

July 2, 2024

2904 W 2nd St. Roswell, NM 88201 voice: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

**REVIEWED** By NVelez at 3:28 pm, Oct 28, 2024

Accepted for the record

EMNRD - Oil Conservation Division Mike Bratcher 506 W. Texas Ave Artesia, NM 88210

RE: West Pearl Queen Stage 1 Abatement Plan Site Investigation NMOCD reference: NOY181664460946

Mr. Bratcher:

Atkins Engineering Associates, Inc. (AEA), on behalf of Armstrong Energy Corporation, is pleased to provide this report for the West Pearl Queen Site (WPQ).

Previous consultants have worked on this site, and this Plan is submitted to prepare to enter the site into the abatement program described in NMAC 19.15.30 in conjunction with soil investigation and remediation plan submitted July 5, 2023 and to be performed by under NMAC 19.15.29.

Because of the legacy monitoring well installation, steps need to be taken to allow the full remediation efforts under NMAC 19.15.29 before proceeding into full Stage 1 Abatement investigation design.

This report will serve as a summary of site conditions, data collected to date, immediate actions proposed, and follow-up actions to prepare a full investigation.

# **Site Description**

The WPQ is in the NE/4NW/4NE/4 Section 32, Township 19S, Range 35 East, NMPM at approximately 32.62295554°-103.4757431°, with a general land surface of 3,736 feet above mean sea level, from the USGS Topographic Map, all in Lea County New Mexico.

The site was formally a waterflood station and most of the appurtenances have been removed. Two excavations have been open on the site since approximately 2018.

# Site Geology and Hydrogeology

The site falls in the Pearl Oil Field southwest of the Mescalero Escarpment or Ridge in what Nicholson Jr and Clebsch Jr (1961) call the Laguna Valley. This area is "covered entirely by dune sand which is stable or semi-stable over most of the area, but which locally drifts...The sand is generally underlain by Recent alluvium but in several places the sand forms topographic highs where it is underlain by a caliche surface." Underlying these quaternary age deposits, are tertiary Ogallala units and below that are Triassic red beds–Chinle followed by Santa Rosa/Sandstone. These red beds are eroded surfaces forming troughs with increasing thicknesses of alluvial fill.

Water has been observed in these troughs but is not necessarily regional. Water has been observed in the Triassic red beds in the Chinle or the Santa Rosa sections at greater depths.

Nicholson Jr and Clebsch Jr (1961) mapped the groundwater of Southern Lea County, but the Site and surrounding section are outside of the mapped alluvial aquifer.



Figure 1: WPQ and Surrouding Section vs. Nicolson and Clebsch 1961

## **Inventory of Wells**

The WPQ is in the NE/4NW/4NE/4 of Section 32, Township 19S, Range 35 East N.M.P.M. To gather an inventory of wells in at least a 1-mile radius, AEA reviewed the Office of the State Engineer (OSE) <u>New Mexico Water Rights Reporting System (NMWRRS</u>) in the following PLSS descriptions.

| Section 30, T19S, R35E | Section 29, T19S, R35E                    | Section 28, T19S, R35E |
|------------------------|-------------------------------------------|------------------------|
| Section 31, T19S, R35E | WPQ Home Section<br>Section 32, T19S, R35 | Section 33, T19S, R35E |
| Section 6, T20S, R35E  | Section 5 T20S, R35E                      | Section 4 T20S, R35E   |

Copies of the database searches are found in Appendix A: NMWRRS Query\_, and the results are discussed below.

#### NMWRRS 19S 35E Section 28

One point of diversion **reported** being L-14553 POD12. This well is a permitted commercial point of diversion associated with an appropriation of groundwater to be drilled in the NE/4NE/4SE/4 of said Section 28. It has not been drilled but would be drilled to depths of approximately 1,400 feet below land surface. Based on permitted coordinate, this well would be approximately 1.30 miles north/northeast from the WPQ and based on the observed gradient of the water discovered below the WPQ, this location would be upgradient (see discussion below).

Point of diversion L-14553 POD14 is listed as being in Section 29, however a review of the application and permitted conditions of approval show the well should be located in the NE/4NE/4 NE/4 of **Section 28**. The well has not been drilled but would be drilled to a depth of approximately 1,400 feet below land surface. Based on the permitted coordinate, this well would be approximately 1.55 miles north/northeast from the WPQ.

#### NMWRRS 19S 35E Section 29

One point of diversion reported being L-14553 POD14. This well is mislocated in NMWRS, see discussion above. So, there are no actual points of diversion in this Section according to OSE.

#### NMWRRS 19S 35E Section 30

One point of diversion entry reported being RA-12222. This is a mis-entry in the NMWRRS as permit RA-12222 were five (5) exploratory wells permitted by AEA for a soil investigation in the Roswell Artesian Basin. The borings were in Section 30 of Township 19S, Range 25E not Range 35E. There are no actual points of diversion in this Section according to OSE.

## NMWRRS 19S 35E Section 31

No points of diversion are reported in this Section.

### NMWRRS 19S 35E Section 32

This is the home section of the WPQ and there are 18 points of diversion reported in this section all associated with the investigatory drilling activities performed to date by previous consultants (See discussion below) No other points of diversion were reported in the Section.

## NMWRRS 20S 35E Section 04

There are six reported points of diversion in this Section: L-4627, L-14552 POD8, POD10, POD11, POD12, and POD13

Point of diversion, L-4627 is a stock well located in the NE/4NE/4 of Section 4, Township 20S, Range 35E NMPM and listed as being owned by Thelma A. Linam. This well was permitted in 1961, though the permit indicates the well was drilled prior to that date. No well record or log was entered in NMWRRS.

The remaining five points of diversion L-14552 POD8, POD10, POD11, POD12, POD13 are associated with a commercial appropriation of groundwater and are, or to be, located respectively in the SE/4NW/4SW/4, SE/4SE/4SW/4, SE/4NE/4SW/4, NE/4SW/4NE/4 and SW/4SE/4SE/4. Well L-14552 POD 12 was drilled under an exploratory application and is 1390 feet deep, screened from 916 through 1379 feet, cemented from 0-920feet and has an observed water level of 553 feet below land surface. Well L-14552 POD12 is approximately 1.55 miles from the WPQ.

## NMWRRS 20S 35E Section 05

There are three (3) reported points of diversion in this Section: L-4158, L-14552 3, L-14552 POD3.

Point of diversion, L-4158, was located. Well L-4158 is a stock well permitted and drilled in 1959 at a point in the NE/4 SE/4 of Section 5, Township 20S, Range 35E NMPM. The owner is listed as Virgil Linam. A well record was available on NMWRRS and indicates the well was drilled to a total depth of 70 feet with a water level on completion at 64 feet. The log indicates the red bed was encountered at 68 feet.

Point of diversion L-14552 3 was an exploratory permit that was never drilled. Point of diversion L-14552 POD3 is the permitted commercial appropriation well, at the same location as L-14552 3, and it has not been drilled. If/when drilled this well would be located approximately 1.22 miles southwest of WPQ.

#### NMWRRS 20S 35E Section 06

There are two (2) reported points of diversion in this section: L-4157 and L-14097 POD1.

L-4157 is a stock well permitted and drilled in 1959 at a point in the SW/4 SW/4 of Section 6, Township 20S, Range 35E NMPM. The owner is listed as Virgil Linam. A well record was available on NMWRRS and indicates the well was drilled to a total depth of 70 feet with a water level on completion at 64 feet. This well is shown on the USGS topographic map and is near the same location as L-14097 POD1 below. This well is approximately 2.44 miles southwest of the WPQ.

Point of diversion L-14097 POD 1 is a stock well located in the NW/4SW/4SW/4 Section 6 and is approximately 61 feet in depth. The well is approximately 2.44 miles southwest of the WPQ.

### Surface Water Hydrology

There are no surface water features near the site. Please refer to the approved PIMA WorkPlan dated July 5, 2023, showing the nearest identified Playa.

#### **Previous Events/Work**

The following is a summary of some of the previous events and work that have occurred on site. During excavation of the site (2018) trenches were dug to 20 feet and were dry in sand initially, but the excavation struck an active freshwater line crossing the site. This freshwater line is fed from well(s) approximately 9 miles to the east/northeast of WPQ near the intersection of Arkansas Junction and Highway 62 in Lea County. Water is delivered via gravity to Marathon Road water station to the west of WPQ approximately 2 miles. The freshwater quality is high and samples from the active well show chlorides of <30 mg/L, TDS of <350 mg/L and no BTEX above laboratory detection limits.

The excavation filled with this fresh water and was dewatered by pump as much as possible and recovered water was properly disposed. A reroute of the line and temporary repair also failed resulting in a second filling of the excavation. Precipitation events since then have resulted in additional loading of freshwater in the local area. This is especially pronounced in February of 2020. Lastly another failure on the freshwater surface line reroute resulted in a filling of the excavation in September of 2021.

In 2020, previous consultants installed borings (SB-1 through SB-17) and converted some into shallow monitoring wells SB-2, SB-4, SB-5, SB-7, SB-13, SB-14 in/near the footprint of the site and excavation as shown below in Figure 2(See Appendix B: Well Records).

When water was encountered, AEA was contacted and reviewed the situation. AEA surveyors determined the location of the wells and tied the top of casing measuring points together using the techniques described in the Surveying below (See Appendix C: Survey Reports).

Water level measurements and sampling events were performed (by the consultant during/after installation, and then by AEA over time), and the following observations were made.

- Not all of the soil borings appear to have been advanced to the red bed.
- Several of the perimeter soil borings do not show water, or more specifically were not conclusive as to the presence of water at elevations consistent with the nearby observed water levels.
- A localized interpretation of the red bed using the soil boring information shows an apparent trough running from the northeast to the southwest, with the red bed encountered at shallow elevations to the northwest and southeast than in the "heart" of the excavation. This mapping is limited somewhat by direct observation of cuttings, variability of descriptions, placement of wells, etc.
- Boring/Well SB-5 well record shows no initial water encountered and was advanced to 55 feet into the red bed. The lower 30 feet was plugged with bentonite and then that boring was completed shallowly and showed water at 15.38 feet.



Figure 2: Contour Map redbed

The following are a series of groundwater maps developed by AEA from reported water levels from installation through April 2023 (See Table 1: Groundwater Elevations).



Figure 3: April 2020 Water Table Map



Figure 4: June 2020 Water Table Map



Figure 5: October 2020 Water Level Map



Figure 6: May 2022 Water Level Map-Shallow only



Figure 7: April 2023 Water Level Map-Shallow Only

The April 2020 water level measurements showed a mound of water in the center of the excavation and a general gradient to the south and west. In June 2020, any mounding appears to have dissipated, and the overall gradient is flattening out to the southwest. The water level decline in the center of the excavation is pronounced, but less at the edges.

In October 2020, the declining water levels continued the groundwater direction remains the same, and the gradient continued to flatten. Overall, the direction of flow appears consistent, the gradient is decreasing and water levels in/near the center of the excavation declined sharply over the 2020 observation time frame.

The May 2022 gauging shows a slight increase in water levels from 2020. The excavation has remained open to precipitation events and that coupled with a documented freshwater release in 2021 could be contributing factors.

In April 2023, the overall elevations continued to decline, and the gradient is very slight across the site. The overall decline in the entire observation period is significant, especially when considering that there is no apparent groundwater pumping in the vicinity of the site (there are no known production water wells in the WPQ home Section). Chart 1 is a hydrograph of the groundwater elevations over time.



#### Chart 1: Shallow Well WLE vs. Time

Table 1 shows the water level measurements to date.

Taking in all the site information, location, history, and observations made, AEA believed that the water encountered may be artificial (from freshwater leak initial and subsequently, and precipitation/drainage into the excavation).

There is also the potential that it could be groundwater found above the red bed with limited thickness and then artificially "increased" by the events noted above.

To further assess the situation, AEA recommended additional wells be drilled away from the excavation, in each ordinal direction, to the top of the red bed and then screened to see if water was present in that interval.

### **Deeper Well Installation**

In August 2021, the previous consultant proceeded to install four "deeper" monitor wells (SB-20, SB-21, SB-22, SB-23 under OSE permit L-15106 PODS 1-4); however, these wells **were not** advanced just to just the top of the red bed. (See Appendix B: Well Records).

These deeper wells were advanced through the alluvial formation and into the Triassic red bed to depths of approximately 55 feet below land surface. Each boring was completed as a monitoring well with a five-foot screen interval at the bottom of each monitoring well. The water level in each well appears to have risen in these wells. When analyzing the well records the following is noted:

DEPTH (feet bgl) COLOR AND TYPE OF MATERIAL ENCOUNTERED -WATER THICKNESS BEARING? INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (feet) FROM TO (YES / NO) (attach supplemental sheets to fully describe all units) 0 20 20 Reddish Orange Silty sand w/some clay and gravel, occasional caliche soft Y ✓ N 20 ~28 ~8 White Silty sand w/some clay and gravel, interbedded caliche soft ✓ Y N 57 29 Y ✓ N 28 Reddish Orange to purple poorly graded fine sand and caliche, dry hard

SB-20 drilled to the north of the site with the following reported lithology:

The well is screened at 51-56 feet with bentonite seal from 2-48 feet. Water was first encountered: moist at 21 feet with a static water level at 21 feet. The well record is confusing because it states that interval 20-28 is water bearing, however, this interval was sealed with bentonite. It could be that there was water above the red bed and from the deeper screened interval.

SB-21 drilled to the west of the site with the following reported lithology:

| DEPTH ( | feet bgl)        |    | COLOR AND TYPE OF MATERIAL ENCOUNTERED -                                                                     | WA                              | ATER<br>.RING?<br>S / NO) |  |
|---------|------------------|----|--------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|--|
| FROM    | DM TO (feet) INC |    | INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES<br>(attach supplemental sheets to fully describe all units) | WATER<br>BEARING?<br>(YES / NO) |                           |  |
| 0       | 30               | 30 | Reddish Orange Silty sand w/some clay and gravel, occasional caliche soft                                    | Y                               | √ N                       |  |
| 30      | 56               | 26 | Reddish Orange to purple poorly graded fine sand and caliche, dry hard                                       | Y                               | ✓ N                       |  |
|         |                  |    | becomes wet at approximately 50.5                                                                            | ✓ Y                             | N                         |  |

The well is screened from 50-55 feet with bentonite from 2 to 47 feet. Water was first encountered at 50.5 feet, with a static water level at 46.5 feet

SB-22 drilled to the south of the site with the following reported lithology:

| DEPTH (feet bgl) |                |    | COLOR AND TYPE OF MATERIAL ENCOUNTERED -                                                                     | WA | TED                    |  |
|------------------|----------------|----|--------------------------------------------------------------------------------------------------------------|----|------------------------|--|
| FROM             | FROM TO (feet) |    | INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES<br>(attach supplemental sheets to fully describe all units) |    | BEARING?<br>(YES / NO) |  |
| 0                | 30             | 30 | Reddish Orange Silty sand w/some clay and gravel, occasional caliche soft                                    | Y  | ✓ N                    |  |
| 30               | 56             | 26 | Reddish Orange to purple poorly graded fine sand and caliche, dry hard                                       | Y  | ✓ N                    |  |

The well is screened from 51-55 feet with bentonite from 48-56 feet. Water first encountered listed as moist at 28 feet and static water level of 21 feet.

AEA could not locate an OSE well record for SB-23 but a field log shows:

| PVC 2 inch             |               |                   | Length: Latitude:<br>53 |                     |          |               | 32.6       | 52201     | Drive Total Depth:<br>58'                         | Well Total Depth:<br>58°                                     |                          |  |
|------------------------|---------------|-------------------|-------------------------|---------------------|----------|---------------|------------|-----------|---------------------------------------------------|--------------------------------------------------------------|--------------------------|--|
| Screen Type<br>PVC     | E.            | Slot:<br>0.010 in | ich                     | Diameter:<br>2 inch |          | Length:<br>5' | Longitude: | -103.4    | 7587000                                           | Boring Total Depth:<br>58'                                   | Depth to Water:<br>54.3' |  |
| Depth<br>Interval (ft) | Recovery (ft) | Plasticity        | Moisture                | Odor                | Staining | PID (ppm)     | USCS       | Sample ID | Litholo                                           | gy/Remarks                                                   | Well<br>Completion       |  |
| 5<br>10                |               | Low               | Dry                     | No                  | No       | -             |            |           | Tan, orange. Sa                                   | nd with silts. Some                                          | +                        |  |
| 15<br>20               |               | Med               | Dry                     | No                  | No       | -             |            |           | caliche                                           | e graveis.                                                   | +                        |  |
| 25<br>30               |               | Low               | Dry                     | No                  | No       | 1             |            |           |                                                   | a ninke. Calicha miy                                         | -                        |  |
| 35<br>40               | NA            | Low               | Dry                     | No                  | No       | 5             |            | NA        | Poorly graded                                     | l with fine sands.                                           |                          |  |
| 45<br>50               |               | Low               | Dry                     | No                  | No       |               |            |           | Purple/red clays. 5<br>Fin                        | Some caliche gravels.<br>e sand                              |                          |  |
| 55<br>60               |               | Low               | SL                      | No                  | No       | -             |            |           | Purple/red clays<br>Some gravles. P<br>depth - 58 | . Fine sands. Hard.<br>oorly graded. Total<br>'. GW at 54.3' | -                        |  |

This boring appears dry until around 50 feet with an installed screen from 53 -55 feet, bentonite from 0-53 feet and a water level at 54.3 feet.

These wells were all drilled via air rotary and with grab sampling. Air rotary has advantages, specifically speed, and the ability to penetrate harder sections like caliche and the red bed; however, it makes precise logging difficult. Usually when water is encountered it does become apparent with moisture at the drill string entry point or diverter.

Purple in the lithological descriptions is consistent with the Chinle red bed, as is dry/hard, and these logs when interpreted against the regional shothole records appear to show a short section of "alluvial" and then the red bed at relatively shallow depths.

SB-20 is interesting because it shows moisture at 21' which would above the apparent red bed. SB-21 doesn't show any moisture until deeper and then a slight rise in static, SB-22 shows some moisture above the red bed but is screened lower, and SB-23 shows dry until total depth and then a deep static water level.

In May 2022, AEA was contracted to survey the new monitoring wells into the existing site network (See Appendix C: Survey Reports), and gauge/ sample these wells together with the existing wells. The gauging showed differing water levels than those documented at install.

| Well ID | August 2021 Well Record/Field                    | May 2022 Static water level |
|---------|--------------------------------------------------|-----------------------------|
|         | log static water level (unknown measuring point) | (from TOC)                  |
| SB-20   | 21 feet                                          | 25.90 feet                  |
|         |                                                  |                             |
| SB-21   | 46.5 feet                                        | 30.20 feet                  |
| SB-22   | 21 feet                                          | 29.43 feet                  |
| SB-23   | 54.3 feet                                        | 25.40 feet                  |

Wells SB-21 and SB-23 showed a significant rise of water in the casing from installation. Wells SB-20 and 22 showed a decline of approximately 5 and 8 feet respectively. The following maps show the potentiometric surface map of the deeper wells.



Figure 8: May 2022 Potentiometric Surface Map-Deep Wells



Figure 9: April 2023 Potentiometric Surface Map-Deep Wells

#### Page 20 of 198

Mapping of the water level elevations in the deeper wells show a steep gradient to the east/southeast. As the gradient is projected across the site, the elevations observed would be below the shallow well water level elevation-by approximately 3-4 feet when compared to the May 2022 data, and approximately 1 foot when compared to the April 2023 data.

Furthermore, the observed change in water levels from 2022-2023 are not consistent when comparing shallow versus deeper wells, with a more pronounced decline in the shallow wells in that period. Chart 2 is a hydrograph of the shallow and deeper wells over time.



Figure 10: Shallow and Deeper well water level elevation vs. Time.

The contrast between the deeper well and shallower wells in gradient direction, slope, change in water level, and quality (below) suggests different sources.

#### **Groundwater Sampling to Date**

The previous consultant collected groundwater samples in April 2020. AEA collected groundwater samples in May 2022 and April 2023. Table 2 shows the results of the groundwater sampling to date and the analytical reports and COC documentation is included in Appendix D: Groundwater Lab Reports. Wells SB-07(all sampling events) and SB-13(first sampling event)

showed Benzene above the New Mexico Water Quality Control Commission standard of 5 µg/L. Downgradient well SB-2 has always reported benzene and other volatile compounds below laboratory reporting limits.

Chloride concentrations in the shallow site wells are highly variable but appear to be declining from 2020-2023 except in well SB-13. The chloride concentrations in the perimeter deeper wells are considerable higher than any concentrations observed in the shallower wells. The observed elevated chloride concentrations in the shallow wells cannot be readily compared to any background because there is not an optimal upgradient shallow well and not any nearby historical well within 0.5 miles of the site.

The nearest wells with some historic water quality data and believed to be completed above the red bed are L-4158 located in the SE/4NW/4SW/4 Section 5, Township 20 South, Range 35 East and L-4157 located in the NW/4SW/4SW/4 Section 6, Township 20 South, Range 35 East.

According to OSE Field schedules L-4158 has historic reported chlorides of 350 mg/L and 230 mg/L and well L-4157 has reported chlorides of 876 mg/L (see below).

Chlorides around well SB-5 were higher than any of the other nearby shallow wells. There is some concern about the installation of that well given that it was installed deeper originally and plugged back with bentonite.

Also, methylene chloride was found above the NMWQCC standard of 5  $\mu$ g/L in all the deeper wells (SB-20 **187**  $\mu$ g/L, SB-21 **56.6**  $\mu$ g/L , SB-22 **254**  $\mu$ g/L , SB-23 **54.0**  $\mu$ g/L ), and was below laboratory reporting limits in the all the shallow wells except well SB-5 at 3.21  $\mu$ g/L.

The water sampled in the deeper wells reports chlorides levels that do not appear consistent with groundwater in southeastern New Mexico found in alluvial or Triassic formations. The water observed is above 10,000 mg/L TDS based on the chloride concentrations.

The initial sampling showed the apparent upgradient wells SB-20 (to the north) and SB-22 (to the west) as having the highest chloride concentrations 185,000 mg/L and 170,000 mg/L respectively. The April 2023 sampling event showed a large drop in SB-20 while SB-22 results declined but not as dramatically, SB-21 chloride concentration has remained consistent across both events, and SB-23 has reported the lowest concentrations in each sampling event relative to the other wells.

The deeper well water quality is concerning when considering the level of chlorides, the annular seal material used and the apparent rise in water level from depth– suggesting a confined condition. The potential for degradation of the annualar seal and upward leaking to/above the red bed, needs to be addressed.

## **Proposed Initial steps**

The activities to date have generated data-but variable conclusions can be drawn.

Critically, the location of some of the monitoring wells impedes the resolution of the soil excavation activities approved under 19.15.29. To excavate the apparent soil contamination and prevent any additional leaching into the observed water, the wells need to be properly plugged and abandoned.

AEA recommends sampling all current site wells and plugging those wells within the excavation area to allow for the soil excavation work.

The deeper wells construction is concerning because they appear to suggest a deeper encountered water, that appears to be under pressure, and is poor quality that is not consistent with the shallow observed water. The high chloride concentrations are not compatible with the use of bentonite as an annular sealing material.

AEA recommends the deeper wells be plugged by over-gauged drilling to total depth and then plugged with a neat cement mixture designed by Baroid to deal with the high observed chlorides. Because of the initial installation of SB-5, AEA recommends it be plugged similarly to the deeper wells.

Before plugging, however, a round of sampling can collect current site conditions and guide the reinstallation of wells at the site for a full Stage 1 Abatement investigation proposal.

#### Groundwater Sampling of all site wells

Fluid levels in each well (SB-2, SB-4, SB-5, SB-7, SB-13, SB-20, SB-21, SB-22, SB-23) will be measured with the use of an oil-water Solinist Interface probe, or equivalent.

Following water level determination, wells will be purged using new dedicated, disposable, polyethylene bailers. A minimum of three (3) casing volumes will be removed from each well prior to sampling to ensure that a representative sample of groundwater is obtained. If a well is

purged dry, it will be sampled once the well has recharged. During purging, groundwater field parameters, including dissolved oxygen [DO], oxidation/reduction potential [ORP], electrical conductivity [EC], pH, and temperature, will be measured using a calibrated YSI Professional Plus or equivalent multi-parameter device and recorded on field datasheets. Purge and decontamination water will be containerized and properly disposed of at an appropriately registered facility.

Once purged, the wells will be sampled. To minimize volatilization and ensure sample integrity, polyethylene bottom-emptying devices will be used to transfer groundwater samples from the bailers to the appropriate laboratory-prepared sample containers. Care will be exercised to fill the container completely, without overflowing.

The samples will be labeled and preserved on ice in an insulated cooler for shipment or delivery to Enviro Tech of Farmington New Mexico. Groundwater samples will be analyzed for Chlorides using EPA Method 300.1 and volatiles using EPA Method 8260B.

### Hydraulic Conductivity Test

Prior to abandonment activities, an estimate of hydraulic conductivity in a shallow well (SB-14) and a deeper well (SB-22) will be conducted consistent with USGS GWPPD 17 found in below

### Plug and Abandonment of Shallow wells.

Plug and abandon SB-4, SB-7 and SB-13 with Type I/II neat cement mixed to no more than 6.0 gallons/94 lb sack and tremied from the bottom to land surface in lifts. Before plugging, AEA will file and receive approval of the plugging plan of operations with the D2 Office of the State Engineer. The abandonment approach will seal the casing at depth in the water bearing zone though the casings above will likely be destroyed during excavation activities.

### **Plug and Abandonment of Deeper wells**

Plug and abandon SB-5, SB-20, SB-21, SB-22 and SB-23. Augers will be advanced to the total reported original depth using 4.25" (8.5" O.D.) augers and plugged with Type I/II neat cement and additives recommended by Baroid, and tremied from the bottom to land surface in lifts. Before plugging, AEA will file and receive approval of the plugging plan of operations with OSE.

## Monitoring Well Installation/ Well surface completion

Excavation and backfilling of the site will be completed before the monitor well install will occur. Prior to drilling the owner/consultant will notify and seek the necessary permission from the landowner to obtain monitoring well permits from the OSE. Well drilling will be completed by a driller licensed in the State of New Mexico.

Prior to the field event, the boring locations will be white lined consistent with NM 811 standards and a "One Call" will be placed at least three days before the start of drilling. The landowner and NMOCD will be contacted at least one week before the field activities.

Three borings (SB-5R, SB-7R and SB-24) will be installed using a hollow stem auger (HSA) rig. The boreholes shall be a minimum of 4" greater than the 2.375" outside diameter of the well materials. The borings will be drilled to the top of the Chinle red bed to a total depth of approximately twenty-eight to thirty-two (28-32) feet below ground surface (ft bgs) at the locations shown on Figure 10, below. The total depth of each boring will be determined in the field by the on-site geologist/scientist. A static water level of eighteen to twenty-two (18-22) ft bgs is anticipated at the site.



Figure 11: Proposed Plugged (orange), retained and proposed Monitoring well Locations (Blue Triangle)

Each boring will be converted to a monitoring well using 2-inch diameter well materials consisting of 15 feet of 0.010-inch-slot, Schedule 40 (SCH 40) polyvinyl chloride (PVC), machine-cut, flush-threaded well screen with blank SCH 40 PVC casing to approximately 3 feet above ground surface. Target placement of the screen will be 10-feet below the static water table and 5-feet above the static water table.

In each of the wells, a filter pack consisting of 10/20 or 12/20 silica sand will be installed in the well annulus from the bottom of the soil boring to about 2 feet above the top of the screen. Meshprepack screen can be substituted if needed. A minimum 3-foot-thick activated bentonite pellet seal will then be installed on top of the filter pack. The remaining annulus will be filled with a cement grout.

The above ground surface completion will consist of a 4-inch by 4-inch by 5-foot steel vault with lid, set in a 4-foot by 4-foot by 6-inch, 5000-psi Quickrete pad. The pad will slope away from the vault, and the vault will be filled with clean silica to stabilize the Sch 40 riser. A weep hole will be drilled into the base of the vault above the concrete pad, and the riser will be capped with a

Sch 40 J-plug. The monitor well ID will be etched in the concrete pad as it dries. Four bollards will be placed around the monitor well to protect it from vehicles.

Wells SB-2 and SB-14 will have their temporary completions converted to stand up completions as described above.

#### **Well Development**

After completion, and an approximate 12-hour stabilization period, the wells will be developed by mechanically surging the screen interval, followed by bailing and pumping until temperature, pH, and conductivity have stabilized and turbidity has been reduced to the extent practicable. Stabilization will be determined to be achieved after the removal of ten (10) well volumes or when turbidity readings are less than 10 NTU or discharged water is visually clear, if practicable.

### **Decontamination and Waste Management**

A temporary decontamination "pit" will be constructed. Prior to and between borings all drill tooling will be decontaminated using a steam pressure washer.

Soil and Groundwater derived from the monitor well installation and development, and sampling purging will be containerized in either new DOT rated steel drums or a lined roll-off. All investigative derived waste will be properly disposed of at an appropriately registered facility.

### Surveying

After well completion, AEA's New Mexico Land surveyor will survey the top of casing elevations referenced to US Geological Survey (USGS) datum, and state plane coordinates of the monitoring wells. Vertical measurement will be to the 0.01 foot and horizontal measurements to the 0.1 foot. Coordinates will be reported in Latitude and Longitude NAD 83 Decimal Degrees and New Mexico State Plane East Grid.

The surveyor will establish a project benchmark (if necessary, there is an existing one, but it may need to be reestablished) tied to the nearest available National Geodetic Survey Benchmark. The top of casing of each monitoring well will be tied to the project benchmark using an engineer's level loop. Horizontal position can be provided via RTK surveying equipment.

The surveyor will provide a stamped table of data showing the positional data together with an ESRI .shp and a Google Earth .kml.

#### **Groundwater Measuring and Sampling**

Prior to groundwater sampling, a minimum of one week will be allowed for the new wells to stabilize after development. Wells (SB-2, SB-5R, SB-7R, SB-14, SB-24) will be sampled using the same procedures as noted above in the groundwater sampling section.

### Sample Quality Assurance and Quality Control Protocols

The following groundwater sample quality assurance and quality control (QA/QC) protocols will be used during sampling.

