr)	96		70 - 130			03/23/23 12:25	03/24/23 16:22	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			03/25/23 13:13	1
Mothod: SW946 9045 NM Diocol E	Panga Organ	ice (DBO) (C	30)					

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	427		49.9	mg/Kg			03/22/23 16:11	1

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 23:17	1
(GRO)-C6-C10								
Diesel Range Organics (Over	427		49.9	mg/Kg		03/20/23 14:02	03/21/23 23:17	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/21/23 23:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			03/20/23 14:02	03/21/23 23:17	1
o-Terphenyl	91		70 - 130			03/20/23 14:02	03/21/23 23:17	1

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8870	49.7	mg/Kg			03/25/23 18:38	10

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS06 Date Collected: 03/13/23 12:35 Lab Sample ID: 890-4322-6

Date Received: 03/15/23 14:29

Matrix: Solid

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
Toluene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 16:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130			03/23/23 12:25	03/24/23 16:42	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/23/23 12:25	03/24/23 16:42	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/25/23 13:13	1
•								
Method: SW846 8015 NM - Diese			•	Unit	n	Propared	Analyzed	Dil Fac
Analyte	Result	ics (DRO) (C	RL	Unit ma/Ka	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH			•	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 03/22/23 16:11	Dil Fac
Analyte	Result 430	Qualifier	50.0		<u>D</u>	Prepared		
Analyte Total TPH	Result 430 sel Range Orga	Qualifier	50.0		<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Dies	Result 430 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 50.0	mg/Kg	_ =		03/22/23 16:11	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result 430 sel Range Orga Result	Qualifier nics (DRO) Qualifier	RL 50.0 (GC)	mg/Kg	_ =	Prepared	03/22/23 16:11 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result 430 sel Range Orga Result <50.0	Qualifier nics (DRO) Qualifier U	(GC) RL 50.0	mg/Kg Unit mg/Kg	_ =	Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 23:39	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result 430 sel Range Orga Result <50.0	Qualifier nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 23:39 03/21/23 23:39	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result 430	Qualifier nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 23:39 03/21/23 23:39 03/21/23 23:39	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result 430	Qualifier nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared	03/22/23 16:11 Analyzed 03/21/23 23:39 03/21/23 23:39 03/21/23 23:39 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result 430	Qualifier nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 23:39 03/21/23 23:39 03/21/23 23:39 Analyzed 03/21/23 23:39	Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier nics (DRO) Qualifier U	RL 50.0 (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg	_ =	Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02 Prepared 03/20/23 14:02	03/22/23 16:11 Analyzed 03/21/23 23:39 03/21/23 23:39 03/21/23 23:39 Analyzed 03/21/23 23:39	1 Dil Fac 1 Dil Fac 1

Client Sample ID: SS07 Lab Sample ID: 890-4322-7 Date Collected: 03/13/23 12:25

Matrix: Solid

Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 17:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/23/23 12:25	03/24/23 17:03	

Client Sample Results

Client: Ensolum Job ID: 890-4322-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS07 Lab Sample ID: 890-4322-7

Date Collected: 03/13/23 12:25 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Method: SW846 8021B	- Volatile Organic	Compounds ((GC) (Continued)
---------------------	--------------------	-------------	------------------

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	99	70 - 130	03/23/23 12:25	03/24/23 17:03	1

Method:	TAL SOP	Total RTF	K - Total I	RTFX C	alculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/25/23 13:13	1

Mathada CMO4C CO4E NM Disaal Dawns Comenica (DDC) (C	~ \
Method: SW846 8015 NM - Diesel Range Organics (DRO) (G	

Analyte	Result Q	ualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	965	50.0	mg/Kg			03/22/23 16:11	1

Method: SW846 8015B NM - Diesel Range Organics	(DRO)	(GC)	١
motified. Offerto College Ithin Biodol Rungo Organico	(5.10)	, , , , ,	,

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 00:00	1
Diesel Range Organics (Over C10-C28)	965		50.0	mg/Kg		03/20/23 14:02	03/22/23 00:00	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 00:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	88	70 - 130	03/20/23 14:02	03/22/23 00:00	1
o-Terphenyl	85	70 - 130	03/20/23 14:02	03/22/23 00:00	1

$\label{eq:method:epa300.0} \textbf{Method: EPA 300.0 - Anions, lon Chromatography - Soluble}$

Analyte	Result Qualif		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1960	25.0	mg/Kg			03/25/23 18:56	5

Client Sample ID: SS08 Lab Sample ID: 890-4322-8

Date Collected: 03/13/23 13:45 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Method. Syvoto 002 ID - Volat	ne Organic Comp)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 17:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			03/23/23 12:25	03/24/23 17:24	1
1 4-Diffuorobenzene (Surr)	97		70 130			03/23/23 12:25	03/24/23 17:24	1

Method: TAI	SOP Total BTFX	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			03/25/23 16:19	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	169	49.9	mg/Kg			03/22/23 16:11	1

Eurofins Carlsbad

-0

2

4

6

9

. .

12

Matrix: Solid

Client: Ensolum Job ID: 890-4322-1

Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS08 Date Collected: 03/13/23 13:45 Date Received: 03/15/23 14:29

8150

Lab Sample ID: 890-4322-8

03/25/23 19:01

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 00:22	1
Diesel Range Organics (Over C10-C28)	169		49.9	mg/Kg		03/20/23 14:02	03/22/23 00:22	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 00:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130			03/20/23 14:02	03/22/23 00:22	1
o-Terphenyl	96		70 - 130			03/20/23 14:02	03/22/23 00:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SS09 Lab Sample ID: 890-4322-9 **Matrix: Solid**

49.5

mg/Kg

Date Collected: 03/13/23 13:50 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Chloride

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
Toluene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		03/23/23 12:25	03/24/23 17:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/23/23 12:25	03/24/23 17:45	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/23/23 12:25	03/24/23 17:45	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T L LDTEV	<0.00402	11	0.00402				03/25/23 16:19	1
Total BTEX	~0.00402	U	0.00402	mg/Kg			03/23/23 10.19	
• -				mg/kg			03/23/23 10.19	'
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					·
• -	el Range Organ		GC)	Unit	D	Prepared	Analyzed	Dil Fac
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)		<u>D</u>	Prepared		·
Method: SW846 8015 NM - Diese Analyte	Range Organ Result 678	ics (DRO) ((Qualifier	RL 49.9	Unit	<u>D</u>	Prepared	Analyzed	·
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 678 sel Range Orga	ics (DRO) ((Qualifier	RL 49.9	Unit	<u>D</u>	Prepared Prepared	Analyzed	·
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result 678 sel Range Orga	Qualifier nics (DRO) Qualifier	RL 49.9 (GC)	Unit mg/Kg		<u> </u>	Analyzed 03/22/23 16:11	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result 678 sel Range Orga Result	Qualifier nics (DRO) Qualifier	(GC) RL	Unit mg/Kg Unit mg/Kg		Prepared	Analyzed 03/22/23 16:11 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result 678 sel Range Orga Result Result 449.9	Qualifier nics (DRO) Qualifier	(GC) RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit		Prepared 03/20/23 14:02	Analyzed 03/22/23 16:11 Analyzed 03/22/23 00:44	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result 678 sel Range Orga Result Result 449.9	ics (DRO) ((Qualifier nics (DRO) Qualifier U	(GC) RL 49.9 (GC) RL 49.9	Unit mg/Kg Unit mg/Kg		Prepared 03/20/23 14:02	Analyzed 03/22/23 16:11 Analyzed 03/22/23 00:44	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result 678 sel Range Orga Result <49.9 678	ics (DRO) ((Qualifier nics (DRO) Qualifier U	(GC) RL 49.9 (GC) RL 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 03/20/23 14:02 03/20/23 14:02	Analyzed 03/22/23 16:11 Analyzed 03/22/23 00:44 03/22/23 00:44	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result 678 sel Range Orga Result <49.9 678	ics (DRO) ((Qualifier nics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9 49.9 49.9	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 03/20/23 14:02 03/20/23 14:02 03/20/23 14:02	Analyzed 03/22/23 16:11 Analyzed 03/22/23 00:44 03/22/23 00:44	Dil Fac Dil Fac 1 1 1

Lab Sample ID: 890-4322-9

Client Sample Results

Client: Ensolum Job ID: 890-4322-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS09

Date Collected: 03/13/23 13:50 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Method: EPA 300.0 - Anions, Ion C	hromatography - Solul	ble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1500	25.1	mg/Kg			03/25/23 19:05	5

Client Sample ID: SS10

Date Collected: 03/13/23 13:55

Lab Sample ID: 890-4322-10

Matrix: Solid

Date Collected: 03/13/23 13:55 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 18:05	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 18:05	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 18:05	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		03/23/23 12:25	03/24/23 18:05	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 18:05	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		03/23/23 12:25	03/24/23 18:05	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			03/23/23 12:25	03/24/23 18:05	
1,4-Difluorobenzene (Surr)	102		70 - 130			03/23/23 12:25	03/24/23 18:05	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			03/25/23 16:19	1
Analyte Total TPH	Result 88.5	Qualifier	RL 49.9	Mnit mg/Kg	D	Prepared	Analyzed 03/22/23 16:11	Dil Fac
				0 0				
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 01:06	1
Diesel Range Organics (Over C10-C28)	88.5		49.9	mg/Kg		03/20/23 14:02	03/22/23 01:06	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 01:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	83		70 - 130			03/20/23 14:02	03/22/23 01:06	1
o-Terphenyl	80		70 - 130			03/20/23 14:02	03/22/23 01:06	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			25.0	mg/Kg			03/25/23 19:10	5

Client Sample Results

Client: Ensolum Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS11

Lab Sample ID: 890-4322-11 Date Collected: 03/13/23 14:00 Matrix: Solid Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 18:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130			03/23/23 12:25	03/24/23 18:26	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/23/23 12:25	03/24/23 18:26	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/25/23 16:19	1
- Mothod: SW946 9045 NM Diggs	l Banga Organ	ico (DBO) (CC)					
Method: SW846 8015 NM - Diese Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH			49.9	mg/Kg	_ =	Теригеи	03/22/23 16:11	1
	40.0	O	40.0	mg/ng			00/22/20 10.11	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 01:50	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 01:50	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		03/20/23 14:02	03/22/23 01:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane		Qualifier	70 - 130			Prepared 03/20/23 14:02	Analyzed 03/22/23 01:50	
		Qualifier						1
1-Chlorooctane o-Terphenyl	87 84		70 - 130 70 - 130			03/20/23 14:02	03/22/23 01:50	Dil Fac
1-Chlorooctane	87 84 Chromatograp		70 - 130 70 - 130	Unit	<u>D</u>	03/20/23 14:02	03/22/23 01:50	1

Client Sample ID: SS12 Lab Sample ID: 890-4322-12

Date Collected: 03/13/23 14:25 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
Toluene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		03/23/23 12:25	03/24/23 18:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			03/23/23 12:25	03/24/23 18:47	1

Eurofins Carlsbad

Matrix: Solid

Client: Ensolum Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS12 Lab Sample ID: 890-4322-12

Date Collected: 03/13/23 14:25 Matrix: Solid Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	100	70 - 130	03/23/23 12:25	03/24/23 18:47	1

Method: TAL SOP Total BTEX - Tot	al BTEX Calc	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			03/25/23 16:19	1

Method: SW846 8015 NM - Diesel F	Range Organi	ics (DRO) (G	iC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			03/22/23 16:11	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:13	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:13	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
			70 100					

Surrogate	%Recovery Qualifier	Limits	Ι	Prepared	Analyzed	Dil Fac
1-Chlorooctane	86	70 - 130	03/2	20/23 14:02	03/22/23 02:13	1
o-Terphenyl	82	70 - 130	03/2	20/23 14:02	03/22/23 02:13	1
Г						

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	587	4.97	mg/Kg			03/25/23 19:19	1

Lab Sample ID: 890-4322-13 **Client Sample ID: SS13** Date Collected: 03/13/23 14:30 **Matrix: Solid**

Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		03/23/23 12:25	03/24/23 19:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			03/23/23 12:25	03/24/23 19:08	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/23/23 12:25	03/24/23 19:08	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	II	0.00399	mg/Kg			03/25/23 16:19	

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 mg/Kg 03/22/23 16:11

Eurofins Carlsbad

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: 890-4322-13

Client Sample Results

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

Client Sample ID: SS13

Date Collected: 03/13/23 14:30 Date Received: 03/15/23 14:29

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:35	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:35	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		03/20/23 14:02	03/22/23 02:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	83		70 - 130			03/20/23 14:02	03/22/23 02:35	1
o-Terphenyl	83		70 - 130			03/20/23 14:02	03/22/23 02:35	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	4270		25.2	mg/Kg			03/25/23 19:23	5	

Eurofins Carlsbad

3

4

6

9

1 1

14

Surrogate Summary

Job ID: 890-4322-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-26275-A-1-A MS	Matrix Spike	107	84	
880-26275-A-1-B MSD	Matrix Spike Duplicate	107	87	
890-4322-1	SS01	116	92	
890-4322-2	SS02	125	94	
890-4322-3	SS03	112	95	
890-4322-4	SS04	61 S1-	85	
890-4322-5	SS05	114	96	
890-4322-6	SS06	106	105	
890-4322-7	SS07	115	99	
890-4322-8	SS08	117	97	
890-4322-9	SS09	117	102	
890-4322-10	SS10	107	102	
890-4322-11	SS11	113	102	
890-4322-12	SS12	109	100	
890-4322-13	SS13	114	105	
LCS 880-49324/1-A	Lab Control Sample	110	96	
LCSD 880-49324/2-A	Lab Control Sample Dup	104	91	
MB 880-49324/5-A	Method Blank	100	86	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-4322-1	SS01	85	82	
890-4322-1 MS	SS01	95	83	
890-4322-1 MSD	SS01	96	85	
890-4322-2	SS02	104	103	
890-4322-3	SS03	85	84	
890-4322-4	SS04	103	95	
890-4322-5	SS05	102	91	
890-4322-6	SS06	109	98	
890-4322-7	SS07	88	85	
890-4322-8	SS08	103	96	
890-4322-9	SS09	86	84	
890-4322-10	SS10	83	80	
890-4322-11	SS11	87	84	
890-4322-12	SS12	86	82	
890-4322-13	SS13	83	83	
LCS 880-49014/2-A	Lab Control Sample	94	99	
LCSD 880-49014/3-A	Lab Control Sample Dup	91	99	
MB 880-49014/1-A	Method Blank	120	125	

OTPH = o-Terphenyl

QC Sample Results

Client: Ensolum Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-49324/5-A

Lab Sample ID: LCS 880-49324/1-A

Matrix: Solid Analysis Batch: 49364 Client Sample ID: Method Blank

Prep Type: Total/NA
Pron Batch: 49324

	IVIB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 11:01	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 11:01	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 11:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/23/23 12:25	03/24/23 11:01	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/23/23 12:25	03/24/23 11:01	1
Xylenes, Total	< 0.00400	U	0.00400	mg/Kg		03/23/23 12:25	03/24/23 11:01	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	l Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130	03/23/23 12	03/24/23 11:01	1
1,4-Difluorobenzene (Surr)	86		70 - 130	03/23/23 12	:25 03/24/23 11:01	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 49324

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09131 mg/Kg 91 70 - 130 Toluene 0.100 0.1005 mg/Kg 101 70 - 130 0.100 0.09923 Ethylbenzene mg/Kg 99 70 - 130 0.200 70 - 130 m-Xylene & p-Xylene 0.2114 mg/Kg 106 0.100 70 - 130 o-Xylene 0.1062 mg/Kg 106

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: LCSD 880-49324/2-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Matrix: Solid

Analysis Batch: 49364

Analysis Batch: 49364

Prep Type: Total/NA Prep Batch: 49324

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09334		mg/Kg		93	70 - 130	2	35
Toluene	0.100	0.09826		mg/Kg		98	70 - 130	2	35
Ethylbenzene	0.100	0.09510		mg/Kg		95	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.1993		mg/Kg		100	70 - 130	6	35
o-Xylene	0.100	0.09976		mg/Kg		100	70 - 130	6	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1.4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: 880-26275-A-1-A MS

Matrix: Solid

Analysis Batch: 49364

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 49324

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.08204		mg/Kg		82	70 - 130	
Toluene	< 0.00199	U	0.0996	0.09077		mg/Kg		91	70 - 130	

QC Sample Results

Job ID: 890-4322-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-26275-A-1-A MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Solid Analysis Batch: 49364

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Ethylbenzene < 0.00199 U 0.0996 0.09357 94 70 - 130 mg/Kg m-Xylene & p-Xylene <0.00398 0.199 0.1969 mg/Kg 99 70 - 130 0.0996 0.09722 o-Xylene <0.00199 U 98 70 - 130 mg/Kg

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	84		70 - 130

Lab Sample ID: 880-26275-A-1-B MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 49364

Prep Type: Total/NA

Prep Batch: 49324

Prep Batch: 49324 Sample Sample Spike MSD MSD RPD

Result Qualifier RPD Limit Analyte babbA Result Qualifier Unit %Rec Limits Benzene <0.00199 U 0.0992 0.07740 mg/Kg 78 70 - 130 6 35 Toluene <0.00199 0.0992 0.08878 mg/Kg 89 70 - 130 2 35 Ethylbenzene <0.00199 0.0992 0.09264 93 70 - 130 35 U mg/Kg 0.198 70 - 130 35 m-Xylene & p-Xylene <0.00398 U 0.1955 mg/Kg 99 0.0992 <0.00199 U 0.09625 97 70 - 130 o-Xylene mg/Kg

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-49014/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 49014

Analysis Batch: 49067

мв мв Result Qualifier RL Unit D Prepared Analyzed Dil Fac Analyte 50.0 03/20/23 14:02 <50.0 U 03/21/23 19:58 Gasoline Range Organics mg/Kg (GRO)-C6-C10 03/20/23 14:02 03/21/23 19:58 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 03/20/23 14:02 03/21/23 19:58 mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130	03/20/23 14:02	03/21/23 19:58	1
o-Terphenyl	125		70 - 130	03/20/23 14:02	03/21/23 19:58	1

Lab Sample ID: LCS 880-49014/2-A **Matrix: Solid**

Analysis Batch: 49067

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 49014

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	891.1		mg/Kg		89	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	825.9		mg/Kg		83	70 - 130
C10-C28)							

Job ID: 890-4322-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-49014/2-A **Client Sample ID: Lab Control Sample**

Limits

Matrix: Solid

Analysis Batch: 49067

Prep Type: Total/NA

Prep Batch: 49014

Surrogate %Recovery Qualifier 1-Chlorooctane 94 70 - 130 o-Terphenyl 99 70 - 130

Lab Sample ID: LCSD 880-49014/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 49067

Prep Type: Total/NA

Prep Batch: 49014

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1000 801.0 80 70 - 13011 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 838.8 mg/Kg 84 70 - 1302 20 C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 91 70 - 130 1-Chlorooctane 99 70 - 130 o-Terphenyl

Lab Sample ID: 890-4322-1 MS **Client Sample ID: SS01** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 49067

Prep Batch: 49014

%Rec

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	998	1052		mg/Kg		104	70 - 130	
Diesel Range Organics (Over C10-C28)	139		998	1045		mg/Kg		91	70 - 130	

Surrogate

o-Terphenyl

1-Chlorooctane

MS MS %Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 95 o-Terphenyl 83 70 - 130

Lab Sample ID: 890-4322-1 MSD **Client Sample ID: SS01**

Matrix: Solid

Analysis Batch: 49067

Prep Type: Total/NA Prep Batch: 49014

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Gasoline Range Organics <49.9 U 999 1078 106 mg/Kg 70 - 130 2 20 (GRO)-C6-C10 Diesel Range Organics (Over 139 999 1066 mg/Kg 93 70 - 130 2 20 C10-C28)

MSD MSD %Recovery Qualifier Limits 96 70 - 130 85 70 - 130

QC Sample Results

Client: Ensolum Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-49264/1-A

Matrix: Solid

Analysis Batch: 49491

Client Sample ID: Method Blank **Prep Type: Soluble**

мв мв Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 03/25/23 17:07

Lab Sample ID: LCS 880-49264/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 49491

Spike LCS LCS %Rec Added %Rec Analyte Result Qualifier Unit D Limits Chloride 250 252.8 mg/Kg 101 90 - 110

Lab Sample ID: LCSD 880-49264/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 49491

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 262.5 mg/Kg 105 90 - 110

Lab Sample ID: 890-4322-4 MS **Client Sample ID: SS04 Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 49491

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Qualifier Unit %Rec Result Limits 772.9 Chloride 503 253 107 90 - 110 mg/Kg

Lab Sample ID: 890-4322-4 MSD

Matrix: Solid

Analysis Batch: 49491

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 253 503 768.2 mg/Kg 105 90 - 110 20

Eurofins Carlsbad

Client Sample ID: SS04

Prep Type: Soluble

Client: EnsolumJob ID: 890-4322-1Project/Site: Cabo Wabo Federal Com 801HSDG: 03D2024167

GC VOA

Prep Batch: 49324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	5035	
890-4322-2	SS02	Total/NA	Solid	5035	
890-4322-3	SS03	Total/NA	Solid	5035	
890-4322-4	SS04	Total/NA	Solid	5035	
890-4322-5	SS05	Total/NA	Solid	5035	
890-4322-6	SS06	Total/NA	Solid	5035	
890-4322-7	SS07	Total/NA	Solid	5035	
890-4322-8	SS08	Total/NA	Solid	5035	
890-4322-9	SS09	Total/NA	Solid	5035	
890-4322-10	SS10	Total/NA	Solid	5035	
890-4322-11	SS11	Total/NA	Solid	5035	
890-4322-12	SS12	Total/NA	Solid	5035	
890-4322-13	SS13	Total/NA	Solid	5035	
MB 880-49324/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-49324/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-49324/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-26275-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-26275-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 49364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	8021B	49324
890-4322-2	SS02	Total/NA	Solid	8021B	49324
890-4322-3	SS03	Total/NA	Solid	8021B	49324
890-4322-4	SS04	Total/NA	Solid	8021B	49324
890-4322-5	SS05	Total/NA	Solid	8021B	49324
890-4322-6	SS06	Total/NA	Solid	8021B	49324
890-4322-7	SS07	Total/NA	Solid	8021B	49324
890-4322-8	SS08	Total/NA	Solid	8021B	49324
890-4322-9	SS09	Total/NA	Solid	8021B	49324
890-4322-10	SS10	Total/NA	Solid	8021B	49324
890-4322-11	SS11	Total/NA	Solid	8021B	49324
890-4322-12	SS12	Total/NA	Solid	8021B	49324
890-4322-13	SS13	Total/NA	Solid	8021B	49324
MB 880-49324/5-A	Method Blank	Total/NA	Solid	8021B	49324
LCS 880-49324/1-A	Lab Control Sample	Total/NA	Solid	8021B	49324
LCSD 880-49324/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	49324
880-26275-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	49324
880-26275-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	49324

Analysis Batch: 49493

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	Total BTEX	
890-4322-2	SS02	Total/NA	Solid	Total BTEX	
890-4322-3	SS03	Total/NA	Solid	Total BTEX	
890-4322-4	SS04	Total/NA	Solid	Total BTEX	
890-4322-5	SS05	Total/NA	Solid	Total BTEX	
890-4322-6	SS06	Total/NA	Solid	Total BTEX	
890-4322-7	SS07	Total/NA	Solid	Total BTEX	
890-4322-8	SS08	Total/NA	Solid	Total BTEX	
890-4322-9	SS09	Total/NA	Solid	Total BTEX	

Eurofins Carlsbad

3

4

6

8

46

12

13

14

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H

Job ID: 890-4322-1 SDG: 03D2024167

GC VOA (Continued)

Analysis Batch: 49493 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-10	SS10	Total/NA	Solid	Total BTEX	
890-4322-11	SS11	Total/NA	Solid	Total BTEX	
890-4322-12	SS12	Total/NA	Solid	Total BTEX	
890-4322-13	SS13	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 49014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	8015NM Prep	
890-4322-2	SS02	Total/NA	Solid	8015NM Prep	
890-4322-3	SS03	Total/NA	Solid	8015NM Prep	
890-4322-4	SS04	Total/NA	Solid	8015NM Prep	
890-4322-5	SS05	Total/NA	Solid	8015NM Prep	
890-4322-6	SS06	Total/NA	Solid	8015NM Prep	
890-4322-7	SS07	Total/NA	Solid	8015NM Prep	
890-4322-8	SS08	Total/NA	Solid	8015NM Prep	
890-4322-9	SS09	Total/NA	Solid	8015NM Prep	
890-4322-10	SS10	Total/NA	Solid	8015NM Prep	
890-4322-11	SS11	Total/NA	Solid	8015NM Prep	
890-4322-12	SS12	Total/NA	Solid	8015NM Prep	
890-4322-13	SS13	Total/NA	Solid	8015NM Prep	
MB 880-49014/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-49014/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-49014/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4322-1 MS	SS01	Total/NA	Solid	8015NM Prep	
890-4322-1 MSD	SS01	Total/NA	Solid	8015NM Prep	

Analysis Batch: 49067

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	8015B NM	49014
890-4322-2	SS02	Total/NA	Solid	8015B NM	49014
890-4322-3	SS03	Total/NA	Solid	8015B NM	49014
890-4322-4	SS04	Total/NA	Solid	8015B NM	49014
890-4322-5	SS05	Total/NA	Solid	8015B NM	49014
890-4322-6	SS06	Total/NA	Solid	8015B NM	49014
890-4322-7	SS07	Total/NA	Solid	8015B NM	49014
890-4322-8	SS08	Total/NA	Solid	8015B NM	49014
890-4322-9	SS09	Total/NA	Solid	8015B NM	49014
890-4322-10	SS10	Total/NA	Solid	8015B NM	49014
890-4322-11	SS11	Total/NA	Solid	8015B NM	49014
890-4322-12	SS12	Total/NA	Solid	8015B NM	49014
890-4322-13	SS13	Total/NA	Solid	8015B NM	49014
MB 880-49014/1-A	Method Blank	Total/NA	Solid	8015B NM	49014
LCS 880-49014/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	49014
LCSD 880-49014/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	49014
890-4322-1 MS	SS01	Total/NA	Solid	8015B NM	49014
890-4322-1 MSD	SS01	Total/NA	Solid	8015B NM	49014

Eurofins Carlsbad

5

3

4

_

7

8

10

12

10

14

3/2

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

GC Semi VOA

Analysis Batch: 49233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Total/NA	Solid	8015 NM	
890-4322-2	SS02	Total/NA	Solid	8015 NM	
890-4322-3	SS03	Total/NA	Solid	8015 NM	
890-4322-4	SS04	Total/NA	Solid	8015 NM	
890-4322-5	SS05	Total/NA	Solid	8015 NM	
890-4322-6	SS06	Total/NA	Solid	8015 NM	
890-4322-7	SS07	Total/NA	Solid	8015 NM	
890-4322-8	SS08	Total/NA	Solid	8015 NM	
890-4322-9	SS09	Total/NA	Solid	8015 NM	
890-4322-10	SS10	Total/NA	Solid	8015 NM	
890-4322-11	SS11	Total/NA	Solid	8015 NM	
890-4322-12	SS12	Total/NA	Solid	8015 NM	
890-4322-13	SS13	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 49264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Soluble	Solid	DI Leach	 -
890-4322-2	SS02	Soluble	Solid	DI Leach	
890-4322-3	SS03	Soluble	Solid	DI Leach	
890-4322-4	SS04	Soluble	Solid	DI Leach	
890-4322-5	SS05	Soluble	Solid	DI Leach	
890-4322-6	SS06	Soluble	Solid	DI Leach	
890-4322-7	SS07	Soluble	Solid	DI Leach	
890-4322-8	SS08	Soluble	Solid	DI Leach	
890-4322-9	SS09	Soluble	Solid	DI Leach	
890-4322-10	SS10	Soluble	Solid	DI Leach	
890-4322-11	SS11	Soluble	Solid	DI Leach	
890-4322-12	SS12	Soluble	Solid	DI Leach	
890-4322-13	SS13	Soluble	Solid	DI Leach	
MB 880-49264/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-49264/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-49264/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4322-4 MS	SS04	Soluble	Solid	DI Leach	
890-4322-4 MSD	SS04	Soluble	Solid	DI Leach	

Analysis Batch: 49491

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-1	SS01	Soluble	Solid	300.0	49264
890-4322-2	SS02	Soluble	Solid	300.0	49264
890-4322-3	SS03	Soluble	Solid	300.0	49264
890-4322-4	SS04	Soluble	Solid	300.0	49264
890-4322-5	SS05	Soluble	Solid	300.0	49264
890-4322-6	SS06	Soluble	Solid	300.0	49264
890-4322-7	SS07	Soluble	Solid	300.0	49264
890-4322-8	SS08	Soluble	Solid	300.0	49264
890-4322-9	SS09	Soluble	Solid	300.0	49264
890-4322-10	SS10	Soluble	Solid	300.0	49264
890-4322-11	SS11	Soluble	Solid	300.0	49264
890-4322-12	SS12	Soluble	Solid	300.0	49264

Eurofins Carlsbad

_

4.0

1 1

13

| | 4

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

HPLC/IC (Continued)

Analysis Batch: 49491 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4322-13	SS13	Soluble	Solid	300.0	49264
MB 880-49264/1-A	Method Blank	Soluble	Solid	300.0	49264
LCS 880-49264/2-A	Lab Control Sample	Soluble	Solid	300.0	49264
LCSD 880-49264/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	49264
890-4322-4 MS	SS04	Soluble	Solid	300.0	49264
890-4322-4 MSD	SS04	Soluble	Solid	300.0	49264

1

6

9

10

12

13

14

SDG: 03D2024167

Project/Site: Cabo Wabo Federal Com 801H

Lab Sample ID: 890-4322-1

Client Sample ID: SS01 Date Collected: 03/13/23 13:25 Date Received: 03/15/23 14:29

Client: Ensolum

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 49324 Total/NA Prep 4.97 g 5 mL 03/23/23 12:25 MNR **EET MID** 8021B Total/NA Analysis 1 5 mL 5 mL 49364 03/24/23 13:49 MNR **EET MID** Total/NA Analysis Total BTEX 49493 03/25/23 16:19 MNR EET MID Total/NA 8015 NM **EET MID** Analysis 1 49233 03/22/23 16:11 ΑJ Total/NA 8015NM Prep 49014 03/20/23 14:02 EET MID Prep 10.03 g 10 mL A.I Total/NA Analysis 8015B NM 1 uL 1 uL 49067 03/21/23 21:04 SM **EET MID** Soluble 5.01 g 50 mL 49264 03/22/23 22:06 KS EET MID Leach DI Leach Soluble Analysis 300.0 50 mL 50 mL 49491 03/25/23 18:11 SMC **EET MID**

Lab Sample ID: 890-4322-2

Date Collected: 03/13/23 12:30

Client Sample ID: SS02

Date Received: 03/15/23 14:29

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 14:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/21/23 22:11	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	49491	03/25/23 18:15	SMC	EET MID

Lab Sample ID: 890-4322-3 **Client Sample ID: SS03** Date Collected: 03/13/23 13:05

Date Received: 03/15/23 14:29

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 14:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/21/23 22:33	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	49491	03/25/23 18:20	SMC	EET MID

Lab Sample ID: 890-4322-4 **Client Sample ID: SS04**

Date Collected: 03/13/23 12:40 Date Received: 03/15/23 14:29

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 16:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 13:13	MNR	EET MID

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Job ID: 890-4322-1

SDG: 03D2024167

Client Sample ID: SS04 Lab Sample ID: 890-4322-4 Date Collected: 03/13/23 12:40

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/21/23 22:55	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	49491	03/25/23 18:24	SMC	EET MID

Client Sample ID: SS05 Lab Sample ID: 890-4322-5

Date Collected: 03/13/23 13:00 **Matrix: Solid**

Date Received: 03/15/23 14:29

Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 16:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 13:13	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/21/23 23:17	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	49491	03/25/23 18:38	SMC	EET MID

Client Sample ID: SS06 Lab Sample ID: 890-4322-6

Date Collected: 03/13/23 12:35 Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 16:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 13:13	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/21/23 23:39	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	49491	03/25/23 18:42	SMC	EET MID

Client Sample ID: SS07 Lab Sample ID: 890-4322-7

Date Collected: 03/13/23 12:25 Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 17:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 13:13	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.01 g 1 uL	10 mL 1 uL	49014 49067	03/20/23 14:02 03/22/23 00:00	AJ SM	EET MID EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Job ID: 890-4322-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS07 Lab Sample ID: 890-4322-7

Date Collected: 03/13/23 12:25 Matrix: Solid Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	49491	03/25/23 18:56	SMC	EET MID

Client Sample ID: SS08 Lab Sample ID: 890-4322-8

Date Collected: 03/13/23 13:45 **Matrix: Solid**

Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 17:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 00:22	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	49491	03/25/23 19:01	SMC	EET MID

Client Sample ID: SS09 Lab Sample ID: 890-4322-9

Date Collected: 03/13/23 13:50 **Matrix: Solid** Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 17:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 00:44	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	49491	03/25/23 19:05	SMC	EET MID

Client Sample ID: SS10 Lab Sample ID: 890-4322-10

Date Collected: 03/13/23 13:55 Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 18:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 01:06	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	49491	03/25/23 19:10	SMC	EET MID

Eurofins Carlsbad

Matrix: Solid

SDG: 03D2024167

Project/Site: Cabo Wabo Federal Com 801H

Lab Sample ID: 890-4322-11

Matrix: Solid

Client Sample ID: SS11

Client: Ensolum

Date Collected: 03/13/23 14:00
Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 18:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 01:50	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	49491	03/27/23 17:00	SMC	EET MID

Client Sample ID: SS12 Lab Sample ID: 890-4322-12

Date Collected: 03/13/23 14:25

Page Received: 03/45/03 14:29

Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 18:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 02:13	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	49491	03/25/23 19:19	SMC	EET MID

Client Sample ID: SS13 Lab Sample ID: 890-4322-13

Date Collected: 03/13/23 14:30 Matrix: Solid
Date Received: 03/15/23 14:29

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	49324	03/23/23 12:25	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	49364	03/24/23 19:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			49493	03/25/23 16:19	MNR	EET MID
Total/NA	Analysis	8015 NM		1			49233	03/22/23 16:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	49014	03/20/23 14:02	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	49067	03/22/23 02:35	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	49264	03/22/23 22:06	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	49491	03/25/23 19:23	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Texas		rogram	Identification Number	Expiration Date 06-30-23	
		ELAP	T104704400-22-25		
The following analytes the agency does not of	• •	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes fo	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		

Method Summary

Client: Ensolum Job ID: 890-4322-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

.

-

Δ

5

7

0

10

12

13

Ш

Sample Summary

Client: Ensolum

890-4322-13

SS13

Job ID: 890-4322-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4322-1	SS01	Solid	03/13/23 13:25	03/15/23 14:29	0.25'
890-4322-2	SS02	Solid	03/13/23 12:30	03/15/23 14:29	0.25'
890-4322-3	SS03	Solid	03/13/23 13:05	03/15/23 14:29	0.25'
890-4322-4	SS04	Solid	03/13/23 12:40	03/15/23 14:29	0.25'
890-4322-5	SS05	Solid	03/13/23 13:00	03/15/23 14:29	0.25'
890-4322-6	SS06	Solid	03/13/23 12:35	03/15/23 14:29	0.25'
890-4322-7	SS07	Solid	03/13/23 12:25	03/15/23 14:29	0.25'
890-4322-8	SS08	Solid	03/13/23 13:45	03/15/23 14:29	0.25'
890-4322-9	SS09	Solid	03/13/23 13:50	03/15/23 14:29	0.25'
890-4322-10	SS10	Solid	03/13/23 13:55	03/15/23 14:29	0.25'
890-4322-11	SS11	Solid	03/13/23 14:00	03/15/23 14:29	0.25'
890-4322-12	SS12	Solid	03/13/23 14:25	03/15/23 14:29	0.25'

03/13/23 14:30

03/15/23 14:29

0.25'

Solid

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010

200.8 / 6020:

8RCRA 13PPM

Texas 11 Comp Comp Comp Comp

≥

Sb

S Ba

Be B Cd

Ca Cr Co

Cu Fe

B

Mg Mn Mo Ni K

Se

Ag SiO₂ Na Sr

Sn U < 17471

Zn

1631 / 245.1 / 7470

TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag

Soi Soil

3/13/2023

1350

0.25

0.25

SS09

8088

SS07

Soil Soil

3/13/2023 3/13/2023

1225 1235 1300 1240 1305 1230 1325

S

3/13/2023

1345

0.25 0.25 0.25 SS05 SS04 SS03 SS02

Soil Soil Soil Soil

3/13/2023

0.25

Comp Comp Comp

Comp

0.25 0.25 0.25 0.25 Depth

3/13/2023

3/13/2023 3/13/2023 3/13/2023

SS06

13 14

eurofins

Phone:

City, State ZIP:

Address: Company Name: Project Manager:

SAMPLE RECEIPT

Temp Blank: Ses.

Yes No Thermometer ID:

Wet Ice:

Res

8

Parameters

CHLORIDES (EPA: 300.0)

890-4322 Chain of Custody

No.

Samples Received Intact:

Sample Custody Seals: Cooler Custody Seals:

Yes Yes

S S 8

Sample Identification

Matrix

Sampled

Sampled

Comp

Comp

Comp Grab/

Cont * of

TPH (8015)

BTEX (8021)

Date

Time

Corrected Temperature: Temperature Reading: Correction Factor:

Soil

Sampler's Name:

roject Location:

32.1222,-103.9325 Peter Van Patten

Due Date:

☑ Routine

Rush

Code

ANALYSIS REQUEST

Turn Around

TAT starts the day received by the lab, if received by 4:30pm

H₂S0₄: H₂ Cool: Cool

NaOH: Na HNO3: HN None: NO

DI Water: H₂O

MeOH: Me

Preservative Codes

NaHSO₄: NABIS H3PO4: HP Project Number:

Project Name:

Cabo Wabo Federal Com 801H

03D2024167

Chain of Custody

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Xenco	EL Paso, T	Wildelin, 1A (472) 747-5470, Osin Alicano, 1A (472) 747-5470, Osin	
	Hobbs, NM	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	www.xenco.com Page of 2
Hadlie Green	Bill to: (if different)	Hadlie Green	Work Order Comments
Ensolum, LLC	Company Name:	Ensolum, LLC	Program: UST/PST ☐ PRP ☐ Brownfields ☐ RRC ☐ Superfund ☐
601 N Marienfeld St Suite 400	Address:	601 N Marienfeld St Suite 400	State of Project:
Midland, TX 79701	City, State ZIP:	Midland, TX 79701	Reporting: Level II Level III PST/UST TRRP Level IV
432-557-8895 E	Email: hgreen@ensolum.com	om	Deliverables: EDD

Date - 0908 0000 00000	0				
			O		5
					3
			3/15/23 1424	marks Stut	The the letter
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	Received by: (Signature)	Relinquished by: (Signature)
	ced unless previously negotiated.	urred by the client if such losses are due to circ aco, but not analyzed. These terms will be enfo	ly for any losses or expenses income supplies that it is a supplies to the supplies that it is a supplies that	of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$35,00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	of service. Eurofins Xenco will be liable only for Eurofins Xenco. A minimum charge of \$85.0
	tandard terms and conditions	o, its affiliates and subcontractors. It assigns s	client company to Eurofins Xenco	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions	Notice: Signature of this document and relingu

NaOH+Ascorbic Acid: SAPC Zn Acetate+NaOH: Zn Na₂S₂O₃: NaSO₃

Sample Comments

Circle Method(s) and Metal(s) to be analyzed

Total 200.7 / 6010

200.8 / 6020:

8RCRA 13PPM Texas 11 Al Sb

Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions

TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni

As Ba

Be B

S

Ca Cr

Co Cu Fe Pb

Mg Mn Mo Ni K Se Ag TI U

Se

Ag SiO₂ Na

S

TI Sn U

V Zn

Hg: 1631 / 245.1 / 7470 / 7471

Chain of Custody

(915) 585-3443, Lubbock, TX (806) 794-1296
--

		0.00			ļ
REQUEST Preservative Codes	ANALYSI	Turn Around	Cabo Wabo Federal Com 801H	Project Name: Cabo	770
Deliverables: EDD	com	Email: hgreen@ensolum.com	-8895	ne: 432-557-8895	Phone:
vel III ∐ PST/UST [Midland, TX 79701	City, State ZIP:	Midland, TX 79701	City, State ZIP: Midland	ΙŞ
State of Project:	601 N Marienfeld St Suite 400	Address:	601 N Marienfeld St Suite 400	Address: 601 N N	B
Program: UST/PST ☐ PRP ☐ Brownfields ☐ RRC ☐ Superfund ☐	Ensolum, LLC	Company Name:	n, LLC	Company Name: Ensolum, LLC	8
Work Order Comments	Hadlie Green	Bill to: (if different)	sreen	Project Manager: Hadlie Green	7
www.xenco.com Page 2 of 2	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	Hobbs, NM			
	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	EL Paso, T)	Xenco		
Work Order No:	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334		Environment Testing	eurofins	

Phone:

SAMPLE RECEIPT

Temp Blank: Yes

Yes No

Wertce:

Yes

ö

Parameters

CHLORIDES (EPA: 300.0)

8

Thermometer ID:

Samples Received Intact:

Cooler Custody Seals: ample Custody Seals:

No No

N/A N/A

Correction Factor Temperature Reading Corrected Temperature:

Yes Yes

Sample Identification

Matrix

Sampled

Sampled

Cont # of

TPH (8015)

BTEX (8021)

Time

Date

3/13/2023

1400

SS13 SS12 SS11

Soil Soil Soil

3/13/2023 3/13/2023

1425 1430

0.25 0.25 0.25 Depth

Comp Comp Comp Comp Grab/ Sampler's Name:

32.1222,-103.9325

Due Date:

☑ Routine

Rush

Code

TAT starts the day received by the lab, if received by 4:30pm

HCL: HC

Cool: Coo

MeOH: Me

NaOH: Na HNO3: HN None: NO

DI Water: H₂O

H3PO4: HP H2SO4: H2

NaHSO4: NABIS

03D2024167

Peter Van Patten

Project Number: Project Location:

			o		
			4		7
			3/15/23 1424	Amarala Stut 5/15/23 1430	The latter
Date/Time	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	Received by: (Signature)	Relinquished by: (Signature)

NaOH+Ascorbic Acid: SAPC

Sample Comments

Zn Acetate+NaOH: Zn Na₂S₂O₃: NaSO₃

3/28/2023

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-4322-1

 SDG Number: 03D2024167

Login Number: 4322 List Source: Eurofins Carlsbad

List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

140 UJ 2US

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-4322-1

 SDG Number: 03D2024167

List Source: Eurofins Midland List Creation: 03/17/23 11:17 AM

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 4322

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

4

__

3

4

6

8

10

10

13

14

<6mm (1/4").

Containers requiring zero headspace have no headspace or bubble is

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green

Ensolum

601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 5/24/2023 11:26:23 AM Revision 1

JOB DESCRIPTION

Cabo Wabo Federal Com 801H SDG NUMBER 03D2024167

JOB NUMBER

890-4659-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 5/24/2023 11:26:23 AM Revision 1

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies Page 2 of 46

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H

Laboratory Job ID: 890-4659-1 SDG: 03D2024167

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	19
QC Sample Results	21
QC Association Summary	30
Lab Chronicle	35
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

2

3

4

6

8

10

40

13

14

Definitions/Glossary

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Qualifiers

GC VOA

Qualifier **Qualifier Description** Surrogate recovery exceeds control limits, low biased. S1-U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

*+ LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	y used abbreviations ma	v or may	not be	nresent in t	this report
Abbieviation	These commonly	y useu abbievialions ina	y oi illay	IIOL DE	present m	uus repurt.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

POI **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Job ID: 890-4659-1

SDG: 03D2024167

Job ID: 890-4659-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4659-1

REVISION

The report being provided is a revision of the original report sent on 5/22/2023. The report (revision 1) is being revised due to Per client email, requesting re run on sample SS07A.

Receipt

The samples were received on 5/12/2023 1:13 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-4659-1), FS02 (890-4659-2), FS05A (890-4659-3), SS06A (890-4659-4), SS07A (890-4659-5), SS08A (890-4659-6), SS09A (890-4659-7), SS10A (890-4659-8), SS11A (890-4659-9), SS12A (890-4659-10), SS13A (890-4659-11), SS14 (890-4659-12), SS15 (890-4659-13), SS16 (890-4659-14) and SS17 (890-4659-15).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS02 (890-4659-2), SS09A (890-4659-7), SS11A (890-4659-9), SS17 (890-4659-15) and (CCV 880-53724/52). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-53496/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS07A (890-4659-5). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-53456 and analytical batch 880-53447 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-53447/5). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-53447/20). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: FS01 (890-4659-1), FS05A (890-4659-3), SS07A (890-4659-5), SS08A (890-4659-6) and SS10A (890-4659-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-53447/31). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-53456 and analytical batch 880-53447 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Case Narrative

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

Job ID: 890-4659-1

SDG: 03D2024167

Job ID: 890-4659-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-53469 and analytical batch 880-53450 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-53469/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: SS11A (890-4659-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: SS12A (890-4659-10), SS13A (890-4659-11), SS14 (890-4659-12), SS15 (890-4659-13) and SS16 (890-4659-14). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-53485 and analytical batch 880-53552 was outside the upper control limits.

Method 8015MOD NM: CCV biased low for Diesel Range Organics (Over C10-C28) however an acceptable CCV was ran within the 12 hour window therefore the data has been qualified and reported.(CCV 880-53552/5)

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-53485 and analytical batch 880-53552 was outside control limits. Sample non-homogeneity is suspected.

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-53947 and analytical batch 880-53936 was outside the upper control limits.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-53947 and analytical batch 880-53936 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample duplicate (LCSD) recovery is within acceptance limits.