- Groundwater gauging will be performed from least apparent contaminated well to most as follows favoring historic VOC detections, SB-23, SB-22, SB-21, SB-2, SB-4, SB-14,
- This order will be modified based on results from initial to second and any subsequent sampling event.
- At least three well volumes will be purged from each well with groundwater parameters recorded as described above.
- 4) New wrapped disposable bailers will be used to purge and sample each well.
- 5) Technicians will change gloves between wells and before sampling (after purging)
- Samples will be collected into laboratory provided bottles with the appropriate preservative.
- Samples from each well will be collected, labelled and placed into separate Ziploc bags before being placed into the cooler.
- 8) A blind duplicate will be collected from one well, marked as field duplicate 1 with no other identifying characteristics listed on the Chain of Custody.
- 9) A laboratory provided trip bland for VOCS will be analyzed.

#### Reporting

Data collected from the installation, abandonment, and sampling events will be presented in a report. The report will discuss the activities performed and summarize the observed site conditions. The following will be included in the report:

#### Figures

- Site Map
- Potentiometric Surface Map illustrating the groundwater contour intervals and flow direction.
- Chloride Concentration Map(s) showing the distribution of chlorides in the groundwater.

### Tables and Graphs

- Groundwater Elevation and Field Parameters including dates of measurement, top of casing elevations, depths to water, water level elevations, field parameters, and well completion data including total depth and screen interval
- Groundwater Analytical Results of Contaminants of Concern
- Hydraulic Conductivity Results in Shallow and Deeper Well.

### Appendices

- Permitting Documentation
- Field Notes/Datasheets
- Well Logs
- Survey Data Table
- Laboratory Datasheets
- Waste Disposal Manifest

## **Summary**

The above-proposed work will allow thorough recovery of contaminated soil under NMAC 19.25.19, address well construction concerns, and restore and improve the monitoring well network to allow for the design of a full Stage 1 Abatement investigation.

Once approved the initial work should be completed within 90 days of approval. Then the excavation can be completed, and the site restored to prevent additional loading of precipitation that may be distorting the baseline conditions.

Based on this work and collected observations, a comprehensive Stage 1 Abatement investigation plan can be submitted near the end of 2024 or first quarter 2025 with full investigation activities to occur once approved.

If you have any questions, please contact me at <u>chris@atkinseng.com</u> or 575.914.0174.

Sincerely

Chino Costo

Christopher Cortez Operations Manager

.

•

#### Table 1: Groundwater Elevations

| Well  | Date     | Top Casing | Total Depth | DTW   | WLE     | <b>▲</b> WLE | Overall ▲ WLE |
|-------|----------|------------|-------------|-------|---------|--------------|---------------|
| SB-02 | 04/08/20 | 3736.29    |             | 17.82 | 3718.47 |              |               |
| SB-02 | 04/16/20 | 3736.29    |             | 18.13 | 3718.16 | -0.31        |               |
| SB-02 | 06/26/20 | 3736.29    |             | 19.25 | 3717.04 | -1.12        |               |
| SB-02 | 10/22/20 | 3736.29    |             | 20.65 | 3715.64 | -1.40        |               |
| SB-02 | 05/26/22 | 3736.29    | 25.37       | 19.98 | 3716.31 | 0.67         |               |
| SB-02 | 04/05/23 | 3736.29    | 25.52       | 22.30 | 3713.99 | -2.32        | -4.48         |
| SB-04 | 04/08/20 | 3734.71    |             | 16.85 | 3717.86 |              |               |
| SB-04 | 06/26/20 | 3734.71    |             | 16.30 | 3718.41 | 0.55         |               |
| SB-04 | 10/22/20 | 3734.71    |             | 18.09 | 3716.62 | -1.79        |               |
| SB-04 | 05/26/22 | 3734.71    | 21.90       | 17.40 | 3717.31 | 0.69         |               |
| SB-04 | 04/05/23 | 3734.71    | 22.40       | 19.91 | 3714.80 | -2.51        | -3.06         |
| SB-05 | 04/08/20 | 3736.17    |             | 15.38 | 3720.79 |              |               |
| SB-05 | 04/16/20 | 3736.17    |             | 13.96 | 3722.21 | 1.42         |               |
| SB-05 | 06/26/20 | 3736.17    |             | 17.67 | 3718.50 | -3.71        |               |
| SB-05 | 10/22/20 | 3736.17    |             | 19.56 | 3716.61 | -1.89        |               |
| SB-05 | 05/26/22 | 3736.17    | 11.20       | Dry   |         |              |               |
| SB-05 | 04/05/23 | 3736.17    | 26.64       | 21.43 | 3714.74 |              | -6.05         |
| SB-07 | 04/16/20 | 3732.36    |             | 9.63  | 3722.73 |              |               |
| SB-07 | 06/26/20 | 3732.36    |             | 13.86 | 3718.50 | -4.23        |               |
| SB-07 | 10/22/20 | 3732.36    |             | 15.69 | 3716.67 | -1.83        |               |
| SB-07 | 05/26/22 | 3732.36    | 19.10       | 15.00 | 3717.36 | 0.69         |               |
| SB-07 | 04/05/23 | 3732.36    | 19.20       | 17.62 | 3714.74 | -2.62        | -7.99         |

•

| Well  | Date     | Top Casing | Total Depth | DTW   | WLE     | <b>▲</b> WLE | Overall <b>A</b> WLE |
|-------|----------|------------|-------------|-------|---------|--------------|----------------------|
| SB-13 | 04/16/20 | 3737.91    |             | 15.57 | 3722.34 |              |                      |
| SB-13 | 06/26/20 | 3737.91    |             | 20.15 | 3717.76 | -4.58        |                      |
| SB-13 | 10/22/20 | 3737.91    |             | 21.82 | 3716.09 | -1.67        |                      |
| SB-13 | 05/26/22 | 3737.91    | 27.10       | 21.05 | 3716.86 | 0.77         |                      |
| SB-13 | 04/05/23 | 3737.91    | 27.20       | 23.62 | 3714.29 | -2.57        | -8.05                |
| SB-14 | 04/16/20 | 3738.27    |             | 16.23 | 3722.04 |              |                      |
| SB-14 | 06/26/22 | 3738.27    |             | 19.76 | 3718.51 | -3.53        |                      |
| SB-14 | 10/22/22 | 3738.27    |             | 21.51 | 3716.76 | -1.75        |                      |
| SB-14 | 05/26/22 | 3738.27    | 27.07       | 20.85 | 3717.42 | 0.66         |                      |
| SB-14 | 04/05/23 | 3738.27    | 27.00       | 23.20 | 3715.07 | -2.35        | -6.97                |
| SB-20 | 05/26/22 | 3741.11    | 60.20       | 24.70 | 3716.41 |              |                      |
| SB-20 | 04/05/23 | 3741.11    | 60.25       | 25.90 | 3715.21 | -1.20        | -1.20                |
| SB-21 | 05/26/22 | 3737.92    | 60.20       | 30.02 | 3707.90 |              |                      |
| SB-21 | 04/05/23 | 3737.92    | 60.20       | 30.20 | 3707.72 | -0.18        | -0.18                |
| SB-22 | 05/26/22 | 3740.48    | 60.18       | 29.08 | 3711.40 |              |                      |
| SB-22 | 04/05/23 | 3740.48    | 60.30       | 29.43 | 3711.05 | -0.35        | -0.35                |
| SB-23 | 05/26/22 | 3736.30    | 61.25       | 23.96 | 3712.34 |              |                      |
| SB-23 | 04/05/23 | 3736.30    | 61.20       | 25.40 | 3710.90 | -1.44        | -1.44                |

.

Table 2: Groundwater Analytical

| Well  | Date     | Benzene<br>(µg/L) | Toulene<br>(μg/L) | Ethylbenzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | GRO<br>(mg/L) | DRO<br>(mg/L) | ORO<br>(mg/L) | Chloride<br>(mg/L) | Nitrates<br>(mg/L) | Sampler |
|-------|----------|-------------------|-------------------|------------------------|----------------------------|---------------|---------------|---------------|--------------------|--------------------|---------|
| SB-02 | 04/16/20 | <2.0              | <2.0              | <2.0                   | <2.0                       | <2.50         | <2.50         | <2.50         | 1,810              |                    | HRL     |
| SB-02 | 05/26/22 | <1.00             | <1.00             | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 112                |                    | AEA     |
| SB-02 | 04/05/23 | <1.00             | <1.00             | <1.00                  | <1.00                      |               |               |               | 81.3               | <5.00              | AEA     |
| SB-04 | 05/26/22 | <1.00             | <1.00             | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 28.7               |                    | AEA     |
| SB-04 | 04/05/23 | <1.00             | <1.00             | <1.00                  | <1.00                      |               |               |               | 86.2               | <0.250             | AEA     |
| SB-05 | 04/16/20 | <2.0              | <2.0              | <2.0                   | <2.0                       | <2.50         | <2.50         | <2.50         | 12,000             |                    | HRL     |
| SB-05 | 04/05/23 | 2.61              | <1.00             | <1.00                  | <1.00                      |               |               |               | 11,300             | 6.44               | AEA     |
| SB-07 | 04/16/20 | 20.2              | <2.0              | 14.3                   | 9.16                       | <2.50         | <2.50         | <2.50         | 3,470              |                    | HRL     |
| SB-07 | 05/26/22 | 5.09              | <1.00             | 8.44                   | <1.00                      | 0.136         | <1.00         | <2.00         | 30.6               |                    | AEA     |
| SB-07 | 04/05/23 | 9.28              | <1.0              | 5.34                   | <1.0                       |               |               |               | 27                 | <0.500             | AEA     |
| SB-13 | 04/16/20 | 25.4              | <2.0              | <2.0                   | <2.0                       | <2.50         | <2.50         | <2.50         | 928                |                    | HRL     |
| SB-13 | 05/26/22 | <1.00             | <1.00             | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 188                |                    | AEA     |
| SB-13 | 04/05/23 | <1.00             | <1.00             | <1.00                  | <1.00                      |               |               |               | 424                | <2.50              | AEA     |

•

| Well  | Date     | Benzene<br>(µg/L) | Toulene<br>(µg/L) | Ethylbenzene<br>(µg/L) | Total<br>Xylenes<br>(μg/L) | GRO<br>(mg/L) | DRO<br>(mg/L) | ORO<br>(mg/L) | Chloride<br>(mg/L) | Nitrates<br>(mg/L) | Sampler |
|-------|----------|-------------------|-------------------|------------------------|----------------------------|---------------|---------------|---------------|--------------------|--------------------|---------|
| SB-14 | 04/16/20 | <2.0              | <2.0              | <2.0                   | <2.0                       | <2.50         | <2.50         | <2.50         | 6,840              |                    | HRL     |
| SB-14 | 05/26/22 | <1.00             | <1.00             | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 711                |                    | AEA     |
| SB-14 | 04/05/23 | <1.00             | <1.00             | <1.00                  | <1.00                      |               |               |               | 388                | <5.00              | AEA     |
| SB-17 | 04/16/20 | 2.9               | <2.0              | 5.65                   | 13.5                       | <2.50         | <2.50         | <2.50         | 17,300             |                    | HRL     |
| SB-20 | 05/26/22 | 1.56              | 13.0              | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 185,000            |                    | AEA     |
| SB-20 | 04/05/23 | <5.00             | <5.00             | <5.00                  | <5.00                      |               |               |               | 61,700             | <250               | AEA     |
| SB-21 | 05/26/22 | <1.00             | 5.77              | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 96,800             |                    | AEA     |
| SB-21 | 04/05/23 | <5.00             | <5.00             | <5.00                  | <5.00                      |               |               |               | 94,400             | <250               | AEA     |
| SB-22 | 05/26/22 | <1.00             | 17.5              | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 170,000            |                    | AEA     |
| SB-22 | 04/05/23 | <5.00             | <5.00             | <5.00                  | <5.00                      |               |               |               | 124,000            | <250               | AEA     |
| SB-23 | 05/26/22 | <1.00             | 3.09              | <1.00                  | <1.00                      | <0.100        | <1.00         | <2.00         | 76,100             |                    | AEA     |
| SB-23 | 04/05/23 | <5.00             | <5.00             | <5.00                  | <5.00                      |               |               |               | 25,700             | <250               | AEA     |

Appendix A: NMWRRS Query



# New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

|               |                                          |                                                                                     | (R=POD has been rep                                                                                                  | blaced                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |
|---------------|------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                          |                                                                                     | and no longer serves t                                                                                               | this file, (quarters are 1=NW 2=NE 3=SW 4=SI                                                                                                                                                      | E)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                   |
| (acre f       | t per annum)                             |                                                                                     | C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters)                                       |                                                                                                                                                                                                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |
| Sub           |                                          |                                                                                     | Well                                                                                                                 | qqq                                                                                                                                                                                               |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |
| basin Use Div | ersion Owner                             | County POD Number                                                                   | Tag Code Grant                                                                                                       | Source 6416 4 Sec Tws Rng                                                                                                                                                                         | х                                                                                                                                                                                                                         | Y                                                                                                                                                                                                                                                                                                                 |
| L COM         | 740 L & K RANCH                          | LE L 14553 POD12                                                                    | 20F9C                                                                                                                | 2 2 4 28 19S 35E                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |
|               | (acre f<br>Sub<br>basin Use Div<br>L COM | (acre ft per annum)   Sub Owner   basin Use Diversion Owner   L COM 740 L & K RANCH | (acre ft per annum)       Sub     County POD Number       L     COM     740     L & K RANCH     LE     L 14553 POD12 | (acre ft per annum)   C=the file is closed)     Sub   Vell     basin   Use   Diversion   Owner   County POD Number   Tag   Code Grant     L   COM   740   L & K RANCH   LE   L14553 POD12   20F9C | Sub   Vell   Q q q q     basin   Use   Diversion   Owner   County POD Number   Tag   Code Grant   Source   6416 4   Sec   Tws   Rng     L   COM   740   L & K RANCH   LE   L 14553 POD12   20F9C   2 2 4   28   195   35E | Sub   Vell   Quarters are smallest to largest) (NAD83 UTM in molecular structure)     Sub   Vell   Q q q q     basin   Use   Diversion   Owner   County POD Number   Tag   Code Grant   Source   6416 4   Sec   Tws   Rng   X     L   COM   740   L & K RANCH   LE   L14553 POD12   20F9C   22 4   28   19S   35E |

#### Record Count: 1

#### PLSS Search:

Section(s): 28

Township: 19S Range: 35E

Sorted by: File Number

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.



# New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

|                |               |                 |                         | (R=POD has been repla<br>and no longer serves th | aced<br>is file, (quarters are 1=NW 2=NE 3=SW 4=\$ | SE)                 |
|----------------|---------------|-----------------|-------------------------|--------------------------------------------------|----------------------------------------------------|---------------------|
|                | (acre f       | t per annum)    |                         | C=the file is closed)                            | (quarters are smallest to largest) (NA             | AD83 UTM in meters) |
|                | Sub           |                 |                         | Well                                             | q q q                                              |                     |
| WR File Nbr    | basin Use Div | ersion Owner    | County POD Number       | Tag Code Grant                                   | Source 6416 4 Sec Tws Rng                          | X Y                 |
| <u>L 14553</u> | L COM         | 740 L & K RANCH | LE <u>L 14553 POD14</u> | 20F9E                                            | 2 2 2 29 19S 35E                                   | 643329 3612155 🧲    |

#### Record Count: 1

#### PLSS Search:

Section(s): 29

Township: 19S Range: 35E

Sorted by: File Number

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


(with Ownership Information)

|             |       |                |                           |                   | (R=POD has been replaced and a construction of the second se |          |           |                      |           |            |  |  |
|-------------|-------|----------------|---------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------------------|-----------|------------|--|--|
|             |       | (acre ft per a | nnum)                     |                   | C=the file is closed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (quarter | s are sma | llest to largest) (N | NAD83 UTM | in meters) |  |  |
|             | Sub   |                |                           |                   | Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | qqq       |                      |           |            |  |  |
| WR File Nbr | basin | Use Diversion  | Owner                     | County POD Number | Tag Code Grant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source   | 6416 4    | Sec Tws Rng          | Х         | Y          |  |  |
| RA 12222    | RA    | EXP (          | ) RONALD DEAN HOUGHTALING | ED RA 12222 POD5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 242       | 30 19S 35E           | 545279    | 3610853 🌍  |  |  |
|             |       |                |                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |           |                      |           |            |  |  |

Record Count: 1

**PLSS Search:** 

Section(s): 30

Township: 19S Range: 35E

Sorted by: File Number

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/25/24 3:04 PM



(with Ownership Information)

No PODs found.

PLSS Search:

Section(s): 31

Township: 19S Range: 35E



(with Ownership Information)

|                |                  |                    |             |                     | and no longer serves this file, | (quarters | are 1=N   | W 2=   | NE 3=SW 4=8     | SE)       |           |
|----------------|------------------|--------------------|-------------|---------------------|---------------------------------|-----------|-----------|--------|-----------------|-----------|-----------|
|                | (acre ft pe      | er annum)          |             |                     | C=the file is closed)           | (quarters | s are sma | allest | to largest) (NA | D83 UTM i | n meters) |
|                | Sub              | ····               | 0           |                     | Well                            | •         | P P P     | •      | <b>T D</b>      | v         | v         |
|                | basin Use Divers | ion Owner          | County P    | OD Number           | Tag Code Grant                  | Source    | 6416 4    | Sec    | IWS RNg         | X         | Y         |
| <u>L 14876</u> | L MON            | 0 ARMSTRONG ENERGY | LE <u>L</u> | . <u>14876 POD1</u> | NA                              |           | 212       | 32     | 19S 35E         | 643011    | 3610472 🌍 |
|                |                  |                    | LE <u>L</u> | . 14876 POD10       |                                 | Shallow   | 212       | 32     | 19S 35E         | 642998    | 3610500 🍯 |
|                |                  |                    | LE <u>L</u> | . 14876 POD11       |                                 | Shallow   | 212       | 32     | 19S 35E         | 642989    | 3610522 🌍 |
|                |                  |                    | LE <u>L</u> | 14876 POD12         |                                 | Shallow   | 212       | 32     | 19S 35E         | 642973    | 3610515 🌍 |
|                |                  |                    | LE <u>L</u> | 14876 POD13         |                                 | Shallow   | 212       | 32     | 19S 35E         | 642986    | 3610500 🌍 |
|                |                  |                    | LE <u>L</u> | 14876 POD14         |                                 | Shallow   | 212       | 32     | 19S 35E         | 643023    | 3610529 🌍 |
|                |                  |                    | LE L        | 14876 POD2          |                                 |           | 212       | 32     | 19S 35E         | 642991    | 3610483 🌍 |
|                |                  |                    | LE L        | 14876 POD3          |                                 |           | 212       | 32     | 19S 35E         | 643014    | 3610535 🌍 |
|                |                  |                    | LE L        | 14876 POD4          |                                 |           | 212       | 32     | 19S 35E         | 643015    | 3610516 🌍 |
|                |                  |                    | LE L        | 14876 POD5          |                                 | Shallow   | 212       | 32     | 19S 35E         | 642992    | 3610517 🌍 |
|                |                  |                    | LE L        | 14876 POD6          |                                 |           | 212       | 32     | 19S 35E         | 643007    | 3610516 🌍 |
|                |                  |                    | LE L        | 14876 POD7          |                                 | Shallow   | 212       | 32     | 19S 35E         | 643025    | 3610515 🌍 |
|                |                  |                    | LE L        | 14876 POD8          |                                 | Shallow   | 212       | 32     | 19S 35E         | 642982    | 3610507 🌍 |
|                |                  |                    | LE L        | 14876 POD9          |                                 | Shallow   | 212       | 32     | 19S 35E         | 643000    | 3610508 🌍 |
| L 15106        | L MON            | 0 ARMSTRONG ENERGY | LE L        | 15106 POD1          | IA                              | Shallow   | 212       | 32     | 19S 35E         | 643002    | 3610606 🌍 |
|                |                  |                    | LE L        | 15106 POD2          |                                 | Shallow   | 122       | 32     | 19S 35E         | 643119    | 3610506 🌍 |
|                |                  |                    | LE L        | 15106 POD3          |                                 | Shallow   | 212       | 32     | 19S 35E         | 642875    | 3610512 🌍 |
|                |                  |                    | LE L        | 15106 POD4          |                                 |           | 412       | 32     | 19S 35E         | 643003    | 3610389 🌍 |

| v           |                           |                   | (R=POD has been replaced<br>and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE) |                                         |                |      |  |  |
|-------------|---------------------------|-------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|------|--|--|
|             | (acre ft per annum)       |                   | C=the file is closed)                                                                          | (quarters are smallest to largest) (NAD | 083 UTM in met | ers) |  |  |
|             | Sub                       |                   | Well                                                                                           | 9 9 9                                   |                |      |  |  |
| WR File Nbr | basin Use Diversion Owner | County POD Number | Tag Code Grant                                                                                 | Source 6416 4 Sec Tws Rng               | Х              | Υ    |  |  |
|             |                           |                   |                                                                                                |                                         |                |      |  |  |

#### Record Count: 18

PLSS Search:

Section(s): 32

Township: 19S Range: 35E

Sorted by: File Number



(with Ownership Information)

No PODs found.

PLSS Search:

Section(s): 33

Township: 19S Range: 35E



(P-DOD has been replaced

(with Ownership Information)

|             |               |                           |                         | and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE) |                                        |                    |  |  |  |  |
|-------------|---------------|---------------------------|-------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------|--|--|--|--|
|             | (acre         | ft per annum)             |                         | C=the file is closed)                                              | (quarters are smallest to largest) (NA | D83 UTM in meters) |  |  |  |  |
|             | Sub           |                           |                         | Well                                                               | q q q                                  |                    |  |  |  |  |
| WR File Nbr | basin Use Div | version Owner             | County POD Number       | Tag Code Grant                                                     | Source 6416 4 Sec Tws Rng              | ХҮ                 |  |  |  |  |
| L 04627     | L STK         | 3 THELMA A. LINAM         | LE <u>L 04627</u>       |                                                                    | 2 2 04 20S 35E                         | 644889 3608839* 🌍  |  |  |  |  |
| L 14552     | L COM         | 315 NUWATER RESOURCES LLC | LE <u>L 14552 POD10</u> | 20F19                                                              | 4 4 3 04 20S 35E                       | 644200 3607516* 🌍  |  |  |  |  |
|             |               | NUWATER RESOURCES LLC     | LE <u>L 14552 POD11</u> | 20F1A                                                              | 4 2 3 04 20S 35E                       | 644252 3607980 🌍   |  |  |  |  |
|             |               | NUWATER RESOURCES LLC     | LE <u>L 14552 POD12</u> | 20F1B                                                              | Artesian 2 3 2 04 20S 35E              | 644534 3608505 🌍   |  |  |  |  |
|             |               | NUWATER RESOURCES LLC     | LE <u>L 14552 POD13</u> | 20F1C                                                              | 3 4 4 04 20S 35E                       | 644804 3607531* 🌍  |  |  |  |  |
|             |               | NUWATER RESOURCES LLC     | LE <u>L 14552 POD8</u>  | 20F18                                                              | 4 1 3 04 20S 35E                       | 643792 3607911* 🌍  |  |  |  |  |
|             |               |                           |                         |                                                                    |                                        |                    |  |  |  |  |

Record Count: 6

PLSS Search:

Section(s): 4

Township: 20S Range: 35E

Sorted by: File Number

#### \*UTM location was derived from PLSS - see Help



(with Ownership Information)

|             | (acre               | ft per annum)             |                        | and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE)<br>C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters |                                 |                   |  |  |  |  |  |
|-------------|---------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|--|--|--|--|--|
| WR File Nbr | Sub<br>basin Use Di | version Owner             | County POD Number      | Well<br>Tag Code Grant                                                                                                                              | qqq<br>Source 64164 Sec Tws Rng | x y               |  |  |  |  |  |
| L 04158     | L DOL               | 3 VIRGIL LINAM            | LE <u>L 04158</u>      |                                                                                                                                                     | Shallow 2 4 05 20S 35E          | 643290 3608008* 🌍 |  |  |  |  |  |
| L 14552     | L COM               | 315 NUWATER RESOURCES LLC | LE <u>L 14552 3</u>    | NA                                                                                                                                                  | 1 1 1 05 20S 35E                | 641880 3608883 🌍  |  |  |  |  |  |
|             |                     | NUWATER RESOURCES LLC     | LE <u>L 14552 POD3</u> | 20F17                                                                                                                                               | 1 1 1 05 20S 35E                | 641880 3608883 🌍  |  |  |  |  |  |
|             |                     |                           |                        |                                                                                                                                                     |                                 |                   |  |  |  |  |  |

#### Record Count: 3

#### PLSS Search:

Section(s): 5 Township: 20S Range: 35E

Sorted by: File Number

#### \*UTM location was derived from PLSS - see Help



(with Ownership Information)

|                | (acre f       | t per annum)    |                        | and no longer serves this file, (quarters are 1=NW 2=NE 3=SW 4=SE)<br>C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in met |                           |                   |  |  |  |  |  |  |
|----------------|---------------|-----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|--|--|--|--|--|--|
|                | Sub           |                 |                        | Well                                                                                                                                             | 999                       |                   |  |  |  |  |  |  |
| WR File Nbr    | basin Use Div | version Owner   | County POD Number      | Tag Code Grant                                                                                                                                   | Source 6416 4 Sec Tws Rng | ХҮ                |  |  |  |  |  |  |
| L 04157        | L DOL         | 3 VIRGIL LINAM  | LE <u>L 04157</u>      |                                                                                                                                                  | Shallow 3 3 06 20S 35E    | 640483 3607561* 🌍 |  |  |  |  |  |  |
| <u>L 14097</u> | L STK         | 3 L&K RANCH LLC | LE <u>L 14097 POD1</u> |                                                                                                                                                  | Shallow 1 3 3 06 20S 35E  | 638740 3718500 🌍  |  |  |  |  |  |  |
|                |               |                 |                        |                                                                                                                                                  |                           |                   |  |  |  |  |  |  |

#### Record Count: 2

#### PLSS Search:

Section(s): 6

Township: 20S Range: 35E

Sorted by: File Number

#### \*UTM location was derived from PLSS - see Help

### Appendix B: Well Records



#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|          |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    | <u>, 2020</u>        | RH3.20           |                  |
|----------|--------------------------|----------------------------------|---------------------------------------|------------------------------|-------------------------------|----------------------|---------------------------|----------------------------|------------------------------------|----------------------|------------------|------------------|
| NC       | OSE POD NO.<br>POD1      | (WELL NO                         | ).)                                   | w<br>S                       | ELL TAG ID NO.<br>B-1         |                      |                           | OSE FILE NO(S<br>L 14876   | s)."                               | *****                |                  |                  |
| DCATIC   | WELL OWNE                | R NAME(S<br>Energy               | )                                     | I                            |                               | <u> </u>             |                           | PHONE (OPTIC               | DNAL)                              |                      |                  |                  |
| VELL LO  | WELL OWNE<br>P.O. Box 19 | r mailing<br>973                 | G ADDRESS                             |                              |                               |                      |                           | CITY<br>Roswell            |                                    | state<br>NM          | 88202            | ZIP              |
| <u>é</u> | ····                     |                                  | DE                                    | GREES                        | MINUTES                       | SECONDS              |                           |                            |                                    |                      |                  |                  |
| IL AN    | WELL<br>LOCATIO          |                                  | TITUDE                                | 32                           | 37                            | 21.273               | 5 N                       | * ACCURACY                 | CY REQUIRED: ONE TENTH OF A SECOND |                      |                  |                  |
| NERA     | (FROM GPS                | S) LO                            | NGITUDE                               | 103                          | 28                            | 32.249               | 4 W                       | * DATUM REC                | QUIRED: WGS 84                     |                      |                  |                  |
| GE       | DESCRIPTIC               | N RELATI                         | NG WELL LOCATION TO                   | STREET ADDRES                | S AND COMMON                  | I LANDMAR            | KS – PLS                  | S (SECTION, TO             | WNSHJIP, RANGE) WH                 | ERE AVA              | LABLE            |                  |
| <b>-</b> | West Pearl               | Queen                            |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          | LICENSE NO               |                                  | NAME OF LICENSED                      | DRILLER                      |                               |                      |                           |                            | NAME OF WELL DR                    | LLING CO             | MPANY            |                  |
|          | 178                      | 9                                |                                       | N                            | fark Mumby                    |                      |                           |                            | HRL C                              | omplianc             | e Solutions      |                  |
|          | DRILLING ST<br>4/8/20    | farted<br>020                    | DRILLING ENDED<br>4/8/2020            | DEPTH OF COMP                | PLETED WELL (F1<br>Applicable | T) B                 | ORE HO                    | LE DEPTH (FT)<br>25        | DEPTH WATER FIR                    | st encou<br>ot Encou | NTERED (FT)      |                  |
|          |                          |                                  |                                       |                              |                               |                      | STATIC WATER LEVEL IN CON |                            |                                    | MPLETED WE           | LL (FT)          |                  |
| NC       | COMPLETED                | O WELL IS:                       | ARTESIAN                              | DRY HOLE                     | SHALLO                        | W (UNCONF            | INED)                     |                            | No                                 | ot Encou             | ntered           |                  |
| ATIC     | DRILLING FI              | LUID:                            | I AIR                                 | AIR MUD ADDITIVES – SPECIFY: |                               |                      |                           |                            |                                    |                      |                  |                  |
| DRM      | DRILLING M               | ETHOD:                           | ROTARY                                | HAMMER                       | CABLE T                       | OOL                  | ОТНЕ                      | R - SPECIFY:               | Hollo                              | w Stem               | Auger            |                  |
| IC INF   | DEPTH                    | (feet bgl)                       | BORE HOLE                             | CASING M                     | ATERIAL AND                   | D/OR                 | CA                        | ASING                      | CASING                             | CASI                 | NG WALL          | SLOT             |
| SING     | FROM                     | ROM TO DIAM<br>(inches)          |                                       | (include eac                 | ch casing string,             | and                  | CON                       | NECTION<br>TYPE            | INSIDE DIAM.<br>(inches)           | THIC                 | CKNESS<br>nches) | SIZE<br>(inches) |
| CA       | 0                        | 25                               | 6.25                                  | note sec                     | Not Installed Not Installed   |                      |                           | Ing diameter)<br>Installed | Not Installed                      | Not                  | Installed        | N/A              |
| S<br>S   |                          |                                  |                                       | · · · ·                      |                               |                      |                           | - 10-1                     | ·                                  |                      |                  |                  |
| TIN      |                          |                                  |                                       |                              |                               |                      |                           | - 11                       |                                    |                      |                  |                  |
| DRII     |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
| 2.]      |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          | -                                |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          | / <b>6</b> . <b>1</b> . <b>1</b> | · · · · · · · · · · · · · · · · · · · | <u> </u>                     |                               |                      |                           |                            |                                    | <u> </u>             |                  |                  |
| T        | FROM                     | (Ieet bgl)                       | BORE HOLE<br>DIAM. (inches)           | LIST<br>GRAVI                | "ANNULAR SI<br>EL PACK SIZE   | EAL MATE<br>-RANGE B | RIAL /<br>Y INTH          | and<br>ERVAL               | AMOUNT<br>(cubic feet)             |                      | METHO<br>PLACEM  | D OF<br>IENT     |
| ERIZ     | TROM                     |                                  | 6.25                                  |                              | Not I                         | Installed            |                           |                            |                                    |                      |                  |                  |
| IATI     |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
| RM       | <u> </u>                 |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
| ULA      |                          |                                  |                                       |                              | · · · •                       |                      |                           |                            |                                    |                      |                  |                  |
| NN       |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
| 3. A     |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
|          |                          |                                  |                                       |                              |                               |                      |                           |                            |                                    |                      |                  |                  |
| FOF      | OSE INTER                | NAL USI                          | 3                                     |                              |                               |                      |                           | WR-2                       | 0 WELL RECORD                      | & LOG                | Version 04/3     | 0/19)            |
| FIL      | ENO. I                   | ILQ                              | 710                                   |                              | POD NC                        | D. I                 |                           | TRN                        | NO. $1 \wedge \Omega \cap$         | 117                  | ł                |                  |

2.1.2

WELL TAG ID NO.