Method 8015MOD_NM: LCS biased high for Diesel Range Organics (Over C10-C28). Since only an acceptable LCS or LCSD is required per the method, the LCSD shows recovery for the batch and the data has been qualified and reported.(LCS 880-53947/2-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-53364 and 880-53364 and analytical batch 880-53574 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Matrix: Solid

Lab Sample ID: 890-4659-1

05/16/23 08:49 05/16/23 16:42

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: FS01

Date Collected: 05/12/23 09:25 Date Received: 05/12/23 13:13

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 09:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			05/16/23 15:13	05/20/23 09:10	1
1,4-Difluorobenzene (Surr)	70		70 - 130			05/16/23 15:13	05/20/23 09:10	1

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/22/23 15:52	1
_								

Method: 544846 8015 NW - Die:	sei Range Or	ganics (i	DRU) (GC)					
Analyte	Result Q	ualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	J	49.9	mg/Kg			05/17/23 10:58	1

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 16:42	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 16:42	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 16:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130			05/16/23 08:49	05/16/23 16:42	1

Method: EPA 300.0 - Anions, I	on Chromat	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	386	F1	4.96	mg/Kg			05/17/23 18:16	1

70 - 130

138 S1+

Client Sample ID: FS02 Lab Sample ID: 890-4659-2 Date Collected: 05/12/23 09:30 **Matrix: Solid**

Date Received: 05/12/23 13:13

Sample Depth: 0.5'

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 09:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			05/16/23 15:13	05/20/23 09:31	1

Lab Sample ID: 890-4659-2

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: FS02

Date Date Received: 05/12/23 13:13

Sample Depth: 0.5'

e Collected: 05/12/23 09:30	Matrix: Solid
to Paceived: 05/12/23 13:13	

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1.4-Difluorobenzene (Surr)	65	S1-	70 - 130	05/16/23 15:13 05/20/23 09:31	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
١	Total BTEX	<0.00398	U	0.00398	mg/Kg			05/22/23 15:52	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Q	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9 U	J	49.9	mg/Kg			05/17/23 10:58	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

		ga	(=::=) (==)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:03	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:03	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	105	70 - 130	05/16/23 08:49	05/16/23 17:03	1
o-Terphenyl	125	70 - 130	05/16/23 08:49	05/16/23 17:03	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	472		25.2	mg/Kg			05/17/23 18:32	5

Client Sample ID: FS05A Lab Sample ID: 890-4659-3 **Matrix: Solid**

Date Collected: 05/12/23 09:45 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

	Method: SW846 8021B - Volat	tile Organic Compounds (G	C)
Analyte Result Qualifier	Analyte	Result Qualifier	ı

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
Toluene	<0.00200	U	0.00200	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg	05/16/23 15:13	05/20/23 09:52	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130		05/16/23 15:13	05/20/23 09:52	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130	05/16/23 15:13	05/20/23 09:52	1
1,4-Difluorobenzene (Surr)	86	70 - 130	05/16/23 15:13	05/20/23 09:52	1

Method: TAL SOP	Total BTEX - Total	BTEX Calculation
-----------------	---------------------------	-------------------------

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/22/23 15:52	1

Method: SW846	8015 NM	- Diesel	Range	Organics	(DRO) (GC)
					(-::-) ()

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/17/23 10:58	1

Client Sample Results

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Date Date Received: 05/12/23 13:13

Sample Depth: 1.0'

lient Sample ID: FS05A	Lab Sample ID: 890-4659-3
ate Collected: 05/12/23 09:45	Matrix: Solid

Method: SW846 8015B NM - I Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:25	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:25	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 17:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			05/16/23 08:49	05/16/23 17:25	1
o-Terphenyl	133	S1+	70 - 130			05/16/23 08:49	05/16/23 17:25	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SS06A Lab Sample ID: 890-4659-4 Matrix: Solid Date Collected: 05/12/23 09:50

4.97

216

mg/Kg

Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Chloride

Method: SW846 8021B - Vo Analyte	•	Compoun Qualifier	ds (GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/Kg	— <u> </u>	05/16/23 15:13		1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:12	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		05/16/23 15:13	05/20/23 10:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:12	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		05/16/23 15:13	05/20/23 10:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130			05/16/23 15:13	05/20/23 10:12	1
1,4-Difluorobenzene (Surr)	90		70 - 130			05/16/23 15:13	05/20/23 10:12	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			05/22/23 15:52	1
Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	11	50.0	mg/Kg			05/17/23 10:58	

raidiyio	Hoodit	Q uao.		0	_	opa. oa	/ 11.u.y = 0 u	D uo
Total TPH	<50.0	U	50.0	mg/Kg			05/17/23 10:58	1
 Method: SW846 8015B NM - D	iesel Range	Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 17:47	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 17:47	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 17:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130			05/16/23 08:49	05/16/23 17:47	1
o-Terphenyl	126		70 - 130			05/16/23 08:49	05/16/23 17:47	1

Eurofins Carlsbad

05/17/23 18:38

Client Sample Results

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS06A

Date Collected: 05/12/23 09:50 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Lab Sample ID: 890-4659-4

Matrix: Solid

Method: EPA 300.0 - Anions, Id	on Chromat	ography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	229		5.02	mg/Kg			05/17/23 18:43	1

Client Sample ID: SS07A Lab Sample ID: 890-4659-5 Matrix: Solid

Date Collected: 05/12/23 09:55 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/16/23 15:13	05/20/23 10:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			05/16/23 15:13	05/20/23 10:33	1
1.4-Difluorobenzene (Surr)	64	S1-	70 - 130			05/16/23 15:13	05/20/23 10:33	1

Method: TAL SOP Total BTEX -	Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/22/23 15:52	1

Method: SW846 8015 NM - Diese	I Range (Organics (D	RO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/17/23 10:58	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/23/23 08:48	05/23/23 19:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U *+	49.9	mg/Kg		05/23/23 08:48	05/23/23 19:53	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/23/23 08:48	05/23/23 19:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130			05/23/23 08:48	05/23/23 19:53	1
o-Terphenyl	123		70 - 130			05/23/23 08:48	05/23/23 19:53	1

Method: EPA 300.0 - Anions, Id	on Chromatography	- Soluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	226	5.04	mg/Kg			05/17/23 18:48	1

Client Sample ID: SS08A

Date Collected: 05/12/23 10:00 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

.ab	Samp	le I	D:	8	9	0	-46	59	-(3
				_	_		_	_		_

05/16/23 08:49 05/16/23 18:28

Matrix: Solid

Method: SW846 8021B - Vo	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
Toluene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
m-Xylene & p-Xylene	< 0.00396	U	0.00396	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		05/16/23 15:13	05/20/23 10:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			05/16/23 15:13	05/20/23 10:54	1
1,4-Difluorobenzene (Surr)	83		70 - 130			05/16/23 15:13	05/20/23 10:54	1

Method: IAL SUP Total BIEX	- lotal BIEX	Calculation	on					
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	J	0.00396	mg/Kg			05/22/23 15:52	1

Method: SW846 8015 NM - Die	sel Range (Organics (D	RO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			05/17/23 10:58	1

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 18:28	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 18:28	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 08:49	05/16/23 18:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130			05/16/23 08:49	05/16/23 18:28	1

Method: EPA 300.0 - A	Anions, Ion Chromatography -	Soluble					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	236	4.98	ma/Ka			05/17/23 19:04	1

70 - 130

137 S1+

Lab Sample ID: 890-4659-7 Client Sample ID: SS09A Date Collected: 05/12/23 10:05 **Matrix: Solid**

Date Received: 05/12/23 13:13

Sample Depth: 1.0'

o-Terphenyl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 11:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130			05/16/23 15:13	05/20/23 11:14	1

Client Sample ID: SS09A Lab Sample ID: 890-4659-7

Date Collected: 05/12/23 10:05 **Matrix: Solid** Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed l	Dil Fac
1,4-Difluorobenzene (Surr)	64 S1-	70 - 130	05/16/23 15:13 05/	/20/23 11:14	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00398	U	0.00398	 ma/Ka			05/22/23 15:52	1	

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	ma/Ka			05/17/23 10:58	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 18:49	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 18:49	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 18:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	92	70 - 130	05/16/23 08:49	05/16/23 18:49	1
o-Terphenyl	113	70 - 130	05/16/23 08:49	05/16/23 18:49	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifie	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	317	4.96	mg/Kg			05/17/23 19:10	1

Lab Sample ID: 890-4659-8 **Client Sample ID: SS10A** Matrix: Solid

Date Collected: 05/12/23 10:10 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Method: SW846 8021B	- Volatile (Organic Compounds	(GC)
MIGHIOU. SYVOTO OUZ ID	- voiatile v	Organic Compounds	

INICITION. SYVOTO OUZ ID - VO	Jiatile Organic	Compoun	us (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
Toluene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
m-Xylene & p-Xylene	< 0.00397	U	0.00397	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
Xylenes, Total	<0.00397	U	0.00397	mg/Kg		05/16/23 15:13	05/20/23 11:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130			05/16/23 15:13	05/20/23 11:35	1
1 4-Difluorobenzene (Surr)	84		70 _ 130			05/16/23 15:13	05/20/23 11:35	1

Method: TA	I SOP Total RTFX.	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			05/22/23 15:52	1

Analyte	Result Qualif	ier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			05/17/23 10:58	1

Date Co Date Received: 05/12/23 13:13

Sample Depth: 1.0'

t Sample ID: SS10A	Lab Sample ID: 890-4659-8
Collected: 05/12/23 10:10	Matrix: Solid

Method: SW846 8015B NM - D	Diesel Range	Organics	(DRO) (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 19:09	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 19:09	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 19:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			05/16/23 08:49	05/16/23 19:09	1
o-Terphenyl	135	S1+	70 - 130			05/16/23 08:49	05/16/23 19:09	1
Method: EPA 300.0 - Anions,	lon Chroma	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	310	-	4.97	mg/Kg			05/17/23 19:15	1

Lab Sample ID: 890-4659-9 Client Sample ID: SS11A **Matrix: Solid**

Date Collected: 05/12/23 10:15 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
Toluene	< 0.00201	U	0.00201	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
Ethylbenzene	< 0.00201	U	0.00201	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
o-Xylene	< 0.00201	U	0.00201	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/16/23 15:13	05/20/23 11:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			05/16/23 15:13	05/20/23 11:55	1
1,4-Difluorobenzene (Surr)	68	S1-	70 - 130			05/16/23 15:13	05/20/23 11:55	1
: Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)	mg/Kg				
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9		49.9	mg/Kg	_ =		05/17/23 12:07	1
Method: SW846 8015B NM - D	iesel Range	organics	(DRO) (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/16/23 20:53	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/16/23 20:53	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/16/23 20:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
			70 - 130			05/16/23 11:47	05/16/23 20:53	

Eurofins Carlsbad

05/16/23 11:47 05/16/23 20:53

70 - 130

144 S1+

o-Terphenyl

Matrix: Solid

Lab Sample ID: 890-4659-9

Client: Ensolum Job ID: 890-4659-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS11A

Date Collected: 05/12/23 10:15

Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Method: EPA 300.0 - Anions, Id	on Chromat	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	313		5.01	mg/Kg			05/17/23 19:21	1

Client Sample ID: SS12A

Date Collected: 05/12/23 10:20

Lab Sample ID: 890-4659-10

Matrix: Solid

Date Collected: 05/12/23 10:20 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		05/16/23 15:13	05/20/23 12:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			05/16/23 15:13	05/20/23 12:16	1
1,4-Difluorobenzene (Surr)	71		70 - 130			05/16/23 15:13	05/20/23 12:16	1

Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			05/22/23 15:52	1

Method: SW846 8015 NM - Diese	l Range (Organics (D	RO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			05/17/23 12:07	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 21:56	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 21:56	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 21:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130			05/16/23 11:47	05/16/23 21:56	1
o-Terphenyl	152	S1+	70 - 130			05/16/23 11:47	05/16/23 21:56	1

Method: EPA 300.0 - Anions, Id	on Chromat	ography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	332		5.04	mg/Kg			05/17/23 19:26	1

Eurofins Carlsbad

2

3

5

6

2

10

12

13

Client Sample Results

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS13A Lab Sample ID: 890-4659-11

Date Collected: 05/12/23 09:25 Matrix: Solid Date Received: 05/12/23 13:13

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 13:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			05/16/23 15:13	05/20/23 13:39	1
1,4-Difluorobenzene (Surr)	94		70 - 130			05/16/23 15:13	05/20/23 13:39	1
Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			05/22/23 15:52	1
Method: SW846 8015 NM - Di	esel Range (Organics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	_	Qualifier	, , ,	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/17/23 12:07	
Analyte Total TPH	Result < 50.0	Qualifier U	RL 50.0		<u>D</u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - [Result <50.0	Qualifier U	RL 50.0		<u>D</u>	Prepared Prepared		1
Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier U Organics Qualifier	50.0 (DRO) (GC)	mg/Kg		<u> </u>	05/17/23 12:07	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 Ciesel Range Result	Qualifier U Organics Qualifier U	70.0 RL (DRO) (GC)	mg/Kg Unit		Prepared	05/17/23 12:07 Analyzed 05/16/23 22:17	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0 Diesel Range Result <50.0	Qualifier U Organics Qualifier U	RL 50.0 (GC) RL 50.0	mg/Kg Unit mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 Ciesel Range Result <50.0 <50.0	Qualifier U Organics Qualifier U U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17 05/16/23 22:17	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U Organics Qualifier U U	RL 50.0 (DRO) (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17 05/16/23 22:17	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U Organics Qualifier U U	RL 50.0 (DRO) (GC) RL 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47 05/16/23 11:47 Prepared 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17 05/16/23 22:17 05/16/23 22:17 Analyzed	1 Dil Face 1 1 1 1 Dil Face 1
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U Organics Qualifier U U Qualifier S1+ cography	RL 50.0 (DRO) (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47 05/16/23 11:47 Prepared 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17 05/16/23 22:17 Analyzed 05/16/23 22:17	Dil Fac 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	Qualifier U Organics Qualifier U U U Qualifier S1+	RL 50.0 (DRO) (GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 05/16/23 11:47 05/16/23 11:47 05/16/23 11:47 Prepared 05/16/23 11:47	05/17/23 12:07 Analyzed 05/16/23 22:17 05/16/23 22:17 Analyzed 05/16/23 22:17	1 Dil Fac

Client Sample ID: SS14 Lab Sample ID: 890-4659-12 **Matrix: Solid**

Date Collected: 05/12/23 09:30

Date Received: 05/12/23 13:13

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
Toluene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		05/16/23 15:13	05/20/23 13:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	<u></u>		70 - 130			05/16/23 15:13	05/20/23 13:59	1

Matrix: Solid

Lab Sample ID: 890-4659-12

Client: Ensolum Job ID: 890-4659-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS14

Date Collected: 05/12/23 09:30 Date Received: 05/12/23 13:13

Sample Depth: 0.5'

Method: SW846 8021B	 Volatile Organic Compounds 	s (GC) (Continued)

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	73	70 - 130	05/16/23 15:13	05/20/23 13:59	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			05/22/23 15:52	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			05/17/23 12:07	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 22:39	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 22:39	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		05/16/23 11:47	05/16/23 22:39	1
Surragata	9/ Bassivari	Qualifier	Limita			Droporod	Analyzad	Dil Ess

Surrogate	%Recovery Qu	ualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130	05/16/23 11:47	05/16/23 22:39	1
o-Terphenyl	142 S1	1+	70 - 130	05/16/23 11:47	05/16/23 22:39	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	326		4.95	mg/Kg			05/17/23 19:47	1

Client Sample ID: SS15

Date Collected: 05/12/23 09:45

Lab Sample ID: 890-4659-13

Matrix: Solid

Date Collected: 05/12/23 09:45 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

1,4-Difluorobenzene (Surr)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Michiga. Offoro our ID - Vo	nathe Organic	Compount	us (CC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		05/16/23 15:13	05/20/23 14:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			05/16/23 15:13	05/20/23 14:20	1

Method: TA	I SOP Total RTFX.	- Total RTFY	Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/22/23 15:52	1

70 - 130

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

70

Analyte	Result Qualific	er RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 U	50.0	mg/Kg			05/17/23 12:07	1

Eurofins Carlsbad

05/16/23 15:13 05/20/23 14:20

1

3

4

0

-

10

12

4 4

Client Sample ID: SS15 Lab Sample ID: 890-4659-13

353

Date Collected: 05/12/23 09:45 **Matrix: Solid** Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 22:59	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 22:59	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 22:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	128		70 - 130			05/16/23 11:47	05/16/23 22:59	1
o-Terphenyl	148	S1+	70 - 130			05/16/23 11:47	05/16/23 22:59	1

Client Sample ID: SS16 Lab Sample ID: 890-4659-14 **Matrix: Solid**

4.97

mg/Kg

Date Collected: 05/12/23 09:50 Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 14:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			05/16/23 15:13	05/20/23 14:40	1
1,4-Difluorobenzene (Surr)	82		70 - 130			05/16/23 15:13	05/20/23 14:40	1
Method: TAL SOP Total BTEX Analyte Total BTEX		Qualifier	RL 0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/22/23 15:52	Dil Fac
Method: SW846 8015 NM - Did Analyte	_	Organics (Qualifier	DRO) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0	mg/Kg	_ =		05/17/23 12:07	1
Method: SW846 8015B NM - D	iesel Range	organics	(DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 23:20	1
	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 23:20	1
Diesel Range Organics (Over C10-C28)								
ŭ ,	<50.0	U	50.0	mg/Kg		05/16/23 11:47	05/16/23 23:20	1
C10-C28)	<50.0		50.0 <i>Limits</i>	mg/Kg		05/16/23 11:47 Prepared	05/16/23 23:20 Analyzed	1 Dil Fac
C10-C28) Oll Range Organics (Over C28-C36)				mg/Kg				

Eurofins Carlsbad

05/17/23 19:53

Client Sample ID: SS16 Lab Sample ID: 890-4659-14

Date Collected: 05/12/23 09:50 **Matrix: Solid** Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	285		5.03	mg/Kg			05/17/23 20:09	1

Client Sample ID: SS17 Lab Sample ID: 890-4659-15 Matrix: Solid

Date Collected: 05/12/23 09:55

Date Received: 05/12/23 13:13

Sample Depth: 1.0'

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

Method: SW846 8021B - Vola Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	\overline{U}	0.00199	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
Toluene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
Ethylbenzene	< 0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/16/23 15:13	05/20/23 15:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			05/16/23 15:13	05/20/23 15:00	1
1,4-Difluorobenzene (Surr)	57	S1-	70 - 130			05/16/23 15:13	05/20/23 15:00	1
Method: TAL SOP Total BTEX Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	<0.00398	Qualifier U	RL 0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 05/22/23 15:52	Dil Fac
Analyte	Result <0.00398	Qualifier U	RL 0.00398		<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Di	Result <0.00398	Qualifier U Organics (Qualifier	RL 0.00398 DRO) (GC)	mg/Kg		<u> </u>	05/22/23 15:52	1
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte	Result <0.00398 esel Range (Result < 49.9	Qualifier U Organics (I Qualifier U	RL 0.00398 DRO) (GC) RL 49.9	mg/Kg Unit		<u> </u>	05/22/23 15:52 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I	Result <0.00398 esel Range (Result <49.9 Diesel Range	Qualifier U Organics (I Qualifier U	RL 0.00398 DRO) (GC) RL 49.9	mg/Kg Unit		<u> </u>	05/22/23 15:52 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH	Result <0.00398 esel Range (Result <49.9 Diesel Range	Qualifier U Organics (Qualifier U Organics Qualifier U	RL 0.00398 DRO) (GC) RL 49.9 (DRO) (GC)	mg/Kg Unit mg/Kg	<u>D</u>	Prepared	05/22/23 15:52 Analyzed 05/18/23 12:40	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I Analyte Gasoline Range Organics	Result <0.00398 esel Range (Result <49.9 Diesel Range Result	Qualifier U Organics (I Qualifier U Organics Qualifier U	RL 0.00398 DRO) (GC) RL 49.9 (DRO) (GC) RL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	05/22/23 15:52 Analyzed 05/18/23 12:40 Analyzed	Dil Fac

Limits

70 - 130

70 - 130

RL

5.02

Unit

mg/Kg

%Recovery Qualifier

Result Qualifier

108

116

293

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Eurofins Carlsbad

Prepared

Prepared

D

05/16/23 12:56 05/17/23 19:03

05/16/23 12:56 05/17/23 19:03

Analyzed

Analyzed

05/17/23 20:14

Dil Fac

Dil Fac

Surrogate Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		5554		Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-4659-1	FS01	98	70	
890-4659-1 MS	FS01	125	105	
890-4659-1 MSD	FS01	115	111	
890-4659-2	FS02	103	65 S1-	
890-4659-3	FS05A	102	86	
890-4659-4	SS06A	93	90	
890-4659-5	SS07A	102	64 S1-	
890-4659-6	SS08A	102	83	
890-4659-7	SS09A	105	64 S1-	
890-4659-8	SS10A	87	84	
890-4659-9	SS11A	100	68 S1-	
890-4659-10	SS12A	104	71	
890-4659-11	SS13A	100	94	
890-4659-12	SS14	85	73	
890-4659-13	SS15	89	70	
890-4659-14	SS16	89	82	
890-4659-15	SS17	102	57 S1-	
LCS 880-53496/1-A	Lab Control Sample	116	101	
LCSD 880-53496/2-A	Lab Control Sample Dup	111	110	
MB 880-53496/5-A	Method Blank	69 S1-	88	
MB 880-53768/5-A	Method Blank	90	100	

BFB = 4-Bromofluorobenzene (Surr)
DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent S	urrogate Recovery (Acceptance Limits)
		1001	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-28417-A-1-E MS	Matrix Spike	104	104	
880-28417-A-1-F MSD	Matrix Spike Duplicate	89	91	
890-4652-A-26-D MS	Matrix Spike	103	103	
890-4652-A-26-E MSD	Matrix Spike Duplicate	105	108	
890-4659-1	FS01	115	138 S1+	
890-4659-2	FS02	105	125	
890-4659-3	FS05A	109	133 S1+	
890-4659-4	SS06A	101	126	
890-4659-5	SS07A	107	123	
890-4659-6	SS08A	110	137 S1+	
890-4659-7	SS09A	92	113	
890-4659-8	SS10A	113	135 S1+	
890-4659-9	SS11A	118	144 S1+	
890-4659-9 MS	SS11A	116	128	
890-4659-9 MSD	SS11A	112	127	
890-4659-10	SS12A	125	152 S1+	
890-4659-11	SS13A	116	143 S1+	
890-4659-12	SS14	115	142 S1+	

Eurofins Carlsbad

3

5

0

3

1 1

13

Surrogate Summary

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid **Prep Type: Total/NA**

			Perce	ent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-4659-13	SS15	128	148 S1+	
890-4659-14	SS16	136 S1+	161 S1+	
890-4659-15	SS17	108	116	
890-4700-A-21-B MS	Matrix Spike	115	107	
890-4700-A-21-C MSD	Matrix Spike Duplicate	109	98	
LCS 880-53456/2-A	Lab Control Sample	103	118	
LCS 880-53469/2-A	Lab Control Sample	93	117	
LCS 880-53485/2-A	Lab Control Sample	76	84	
LCS 880-53947/2-A	Lab Control Sample	91	99	
LCSD 880-53456/3-A	Lab Control Sample Dup	95	112	
LCSD 880-53469/3-A	Lab Control Sample Dup	110	135 S1+	
LCSD 880-53485/3-A	Lab Control Sample Dup	90	101	
LCSD 880-53947/3-A	Lab Control Sample Dup	91	98	
MB 880-53456/1-A	Method Blank	160 S1+	199 S1+	
MB 880-53469/1-A	Method Blank	164 S1+	211 S1+	
MB 880-53485/1-A	Method Blank	176 S1+	199 S1+	
MB 880-53947/1-A	Method Blank	168 S1+	195 S1+	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