AL

PAGE 1 OF 2

LOCATION 195-35E-32

### DSE DII JUN 16 2020 AM9:20

|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | -                   |                                 |
|-------|-----------------------------------|----------------------|---------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|---------------------------------|
|       | DEPTH (f                          | eet bgl)             |                                                                                       | COLOBAN                               | D TYPE OF MATERIAL FI                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     | ESTIMATED                       |
|       | FROM                              | то                   | THICKNESS<br>(feet)                                                                   | INCLUDE WATE<br>(attach sur           | ER-BEARING CAVITIES OF<br>polemental sheets to fully de               | R FRACTURE                                   | ZONES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BEARING?<br>(YES / NO)                       |                     | YIELD FOR<br>WATER-<br>BEARING  |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | -                   | ZONES (gpm)                     |
|       | 0                                 | 13                   | 13                                                                                    | Pink tan fin                          | e sand with minor silt and mi                                         | nor medium sai                               | nd .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y VN                                         | -                   |                                 |
|       | 13                                | 25                   | 12                                                                                    | Dark red clay                         | y with angular coarse gravel,                                         | minor salt stain                             | ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y ¥ N                                        |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              | Image: Static state of the |                                              |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| ELL   |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| F WI  |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| G OI  |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| ILO.  |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| 0I0   |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| OLC   |                                   |                      |                                                                                       |                                       |                                                                       | <u> </u>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| OGE   |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          | [<br>               |                                 |
| DR    |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| E.H.  |                                   | ····=····            |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      | · · · ·                                                                               |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       | · · · ·                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   | · · · -·             |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
|       |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y N                                          |                     |                                 |
| ŕ     | METHOD U                          | ISED TO ES           | STIMATE YIELD                                                                         | OF WATER-BEARIN                       | G STRATA:                                                             |                                              | TOT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AL ESTIMATEI                                 | ).<br>D             | 0.00                            |
|       | PUM                               |                      | IR LIFT                                                                               | BAILER 70                             | THER – SPECIFY: Not App                                               | licable                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (gpm                                         | .).                 | 0.00                            |
| NO    | WELL TES                          | T TEST<br>STAR       | RESULTS - ATT<br>T TIME, END TI                                                       | ACH A COPY OF DA<br>ME, AND A TABLE S | TA COLLECTED DURING<br>HOWING DISCHARGE AN                            | WELL TESTIN<br>D DRAWDOW                     | IG, INCLUDI<br>/N OVER TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NG DISCHARG<br>E TESTING PEI                 | E M<br>RIOI         | ETHOD,<br>).                    |
| NISI  | MISCELLA                          | NEOUS INI            | FORMATION: TI                                                                         | D Core barrel drive 2                 | 7 feet hal: TD auger 25 fe                                            | et høl                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
| PER   |                                   |                      |                                                                                       |                                       | ricer ogi, 1D auger 25 ie                                             | 01051                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
| G SU  |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
| ; RI  |                                   |                      |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
| LEST  | PRINT NAM                         | AE(S) OF D           | RILL RIG SUPER                                                                        | RVISOR(S) THAT PRO                    | VIDED ONSITE SUPERVI                                                  | SION OF WEL                                  | L CONSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTION OTHER                                  | THA                 | AN LICENSEE:                    |
| 5.]   | Kalvin Padi                       | lla                  |                                                                                       |                                       |                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
| JRE   | BY SIGNIN<br>RECORD O<br>WELL REC | G BELOW<br>F THE ABC | , I CERTIFY TH<br>OVE DESCRIBED<br>ALSO BE FILED                                      | IAT TO THE BEST C<br>WELL I ALSO CERT | OF MY KNOWLEDGE AND<br>TIFY THAT THE WELL TA<br>HOLDER WITHIN 30 DAYS | D BELIEF, TH<br>G, IF REQUIRI<br>AFTER THE ( | E FOREGOI<br>ED, HAS BEE<br>COMPLETIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NG IS A TRUE<br>EN INSTALLED<br>N OF WELL DR | E AN<br>ANI<br>JLLI | D CORRECT<br>D THAT THIS<br>NG. |
| GNATI | Mil E. H                          | Mut - X              | Digitally signed by Mark Mumby<br>DN: cn=Mark Mumby, o=HRL C<br>ou=Security Division, | iomp,                                 | Mark Mumby                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/5/2020                                     |                     |                                 |
| 6. SI |                                   |                      | email=mmumby@hrlcomp.com,<br>Date: 2020.06.05 10:13:11 -06'00                         | c=US                                  | · · · · · · · · · · · · · · · · · · ·                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                     |                                 |
|       |                                   | SIGNAT               | URE OF DRILLE                                                                         | ER / PRINT SIGNEE                     | NAME                                                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DAT                                          | E                   |                                 |
| FO    | R OSE INTER                       | NAL USE              |                                                                                       |                                       |                                                                       | WR-2                                         | 20 WELL RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CORD & LOG (                                 | Vers                | ion 04/30/2019)                 |
| FIL   | eno. L                            | -148                 | 76                                                                                    | · · · · ·                             | POD NO.                                                               | TRN                                          | NO. 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | רודכ                                         |                     |                                 |
| LO    | CATION                            | 1.1.2                |                                                                                       | 195-351                               | 5-32                                                                  | WELL TAG                                     | DNO. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                                            |                     | PAGE 2 OF 2                     |

**Released to Imaging: 10/29/2024 7:37:14 AM** 

**OFFICE OF THE STATE ENGINEER** 

05E DII JUN 16 2020 M3:21

<u>www.ose.state.nm.us</u>

| z                                      | OSE POD NO<br>POD2                                              | . (WELL N  | 0.)                  |                                                  | WELL TAG ID NO.             |             |                | OSE FILE NO(S  | 5).                |                             |                                        |
|----------------------------------------|-----------------------------------------------------------------|------------|----------------------|--------------------------------------------------|-----------------------------|-------------|----------------|----------------|--------------------|-----------------------------|----------------------------------------|
| LIO]                                   | WELL OWAIT                                                      | D MAND     | <u>c)</u>            |                                                  |                             |             |                | DUONE (ODT)    |                    |                             |                                        |
| OCA'                                   | Armstrong                                                       | Energy     | 5)                   |                                                  |                             |             |                | PHONE (OP III  | JNAL)              |                             |                                        |
| LL I                                   | WELL OWNE                                                       | ER MAILIN  | IG ADDRESS           |                                                  |                             | -18         |                | СІТҮ           |                    | STATE                       | ZIP                                    |
| WE                                     | P.O. Box 1                                                      | 973        |                      |                                                  |                             |             |                | Roswell        |                    | NM 88202                    |                                        |
| QN                                     | WELL                                                            |            | D                    | EGREES                                           | MINUTES                     | SECOND      | s              |                |                    |                             |                                        |
| AL /                                   | LOCATIO                                                         | N L        | ATITUDE              | 32                                               | 37                          | 21.63       | <sup>3</sup> N | * ACCURACY     | REQUIRED: ONE TENT | TH OF A SECOND              |                                        |
| VER                                    | (FROM GP                                                        | S)         | ONGITUDE             | 103                                              | 28                          | 32.98       | 8 W            | * DATUM REC    | QUIRED: WGS 84     |                             |                                        |
| GEI                                    | DESCRIPTIC                                                      | ON RELAT   | ING WELL LOCATION TO | O STREET ADDRE                                   | SS AND COMMON               | LANDMAR     | KS – PLS       | S (SECTION, TO | WNSHJIP, RANGE) WH | ERE AVAILABLE               |                                        |
| , <b>-</b>                             | West Pearl                                                      | Queen      |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        | LICENSE NO                                                      | ),         | NAME OF LICENSEI     | DRILLER                                          |                             |             |                |                | NAME OF WELL DRI   | LLING COMPANY               |                                        |
|                                        | 178                                                             | 39         |                      | 1                                                | Mark Mumby                  |             |                |                | HRL C              | ompliance Solutions         |                                        |
|                                        | DRILLING S                                                      | TARTED     | DRILLING ENDED       | DEPTH OF COM                                     | PLETED WELL (FT             | ") E        | ORE HO         | LE DEPTH (FT)  | DEPTH WATER FIRS   | ST ENCOUNTERED (FT)         |                                        |
|                                        | 4/8/2                                                           | 020        | 4/8/2020             | Not                                              |                             |             |                | × 3   28       |                    |                             |                                        |
| Z                                      | COMPLETEI                                                       | O WELL IS  | : 🔲 ARTESIAN         | DRY HOLE                                         | SHALLOV                     | W (UNCONF   | FINED) 17.82   |                |                    | EL IN COMPLETED WE<br>17.82 | LL (FT)                                |
| VTIO                                   | DRILLING FLUID: AIR MUD ADDITIVES - SPECIFY:                    |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
| DRM/                                   | DRILLING M                                                      | ETHOD:     | ROTARY               | HAMMER                                           | CABLE TO                    | DOL [       | ✓ ОТНЕ         | R – SPECIFY:   | Hollo              | w Stem Auger                |                                        |
| SING INFO                              | DEPTH                                                           | (feet bgl) | BORE HOLE            | CASING M                                         | ATERIAL AND                 | /OR         | CA             | ASING          | CASING             | CASING WALL                 | SLOT                                   |
|                                        | FROM                                                            | то         | DIAM                 | (include ea                                      | GRADE<br>ich casing string, | and         | CON            | NECTION        | INSIDE DIAM.       | THICKNESS                   | SIZE                                   |
| CASI                                   |                                                                 |            | (inches)             | note sections of screen) (add coupling diameter) |                             |             | (inches)       | (inches)       | (inches)           |                             |                                        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0                                                               | 15         | 6.25                 |                                                  | Blank PVC                   |             | Flus           | h Thread       | 2.0                | 0.154                       | N/A                                    |
| Ň                                      | 15                                                              | 25         | 0.25                 | 3                                                |                             |             |                |                | 2.0                | 0.154                       | 0.010                                  |
| SILI                                   |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
| C.DI                                   |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        | · · · · ·                                                       | · · · ··   |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |
|                                        | DEPTH                                                           | (feet bgl) | BORE HOLE            | LIS                                              | T ANNULAR SE                | AL MATI     | ERIAL A        | AND            | AMOUNT             | METHO                       | D OF                                   |
| IAL                                    | FROM                                                            | ТО         | DIAM. (inches)       | GRAV                                             | EL PACK SIZE-               | RANGE E     | Y INTE         | RVAL           | (cubic feet)       | PLACEN                      | IENT                                   |
| TER                                    | 0                                                               | 2          | 6.25                 |                                                  | Native                      | clean fill  |                |                | 0.2                | Shov                        | el                                     |
| MA'                                    | 2                                                               | 13         | 6.25                 |                                                  | Ben                         | tonite      |                |                | 1.1                | Pou                         | r                                      |
| AR                                     | 13                                                              | 25         | 6.25                 |                                                  | 10/20 Clear                 | n Silica Sa | nd             |                | 1.2                | Pou                         | r<br>                                  |
| NUL                                    | 25                                                              | 35         | 6.25                 |                                                  | Ben                         | tonite      |                |                | 1                  | Pou                         | r                                      |
| AN                                     |                                                                 |            |                      |                                                  |                             |             |                |                |                    |                             | ······································ |
| ę.                                     |                                                                 |            |                      | -                                                |                             |             |                |                |                    |                             |                                        |
|                                        | I                                                               |            |                      |                                                  |                             |             | <u> </u>       |                | <u> </u>           |                             |                                        |
| FOR                                    | FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 04/30/19) |            |                      |                                                  |                             |             |                |                |                    |                             |                                        |

| · ·                         |                       |
|-----------------------------|-----------------------|
| <b>Released to Imaging:</b> | 10/29/2024 7:37:14 AM |

LOCATION QS - 35E-3

PAGE 1 OF 2

WELL TAG ID NO. NA

DSE DIT JUN 16 2020 PM9:21

|      | DEPTH (1             | feet bgl)             |                                 |                                                                                                                    | WATED.                          | ESTIMATED                                     |
|------|----------------------|-----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|
|      | FROM                 | то                    | THICKNESS<br>(feet)             | INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES<br>(attach supplemental sheets to fully describe all units)       | WATER<br>BEARING?<br>(YES / NO) | YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|      | 0                    | 13                    | 13                              | Dark orange, dry silt and clay with fine sand                                                                      | Y V N                           |                                               |
|      | 13                   | 23                    | 10                              | Buff-tan color silty fine sand with minor gravel; moist, minor salt crust                                          | ✓Y N                            |                                               |
|      | 23                   | 28                    | 5                               | Pale pink/red silty fine sand with some gravel; damp soil                                                          | Y VN                            |                                               |
|      | 28                   | 37                    | 9                               | Dark red/purple clay with light grey clay and black angular inclusions                                             | Y ✔ N                           |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| T    |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| WEI  |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| OF   |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| 00   |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| roc  |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| GEO  |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| RO   |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| НУГ  |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
| 4    |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      |                      |                       |                                 |                                                                                                                    | Y N                             |                                               |
|      | METHOD U             | SED TO ES             | TIMATE YIELD                    | OF WATER-BEARING STRATA:                                                                                           | TOTAL ESTIMATED                 |                                               |
|      | <b>PUM</b>           | P 🔲 A                 | IR LIFT                         | BAILER OTHER – SPECIFY: Not Applicable                                                                             | WELL YIELD (gpm):               | 0.00                                          |
| NO   | WELL TES             | T TEST<br>STAR        | RESULTS - ATT<br>T TIME, END TI | ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL<br>ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER      | UDING DISCHARGE                 | METHOD,<br>)D.                                |
| ISIA | MISCELLA             | NEOUS INF             | FORMATION: CO                   | are harred drive to 37 feet had Auger to 35 feet had hing hack to 25 f                                             | eet hal with bentonite          | and set well                                  |
| PER  |                      |                       |                                 |                                                                                                                    |                                 | and set wen                                   |
| G SU |                      |                       |                                 |                                                                                                                    |                                 |                                               |
| ; RI |                      |                       |                                 |                                                                                                                    |                                 |                                               |
| resi | PRINT NAM            | IE(S) OF D            | RILL RIG SUPER                  | VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS                                                             | TRUCTION OTHER TH               | IAN LICENSEE:                                 |
| 5.3  | Kalvin Padi          | lla                   |                                 |                                                                                                                    |                                 |                                               |
|      | BY SIGNIN            | G BELOW               | , I CERTIFY TH                  | AT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FORE                                                                | GOING IS A TRUE A               | ND CORRECT                                    |
| URE  | RECORD O             | F THE ABC<br>ORD WILL | VE DESCRIBED<br>ALSO BE FILED   | WELL. I ALSO CERTIFY THAT THE WELL TAG, IF REQUIRED, HAS<br>WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLE | BEEN INSTALLED AI               | ND THAT THIS<br>LING.                         |
| NAT  | mite                 | m                     | Digitally signed by Mark Mumby  |                                                                                                                    |                                 |                                               |
| SIG  | 10100 6, 10          | HT W                  | mail=mmumby@hrlcomp.com, c      | Hus Mark Mumby                                                                                                     | 6/9/2020                        |                                               |
| é.   |                      | SIGNAT                | URE OF DRILLE                   | R / PRINT SIGNEE NAME                                                                                              | DATE                            |                                               |
|      |                      |                       | n <del>d</del> ma <u>si</u>     |                                                                                                                    |                                 |                                               |
| FOI  | R OSE INTER          | NALUSE                | 0                               |                                                                                                                    | L RECORD & LOG (Ve              | rsion 04/30/2019)                             |
|      | CATION $\mathcal{A}$ | .1. 7                 | r<br>105-                       | 35E-37                                                                                                             |                                 | PAGE 2 OF 2                                   |

**Released to Imaging: 10/29/2024 7:37:14 AM** 



OFFICE OF THE STATE ENGINEER

DSE DJI JUN 16 2020 AM3:21

www.ose.state.nm.us

| NOI         | OSE POD NO<br>POD3      | . (WELL NO          | 0.)                        |                  | WELL TAG ID NO.<br>SB-3                    |           |                  | OSE FILE NO(S<br>L 14876 | S).                    |             |                     |          |
|-------------|-------------------------|---------------------|----------------------------|------------------|--------------------------------------------|-----------|------------------|--------------------------|------------------------|-------------|---------------------|----------|
| OCAT        | WELL OWNE<br>Armstrong  | ER NAME(S<br>Energy | 3)                         |                  |                                            |           |                  | PHONE (OPTIC             | ONAL)                  |             |                     | :        |
| MELL L      | WELL OWNE<br>P.O. Box 1 | er mailin<br>973    | G ADDRESS                  |                  |                                            |           |                  | CITY<br>Roswell          |                        | state<br>NM | 88202               | ZIP      |
| ê           |                         | · 1                 | DE                         | GREES            | MINUTES                                    | SECON     | IDS              |                          |                        |             |                     |          |
| <b>A</b>    | WELL                    | .,                  |                            | 32               | 37                                         | 23.30     | 004 <sub>N</sub> | * ACCURACY               | REOUIRED: ONE TEN      | TH OF A SEC | COND                | i        |
| ERAL        | (FROM GP                | S)                  | NTITUDE                    | 103              | 28                                         | 32.10     | 096 W            | * DATUM REC              | QUIRED: WGS 84         |             |                     |          |
| EN          | DESCRIPTIO              | ON RELATI           | NG WELL LOCATION TO        | STREET ADD       | RESS AND COMMON                            | LANDM     | ARKS – PLS       | S (SECTION, TO           | WNSHJIP, RANGE) WH     | ERE AVAIL   | ABLE                |          |
| 1.0         | West Pearl              | Queen               |                            |                  |                                            |           |                  | •                        |                        |             |                     |          |
|             | LICENSE NO              | h.                  | NAME OF LICENSED           | DRILLER          | 0 0                                        |           | · .              |                          | NAME OF WELL DR        | ILLING COM  | IPANY               |          |
|             | 178                     | 39                  |                            |                  | Mark Mumby                                 |           |                  |                          | HRL C                  | ompliance   | Solutions           |          |
|             | DRILLING ST<br>4/8/2    | tarted<br>020       | DRILLING ENDED<br>4/8/2020 | DEPTH OF CON     | OMPLETED WELL (FT<br>ot Applicable         | 5)        | BORE HOI         | LE DEPTH (FT)<br>40      | DEPTH WATER FIRS       | ot Encount  | TERED (FT)<br>tered |          |
| z           | COMPLETEI               | O WELL IS:          | ARTESIAN                   | 🖌 DRY HO         | LE 🗍 SHALLO                                | W (UNCO   | NFINED)          |                          | STATIC WATER LEV<br>No | VEL IN COMP | PLETED WE           | LL (FT)  |
| OIL         | DRILLING FI             | LUID:               | 🖌 AIR                      | MUD              | ADDITIV                                    | ES – SPEC | CIFY:            |                          | 1                      |             |                     |          |
| NFORM       | DRILLING M              | ETHOD:              | ROTARY                     | НАММЕ            | R CABLE T                                  | OOL       | ОТНЕ             | R – SPECIFY:             | Hollo                  | w Stem A    | uger                |          |
| NFC         | DEPTH                   | (feet bgl)          | BORE HOLE                  | CASING           | MATERIAL AND                               | /OR       | C                | SING                     | CASING                 | CASING      | G WALL              | SLOT     |
| SING II     | FROM                    | то                  | DIAM                       |                  | GRADE                                      |           | CONN             | VECTION                  | INSIDE DIAM.           | THICK       | KNESS               | SIZE     |
|             | (inches)                |                     |                            | (include<br>note | each casing string,<br>sections of screen) | and       | T<br>Iduco bbe)  | YPE                      | (inches)               | (inc        | hes)                | (inches) |
| CA          |                         |                     |                            |                  | Not Installed                              |           | (aud coup)       | ing dianeter)            |                        |             |                     |          |
| G &         |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| TIN         |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| RIL         |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| 2. D        |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  | · ·                                        |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  | 1 ann an 1 a 1                             |           |                  |                          |                        |             |                     |          |
|             | DEPTH                   | (feet bgl)          | BORE HOLE                  | L                | IST ANNULAR SE                             | EAL MA    | TERIAL A         | AND                      | AMOUNT                 |             | METHO               | D OF     |
| IAL         | FROM                    | то                  | DIAM. (inches)             | GRA              | VEL PACK SIZE-                             | RANGE     | BY INTE          | RVAL                     | (cubic feet)           |             | PLACEM              | IENT     |
| ER          |                         |                     | 6.25                       | 1                | Not I                                      | nstalled  |                  |                          |                        | 1           |                     |          |
| IAT         |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| NR 1        |                         |                     |                            |                  |                                            |           |                  | -                        |                        |             |                     |          |
| UL₄         |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| NN          |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| <b>3.</b> A |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
|             |                         |                     |                            |                  |                                            |           |                  |                          |                        |             |                     |          |
| FOR         | OSE INTER               |                     |                            |                  |                                            |           |                  | WR-2                     | 0 WELL RECORD          | & LOG (Ve   | ersion 04/3         | )/19)    |

| FOR OSE INTERNAL USE |           | WR-20 WELL RECORD & LOG (Ver | sion 04/30/19) |
|----------------------|-----------|------------------------------|----------------|
| FILE NO. L-14870     | POD NO. 3 | TRN NO. $(  O' ) $           |                |
| LOCATION 195-35E-32  | 2.1.2     | WELL TAG ID NO. VA           | PAGE 1 OF 2    |



|            | DEPTH (1              | feet bgl)      |                                                                                       | COLOR AN                                | D TYPE OF MATERIAL EN                              | ICOUNTE                  | RED -                       | WA           | TER                 | ESTIMATED                             |
|------------|-----------------------|----------------|---------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------|-----------------------------|--------------|---------------------|---------------------------------------|
|            | FROM                  | то             | THICKNESS<br>(feet)                                                                   | INCLUDE WATE<br>(attach sup             | R-BEARING CAVITIES OF plemental sheets to fully de | R FRACTU<br>scribe all u | RE ZONES<br>(nits)          | BEAF<br>(YES | NO)                 | WATER-<br>BEARING                     |
|            | 0                     | 18             | 18                                                                                    | Buff to ta                              | an and pale orange color fine                      | sand with s              | ilt                         | Y            | ✓ N                 | ZONES (gpiii)                         |
|            | 18                    | 24             | 6                                                                                     | Red-orange fine                         | sand with minor silt and me                        | dium to coa              | arse sand                   | Y            | ✓ N                 |                                       |
|            | 24                    | 40             | 16                                                                                    | Dark red/dark purple                    | clay with light grey clay and                      | l angular bl             | ack inclusions              | Y            | √ N                 |                                       |
| :          |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         | ·                                                  |                          |                             | Y            | N                   |                                       |
| Ţ          |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| WEL        |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| OF         |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| 0G         |                       |                |                                                                                       |                                         | · · · · · · · · · · · · · · · · · · ·              |                          |                             | Y            | N                   |                                       |
| I DI       |                       |                |                                                                                       |                                         | <u>.</u>                                           |                          |                             | Y            | N                   |                                       |
| LOC        |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| GEO        |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| <b>DRO</b> |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| НУІ        |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| 4.         |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
|            |                       |                |                                                                                       |                                         |                                                    |                          |                             | Y            | N                   |                                       |
| ,          | METHOD U              | SED TO ES      | TIMATE YIELD                                                                          | OF WATER-BEARING                        | G STRATA:                                          |                          | TO                          | TAL ESTI     | MATED               | 0.00                                  |
|            | PUMI                  | P 🗖 A          | IR LIFT                                                                               | BAILER OT                               | HER – SPECIFY: Not App                             | licable                  | WI                          |              | ) (gpm):            | 0.00                                  |
| NO         | WELL TES              | T TEST<br>STAR | RESULTS - ATT<br>T TIME, END TII                                                      | ACH A COPY OF DAT<br>ME, AND A TABLE SH | A COLLECTED DURING VIOWING DISCHARGE AN            | WELL TES<br>D DRAWD      | TING, INCLUD<br>OWN OVER TI | ING DISC     | HARGE N<br>NG PERIO | 1ETHOD,<br>D.                         |
| [SIV]      | MISCELLA              | NEOUS INF      | ORMATION: TI                                                                          | D Core Barrel 42 feet                   | bgl                                                |                          |                             |              |                     |                                       |
| JPEF       |                       |                | TI                                                                                    | O Auger 40 feet bgl                     | - 0-                                               |                          |                             |              |                     |                                       |
| IG SI      |                       |                |                                                                                       |                                         |                                                    |                          |                             |              |                     |                                       |
| T; R       |                       |                |                                                                                       |                                         |                                                    |                          |                             |              |                     |                                       |
| TES        | PRINT NAN             | AE(S) OF D     | RILL RIG SUPER                                                                        | VISOR(S) THAT PRO                       | VIDED ONSITE SUPERVIS                              | SION OF W                | ELL CONSTRU                 | JCTION C     | THER TH             | AN LICENSEE:                          |
| S.         | Kalvin Padi           | lla            |                                                                                       |                                         |                                                    |                          |                             |              |                     |                                       |
| E          | BY SIGNIN<br>RECORD O | G BELOW        | , I CERTIFY TH                                                                        | AT TO THE BEST O<br>WELL. I ALSO CERT   | F MY KNOWLEDGE AND<br>IFY THAT THE WELL TAC        | ) BELIEF,<br>G, IF REQU  | THE FOREGO                  | ING IS A     | TRUE A              | ND CORRECT                            |
| ATU        | WELL REC              | ORD WILL       | ALSO BE FILED                                                                         | WITH THE PERMIT H                       | IOLDER WITHIN 30 DAYS                              | AFTER TH                 | HE COMPLETIC                | ON OF WE     | LL DRILL            | ,ING.                                 |
| IGN        | Math                  | Mart N         | Digitally signed by Mark Mumby<br>DN: cn=Mark Mumby, o=HRL C<br>ou=Security Division, | omp,                                    | fark Mumby                                         |                          |                             | 6/9          | /2020               |                                       |
| 6. S       | ·                     | PICNAT         | Date: 2020.06.09 09:43:10 -06'00                                                      |                                         |                                                    | -                        |                             |              | DATE                |                                       |
|            |                       | SIGNAT         |                                                                                       | R / FRINT SIGNEE                        | NAIVIE                                             |                          |                             |              | DATE                | · · · · · · · · · · · · · · · · · · · |
| FOI        | R OSE INTER           | NAL USE        | 577                                                                                   |                                         | ~                                                  | W                        | R-20 WELL R                 | ECORD &      | LOG (Ver            | sion 04/30/2019)                      |
| FIL        | ENO. L                | -142           | 576                                                                                   |                                         | POD NO. 5                                          | T                        | RN NO. 🗲                    | 101)1        | ')                  |                                       |
|            | CATION 🖂              | .1.7           | 195                                                                                   | -326-32                                 |                                                    | WELL TA                  | GIDNO. H                    | 8            |                     | PAGE 2 OF 2                           |

,

**Released to Imaging: 10/29/2024 7:37:14 AM** 



OFFICE OF THE STATE ENGINEER

DSE DII JUN 16 2020 == 3:21

www.ose.state.nm.us

|                                          | OSE BOD NO                                                | (WELL M    |                                       | 11/27 1                                                      |                     |            |                    | OSE EILE M                 | 0(\$)                |                    |                  |                  |
|------------------------------------------|-----------------------------------------------------------|------------|---------------------------------------|--------------------------------------------------------------|---------------------|------------|--------------------|----------------------------|----------------------|--------------------|------------------|------------------|
| Z                                        | POD4                                                      | . WELLING  | <i>,,</i>                             | SB-4                                                         | TAG ID NU.          |            |                    | L 14876                    | 0(5).                |                    |                  |                  |
| TIO                                      | WELL OWNE                                                 | R NAME(S   | )                                     | l                                                            |                     |            |                    | PHONE (OP                  | TIONAL)              |                    |                  |                  |
| OCA                                      | Armstrong                                                 | Energy     |                                       |                                                              |                     |            |                    |                            | -                    |                    |                  |                  |
| TT                                       | WELL OWNE                                                 | R MAILIN   | G ADDRESS                             |                                                              |                     |            |                    | CITY                       |                      | STATE              |                  | ZIP              |
| WEL                                      | P.O. Box 1                                                | 973        |                                       |                                                              |                     |            |                    | Roswell                    |                      | NM                 | 88202            |                  |
| a                                        | WELL                                                      |            | DE                                    | GREES MI                                                     | NUTES               | SECOND     | S                  |                            |                      |                    |                  |                  |
| NL A                                     | LOCATIO                                                   |            | TITUDE                                | 32                                                           | 37                  | 22.69      | 5 <sub>N</sub>     | * ACCURA                   | CY REQUIRED: ONE TEN | TH OF A S          | ECOND            |                  |
| IER/                                     | (FROM GP                                                  | S) LC      | NGITUDE                               | 103                                                          | 28                  | 32.044     | 12 W               | * DATUM F                  | EQUIRED: WGS 84      |                    |                  |                  |
| GEN                                      | DESCRIPTIC                                                | ON RELATI  | NG WELL LOCATION TO                   | STREET ADDRESS AN                                            | D COMMON L          | LANDMAR    | RKS – PLS          | S (SECTION,                | TOWNSHJIP, RANGE) WH | IERE AVA           | ILABLE           |                  |
| 1.                                       | West Pearl                                                | Queen      |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          | LICENSE NO                                                |            | NAME OF LICENSED                      | DRILLER                                                      |                     |            |                    |                            | NAME OF WELL DR      | ILLING CO          | OMPANY           |                  |
|                                          | 178                                                       | 39         |                                       | Mark                                                         | Mumby               |            |                    |                            | HRLO                 | Compliand          | ce Solutions     |                  |
|                                          | DRILLING ST                                               | TARTED     | DRILLING ENDED                        | DEPTH OF COMPLET                                             | ED WELL (FT)        | H          | BORE HO            | LE DEPTH (FT               | ) DEPTH WATER FIR    | ST ENCOL           | JNTERED (FT)     |                  |
|                                          | 4/9/2                                                     | 020        | 4/9/2020                              | Not App                                                      | licable             |            |                    | 25                         |                      | 22                 |                  |                  |
|                                          | COMPLETEI                                                 | O WELL IS: | ARTESIAN                              | DRY HOLE                                                     | SHALLOW             | (UNCON     | FINED)             |                            | STATIC WATER LE      | vel in co<br>16.8  | mpleted we<br>5  | LL (FT)          |
| NOI                                      |                                                           |            |                                       |                                                              | ADDITU              |            | EV.                |                            |                      |                    |                  |                  |
| <b>AAT</b>                               | DRILLING FI                                               |            |                                       | HAMMER CABLE TOOL COT                                        |                     |            |                    | D ADEOLEV                  | Uall                 |                    | A 11000          |                  |
| OR                                       | DRILLING M                                                | ETHOD:     |                                       |                                                              |                     |            | J OTHER - SPECIFY: |                            |                      |                    |                  |                  |
| INF                                      | DEPTH (feet bgl)     BORE HOLE       FROM     TO     DIAM |            |                                       | CASING MATERIAL AND/OR<br>GRADE                              |                     |            | CA                 | ASING                      | CASING C             |                    | NG WALL          | SLOT             |
| DNIS                                     | FROM TO                                                   |            | DIAM<br>(inches)                      | (include each casing string, and<br>note sections of screen) |                     |            | CONI               | NECTION<br>TYPE            | INSIDE DIAM.         | (i                 | CKNESS<br>nches) | SIZE<br>(inches) |
| CAS                                      | 0                                                         | 10         | 6.25                                  | note section<br>Blank                                        | s of screen)<br>PVC |            | (add coup<br>Flus  | ling diameter)<br>h Thread | 2.0                  |                    | 0.154            | None             |
| S<br>S                                   | 10                                                        | 20         | 6.25                                  | Factory Slotted PVC                                          |                     |            | Flus               | h Thread                   | 2.0                  | -                  | 0.154            | 0.010            |
| CLIN                                     |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
| DRII                                     |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
| 7                                        |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          |                                                           |            | · · · · · · · · · · · · · · · · · · · |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          |                                                           |            |                                       |                                                              |                     |            |                    |                            |                      |                    |                  |                  |
|                                          |                                                           | (feet hal) |                                       | LIST AN                                                      | NIII AP SEA         | ΔΙ.ΜΔΤ     | FRIAT              |                            |                      |                    | МЕТИО            |                  |
| AL                                       | FROM                                                      | TO         | DIAM. (inches)                        | GRAVEL P                                                     | ACK SIZE-R          | RANGE      | BY INTE            | ERVAL                      | (cubic feet)         |                    | PLACEN           | IENT             |
| ERL                                      | 0                                                         | 2          | 6.25                                  |                                                              | Clean na            | ative fill |                    |                            | 0.2                  |                    | Shov             | el               |
| ИАТ                                      | 2                                                         |            | Bente                                 | onite                                                        |                     |            | 0.6                |                            | Pou                  | r                  |                  |                  |
| AR N                                     | <b>8</b> 20 6.25                                          |            |                                       |                                                              |                     | Silica Sa  | and                |                            | 1.2                  |                    | Pou              | r                |
| 20 25 6.25 Benton                        |                                                           |            |                                       |                                                              |                     | onite      |                    |                            | 1.1                  |                    | Pou              | [                |
| AN A |                                                           |            |                                       |                                                              |                     |            |                    |                            | . –                  |                    |                  |                  |
| з.                                       |                                                           |            |                                       |                                                              |                     |            | <u> </u>           |                            |                      |                    |                  |                  |
|                                          | I                                                         |            |                                       | l                                                            |                     |            |                    |                            |                      | <u>_</u>           |                  |                  |
| FOR                                      | OSE INTER                                                 |            |                                       |                                                              | PODNO               | L          |                    |                            | NNO ( MELL RECORD    | <u>&amp; LOG (</u> | Version 04/3     | (19)             |
| 1                                        |                                                           | - i i C    |                                       |                                                              | 1.00 10.            | 1          |                    |                            |                      | e (* 1. 1.         |                  |                  |

LOCATION 195.355-32

PAGE 1 OF 2

WELL TAG ID NO. NA

DSE DII JUN 16 2020 \*\*9:21

|          | DEPTH (I     | eet bgl)              |                                                                                 | COLOR AN                                      | D TYPE OF MATERIAL E                          | NCOUNTE                | RED -                        | WAT                     | ER                  | ESTIMATED              |
|----------|--------------|-----------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------|------------------------------|-------------------------|---------------------|------------------------|
|          | FROM         | TO                    | THICKNESS<br>(feet)                                                             | INCLUDE WATE                                  | R-BEARING CAVITIES O                          | R FRACTU               | JRE ZONES                    | BEAR                    | ING?                | WATER-                 |
|          | FROM         | 10                    | (leet)                                                                          | (attach sup                                   | plemental sheets to fully de                  | escribe all            | units)                       | (YES /                  | NO)                 | BEARING<br>ZONES (gpm) |
|          | 0            | 13                    | 13                                                                              | Orange/pink/buff-cold                         | ored silty fine sand with min                 | or medium              | sand and gravel              | Y                       | √ N                 |                        |
|          | 13           | 22                    | 9                                                                               | Terra cot                                     | ta orange color well-graded                   | sand with c            | lay                          | ✓ Y                     | N                   |                        |
|          | 22           | 25                    | 3                                                                               | Dark red/deep purple c                        | lay with minor light gray cla                 | y and black            | angular inclusio             | n Y                     | <b>√</b> N          |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| -i       |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| WEI      |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| OF       |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| ő        |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| ICI      |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| 00       |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| EOI      |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| ROG      |              |                       |                                                                                 |                                               |                                               | ,                      |                              | Y                       | N                   |                        |
| <b>Q</b> |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
| 4.1      |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          |              |                       |                                                                                 |                                               |                                               |                        |                              | Y                       | N                   |                        |
|          | METHOD U     | SED TO ES             | TIMATE YIELD                                                                    | OF WATER-BEARING                              | G STRATA:                                     |                        | ТО                           | TAL ESTIN               | IATED               |                        |
|          |              | -> <b>□</b> ▲         |                                                                                 |                                               | HER - SPECIFY Not App                         | licable                | wi                           | ELL YIELD               | (gpm):              | 0.00                   |
|          |              |                       |                                                                                 |                                               |                                               |                        | 1                            |                         |                     |                        |
| N        | WELL TES     | T TEST                | RESULTS - ATT<br>T TIME, END TI                                                 | `ACH A COPY OF DAT<br>ME, AND A TABLE SH      | A COLLECTED DURING                            | WELL TES<br>D DRAWI    | STING, INCLUI<br>DOWN OVER T | DING DISCI<br>HE TESTIN | HARGE N<br>G PERIO  | IETHOD,<br>D.          |
| JISIC    | MISCELLA     |                       | FORMATION                                                                       |                                               | · · · · · · · · · · · · · · · · · · ·         |                        |                              |                         |                     |                        |
| ERV      | MIDCLELI     |                       | T                                                                               | D Core Barrel Drive to<br>D Auger 25 feet bol | o 27 feet bgl                                 |                        |                              |                         |                     |                        |
| SUP      |              |                       |                                                                                 |                                               |                                               |                        |                              |                         |                     |                        |
| RIG      |              |                       |                                                                                 |                                               |                                               |                        |                              |                         |                     |                        |
| ST;      |              |                       |                                                                                 |                                               |                                               |                        |                              |                         |                     |                        |
| 5. TE    | PRINT NAM    | IE(S) OF D            | RILL RIG SUPE                                                                   | RVISOR(S) THAT PRO                            | VIDED ONSITE SUPERVI                          | SION OF V              | VELL CONSTR                  | UCTION O                | THER TH             | AN LICENSEE:           |
|          | Kalvin Padi  | lla                   |                                                                                 |                                               |                                               |                        |                              |                         |                     |                        |
|          | BY SIGNIN    | G BELOW               | , I CERTIFY TH                                                                  | IAT TO THE BEST O                             | F MY KNOWLEDGE ANI                            | D BELIEF,              | , THE FOREGO                 | DING IS A               | TRUE A              | ND CORRECT             |
| URE      | RECORD O     | F THE ABC<br>ORD WILL | VE DESCRIBED<br>ALSO BE FILED                                                   | ) WELL. I ALSO CERT<br>) WITH THE PERMIT H    | IFY THAT THE WELL TA<br>HOLDER WITHIN 30 DAYS | G, IF REQ<br>S AFTER T | UIRED, HAS BI<br>HE COMPLETI | EEN INSTA<br>ON OF WEI  | LLED AN<br>LL DRILL | ID THAT THIS           |
| IATI     | null-        | 1                     | Digitally signed by Mark Mumby                                                  | v                                             |                                               |                        |                              |                         |                     |                        |
| SIG      | ////s/ 2. /i | Hunt > No             | DN: cn=Mark Mumby, o=HRL C<br>pu=Security Division,<br>mäil=mmumby@hrlcomp.com, | c=US                                          | Aark Mumby                                    |                        |                              | 6/9/                    | 2020                |                        |
| و.       |              | SIGNAT                | Une: 2020.06.09 09:45:13 -06'00                                                 | ER / PRINT SIGNEF                             | NAME                                          | _                      |                              |                         | DATE                |                        |
|          |              | <i></i>               |                                                                                 |                                               |                                               |                        |                              |                         |                     |                        |
| FOI      | R OSE INTER  | NAL USE               | ,                                                                               |                                               |                                               | V                      | WR-20 WELL R                 | ECORD &                 | LOG (Ver            | sion 04/30/2019)       |
| FIL      | ENO. L-      | 487                   | $\varphi$                                                                       |                                               | POD NO. 4                                     | r                      | TRN NO. 6                    | <u>' )()    </u>        | <u>' )</u>          |                        |
| LO       | CATION       | <u>2.12</u>           | 195-3                                                                           | 55E-32                                        |                                               | WELL TA                | AG ID NO.                    | NA                      |                     | PAGE 2 OF 2            |

**Released to Imaging: 10/29/2024 7:37:14 AM** 





#### WELL RECORD & LOG **OFFICE OF THE STATE ENGINEER**

OSE DII JUN 16 2020 MS:21

www.ose.state.nm.us

| NO        | OSE POD NO<br>POD5                                                                                                       | ). (WELL N         | 0.)                                   |                                                                                    | WELL TAG ID NO.<br>SB-5           |                                 |                | OSE FILE NO(<br>L 14876  | S).                                   |                   |                        |            |
|-----------|--------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|----------------|--------------------------|---------------------------------------|-------------------|------------------------|------------|
| OCATI     | WELL OWN                                                                                                                 | ER NAME(<br>Energy | S)                                    |                                                                                    | L                                 |                                 |                | PHONE (OPTI              | ONAL)                                 |                   |                        |            |
| MELL L    | WELL OWN<br>P.O. Box 1                                                                                                   | er mailin<br>973   | IG ADDRESS                            |                                                                                    |                                   |                                 |                | city<br>Roswell          |                                       | state<br>NM       | 88202                  | ZIP        |
| AL AND    | WELL<br>LOCATIO                                                                                                          | N L                | D                                     | EGREES<br>32                                                                       | MINUTES<br>37                     | SECO1<br>23.1                   | NDS<br>996 N   | * ACCURACY               | REQUIRED: ONE TEN                     | TH OF A S         | ECOND                  |            |
| NER       | (FROM GP                                                                                                                 | 'S) L              | ONGITUDE                              | 103                                                                                | 28                                | 33.3                            | 876 W          | * DATUM REG              | QUIRED: WGS 84                        |                   |                        |            |
| 1. GE     | DESCRIPTIO<br>West Pearl                                                                                                 | ON RELAT<br>Queen  | ING WELL LOCATION TO                  | O STREET ADDI                                                                      | RESS AND COMMON                   | I LANDM                         | ARKS – PLS     | S (SECTION, TO           | WNSHJIP, RANGE) WH                    | ERE AVA           | ILABLE                 |            |
|           | LICENSE NO<br>178                                                                                                        | ).<br>39           | NAME OF LICENSED                      | DRILLER                                                                            | Mark Mumby                        |                                 |                |                          | NAME OF WELL DR<br>HRL C              | ILLING CO         | OMPANY<br>ce Solutions |            |
|           | DRILLING S<br>4/9/2                                                                                                      | tarted<br>020      | DRILLING ENDED<br>4/9/2020            | DEPTH OF CON                                                                       | OMPLETED WELL (F<br>ot Applicable | Г)                              | BORE HO        | LE DEPTH (FT)<br>55      | DEPTH WATER FIR                       | ST ENCOU          | NTERED (FT)            | )          |
| Z         | COMPLETEI                                                                                                                | O WELL IS          | ARTESIAN                              | DRY HOI                                                                            | LE 🗹 SHALLO                       | W (UNCC                         | ONFINED)       |                          | STATIC WATER LEV                      | /EL IN CO<br>15.3 | MPLETED WE             | ELL (FT)   |
| OIT       | DRILLING F                                                                                                               | LUID:              | 🖌 AIR                                 | MUD                                                                                | ADDITIV                           | ES – SPE                        | CIFY:          |                          | 1                                     |                   |                        |            |
| RMA       | DRILLING M                                                                                                               | IETHOD:            | <b>ROTARY</b>                         |                                                                                    | R 🗌 CABLE T                       | OOL                             | ОТНЕ           | R - SPECIFY:             | Hollo                                 | w Stem            | Auger                  |            |
| NFO       | DEPTH (feet bgl)<br>DEPTH (feet bgl)<br>BORE HOL                                                                         |                    |                                       | CASING MATERIAL AND/OR CA                                                          |                                   |                                 | - CP1C         | CASING                   | CAST                                  |                   |                        |            |
| ASING I   | DEPTH (feet bgl)         BORE HOLE           FROM         TO         DIAM<br>(inches)           0         15         625 |                    |                                       | GRADE<br>(include each casing string, and<br>note sections of screen)<br>(add coup |                                   |                                 | VECTION<br>YPE | INSIDE DIAM.<br>(inches) | THI<br>(i                             | CKNESS<br>nches)  | SIZE<br>(inches)       |            |
| ¢ C'      | 0                                                                                                                        | 15                 | 6.25                                  | Blank PVC                                                                          |                                   |                                 | Flus           | h Thread                 | 2.0                                   |                   | 0.154                  | None       |
| Ŋ         | 15                                                                                                                       | 25                 | 6.25                                  | Factory Slotted PVC Flush                                                          |                                   |                                 | h Thread       | 2.0                      |                                       | 0.154             | 0.010                  |            |
| ILLL      |                                                                                                                          |                    |                                       | ļ                                                                                  |                                   |                                 |                |                          |                                       |                   |                        |            |
| DR        |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        |            |
| 6         |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        | -          |
|           |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        | 1          |
|           |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        | <u> </u>   |
|           |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        |            |
|           |                                                                                                                          |                    |                                       |                                                                                    | · ··· •·                          |                                 |                |                          |                                       |                   |                        |            |
|           | DEPTH                                                                                                                    | (feet bgl)         | BORE HOLE                             | LI                                                                                 | ST ANNULAR SE                     | EAL MA                          | TERIAL A       |                          | AMOUNT                                |                   | METHO                  | D OF       |
| RIA       | FROM                                                                                                                     | TO                 | DIAM. (Inches)                        | GRA                                                                                | VEL PACK SIZE-                    | -KANGE                          |                | RVAL                     | (cubic feet)                          |                   |                        |            |
| <b>TE</b> | 0                                                                                                                        | 12                 | 6.25                                  |                                                                                    | Clean                             | native fil                      | 11             |                          | 0.2                                   |                   | Show                   | -          |
| ¥ M/      |                                                                                                                          | 25                 | 6.25                                  |                                                                                    | Clean 10/2                        | 0 Silica                        | Sand           |                          | 1.1                                   |                   | Pou                    | 1<br><br>r |
| LAF       | 25                                                                                                                       | 55                 | 6.25                                  |                                                                                    | Ber                               | tonite                          | Sand           |                          | 6.4                                   |                   | Pou                    | г          |
| NN        |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       | · -   ·           |                        | •          |
| 3. A      |                                                                                                                          |                    | · · · · · · · · · · · · · · · · · · · | 1                                                                                  |                                   |                                 |                |                          | · · · · · · · · · · · · · · · · · · · |                   |                        |            |
|           |                                                                                                                          |                    |                                       |                                                                                    |                                   |                                 |                |                          |                                       |                   |                        |            |
| FOR       | OSE INTER                                                                                                                | NAL US             | E                                     |                                                                                    |                                   |                                 |                | WR-2                     | 0 WELL RECORD                         | & LOG (           | Version 04/3           | 0/19)      |
| FILE      | ENO.                                                                                                                     | -10                | ING.                                  |                                                                                    | POD NO                            | 5                               |                | TRN 1                    | VO. 670                               | ۲ <u>)</u>        |                        |            |
| LOC       | ATION 2                                                                                                                  | 2-1.               | 2 10                                  | 15-39                                                                              | SE-3-                             | $\overline{\boldsymbol{\zeta}}$ |                | WELL TAG II              | DNO. NA                               | 5                 | PAGE                   | 1 OF 2     |

Released to Imaging: 10/29/2024 7:37:14 AM

.

JSE UII JUN 16 2020 M3:21

|                |             | - 1         |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
|----------------|-------------|-------------|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------------------|--------------------|-------------|---------------------|-------------------|
|                | DEPTH (f    | eet bgl)    |                                                                                  |                                            |                                       |                                        |                    |             |                     | ESTIMATED         |
|                |             |             | THICKNESS                                                                        | COLOR AN                                   | D TYPE OF MATERIAL E                  | NCOUNTERED -                           | 70                 | WA'<br>BEAR | TER<br>ING2         | YIELD FOR         |
|                | FROM        | то          | (feet)                                                                           | INCLUDE WATE                               | R-BEAKING CAVITIES U                  | K FRACIURE ZONI                        | 25                 | (YES        | / NO)               | WATER-<br>BEARING |
|                |             |             |                                                                                  | (attach sug                                | optemental sneets to fully de         | escribe an units)                      |                    | (120        | , 1(0)              | ZONES (gpm)       |
|                | 0           | 3           | 3                                                                                | Well                                       | -graded sand with gravel and          | minor silt                             |                    | Y           | √ N                 |                   |
| ÷ .            | 3           | 23          | 20                                                                               | Buff to orange                             | color silty fine sand with mee        | lium and coarse sand                   |                    | <b>√</b> Y  | N                   | ]                 |
|                | 23          | 55          | 32                                                                               | Purple hard cla                            | y with light gray clay and bla        | ck angular inclusions                  |                    | Y           | √ N                 |                   |
|                |             |             |                                                                                  | · · · · · ·                                | · · · · · · · · · · · · · · · · · · · |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            | · · · · · · · · · · · · · · · · · · · |                                        |                    | Y           | N                   |                   |
| . 1            |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
| TEL I          |             |             |                                                                                  |                                            |                                       |                                        |                    | v           | N                   |                   |
| F W            |             |             |                                                                                  |                                            |                                       |                                        |                    | v           | N                   |                   |
| 0 0            |             |             |                                                                                  |                                            |                                       |                                        |                    | v           | N                   |                   |
| Ċ LO           |             |             |                                                                                  |                                            |                                       |                                        |                    | 1<br>       |                     |                   |
| OGIC           |             |             |                                                                                  |                                            |                                       |                                        |                    | r<br>       | N                   |                   |
| OLO            |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
| OGE            |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
| DRO            |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
| ΥH             |             |             |                                                                                  |                                            | -                                     |                                        |                    | Y           | N                   |                   |
| 4              |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    | Y           | N                   |                   |
|                | METHOD U    | SED TO ES   | STIMATE YIELD                                                                    | OF WATER-BEARIN                            | G STRATA:                             |                                        | ΤΟΤΑ               | L ESTIN     | /ATED               |                   |
|                |             |             |                                                                                  |                                            | THER _ SPECIEV NOT ADD                | licable                                | WEL                | L YIELE     | ) (gpm):            | 0.00              |
|                |             |             |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
|                | WELL TES    | T TEST      | RESULTS - ATT                                                                    | ACH A COPY OF DA                           | A COLLECTED DURING                    | WELL TESTING, IN                       | CLUDIN             | G DISC      | HARGE               | AETHOD,           |
| NOI            |             | STAR        | T TIME, END TI                                                                   | ME, AND A TABLE S                          | HOWING DISCHARGE AN                   | D DRAWDOWN OV                          |                    |             |                     | שי.               |
| SUIS           | MISCELLA    | NEOUS INI   | FORMATION: A                                                                     | uger to 55 feet bgl, pl                    | ug back to 25 feet bgl wit            | h bentonite then set                   | well, T            | D well 2    | 25 feet by          | <u>r</u> l        |
| IPEI           |             |             |                                                                                  | 0 0,1                                      | 0 0                                   |                                        | -                  |             |                     |                   |
| C SI           |             |             |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
| ; RI           |             |             |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
| EST            | PRINT NAN   | (E(S) OF D  | RILL RIG SUPE                                                                    | RVISOR(S) THAT PRO                         | VIDED ONSITE SUPERVI                  | SION OF WELL CO                        | NSTRUC             | TION O      | THER TH             | AN LICENSEE:      |
| 5. T           | Kalvin Padi | (- <i>)</i> |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
| •              | Karvin I au |             |                                                                                  |                                            |                                       |                                        |                    |             |                     |                   |
|                | BY SIGNIN   | G BELOW     | , I CERTIFY TH                                                                   | IAT TO THE BEST C                          | F MY KNOWLEDGE ANI                    | D BELIEF, THE FO                       | REGOIN             | IG IS A     | TRUE A              | ND CORRECT        |
| URE            | WELL REC    | F THE ABC   | ALSO BE FILED                                                                    | ) WELL. I ALSO CERT<br>) WITH THE PERMIT I | HOLDER WITHIN 30 DAYS                 | G, IF REQUIRED, H.<br>S AFTER THE COMP | AS BEEI<br>PLETION | N INSTA     | LLED AN<br>LL DRILI | JING.             |
| IAT            | nv11-       |             | Digitally signed by Mark Mumby                                                   | ,                                          |                                       |                                        |                    |             |                     |                   |
| SIG            | 11/18 2. 1  | Hurt > N    | DN: cn=Mark Mumby, o=HRL C<br>ou=Security Division,<br>emäil=mmumby@hrlcomp.com, | c=US                                       | Mark Mumby                            |                                        |                    | 6/9/        | 2020                |                   |
| <del>و</del> ، |             | SICNAT      | Date: 2020.06.09 09:46:01 -06'00                                                 |                                            |                                       |                                        |                    |             | DATE                |                   |
|                |             | SIGNAI      |                                                                                  | SK / FRINT SIONEE                          |                                       |                                        |                    |             | DATE                |                   |
| _FOI           | R OSE INTER | NAL USE     |                                                                                  |                                            |                                       | <u>WR-20</u> WI                        | ELL REC            | CORD &      | LOG (Ve             | rsion 04/30/2019) |
| FIL            | e no.       | -148        | <u>ረነኪ –</u>                                                                     |                                            | POD NO. 5                             | TRN NO.                                | 61                 | )07         | 07                  |                   |
| LO             | CATION      | 2.1.2       | 2                                                                                | 195-35F-                                   | 32                                    | WELL TAG ID NO                         | N                  | A           | . •                 | PAGE 2 OF 2       |



OFFICE OF THE STATE ENGINEER

DSE DII JUN 16 2020 ++3:21

www.ose.state.nm.us

|             | OSE POD NO                                                                                                  | WELL N             | 0.)                     |                        | WELL TAG ID NO.                   |            |                 | OSE FILE NO(          | 5).                |                          | С                  |          |
|-------------|-------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|------------------------|-----------------------------------|------------|-----------------|-----------------------|--------------------|--------------------------|--------------------|----------|
| LION        |                                                                                                             |                    |                         |                        | י-םכ                              |            |                 | L 140/0               | 22147.)            |                          |                    |          |
| OCA1        | Armstrong                                                                                                   | ER NAME(<br>Energy | S)                      |                        |                                   |            |                 | PHONE (OPTIC          | ONAL)              |                          | <i>I</i>           |          |
| TTT         | WELL OWNE                                                                                                   | ER MAILIN          | NG ADDRESS              |                        |                                   |            |                 | CITY                  |                    | STATE                    | 00202              | ZIP      |
| WE          | <b>F.O. BOX</b> 1                                                                                           | <u> </u>           |                         |                        |                                   |            |                 | Koswell               |                    |                          |                    |          |
| AND         | WELL                                                                                                        |                    | DI                      | EGREES<br>32           | MINUTES<br>37                     | SECON      | DS<br>77        | * ACCURACY            | PEOLIPED ONE TENT  |                          | SECOND             |          |
| RAL         | LOCATIO<br>(FROM GP                                                                                         | N L                | ATITUDE                 | 102                    |                                   | 22.0       | N N             | * DATUM REG           | UIRED: WGS 84      | n or A                   | SECOND             |          |
| ENE         | DECONTRACT                                                                                                  |                    |                         | 105                    |                                   | 52.0.      |                 |                       |                    |                          |                    |          |
| <b>1.</b> G | West Pearl                                                                                                  | Queen              | ING WELL LOCATION TO    | SIREEI ADDR            | LESS AND COMMON                   | LANDMA     | 4KK5 – PL5      | S (SECTION, TO        | WNSHJIP, KANGE) WH | EKE AV                   | ALABLE             |          |
|             | LICENSE NO                                                                                                  | ).                 | NAME OF LICENSED        | DRILLER                |                                   |            |                 |                       | NAME OF WELL DRI   | LLING C                  | COMPANY            |          |
|             | 178                                                                                                         | 39                 |                         |                        | Mark Mumby                        |            |                 |                       | HRL C              | ompliar                  | ice Solutions      |          |
|             | DRILLING S'<br>4/9/2                                                                                        | tarted<br>020      | DRILLING ENDED 4/9/2020 | depth of co<br>No      | MPLETED WELL (FT<br>ot Applicable | Γ)         | BORE HOI        | LE DEPTH (FT)<br>30   | DEPTH WATER FIRS   | 5T ENCO<br>18.7          | UNTERED (FT)<br>75 |          |
| 7           | COMPLETEI                                                                                                   | O WELL IS          |                         | DRY HOL                | E 🗹 SHALLO                        | W (UNCO    | NFINED)         |                       | STATIC WATER LEV   | EL IN CO<br>9.6          | OMPLETED WE        | LL (FT)  |
| TIO         | DRILLING F                                                                                                  | LUID:              | ✓ AIR                   | MUD                    | ADDITIV                           | ES – SPEC  | IFY:            | <u> </u>              |                    |                          |                    |          |
| RMA         | DRILLING M                                                                                                  | ETHOD:             | ROTARY                  |                        | R CABLE TO                        | OOL        | • ОТНЕ          | R – SPECIFY:          | Hollo              | w Sten                   | n Auger            |          |
| NFO         | DEPTH                                                                                                       | (feet bgl)         | POPE HOLE               | CASING MATERIAL AND/OR |                                   |            |                 |                       | CASDIC WA          |                          |                    |          |
| U Dy        | DEPTH (feet bgl)         BORE HO           FROM         TO         DIAM           (inches)         (inches) |                    |                         | GRADE CO               |                                   |            |                 | ASING<br>VECTION      | INSIDE DIAM.       | CASING WALL<br>THICKNESS |                    | SLOT     |
| ASI         |                                                                                                             |                    | (inches)                | note                   | sections of screen)               | allu       | T<br>(add coup) | YPE<br>ling diameter) | (inches)           | (                        | (inches)           | (inches) |
| S C         | 0                                                                                                           | 5                  | 6.25                    | Blank PVC Flush Thre   |                                   |            | h Thread        | 2.0                   |                    | 0.154                    | None               |          |
| - Su        | 5                                                                                                           | 20                 | 6.25                    | Fac                    | tory Slotted PVC                  |            | Flus            | h Thread              | 2.0                |                          | 0.154              | 0.010    |
| RLL         |                                                                                                             |                    |                         | +                      |                                   |            |                 |                       |                    |                          |                    |          |
| DI DI       |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
|             |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
|             |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    | :        |
|             |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
|             |                                                                                                             |                    |                         |                        |                                   | İ          |                 |                       |                    |                          |                    |          |
|             |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
|             | DEPTH                                                                                                       | (feet bgl)         | BORE HOLE               | LI                     | ST ANNULAR SE                     | EAL MA     | TERIAL A        | AND                   | AMOUNT             |                          | METHO              | D OF     |
| IAL         | FROM                                                                                                        | то                 | DIAM. (inches)          | GRA                    | VEL PACK SIZE-                    | -RANGE     | BY INTE         | ERVAL                 | (cubic feet)       |                          | PLACEN             | 1ENT     |
| TER         | 0                                                                                                           | 2                  | 6.25                    |                        | Clean 1                           | native fil | 1               |                       | 0.2                |                          | Shov               | el       |
| MA          | 2                                                                                                           | 3                  | 6.25                    |                        | Ber                               | ntonite    |                 |                       | 0.1                |                          | Pou                | r        |
| AR 1        | 3                                                                                                           | 20                 | 6.25                    |                        | Clean 10/2                        | 0 Silica   | Sand            |                       | 1.7                |                          | Pou                | r        |
| IUL         | 20                                                                                                          | 30                 | 6.25                    |                        | Ben                               | ntonite    |                 |                       | 0.99               |                          | Pou                | r        |
| ANN         |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
| 3.7         |                                                                                                             |                    |                         |                        | <u>.</u>                          |            |                 |                       |                    |                          |                    |          |
|             |                                                                                                             |                    |                         |                        |                                   |            |                 |                       |                    |                          |                    |          |
| FOR         | <u>OSE INTER</u>                                                                                            | NAL US             | E                       |                        |                                   | البرزين    |                 | WR-2                  | 0 WELL RECORD      | & LOG                    | (Version 04/3      | 0/19)    |
| FILI        | e no. L-                                                                                                    | 148                | 16                      |                        | POD NO                            | ).         | ₽               | TRN                   | NO. 610            | $\frac{1}{1}$            | )                  |          |
| LOC         | CATION 🗲                                                                                                    | 1.1.               | <u>み</u> し              | 453                    | 5E-32                             | -          |                 | WELL TAG I            | DNO. NA            |                          | PAGE               | 1 OF 2   |