OTPH = o-Terphenyl

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-53496/5-A

Matrix: Solid

Analysis Batch: 53724

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 53496

	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 08:49	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 08:49	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 08:49	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/16/23 15:13	05/20/23 08:49	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/16/23 15:13	05/20/23 08:49	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/16/23 15:13	05/20/23 08:49	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130	05/16/23 15:13	05/20/23 08:49	1
1,4-Difluorobenzene (Surr)	88		70 - 130	05/16/23 15:13	05/20/23 08:49	1

Lab Sample ID: LCS 880-53496/1-A

Matrix: Solid

Analysis Batch: 53724

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 53496

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1100		mg/Kg		110	70 - 130	
Toluene	0.100	0.09513		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.1021		mg/Kg		102	70 - 130	
m-Xylene & p-Xylene	0.200	0.2096		mg/Kg		105	70 - 130	
o-Xylene	0.100	0.1271		mg/Kg		127	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-53496/2-A

Matrix: Solid

Analysis Batch: 53724

Client Sample ID: Lab	Control	Sample Dup
	Dron Tu	mar Tatal/NIA

Prep Type: Total/NA Prep Batch: 53496

	Spike	LCSD LCSD			%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
Benzene	0.100	0.1234	mg/Kg	123	70 - 130	11	35
Toluene	0.100	0.1044	mg/Kg	104	70 - 130	9	35
Ethylbenzene	0.100	0.1038	mg/Kg	104	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2166	mg/Kg	108	70 - 130	3	35
o-Xylene	0.100	0.1176	mg/Kg	118	70 - 130	8	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1.4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: 890-4659-1 MS

Matrix: Solid

Analysis Batch: 53724

Client Sample ID: FS01 Prep Type: Total/NA

Prep Batch: 53496

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0998	0.09993		mg/Kg		100	70 - 130	
Toluene	<0.00199	U	0.0998	0.09211		mg/Kg		92	70 - 130	

QC Sample Results

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-4659-1 MS **Matrix: Solid**

Analysis Batch: 53724

Client Sample ID: FS01 **Prep Type: Total/NA** Prep Batch: 53496

	Sample	Sample	Бріке	INIO	M2				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00199	U	0.0998	0.1008		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.200	0.1947		mg/Kg		98	70 - 130	
o-Xylene	<0.00199	U	0.0998	0.1111		mg/Kg		111	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	125		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: 890-4659-1 MSD

Client Sample ID: FS01 Matrix: Solid Prep Type: Total/NA **Analysis Batch: 53724** Prep Batch: 53496 RPD

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00199	U	0.0990	0.1077		mg/Kg		109	70 - 130	7	35	
Toluene	< 0.00199	U	0.0990	0.08946		mg/Kg		90	70 - 130	3	35	
Ethylbenzene	< 0.00199	U	0.0990	0.09339		mg/Kg		94	70 - 130	8	35	
m-Xylene & p-Xylene	<0.00398	U	0.198	0.1839		mg/Kg		93	70 - 130	6	35	
o-Xylene	< 0.00199	U	0.0990	0.1014		mg/Kg		102	70 - 130	9	35	

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 115 70 - 130 1,4-Difluorobenzene (Surr) 70 - 130 111

Matrix: Solid

Lab Sample ID: MB 880-53768/5-A **Client Sample ID: Method Blank** Prep Type: Total/NA Analysis Batch: 53724 Prep Batch: 53768 MR MR

		IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/19/23 11:17	05/19/23 22:14	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/19/23 11:17	05/19/23 22:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/19/23 11:17	05/19/23 22:14	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/19/23 11:17	05/19/23 22:14	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/19/23 11:17	05/19/23 22:14	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/19/23 11:17	05/19/23 22:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130	05/19/23 11:17 05/19/23 22:	1 1
1,4-Difluorobenzene (Surr)	100		70 - 130	05/19/23 11:17 05/19/23 22:	4 1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-53456/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 53447

Prep Batch: 53456 MB MB Result Qualifier RL Unit Analyte Prepared Analyzed Gasoline Range Organics <50.0 U 50.0 mg/Kg 05/16/23 08:49 05/16/23 08:50

(GRO)-C6-C10

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-53456/1-A
Matrix: Solid
Analysis Batch: 53447

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 53456

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 08:50	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/16/23 08:49	05/16/23 08:50	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	160	S1+	70 - 130			05/16/23 08:49	05/16/23 08:50	1
o-Terphenyl	199	S1+	70 - 130			05/16/23 08:49	05/16/23 08:50	1

Lab Sample ID: LCS 880- Matrix: Solid Analysis Batch: 53447	53456/2-A		Spike	LCS	LCS	Cilen	t Sai	mpie ib	Prep Type: Total/NA Prep Batch: 53456 %Rec
Analyte			Added	_	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10			1000	787.2		mg/Kg		79	70 - 130
Diesel Range Organics (Over C10-C28)			1000	936.8		mg/Kg		94	70 - 130
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
1-Chlorooctane	103		70 - 130						
o-Terphenyl	118		70 - 130						

Lab Sample ID. LGSD 000-33430/3-A			•	Jilelik Sai	mpie	ID. Lai	Control	Sample	∌ Dup
Matrix: Solid							Prep Ty	pe: Tot	al/NA
Analysis Batch: 53447							Prep E	atch:	53456
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	879.2		mg/Kg		88	70 - 130	11	20
Diesel Range Organics (Over C10-C28)	1000	930.5		mg/Kg		93	70 - 130	1	20
ICSD ICSD									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	95		70 - 130
o-Terphenyl	112		70 - 130

Released to Imaging: 10/23/2024 10:35:28 AM

Lab Sample ID: 890-4652 Matrix: Solid Analysis Batch: 53447		Commis	Omilia	мо	MO		C	lient Sa	mple ID: Matrix Spike Prep Type: Total/NA Prep Batch: 53456
Analyte	•	Sample Qualifier	Spike Added	_	MS Qualifier	Unit	D	%Rec	%Rec Limits
					Qualifier				
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	998	980.0		mg/Kg		97	70 - 130
Diesel Range Organics (Over C10-C28)	135	F1	998	768.2	F1	mg/Kg		63	70 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1-Chlorooctane	103		70 - 130						
o-Terphenyl	103		70 - 130						

QC Sample Results

Spike

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

MSD MSD

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4652-A-26-E MSD

Matrix: Solid

Analysis Batch: 53447

Gasoline Range Organics

Diesel Range Organics (Over

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 53456

%Rec **RPD** Limits RPD Limit

Result Qualifier Added Result Qualifier D %Rec Unit 997 1010 mg/Kg 100 70 - 130 3 20 997 786.4 F1 65 70 - 130 mg/Kg 2 20

C10-C28)

(GRO)-C6-C10

Analyte

MSD MSD

Sample Sample

<49.8 U

135 F1

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	105		70 - 130
o-Terphenyl	108		70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 53469

Lab Sample ID: MB 880-53469/1-A **Matrix: Solid**

Analysis Batch: 53450

MB MB Analyte Result Qualifier RL Unit Dil Fac **Prepared** Analyzed Gasoline Range Organics <50.0 U 50.0 05/16/23 11:47 05/16/23 19:50 mg/Kg (GRO)-C6-C10 05/16/23 11:47 05/16/23 19:50 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 05/16/23 11:47 05/16/23 19:50

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	164	S1+	70 - 130	05/16/23 11:47	05/16/23 19:50	1
o-Terphenyl	211	S1+	70 - 130	05/16/23 11:47	05/16/23 19:50	1

Lab Sample ID: LCS 880-53469/2-A

Matrix: Solid

Analysis Batch: 53450

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 53469

Spike LCS LCS %Rec Added Analyte Result Qualifier Limits Unit D %Rec Gasoline Range Organics 1000 918.7 mg/Kg 92 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 933.5 mg/Kg 93 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	117		70 - 130

Lab Sample ID: LCSD 880-53469/3-A

Matrix: Solid

Analysis Ratch: 53450

Client Sample	ID:	Lab	Contr	ol San	ple	Dup
			Pren	Type:	Tota	I/NA

Pren Batch: 53460

Alialysis Dalcii. 55450						Prep Batch. 5			
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	973.4		mg/Kg		97	70 - 130	6	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	971.2		mg/Kg		97	70 - 130	4	20
C10-C28)									

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-53469/3-A

Matrix: Solid

Analysis Batch: 53450

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 53469

LCSD LCSD %Recovery Qualifier

Limits Surrogate 1-Chlorooctane 110 70 - 130 o-Terphenyl 135 S1+ 70 - 130

Lab Sample ID: 890-4659-9 MS Client Sample ID: SS11A

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 53450 Prep Batch: 53469 %Rec MS MS Sample Sample Spike

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Gasoline Range Organics <49.9 U 997 952.0 mg/Kg 93 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 997 1087 mg/Kg 106 70 - 130

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 116 70 - 130 70 - 130 o-Terphenyl 128

Lab Sample ID: 890-4659-9 MSD

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 53450 Prep Batch: 53469 Sample Sample Spike MSD MSD %Rec **RPD**

Result Qualifier Added Result Qualifier Limits **RPD** Analyte Unit D %Rec I imit <49.9 U 70 - 130 Gasoline Range Organics 999 907.1 mg/Kg 88 5 20 (GRO)-C6-C10 Diesel Range Organics (Over 999 <49.9 U 1064 mg/Kg 104 70 - 13020

C10-C28)

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 112 70 - 130 o-Terphenyl 127 70 - 130

Lab Sample ID: MB 880-53485/1-A

Matrix: Solid

Analysis Batch: 53552

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 53485

Client Sample ID: SS11A

Result Qualifier Unit Analyte RL Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 05/16/23 12:56 05/17/23 08:32 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.0 U 50.0 mg/Kg 05/16/23 12:56 05/17/23 08:32 Oll Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 05/16/23 12:56 05/17/23 08:32

MB MB

мв мв

Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 1-Chlorooctane 176 S1+ 70 - 130 05/16/23 12:56 05/17/23 08:32 199 S1+ 70 - 130 05/16/23 12:56 05/17/23 08:32 o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-53485/2-A

Matrix: Solid

Analysis Batch: 53552

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 53485

Prep Batch: 53485

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits 1000 Gasoline Range Organics 1013 mg/Kg 101 70 - 130 (GRO)-C6-C10 1000 Diesel Range Organics (Over 730.7 mg/Kg 73 70 - 130

C10-C28)

LCS LCS

LCCD LCCD

MS MS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	76	70 - 130
o-Terphenyl	84	70 - 130

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 880-53485/3-A **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 53552

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	983.2		mg/Kg		98	70 - 130	3	20
Diesel Range Organics (Over	1000	726.9		mg/Kg		73	70 - 130	1	20

C10-C28)

	LUSD LUSD	
Surrogate	%Recovery Qualif	ier Limits
1-Chlorooctane	90	70 - 130
o-Terphenyl	101	70 - 130

Lab Sample ID: 880-28417-A-1-E MS **Client Sample ID: Matrix Spike** Matr

Ana

trix: Solid				Prep Type: Total/NA
alysis Batch: 53552				Prep Batch: 53485
	Sample Sample	Spike	MS MS	%Rec

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U F2	996	940.9		mg/Kg		92	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	62.8		996	956.9		mg/Kg		90	70 - 130	

C10-C28)

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	104		70 - 130

Lab Sample ID: 880-28417-A-1-F MSD

Matrix: Solid

Analysis Batch: 53552

Client Sample	ID:	Matrix	Spike	Duplicate
		—	-	T-1-1/81 A

Prep Type: Total/NA Prep Batch: 53485

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2	996	1163	F2	mg/Kg		114	70 - 130	21	20
Diesel Range Organics (Over	62.8		996	829.5		mg/Kg		77	70 - 130	14	20

C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	89		70 - 130

Eurofins Carlsbad

Released to Imaging: 10/23/2024 10:35:28 AM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-28417-A-1-F MSD

Matrix: Solid

Analysis Batch: 53552

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 53485

MSD MSD

Surrogate %Recovery Qualifier Limits 70 - 130 o-Terphenyl 91

Lab Sample ID: MB 880-53947/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 53936

Prep Type: Total/NA

Prep Batch: 53947

MB MB Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac 05/23/23 08:48 05/23/23 08:52 Gasoline Range Organics <50.0 U 50.0 mg/Kg (GRO)-C6-C10 50.0 mg/Kg 05/23/23 08:48 05/23/23 08:52 Diesel Range Organics (Over <50.0 U C10-C28) 50.0 05/23/23 08:48 05/23/23 08:52 Oll Range Organics (Over C28-C36) <50.0 U mg/Kg

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	168	S1+	70 - 130	05/23/23 08:48	05/23/23 08:52	1
o-Terphenyl	195	S1+	70 - 130	05/23/23 08:48	05/23/23 08:52	1

Lab Sample ID: LCS 880-53947/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 53936

Prep Type: Total/NA Prep Batch: 53947

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec Gasoline Range Organics 1000 1061 mg/Kg 106 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1399 *+ mg/Kg 140 70 - 130

C10-C28)

LCS LCS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 91 o-Terphenyl 99 70 - 130

Lab Sample ID: LCSD 880-53947/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 53936

Prep Type: Total/NA

Prep Batch: 53947 %Rec **RPD**

Spike LCSD LCSD RPD Added Result Qualifier Limits Limit Analyte Unit %Rec 1000 1007 101 70 - 130 5 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1300 mg/Kg 130 70 - 130 7 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	91		70 - 130
o-Terphenyl	98		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4700-A-21-B MS **Client Sample ID: Matrix Spike**

Matrix: Solid

Analysis Batch: 53936

Prep Type: Total/NA Prep Batch: 53947

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	1000	1085		mg/Kg		106	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	2390	*+ F1	1000	2847	F1	mg/Kg		46	70 - 130	
C10-C28)										

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	115		70 - 130
o-Terphenyl	107		70 - 130

Lab Sample ID: 890-4700-A-21-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 53936

Prep Type: Total/NA

Prep Batch: 53947

_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	998	1053		mg/Kg		103	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	2390	*+ F1	998	2702	F1	mg/Kg		31	70 - 130	5	20

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 109 70 - 130 o-Terphenyl 98 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-53364/1-A **Client Sample ID: Method Blank Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 53574

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			05/17/23 18:00	1

Lab Sample ID: LCS 880-53364/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

Analysis Batch: 53574

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 250	240.9		ma/Ka	_	96	90 - 110	

Lab Sample ID: LCSD 880-53364/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 53574

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	241.2		mg/Kg		96	90 - 110	0	20

QC Sample Results

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 890-4659-1 MS Client Sample ID: FS01 **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 53574

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 248 386 F1 Chloride 595.7 F1 mg/Kg 85 90 - 110

Lab Sample ID: 890-4659-1 MSD **Client Sample ID: FS01 Matrix: Solid Prep Type: Soluble**

Analysis Batch: 53574

Sample Sample Spike MSD MSD %Rec **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 386 F1 248 85 90 - 110 596.2 F1 mg/Kg 0

Lab Sample ID: 890-4659-11 MS Client Sample ID: SS13A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 53574

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Limits Unit D %Rec Chloride 335 F1 250 550.0 F1 90 - 110 mg/Kg

Lab Sample ID: 890-4659-11 MSD Client Sample ID: SS13A **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 53574

Spike MSD MSD %Rec **RPD** Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit Chloride 335 F1 250 550.1 F1 86 mg/Kg 90 - 110

QC Association Summary

Job ID: 890-4659-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC VOA

Prep Batch: 53496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	5035	
890-4659-2	FS02	Total/NA	Solid	5035	
890-4659-3	FS05A	Total/NA	Solid	5035	
890-4659-4	SS06A	Total/NA	Solid	5035	
890-4659-5	SS07A	Total/NA	Solid	5035	
890-4659-6	SS08A	Total/NA	Solid	5035	
890-4659-7	SS09A	Total/NA	Solid	5035	
890-4659-8	SS10A	Total/NA	Solid	5035	
890-4659-9	SS11A	Total/NA	Solid	5035	
890-4659-10	SS12A	Total/NA	Solid	5035	
890-4659-11	SS13A	Total/NA	Solid	5035	
890-4659-12	SS14	Total/NA	Solid	5035	
890-4659-13	SS15	Total/NA	Solid	5035	
890-4659-14	SS16	Total/NA	Solid	5035	
890-4659-15	SS17	Total/NA	Solid	5035	
MB 880-53496/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-53496/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-53496/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4659-1 MS	FS01	Total/NA	Solid	5035	
890-4659-1 MSD	FS01	Total/NA	Solid	5035	

Analysis Batch: 53724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	8021B	53496
890-4659-2	FS02	Total/NA	Solid	8021B	53496
890-4659-3	FS05A	Total/NA	Solid	8021B	53496
890-4659-4	SS06A	Total/NA	Solid	8021B	53496
890-4659-5	SS07A	Total/NA	Solid	8021B	53496
890-4659-6	SS08A	Total/NA	Solid	8021B	53496
890-4659-7	SS09A	Total/NA	Solid	8021B	53496
890-4659-8	SS10A	Total/NA	Solid	8021B	53496
890-4659-9	SS11A	Total/NA	Solid	8021B	53496
890-4659-10	SS12A	Total/NA	Solid	8021B	53496
890-4659-11	SS13A	Total/NA	Solid	8021B	53496
890-4659-12	SS14	Total/NA	Solid	8021B	53496
890-4659-13	SS15	Total/NA	Solid	8021B	53496
890-4659-14	SS16	Total/NA	Solid	8021B	53496
890-4659-15	SS17	Total/NA	Solid	8021B	53496
MB 880-53496/5-A	Method Blank	Total/NA	Solid	8021B	53496
MB 880-53768/5-A	Method Blank	Total/NA	Solid	8021B	53768
LCS 880-53496/1-A	Lab Control Sample	Total/NA	Solid	8021B	53496
LCSD 880-53496/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	53496
890-4659-1 MS	FS01	Total/NA	Solid	8021B	53496
890-4659-1 MSD	FS01	Total/NA	Solid	8021B	53496

Prep Batch: 53768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-53768/5-A	Method Blank	Total/NA	Solid	5035	

QC Association Summary

Job ID: 890-4659-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC VOA

Analysis Batch: 53914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	Total BTEX	
890-4659-2	FS02	Total/NA	Solid	Total BTEX	
890-4659-3	FS05A	Total/NA	Solid	Total BTEX	
890-4659-4	SS06A	Total/NA	Solid	Total BTEX	
890-4659-5	SS07A	Total/NA	Solid	Total BTEX	
890-4659-6	SS08A	Total/NA	Solid	Total BTEX	
890-4659-7	SS09A	Total/NA	Solid	Total BTEX	
890-4659-8	SS10A	Total/NA	Solid	Total BTEX	
890-4659-9	SS11A	Total/NA	Solid	Total BTEX	
890-4659-10	SS12A	Total/NA	Solid	Total BTEX	
890-4659-11	SS13A	Total/NA	Solid	Total BTEX	
890-4659-12	SS14	Total/NA	Solid	Total BTEX	
890-4659-13	SS15	Total/NA	Solid	Total BTEX	
890-4659-14	SS16	Total/NA	Solid	Total BTEX	
890-4659-15	SS17	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 53447

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	8015B NM	53456
890-4659-2	FS02	Total/NA	Solid	8015B NM	53456
890-4659-3	FS05A	Total/NA	Solid	8015B NM	53456
890-4659-4	SS06A	Total/NA	Solid	8015B NM	53456
890-4659-6	SS08A	Total/NA	Solid	8015B NM	53456
890-4659-7	SS09A	Total/NA	Solid	8015B NM	53456
890-4659-8	SS10A	Total/NA	Solid	8015B NM	53456
MB 880-53456/1-A	Method Blank	Total/NA	Solid	8015B NM	53456
LCS 880-53456/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53456
LCSD 880-53456/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53456
890-4652-A-26-D MS	Matrix Spike	Total/NA	Solid	8015B NM	53456
890-4652-A-26-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	53456

Analysis Batch: 53450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-9	SS11A	Total/NA	Solid	8015B NM	53469
890-4659-10	SS12A	Total/NA	Solid	8015B NM	53469
890-4659-11	SS13A	Total/NA	Solid	8015B NM	53469
890-4659-12	SS14	Total/NA	Solid	8015B NM	53469
890-4659-13	SS15	Total/NA	Solid	8015B NM	53469
890-4659-14	SS16	Total/NA	Solid	8015B NM	53469
MB 880-53469/1-A	Method Blank	Total/NA	Solid	8015B NM	53469
LCS 880-53469/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53469
LCSD 880-53469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53469
890-4659-9 MS	SS11A	Total/NA	Solid	8015B NM	53469
890-4659-9 MSD	SS11A	Total/NA	Solid	8015B NM	53469

Prep Batch: 53456

Released to Imaging: 10/23/2024 10:35:28 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	8015NM Prep	
890-4659-2	FS02	Total/NA	Solid	8015NM Prep	

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC Semi VOA (Continued)

Prep Batch: 53456 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-3	FS05A	Total/NA	Solid	8015NM Prep	
890-4659-4	SS06A	Total/NA	Solid	8015NM Prep	
890-4659-6	SS08A	Total/NA	Solid	8015NM Prep	
890-4659-7	SS09A	Total/NA	Solid	8015NM Prep	
890-4659-8	SS10A	Total/NA	Solid	8015NM Prep	
MB 880-53456/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53456/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53456/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4652-A-26-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4652-A-26-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 53469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-9	SS11A	Total/NA	Solid	8015NM Prep	
890-4659-10	SS12A	Total/NA	Solid	8015NM Prep	
890-4659-11	SS13A	Total/NA	Solid	8015NM Prep	
890-4659-12	SS14	Total/NA	Solid	8015NM Prep	
890-4659-13	SS15	Total/NA	Solid	8015NM Prep	
890-4659-14	SS16	Total/NA	Solid	8015NM Prep	
MB 880-53469/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53469/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4659-9 MS	SS11A	Total/NA	Solid	8015NM Prep	
890-4659-9 MSD	SS11A	Total/NA	Solid	8015NM Prep	

Prep Batch: 53485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-15	SS17	Total/NA	Solid	8015NM Prep	
MB 880-53485/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53485/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53485/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-28417-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-28417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 53552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-15	SS17	Total/NA	Solid	8015B NM	53485
MB 880-53485/1-A	Method Blank	Total/NA	Solid	8015B NM	53485
LCS 880-53485/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53485
LCSD 880-53485/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53485
880-28417-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	53485
880-28417-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	53485

Analysis Batch: 53580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Total/NA	Solid	8015 NM	
890-4659-2	FS02	Total/NA	Solid	8015 NM	
890-4659-3	FS05A	Total/NA	Solid	8015 NM	
890-4659-4	SS06A	Total/NA	Solid	8015 NM	
890-4659-5	SS07A	Total/NA	Solid	8015 NM	
890-4659-6	SS08A	Total/NA	Solid	8015 NM	