**Released to Imaging: 10/29/2024 7:37:14 AM** 

05E DII JUN 16 2020 m9:21

|        | DEPTH (f    | eet bgl)      |                                                                                     | COLOR AN               | D TYPE OF MATER         | RIAL EN     | COÚNT      | ERED -         |                | W۵                  | LEB      | ESTIMATED                              |
|--------|-------------|---------------|-------------------------------------------------------------------------------------|------------------------|-------------------------|-------------|------------|----------------|----------------|---------------------|----------|----------------------------------------|
|        |             |               | THICKNESS                                                                           | INCLUDE WATE           | R-BEARING CAVI          | TIES OR     | FRACT      | URE ZONE       | s              | BEAR                | ING?     | WATER-                                 |
|        | FROM        | то            | (feet)                                                                              | (attach sup            | plemental sheets to     | fully des   | cribe al   | l units)       |                | (YES                | / NO)    | BEARING                                |
|        |             | 6             | <u> </u>                                                                            | <b>C</b> :1            | ter fine cond with min  | or modin    | m cand     |                |                | v                   |          | ZONES (gpill)                          |
|        |             | 14            | 0                                                                                   | 311                    |                         |             |            |                |                |                     | V N<br>N |                                        |
|        |             | 14            | 0                                                                                   | T inhe he              | en-gradeu sanu with s   | adad aa     |            |                |                | v                   |          |                                        |
|        | 14          | 15            | 1                                                                                   |                        | with clay with well-gr  | aded sar    |            |                |                | I<br>V              |          |                                        |
|        | 15          | 10            | 1                                                                                   | Orange                 | brown well-graded sa    |             | siit, nard |                |                | I<br>V              |          |                                        |
|        | 16          | 18            | 2                                                                                   | Pink-orange            | well-graded sand wil    | th calcite  | chunks     | > 1 inch       |                | Y                   | ✓ N      |                                        |
| ILL    | 18          | 20            | 2                                                                                   | Dark                   | red-orange well-grad    | led sand    | with cla   | y              |                | Y                   | ✓ N      |                                        |
| W      | 20          | 25            | 5                                                                                   | Orange and buff-colore | ed well-graded sand w   | vith grav   | el and ar  | ngular calcite | cobble         | Y                   | ✓ N      |                                        |
| 0.0    | 25          | 32            | 7                                                                                   | Dry purple clay with m | ninor light gray to whi | ite clay in | nclusion   | s and black g  | ravel it       | Y                   | ✓ N      |                                        |
| ΓO     |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| GIC    |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| OLO    |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| GEC    |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| DRO    |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| НУІ    |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
| 4.     |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                | Y                   | N        |                                        |
|        | METHOD U    | ISED TO ES    | TIMATE YIELD                                                                        | OF WATER-BEARIN        | G STRATA:               |             |            |                | тот            | AL ESTIN            | IATED    |                                        |
|        | Прим        |               |                                                                                     |                        | THER - SPECIEV N        | ot Appl     | icable     |                | WEI            | LL YIELI            | ) (gpm): | 0.00                                   |
|        |             |               |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
| 7      | WELL TES    | T TEST        | RESULTS - ATT                                                                       | ACH A COPY OF DAT      | A COLLECTED DU          | JRING V     | VELL T     | ESTING, IN     | CLUDI          | NG DISC             | HARGE M  | IETHOD,                                |
| SIO    |             |               |                                                                                     |                        | HOWING DISCHAR          |             | DIA        |                |                |                     |          |                                        |
| RVI    | MISCELLA    | NEOUS INF     | FORMATION: D                                                                        | rive to 32 feet; Auger | to 30 feet; plug bo     | ring bac    | k to 20    | feet then so   | et well        |                     |          |                                        |
| UPE    |             |               |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
| CSI    |             |               |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
| C; R   |             |               |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
| LES    | PRINT NAM   | AE(S) OF D    | RILL RIG SUPE                                                                       | RVISOR(S) THAT PRO     | VIDED ONSITE SU         | PERVIS      | ION OF     | WELL CON       | ISTRU          | CTION O             | THER TH  | AN LICENSEE:                           |
| 5.1    | Kalvin Padi | lla           |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
|        |             |               |                                                                                     |                        |                         |             |            |                |                |                     |          |                                        |
| . B    | BY SIGNIN   | IG BELOW      | , I CERTIFY TH                                                                      | AT TO THE BEST O       | F MY KNOWLEDO           | GE AND      |            | F, THE FOI     | REGOI          | NG IS A<br>EN INSTA | TRUE A   | ND CORRECT                             |
| RI I   | WELL REC    | ORD WILL      | ALSO BE FILED                                                                       | WITH THE PERMIT H      | HOLDER WITHIN 30        | DAYS        | AFTER      | THE COMP       | LETIO          | N OF WE             | LL DRILL | ING.                                   |
| LAN    | m15         | man           | Digitally signed by Mark Mumby                                                      | y<br>Comp.             |                         |             |            |                |                |                     |          |                                        |
| SIG    | 1000 7      |               | pu=Security Division,<br>mail=mmumby@hrlcomp.com,<br>Date: 2020.06.09.09.47:0106:00 | e-US                   | Mark Mumby              |             |            |                |                | 6/9/                | 2020     |                                        |
| •<br>• |             | SIGNAT        | URE OF DRILLI                                                                       | ER / PRINT SIGNEE      | NAME                    |             | -          |                |                |                     | DATE     |                                        |
|        | L           |               |                                                                                     |                        |                         |             |            |                |                |                     |          | ······································ |
| FO     | R OSE INTER | NAL USE       |                                                                                     |                        |                         |             |            | WR-20 WE       |                | CORD &              | LOG (Ver | sion 04/30/2019)                       |
| FIL    |             | $\frac{1}{2}$ |                                                                                     | $s = 2c\tau$           |                         |             |            | IKN NO.        | <del>~</del> , |                     | .1       | BACE 1 OF 1                            |
|        | LATION      | $\sim 1 - i$  | <u> </u>                                                                            | Nº JJE                 | <u>)d</u>               |             | WELL       | TAG ID NO.     | 1              | くて                  |          | FAGE 2 OF 2                            |



## WELL RECORD & LOG

OSE DII JUN 16 2020 PM9:21

### **OFFICE OF THE STATE ENGINEER**

www.ose.state.nm.us

|             | OSE POD NO. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WELL NO             | .)                          |                                 | WELL TAG ID NO.                           |              |                         | OSE FILE NO(                    | S).                       |                        | · · · · · · · · · · · · · · · · · · · |                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|---------------------------------|-------------------------------------------|--------------|-------------------------|---------------------------------|---------------------------|------------------------|---------------------------------------|------------------|
| NOI.        | POD8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                             |                                 | SB-8                                      |              |                         | L 14876                         |                           |                        |                                       |                  |
| OCAT        | WELL OWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R NAME(S)<br>Energy |                             |                                 |                                           |              |                         | PHONE (OPTI                     | ONAL)                     |                        |                                       |                  |
| WELL I      | WELL OWNER<br>P.O. Box 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r mailing<br>73     | ADDRESS                     |                                 |                                           |              | ·                       | city<br>Roswell                 |                           | state<br>NM            | 88202                                 | ZIP              |
| L AND       | WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TAT                 | DE                          | GREES<br>32                     | minutes<br>37                             | SECO<br>22.4 | NDS<br>826 N            | * ACCURACY                      | REQUIRED: ONE TEN'        | TH OF A SE             | COND                                  |                  |
| NERA        | (FROM GPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | IGITUDE                     | 103                             | 28                                        | 32.4         | 469 W                   | * DATUM REC                     | QUIRED: WGS 84            |                        |                                       |                  |
| 1. GE       | DESCRIPTION<br>West Pearl (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N RELATIN<br>Queen  | IG WELL LOCATION TO         | STREET ADDR                     | ESS AND COMMON                            | LANDM        | ARKS – PLS              | S (SECTION, TO                  | WNSHJIP, RANGE) WH        | ERE AVAII              | ABLE                                  |                  |
|             | LICENSE NO.<br>1789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                   | NAME OF LICENSED            | DRILLER                         | Mark Mumby                                |              |                         |                                 | NAME OF WELL DRI<br>HRL C | LLING COL<br>ompliance | MPANY<br>Solutions                    |                  |
|             | DRILLING STA<br>4/10/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arted<br>)20        | DRILLING ENDED<br>4/10/2020 | DEPTH OF CO                     | MPLETED WELL (FT)                         | )            | BORE HOI                | LE DEPTH (FT)<br>25             | DEPTH WATER FIRS<br>No    | ST ENCOUN              | NTERED (FT)                           |                  |
| z           | COMPLETED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WELL IS:            | ARTESIAN                    | DRY HOL                         | E 🗌 SHALLOV                               | V (UNCO      | )NFINED)                |                                 | STATIC WATER LEV<br>No    | EL IN COM              | IPLETED WE                            | LL (FT)          |
| <b>VTIO</b> | DRILLING FLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JID:                | ✓ AIR                       | MUD                             | ADDITIVE                                  | S – SPE      | CIFY:                   |                                 |                           |                        |                                       |                  |
| DRM         | DRILLING ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THOD:               | <b>ROTARY</b>               | HAMMER CABLE TOOL 70            |                                           |              | OTHE                    | ER – SPECIFY: Hollow Stem Auge  |                           |                        | Auger                                 |                  |
| INFO        | DEPTH (feet bgl) BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | BORE HOLE                   | CASING MATERIAL AND/OR<br>GRADE |                                           | CA           | SING                    | CASING C                        |                           | G WALL                 | SLOT                                  |                  |
| CASING I    | FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                  | DIAM<br>(inches)            | (include e<br>note s            | each casing string, a sections of screen) | and          | CONN<br>T<br>(add coupl | VECTION<br>YPE<br>ing diameter) | INSIDE DIAM.<br>(inches)  | (in                    | KNESS<br>ches)                        | SIZE<br>(inches) |
| G&C         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             | 1                               | None Installed                            |              |                         |                                 |                           |                        |                                       |                  |
| ILLIN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| 2. DRI      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| •••         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             | · · ·                           |                                           |              |                         |                                 |                           |                        |                                       |                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| Ц           | DEPTH (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet bgl)           | BORE HOLE                   |                                 | ST ANNULAR SE.                            | AL MA        | TERIAL A                |                                 | AMOUNT                    |                        | METHO<br>PLACEM                       | D OF<br>IENT     |
| ERIA        | FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | то                  |                             |                                 | None I                                    | nstalled     |                         |                                 |                           |                        |                                       |                  |
| MAT         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · ·               |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| JLAR        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| ANNI        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| З.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                             |                                 |                                           |              |                         |                                 |                           |                        |                                       |                  |
| FOR         | OSE INTERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AL USE              |                             | I                               |                                           |              |                         | WR-2                            | 0 WELL RECORD &           | & LOG (V               | ersion 04/3                           | 0/19)            |
| FILI        | E NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | با س                | -13.16                      | 20                              | POD NO.                                   | X            | r                       | TRN                             | $\frac{10}{10}$           | N                      | <u>'  </u>                            |                  |
|             | $\alpha$ in the second seco | 11.                 | d r                         | $\overline{\mathcal{O}}$        | E JA                                      |              |                         | WELL TAG II                     | d NO. NA                  |                        | PAGE                                  | 1 OF 2           |

### DSE DII JUN 16 2020 PM9:21

|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                       |                                  |
|-------|-------------|----------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|       | DEPTH (1    | feet bgl)      | THICKNERG                                                                                | COLOR AND TYPE OF MATERIAL ENCOUNTERED -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER                                                                                                                                   | ESTIMATED<br>YIELD FOR           |
|       | FROM        | то             | (feet)                                                                                   | INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES<br>(attach supplemental sheets to fully describe all units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BEARING?<br>(YES / NO)                                                                                                                  | WATER-<br>BEARING<br>ZONES (gpm) |
|       | 0           | 8              | 8                                                                                        | Red orange and light gray silt with fine sand and some coarse angular san                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd Y 🖌 N                                                                                                                                |                                  |
|       | 8           | 18             | 10                                                                                       | Pale orange to terra-cotta color orange fine sand with silt and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y 🖌 N                                                                                                                                   |                                  |
|       | 18          | 23             | 5                                                                                        | Dark orange and white sand with large calcite gravel pieces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓Y N                                                                                                                                    |                                  |
|       | 23          | 27             | 4                                                                                        | Dark purple clay and fine sand with white and light gray clay inclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s Y √N                                                                                                                                  |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| ΓΓ    |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| WEI   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| ; OF  |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| TOG   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| CIC   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| OLO   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| GEC   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| DRO   |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| ΗΛ    |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| 4     |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
| 1     |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y N                                                                                                                                     |                                  |
|       |             |                |                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y N                                                                                                                                     |                                  |
|       | METHOD U    | ISED TO ES     | STIMATE YIELD                                                                            | OF WATER-BEARING STRATA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL ESTIMATED                                                                                                                         |                                  |
|       | PUMI        | P 🔲 A          | IR LIFT                                                                                  | BAILER OTHER – SPECIFY: Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WELL YIELD (gpm):                                                                                                                       | 0.00                             |
| NO    | WELL TES    | T TEST<br>STAR | RESULTS - ATT<br>T TIME, END TI                                                          | ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL<br>ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LUDING DISCHARGE I<br>R THE TESTING PERIC                                                                                               | METHOD,<br>DD.                   |
| ISIV  | MISCELLA    | NEOUS INF      | ORMATION:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                  |
| IPER  |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                  |
| C SL  |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                  |
| l; RI |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                  |
| TES   | PRINT NAM   | AE(S) OF DI    | RILL RIG SUPEF                                                                           | VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRUCTION OTHER TH                                                                                                                       | IAN LICENSEE:                    |
|       | Kalvin Padi | lla            |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                  |
| 63    | BY SIGNIN   | G BELOW        | , I CERTIFY TH                                                                           | AT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FORI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EGOING IS A TRUE A                                                                                                                      | ND CORRECT                       |
| TUR   | WELL REC    | ORD WILL       | ALSO BE FILED                                                                            | WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ETION OF WELL DRILL                                                                                                                     | LING.                            |
| LAN:  | mis         | March -> 1     | Digitally signed by Mark Mumby<br>DN: cn=Mark Mumby, o=HRL C                             | ump,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                  |
| SIG   |             |                | nu-Security Division,<br>mäil=mmumby@hrlcomp.com, o<br>Date: 2020.06.09 10:05:00 -06'00' | Jus Mark Mumby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/9/2020                                                                                                                                |                                  |
| •     |             | SIGNAT         | URE OF DRILLE                                                                            | R / PRINT SIGNEE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE                                                                                                                                    |                                  |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         | nian 04/20/2010                  |
| FU    | E NO.       | -1             | 18710                                                                                    | $\begin{array}{c c} & & & & \\ \hline \\ \hline$ | $\gamma \gamma $ | rsion 04/30/2019)                |
| LO    | CATION      |                | $\frac{1}{1}$                                                                            | : 195-35E-32 WELL TAGID NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA /                                                                                                                                    | PAGE 2 OF 2                      |
|       |             |                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -+ <b>\</b> /^:-\                                                                                                                       | L                                |

Released to Imaging: 10/29/2024 7:37:14 AM



05E DII JUN 16 2020 M9:22

#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          | · · · ·                |                   |                         |          |
|----------|---------------------------|--------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------|-----------------|--------------------------|------------------------|-------------------|-------------------------|----------|
| NO       | OSE POD NO.<br>POD9       | (WELL N            | 0.)                                                                 |                                 | WELL TAG ID NO.<br>SB-9          |                     |                 | OSE FILE NO(3<br>L 14876 | S).                    |                   |                         |          |
| OCATI    | WELL OWNER<br>Armstrong   | r name(:<br>Energy | 3)                                                                  |                                 |                                  |                     |                 | PHONE (OPTIC             | ONAL)                  |                   |                         |          |
| WELL L   | WELL OWNER<br>P.O. Box 19 | r mailin<br>973    | G ADDRESS                                                           |                                 |                                  |                     |                 | CITY<br>Roswell          |                        | state<br>NM       | 88202                   | ZIP      |
| Q        | WELL                      |                    | D                                                                   | EGREES                          | MINUTES                          | SECON               | DS              |                          |                        |                   | i                       | <u> </u> |
| ΥŢ       | LOCATION                  |                    | TITUDE                                                              | 32                              | 37                               | 22.24               | 92 <sub>N</sub> | * ACCURACY               | REQUIRED: ONE TENT     | TH OF A S         | SECOND                  |          |
| NERA     | (FROM GPS                 | 5)<br>LO           | ONGITUDE                                                            | 103                             | 28                               | 32.31               | 84 W            | * DATUM REC              | QUIRED: WGS 84         |                   |                         |          |
| 1. GE    | DESCRIPTION<br>West Pearl | N RELAT<br>Queen   | NG WELL LOCATION TO                                                 | O STREET ADDRI                  | ESS AND COMMON                   | I LANDMA            | IRKS – PLS      | S (SECTION, TO           | WNSHJIP, RANGE) WH     | ERE AVA           | ILABLE                  |          |
|          | LICENSE NO.               |                    | NAME OF LICENSEE                                                    | DRILLER                         |                                  |                     |                 |                          | NAME OF WELL DRI       | LLING C           | OMPANY                  |          |
|          | 1789                      | 9                  |                                                                     |                                 | Mark Mumby                       |                     |                 |                          | HRL C                  | omplian           | ce Solutions            |          |
|          | DRILLING ST.<br>4/10/20   | arted<br>020       | DRILLING ENDED<br>4/10/2020                                         | DEPTH OF CON<br>No              | APLETED WELL (FT<br>t Applicable | Г)                  | BORE HOI        | LE DEPTH (FT)<br>30      | DEPTH WATER FIRS       | ST ENCO           | UNTERED (FT)<br>untered | ·        |
| Z        | COMPLETED                 | WELL IS:           | ARTESIAN                                                            | 🗹 DRY HOLI                      | E 🗍 SHALLOV                      | W (UNCON            | VFINED)         |                          | STATIC WATER LEV<br>No | TEL IN CO         | MPLETED WE              | LL (FT)  |
| UTI0     | DRILLING FL               | UID:               | 🖌 AIR                                                               | MUD                             | UD ADDITIVES – SPECIFY:          |                     |                 |                          |                        |                   |                         |          |
| DRMA     | DRILLING METHOD:          |                    | ROTARY                                                              | HAMMER                          | CABLE TO                         | OOL                 | ОТНЕ            | R - SPECIFY:             | Hollow Ste             |                   | Auger                   |          |
| INFC     | DEPTH (feet bgl)          |                    | BORE HOLE                                                           | CASING MATERIAL AND/OR<br>GRADE |                                  | CA                  | ASING           | CASING C                 |                        | NG WALL           | SLOT                    |          |
| ASING IN | FROM TO DIAM (inches)     |                    | (include each casing string, and<br>note sections of screen) (add c |                                 |                                  | CONN<br>T           | NECTION<br>TYPE | INSIDE DIAM.<br>(inches) | THI<br>(               | CKNESS<br>inches) | SIZE<br>(inches)        |          |
| č,       |                           |                    |                                                                     | N                               | one Installed                    |                     | (uuu toup)      | ing dianeter)            |                        |                   |                         |          |
| NG S     |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   | • • •                   |          |
| ทา       |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| DRI      |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| 5.]      |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          | ·                      |                   |                         |          |
|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
|          | <br>                      | feet hol)          | BODE HOLE                                                           |                                 |                                  |                     | FRIAT A         |                          |                        |                   | МЕТЦО                   |          |
| AL       | FROM                      | TO                 | DIAM. (inches)                                                      | GRAV                            | /EL PACK SIZE-                   | -RANGE              | BY INTE         | RVAL                     | (cubic feet)           |                   | PLACEM                  | IENT     |
| ERI      |                           |                    | 6.25                                                                |                                 | None                             | Installed           |                 |                          |                        |                   |                         |          |
| ИАТ      |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| AR N     |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| IUL      |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| ANN      |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| 3.       | ļļ                        |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
|          |                           |                    |                                                                     |                                 |                                  |                     |                 |                          |                        |                   |                         |          |
| FOR      | OSE INTERN                | NAL US             | interner of a                                                       |                                 | BOD NO                           | $\overline{\alpha}$ |                 | WR-2                     | 0 WELL RECORD          |                   | Version 04/3            | 0/19)    |
| LILI     | SINQ.                     | 1 -                |                                                                     |                                 | I POD NO                         | , –                 |                 |                          |                        | 1                 | 1 1                     | 1        |

LOCATION

95-35E

32

WELL TAG ID NO.

PAGE 1 OF 2

### DSE DII JUN 16 2020 #9:22

|             | DEPTH (f     | eet bgl)<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THICKNESS<br>(feet)                                                                   | COLOR AND TYPE OF MATERIAL ENCOUNTERED -<br>INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES<br>(attach supplemental sheets to fully describe all units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATER<br>BEARING?<br>(YES / NO)   | ESTIMATED<br>YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|
|             | 0            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                                    | Light brown to orange fine sand with minor silt and coarse sand and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y VN                              |                                                            |
|             | 13           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                     | Orange/light brown well-graded sand with minor silt and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y √N                              |                                                            |
|             | 18           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                     | Orange/red fine sand with minor medium and coarse sand and silt and white calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y 🖌 N                             |                                                            |
|             | 25           | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                     | Brick red to purple clay with minor fine, medium, and coarse sand and light gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y √N                              |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| Ţ           |              | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| WEI         |              | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| OF          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| E<br>0<br>0 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| 3IC ]       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| )LO(        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| GEC         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| DRO         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| HW          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
| 4           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y N                               |                                                            |
|             | METHOD U     | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | IR LIFT                                                                               | OF WATER-BEARING STRATA:       TOTA         BAILER       OTHER - SPECIFY: Not Applicable       WEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AL ESTIMATED<br>L YIELD (gpm):    | 0.00                                                       |
| Z           | WELL TES     | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RESULTS - ATT<br>T TIME, END TI                                                       | ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDI<br>ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NG DISCHARGE N<br>E TESTING PERIO | IETHOD,<br>D.                                              |
| ISIO        | MISCELLA     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CORMATION.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                            |
| ERV         | MISCELLA     | NEOUS INI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TI                                                                                    | D Auger 30 feet bgl; TD core barrel drive 32 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                            |
| SUP         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                            |
| RIG         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                            |
| EST;        | DDINIT NAM   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       | NISOD (S) THAT DO WIDED ONSITE SIDED VISION OF WELL CONSTRUIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TION OTHER TH                     | ANLICENSEE                                                 |
| 5. TJ       | rahin Dadi   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KILL KIG SUPER                                                                        | (VISOR(3) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TION OTHER TH                     | AN LICENSEE:                                               |
|             | Kalvili Faul |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                            |
| ~~)         | BY SIGNIN    | G BELOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , I CERTIFY TH                                                                        | AT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FOREGON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NG IS A TRUE A                    | ND CORRECT                                                 |
| URI         | WELL RECO    | ORD WILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALSO BE FILED                                                                         | WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLETION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N OF WELL DRILL                   | JING.                                                      |
| LAN         | matri        | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Digitally signed by Mark Mumby<br>DN: cn=Mark Mumby, o=HRL C                          | omp,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                            |
| SIC         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nu-Security Division,<br>mail=mmumby@hrlcomp.com,<br>Date: 2020.06.09 10:05:31 -06'00 | Hark Mumby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6/9/2020                          |                                                            |
| \$          |              | SIGNAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | URE OF DRILLE                                                                         | ER / PRINT SIGNEE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE                              |                                                            |
| ECT         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | -i 04/20/2010)                                             |
| FIL         | E NO.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1871,                                                                                 | $\begin{array}{c c} & & & \\ \hline \\ \hline$ |                                   | sion 04/30/2019)                                           |
| LO          |              | <u>) -   -</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-</u> 2 .4                                                                         | 195-35E-32 WELL TAGID NO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A                                 | PAGE 2 OF 2                                                |
| L           | $\sim$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 7                               |                                                            |



OFFICE OF THE STATE ENGINEER

DSE DII JUN 16 2020 MB:22

www.ose.state.nm.us

| NO         | ose pod no.<br>POD10    | WELL NO             | ).)                                   |                     | well tag id no.<br>SB-10       |               |           | OSE FILE NO(S<br>L 14876 | <u>s).</u>                            | ÿ                    |                         |          |
|------------|-------------------------|---------------------|---------------------------------------|---------------------|--------------------------------|---------------|-----------|--------------------------|---------------------------------------|----------------------|-------------------------|----------|
| OCATI      | WELL OWNE               | ER NAME(S<br>Energy | ()                                    | · · · · · · ·       |                                |               |           | PHONE (OPTIC             | DNAL)                                 |                      |                         |          |
| WELL LO    | WELL OWNE<br>P.O. Box 1 | er mailin<br>973    | G ADDRESS                             |                     |                                |               |           | CITY<br>Roswell          |                                       | state<br>NM          | 88202                   | ZIP      |
| é          |                         | 1                   | DE                                    | EGREES              | MINUTES                        | SECONDS       |           |                          |                                       |                      |                         |          |
| AL AN      | WELL<br>LOCATIO         |                     | TITUDE                                | 32                  | 37                             | 22.1772       | N         | * ACCURACY               | REQUIRED: ONE TEN                     | TH OF A S            | ECOND                   |          |
| ER         | (FROM GP                | S) LC               | NGITUDE                               | 103                 | 28                             | 32.7318       | W         | * DATUM REQ              | UIRED: WGS 84                         |                      |                         |          |
| EN         | DESCRIPTIC              | N RELATI            | NG WELL LOCATION TO                   | STREET ADDRE        | SS AND COMMON                  | LANDMARKS     | - PLS     | S (SECTION, TO)          | WNSHJIP, RANGE) WH                    | ERE AVA              | ILABLE                  |          |
| 1. 0       | West Pearl              | Queen               |                                       |                     |                                |               |           |                          | . ,                                   |                      |                         |          |
|            | LICENSE NO.             |                     | NAME OF LICENSED                      | DRILLER             |                                |               |           |                          | NAME OF WELL DRI                      | LLING CO             | OMPANY                  |          |
| ļ          | 178                     | 9                   | _                                     | ]                   | Mark Mumby                     |               |           |                          | HRL C                                 | omplian              | ce Solutions            |          |
|            | DRILLING ST<br>4/10/2   | rarted<br>2020      | DRILLING ENDED<br>4/10/2020           | DEPTH OF COM<br>Not | IPLETED WELL (FT<br>Applicable | ) BOR         | e hoi     | LE DEPTH (FT)<br>20      | DEPTH WATER FIRS                      | ST ENCOU<br>It Encou | INTERED (FT)<br>Intered |          |
| z          | COMPLETED               | O WELL IS:          | ARTESIAN                              | 🗹 DRY HOLE          | E 🔲 SHALLOV                    | W (UNCONFINE  | ED)       |                          | STATIC WATER LEV<br>No                | EL IN CO<br>ot Encou | MPLETED WE              | LL (FT)  |
| LIO        | DRILLING FL             | LUID:               | AIR                                   | MUD                 | ADDITIVI                       | ES - SPECIFY: |           |                          |                                       |                      |                         |          |
| MAT        | DBULBION                |                     |                                       |                     |                                |               | OTUR      | D ODECIEV.               | Ualla                                 | w Stam               | Auger                   |          |
| ORI        | DRILLING M              | ETHOD:              |                                       |                     |                                | JOL 1         | OTHE      | R SPECIFY:               | Holic                                 | w Stell              | Augei                   |          |
| NF         | DEPTH                   | (feet bgl)          | BORE HOLE                             | CASING N            | ATERIAL AND                    | /OR           | C         | SING                     | CASING                                | CASI                 | NG WALL                 | SLOT     |
| 5          | FROM                    | то                  | DIAM                                  | ( 1 1               | GRADE                          | , ,           | CON       | VECTION                  | INSIDE DIAM.                          | THI                  | CKNESS                  | SIZE     |
| SIN        |                         |                     | (inches)                              | (include ea         | ections of screen)             | and (add      | T<br>muou | YPE<br>ling diameter)    | (inches)                              | (i                   | inches)                 | (inches) |
| CA         |                         |                     |                                       | N                   | one Installed                  | (444          |           | ing dianeter)            |                                       |                      |                         |          |
| 8<br>U     |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
| <b>LIN</b> |                         |                     |                                       | ,                   | ,                              |               |           |                          |                                       |                      |                         |          |
| RILI       |                         | ·                   |                                       |                     |                                | · · ·         |           |                          | · · · · · · · · · · · · · · · · · · · |                      |                         |          |
| Ī          |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
| 7          |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
|            |                         | •                   |                                       |                     | · · · · ·                      |               |           |                          |                                       |                      |                         |          |
|            |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
|            |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
|            |                         |                     |                                       |                     | ····                           |               |           |                          |                                       |                      |                         |          |
|            |                         |                     |                                       |                     |                                | <u>l</u>      |           |                          |                                       | <u> </u>             |                         |          |
|            | DEPTH                   | (feet bgl)          | BORE HOLE                             | LIS                 | T ANNULAR SE                   | AL MATERI     | IAL A     | AND                      | AMOUNT                                |                      | METHO                   | D OF     |
| AL         | FROM                    | то                  | DIAM. (inches)                        | GRAV                | EL PACK SIZE-                  | RANGE BY      | INTE      | ERVAL                    | (cubic feet)                          |                      | PLACEM                  | IENT     |
| ERI        |                         |                     |                                       | 1                   | None                           | Installed     |           |                          |                                       |                      |                         | ·····    |
| AT         |                         |                     |                                       |                     |                                | <u> </u>      |           |                          |                                       |                      |                         |          |
| R N        |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
|            |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
| ÎN Î       |                         |                     |                                       |                     |                                |               |           | <u> </u>                 |                                       |                      |                         |          |
| A.         |                         |                     | · · · · · · · · · · · · · · · · · · · |                     |                                |               |           | <u></u>                  |                                       |                      |                         |          |
| (m)        |                         |                     |                                       |                     |                                |               |           |                          |                                       |                      |                         |          |
|            | <u> </u>                |                     |                                       |                     |                                |               |           |                          | l                                     |                      |                         |          |
| FOR        | OSE INTER               | NAL US              |                                       |                     |                                |               |           | WR-2                     | 0 WELL RECORD                         | LOG                  | Vorsion 04/3            | 0/19)    |
| FILI       | E NO.   _               | านใ                 | 110                                   |                     | POD NO                         |               |           | TRN I                    | VO. ( / 10'                           | 11'                  | 1                       |          |

1.

LOCATION

195-2

PAGE 1 OF 2

WELL TAG ID NO.

AC

LUE DII JUN 16 2020 PM3:22

| 1          |             |                 |                                                                                  | ······································ |                                                 |                                              | · · · · · · · · · · · · · · · · · · ·                |                     |                            |                   | EOTD (                                   |                                    |
|------------|-------------|-----------------|----------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------|----------------------------|-------------------|------------------------------------------|------------------------------------|
|            | DEPTH (f    | reet bgl)<br>TO | THICKNESS<br>(feet)                                                              | COLOR A<br>INCLUDE WA'<br>(attach s    | AND TYPE OF M<br>TER-BEARING<br>upplemental she | ATERIAL EN<br>CAVITIES OF<br>ets to fully de | NCOUNTERED -<br>& FRACTURE ZONE<br>scribe all units) | S                   | WATE<br>BEARIN<br>(YES / I | R<br>VG?<br>VO)   | ESTIMA<br>YIELD<br>WATI<br>BEAR<br>ZONES | ATED<br>FOR<br>ER-<br>ING<br>(gpm) |
|            | 0           | 18              | 18                                                                               | Tan and or                             | range colored wel                               | l-graded sand                                | with minor gravel                                    | -                   | Y                          | ✓ N               | LONED                                    | (69111)                            |
|            | 18          | 22              | 4                                                                                | Dark orange/                           | red fine and medi                               | um silty sand                                | with white inclusions                                |                     | Y                          | ✓ N               |                                          |                                    |
|            | 10          |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| T          |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| WEL        |             |                 |                                                                                  | · · · ·                                |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| OF         |             |                 |                                                                                  |                                        | ······                                          |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| 00         |             |                 |                                                                                  |                                        |                                                 |                                              | · · ·                                                |                     | Y                          | N                 |                                          |                                    |
| ICI        |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| 001        | -           |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| GEO        |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| ORO        |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
| НУІ        |             |                 |                                                                                  |                                        |                                                 |                                              | 18 - 21 - 19                                         |                     | Y                          | N                 |                                          |                                    |
| 4.         |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          | -                                  |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          | <del></del>                        |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     | Y                          | N                 |                                          |                                    |
|            |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      | <u> </u>            | Y                          | N                 |                                          |                                    |
|            | METHOD U    | ISED TO ES      | STIMATE YIELD                                                                    | OF WATER-BEAR                          | ING STRATA:                                     |                                              |                                                      | TOTAL               | ESTIMA                     | ATED              | 0.0                                      | 0                                  |
|            | <b>PUM</b>  | P 🗌 A           | IR LIFT                                                                          | BAILER                                 | OTHER – SPECI                                   | FY: Not App                                  | licable                                              |                     |                            | (gpin).           | 0.0                                      | 0                                  |
| NO         | WELL TES    | T TEST<br>STAR  | RESULTS - ATT<br>T TIME, END TI                                                  | ACH A COPY OF D.<br>ME, AND A TABLE    | ATA COLLECT                                     | ED DURING '<br>CHARGE AN                     | WELL TESTING, IN<br>D DRAWDOWN OV                    | CLUDING<br>ER THE T | DISCH.<br>ESTINC           | ARGE I<br>S PERIC | METHOD,<br>DD.                           |                                    |
| <b>VIS</b> | MISCELLA    | NEOUS IN        | FORMATION: TI                                                                    | D Auger 20 feet bg                     | l; TD core barre                                | l drive 22 fe                                | et bgl                                               |                     |                            |                   |                                          |                                    |
| JPEF       |             |                 |                                                                                  | 0 0                                    | ,                                               |                                              | C                                                    |                     |                            |                   |                                          |                                    |
| IG SI      |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     |                            |                   |                                          |                                    |
| r; RI      |             |                 |                                                                                  |                                        |                                                 |                                              |                                                      |                     |                            |                   |                                          |                                    |
| TES        | PRINT NAM   | AE(S) OF D      | RILL RIG SUPER                                                                   | RVISOR(S) THAT PI                      | ROVIDED ONSI                                    | TE SUPERVIS                                  | SION OF WELL CON                                     | ISTRUCTI            | ON OT                      | HER TI            | IAN LICE                                 | NSEE:                              |
| Ċ.         | Kalvin Padi | lla             |                                                                                  |                                        |                                                 |                                              |                                                      |                     |                            |                   |                                          |                                    |
|            | BY SIGNIN   | IG BELOW        | I CERTIFY TH                                                                     | IAT TO THE BEST                        | OF MY KNOW                                      | LEDGE ANI                                    | D BELIEF. THE FO                                     | REGOING             | IS A T                     | RUE A             | ND CORI                                  | RECT                               |
| RE         | RECORD O    | F THE ABO       | OVE DESCRIBED                                                                    | WELL, I ALSO CE                        | RTIFY THAT TH                                   | IE WELL TA                                   | G, IF REQUIRED, HA                                   | AS BEEN I           | NSTAL                      |                   | ND THAT                                  | THIS                               |
| ATU        | WELL REC    | ORD WILL        | Digitally signed by Mark Mumby                                                   |                                        | I HOLDER WIT                                    |                                              | A ILK HL COM                                         | LEMON               |                            | DIGL              | Lind.                                    |                                    |
| NDI        | [M][] E. J. | Mfmty > }.      | DN: cn-Mark Mumby, o=HRL C<br>ou-Security Division,<br>email=mmumby@hrlcomp.com, | Comp.<br>c=US                          | Mark Mumby                                      |                                              |                                                      |                     | 6/9/2                      | 020               |                                          |                                    |
| 6.5        | ·           | SIGNAT          | Date: 2020.06.09 10:06:13 -06'00                                                 | P / PPINT SIGNE                        | E NAME                                          |                                              |                                                      |                     | <br>T                      | DATE              |                                          | <u> </u>                           |
|            |             | JIONAI          |                                                                                  |                                        |                                                 |                                              |                                                      |                     |                            |                   |                                          |                                    |
| FO         | R OSE INTER | NAL USE         | <u> </u>                                                                         |                                        |                                                 |                                              | WR-20 WE                                             | LL RECO             | RD & L                     | <u>OG (Ve</u>     | rsion 04/30                              | )/2019)                            |
| FIL        |             | -14(            | S IY                                                                             | -265                                   | POD NO.                                         |                                              | TRN NO.                                              | fil                 | Ú.                         |                   |                                          |                                    |
| LO         | CATION      | 21:9            | , 192                                                                            | s our                                  | 22                                              |                                              | WELL TAG ID NO                                       | NF                  | ~                          |                   | PAGE                                     | 2 OF 2                             |

**Released to Imaging: 10/29/2024 7:37:14 AM** 

2 DII JUN 16 2020 ++9:22



### WELL RECORD & LOG

#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|        | OFF BOD NO (           | VELL NO  | )                                     | Τ.                                    |                               |            |            | OSE EU E NOV          | 2)                 |            |                      |          |
|--------|------------------------|----------|---------------------------------------|---------------------------------------|-------------------------------|------------|------------|-----------------------|--------------------|------------|----------------------|----------|
| 7      | POD11                  | VELL NO. | .)                                    |                                       | WELL TAG ID NO.               |            |            | 1.14876               | 5).                |            |                      |          |
| IOI.   | 10011                  |          |                                       |                                       |                               | 1          |            |                       |                    |            |                      |          |
| TAT    | WELL OWNER             | NAME(S)  |                                       |                                       |                               |            |            | PHONE (OPTIC          | ONAL)              |            |                      |          |
| ğ      | Armstrong E            | nergy    |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| T      | WELL OWNER             | MAILING  | ADDRESS                               |                                       |                               |            |            | CITY                  |                    | STATE      |                      | ZIP      |
| VEJ    | P.O. Box 197           | 3        |                                       |                                       |                               |            |            | Roswell               |                    | NM         | 88202                |          |
| é      |                        | <u>,</u> | DE                                    | GREES                                 | MINUTES                       | SECONI     | DS         |                       |                    |            |                      |          |
| AN     | WELL                   |          | 22                                    | 32                                    | 37                            | 22.918     | 82         | * ACCURACY            | REQUIRED: ONE TENT | TH OF A SE | ECOND                |          |
| M      | LOCATION<br>(FROM CPS) | LAT      | TITUDE                                | 102                                   |                               |            | N          | * DATUM REC           | UIRED: WGS 84      |            |                      |          |
| NEI    | (rkom ors)             | LON      | IGITUDE                               | 103                                   | 28                            | 33.05      | 22 W       | 2                     |                    |            |                      |          |
| GE     | DESCRIPTION            | RELATIN  | IG WELL LOCATION TO                   | STREET ADDRE                          | SS AND COMMON                 | LANDMA     | RKS – PLS  | S (SECTION, TO        | WNSHJIP, RANGE) WH | ERE AVAI   | LABLE                |          |
| 1.     | West Pearl Q           | ueen     |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
|        |                        |          | · · · · · · · · · · · · · · · · · · · |                                       |                               |            |            |                       |                    |            |                      |          |
|        | LICENSE NO.            |          | NAME OF LICENSED                      | DRILLER                               | Jorl Mumby                    |            |            |                       | NAME OF WELL DRI   | LLING CO   | MPANY<br>• Solutions |          |
|        | 1/09                   |          |                                       | ľ                                     | viaik wiulliby                |            |            |                       |                    | omphane    | e Solutions          |          |
|        | DRILLING STA           | RTED     | DRILLING ENDED                        | DEPTH OF COM                          | PLETED WELL (FT               | )          | BORE HOI   | LE DEPTH (FT)         | DEPTH WATER FIRS   | ST ENCOU   | NTERED (FT)          |          |
|        | 4/14/202               | 20       | 4/14/2020                             | Not                                   | Applicable                    |            |            | 25                    |                    | n Encou    | mered                |          |
|        | COMPLETED N            | JELL 10. |                                       |                                       |                               |            |            |                       | STATIC WATER LEV   | EL IN CON  | MPLETED WE           | LL (FT)  |
| Z      | COMPLETED              | VELL 15: | ARTESIAN                              | DRY HOLE                              | SHALLON                       | W (UNCON   | FINED)     |                       | NC                 | of Encou   | ntered               |          |
| Ţ      | DRILLING FLU           | ID:      | 🖌 AIR                                 | MUD                                   | ADDITIVI                      | ES – SPECI | FY:        |                       | •                  |            |                      |          |
| MA     | DRILLING MET           | 'HOD'    |                                       |                                       |                               | DOL.       | 7 OTHE     | R – SPECIFY:          | Hollo              | w Stem     | Auger                |          |
| OR     |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| INF    | DEPTH (feet bgl)       |          | BORE HOLE                             | CASING M                              | IATERIAL AND                  | /OR        | CA         | SING                  | CASING             |            | IG WALL              | SLOT     |
| D Z    | FROM TO                |          | DIAM                                  | (include ea                           | GRADE                         | and        | CON        | VECTION               | INSIDE DIAM.       | THIC       | CKNESS               | SIZE     |
| ASU    |                        |          | (inches)                              | note se                               | ctions of screen)             |            | (add coup) | YPE<br>ling diameter) | (inches)           | (ir        | nches)               | (inches) |
| C<br>a |                        |          |                                       | No                                    | one Installed                 |            |            |                       |                    |            |                      |          |
| ğ      |                        |          |                                       |                                       | · · · · · · · · · · · · · · · |            |            |                       |                    |            |                      |          |
| TIN    |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| RIL    |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| C. D   |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      | <u> </u> |
|        |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
|        |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
|        |                        |          |                                       | · · · · · · · · · · · · · · · · · · · |                               |            |            |                       |                    |            |                      |          |
|        |                        |          |                                       |                                       |                               |            |            |                       |                    |            | · ·= =               |          |
|        |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
|        | ļ                      |          |                                       | L                                     |                               |            |            |                       | L                  | <u> </u>   |                      |          |
|        | DEPTH (fe              | et bgl)  | BORE HOLE                             | LIST                                  | I ANNULAR SE                  | AL MAT     | ERIAL A    | AND                   | AMOUNT             |            | METHO                | D OF     |
| AL     | FROM                   | то       | DIAM. (inches)                        | GRAV                                  | EL PACK SIZE-                 | RANGE      | BY INTE    | RVAL                  | (cubic feet)       |            | PLACEN               | IENT     |
| ERI    |                        |          |                                       |                                       | None                          | Installed  |            |                       |                    |            |                      |          |
| Π      |                        |          |                                       |                                       |                               |            |            |                       |                    |            | •                    |          |
| M      |                        |          |                                       |                                       |                               |            |            | · · ·                 |                    |            |                      |          |
| LAI    |                        | -        |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| INU    |                        |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
| AN     |                        |          |                                       |                                       | <u></u>                       |            |            |                       |                    |            |                      |          |
| ÷.     | ├                      |          |                                       |                                       |                               |            |            |                       |                    |            |                      |          |
|        |                        |          |                                       |                                       |                               |            |            |                       | I                  |            |                      |          |
| FOR    | OSE INTERN             | AL USE   | -                                     |                                       |                               |            |            | WR-2                  | 0 WELL RECORD      | LOG (      | Version 04/3         | 0/19)    |
| FILI   | ENO.   _               | US'      | 710                                   |                                       | POD NO                        | . 11       |            | TRN 1                 | NO. $( \land ) O $ | 1 1        |                      | 1        |

WELL TAG ID NO. NA

195

555-32

LOCATION 2.1.2

PAGE 1 OF 2

USEDII JUN 16 2020 M9:22

| •••      |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          |                    | -                   |                                     |
|----------|-----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------|--------------------|---------------------|-------------------------------------|
|          | DEPTH (1                          | eet bgl)             | THICKNESS                                                                                                       | COLOR AN                                                  | ND TYPE OF MATERIAL<br>ER-BEARING CAVITIES                       | ENCOUN'<br>OR FRAC                 | TERED -<br>TURE ZONES       |                          | WA1<br>BEAR        | FER<br>ING?         | ESTIMATED<br>YIELD FOR<br>WATER-    |
|          | FROM                              | то                   | (feet)                                                                                                          | (attach su                                                | pplemental sheets to fully                                       | describe a                         | ll units)                   |                          | (YES)              | / NO)               | BEARING<br>ZONES (gpm)              |
|          | 0                                 | 18                   | 18                                                                                                              |                                                           | Orange well-graded sand                                          | with silt                          |                             |                          | Y                  | √ N                 |                                     |
|          | 18                                | 24                   | 6                                                                                                               | Orange a                                                  | nd buff-colored well-grade                                       | d sand with                        | gravel                      |                          | Y                  | √ N                 |                                     |
|          | 24                                | 27                   | 4                                                                                                               | Very hard dark purple                                     | clay with fine and medium                                        | sand and l                         | ight grey calcite           | e incl                   | Y                  | <b>√</b> N          |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| T        |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| WEI      |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| OF       |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| DOJ      |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| 3IC ]    |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| )LO(     |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| GEO      |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| DRO      |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| НУ       |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
| 4.       |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    | -                           |                          | Y                  | N                   |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   | ,                    |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          |                                   |                      | ļ                                                                                                               |                                                           |                                                                  |                                    |                             |                          | Y                  | N                   |                                     |
|          | METHOD U                          | SED TO ES            | STIMATE YIELI                                                                                                   | D OF WATER-BEARIN                                         | IG STRATA:                                                       |                                    |                             | TOTA                     | L ESTIN            | ATED                |                                     |
|          | <b>PUM</b>                        | P A                  | IR LIFT                                                                                                         | BAILER 70                                                 | THER - SPECIFY: Not A                                            | pplicable                          |                             | WELI                     |                    | (gpm):              | 0.00                                |
| NO       | WELL TES                          | T TEST<br>STAR       | RESULTS - ATT<br>T TIME, END TI                                                                                 | FACH A COPY OF DA<br>IME, AND A TABLE S                   | TA COLLECTED DURIN<br>HOWING DISCHARGE                           | G WELL T                           | ESTING, INCI<br>WDOWN OVE   | LUDIN<br>R THE           | IG DISC<br>TESTIN  | HARGE I<br>IG PERIC | METHOD,<br>)D.                      |
| ISIV     | MISCELLA                          | NEOUS INF            | FORMATION: T                                                                                                    | D Auger 25 feet bgl:                                      | TD core barrel drive 27                                          | feet bgl                           |                             |                          |                    |                     |                                     |
| JPEF     |                                   |                      |                                                                                                                 | 5 5,                                                      |                                                                  | U                                  |                             |                          |                    |                     |                                     |
| ; RIG SI |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          |                    |                     |                                     |
| EST      | PRINT NAM                         | 1E(S) OF D           | RILL RIG SUPE                                                                                                   | RVISOR(S) THAT PRO                                        | OVIDED ONSITE SUPER                                              | VISION OF                          | FWELL CONS                  | STRUC                    | TION O             | THER TH             | IAN LICENSEE:                       |
| 5. T     | Kalvin Padi                       | lla                  |                                                                                                                 | .,                                                        |                                                                  |                                    |                             |                          |                    |                     |                                     |
| JRE      | BY SIGNIN<br>RECORD O<br>WELL REC | G BELOW<br>F THE ABC | , 1 CERTIFY TH<br>OVE DESCRIBED                                                                                 | HAT TO THE BEST (<br>D WELL I ALSO CER<br>WITH THE PERMIT | OF MY KNOWLEDGE A<br>TIFY THAT THE WELL 1<br>HOLDER WITHIN 30 DA | ND BELIE<br>TAG, IF RE<br>YS AFTER | EF, THE FORE<br>QUIRED, HAS | EGOIN<br>5 BEEN<br>ETION | IG IS A<br>N INSTA | TRUE A              | ND CORRECT<br>ND THAT THIS<br>LING. |
| IGNATI   | MULE H                            | Mart >               | Digitally signed by Mark Mumb<br>DN: cn-Mark Mumby, o-HRL<br>pu-Security Division,<br>traisi-mumby@hrlcomp.com, | yy<br>Comp,<br>, c=US                                     | Mark Mumby                                                       |                                    |                             |                          | 6/9/               | 2020                |                                     |
| 6. 5     | ·                                 | SIGNAT               | Date: 2020.06.09 10:06:50 -060                                                                                  | ©<br>ER / PRINT SIGNEE                                    | NAME                                                             |                                    |                             |                          |                    | DATE                |                                     |
|          |                                   |                      |                                                                                                                 |                                                           |                                                                  |                                    |                             |                          |                    |                     |                                     |
| FOI      | R OSE INTER                       | NAL USE              | 110                                                                                                             |                                                           | POD NO 1                                                         |                                    | WR-20 WEL                   | L REC                    | CORD &             | LOG (Ve             | rsion 04/30/2019)                   |
| LO       | CATION 7                          | 149                  | Ma                                                                                                              | 5-245-3-                                                  |                                                                  | WEIT                               | TAG ID NO                   |                          |                    |                     | PAGE 2 OF 2                         |
|          | O                                 | $\cdot \cdot \cdots$ | · · · · ·                                                                                                       | - $        -$                                             |                                                                  | باباند ۲۷                          | THO ID NO.                  | Nr.                      | <b>`</b>           |                     | 1                                   |

DSE DII JUN 16 2020 M9:22

# WELL RECORD & LOG

### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|          | OSE POD NO                                                               | . (WELL N           | 0.)                         |                    | WELL TAG ID NO.                                                     |              |                 | OSE FILE NO(            | S).                                |                                       |                             |                          |
|----------|--------------------------------------------------------------------------|---------------------|-----------------------------|--------------------|---------------------------------------------------------------------|--------------|-----------------|-------------------------|------------------------------------|---------------------------------------|-----------------------------|--------------------------|
| ION      | POD12                                                                    |                     |                             |                    | SB-12                                                               |              |                 | L 14876                 |                                    |                                       |                             |                          |
| OCAT     | WELL OWNE                                                                | ER NAME(S<br>Energy | 8)                          |                    |                                                                     |              |                 | PHONE (OPTI)            | ONAL)                              |                                       |                             |                          |
| MELL L   | WELL OWNE<br>P.O. Box 1                                                  | er mailin<br>973    | G ADDRESS                   |                    |                                                                     |              |                 | CITY<br>Roswell         |                                    | STATE<br>NM                           | 88202                       | ZIP                      |
| AL AND   | WELL<br>LOCATIO                                                          | N L                 | D                           | EGREES<br>32       | minutes<br>37                                                       | seco<br>22.6 | NDS<br>5878 N   | * ACCURACY              | REQUIRED: ONE TEN                  | TH OF A SI                            | ECOND                       |                          |
| NER/     | (FROM GP                                                                 | S)                  | DNGITUDE                    | 103                | 28                                                                  | 33.6         | 5606 W          | * DATUM REG             | QUIRED: WGS 84                     |                                       |                             |                          |
| 1. GE    | DESCRIPTION<br>West Pearl                                                | ON RELAT            | ING WELL LOCATION T         | O STREET ADD       | RESS AND COMMON                                                     | LANDM        | IARKS – PLS     | S (SECTION, TO          | WNSHJIP, RANGE) WH                 | ERE AVAI                              | LABLE                       |                          |
|          | LICENSE NO<br>178                                                        |                     | NAME OF LICENSE             | D DRILLER          | Mark Mumby                                                          |              |                 |                         | NAME OF WELL DR<br>HRL C           | ILLING CO                             | MPANY<br>e Solutions        |                          |
|          | DRILLING S<br>4/15/2                                                     | tarted<br>2020      | DRILLING ENDED<br>4/15/2020 | DEPTH OF CO<br>N   | OMPLETED WELL (FI<br>ot Applicable                                  | Г)           | BORE HO         | LE DEPTH (FT)<br>24     | DEPTH WATER FIRS                   | ST ENCOU<br>ot Encou                  | NTERED (FT)<br>ntered       |                          |
| N        | COMPLETEI                                                                | O WELL IS           | ARTESIAN                    | 🗹 DRY HO           | le 🔲 shallo                                                         | W (UNC       | ONFINED)        |                         | STATIC WATER LEV                   | TEL IN CON<br>TEL IN CON              | MPLETED WE<br>ntered        | LL (FT)                  |
| ATIC     | DRILLING F                                                               | LUID:               | AIR                         | MUD                | ADDITIV                                                             | ES – SPE     | CIFY:           |                         |                                    |                                       |                             |                          |
| ORM      | DRILLING M                                                               | IETHOD:             | ROTARY                      | НАММЕ              | R CABLE T                                                           | OOL          | ОТНЕ            | R - SPECIFY:            | Hollo                              | w Stem                                | Auger                       |                          |
| SING INF | DEPTH (feet bgl)     BORE HOLE       FROM     TO     DIAM       (inches) |                     |                             | CASING<br>(include | MATERIAL AND<br>GRADE<br>each casing string,<br>sections of screen) | D/OR<br>and  | CA<br>CONN<br>T | ASING<br>VECTION<br>YPE | CASING<br>INSIDE DIAM.<br>(inches) | CASIN<br>THIC<br>(ir                  | NG WALL<br>CKNESS<br>nches) | SLOT<br>SIZE<br>(inches) |
| & CA     |                                                                          |                     |                             |                    | None Installed                                                      |              | (aud coup)      | ing diameter)           |                                    |                                       |                             |                          |
| JNG      | -                                                                        |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
| RILI     |                                                                          |                     |                             |                    |                                                                     |              | <u> </u>        |                         |                                    |                                       |                             |                          |
| 2. D     |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
|          |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
|          |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
|          |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
|          |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
| -        | DEPTH                                                                    | (feet bgl)          | BORE HOLE                   | L                  | IST ANNULAR SH                                                      | EAL MA       | ATERIAL A       | AND                     | AMOUNT                             |                                       | METHO                       | D OF                     |
| RIAL     | FROM                                                                     | TO                  | DIAM. (inches)              | GRA                | AVEL PACK SIZE                                                      | -RANG        | E BY INTE       | ERVAL                   | (cubic feet)                       |                                       | PLACEN                      | IENT                     |
| ATEI     |                                                                          | <b>.</b> .          |                             |                    | None                                                                | Installe     | d               |                         |                                    |                                       |                             |                          |
| R M      |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
| IULA     |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
| ANN      |                                                                          |                     |                             | -                  |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
|          |                                                                          |                     |                             |                    |                                                                     |              |                 |                         |                                    |                                       |                             |                          |
| FOR      | OSE INTER                                                                | NALOR               |                             | 1                  |                                                                     |              | <u> </u>        | WR-2                    | 0 WELL RECORD                      | ـــــــــــــــــــــــــــــــــــــ | Version 04/3                | 0/19)                    |
| FILE     | E NO. U-                                                                 | 11                  | 874                         | ~                  | POD NC                                                              | ).           | 5               | TRN                     | NO. 670                            | 71                                    | ]                           |                          |
| LOC      | ATION                                                                    | <u> </u>            | 1.2 1                       | 45-2               | 35E-3                                                               | <u>i</u> 2   |                 | WELL TAG I              | DNO. NA                            | -                                     | PAGE                        | 1 OF 2                   |

DSE DIJ JUN 15 2020 pm3:22

|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          | ·····                  |
|-------|--------------|--------------|----------------------------------------------------------------------------------|-------------------------------|-----------|------------------|------------------------|---------------------|--------------------------|----------------|---------------------------|----------|------------------------|
|       | DEPTH (1     | eet bgl)     |                                                                                  | COL                           | OR AN     | D TYPE OF M      | ATERIAL EI             | NCOUN               | TERED -                  |                | WA                        | TER      | ESTIMATED              |
|       |              |              | THICKNESS                                                                        | INCLUDE                       | WATE      | ER-BEARING (     | CAVITIES O             | R FRAC              | TURE ZONE                | s              | BEAF                      | RING?    | WATER-                 |
|       | FROM         | ТО           | (feet)                                                                           | (atta                         | ach sup   | oplemental shee  | ets to fully de        | escribe a           | all units)               |                | (YES                      | / NO)    | BEARING<br>ZONES (gpm) |
|       | 0            | 8            | 8                                                                                |                               |           | Fine sand with   | minor coarse           | sand                |                          |                | Y                         | √ N      |                        |
|       | 8            | 10           | 2                                                                                | Light br                      | rown w    | ell-graded sand  | with gravel a          | nd white            | clay chunks              |                | Y                         | √ N      |                        |
|       | 10           | 19           | 9                                                                                |                               | Buff-     | colored well-gra | ded sand wit           | h minor             | silt                     |                | Y                         | √ N      |                        |
|       | 19           | 24           | 5                                                                                | Dark ora                      | inge me   | dium sand and f  | fine sand with         | n minor s           | silt and gravel          |                | <b>√</b> Y                | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| ц     |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| VEL   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| OF    |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| 00    |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| ICL   | =            |              |                                                                                  |                               |           | •                |                        |                     |                          |                | Y                         | N        |                        |
| COG   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| EOI   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| ROC   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| avi   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
| 4.1   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                | Y                         | N        |                        |
|       | METHOD U     | ISED TO ES   | TIMATE YIELD                                                                     | OF WATER-B                    | EARIN     | G STRATA:        |                        |                     |                          | тот            | AL ESTI                   | MATED    | L                      |
|       |              |              |                                                                                  | BAILER                        |           | THER – SPECII    | <sub>FY:</sub> Not App | licable             |                          | WEL            | L YIELI                   | D (gpm): | 0.00                   |
|       |              | ·            |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          |                        |
| z     | WELL TES     | T TEST       | RESULTS - ATT<br>T TIME, END TI                                                  | ACH A COPY (<br>ME. AND A TA  | OF DAT    | FA COLLECTE      | D DURING               | WELL 1<br>ID DRA    | FESTING, ING<br>WDOWN OV | CLUDI<br>ER TH | NG DISC<br>E TESTI        | CHARGE   | METHOD,<br>DD.         |
| OISI  |              |              |                                                                                  | ···                           |           |                  |                        |                     |                          |                |                           | -        |                        |
| ERV   | MISCELLA     | NEOUS INI    | T                                                                                | D Auger 20 fee                | et bgl; ' | TD core barre    | l drive 24 fe          | et bgl              |                          |                |                           |          |                        |
| SUPI  |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          |                        |
| RIG   |              |              |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          |                        |
| ST; I |              | -            |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          |                        |
| . TE  | PRINT NAM    | AE(S) OF D   | RILL RIG SUPEI                                                                   | RVISOR(S) THA                 | AT PRC    | VIDED ONSIT      | E SUPERVI              | SION O              | F WELL CON               | ISTRU          | CTION C                   | OTHER TI | HAN LICENSEE:          |
| 4,    | Kalvin Padi  | lla          |                                                                                  |                               |           |                  |                        |                     |                          |                |                           |          |                        |
|       | BY SIGNIN    | IG BELOW     | , I CERTIFY TH                                                                   | IAT TO THE B                  | BEST C    | F MY KNOW        | LEDGE ANI              | D BELI              | EF, THE FOI              | REGON          | NG IS A                   | TRUE A   | AND CORRECT            |
| JRE   | RECORD O     | F THE ABO    | VE DESCRIBED                                                                     | ) WELL. I ALSO<br>WITH THE PE | ) CERI    | TIFY THAT TH     | E WELL TA              | G, IF RI<br>S AFTEI | EQUIRED, HA              | AS BEE         | N INSTA                   | ALLED A  | ND THAT THIS<br>LING.  |
| IATU  | man I        | a            | Digitally signed by Mark Mumby                                                   | ,                             |           |                  |                        |                     |                          |                |                           |          |                        |
| SIGN  | 111 IS E. J. | 14 Junet > N | DN: cn=Mark Mumby, o=HRL C<br>ou=Security Division,<br>email=mmumby@hrlcomp.com, | Comp,<br>c=US                 | I         | Mark Mumby       |                        |                     |                          |                | 6/9                       | /2020    |                        |
| 6.5   |              | SICNAT       | Date: 2020.06.09 10:07:23 -06'00                                                 |                               |           | NAME             |                        |                     |                          |                |                           | DATE     |                        |
|       |              | JIJINAI      | ORE OF DRILLI                                                                    | JR / FRINT SI                 | UNCE      |                  |                        |                     |                          |                |                           | DATE     | ······                 |
| FO    | R OSE INTER  | NAL USE      | 1.1000                                                                           |                               |           |                  |                        |                     | WR-20 WE                 | LL RE          | CORD &                    | LOG (Ve  | rsion 04/30/2019)      |
| FIL   | E NO.        | <u>~ L-</u>  | 148,1                                                                            | y                             |           | POD NO.          | $\Delta$               | r                   | TRN NO.                  | Ľ              | <u>10'</u>                | 11'      | l                      |
| LO    | CATION C     | <u>-1-k</u>  | d                                                                                | 15-5                          | 55t       | -32              |                        | WELL                | , TAG ID NO.             | $\mathbb{N}$   | $\underline{\mathcal{H}}$ |          | PAGE 2 OF 2            |