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC Semi VOA (Continued)

Analysis Batch: 53580 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-7	SS09A	Total/NA	Solid	8015 NM	
890-4659-8	SS10A	Total/NA	Solid	8015 NM	
890-4659-9	SS11A	Total/NA	Solid	8015 NM	
890-4659-10	SS12A	Total/NA	Solid	8015 NM	
890-4659-11	SS13A	Total/NA	Solid	8015 NM	
890-4659-12	SS14	Total/NA	Solid	8015 NM	
890-4659-13	SS15	Total/NA	Solid	8015 NM	
890-4659-14	SS16	Total/NA	Solid	8015 NM	
890-4659-15	SS17	Total/NA	Solid	8015 NM	

Analysis Batch: 53936

Lab Sample ID 890-4659-5	Client Sample ID SS07A	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 53947
MB 880-53947/1-A	Method Blank	Total/NA	Solid	8015B NM	53947
LCS 880-53947/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53947
LCSD 880-53947/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53947
890-4700-A-21-B MS	Matrix Spike	Total/NA	Solid	8015B NM	53947
890-4700-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	53947

Prep Batch: 53947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-5	SS07A	Total/NA	Solid	8015NM Prep	
MB 880-53947/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53947/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53947/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4700-A-21-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4700-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

HPLC/IC

Leach Batch: 53364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-4659-1	FS01	Soluble	Solid	DI Leach	
890-4659-2	FS02	Soluble	Solid	DI Leach	
890-4659-3	FS05A	Soluble	Solid	DI Leach	
890-4659-4	SS06A	Soluble	Solid	DI Leach	
890-4659-5	SS07A	Soluble	Solid	DI Leach	
890-4659-6	SS08A	Soluble	Solid	DI Leach	
890-4659-7	SS09A	Soluble	Solid	DI Leach	
890-4659-8	SS10A	Soluble	Solid	DI Leach	
890-4659-9	SS11A	Soluble	Solid	DI Leach	
890-4659-10	SS12A	Soluble	Solid	DI Leach	
890-4659-11	SS13A	Soluble	Solid	DI Leach	
890-4659-12	SS14	Soluble	Solid	DI Leach	
890-4659-13	SS15	Soluble	Solid	DI Leach	
890-4659-14	SS16	Soluble	Solid	DI Leach	
890-4659-15	SS17	Soluble	Solid	DI Leach	
MB 880-53364/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-53364/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-53364/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4659-1 MS	FS01	Soluble	Solid	DI Leach	

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

HPLC/IC (Continued)

Leach Batch: 53364 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1 MSD	FS01	Soluble	Solid	DI Leach	
890-4659-11 MS	SS13A	Soluble	Solid	DI Leach	
890-4659-11 MSD	SS13A	Soluble	Solid	DI Leach	

Analysis Batch: 53574

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4659-1	FS01	Soluble	Solid	300.0	53364
890-4659-2	FS02	Soluble	Solid	300.0	53364
890-4659-3	FS05A	Soluble	Solid	300.0	53364
890-4659-4	SS06A	Soluble	Solid	300.0	53364
890-4659-5	SS07A	Soluble	Solid	300.0	53364
890-4659-6	SS08A	Soluble	Solid	300.0	53364
890-4659-7	SS09A	Soluble	Solid	300.0	53364
890-4659-8	SS10A	Soluble	Solid	300.0	53364
890-4659-9	SS11A	Soluble	Solid	300.0	53364
890-4659-10	SS12A	Soluble	Solid	300.0	53364
890-4659-11	SS13A	Soluble	Solid	300.0	53364
890-4659-12	SS14	Soluble	Solid	300.0	53364
890-4659-13	SS15	Soluble	Solid	300.0	53364
890-4659-14	SS16	Soluble	Solid	300.0	53364
890-4659-15	SS17	Soluble	Solid	300.0	53364
MB 880-53364/1-A	Method Blank	Soluble	Solid	300.0	53364
LCS 880-53364/2-A	Lab Control Sample	Soluble	Solid	300.0	53364
LCSD 880-53364/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	53364
890-4659-1 MS	FS01	Soluble	Solid	300.0	53364
890-4659-1 MSD	FS01	Soluble	Solid	300.0	53364
890-4659-11 MS	SS13A	Soluble	Solid	300.0	53364
890-4659-11 MSD	SS13A	Soluble	Solid	300.0	53364

Eurofins Carlsbad

2

3

А

6

8

10

12

13

14

Project/Site: Cabo Wabo Federal Com 801H

Client Sample ID: FS01 Date Collected: 05/12/23 09:25

Client: Ensolum

Lab Sample ID: 890-4659-1

Matrix: Solid

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 09:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53456	05/16/23 08:49	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53447	05/16/23 16:42	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 18:16	CH	EET MID

Client Sample ID: FS02 Lab Sample ID: 890-4659-2 Date Collected: 05/12/23 09:30 **Matrix: Solid**

Date Received: 05/12/23 13:13

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA 5035 53496 05/16/23 15:13 MNR EET MID Prep 5.02 g 5 mL Total/NA 8021B 5 mL 53724 05/20/23 09:31 MNR **EET MID** Analysis 5 mL 1 Total/NA Total BTEX Analysis 53914 05/22/23 15:52 SM **EET MID** 1 Total/NA 8015 NM 53580 **EET MID** Analysis 1 05/17/23 10:58 SM Total/NA Prep 8015NM Prep 10.03 g 10 mL 53456 05/16/23 08:49 AJ **EET MID** Total/NA 8015B NM 53447 Analysis 1 uL 1 uL 05/16/23 17:03 SM **EET MID** Soluble 50 mL 53364 Leach DI Leach 4.97 g 05/15/23 11:46 KS **EET MID** 300.0 05/17/23 18:32 CH Soluble Analysis 5 50 mL 50 mL 53574 **EET MID**

Client Sample ID: FS05A Lab Sample ID: 890-4659-3 Date Collected: 05/12/23 09:45 **Matrix: Solid**

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 09:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53456	05/16/23 08:49	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53447	05/16/23 17:25	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 18:38	CH	EET MID

Client Sample ID: SS06A Lab Sample ID: 890-4659-4 Date Collected: 05/12/23 09:50 Matrix: Solid

Date Received: 05/12/23 13:13

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 10:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID

Job ID: 890-4659-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS06A

Date Collected: 05/12/23 09:50 Date Received: 05/12/23 13:13

Lab Sample ID: 890-4659-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53456	05/16/23 08:49	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53447	05/16/23 17:47	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 18:43	CH	EET MID

Client Sample ID: SS07A Lab Sample ID: 890-4659-5 Date Collected: 05/12/23 09:55 **Matrix: Solid**

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 10:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53947	05/23/23 08:48	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53936	05/23/23 19:53	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 18:48	CH	EET MID

Client Sample ID: SS08A Lab Sample ID: 890-4659-6 Date Collected: 05/12/23 10:00 **Matrix: Solid**

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 10:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53456	05/16/23 08:49	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53447	05/16/23 18:28	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:04	CH	EET MID

Client Sample ID: SS09A Lab Sample ID: 890-4659-7 Date Collected: 05/12/23 10:05 Matrix: Solid

Date Received: 05/12/23 13:13

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 11:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g 1 uL	10 mL 1 uL	53456 53447	05/16/23 08:49 05/16/23 18:49	AJ SM	EET MID EET MID

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS09A

Date Collected: 05/12/23 10:05 Date Received: 05/12/23 13:13 Lab Sample ID: 890-4659-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:10	CH	EET MID

Client Sample ID: SS10A Lab Sample ID: 890-4659-8 Matrix: Solid

Date Collected: 05/12/23 10:10 Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 11:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 10:58	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53456	05/16/23 08:49	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53447	05/16/23 19:09	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:15	CH	EET MID

Lab Sample ID: 890-4659-9 Client Sample ID: SS11A **Matrix: Solid**

Date Collected: 05/12/23 10:15 Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 11:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 20:53	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:21	CH	EET MID

Client Sample ID: SS12A Lab Sample ID: 890-4659-10 Date Collected: 05/12/23 10:20 **Matrix: Solid**

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 12:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 21:56	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:26	CH	EET MID

Project/Site: Cabo Wabo Federal Com 801H

Client Sample ID: SS13A

Client: Ensolum

Date Collected: 05/12/23 09:25 Date Received: 05/12/23 13:13

Lab Sample ID: 890-4659-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 13:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 22:17	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:31	CH	EET MID

Client Sample ID: SS14 Lab Sample ID: 890-4659-12

Date Received: 05/12/23 13:13

Matrix: Solid

Date Collected: 05/12/23 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 13:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 22:39	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 19:47	CH	EET MID

Lab Sample ID: 890-4659-13 Client Sample ID: SS15

Date Collected: 05/12/23 09:45 Date Received: 05/12/23 13:13

Batch Dil Initial Batch Batch Final Prepared **Prep Type** Type Method Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA 5035 Prep 5.01 g 5 mL 53496 05/16/23 15:13 MNR **EET MID** Total/NA 8021B 5 mL Analysis 1 5 mL 53724 05/20/23 14:20 MNR **EET MID** Total/NA Analysis Total BTEX 1 53914 05/22/23 15:52 SM **EET MID** Total/NA Analysis 8015 NM 53580 05/17/23 12:07 SM **EET MID** Total/NA Prep 8015NM Prep 53469 05/16/23 11:47 AJ **EET MID** 10.01 g 10 ml Total/NA Analysis 8015B NM 1 uL 1 uL 53450 05/16/23 22:59 SM **EET MID** Soluble 53364 **EET MID** Leach DI Leach 5.03 g 50 mL 05/15/23 11:46 KS Soluble Analysis 300.0 50 mL 50 mL 53574 05/17/23 19:53 CH **EET MID**

Client Sample ID: SS16 Lab Sample ID: 890-4659-14

Date Collected: 05/12/23 09:50 Date Received: 05/12/23 13:13

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 14:40	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Client: Ensolum Job ID: 890-4659-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS16

Lab Sample ID: 890-4659-14 Date Collected: 05/12/23 09:50

Matrix: Solid

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53580	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 23:20	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 20:09	CH	EET MID

Client Sample ID: SS17 Lab Sample ID: 890-4659-15

Date Collected: 05/12/23 09:55 **Matrix: Solid**

Date Received: 05/12/23 13:13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53496	05/16/23 15:13	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53724	05/20/23 15:00	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53914	05/22/23 15:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			53580	05/18/23 12:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53485	05/16/23 12:56	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53552	05/17/23 19:03	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	53364	05/15/23 11:46	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53574	05/17/23 20:14	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Job ID: 890-4659-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-25	06-30-23
The following englyte	o are included in this ren	art but the laboratory is r		This list was construed a small date for
		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for
the agency does not o	offer certification.	•	, , ,	This list may include analytes for
		Matrix	Analyte	I his list may include analytes for
the agency does not o	offer certification.	•	, , ,	This list may include analytes for

3

6

4.6

11

13

14

Method Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

Job ID: 890-4659-1 SDG: 03D2024167

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Page 41 of 46 5/24/2023 (Rev. 1) Released to Imaging: 10/23/2024 10:35:28 AM

Sample Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

Job ID: 890-4659-1 SDG: 03D2024167

24107

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-4659-1	FS01	Solid	05/12/23 09:25	05/12/23 13:13	0.5'
890-4659-2	FS02	Solid	05/12/23 09:30	05/12/23 13:13	0.5'
890-4659-3	FS05A	Solid	05/12/23 09:45	05/12/23 13:13	1.0'
890-4659-4	SS06A	Solid	05/12/23 09:50	05/12/23 13:13	1.0'
890-4659-5	SS07A	Solid	05/12/23 09:55	05/12/23 13:13	1.0'
890-4659-6	SS08A	Solid	05/12/23 10:00	05/12/23 13:13	1.0'
890-4659-7	SS09A	Solid	05/12/23 10:05	05/12/23 13:13	1.0'
890-4659-8	SS10A	Solid	05/12/23 10:10	05/12/23 13:13	1.0'
890-4659-9	SS11A	Solid	05/12/23 10:15	05/12/23 13:13	1.0'
890-4659-10	SS12A	Solid	05/12/23 10:20	05/12/23 13:13	1.0'
890-4659-11	SS13A	Solid	05/12/23 09:25	05/12/23 13:13	0.5'
890-4659-12	SS14	Solid	05/12/23 09:30	05/12/23 13:13	0.5'
890-4659-13	SS15	Solid	05/12/23 09:45	05/12/23 13:13	1.0'
890-4659-14	SS16	Solid	05/12/23 09:50	05/12/23 13:13	1.0'
890-4659-15	SS17	Solid	05/12/23 09:55	05/12/23 13:13	1.0'

Л

5

7

8

9

10

11

12

13

12

Company Name:

Ensolum, LLC

Hadlie Green

Bill to: (if different) Company Name:

Ensolum, LLC

Kalei Jennings

601 N Marienfeld St Suite 400

State of P Reporting

Program:

Xenco

Environment Testing

Chain of Custody

Houston TX (281) 240-4200 Dallas TX (214) 902-0300

Address: City, State ZIP:	601 N Marienfeld St Suite 400 Midland, TX 79701	St Suite 400	F maii:	Address: 601 N Marienfeld St Suite 400 City, State ZIP: Midland, TX 79701 Fmail: horeen@ensolum.com kiennings@ensolum.com	olum	Midi	N Mari	Midland, TX 79701	601 N Marienfeld St Suite 400 Midland, TX 79701 Reporting: Level II ☐ Level III ☐ PST/UST ☐ TRRP ☐ Level IV ☐ Midland, TX 79701 Deliverables: EDD ☐ ADaPT ☐ Other:
Project Name:	Cabo Wabo Federal Com 801H	eral Com 801H	Turn	Turn Around					ANALYSIS REQUEST
Project Number:	03D2024167	4167	✓ Routine	☐ Rush	Code				
Project Location:	32.1222, -103.9325	03.9325	Due Date:						
Sampler's Name:	Peter Van Patten	Patten	TAT starts the	TAT starts the day received by	<u> </u>				-
PO#			the lab, if rece	the lab, if received by 4:30pm					
SAMPLE RECEIPT	PT Temp Blank:	C Kes No	Wet Ice:	(Yes) No	nete	.0)			
Samples Received Intact:	ntact: (Yes No	Thermometer ID:	er ID:	Thouse	ıran	300			
Cooler Custody Seals:	Yes No/	N/A Correction Factor:	actor:	-0.2	Pa	PA:			890-4659 Chain of Custody
Sample Custody Seals:	Yes No	NA Temperature Reading:	e Reading:	2.8		S (E)	COO TOOS CHAIL OF CASIONS
Total Containers:		Corrected Temperature:	emperature:	25.	0	RIDE	015)	8021	
Sample Identification		Matrix Sampled	Time Sampled	Depth Comp	p Cont	CHLOF	TPH (8	BTEX (
FS01	1 Soil	il 5/12/2023	925	0.5' Comp	<u>ō</u> _	×	×	×	
FS02	2 Soil	il 5/12/2023	930	0.5' Comp	<u>0</u>	×	×	×	
SS05A			945	1.0' Comp	-7 -Q	×	×	×	
A90SS	SA Soil		950	1.0' Comp	<u>0</u>	×	×	×	
SS07A	7A Soil	il 5/12/2023	955	1.0' Comp	<u>0</u>	×	×	×	
A80SS	3A Soil	il 5/12/2023	1000	1.0' Comp	p	×	×	×	
A60SS	A Soil	il 5/12/2023	1005	1.0' Comp	7	×	×	×	
SS10A)A Soil		3 1010	1.0' Comp	7	×	×	×	
SS11A	IA Soil		1015	1.0' Comp	-7 Q	×	×	×	
SS12A	2A Soil	il 5/12/2023	1020	1.0' Comp	7	×	×	×	
Total 200.7 / 6010)10 200.8 / 6020:		8RCRA 13PPM	M Texas 11	≥	Sb As	Ba	Be B Cd	Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na
Circle Method(s) ar	Circle Method(s) and Metal(s) to be analyzed	ıalyzed	TCLP / SF	CLP / SPLP 6010: 8RCRA	RCRA		Sb As Ba Be		Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U
lotice: Signature of this of service. Eurofins Xenc	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and sub- of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if su- of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. I	nent of samples con e cost of samples a iii be applied to each	stitutes a valid pur nd shall not assum n project and a cha	rchase order from ne any responsibli rge of \$5 for each	n client o lity for a	ompany ny losse submit	to Euro	fins Xeno enses in irofins Xe	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.
Relinquished by: (Signature)	: (Signature)	Receive	Received by: (Signature)	ure)		Date	Date/Time		Relinquished by: (Signature)
too be too	7	Armerol	ea S	tit	N	इशिड	25	13/2	
								0	

Work Order No:		
www.xenco.com	Page	€ 5
Work Order Comments	omments	
UST/PST ☐ PRP☐ Brownfields ☐ RRC ☐ Superfund ☐	ields ☐ RRC ☐ S	Superfund [
roject: Level II □Level III □ PST/UST □ TRRP □ Level IV□	UST 🗌 TRRP 🗍	Level IV

Relinquished by: (Signature)

Received by: (Signature)

B

119/23

Date/Time

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

Revised Date: 08/25/2020 Rev. 2020.2

Circle M

eurofins

Xenco

Environment Testing

13 14

Chain of Custody

Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Work Order No:
www.xenco.com Page 2 of 2
Work Order Comments
Program: UST/PST ☐ PRP☐ Brownfields ☐ RRC ☐ Superfund [
State of Project:
Reporting: Level II Level III PST/UST TRRP Level IV

432-557-8895	Email: hgreen@ens	Email: hgreen@ensolum.com, kjennings@ensolum.com	m.com Deliverables: EDD	ADari D. One:
ame: Cabo Wabo Federal Com 801H	801H Turn Around		ANALYSIS REQUEST	Preservative Codes
ň	☑ Routine ☐ Rush	Pres. Code		None: NO DI Water: H ₂ O
ocation: 32.1222, -103.9325	Due Date:			⊆.
s Name: Peter Van Patten	TAT starts the day received by	Ÿ		HCL: HC HNO3: HN
	the lab, if received by 4:30pm			H ₂ S0 ₄ : H ₂ NaOH: Na
E RECEIPT Temp Blank: Yes	s No Wet Ice. Yes No	nete		H₃PO₄: HP
Received Intact: Yes No Therm	Thermometer ID:			NaHSO ₄ : NABIS
O N/A	Correction Factor:			Na ₂ S ₂ O ₃ : NaSO ₃
Custody Seals: Yes No N/A Tempe	Temperature Realing:			Zn Acetate+NaOH: Zn
tainers: Correc	Corrected Temperature:	015)		NaOH+Ascorbic Acid: SAPC
ample Identification Matrix Sam	Date Time Depth Comp	CHLOF		Sample Comments
SS13A Soil 5/12	5/12/2023 925 0.5' Comp	1p		
SS14 Soil 5/12	5/12/2023 930 0.5' Comp	10 -1 × ×		
SS15 Soil 5/12	5/12/2023 945 1.0' Comp	10 × × ×		
SS16 Soil 5/12	5/12/2023 950 1.0' Comp	10 1 × ×		
SS17 Soil 5/12	5/12/2023 955 1.0' Comp	10 1 × ×		
	12			
	In I am			
1	Ket 4			
200.7 / 6010 200.8 / 6020:	8RCRA 13PPM Texas 1	Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mo	Mn Mo Ni K	Se Ag SiO ₂ Na Sr Tl Sn U V Zn
ethod(s) and Metal(s) to be analyzed	TCLP / SPLP 6010: 8	TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr	Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Hg: 1631 / 245.1 / 7470 / 7471
nature of this document and relinquishment of sample	oles constitutes a valid purchase order fro	m client company to Eurofins Xenco, its a	nature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions represented by the client if such losses are due to circumstances beyond the control	s and conditions eyond the control
Xenco. A minimum charge of \$85.00 will be applied	to each project and a charge of \$5 for each	h sample submitted to Eurofins Xenco, b	Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	eviously negotiated.

PO#: SAMP

Sampler Project L Project N Project N Phone:

City, State ZIP:

Midland, TX 79701

City, State ZIP:

Midland, TX 79701

601 N Marienfeld St Suite 400

Ensolum, LLC

Project Manager: Company Name: ddress:

Hadlie Green

Bill to: (if different) Company Name:

Ensolum, LLC

Kalei Jennings

601 N Marienfeld St Suite 400

Cooler C Samples

Total Cor Sample

W
콧
9
er
Work Order No:
1

Login Sample Receipt Checklist

Client: Ensolum

Job Number: 890-4659-1

SDG Number: 03D2024167

Login Number: 4659 List Source: Eurofins Carlsbad

List Number: 1

Creator: Stutzman, Amanda

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

2 1 7 4 0 J 2 0 3

1

3

5

4

6

11

12

14

Login Sample Receipt Checklist

Client: Ensolum

Job Number: 890-4659-1

SDG Number: 03D2024167

List Source: Eurofins Midland
List Number: 2
List Creation: 05/15/23 08:35 AM

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

0j 203

3

3

4

6

0

11

46

14

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum

601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 2/13/2024 12:20:08 PM

JOB DESCRIPTION

Cabo Wabo Federal Com 801H 03D2024167

JOB NUMBER

890-6078-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/13/2024 12:20:08 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

•

4

5

6

8

9

. .

12

13

14

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H Laboratory Job ID: 890-6078-1 SDG: 03D2024167

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receint Checklists	28

2

3

4

6

8

10

12

13

14

Definitions/Glossary

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Qualifiers

GC VOA Qualifier

Qualifier Description F1 MS and/or MSD recovery exceeds control limits. F2 MS/MSD RPD exceeds control limits

S1+ Surrogate recovery exceeds control limits, high biased.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits.

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

%R

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Percent Recovery

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA

Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

Presumptive **PRES** QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum Job ID: 890-6078-1

Project: Cabo Wabo Federal Com 801H

Job ID: 890-6078-1 Eurofins Carlsbad

Job Narrative 890-6078-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/31/2024 11:49 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS18 (890-6078-1), SS19 (890-6078-2), SS20 (890-6078-3), SS21 (890-6078-4), SS22 (890-6078-5), SS23 (890-6078-6) and SS24 (890-6078-7).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS18 (890-6078-1), SS19 (890-6078-2) and SS21 (890-6078-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS20 (890-6078-3), SS22 (890-6078-5) and (890-6078-A-1-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 870-17831 and analytical batch 870-17833 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-72129 and analytical batch 880-72321 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

3

1

5

7

ŏ

10

12

Matrix: Solid

Lab Sample ID: 890-6078-1

Job ID: 890-6078-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS18 Date Collected: 01/31/24 10:45 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.00401	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Xylenes, Total	<0.00401	U F2	0.00401	mg/Kg		02/11/24 13:26	02/12/24 12:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	150	S1+	70 - 130			02/11/24 13:26	02/12/24 12:15	1
1,4-Difluorobenzene (Surr)	115		70 - 130			02/11/24 13:26	02/12/24 12:15	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			02/12/24 12:15	1
Method: SW846 8015 NM - Diese Analyte	Result	Qualifier	RL 50.3	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/08/24 09:47	Dil Fac
Total TPH	56.4		50.3	mg/Kg			02/08/24 09:47	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.3	U	50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	1
Diesel Range Organics (Over C10-C28)	56.4		50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	1
OII Range Organics (Over C28-C36)	<50.3	U	50.3	mg/Kg		02/02/24 16:37	02/08/24 09:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	93		70 - 130			02/02/24 16:37	02/08/24 09:47	1
1-Chlorooctane	89		70 - 130			02/02/24 16:37	02/08/24 09:47	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ny - Solubi	е					
Method: EPA 300.0 - Anions, Ion Analyte		Ony - Solubl Qualifier	e RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SS19 Lab Sample ID: 890-6078-2 **Matrix: Solid**

Date Collected: 01/31/24 10:50 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 12:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	142	S1+	70 - 130			02/11/24 13:26	02/12/24 12:42	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/11/24 13:26	02/12/24 12:42	1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS19 Lab Sample ID: 890-6078-2 Date Collected: 01/31/24 10:50 Matrix: Solid

Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 12:42	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	97.7		50.1	mg/Kg			02/08/24 10:08	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.1	U	50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
Diesel Range Organics (Over C10-C28)	97.7		50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
OII Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		02/02/24 16:37	02/08/24 10:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	98		70 - 130			02/02/24 16:37	02/08/24 10:08	1
1-Chlorooctane	90		70 - 130			02/02/24 16:37	02/08/24 10:08	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	380		5.02	mg/Kg			02/05/24 14:52	1

Client Sample ID: SS20 Lab Sample ID: 890-6078-3 Matrix: Solid

Date Collected: 01/31/24 10:55 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Toluene	< 0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 13:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130			02/11/24 13:26	02/12/24 13:08	1
1,4-Difluorobenzene (Surr)	72		70 - 130			02/11/24 13:26	02/12/24 13:08	1
-								
Method: TAL SOP Total BTEX -	- Total BTEX Cald	culation						
Method: TAL SOP Total BTEX - Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00398	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 02/12/24 13:08	Dil Fac
Analyte Total BTEX	<0.00398	Qualifier U	0.00398		<u>D</u>	Prepared		Dil Fac
Analyte	Result <0.00398	Qualifier U	0.00398		<u>D</u>	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Dies	Result <0.00398	Qualifier U ics (DRO) (Qualifier	0.00398 GC)	mg/Kg			02/12/24 13:08	1
Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	Result <0.00398 sel Range Organ Result 77.0	Qualifier U ics (DRO) (Qualifier	0.00398 GC) RL 50.2	mg/Kg			02/12/24 13:08 Analyzed	1
Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	Result <0.00398 sel Range Organ Result 77.0 esel Range Orga	Qualifier U ics (DRO) (Qualifier	0.00398 GC) RL 50.2	mg/Kg			02/12/24 13:08 Analyzed	1

Eurofins Carlsbad

Page 7 of 30 Released to Imaging: 10/23/2024 10:35:28 AM

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS20 Lab Sample ID: 890-6078-3

Date Collected: 01/31/24 10:55 Matrix: Solid Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over C10-C28)	77.0		50.2	mg/Kg		02/02/24 16:37	02/08/24 10:28	1
OII Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		02/02/24 16:37	02/08/24 10:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	92		70 - 130			02/02/24 16:37	02/08/24 10:28	1
1-Chlorooctane	87		70 - 130			02/02/24 16:37	02/08/24 10:28	1

Analyte Result Qualifier RL Unit Prepared Dil Fac D Analyzed 5.01 02/05/24 14:57 Chloride 348 mg/Kg

Client Sample ID: SS21 Lab Sample ID: 890-6078-4 Date Collected: 01/31/24 11:00 **Matrix: Solid**

Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Toluene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		02/11/24 13:26	02/12/24 13:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	182	S1+	70 - 130			02/11/24 13:26	02/12/24 13:35	1
1,4-Difluorobenzene (Surr)	96		70 - 130			02/11/24 13:26	02/12/24 13:35	1
Total BTEX	<0.00399	U	0.00399	mg/Kg			02/12/24 13:35	1
• -				mg/Kg			02/12/24 13:35	1
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result	ics (DRO) (Qualifier	GC)	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH	Range Organ Result 88.6	ics (DRO) ((Qualifier	RL 50.4		<u>D</u>	Prepared		·
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result 88.6 sel Range Orga	ics (DRO) ((Qualifier	RL 50.4	Unit	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result 88.6 sel Range Orga	ics (DRO) (Qualifier nics (DRO) Qualifier	RL 50.4 (GC)	Unit mg/Kg			Analyzed 02/08/24 10:49	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over	Range Organ Result 88.6 sel Range Orga Result	control (DRO) (Qualifier (DRO)) Qualifier (DRO) Qualifier (DRO)	GC) RL 50.4 (GC) RL	Unit mg/Kg Unit		Prepared	Analyzed 02/08/24 10:49 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over	Pl Range Organ Result 88.6 sel Range Orga Result <50.4	cos (DRO) (Constitution of the property of the	(GC) RL 50.4 (GC) RL 50.4	Unit mg/Kg Unit mg/Kg		Prepared 02/02/24 16:37	Analyzed 02/08/24 10:49 Analyzed 02/08/24 10:49	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28)	Result Result 88.6 Sel Range Orga Result <50.4 88.6	ics (DRO) ((Qualifier) nics (DRO) Qualifier U	GC) RL 50.4 (GC) RL 50.4 50.4	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 02/02/24 16:37 02/02/24 16:37	Analyzed 02/08/24 10:49 Analyzed 02/08/24 10:49 02/08/24 10:49	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result Sel Range Organ Result Result Solution Sel Range Orga Result Solution Solutio	ics (DRO) ((Qualifier) nics (DRO) Qualifier U	GC) RL 50.4 (GC) RL 50.4 50.4 50.4	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 02/02/24 16:37 02/02/24 16:37	Analyzed 02/08/24 10:49 Analyzed 02/08/24 10:49 02/08/24 10:49 02/08/24 10:49	·

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS21 Lab Sample ID: 890-6078-4 Matrix: Solid

Date Collected: 01/31/24 11:00 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	370		5.03	mg/Kg			02/05/24 15:02	1

Client Sample ID: SS22 Lab Sample ID: 890-6078-5 **Matrix: Solid**

Date Collected: 01/31/24 11:05 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Toluene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		02/11/24 13:26	02/12/24 14:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 _ 130			02/11/24 13:26	02/12/24 14:02	1
1,4-Difluorobenzene (Surr)	93		70 - 130			02/11/24 13:26	02/12/24 14:02	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			02/12/24 14:02	1
_								

Method: SW846 8015 NM - Diesel Rang	e Organics (DRO) ((GC)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	92.2	49.9	mg/Kg			02/08/24 11:09	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<49.9	U	49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
Diesel Range Organics (Over C10-C28)	92.2		49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
OII Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		02/02/24 16:37	02/08/24 11:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
o Ternhenyl	0.8		70 130			02/02/24 16:27	02/08/24 11:00	

Method: EPA 300 0 - Anions, Ion Chromator	ranhy - Soluble				
1-Chlorooctane	90	70 - 130	02/02/24 16:37	02/08/24 11:09	1
o-Terphenyl	98	70 - 130	02/02/24 16:37	02/08/24 11:09	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	368	4.99	mg/Kg			02/05/24 15:07	1

Client Sample ID: SS23 Lab Sample ID: 890-6078-6 **Matrix: Solid**

Date Collected: 01/31/24 11:10 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

 Method: SW846 8021B - Volatile C	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1

Matrix: Solid

Lab Sample ID: 890-6078-6

Job ID: 890-6078-1

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Date Collected: 01/31/24 11:10 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Client Sample ID: SS23

Method: SW846 8021B - Volatile	ga	- mar ()	(
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
o-Xylene	< 0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			02/11/24 13:26	02/12/24 14:28	1
1,4-Difluorobenzene (Surr)	82		70 - 130			02/11/24 13:26	02/12/24 14:28	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 14:28	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH								
-	90.3		50.0	mg/Kg			02/08/24 11:30	1
- -				mg/Kg			02/08/24 11:30	1
: Method: SW846 8015B NM - Dies	sel Range Orga			mg/Kg Unit	D	Prepared	02/08/24 11:30 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte	sel Range Orga	nics (DRO) Qualifier	(GC)		<u>D</u>	Prepared 02/02/24 16:37		Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over	sel Range Orga Result	nics (DRO) Qualifier	(GC)	Unit	<u>D</u>		Analyzed	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.0	nics (DRO) Qualifier U	(GC) RL 50.0	Unit mg/Kg	<u>D</u>	02/02/24 16:37	Analyzed 02/08/24 11:30	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Orga Result <50.0 90.3	nics (DRO) Qualifier U	(GC) RL 50.0 50.0	Unit mg/Kg mg/Kg	<u>D</u>	02/02/24 16:37 02/02/24 16:37	Analyzed 02/08/24 11:30 02/08/24 11:30	1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0 90.3 <50.0	nics (DRO) Qualifier U	(GC) RL 50.0 50.0 50.0	Unit mg/Kg mg/Kg	<u>D</u>	02/02/24 16:37 02/02/24 16:37 02/02/24 16:37	Analyzed 02/08/24 11:30 02/08/24 11:30 02/08/24 11:30	1 1 1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate o-Terphenyl	Result <50.0 90.3 <50.0 %Recovery	nics (DRO) Qualifier U	(GC) RL 50.0 50.0 50.0 Limits	Unit mg/Kg mg/Kg	<u> </u>	02/02/24 16:37 02/02/24 16:37 02/02/24 16:37 Prepared	Analyzed 02/08/24 11:30 02/08/24 11:30 02/08/24 11:30 Analyzed	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate o-Terphenyl 1-Chlorooctane	Result	Qualifier U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	Unit mg/Kg mg/Kg	<u>D</u>	02/02/24 16:37 02/02/24 16:37 02/02/24 16:37 Prepared 02/02/24 16:37	Analyzed 02/08/24 11:30 02/08/24 11:30 02/08/24 11:30 Analyzed 02/08/24 11:30	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO) Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate o-Terphenyl	sel Range Orga Result <50.0 90.3 <50.0 *Recovery 97 90 Chromatograp	Qualifier U Qualifier	(GC) RL 50.0 50.0 50.0 Limits 70 - 130 70 - 130	Unit mg/Kg mg/Kg	<u>D</u>	02/02/24 16:37 02/02/24 16:37 02/02/24 16:37 Prepared 02/02/24 16:37	Analyzed 02/08/24 11:30 02/08/24 11:30 02/08/24 11:30 Analyzed 02/08/24 11:30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Client Sample ID: SS24 Lab Sample ID: 890-6078-7 Matrix: Solid

Date Collected: 01/31/24 11:15 Date Received: 01/31/24 11:49

Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	
Toluene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		02/11/24 13:26	02/12/24 14:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130			02/11/24 13:26	02/12/24 14:55	
1,4-Difluorobenzene (Surr)	99		70 - 130			02/11/24 13:26	02/12/24 14:55	•

Client Sample Results

Client: Ensolum Job ID: 890-6078-1
Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS24

Date Collected: 01/31/24 11:15

Lab Sample ID: 890-6078-7 Matrix: Solid

02/08/24 11:51

02/02/24 16:37

Date Received: 01/31/24 11:49 Sample Depth: 0.25'

1-Chlorooctane

Method: TAL SOP Total BTEX - To	tal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			02/12/24 14:55	1

Method: SW846 8015 NM - Diesel	Range Organics (DRO) (G	iC)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	87.6	49.7	mg/Kg			02/08/24 11:51	1

_ lotal IPH	87.6		49.7	mg/Kg			02/08/24 11:51	1
	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<49.7	U	49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
Diesel Range Organics (Over C10-C28)	87.6		49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		02/02/24 16:37	02/08/24 11:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenvl	93		70 - 130			02/02/24 16:37	02/08/24 11:51	1

	 Method: EPA 300.0 - Anions, Ion Cl	hromatography - Soluble)					
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Chloride	397	4.99	mg/Kg			02/05/24 15:32	1

70 - 130

Surrogate Summary

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6078-1	SS18	150 S1+	115	
890-6078-1 MS	SS18	107	79	
890-6078-1 MSD	SS18	132 S1+	105	
890-6078-2	SS19	142 S1+	96	
890-6078-3	SS20	132 S1+	72	
890-6078-4	SS21	182 S1+	96	
890-6078-5	SS22	132 S1+	93	
890-6078-6	SS23	115	82	
890-6078-7	SS24	130	99	
LCS 880-72819/1-A	Lab Control Sample	124	82	
LCSD 880-72819/2-A	Lab Control Sample Dup	128	77	
MB 880-72819/5-A	Method Blank	84	109	
Surrogate Legend				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Re
		OTPH1	1CO1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-6065-A-1-I MS	Matrix Spike	76	79	
890-6065-A-1-J MSD	Matrix Spike Duplicate	72	75	
890-6078-1	SS18	93	89	
890-6078-2	SS19	98	90	
890-6078-3	SS20	92	87	
890-6078-4	SS21	88	82	
890-6078-5	SS22	98	90	
890-6078-6	SS23	97	90	
890-6078-7	SS24	93	87	
LCS 870-17831/1-A	Lab Control Sample	102	107	
LCSD 870-17831/2-A	Lab Control Sample Dup	101	107	
MB 870-17831/3-A	Method Blank	106	102	
Surrogate Legend				

OTPH = o-Terphenyl

1CO = 1-Chlorooctane

QC Sample Results

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-72819/5-A

Matrix: Solid Analysis Batch: 72833 Client Sample ID: Method Blank

Prep Type: Total/NA

						Prep Batch	1: 72819
MB	MB						
sult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
200	U	0.00200	mg/Kg		02/11/24 13:26	02/12/24 11:49	1

Analyte Res Benzene < 0.002 Toluene <0.00200 U 0.00200 mg/Kg 02/11/24 13:26 02/12/24 11:49 Ethylbenzene 0.00200 02/11/24 13:26 02/12/24 11:49 <0.00200 U mg/Kg m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 02/11/24 13:26 02/12/24 11:49 o-Xylene <0.00200 U 0.00200 02/11/24 13:26 02/12/24 11:49 mg/Kg <0.00400 U 0.00400 02/12/24 11:49 Xylenes, Total mg/Kg 02/11/24 13:26

> MB MB %Recovery Qualifier Limits Prepared

70 - 130 02/11/24 13:26 4-Bromofluorobenzene (Surr) 84 02/12/24 11:49 109 02/11/24 13:26 1,4-Difluorobenzene (Surr) 70 - 130 02/12/24 11:49

Lab Sample ID: LCS 880-72819/1-A

Matrix: Solid

Analysis Batch: 72833

Surrogate

Client Sample ID: Lab Control Sample

Analyzed

Prep Type: Total/NA Prep Batch: 72819

Dil Fac

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09323 mg/Kg 93 70 - 130 Toluene 0.100 0.1125 mg/Kg 113 70 - 130 Ethylbenzene 0.100 0.1134 mg/Kg 113 70 - 130 70 - 130 0.200 128 m-Xylene & p-Xylene 0.2559 mg/Kg 0.100 o-Xylene 0.1187 mg/Kg 119 70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	124		70 - 130
1,4-Difluorobenzene (Surr)	82		70 - 130

Lab Sample ID: LCSD 880-72819/2-A

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 72819

LCSD LCSD RPD Spike %Rec Added Result Qualifier Unit %Rec Limits RPD Limit

Analyte Benzene 0.100 0.08552 mg/Kg 86 70 - 130 9 35 Toluene 0.100 0.09515 mg/Kg 95 70 - 130 17 35 0.100 0.1075 mg/Kg 108 70 - 130 35 Ethylbenzene 5 m-Xylene & p-Xylene 0.200 0.2537 mg/Kg 127 70 - 130 35 o-Xylene 0.100 0.1023 mg/Kg 102 70 - 130 15 35

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	128	70 - 130
1,4-Difluorobenzene (Surr)	77	70 - 130

Lab Sample ID: 890-6078-1 MS

Matrix: Solid

Analysis Batch: 72833

Client Sample ID: SS18 Prep Type: Total/NA

Prep Batch: 72819

Analysis Batch. 12000									1 100	Dateii.	. , 20
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U	0.0996	0.09774		mg/Kg		98	70 - 130		
Toluene	< 0.00200	U	0.0996	0.09090		mg/Kg		91	70 - 130		

Eurofins Carlsbad

Page 13 of 30

QC Sample Results

Client: Ensolum Job ID: 890-6078-1 SDG: 03D2024167 Project/Site: Cabo Wabo Federal Com 801H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-6078-1 MS

Analysis Batch: 72833

Client Sample ID: SS18 **Matrix: Solid** Prep Type: Total/NA Prep Batch: 72819

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.0996	0.08805		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.199	0.2238		mg/Kg		112	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.09037		mg/Kg		91	70 - 130	
	***	440								

MS MS

Surrogate	%Recovery Quali	fier Limits
4-Bromofluorobenzene (Surr)	107	70 - 130
1,4-Difluorobenzene (Surr)	79	70 - 130

Lab Sample ID: 890-6078-1 MSD

Client Sample ID: SS18 Matrix: Solid Prep Type: Total/NA **Analysis Batch: 72833** Prep Batch: 72819

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.09057		mg/Kg		91	70 - 130	8	35
Toluene	<0.00200	U	0.0990	0.09825		mg/Kg		99	70 - 130	8	35
Ethylbenzene	<0.00200	U	0.0990	0.09332		mg/Kg		94	70 - 130	6	35
m-Xylene & p-Xylene	<0.00401	U F2 F1	0.198	0.2400		mg/Kg		121	70 - 130	7	35
o-Xylene	<0.00200	U	0.0990	0.1040		mg/Kg		105	70 - 130	14	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 870-17831/3-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 17833

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		02/02/24 16:37	02/08/24 03:55	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	106	70 - 130	02/02/24 16:37	02/08/24 03:55	1
1-Chlorooctane	102	70 - 130	02/02/24 16:37	02/08/24 03:55	1

Lab Sample ID: LCS 870-17831/1-A

Released to Imaging: 10/23/2024 10:35:28 AM

Matrix: Solid

Matrix. Juliu							rieh	Type. Totaliti	
Analysis Batch: 17833							Pre	p Batch: 1783	31
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)	1020	773.6		mg/Kg		76	70 - 130		
Diesel Range Organics (Over	1010	960.6		mg/Kg		95	70 - 130		
C10-C28)									

Eurofins Carlsbad

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 17831

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 17831

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 870-17831/1-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 17833

			Prep Batch: 17831
LCS	LCS		
01/0m/	Qualifier	Limita	

%Recovery Surrogate o-Terphenyl 102 70 - 130 1-Chlorooctane 107 70 - 130

Lab Sample ID: LCSD 870-17831/2-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

C10-C28)

Analysis Batch: 17833							Prep	Batch:	17831	
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)	1020	776.7		mg/Kg		76	70 - 130	0	20	
Diesel Range Organics (Over	1010	969.3		ma/Ka		96	70 - 130	1	20	

LCSD LCSD Surrogate %Recovery Qualifier Limits o-Terphenyl 101 70 - 130 70 - 130 1-Chlorooctane 107

Lab Sample ID: 890-6065-A-1-I MS Client Sample ID: Matrix Spike

Matrix: Solid

C10-C28)

Analysis Batch: 17833									Prep	Batch: 17831
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	<49.8	U F1	1020	620.6	F1	mg/Kg		61	70 - 130	
Diesel Range Organics (Over	<49.8	U F1	1010	735.9	F1	ma/Ka		69	70 - 130	

MS MS %Recovery Qualifier Surrogate Limits o-Terphenyl 76 70 - 130 1-Chlorooctane 79 70 - 130

Lab Sample ID: 890-6065-A-1-J MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 17833

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	<49.8	U F1	1020	650.7	F1	mg/Kg		64	70 - 130	5	20
Diesel Range Organics (Over	<49.8	U F1	1010	696.1	F1	mg/Kg		65	70 - 130	6	20
C10-C28)											

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	72		70 - 130
1-Chlorooctane	75		70 - 130

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: SS23

Client Sample ID: SS23

Prep Type: Soluble

Prep Type: Soluble

QC Sample Results

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-72129/1-A

Matrix: Solid

Analysis Batch: 72321

MB MB

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <5.00 U 5.00 mg/Kg 02/05/24 13:43

Lab Sample ID: LCS 880-72129/2-A

Matrix: Solid

Analysis Batch: 72321

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 244.2 mg/Kg 98 90 - 110

Lab Sample ID: LCSD 880-72129/3-A

Matrix: Solid

Analysis Batch: 72321

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 250 244.2 mg/Kg 90 - 110

Lab Sample ID: 890-6078-6 MS

Matrix: Solid

Analysis Batch: 72321

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 404 F1 251 625.8 F1 88 90 - 110 mg/Kg

Lab Sample ID: 890-6078-6 MSD

Matrix: Solid

Analysis Batch: 72321

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 404 F1 251 640.5 mg/Kg 94 90 - 110 20

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC VOA

Prep Batch: 72819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	5035	
890-6078-2	SS19	Total/NA	Solid	5035	
890-6078-3	SS20	Total/NA	Solid	5035	
890-6078-4	SS21	Total/NA	Solid	5035	
890-6078-5	SS22	Total/NA	Solid	5035	
890-6078-6	SS23	Total/NA	Solid	5035	
890-6078-7	SS24	Total/NA	Solid	5035	
MB 880-72819/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-6078-1 MS	SS18	Total/NA	Solid	5035	
890-6078-1 MSD	SS18	Total/NA	Solid	5035	

Analysis Batch: 72833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8021B	72819
890-6078-2	SS19	Total/NA	Solid	8021B	72819
890-6078-3	SS20	Total/NA	Solid	8021B	72819
890-6078-4	SS21	Total/NA	Solid	8021B	72819
890-6078-5	SS22	Total/NA	Solid	8021B	72819
890-6078-6	SS23	Total/NA	Solid	8021B	72819
890-6078-7	SS24	Total/NA	Solid	8021B	72819
MB 880-72819/5-A	Method Blank	Total/NA	Solid	8021B	72819
LCS 880-72819/1-A	Lab Control Sample	Total/NA	Solid	8021B	72819
LCSD 880-72819/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	72819
890-6078-1 MS	SS18	Total/NA	Solid	8021B	72819
890-6078-1 MSD	SS18	Total/NA	Solid	8021B	72819

Analysis Batch: 73047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	Total BTEX	
890-6078-2	SS19	Total/NA	Solid	Total BTEX	
890-6078-3	SS20	Total/NA	Solid	Total BTEX	
890-6078-4	SS21	Total/NA	Solid	Total BTEX	
890-6078-5	SS22	Total/NA	Solid	Total BTEX	
890-6078-6	SS23	Total/NA	Solid	Total BTEX	
890-6078-7	SS24	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 17831

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015NM Prep	
890-6078-2	SS19	Total/NA	Solid	8015NM Prep	
890-6078-3	SS20	Total/NA	Solid	8015NM Prep	
890-6078-4	SS21	Total/NA	Solid	8015NM Prep	
890-6078-5	SS22	Total/NA	Solid	8015NM Prep	
890-6078-6	SS23	Total/NA	Solid	8015NM Prep	
890-6078-7	SS24	Total/NA	Solid	8015NM Prep	
MB 870-17831/3-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 870-17831/1-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

GC Semi VOA (Continued)

Prep Batch: 17831 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 870-17831/2-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-6065-A-1-I MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-6065-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 17833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015B NM	17831
890-6078-2	SS19	Total/NA	Solid	8015B NM	17831
890-6078-3	SS20	Total/NA	Solid	8015B NM	17831
890-6078-4	SS21	Total/NA	Solid	8015B NM	17831
890-6078-5	SS22	Total/NA	Solid	8015B NM	17831
890-6078-6	SS23	Total/NA	Solid	8015B NM	17831
890-6078-7	SS24	Total/NA	Solid	8015B NM	17831
MB 870-17831/3-A	Method Blank	Total/NA	Solid	8015B NM	17831
LCS 870-17831/1-A	Lab Control Sample	Total/NA	Solid	8015B NM	17831
LCSD 870-17831/2-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	17831
890-6065-A-1-I MS	Matrix Spike	Total/NA	Solid	8015B NM	17831
890-6065-A-1-J MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	17831

Analysis Batch: 17893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Total/NA	Solid	8015 NM	
890-6078-2	SS19	Total/NA	Solid	8015 NM	
890-6078-3	SS20	Total/NA	Solid	8015 NM	
890-6078-4	SS21	Total/NA	Solid	8015 NM	
890-6078-5	SS22	Total/NA	Solid	8015 NM	
890-6078-6	SS23	Total/NA	Solid	8015 NM	
890-6078-7	SS24	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 72129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Soluble	Solid	DI Leach	
890-6078-2	SS19	Soluble	Solid	DI Leach	
890-6078-3	SS20	Soluble	Solid	DI Leach	
890-6078-4	SS21	Soluble	Solid	DI Leach	
890-6078-5	SS22	Soluble	Solid	DI Leach	
890-6078-6	SS23	Soluble	Solid	DI Leach	
890-6078-7	SS24	Soluble	Solid	DI Leach	
MB 880-72129/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-72129/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-72129/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-6078-6 MS	SS23	Soluble	Solid	DI Leach	
890-6078-6 MSD	SS23	Soluble	Solid	DI Leach	

Analysis Batch: 72321

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-1	SS18	Soluble	Solid	300.0	72129
890-6078-2	SS19	Soluble	Solid	300.0	72129
890-6078-3	SS20	Soluble	Solid	300.0	72129

Client: Ensolum
Project/Site: Cabo Wabo Federal Com 801H
SDG: 03D2024167

HPLC/IC (Continued)

Analysis Batch: 72321 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-6078-4	SS21	Soluble	Solid	300.0	72129
890-6078-5	SS22	Soluble	Solid	300.0	72129
890-6078-6	SS23	Soluble	Solid	300.0	72129
890-6078-7	SS24	Soluble	Solid	300.0	72129
MB 880-72129/1-A	Method Blank	Soluble	Solid	300.0	72129
LCS 880-72129/2-A	Lab Control Sample	Soluble	Solid	300.0	72129
LCSD 880-72129/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	72129
890-6078-6 MS	SS23	Soluble	Solid	300.0	72129
890-6078-6 MSD	SS23	Soluble	Solid	300.0	72129

1

+

6

7

8

9

11

13

14

SDG: 03D2024167

Project/Site: Cabo Wabo Federal Com 801H

Lab Sample ID: 890-6078-1

Matrix: Solid

Client Sample ID: SS18 Date Collected: 01/31/24 10:45

Client: Ensolum

Date Received: 01/31/24 11:49

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 72819 Total/NA Prep 4.99 g 5 mL 02/11/24 13:26 MNR **EET MID** 8021B Total/NA Analysis 1 5 mL 5 mL 72833 02/12/24 12:15 MNR **EET MID** Total/NA Analysis Total BTEX 73047 02/12/24 12:15 SM EET MID Total/NA 8015 NM EET DAL Analysis 1 17893 02/08/24 09:47 CC Total/NA 8015NM Prep 17831 02/02/24 16:37 WP EET DAL Prep 9.94 g 10 mL Total/NA Analysis 8015B NM 1 uL 1 uL 17833 02/08/24 09:47 WP EET DAL Soluble DI Leach 5.04 g 50 mL 72129 02/01/24 11:18 SMC EET MID Leach Soluble Analysis 300.0 72321 02/05/24 14:47 СН **EET MID**

Client Sample ID: SS19 Lab Sample ID: 890-6078-2

Date Collected: 01/31/24 10:50 **Matrix: Solid**

Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 12:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 12:42	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 10:08	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 10:08	WP	EET DAL
Soluble	Leach	DI Leach			4.98 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 14:52	CH	EET MID

Client Sample ID: SS20 Lab Sample ID: 890-6078-3 Date Collected: 01/31/24 10:55

Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 13:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 13:08	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 10:28	CC	EET DAL
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 10:28	WP	EET DAL
Soluble	Leach	DI Leach			4.99 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 14:57	CH	EET MID

Client Sample ID: SS21 Lab Sample ID: 890-6078-4

Date Collected: 01/31/24 11:00 Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 13:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 13:35	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Page 20 of 30

Released to Imaging: 10/23/2024 10:35:28 AM

Matrix: Solid

Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS21 Lab Sample ID: 890-6078-4

Date Collected: 01/31/24 11:00 Matrix: Solid Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			17893	02/08/24 10:49	СС	EET DAL
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 10:49	WP	EET DAL
Soluble	Leach	DI Leach			4.97 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:02	CH	EET MID

Client Sample ID: SS22 Lab Sample ID: 890-6078-5

Date Collected: 01/31/24 11:05 **Matrix: Solid**

Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:09	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:09	WP	EET DAL
Soluble	Leach	DI Leach			5.01 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:07	CH	EET MID

Client Sample ID: SS23 Lab Sample ID: 890-6078-6

Date Collected: 01/31/24 11:10 Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:28	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:30	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:30	WP	EET DAL
Soluble	Leach	DI Leach			4.98 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:12	CH	EET MID

Client Sample ID: SS24 Lab Sample ID: 890-6078-7

Date Collected: 01/31/24 11:15 Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	72819	02/11/24 13:26	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	72833	02/12/24 14:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			73047	02/12/24 14:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			17893	02/08/24 11:51	CC	EET DAL
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	17831	02/02/24 16:37	WP	EET DAL
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	17833	02/08/24 11:51	WP	EET DAL

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Ensolum Job ID: 890-6078-1 Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Client Sample ID: SS24 Lab Sample ID: 890-6078-7

Date Collected: 01/31/24 11:15 Matrix: Solid Date Received: 01/31/24 11:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	72129	02/01/24 11:18	SMC	EET MID
Soluble	Analysis	300.0		1			72321	02/05/24 15:32	CH	EET MID

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300 EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

SDG: 03D2024167

Laboratory: Eurofins Dallas

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704295-23-34	06-30-24

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400-23-26	06-30-24
• ,	•	ut the laboratory is not certif	fied by the governing authority. This lis	st may include analytes
for which the agency	does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
			7 than y to	

2

3

6

Я

4.0

11

13

Method Summary

Job ID: 890-6078-1 Client: Ensolum Project/Site: Cabo Wabo Federal Com 801H SDG: 03D2024167

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET DAL
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET DAL
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET DAL
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET DAL = Eurofins Dallas, 9701 Harry Hines Blvd, Dallas, TX 75220, TEL (214)902-0300

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Cabo Wabo Federal Com 801H

Job ID: 890-6078-1

SDG: 03D2024167

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-6078-1	SS18	Solid	01/31/24 10:45	01/31/24 11:49	0.25'
890-6078-2	SS19	Solid	01/31/24 10:50	01/31/24 11:49	0.25'
890-6078-3	SS20	Solid	01/31/24 10:55	01/31/24 11:49	0.25'
890-6078-4	SS21	Solid	01/31/24 11:00	01/31/24 11:49	0.25'
890-6078-5	SS22	Solid	01/31/24 11:05	01/31/24 11:49	0.25'
890-6078-6	SS23	Solid	01/31/24 11:10	01/31/24 11:49	0.25'
890-6078-7	SS24	Solid	01/31/24 11:15	01/31/24 11:49	0.25'

Project Number: Cold Date Cold Date Cold Col

Midland, TX 79701

1211 W. Florida Ave

Eurofins Midland

1

2

3

4

6

9

12

13

Chain of Custody Record

l	ij	2	
	Ů.	Ġ	

eurofins

Environment Testing

State, Zip: TX, 75220 Note: Since laboratory accreditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, SS21 (890-6078-4) SS19 (890-6078-2) Dallas Empty Kit Relinquished by SS24 (890-6078-7) SS20 (890-6078-3) SS18 (890-6078-1) Sample Identification - Client ID (Lab ID) Cabo Wabo Federal Com 801H **Eurofins Environment Testing South Centr** Shipping/Receiving Client Information Relinquished by: Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification SS23 (890-6078-6) SS22 (890-6078-5) 214-902-0300(Tel) 9701 Harry Hines Blvd, Phone: 432-704-5440 telinquished by: Relinquished by: oject Name: Custody Seals Intact: Yes △ No Custody Seal No (Sub Contract Lab) 89000145 Phone: Primary Deliverable Rank: 2 **%**0 Due Date Requested: 2/6/2024 PO # Sampler Sample Date FAT Requested (days) 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 1/31/24 C Mountain 11:05 Mountain 10:50 Date: Mountain 11:15 Mountain 11:10 Mountair 11:00 Mountain 10:55 Mountair Sample 10:45 Time (C=comp G=grab) Sample Preservation Code: Type BT=Tissue, A=Alr Company Company Matrix Solid Solid Solid Solid Solid Solid Solid Lab PM: Kramer, Jessica E-Mail: Jessica.Kramer@et.eurofinsus.com Time: Field Filtered Sample (Yes or No) NELAP - Texas Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monte Perform MS/MSD (Yes or No) Special Instructions/QC Requirements itations Required (See note): Cooler Temperature(s) °C and Other Remarks: Received by: 8015MOD_Calc Received by Received by × × \times × \times × \times × × × × × × × 8015MOD_NM/8015NM_S_Prep Analysis Requested 2 State of Origin: New Mexico Carrier Tracking No(s): Method of Shipment: Date/Time ... _4 Total Number of containers ---1 J - DI Water K - EDTA L - EDA B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH COC No: 880-9114.1 Page: Page 1 of 1 G - Amchlor H - Ascorbic Acid A - HCL Preservation Codes: 390-6078-1 Special Instructions/Note: M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 U - Acetone
V - MCAA
W - pH 4-5
Y - Trizma Z - other (specify) T - TSP Dodecahydrate S - H2SO4 Company Company Ver: Company Months 06/08/202

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-6078-1

 SDG Number: 03D2024167

Login Number: 6078 List Source: Eurofins Carlsbad

List Number: 1

Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

220 0j 200

Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum Job Number: 890-6078-1 SDG Number: 03D2024167

Login Number: 6078 **List Source: Eurofins Dallas** List Number: 3

List Creation: 02/06/24 10:39 AM

Creator: Sharp, Michael

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad

Released to Imaging: 10/23/2024 10:35:28 AM

<6mm (1/4").

Login Sample Receipt Checklist

 Client: Ensolum
 Job Number: 890-6078-1

 SDG Number: 03D2024167

List Source: Eurofins Midland

List Number: 2 Creator: Rodriguez, Leticia

Login Number: 6078

List Creation: 02/01/24 11:02 AM

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Euronnis Carisbau

1

2

3

4

6

0

10

12

. .

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St.

Suite 400

Midland, Texas 79701

Generated 3/5/2024 12:45:14 PM

JOB DESCRIPTION

Cabo Wabo Federl Com 801H Eddy County

JOB NUMBER

880-40020-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/5/2024 12:45:14 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

4

5

6

Q

9

IU

12

13

Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H Laboratory Job ID: 880-40020-1

SDG: Eddy County

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	8
	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
	18
Receipt Checklists	19

Definitions/Glossary

Job ID: 880-40020-1 Client: Ensolum Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Qualifiers

GC VOA

Qualifier **Qualifier Description** Compound was found in the blank and sample. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

Qualifier Description

GC Semi VOA

Qualifier

В Compound was found in the blank and sample. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J.

S1+ Surrogate recovery exceeds control limits, high biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL. RA. RE. IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit **PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Ensolum Job ID: 880-40020-1

Project: Cabo Wabo Federl Com 801H

Eurofins Midland Job ID: 880-40020-1

Job Narrative 880-40020-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/27/2024 4:47 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C.

Receipt Exceptions

The following sample was received and analyzed from an unpreserved bulk soil jar: SW01 (880-40020-1).

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-74453 recovered under the lower control limit for Benzene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-74452 and analytical batch 880-74453 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SW01 (880-40020-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The method blank for preparation batch 880-74452 and 880-74472 and analytical batch 880-74453 contained Benzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method TX 1005: The surrogate recovery for the blank associated with preparation batch 880-74530 and analytical batch 880-74564 was outside the upper control limits.

Method TX 1005: The method blank for preparation batch 880-74530 and analytical batch 880-74564 contained C6-C12 Range Hydrocarbons above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method TX 1005: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-74530 and analytical batch 880-74564 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-74240 and analytical batch 880-74484 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was

Case Narrative

Client: Ensolum Job ID: 880-40020-1

Project: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 (Continued)

Eurofins Midland

within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

3

6

8

9

11

13

Matrix: Solid

Lab Sample ID: 880-40020-1

Client Sample Results

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Client Sample ID: SW01

Date Collected: 02/27/24 12:00 Date Received: 02/27/24 16:47

Sample Depth: 0-0.5'

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.000709	J B	0.00200	0.000386	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Toluene	<0.00200	U	0.00200	0.000457	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Ethylbenzene	<0.00200	U	0.00200	0.000566	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	0.00101	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
o-Xylene	<0.00200	U	0.00200	0.000345	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Xylenes, Total	<0.00401	U	0.00401	0.00101	mg/Kg		03/01/24 08:42	03/03/24 04:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130				03/01/24 08:42	03/03/24 04:06	1
1,4-Difluorobenzene (Surr)	67	S1-	70 - 130				03/01/24 08:42	03/03/24 04:06	1
Analyte Total BTEX	<0.00401	U	0.00401	0.00101	mg/Kg			03/03/24 04:06	1
<u> </u>	- Total Petroleu				mg/Kg Unit	D	Prepared	03/03/24 04:06 Analyzed	Dil Fac
Total BTEX Method: TCEQ TX 1005 - Texas	- Total Petroleu	m Hydrocai Qualifier	bon (GC)		Unit	<u>D</u>	Prepared 03/03/24 00:37		Dil Fac
Total BTEX Method: TCEQ TX 1005 - Texas Analyte	- Total Petroleu Result	m Hydrocai Qualifier	rbon (GC)	MDL 15.2	Unit	<u>D</u>		Analyzed	
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons	- Total Petroleu Result 35.1	m Hydrocar Qualifier J B	rbon (GC) RL 50.5	MDL 15.2 15.2	Unit mg/Kg	<u>D</u>	03/03/24 00:37	Analyzed 03/04/24 14:50	1
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons	- Total Petroleu Result 35.1 26.5	m Hydrocar Qualifier J B	rbon (GC) RL 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50	1 1
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons	- Total Petroleu Result 35.1 26.5 <50.5	m Hydrocai Qualifier J B	rbon (GC) RL 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50	1 1
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35)	- Total Petroleu Result 35.1 26.5 <50.5 61.6	m Hydrocai Qualifier J B	rbon (GC) RL 50.5 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50	1 1 1 1 Dil Fac
Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate 1-Chlorocctane (Surr)	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery	m Hydrocai Qualifier J B	rbon (GC) RL 50.5 50.5 50.5 50.5	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed	Dil Fa
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery 101 104	M Hydrocal Qualifier J B U Qualifier	Fbon (GC) RL 50.5 50.5 50.5 50.5 4	MDL 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37 Prepared 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed 03/04/24 14:50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total BTEX Method: TCEQ TX 1005 - Texas Analyte C6-C12 Range Hydrocarbons >C12-C28 Range Hydrocarbons >C28-C35 Range Hydrocarbons Total Petroleum Hydrocarbons (C6-C35) Surrogate 1-Chlorocctane (Surr) o-Terphenyl (Surr)	- Total Petroleu Result 35.1 26.5 <50.5 61.6 %Recovery 101 104 n Chromatograp	M Hydrocal Qualifier J B U Qualifier	Fbon (GC) RL 50.5 50.5 50.5 50.5 4	MDL 15.2 15.2 15.2 15.2	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	03/03/24 00:37 03/03/24 00:37 03/03/24 00:37 Prepared 03/03/24 00:37	Analyzed 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 03/04/24 14:50 Analyzed 03/04/24 14:50	Dil Fac Dil Fac Dil Fac Dil Fac

Surrogate Summary

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-40020-1	SW01	82	67 S1-
LCS 880-74452/1-A	Lab Control Sample	124	102
LCSD 880-74452/2-A	Lab Control Sample Dup	111	117
MB 880-74452/5-A	Method Blank	73	91
MB 880-74472/5-A	Method Blank	78	84
Surrogate Legend			
BFB = 4-Bromofluorobenz	ene (Surr)		
DFBZ = 1,4-Difluorobenze	ne (Surr)		

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Solid Prep Type: Total/NA

_			
		1CO	ОТРН
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-40020-1	SW01	101	104
LCS 880-74530/2-A	Lab Control Sample	102	110
LCSD 880-74530/3-A	Lab Control Sample Dup	101	113
MB 880-74530/1-A	Method Blank	123	142 S1+

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-74452/5-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74452

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0007257	J	0.00200	0.000385	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Toluene	<0.00200	U	0.00200	0.000456	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Ethylbenzene	<0.00200	U	0.00200	0.000565	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
o-Xylene	<0.00200	U	0.00200	0.000344	mg/Kg		03/01/24 08:42	03/02/24 20:50	1
Xylenes, Total	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 08:42	03/02/24 20:50	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73	70 - 130	03/01/24 08:42	03/02/24 20:50	1
1,4-Difluorobenzene (Surr)	91	70 - 130	03/01/24 08:42	03/02/24 20:50	1

Lab Sample ID: LCS 880-74452/1-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 74452

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.09161 mg/Kg 92 70 - 130 Toluene 0.100 0.09911 mg/Kg 99 70 - 130 0.100 125 Ethylbenzene 0.1253 mg/Kg 70 - 130 0.200 0.2501 125 70 - 130 m-Xylene & p-Xylene mg/Kg 0.100 0.1258 126 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	124	70 - 130
1,4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-74452/2-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 74452

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08061		mg/Kg		81	70 - 130	13	35	
Toluene	0.100	0.1001		mg/Kg		100	70 - 130	1	35	
Ethylbenzene	0.100	0.1084		mg/Kg		108	70 - 130	14	35	
m-Xylene & p-Xylene	0.200	0.2175		mg/Kg		109	70 - 130	14	35	
o-Xylene	0.100	0.1087		mg/Kg		109	70 - 130	15	35	

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	111	70 - 130
1,4-Difluorobenzene (Surr)	117	70 - 130

Lab Sample ID: MB 880-74472/5-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74472

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0007213	J	0.00200	0.000385	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
Toluene	<0.00200	U	0.00200	0.000456	mg/Kg		03/01/24 11:44	03/02/24 09:39	1

Eurofins Midland

Page 9 of 19

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1

SDG: Eddy County

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-74472/5-A

Matrix: Solid

Analysis Batch: 74453

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74472

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.00200	U	0.00200	0.000565	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
o-Xylene	<0.00200	U	0.00200	0.000344	mg/Kg		03/01/24 11:44	03/02/24 09:39	1
Xylenes, Total	<0.00400	U	0.00400	0.00101	mg/Kg		03/01/24 11:44	03/02/24 09:39	1

MR MR

	WID	INID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130	03/01/24 11:44	03/02/24 09:39	1
1,4-Difluorobenzene (Surr)	84		70 - 130	03/01/24 11:44	03/02/24 09:39	1

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Lab Sample ID: MB 880-74530/1-A

Matrix: Solid

Analysis Batch: 74564

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 74530

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	23.62	J	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1
>C12-C28 Range Hydrocarbons	<50.0	U	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0	15.0	mg/Kg		03/03/24 00:37	03/04/24 09:03	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	123		70 - 130	03/03/24 00:37	03/04/24 09:03	1
o-Terphenyl (Surr)	142	S1+	70 - 130	03/03/24 00:37	03/04/24 09:03	1

Lab Sample ID: LCS 880-74530/2-A

Lab Sample ID: LCSD 880-74530/3-A

Matrix: Solid

Analysis Batch: 74564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 74530

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
C6-C12 Range Hydrocarbons	1000	1011		mg/Kg		101	75 - 125
>C12-C28 Range Hydrocarbons	1000	935.4		mg/Kg		94	75 - 125

LCS LCS %Recovery Qualifier Limits 1-Chlorooctane (Surr) 102 70 - 130 70 - 130 o-Terphenyl (Surr) 110

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 74564

Prep Type: Total/NA

Prep Batch: 74530

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
C6-C12 Range Hydrocarbons	1000	1037		mg/Kg		104	75 - 125	3	25	
>C12-C28 Range Hydrocarbons	1000	992.8		mg/Kg		99	75 - 125	6	25	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	101		70 - 130
o-Terphenyl (Surr)	113		70 - 130

QC Sample Results

Client: Ensolum Job ID: 880-40020-1
Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-74240/1-A Client Sample ID: Method Blank

Matrix: Solid
Analysis Batch: 74484
Prep Type: Soluble

MB MB

 Analyte
 Result Chloride
 Qualifier
 RL VIDIAN
 MDL VIDIAN
 Unit VIDIAN
 D VIDIAN
 Prepared VIDIAN
 Analyzed VIDIAN
 Dil Fac VIDIAN

 Chloride
 <5.00</td>
 U
 5.00
 0.395
 mg/Kg
 03/03/24 12:20
 1

Lab Sample ID: LCS 880-74240/2-A

Client Sample ID: Lab Control Sample

Prop Type: Solid

Matrix: Solid Prep Type: Soluble

Analysis Batch: 74484

Spike LCS LCS %Rec

 Analyte
 Added
 Result Qualifier
 Unit
 D
 %Rec Limits

 Chloride
 250
 254.9
 mg/Kg
 102
 90 - 110

Lab Sample ID: LCSD 880-74240/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid Prep Type: Soluble

Analysis Batch: 74484

Spike LCSD LCSD %Rec RPD

 Analyte
 Added Chloride
 Result 250
 Qualifier 252.5
 Unit mg/Kg
 D %Rec Limits
 RPD Limit 20

2

2

3

4

6

7

0

10

11

12

13

QC Association Summary

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 SDG: Eddy County

GC VOA

Prep Batch: 74452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	5035	
MB 880-74452/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-74452/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-74452/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 74453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	8021B	74452
MB 880-74452/5-A	Method Blank	Total/NA	Solid	8021B	74452
MB 880-74472/5-A	Method Blank	Total/NA	Solid	8021B	74472
LCS 880-74452/1-A	Lab Control Sample	Total/NA	Solid	8021B	74452
LCSD 880-74452/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	74452

Prep Batch: 74472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-74472/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 74726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 74530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX_1005_S_Pre	
				р	
MB 880-74530/1-A	Method Blank	Total/NA	Solid	TX_1005_S_Pre	
				р	
LCS 880-74530/2-A	Lab Control Sample	Total/NA	Solid	TX_1005_S_Pre	
				р	
LCSD 880-74530/3-A	Lab Control Sample Dup	Total/NA	Solid	TX_1005_S_Pre	
				р	

Analysis Batch: 74564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX 1005	74530
MB 880-74530/1-A	Method Blank	Total/NA	Solid	TX 1005	74530
LCS 880-74530/2-A	Lab Control Sample	Total/NA	Solid	TX 1005	74530
LCSD 880-74530/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005	74530

Analysis Batch: 74800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Total/NA	Solid	TX 1005	

HPLC/IC

Leach Batch: 74240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Soluble	Solid	DI Leach	
MB 880-74240/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-74240/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-74240/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

QC Association Summary

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H

SDG: Eddy County

HPLC/IC

Analysis Batch: 74484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40020-1	SW01	Soluble	Solid	300.0	74240
MB 880-74240/1-A	Method Blank	Soluble	Solid	300.0	74240
LCS 880-74240/2-A	Lab Control Sample	Soluble	Solid	300.0	74240
LCSD 880-74240/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	74240

1

5

6

8

9

11

13

Lab Chronicle

Client: Ensolum Job ID: 880-40020-1 Project/Site: Cabo Wabo Federl Com 801H SDG: Eddy County

Client Sample ID: SW01

Date Received: 02/27/24 16:47

Lab Sample ID: 880-40020-1 Date Collected: 02/27/24 12:00

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			74452	EL	EET MID	03/01/24 08:42
Total/NA	Analysis	8021B		1	74453	MNR	EET MID	03/03/24 04:06
Total/NA	Analysis	Total BTEX		1	74726	SM	EET MID	03/03/24 04:06
Total/NA	Prep	TX_1005_S_Prep			74530	TKC	EET MID	03/03/24 00:37
Total/NA	Analysis	TX 1005		1	74564	SM	EET MID	03/04/24 14:50
Total/NA	Analysis	TX 1005		1	74800	SM	EET MID	03/04/24 14:50
Soluble	Leach	DI Leach			74240	SMC	EET MID	02/28/24 10:03
Soluble	Analysis	300.0		1	74484	CH	EET MID	03/03/24 16:47

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum
Project/Site: Cabo Wabo Federl Com 801H
SDG: Eddy County

Stre: Cabo Wabo Federi Com 801H SDG: Eddy C

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date 06-30-24
Texas	NELAI	>	T104704400-23-26	
The following analytes	are included in this report, but	t the laboratory is not certif	fied by the governing authority. This lis	t maasi imalisida amalist
3 ,		it and laboratory to mot conta	nod by the governing additionty. This he	a may include analyt
0 ,	oes not offer certification.	is and laberatory to her contin	nod by the governing duthonty. The he	t may include analyt
,		Matrix	Analyte	t may include analyt

5

6

8

10

12

13

Method Summary

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1 SDG: Eddy County

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
TX_1005_S_Prep	Extraction - Texas Total petroleum Hyrdocarbons	TCEQ	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

TCEQ = Texas Commission of Environmental Quality

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Ensolum

Project/Site: Cabo Wabo Federl Com 801H

Job ID: 880-40020-1

SDG: Eddy County

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-40020-1	SW01	Solid	02/27/24 12:00	02/27/24 16:47	0-0.5'

3

4

8

9

11

16

P

Revised Date: 08/25/2020 Rev. 2020.2

Date/Time

Received by: (Signature)

Relinquished by: (Signature)

2-17-14 Date/Time

13,7

Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.

Received by: (Signature)

Relinquished by: (Signature)

Chain of Custody

Midland, TX (432) 704-5440 San Antonio, TX (210) 509-3334 Hobbs, NM (575) 392-7550 Carlsbad, NM (575) 988-3199 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Dulch Indunation

Project Namesper Hotel F. Syzze C					
UST/PST □ PRP □ Brownfields □ RRC □ Spect: Level II □ Level III □ PST/UST □ TRRP □ Strong None NO DI Cool Cool Me HCL. HC HN H2504 H2 NaHSO 4 HP NAHSO 6 HP NAHSO 6 HP NAHSO 7	1	Bill to: (if different)	2010	Work Order Comments	
Se EDD ADaPT Other Preservative C None NO DI Cool Cool Me H ₂ SO ₄ H ₂ Na H ₃ PO ₄ HP NaHSO ₄ NABIS Na ₂ S ₂ O ₃ NaSO ₃ Zn Acetate+NaOH Zn NaOH+Ascorbic Acid Sample Comm If K Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg 1631/2451/7470 /7471		Company Name:		UST/PST PRP	
LevelII LevelIII PST/UST TRRP Preservative None NO Cool Cool HCL. HC H2504 H2 H3PO4 HP NaHSO 4 NABIS Na 2,503 NASO 3 Zn Acetate+NaOH NaOH+Ascorbic Ac NaOH+Ascorbic Ac Acetate+NaOH NaOH+Ascorbic Ac NaOH+Ascorbic A	2 769	1 St St Waddress:			
Preservative None NO Cool Cool H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO ₄ NABIS Na ₅ S ₂ O ₃ NaSO ₃ Zn Acetate+NaOH NaOH+Ascorbic Ac Sample Cor	7 d a	970) City, State ZIP			Level IV
Preservative None NO Cool Cool HCL. HC H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO ₄ NABIS Na ₂ S ₂ O ₃ NaSO ₃ Zn Acetate+NaOH NaOH+Ascorbic AC Sample Corr Sample Corr If K Se Ag SiO ₂ Na Sr Ti Sn U V Zn Hg 1631/2451/7470 / 7471	432-557	5	MSs LUM. COM	EDD ☐ AD	1
None NO Cool Cool HCL. HC H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO ₃ Zn Acetate+NaOH NaOH+Ascorbic AC Sample Cor Sample Cor H S Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg 1631/2451/7470 /7471		Turn Arou			We Codes
Cool Cool HCL. HC H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic Ac Sample Corr Sample Corr If K Se Ag SiO ₂ Na Sr Ti Sn U V Zn Hg 1631/2451/7470 /7471	7	Rush		au o N	DI Water: H ₂ O
HCL. HC H2S0 4 H2 H3PO 4 HP NaHSO 4 NABIS Na25203 NASO 3 Zn Acetate+NaOH NaOH+Ascorbic AC Sample Con Sample Con H K Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg 1631/2451/7470 / 7471	GARSS				M HOOM
H ₂ SO ₄ H ₂ H ₃ PO ₄ HP NaHSO 4 NABIS Na ₂ S ₂ O ₃ NaSO 3 Zn Acetate+NaOH NaOH+Ascorbic AC Sample Con Sample Con Sample Con H K Se Ag SiO ₂ Na Sr TI Sn U V Zn Hg 1631/2451/7470 /7471	er's Name:	TAT starts the day received by	0	HCL. HC	HNO ₃ HN
I K Se Ag SiO ₂ Na Sr 1	Aca	T	1	H ₂ S0 ₄ H ₂	NaOH Na
I K Se Ag SiO ₂ Na Sr 1	Temp Blank:	Wetice: (Pe.) No	Z	H ₃ PO ₄ HP	
IN K Se Ag SiO ₂ Na Sr 1 Hg 1631/2451/	(Yes No	60	200 200 200 200 200 200 200 200 200 200	NaHSO , NABIS	
IN K Se Ag SiO ₂ Na Sr 7 Hg 1631/2451/	Yes No NY	07:-)] }-}	CSeN C. C. S. EN	,
IN K Se Ag SiO ₂ Na Sr 7 Hg 1631/2451/	Yes No(N/A)		2U	Och totatala	3 H 75
I K Se Ag SiO ₂ Na Sr 7		ái	H2 107	NaOH+Ascorbic	Acid SAPC
II K Se Ag SiO ₂ Na Sr TI Sn Hg 1631/2451/7470	Matrix	Time Depth Grab/	カリンタ 15 18 18 18	Sample Co	omments
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pe Pb Mg Mn Mo Ni Se Ag Ti U Hg 1631 / 245 1 / 7470 / 7471 Motter-Signature of this document and reallocations and entrancement of small curches and entrancement of this document and reallocation and entrancement of this document and reallocation and entrancement of this document and reallocation and entrancement of the contract	2 2	7 1200 0-0.51 C	> > > > > > > > > > > > > > > > > > >		
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr 71 Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag 71 U Hg 1631 / 245 1 / 7470 / 7471					
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr 71 Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U Hg 1631 / 245 1 / 7470 / 7471					
Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP 6010 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pe Pb Mg Mn Mo Ni K Se Ag Si O Zn Si Cr Co Cu Pe Pb Mg Mn Mo Ni K Se Ag Si Cr Co Cu Pe Pb Mg Mn Mo Ni K Se Ag Si Cr Cr Cr Cr Cr Cr Cr C		Angely de International Systems (International			
Total 200.7 / 6010 200.8 / 6020: SRCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn	THE PROPERTY OF THE PROPERTY O			The second secon	
Total 200.7 / 6010 200.8 / 6020: SRCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn					
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631 / 245 1 / 7470 / 7471			W 77 (7		
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631 / 245 1 / 7470 / 7471				90/	(F)
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg 1631 / 245 1 / 7470 / 7471 Notice Signature of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase added from client company to Europe Resiliation of the Europe Resiliation of the Europe Resiliation of this document and relinquishment of samples conetitutes a valid purchase and the Europe Resiliation of					The property of the last of th
	Total 200.7 / 6010 200.8 / 6020:	Texas	Ca Cr	g Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn	
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client commany to Eurofine Varyon its affiliates and otherways an	Circle Metriod(s) and Metal(s) to be analyzed	- 11	s Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni		
	Notice: Signature of this document and relinquishment of samples constitute	tes a valid purchase order from client company to	Eurofins Xenco, its affiliates and subcontractors It assigns standard to	ne and conditions	

3/5/2024

Login Sample Receipt Checklist

Client: Ensolum Job Number: 880-40020-1 SDG Number: Eddy County

List Source: Eurofins Midland

Login Number: 40020 List Number: 1

Creator: Wheeler, Jazmine

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

APPENDIX E

NMOCD Notifications

From: Enviro, OCD, EMNRD

To: Hadlie Green

Cc: <u>Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD</u>

Subject: RE: [EXTERNAL] COP - Sampling Notification (Week of 3/13/2023)

Date: Wednesday, March 8, 2023 5:12:27 PM

[**EXTERNAL EMAIL**]

Hadlie,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JH

Jocelyn Harimon • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov

http://www.emnrd.nm.gov

From: Hadlie Green <hgreen@ensolum.com> Sent: Wednesday, March 8, 2023 1:52 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Kalei Jennings <kjennings@ensolum.com>

Subject: [EXTERNAL] COP - Sampling Notification (Week of 3/13/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

ConocoPhillips Company (COP) plans to complete sampling activities at the following site the week of March 13, 2023.

- Red Bull 35 Federal 001/ NAPP2126444907
- Cabo Wabo Federal Com 801H / NAPP2303047441 & NAPP304550164
- Baseball Cap #25H / NAPP2303037207

Thank you,

From: Enviro, OCD, EMNRD

To: Hadlie Green

Cc: <u>Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD</u>

Subject: RE: [EXTERNAL] COP - Sampling Notification (Week of 4/3/2023)

Date: Friday, March 31, 2023 9:07:24 AM

Attachments: <u>image005.jpg</u> <u>image006.png</u>

image008.png image008.png image009.png

[**EXTERNAL EMAIL**]

Hadlie,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JH

Jocelyn Harimon • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov

http://www.emnrd.nm.gov

From: Hadlie Green hgreen@ensolum.com>
Sent: Thursday, March 30, 2023 8:57 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Kalei Jennings <kjennings@ensolum.com>

Subject: [EXTERNAL] COP - Sampling Notification (Week of 4/3/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

ConocoPhillips Company (COP) plans to complete sampling activities at the following site the week of April 3, 2023.

- Tusk Federal 004H / NAPP2303742113
 - Sampling Date: 4/3/2023 @ 10:00 AM MST
- Cabo Wabo Federal Com 801H / NAPP2303047441 and NAPP2304550164

• Sampling Date: 4/5-6/2023 @ 8:00 AM MST

Thank you,

From: Enviro, OCD, EMNRD

To: Hadlie Green

Subject: RE: [EXTERNAL] COP - Sampling Notification (Week of 5/8/2023)

Date: Monday, May 8, 2023 2:54:01 PM

Attachments: <u>image005.jpg</u>

image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Hadlie,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov

http://www.emnrd.nm.gov

From: Hadlie Green <hgreen@ensolum.com>

Sent: Friday, May 5, 2023 2:40 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Kalei Jennings <kjennings@ensolum.com>

Subject: [EXTERNAL] COP - Sampling Notification (Week of 5/8/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

ConocoPhillips Company (COP) plans to complete sampling activities at the following sites the week of May 8, 2023.

- Cabo Wabo Federal Com 801H and Cabo Wabo Federal Com 704-706 / NAPP2301933240 and NAPP2304550164
 - Sampling Date: 5/12/2023 @ 10:00 AM MST

Thank you,

Hadlie Green

Project Geologist 432-557-8895

hgreen@ensolum.com
Ensolum, LLC

From: <u>Hamlet, Robert, EMNRD</u>

To: <u>Hadlie Green</u>

Cc: Kalei Jennings; Carlile, Justin; Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD; Harimon, Jocelyn, EMNRD

Subject: (Extension Approval) COG - Cabo Wabo Federal Com 801H (Incident Number NAPP2304550164)

Date: Wednesday, April 19, 2023 7:55:10 AM

Attachments: <u>image005.jpg</u>

image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

RE: Incident #NAPP2304550164

Hadlie.

Your request for an extension to **July 27th, 2023** is approved. Please include this e-mail correspondence in the remediation and/or closure report.

Robert Hamlet • Environmental Specialist - Advanced

Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave.| Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Sent: Tuesday, April 18, 2023 11:48 AM

To: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Hamlet, Robert, EMNRD <Robert.Hamlet@emnrd.nm.gov>

Subject: FW: [EXTERNAL] COG - Extension Request - Cabo Wabo Federal Com 801H (Incident

Number NAPP2304550164)

Jocelyn Harimon • Environmental Specialist

Environmental Bureau
EMNRD - Oil Conservation Division
1220 South St. Francis Drive | Santa Fe, NM 87505
(505)469-2821 | <u>Jocelyn.Harimon@emnrd.nm.gov</u>

http://www.emnrd.nm.gov

From: Hadlie Green < hgreen@ensolum.com>

Sent: Tuesday, April 18, 2023 6:19 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Kalei Jennings < <u>kjennings@ensolum.com</u>>; Carlile, Justin < <u>Justin.Carlile@conocophillips.com</u>> **Subject:** [EXTERNAL] COG - Extension Request - Cabo Wabo Federal Com 801H (Incident Number

NAPP2304550164)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

Cabo Wabo Federal Com 801H (Incident Number NAPP2304550164)

COG Operating, LLC (COG) is requesting an extension for the current deadline of April 28, 2023, for submitting a remediation work plan or closure report required in 19.15.29.12.B.(1) NMAC for Cabo Wabo Federal Com 801H (Incident Number NAPP2304550164). The release was discovered on January 28, 2023. Fluids were released into containment and onto pad. Initial assessment of the release has been completed, however; remediation activities could not be completed due to ongoing frac operations onsite. COG operations will provide status updates and will indicate when the Site is clear and remediation activities can commence. In order to complete additional remediation activities and submit a remediation work plan or closure report, COG requests a 90-day extension of this deadline until July 27, 2023.

Thank you,

Hadlie Green
Project Geologist
432-557-8895
hgreen@ensolum.com
Ensolum, LLC

APPENDIX F

FINAL C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	NAPP2304550164
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137
Contact Name	Justin Carlile	Contact Telephone	(432) 202-4112
Contact email	Justin.Carlile@ConocoPhillips.com	Incident # (assigned by OCD)	NAPP2304550164
Contact mailing address	600 West Illinois Avenue, Midlar	nd, Texas 79701	

			Location 6	of R	elease Source	e	
Latitude	32.122	22	(NAD 83 in deci	imal deş	Longitude	03.9325	
Site Name		Cabo Wabo I	ederal Com 8	01H	Site Type	Tank Battery	
Date Release	Discovered	January 28	, 2023		API# (if applicable)	N/A	
	1						
Unit Letter	Section	Township	Range		County		
Α	24	25S	29E		Eddy		
Surface Owne	er: State	■ Federal □ Tr	ibal Private (N	ame:)

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 9.0594	Volume Recovered (bbls) 9
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	■ Yes □ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
☐ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
~ ^- 1		

Cause of Release

The release was caused by a tank malfunction.

The release was within secondary containment and also on the pad. A vacuum truck was dispatched to remove all freestanding fluids.

Evaluation will be made of the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

Received by OCD: 9/24/2024 7:41:35 AM State of New Mexico
Page 2 Oil Conservation Division

Page L	255eof	26	55
--------	--------	----	----

Incident ID	
District RP	
Facility ID	NAPP2304550164
Application ID	

Was this a major	If VES for what reason(s) does the response	nsible party consider this a major release?
release as defined by	ii 125, for what reason(3) does the respo	inside party consider this a major release.
19.15.29.7(A) NMÁC?		
☐ Yes ■ No		
If YES, was immediate no	otice given to the OCD? By whom? To w	hom? When and by what means (phone, email, etc)?
,		•
	Initial R	esponse
The responsible	party must undertake the following actions immediate	ly unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
	is been secured to protect human health and	the environment
	-	dikes, absorbent pads, or other containment devices.
	ecoverable materials have been removed ar	
if all the actions described	d above have <u>not</u> been undertaken, explain	wny:
		remediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred
		please attach all information needed for closure evaluation.
I hereby certify that the info	rmation given above is true and complete to the	best of my knowledge and understand that pursuant to OCD rules and
regulations all operators are	required to report and/or file certain release not	ifications and perform corrective actions for releases which may endanger
	1 1	OCD does not relieve the operator of liability should their operations have eat to groundwater, surface water, human health or the environment. In
addition, OCD acceptance o		responsibility for compliance with any other federal, state, or local laws
and/or regulations.	N. Canama	Euripe proportal Technicies
Printed Name Brittar	ıy N. Esparza	Title: Environmental Technician
Signature:	ny N. Esparza	Date: 2/14/2023 Telephone: (432) 221-0398
Brittanv.Espar	za@ConocoPhillips.com	(432) 221-0398
email:		Telephone: (102) 22: 0000
OCD Only		
Joc	elyn Harimon	02/14/2023
Received by:		Date:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 186196

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	186196
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created B	y Condition	Condition Date
jharimo	n None	2/16/2023

Page 257 of 265

Incident ID	NAPP2304550164
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	>100 (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ⊠ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ⊠ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ⊠ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ⊠ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ⊠ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ⊠ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ⊠ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ⊠ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ⊠ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ⊠ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	rtical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
 Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data □ Data table of soil contaminant concentration data □ Depth to water determination □ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release □ Boring or excavation logs □ Photographs including date and GIS information □ Topographic/Aerial maps 	ls.
☐ Laboratory data including chain of custody	

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/24/2024 7:41:35 AM State of New Mexico
Page 4 Oil Conservation Division

	Page 258 of 2	65
Incident ID	NAPP2304550164	
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name:Justin Carlile Title:Senior Environmental Engineer		
Signature: Justin Carlile Date:07/03/2023		
email:Justin.Carlile@conocophillips.com Telephone:(432)202-4112		
OCD Only		
Received by: Shelly Wells Date: 7/11/2023		

Received by OCD: 9/24/2024 7:41:35 AM Form C-141 State of New Mexico Oil Conservation Division Page 6

Page 259 of 265

Incident ID	NAPP2304550164
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.		
□ A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)		
☐ Laboratory analyses of final sampling (Note: appropriate ODC	District office must be notified 2 days prior to final sampling)	
Description of remediation activities		
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for tions. The responsible party acknowledges they must substantially neditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete. Title: Senior Environmental Engineer	
OCD Only		
Received by: Shelly Wells	Date:	
	of liability should their operations have failed to adequately investigate and vater, human health, or the environment nor does not relieve the responsible or regulations.	
Closure Approved by:	Date:	
Printed Name:	Title:	

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 386043

QUESTIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	386043
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2304550164
Incident Name	NAPP2304550164 CABO WABO FEDERAL COM 801H @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received

Location of Release Source	
Please answer all the questions in this group.	
Site Name	CABO WABO FEDERAL COM 801H
Date Release Discovered	01/28/2023
Surface Owner	Federal

Incident Details	
Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Equipment Failure Tank (Any) Produced Water Released: 9 BBL Recovered: 9 BBL Lost: 0 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe. NM 87505

QUESTIONS, Page 2

Action 386043

1220 S. St Francis Dr., Santa Fe, NM 8/505 Phone:(505) 476-3470 Fax:(505) 476-3462	
QUESTIONS (continued)	
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137 Action Number: 386043 Action Type: [C-141] Remediation Closure Request C-141 (C-141-y-Closure)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releate OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
	Name: Britteny Feneral

I hereby agree and sign off to the above statement

Title: Environmental Technician

Email: brittany.Esparza@ConocoPhillips.com

Date: 09/24/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 386043

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	386043
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	Direct Measurement	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 1000 (ft.) and ½ (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Between ½ and 1 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between ½ and 1 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Between 1 and 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	None	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	Yes	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date will the remediation commence	01/31/2024	
On what date will (or did) the final sampling or liner inspection occur	01/31/2024	
On what date will (or was) the remediation complete(d)	02/24/2024	
What is the estimated surface area (in square feet) that will be remediated	363	
What is the estimated volume (in cubic yards) that will be remediated	7	
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 10/23/2024 10:35:28 AM

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 386043

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	386043
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
Is (or was) there affected material present needing to be removed	Yes	
Is (or was) there a power wash of the lined containment area (to be) performed	No	
OTHER (Non-listed remedial process)	No	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC.		

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Britte
Title: Environ
Title: And the statement

Name: Brittany Esparza Title: Environmental Technician

Email: brittany.Esparza@ConocoPhillips.com

Date: 09/24/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 **District II**

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 6

Action 386043

	CTIC		contin	 /\
()I II	SIR 1	N-> 1	CONTIN	וחמוו

Operator: COG OPERATING LLC	OGRID: 229137
600 W Illinois Ave Midland, TX 79701	Action Number: 386043
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Liner Inspection Information	
Last liner inspection notification (C-141L) recorded	{Unavailable.}
Was all the impacted materials removed from the liner	Unavailable.

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	Yes	
What was the total surface area (in square feet) remediated	363	
What was the total volume (cubic yards) remediated	7	
Summarize any additional remediation activities not included by answers (above)	excavation of impacted soil has been protective of human health, the environment, and groundwater. Confirmed depth to groundwater greater than 100 feet below ground surface.	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

I hereby agree and sign off to the above statement

Name: Brittany Esparza
Title: Environmental Technician

Email: brittany.Esparza@ConocoPhillips.com

Date: 09/24/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 386043

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	386043
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
rhamlet	We have received your Remediation Closure Report for Incident #NAPP2304550164 CABO WABO FEDERAL COM 801H, thank you. This Remediation Closure Report is approved.	10/23/2024