DSEDII JUN 16 2020 MB:23

#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|          | OSE POD NO            | . (WELL NO     | .)                          | [                                                                               | WELL TAG ID NO.                   |                                               | · · · · .         | OSE FILE NO(               | S).                  |                   | <u> </u>         |         |
|----------|-----------------------|----------------|-----------------------------|---------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-------------------|----------------------------|----------------------|-------------------|------------------|---------|
| ION      | POD13                 |                |                             |                                                                                 | SB-13                             |                                               |                   | L 14876                    |                      |                   |                  |         |
| CAT      | WELL OWNE             | ER NAME(S)     |                             |                                                                                 |                                   |                                               |                   | PHONE (OPTIC               | DNAL)                |                   |                  |         |
| ΓO       | Amisuong              |                | ADDRESS                     |                                                                                 |                                   |                                               |                   | OTTY                       |                      | OTATE             |                  | 710     |
| ELL      | P.O. Box 1            | 973            | ADDRESS                     |                                                                                 |                                   |                                               |                   | Roswell                    |                      | NM                | 88202            | ZIP     |
| M QI     |                       |                | DE                          | GREES                                                                           | MINUTES                           | SECON                                         | IDS               |                            |                      |                   |                  |         |
| LAN      | WELL<br>LOCATIO       | N TA           |                             | 32                                                                              | 37                                | 22.17                                         | 772 <sub>N</sub>  | * ACCURACY                 | REQUIRED: ONE TENT   | TH OF A S         | ECOND            |         |
| ERA      | (FROM GP              | (S)            | NGITUDE                     | 103                                                                             | 28                                | 33.1                                          | 716 W             | * DATUM REC                | QUIRED: WGS 84       |                   |                  |         |
| GEN      | DESCRIPTIO            | ON RELATIN     | NG WELL LOCATION TO         | STREET ADDR                                                                     | ESS AND COMMON                    | LANDM                                         | ARKS – PLS        | S (SECTION, TO             | WNSHJIP, RANGE) WH   | ERE AVA           | ILABLE           |         |
| 1.       | West Pearl            | Queen          |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
|          | LICENSE NO            | ).             | NAME OF LICENSED            | DRILLER                                                                         |                                   |                                               |                   |                            | NAME OF WELL DR      | ILLING CO         | MPANY            |         |
|          | 178                   |                |                             |                                                                                 | Mark Mumby                        |                                               |                   |                            | HRL C                | omplianc          | e Solutions      |         |
|          | DRILLING ST<br>4/15/2 | tarted<br>2020 | DRILLING ENDED<br>4/15/2020 | DEPTH OF CO<br>NC                                                               | MPLETED WELL (F1<br>ot Applicable | F)                                            | BORE HOI          | LE DEPTH (FT)<br>25        | DEPTH WATER FIRS     | ST ENCOU<br>18.35 | NTERED (FT)<br>5 |         |
|          |                       | D WELL IS      |                             |                                                                                 |                                   | Wables                                        |                   |                            | STATIC WATER LEV     | EL IN CO          | MPLETED WE       | LL (FT) |
| NO       | COMPLETE              | D WELL IS:     | AKIESIAN                    |                                                                                 | E I SHALLO                        | w (UNCO                                       | infineD)          |                            |                      | 17.09             | <b>;</b>         |         |
| IATI     | DRILLING FI           | LUID:          | AIR                         | MUD                                                                             | ADDITIV                           | ES – SPEC                                     | CIFY:             | <u> </u>                   |                      |                   |                  |         |
| ORM      | DRILLING M            | IETHOD:        |                             |                                                                                 | CABLE T                           | OOL                                           | ✓ OTHE            | R – SPECIFY:               | Hollo                | w Stem            | Auger            |         |
| INF      | DEPTH                 | (feet bgl)     | BORE HOLE                   | CASING                                                                          | MATERIAL AND                      | O/OR                                          | CA                | ASING                      | CASING               |                   | NG WALL          | SLOT    |
| SNI      | FROM                  | ТО             | DIAM                        | (include each casing string, and<br>note sections of screen) (add coupling diam |                                   |                                               | VECTION<br>YPE    | INSIDE DIAM.               | THIC                 | CKNESS<br>nches)  | SIZE (inches)    |         |
| CAS      | 0                     | 10             | 6 25                        | note s                                                                          | Blank PVC                         |                                               | (add coup<br>Flus | ling diameter)<br>h Thread | 2                    |                   | ) 154            | NA      |
| G &      | 10                    | 25             | 6.25                        | Fact                                                                            | tory Slotted PVC                  |                                               | Flus              | h Thread                   | 2                    |                   | 0.154            | 0.010   |
|          |                       |                |                             | 1                                                                               |                                   |                                               | . ·               |                            |                      |                   |                  |         |
| DRI      |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
| <b>ה</b> |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   | <u> </u>         |         |
|          |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
|          |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
|          |                       |                |                             |                                                                                 |                                   |                                               |                   | -                          | -                    |                   |                  |         |
|          |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
|          | DEPTH                 | (feet bgl)     | BORE HOLE                   | LI                                                                              | ST ANNULAR SE                     | EAL MA                                        | TERIAL A          | AND                        | AMOUNT               |                   | METHO            | DOF     |
| IAL      | FROM                  | ТО             | DIAM. (inches)              | GRA                                                                             | VEL PACK SIZE                     | RANGE                                         | E BY INTE         | RVAL                       | (cubic feet)         |                   | PLACEN           | 1ENT    |
| TEF      | 0                     | 2              | 6.25                        |                                                                                 | Clean nat                         | tive back                                     | fill              |                            | 0.2                  |                   | Shov             | el      |
| X MA     | 2                     | 25             | 6.25                        |                                                                                 | Clean 1                           | 1000000000000000000000000000000000000         | nd                |                            | 1.7                  |                   | Pou              | r       |
| ILAF     |                       | 25             | 0.25                        |                                                                                 |                                   |                                               |                   |                            |                      |                   | 104              |         |
| NN       |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
| 3. A     |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   | -                |         |
|          |                       |                |                             |                                                                                 |                                   |                                               |                   |                            |                      |                   |                  |         |
| FOR      | OSE INTER             | NAL USE        |                             |                                                                                 |                                   |                                               | 2                 | WR-2                       | 0 WELL RECORD        | LOG (             | Version 04/3     | 0/19)   |
| FILE     | ATION                 | $-i\mathbf{U}$ | S'IL Ia                     | czc                                                                             |                                   | <u>).                                    </u> |                   | TRN I                      |                      |                   | PAGE             | 1 OF 2  |
| FILI     | ENO.                  | -lu            | sily ta                     | 5-35                                                                            | POD NO                            | ). V_<br>L                                    | <u>ろ</u>          | TRN I<br>WELL TAG I        | $\frac{NO.}{D NO.} $ | )^ <u>)</u><br>~  | PAGE             | 1 OF 2  |

Released to Imaging: 10/29/2024 7:37:14 AM

DSE DII JUN 16 2020 AM9:23

|       | DEPTH (f     | reet bgl)<br>TO       | THICKNESS<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COLOR<br>INCLUDE WA<br>(attach     | AND TYPE OF I<br>ATER-BEARING<br>supplemental sh | MATERIAL E<br>CAVITIES O<br>eets to fully de | NCOUN<br>R FRAC<br>escribe a | TERED -<br>TURE ZONES<br>Ill units) | S                 | WA'<br>BEAR<br>(YES                           | FER<br>ING?<br>/ NO) | ES<br>YI<br>V<br>B | TIMATED<br>ELD FOR<br>VATER-<br>EARING |
|-------|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|----------------------------------------------|------------------------------|-------------------------------------|-------------------|-----------------------------------------------|----------------------|--------------------|----------------------------------------|
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   |                                               |                      | ZO                 | NES (gpm)                              |
|       | 0            | 14                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Light brow                         | wn and orange w                                  | ell-graded sand                              | with mi                      | nor gravel                          |                   | Y                                             | ✓ N<br>N             |                    |                                        |
|       | 14           | 24                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oran                               | lge fine sand with                               | silt and minor                               | medium                       | sand                                |                   |                                               | N                    |                    |                                        |
|       |              | 27                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Orange and buri-co                 | lored wen-graded                                 | i sand with larg                             | e calcite                    | and write clay                      | y meru            | v                                             | V N                  |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  | <u>.</u>                                     | -                            |                                     |                   | v                                             | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    | *                                      |
| ELL   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              | <u> </u>                     |                                     |                   | v                                             | N                    |                    |                                        |
| F W   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| 0 00  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| сго   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| OGI   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| EOL   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| toGI  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
| YDF   |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | <br>v                                         | N                    |                    |                                        |
| 4. H  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | <br>Y                                         | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   |                                               | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | v                                             | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | <br>v                                         | N                    |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   | Y Y                                           | N                    |                    |                                        |
|       | METHOD U     | SED TO ES             | I<br>STIMATE YIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OF WATER-BEAR                      | ING STRATA:                                      |                                              |                              |                                     |                   | LESTIN                                        | IATED                |                    |                                        |
|       |              |                       | тратст Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                                                  | IEV. Not Ann                                 | licable                      |                                     | WEL               | L YIELD                                       | ) (gpm):             |                    | 0.00                                   |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BAILER                             | OTHER - SPEC                                     | IF 1                                         |                              |                                     |                   |                                               |                      |                    |                                        |
| ION   | WELL TES     | T TEST<br>STAR        | RESULTS - ATT<br>T TIME, END TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACH A COPY OF D<br>ME, AND A TABLE | DATA COLLECT                                     | ED DURING                                    | WELL T<br>D DRAV             | ESTING, INC<br>WDOWN OVI            | CLUDIN<br>ER THE  | NG DISC<br>E TESTIN                           | HARGE I<br>IG PERIC  | METH<br>DD.        | OD,                                    |
| ISIV  | MISCELLA     | NEOUS INF             | FORMATION: TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D Auger 25 feet by                 | l: TD core barr                                  | el drive 27 fe                               | et høl                       | X                                   |                   |                                               |                      |                    |                                        |
| IPER  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | ,,, 12 0010 0411                                 | ••••••••                                     |                              |                                     |                   |                                               |                      |                    |                                        |
| G SI  |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   |                                               |                      |                    |                                        |
| I; RI |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   |                                               |                      |                    |                                        |
| TES   | PRINT NAM    | IE(S) OF D            | RILL RIG SUPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VISOR(S) THAT P                    | ROVIDED ONS                                      | TE SUPERVI                                   | SION OI                      | F WELL CON                          | STRUC             | TION O                                        | THER TH              | IAN L              | ICENSEE:                               |
| 5.    | Kalvin Padi  | lla                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                  |                                              |                              |                                     |                   |                                               |                      |                    |                                        |
|       | BY SIGNIN    | G BELOW               | , I CERTIFY TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AT TO THE BEST                     | OF MY KNOW                                       | VLEDGE ANI                                   | ) BELII                      | EF, THE FOR                         | EGOIN             | IG IS A                                       | TRUE A               | ND C               | ORRECT                                 |
| URE   | WELL RECO    | F THE ABO<br>ORD WILL | ALSO BE FILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WELL. I ALSO CE<br>WITH THE PERMI  | THAT THAT T<br>THOLDER WI                        | HE WELL TAG<br>HIN 30 DAYS                   | J, IF RE<br>AFTER            | QUIRED, HA                          | .s beel<br>.etion | N INSTA<br>I OF WE                            | LLED AI              | ND TH<br>LING.     | IAT THIS                               |
| NAT   | mite         | m $L$                 | Digitally signed by Mark Mumby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                  |                                              |                              |                                     |                   |                                               |                      |                    |                                        |
| SIG   | 1"10 C. 11   | A Contraction         | mail=mmumby@hrlcomp.com, of the comp.com, of the comp.com | =US                                | Mark Mumby                                       | 1                                            |                              |                                     |                   | 6/9/                                          | 2020                 |                    |                                        |
| 6.    |              | SIGNAT                | URE OF DRILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R / PRINT SIGN                     | EE NAME                                          |                                              | _                            |                                     |                   |                                               | DATE                 |                    |                                        |
|       |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                  |                                                  |                                              |                              |                                     |                   |                                               |                      |                    |                                        |
| FOI   | R OSE INTERI | NAL USE               | 8710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                  | 2                                            |                              | WR-20 WEI                           |                   | CORD &                                        |                      | rsion (            | 4/30/2019)                             |
|       |              | <u>_' 194</u> ) 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as-25                              |                                                  | <u>Э</u>                                     | 11.000                       | TRIN NU.                            | -Ve               | A                                             | <u> </u>             | DA                 | GE 2 OF 2                              |
|       | $\sim$       | ·· \ ·                | ユ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | $\underline{c}$                                  |                                              | WELL                         | TAG ID NO.                          |                   | <u>, , , , , , , , , , , , , , , , , , , </u> |                      |                    |                                        |

#### Page 70 of 198

# WELL RECORD & LOG

DSE DII JUN 18 2020 M9:23

Į

#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

| NO       | OSE POD NO<br>POD14      | . (WELI         | L NO.)      | 1                  | S                   | well tag id no.<br>SB-14     |           |            | ose file no(<br>L 14876 | S).                   |                                        |             |                       |                  |
|----------|--------------------------|-----------------|-------------|--------------------|---------------------|------------------------------|-----------|------------|-------------------------|-----------------------|----------------------------------------|-------------|-----------------------|------------------|
| OCATI    | WELL OWNI<br>Armstrong   | ER NAM<br>Energ | ie(s)<br>Sy |                    |                     |                              |           |            | PHONE (OPTI             | ONAL)                 |                                        |             |                       |                  |
| MELL L   | WELL OWNI<br>P.O. Box 1  | er mai<br>973   | LING        | ADDRESS            |                     |                              |           |            | CITY<br>Roswell         |                       | ST<br>NI                               | ATE<br>M    | 88202                 | ZIP              |
| <b>N</b> | WELL                     |                 |             | DE                 | EGREES              | MINUTES                      | SECO      | NDS        |                         |                       |                                        |             |                       |                  |
| ML/      | LOCATIO                  | N (N            | LAT         | ITUDE              | 32                  | 3/                           | 23.1      | 168 N      | * ACCURACY              | REQUIRED: ON          | IE TENTH C                             | OF A SE     | COND                  |                  |
| CNER     | (FROM GP                 | (5)             | LON         | GITUDE             | 103                 | 28                           | 31.7      | 562 W      |                         |                       | •••••••••••••••••••••••••••••••••••••• |             |                       |                  |
| 1. GI    | DESCRIPTIO<br>West Pearl | ON REL          | ATINO<br>n  | G WELL LOCATION TO | ) STREET ADDRE      | SS AND COMMON                | I LANDM   | ARKS – PLS | S (SECTION, TO          | WNSHJIP, RANO         | GE) WHERE                              | AVAII       | LABLE                 |                  |
|          | LICENSE NO               | ).              |             | NAME OF LICENSED   | DRILLER             |                              |           |            |                         | NAME OF WE            | ELL DRILLI                             | NG CO       | MPANY                 |                  |
|          | 178                      | <u> </u>        |             |                    | ז<br>               | Mark Mumby                   |           |            |                         |                       | HRL Com                                | pliance     | e Solutions           |                  |
|          | DRILLING S<br>4/15/2     | tartei<br>2020  | D           | 4/15/2020          | DEPTH OF COM<br>Not | PLETED WELL (F<br>Applicable | Г)        | BORE HOI   | LE DEPTH (FT)<br>25     | DEPTH WAT             | ER FIRST E<br>Not E                    | ncour       | ntered (FT)<br>ntered |                  |
| Z        | COMPLETEI                | D WELL          | . IS:.      | ARTESIAN           | DRY HOLE            | SHALLO                       | W (UNCC   | NFINED)    |                         | STATIC WAT            | ER LEVEL                               | IN COM      | IPLETED WE            | LL (FT)          |
| ATIO     | DRILLING FI              | LUID:           |             | 🖌 AIR              | MUD                 | ADDITIV                      | ES – SPE  | CIFY:      |                         |                       |                                        |             |                       |                  |
| DRM      | DRILLING M               | IETHOD          | <b>D</b> :  | ROTARY             | HAMMER              | CABLE T                      | OOL       | OTHE       | R - SPECIFY:            |                       | Hollow S                               | Stem A      | Auger                 |                  |
| INFC     | DEPTH                    | (feet b         | gl)         | BORE HOLE          | CASING M            | IATERIAL AND                 | D/OR      | CA         | SING                    | CASING                | G (                                    | CASIN       | G WALL                | SLOT             |
| SING     | FROM                     | Т               | 'O          | DIAM<br>(inches)   | (include ea         | ch casing string,            | and       | CONN       | VECTION<br>YPE          | INSIDE DI<br>(inches) | AM.<br>)                               | THIC<br>(in | KNESS<br>(ches)       | SIZE<br>(inches) |
| ¢ CA     |                          |                 |             |                    | Note se             | ot Installed                 |           | (and coup  | ling diameter)          |                       |                                        |             |                       |                  |
| UC V     |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
| ILLI     |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
| DRI      |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
| ~        |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
|          |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
|          |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
|          |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
|          |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
|          | DEPTH                    | (feet b         | gl)         | BORE HOLE          | LIST                | Γ ANNULAR SI                 | EAL MA    | TERIAL A   | AND                     | AMO                   | UNT                                    |             | METHO                 | D OF             |
| IAL      | FROM                     | Т               | O           | DIAM. (inches)     | GRAV                | EL PACK SIZE                 | RANGI     | E BY INTE  | RVAL                    | (cubic                | feet)                                  |             | PLACEN                | IENT             |
| TER      |                          |                 |             | 6.25               |                     | Not I                        | installed |            |                         |                       |                                        |             |                       |                  |
| MA       |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
| AR       |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        |             |                       |                  |
| INNI     |                          |                 |             |                    |                     |                              |           |            |                         |                       |                                        | _           |                       |                  |
| S. AD    |                          |                 |             |                    |                     | ·                            |           |            |                         |                       |                                        |             | · · ·                 |                  |
| (*)      |                          |                 |             |                    |                     |                              |           |            | ·                       |                       |                                        |             |                       |                  |
| FOR      | OSE INTER                |                 | ISF         |                    | 1                   |                              |           |            |                         | N WELL REC            | ORD & L                                | <br>06.0v   | Version 04/2          | 0/19)            |
| FILI     | E NO.                    | PI              | Ĩ           | 710                |                     | POD NO                       | ). IL     | ţ          | TRN 1                   | NO.                   | <u> </u>                               | ŤŤ          | 1                     |                  |

LOCATION

SE

Û

PAGE 1 OF 2

WELL TAG ID NO.

| OSE DII | JUN | 16 | 2020 | RM3:23 |
|---------|-----|----|------|--------|
|---------|-----|----|------|--------|

| FROM         TO         THICKNESS<br>(feet)         TULIDE WATER-BEARING CALIFE OUR RACIUME ZONES<br>(attach supplemental sheets to fully describe all units)         WATER<br>WATER<br>BEARING<br>(VES / NO)         WATER<br>WATER<br>BEARING<br>(VES / NO)           0         13         13         Tan to enage well-graded and with minor silt         Y         / N           13         19         6         Pink to pale-built colored sity fine sand         Y         / N           13         19         6         Pink to pale-built colored sity fine sand         Y         / N           24         27         3         Brick red color clay with medium and es well-graded sand with minor silt         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         1         -         -         Y         N           24         27         N         -         Y         N           24         27         N         -         Y         N           24         27         N         -         Y         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | DEPTH (f     | eet bgl)       |                                                                                        |                                                                                                                     |                                        | ESTIMATED              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|
| FROM         TO         (feer)         istatch supplemental sheets to fully describe all unito)         (YES / NO)         BEFARING<br>ZONES (gen)           0         13         13         Tan to orange well-graded sand with minor sit         Y         V         N           13         19         6         Pink to pale-buff colored sitly fine sand         Y         V         N           19         24         5         Orange to slightly task well-graded sand with minor sit         Y         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              |                | THICKNESS                                                                              | INCLUDE WATER-BEARING CAVITIES OF FRACTURE ZONES                                                                    | WATER<br>BEARING?                      | YIELD FOR<br>WATER-    |
| 0         13         13         Tan to orange well-graded sand with minor silt         Y         V         N           13         19         6         Pink to pale-buff colored sitty fine sand         Y         V         N           19         24         5         Orange to slightly task well-graded sand with minor sitt         ✓ Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         N         Y         N         Y         N           24         27         N         Y         N         Y         N           24         27         N         Y         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | FROM         | то             | (feet)                                                                                 | (attach supplemental sheets to fully describe all units)                                                            | (YES / NO)                             | BEARING<br>ZONES (gpm) |
| I3         19         6         Pink to pale-buff colored silty fine sand         Y         N           19         24         5         Orange to slightly tank well-graded sand with minor silt         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and cs well-graded sand and calcite chunks         Y         N <tr< td=""><td></td><td>0</td><td>13</td><td>13</td><td>Tan to orange well-graded sand with minor silt</td><td>Y V N</td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 0            | 13             | 13                                                                                     | Tan to orange well-graded sand with minor silt                                                                      | Y V N                                  |                        |
| IP         24         5         Orange to slightly tank well-graded sand with minor silt         ✓ Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand and calcite chunks         Y         N           24         27         3         Brick red color clay with medium and es well-graded sand well graded sand well grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 13           | 19             | 6                                                                                      | Pink to pale-buff colored silty fine sand                                                                           | Y 🗸 N                                  |                        |
| 24       27       3       Brick red color clay with medium and cs well-graded sand and calcite chunks       Y       N         1       1       1       1       Y       N         1       1       1       1       Y       N         1       1       1       1       Y       N         1       1       1       1       Y       N         1       1       1       Y       N       1         1       1       1       Y       N       1         1       1       1       Y       N       1         1       1       1       1       Y       N         1       1       1       1       1       1       1         1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 19           | 24             | 5                                                                                      | Orange to slightly tank well-graded sand with minor silt                                                            | ✓Y N                                   |                        |
| No         Y         N           I         I         I         Y         N           I         I         I         I         Y         N           I         I         I         I         I         Y         N           I         I         I         I         I         I         I         I           I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 24           | 27             | 3                                                                                      | Brick red color clay with medium and cs well-graded sand and calcite chunk                                          | is Y 🗸 N                               |                        |
| Note         Y         N           Image: Section of the sectin of the section of the sectin of the sectin of the secti                                     |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| MOODOUGH       Y       N         Image: Section of the sectin of the section of the section of the sectin of the section of th                                             | F.         |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V       N         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEI        |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| VI       N         VI <td< td=""><td>OF</td><td></td><td></td><td></td><td></td><td>Y N</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OF         |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| VI       VI       N         VIII       VIIII       VIIII       VIIIII         VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [00]       |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Method Used to estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata:       Y       N         Miscellane:       Total estimate Yield of Water-Bearing Strata       Y       N         Miscellane:       Total estimate Yield of Water-Bearin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       V       N         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       0.00         MISCELLANEUUS INFORMATION:       TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl       V       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I.OC       |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GEO        |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>BRO</b> |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Image: Second | IXH        |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, EAD TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, EAD TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       0.00         MISCELLANEOUS INFORMATION:       TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl       VI and to the period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4          |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Image: State of the state  |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| $ \begin{array}{ c c c c c c } \hline \  & \  & \  & \  & \  & \  & \  & \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Image: Start Time, End Time, And A TABLE Showing Discharge And Drawdown over the testing period.       Y       N         Image: Start Time, End Time, End Time, And A TABLE Showing Discharge And Drawdown over the testing period.       VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| Image: State of the state  |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATED         PUMP       AIR LIFT       BAILER       OTHER - SPECIFY: Not Applicable       WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       MISCELLANEOUS INFORMATION:         TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl       TO Auger 25 feet bgl; TD core barrel drive 27 feet bgl       To Auger 25 feet bgl; TD core barrel drive 27 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATED         PUMP       AIR LIFT       BAILER       OTHER - SPECIFY: Not Applicable       WELL YIELD (gpm): 0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       MISCELLANEOUS INFORMATION: TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |                |                                                                                        |                                                                                                                     | Y N                                    |                        |
| WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | METHOD U     | SED TO ES      | TIMATE YIELD                                                                           | OF WATER-BEARING STRATA:                                                                                            | OTAL ESTIMATED                         |                        |
| WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | <b>PUMI</b>  | P 🗌 A          | IR LIFT                                                                                | BAILER OTHER – SPECIFY: Not Applicable                                                                              | VELL YIELD (gpm):                      | 0.00                   |
| MISCELLANEOUS INFORMATION: TD Auger 25 feet bgl; TD core barrel drive 27 feet bgl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO         | WELL TES     | T TEST<br>STAR | RESULTS - ATT<br>T TIME, END TI                                                        | ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLU<br>ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER      | JDING DISCHARGE N<br>THE TESTING PERIC | METHOD,<br>DD.         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [SIV]      | MISCELLA     | NEOUS INF      | FORMATION: TI                                                                          | D Auger 25 feet bgl: TD core barrel drive 27 feet bgl                                                               |                                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JPER       |              |                | -                                                                                      |                                                                                                                     |                                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC SI      |              |                |                                                                                        |                                                                                                                     |                                        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T; RI      |              | · · · · ·      |                                                                                        |                                                                                                                     |                                        |                        |
| PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TES        | PRINT NAM    | IE(S) OF D     | RILL RIG SUPER                                                                         | RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST                                                            | RUCTION OTHER TH                       | IAN LICENSEE:          |
| Vi Kalvin Padilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S.         | Kalvin Padi  | lla            |                                                                                        |                                                                                                                     |                                        |                        |
| BY SIGNING BELOW, I CERTIFY THAT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | BY SIGNIN    | G BELOW        | I CERTIFY TH                                                                           | AT TO THE BEST OF MY KNOWLEDGE AND BELIEF, THE FORE                                                                 | OING IS A TRUE A                       | ND CORRECT             |
| B RECORD OF THE ABOVE DESCRIBED WELL. TALSO CERTIFY THAT THE WELL TAG, IF REQUIRED, HAS BEEN INSTALLED AND THAT THIS WELL RECORD WILL ALSO BE FILED WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLETION OF WELL DRILLING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | URE        | WELL RECO    | ORD WILL       | ALSO BE FILED                                                                          | WELL TALSO CERTIFT THAT THE WELL TAG, IF REQUIRED, HAS I<br>WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE COMPLET | NON OF WELL DRIL                       | LING.                  |
| Digitally signed by Mark Mumby<br>Discon-Mark Mumby, co-HRL Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAT        | m.15 p       | m 4-           | Digitally signed by Mark Mumby<br>DN: cn=Mark Mumby, o=HRL C                           | omp.                                                                                                                |                                        |                        |
| Mark Mumby 6/9/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SIG        | 11-101 C. 11 | ne ne          | u=Security Division,<br>mail=mmumby@hrlcomp.com, o<br>Date: 2020.06.09 10:09:09 -06'00 | Mark Mumby                                                                                                          | 6/9/2020                               |                        |
| SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŷ          |              | SIGNAT         | URE OF DRILLE                                                                          | ER / PRINT SIGNEE NAME                                                                                              | DATE                                   | _                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |                |                                                                                        |                                                                                                                     |                                        |                        |
| FILE NO. $(-148)$ POD NO. 14 TRN NO. $(2'10)$ TRN NO. $(2'10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FILI       | E NO.        | -149           | $\gamma$                                                                               | POD NO. IU TRN NO. (                                                                                                |                                        | (SION 04/30/2019)      |
| LOCATION 2.1.2 195-35E-32 WELL TAG ID NO. NA PAGE 2 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOC        | CATION       | 1.1.           | 2 419                                                                                  | S-3SE-32 WELL TAGID NO                                                                                              | NA                                     | PAGE 2 OF 2            |



#### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

| -           | OSE POD NO  | . (WELL NO | D.)                 |             | WELL TAG ID NO      | 6          |              | OSE FILE NO(   | S).                                   |            |                         |                  |
|-------------|-------------|------------|---------------------|-------------|---------------------|------------|--------------|----------------|---------------------------------------|------------|-------------------------|------------------|
| IOI         | PODI        |            |                     |             | SB20                |            |              | L-15106        |                                       |            |                         | 2                |
| AT          | WELL OWNE   | ER NAME(S  | 5)                  |             |                     |            |              | PHONE (OPTIC   | ONAL)                                 |            |                         |                  |
| 00          | Armstrong   | Energy     |                     |             |                     |            |              |                |                                       |            |                         |                  |
| T           | WELL OWNE   | ER MAILIN  | G ADDRESS           |             |                     |            |              | CITY           |                                       | STATE      | Ξ                       | ZIP              |
| VEI         | P.O. Box 1  | 973        |                     |             |                     |            |              | Roswell        |                                       | NM         | 88202                   |                  |
| í a         |             | 1          | DE                  | GREES       | MINUTES             | SECON      | IDS          |                |                                       |            |                         |                  |
| A           | WELL        |            |                     | 103         | 28                  | 32.5       | 51           | * ACCURACY     | REQUIRED: ONE TEN                     | TH OF A    | SECOND                  |                  |
| RAL         | (FROM GP    | N LA       | TITUDE              | 20          | 27                  | 25         | N            | * DATUM REC    | NURED: WGS 84                         | morA       | SECOND                  |                  |
| NEI         | (incom or   |            | NGITUDE             | 32          | 37                  | 25.0       | 52 W         | Diffemilie     | concept web of                        |            |                         |                  |
| GE          | DESCRIPTIO  | ON RELATI  | NG WELL LOCATION TO | STREET ADD  | RESS AND COMMO      | N LANDM    | ARKS – PLS   | S (SECTION, TO | WNSHJIP, RANGE) WH                    | ERE AV     | AILABLE                 |                  |
| 1.          | West Pearl  | Queen      |                     |             |                     |            |              |                |                                       |            |                         |                  |
|             |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
|             | LICENSE NO  | 39         | NAME OF LICENSED    | DRILLER     | Mark Mumby          |            |              |                | NAME OF WELL DR                       | ILLING (   | COMPANY<br>Solutions In | C                |
|             |             |            |                     |             | Wark Wainby         |            |              |                |                                       | inpitation | c solutions, m          |                  |
|             | DRILLING ST | TARTED     | DRILLING ENDED      | DEPTH OF CO | MPLETED WELL (F     | T)         | BORE HOI     | LE DEPTH (FT)  | DEPTH WATER FIR                       | ST ENCO    | OUNTERED (FT)           | )                |
|             | 0/23/2      | .021       | 8/23/2021           |             | 50                  |            |              | 57             | IVI                                   | oist at    | ~21 leet                |                  |
|             | COMPLETEI   | WELL IS:   | ARTESIAN            | DRY HO      |                     | W UNCO     | NEINED)      |                | STATIC WATER LEV                      | EL IN C    | OMPLETED WE             | ELL (FT)         |
| NO          |             |            |                     |             |                     | on (enco   | (UII(LD)     |                |                                       | 2          |                         |                  |
| III         | DRILLING FI | LUID:      | ✓ AIR               | MUD         | ADDITIV             | /ES – SPEC | CIFY:        |                |                                       |            |                         |                  |
| RM          | DRILLING M  | ETHOD:     | ✓ ROTARY            | HAMME       | R CABLE 1           | TOOL       | OTHE         | R - SPECIFY:   |                                       |            |                         |                  |
| FO          | DEPTH       | (feet hal) |                     | CASING      | MATERIAL ANI        |            |              |                |                                       | Ι          |                         | 1                |
| A D         | FROM        | TO         | BORE HOLE           | CASING      | GRADE               | D/OK       | CA           | SING           | CASING                                | CAS        | ING WALL                | SLOT             |
| ING         | TROM        | 10         | (inches)            | (include    | each casing string, | , and      | CONN         | YPE            | INSIDE DIAM.                          |            | (inches)                | SIZE<br>(inches) |
| CAS         | 0           | 51         | (inclico)           | note        | sections of screen) | )          | (add coupl   | ing diameter)  | ) (inches) (inches) (inches) (inches) |            |                         |                  |
| S           | 0           | 51         | 6                   | P           | Blank PVC           |            | Flush        | n Thread       | 2                                     |            | 0.154                   | N/A              |
| ONI         | 51          | 50         | 0                   | Pre-        | Pack Slotted PVC    |            | Flush        | n Thread       | 2                                     |            | 0.154                   | 0.010            |
| ILL         |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| DR          |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| 5           |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| - 18        |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
|             |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| 5           |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
|             |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| ang<br>Bang |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
|             | DEPTH       | (feet hgl) | BOREHOLE            | 11          | ST ANNUI AD SI      | FAL MA     | TERIAL A     | ND             | AMOUNT                                | Ι          | METHO                   | DOE              |
| IL          | FROM        | ΤΟ         | DIAM. (inches)      | GRA         | VEL PACK SIZE       | -RANGE     | BY INTE      | RVAL           | (cubic feet)                          |            | PLACEN                  | MENT             |
| SRI         | 0           | 2          | 6                   |             | Co                  | ncrete     |              |                | 0.2                                   |            | Pou                     | r                |
| ATH         | 2           | 48         | 6                   |             | Ber                 | ntonite    |              |                | 4.05                                  |            | Trem                    | nie              |
| M           | 48          | 57         | 6                   | 1           | 0-20 Prepack and b  | pagged cl  | ean silica s | and            | 0.81                                  |            | Trem                    | nie              |
| LA          |             |            |                     |             |                     |            |              | 0.01           |                                       |            |                         |                  |
|             |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| AN          |             |            |                     |             |                     |            |              |                | the part of the last manual           |            |                         | é                |
| Э.          |             |            |                     |             |                     |            |              |                | Land Land Land Land Land Land         | 282        | UZI PMZ:20              |                  |
|             |             |            |                     |             |                     |            |              |                |                                       |            |                         |                  |
| FOR         | OSE INTER   | NAL USE    |                     |             |                     |            |              | WR-20          | ) WELL RECORD                         | & LOG      | (Version 04/3           | 0/19)            |

| TOR ODE MILEIAME ODE    |         | THE DO HEDEL    | needre a roo ( | croion o noorioj |
|-------------------------|---------|-----------------|----------------|------------------|
| FILE NO. 6-13106        | POD NO. | TRN NO.         | 688109         |                  |
| LOCATION 195-35E-32 212 | _       | WELL TAG ID NO. | NA             | PAGE 1 OF 2      |
|                         |         |                 |                |                  |
|                | DEPTH (                                      | feet bgl)                        |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | 1.00                             |                             | ESTIMATED                                     |
|----------------|----------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------|---------------------------|----------------------------------|-----------------------------|-----------------------------------------------|
|                | FROM                                         | то                               | THICKNESS<br>(feet)                                                                                                                                                                                          | COLOR AN<br>INCLUDE WATH<br>(attach sup                                        | ID TYPE OF MAT<br>ER-BEARING CA<br>oplemental sheets           | ERIAL E                       | NCOUN<br>R FRAC<br>escribe :  | TERED -<br>CTURE ZONE<br>all units)    | s                         | WA<br>BEAR<br>(YES               | TER<br>RING?<br>/ NO)       | YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|                | 0                                            | 20                               | 20                                                                                                                                                                                                           | Reddish Orange Silt                                                            | ty sand w/some cla                                             | y and grav                    | el, occa                      | sional caliche                         | soft                      | Y                                | 🖌 N                         |                                               |
|                | 20                                           | ~28                              | ~8                                                                                                                                                                                                           | White Silty sand                                                               | d w/some clay and                                              | gravel, int                   | terbedde                      | d caliche soft                         |                           | ✓ Y                              | Ν                           |                                               |
|                | 28                                           | 57                               | 29                                                                                                                                                                                                           | Reddish Orange to                                                              | purple poorly grad                                             | led fine sa                   | and and o                     | caliche, dry ha                        | d                         | Y                                | ✓ N                         |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| T              |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| WEI            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| OF             |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| DOJ            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| ICI            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | N                           |                                               |
| TOC            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| GEO            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               | 1. A. L.                      |                                        |                           | Y                                | Ν                           |                                               |
| ORO            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | N                           |                                               |
| HYI            |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
| 4              |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                |                                              |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           | Y                                | Ν                           |                                               |
|                | METHOD U                                     | SED TO E:<br>P $\square$ A       | STIMATE YIELD                                                                                                                                                                                                | OF WATER-BEARIN                                                                | G STRATA:<br>THER – SPECIFY:                                   | N/A                           |                               |                                        | TOTAI<br>WELL             | L ESTIN                          | MATED<br>(gpm):             | 0.00                                          |
| Z              | WELL TES                                     | T TEST<br>STAR                   | RESULTS - ATT.                                                                                                                                                                                               | ACH A COPY OF DAT                                                              | TA COLLECTED                                                   | DURING<br>ARGE AN             | WELL 1<br>D DRA               | TESTING, INC                           | CLUDIN<br>ER THE          | G DISC                           | HARGE                       | METHOD,<br>DD.                                |
| RIG SUPERVISIO | MISCELLA                                     | I<br>NEOUS IN                    | FORMATION:                                                                                                                                                                                                   |                                                                                |                                                                |                               |                               | D                                      | SE 0)1                    | SEP :                            | 28 202                      | L. DW2;24                                     |
| EST            | PRINT NAM                                    | IE(S) OF D                       | RILL RIG SUPER                                                                                                                                                                                               | VISOR(S) THAT PRO                                                              | VIDED ONSITE :                                                 | SUPERVI                       | SION O                        | F WELL CON                             | STRUC                     | TION O                           | THER TH                     | IAN LICENSEE:                                 |
| 5. T           | Jesse Cote                                   |                                  |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               |                                        |                           |                                  |                             |                                               |
| 6. SIGNATURE   | BY SIGNIN<br>RECORD O<br>WELL REC<br>Mil E M | G BELOW<br>F THE ABO<br>ORD WILL | V, I CERTIFY TH<br>DVE DESCRIBED<br>ALSO BE FILED<br>Digitally signed by Mark Mumby<br>DN: cm-Mark Mumby, o-HRL Co<br>cu-Security Division,<br>email=mmumby@hlrcomp.com, c<br>Date: 2021.09.23 10.3925.04000 | AT TO THE BEST O<br>WELL. I ALSO CERT<br>WITH THE PERMIT F<br>""", M<br>""", M | F MY KNOWLE<br>TFY THAT THE V<br>HOLDER WITHIN<br>ark E. Mumby | DGE ANI<br>VELL TA<br>30 DAYS | D BELI<br>G, IF RI<br>S AFTER | EF, THE FOR<br>QUIRED, HA<br>THE COMPI | EGOIN<br>S BEEN<br>LETION | G IS A<br>INSTA<br>OF WE<br>9/23 | TRUE A<br>LLED A<br>LL DRIL | ND CORRECT<br>ND THAT THIS<br>LING.           |
|                |                                              | SIGNAT                           | URE OF DRILLE                                                                                                                                                                                                | R / PRINT SIGNEE                                                               | NAME                                                           |                               |                               |                                        |                           |                                  | DATE                        |                                               |
| FO             | R OSE INTER                                  | NAL USE                          |                                                                                                                                                                                                              |                                                                                |                                                                |                               |                               | WR-20 WE                               | LL RECO                   | ORD &                            | LOG (Ve                     | ersion 04/30/2019)                            |
| FIL            | E NO                                         | 5101                             | 6                                                                                                                                                                                                            |                                                                                | POD NO.                                                        |                               |                               | TRN NO.                                | 388                       | 10                               | 9                           |                                               |
| LO             | CATION                                       | 5-2                              | 55E-3                                                                                                                                                                                                        | 2 212                                                                          |                                                                |                               | WELL                          | TAG ID NO.                             | N                         | J/A                              |                             | PAGE 2 OF 2                                   |



# WELL RECORD & LOG

# OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|        | OGE BOR MO. T              |                  | >                  |             |                             |            | 10.00 A MORE HIS | 0.000 000 0000           |                                  |                         |            |          |
|--------|----------------------------|------------------|--------------------|-------------|-----------------------------|------------|------------------|--------------------------|----------------------------------|-------------------------|------------|----------|
| NOI    | OSE POD NO. (V<br>POD2     | ELL NO           | .)                 |             | WELL TAG ID NO<br>SB21      | )          |                  | OSE FILE NO(3<br>L-15106 | S).                              |                         |            |          |
| OCATI  | WELL OWNER                 | NAME(S)<br>nergy |                    |             |                             |            |                  | PHONE (OPTI              | ONAL)                            |                         |            |          |
| WELL L | WELL OWNER<br>P.O. Box 197 | MAILING<br>3     | G ADDRESS          |             |                             |            |                  | CITY<br>Roswell          |                                  | STATE<br>NM 88          | 202        | ZIP      |
| QN     | WELL                       |                  | DE                 | GREES       | MINUTES                     | SECON      | DS               |                          |                                  |                         |            |          |
| NLA    | LOCATION                   | LAT              | TITUDE             | 103         | 28                          | 28.0       | 08 N             | * ACCURACY               | REQUIRED: ONE TEN                | TH OF A SECONI          | D          |          |
| NER    | (FROM GPS)                 | LO               | NGITUDE            | 32          | 37                          | 22.3       | 33 W             | * DATUM REC              | QUIRED: WGS 84                   |                         |            |          |
| GEI    | DESCRIPTION                | RELATIN          | G WELL LOCATION TO | STREET ADD  | RESS AND COMMO              | N LANDMA   | ARKS – PLS       | S (SECTION, TO           | WNSHJIP, RANGE) WH               | ERE AVAILABL            | E          |          |
| -1     | West Pearl Q               | ueen             |                    |             |                             |            |                  |                          |                                  |                         |            | _        |
|        | LICENSE NO.                |                  | NAME OF LICENSED   | DRILLER     |                             |            |                  |                          | NAME OF WELL DR                  | ILLING COMPAN           | IY         |          |
|        | 1789                       |                  |                    |             | Mark Mumby                  |            |                  | HRL Con                  | npliance Solution                | ons, Inc                |            |          |
|        | DRILLING STAI              | RTED             | DRILLING ENDED     | DEPTH OF CO | OMPLETED WELL (F            | FT)        | BORE HO          | LE DEPTH (FT)            | DEPTH WATER FIRS                 | ST ENCOUNTER            | ED (FT)    |          |
|        | 8/20/202                   | 21               | 8/21/2021          |             | 55                          |            |                  | 56                       |                                  | 50.5                    |            |          |
| N      | COMPLETED W                | ELL IS:          | ARTESIAN           | DRY HO      | LE 🔽 SHALLO                 | OW (UNCO)  | NFINED)          |                          | STATIC WATER LEV                 | TEL IN COMPLET<br>46.5  | TED WEI    | LL (FT)  |
| TIO    | DRILLING FLUI              | D:               | ✓ AIR              | MUD         | ADDITIV                     | VES – SPEC | IFY:             |                          |                                  |                         |            |          |
| RMA    | DRILLING MET               | HOD:             | ✓ ROTARY           | HAMME       | R CABLE                     | TOOL       | OTHE             | R – SPECIFY:             |                                  |                         |            |          |
| INFO   | DEPTH (fe                  | et bgl)          | BORE HOLE          | CASING      | MATERIAL AN                 | D/OR       | CA               | SING                     | CASING                           | CASING W                | ALL        | SLOT     |
| NG     | FROM                       | ТО               | DIAM               | (include    | GRADE<br>each casing string | , and      | CONN             | NECTION                  | INSIDE DIAM.                     | THICKNE                 | SS         | SIZE     |
| CASI   |                            |                  | (inches)           | note        | sections of screen          | )          | add coup         | YPE<br>ling diameter)    | (inches)                         | (inches)                | )          | (inches) |
| 8      | 0                          | 50               | 6                  |             | Blank PVC                   |            | Flus             | h Thread                 | 2                                | 0.154                   |            | N/A      |
| INC    | 50                         | 33               | 0                  | Pre-        | Pack Slotted PVC            |            | Flus             | n I hread                | 2                                | 0.154                   |            | 0.010    |
| RILI   |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
| 2. DI  |                            |                  |                    |             |                             |            |                  |                          |                                  |                         | ×          |          |
|        |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
| 1      |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
|        |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
|        |                            |                  |                    |             |                             |            |                  |                          | The star and star star star star | <u></u>                 | and the    |          |
|        |                            |                  |                    |             |                             |            |                  |                          | and and and and a sufficient     | harden har Shardan 1999 | an a start |          |
|        | DEPTH (fe                  | et bgl)          | BORE HOLE          | LI          | ST ANNULAR S                | EAL MAT    | FERIAL A         | ND                       | AMOUNT                           | М                       | ETHOI      | O OF     |
| IAL    | FROM                       | ТО               | DIAM. (inches)     | GRA         | VEL PACK SIZE               | E-RANGE    | BY INTE          | RVAL                     | (cubic feet)                     | PL                      | ACEM       | ENT      |
| TER    | 0                          | 2                | 6                  |             | Co                          | oncrete    |                  | N.                       | 0.2                              |                         | Pour       |          |
| MA     | 2                          | 47               | 6                  |             | Be                          | ntonite    |                  | 1                        | 4.04                             |                         | Trem       | e        |
| LAR    | 4/                         | 50               | 0                  |             | 0-20 Frepack and            | bagged cle | an sinca s       | and                      | 0.81                             |                         | Trem       | e        |
| NN     |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
| 3. AI  |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
|        |                            |                  |                    |             |                             |            |                  |                          |                                  |                         |            |          |
| FOR    | OSE INTERNA                | L USE            | •                  |             |                             |            |                  | WR-2                     | 0 WELL RECORD                    | & LOG (Versic           | on 04/30   | )/19)    |

| FILE NO. 1-15106        | POD NO. | TRN NO. 68      | 8109 |             |
|-------------------------|---------|-----------------|------|-------------|
| LOCATION 195-35E-32-122 | W       | VELL TAG ID NO. | A    | PAGE 1 OF 2 |
|                         |         |                 |      |             |

•

|                  | DEPTH (1                          | feet bgl)<br>TO                  | THICKNESS<br>(feet)                                                                                                                                         | COI<br>INCLUDI<br>(at                     | LOR AND TYPE O<br>E WATER-BEARIY<br>t <b>tach supplemental</b> | F MATERIAL I<br>NG CAVITIES (<br>sheets to fully ( | ENCOUNTERED -<br>OR FRACTURE ZONF<br>describe all units)     | es                          | WA<br>BEAR<br>(YES         | TER<br>RING?<br>/ NO) | ESTIMATED<br>YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|------------------|-----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------|-----------------------|------------------------------------------------------------|
|                  | 0                                 | 30                               | 30                                                                                                                                                          | Reddish Ora                               | ange Silty sand w/sc                                           | me clay and gra                                    | avel, occasional caliche                                     | soft                        | Y                          | √ N                   |                                                            |
|                  | 30                                | 56                               | 26                                                                                                                                                          | Reddish O                                 | Drange to purple poo                                           | rly graded fine                                    | sand and caliche, dry ha                                     | rd                          | Y                          | √ N                   |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           | becomes we                                                     | t at approximat                                    | ely 50.5                                                     |                             | ✓ Y                        | N                     |                                                            |
|                  |                                   | P                                |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| Ţ                |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| WEI              |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| OF               |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| 50               |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| FO               |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| GEO              |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| RO               |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
| HYI              |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
| 4                |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | N                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
| 1.0              |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
|                  |                                   |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             | Y                          | Ν                     |                                                            |
|                  | METHOD U                          | SED TO E                         | STIMATE YIELD                                                                                                                                               | OF WATER-B<br>BAILER                      | BEARING STRATA                                                 | ::<br>ECIFY: N/A                                   |                                                              | TOTA<br>WELI                | L ESTIN<br>L YIELI         | MATED<br>O (gpm):     | 0.00                                                       |
| NO               | WELL TES                          | T TEST<br>STAR                   | RESULTS - ATT<br>TTIME, END TI                                                                                                                              | ACH A COPY<br>ME, AND A TA                | OF DATA COLLE                                                  | CTED DURING                                        | G WELL TESTING, IN<br>ND DRAWDOWN OV                         | L<br>CLUDIN<br>ER THE       | G DISC                     | HARGE                 | METHOD,<br>DD.                                             |
| I; RIG SUPERVISI | MISCELLA                          | NEOUS IN                         | FORMATION:                                                                                                                                                  |                                           |                                                                |                                                    | D.                                                           |                             | SEP 2                      | 28 2021               | L∞2:24                                                     |
| TES              | PRINT NAM                         | IE(S) OF D                       | RILL RIG SUPER                                                                                                                                              | RVISOR(S) TH                              | AT PROVIDED ON                                                 | SITE SUPERV                                        | ISION OF WELL CON                                            | NSTRUC                      | TION O                     | THER TH               | HAN LICENSEE                                               |
| 5.1              | Jesse Cote                        |                                  |                                                                                                                                                             |                                           |                                                                |                                                    |                                                              |                             |                            |                       |                                                            |
| ATURE            | BY SIGNIN<br>RECORD O<br>WELL REC | G BELOW<br>F THE ABO<br>ORD WILL | Y, I CERTIFY TH<br>OVE DESCRIBED<br>ALSO BE FILED                                                                                                           | AT TO THE I<br>WELL. I ALS<br>WITH THE PE | BEST OF MY KN<br>O CERTIFY THAT<br>ERMIT HOLDER W              | OWLEDGE AN<br>THE WELL T.<br>VITHIN 30 DAY         | ND BELIEF, THE FO<br>AG, IF REQUIRED, H<br>/S AFTER THE COMP | REGOIN<br>AS BEEN<br>LETION | G IS A<br>N INSTA<br>OF WE | TRUE A                | ND CORRECT<br>ND THAT THIS<br>LING.                        |
| 6. SIGN          | Mil E. H.                         | Mut )                            | Drg.taity signed of Mark Mullby<br>DN: cn=Mark Mullby, o=HRL C<br>ou=Security Division,<br>email=mmullby@hlcomp.com, c<br>Date: 2021.09.23 10:39:25 -06'00' | omp,<br>=US                               | Mark E. Mu                                                     | mby                                                |                                                              |                             | 9/23                       | 3/2021                |                                                            |
|                  |                                   | SIGNAT                           | URE OF DRILLE                                                                                                                                               | R / PRINT S                               | SIGNEE NAME                                                    |                                                    |                                                              |                             |                            | DATE                  |                                                            |
| FOI              | R OSE INTER                       | NAL USE                          | 5                                                                                                                                                           |                                           |                                                                |                                                    | WR-20 WF                                                     | ELL REC                     | ORD &                      | LOG (Ve               | ersion 04/30/2019                                          |
| FIL              | E NO.                             | 1511                             | 26                                                                                                                                                          |                                           | POD NO                                                         | . 2                                                | TRN NO.                                                      | 6                           | 88                         | 109                   |                                                            |
|                  |                                   |                                  | - 00                                                                                                                                                        |                                           |                                                                | n - 199                                            |                                                              |                             | PIA                        |                       |                                                            |



# WELL RECORD & LOG

### OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

|      | OGE BOD ME            |                     | >                           |             |                        |           |             | 000 00 0000           | 2)                 |            |                        |         |
|------|-----------------------|---------------------|-----------------------------|-------------|------------------------|-----------|-------------|-----------------------|--------------------|------------|------------------------|---------|
| 7    | POD2                  | (WELL NO            | .)                          |             | WELL TAG ID NO.        |           |             | USE FILE NO(          | S).                |            |                        |         |
| IOI  | 1003                  |                     |                             |             | 5022                   |           |             | L-13100               |                    |            |                        |         |
| OCAT | WELL OWNE             | r name(s)<br>Energy |                             |             |                        |           |             | PHONE (OPTIC          | ONAL)              |            |                        |         |
| LU   | WELL OWNE             | R MAILING           | ADDRESS                     |             |                        |           |             | CITY                  |                    | STATE      |                        | ZIP     |
| WEL  | P.O. Box 19           | 973                 |                             |             |                        |           |             | Roswell               |                    | NM         | 88202                  |         |
| R    | WELL                  |                     | DE                          | GREES       | MINUTES                | SECON     | DS          |                       |                    |            |                        |         |
| LA   | LOCATION              |                     | TITUDE                      | 103         | 28                     | 37.4      | 4 N         | * ACCURACY            | REQUIRED: ONE TENT | TH OF A SI | ECOND                  |         |
| ERA  | (FROM GPS             | 5) LOI              | NGITUDE                     | 32          | 37                     | 22.6      | 3 W         | * DATUM REC           | QUIRED: WGS 84     |            |                        |         |
| GEN  | DESCRIPTIO            | N RELATIN           | G WELL LOCATION TO          | STREET ADD  | RESS AND COMMON        | LANDMA    | RKS – PLS   | S (SECTION, TO        | WNSHJIP, RANGE) WH | ERE AVAI   | LABLE                  |         |
|      | West Pearl            | Queen               |                             |             |                        |           |             |                       |                    |            |                        |         |
|      | LICENSE NO.           |                     | NAME OF LICENSED            | DRILLER     |                        |           |             |                       | NAME OF WELL DRI   | LLING CO   | MPANY                  |         |
|      | 178                   | 9                   |                             |             | Mark Mumby             |           |             |                       | HRL Con            | pliance S  | Solutions, Inc         | c.      |
|      | DRILLING ST<br>8/21/2 | ARTED               | DRILLING ENDED<br>8/23/2021 | DEPTH OF CO | MPLETED WELL (FT<br>55 | r)        | BORE HO     | LE DEPTH (FT)<br>56   | DEPTH WATER FIRS   | ST ENCOU   | NTERED (FT)<br>28 feet |         |
|      |                       |                     |                             |             |                        |           |             |                       | STATIC WATER I EV  |            | ADI ETED WE            | LL (ET) |
| Z    | COMPLETED             | WELL IS:            | ARTESIAN                    | DRY HO      | LE 🖌 SHALLO            | W (UNCON  | IFINED)     |                       | STATIC WATER LEV   | 21         | WILLIED WE             | LL (PI) |
| VTIO | DRILLING FL           | UID:                | ✓ AIR                       | MUD         | IFY:                   |           |             |                       |                    |            |                        |         |
| DRM  | DRILLING MI           | ETHOD:              | ✓ ROTARY                    | HAMME       | R CABLE T              | OOL       | OTHE        | R – SPECIFY:          |                    |            |                        |         |
| INF  | DEPTH (               | feet bgl)           | BORE HOLE                   | CASING      | MATERIAL AND           | O/OR      | CA          | SING                  | CASING             | CASIN      | NG WALL                | SLOT    |
| NG   | FROM                  | ТО                  | DIAM                        | (include    | GRADE                  | and       | CONN        | NECTION               | INSIDE DIAM.       | THIC       | CKNESS                 | SIZE    |
| ASI  |                       |                     | (inches)                    | note        | sections of screen)    | und       | (add coupl  | YPE<br>ling diameter) | (inches)           | (ir        | (inches)               |         |
| & C  | 0                     | 51                  | 6                           |             | Blank PVC              |           | Flus        | h Thread              | 2                  | 0          | 0.154                  | N/A     |
| ING  | 51                    | 55                  | 6                           | Pre-        | Pack Slotted PVC       |           | Flus        | h Thread              | 2                  | 0          | 0.154                  | 0.010   |
| ILL  |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
| DR   |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
| 2    |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
|      |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
|      |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
|      |                       |                     |                             |             |                        |           |             |                       | OSE DIT SEP        | 28 200     | 21 рм2:20              |         |
|      |                       |                     |                             |             |                        |           |             |                       |                    |            | c.                     |         |
|      | DEPTH (               | feet bgl)           | BORE HOLE                   | L           | IST ANNULAR SE         | EAL MAT   | ERIAL A     | ND                    | AMOUNT             |            | метно                  | D OF    |
| IAL  | FROM                  | ТО                  | DIAM. (inches)              | GRA         | VEL PACK SIZE-         | RANGE     | BY INTE     | RVAL                  | (cubic feet)       |            | PLACEN                 | IENT    |
| ERI  | . 0                   | 2                   | 6                           |             | Cor                    | ncrete    |             |                       | 0.2                |            | Pou                    | r       |
| IAT  | 2                     | 48                  | 6                           |             | Ben                    | ntonite   |             |                       | 4.05               |            | Trem                   | ie      |
| AR N | 48                    | 56                  | 6                           | 1           | 0-20 Prepack and b     | agged cle | an silica s | and                   | 0.81               |            | Trem                   | ie .    |
| IUL  |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
| NN   |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
| 3. A |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
|      |                       |                     |                             |             |                        |           |             |                       |                    |            |                        |         |
| FOR  | OSE INTER             |                     |                             |             |                        |           |             | WP-2                  | WELL RECORD        | & LOG ()   | Version 04/3           | 0/19)   |

|                         | DOD NO 2 | TRUNO           | CI | SIACI |             |
|-------------------------|----------|-----------------|----|-------|-------------|
| FILE NO. C-DDD          | POD NO.  | TRN NO.         | 00 | 009   |             |
| LOCATION 195-35E-32 212 | ,        | WELL TAG ID NO. | N  | A     | PAGE 1 OF 2 |
|                         |          |                 |    |       |             |

|         | DEPTH (              | feet bgl)            |                                                                                     |                                                                                                                                              |                         |                                      | ESTIMATED                                     |
|---------|----------------------|----------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------|-----------------------------------------------|
|         | FROM                 | ТО                   | THICKNESS<br>(feet)                                                                 | COLOR AND TYPE OF MATERIAL ENCOUNTERE<br>INCLUDE WATER-BEARING CAVITIES OR FRACTURI<br>(attach supplemental sheets to fully describe all uni | ED -<br>E ZONES<br>its) | WATER<br>BEARING?<br>(YES / NO)      | YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
| ( de la | 0                    | 30                   | 30                                                                                  | Reddish Orange Silty sand w/some clay and gravel, occasional                                                                                 | caliche soft            | Y VN                                 |                                               |
|         | 30                   | 56                   | 26                                                                                  | Reddish Orange to purple poorly graded fine sand and caliche                                                                                 | e, dry hard             | Y VN                                 |                                               |
| 84      |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| 1.1     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| T       |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| WEI     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| OF      |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| DOJ     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| CIC     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| TO      |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| GEC     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| DRO     |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| HY      |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| 4       |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| 1.12    |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
| 1       |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         |                      | 1                    |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         |                      |                      |                                                                                     |                                                                                                                                              |                         | Y N                                  |                                               |
|         | METHOD U             | $P \qquad \square A$ | STIMATE YIELD                                                                       | OF WATER-BEARING STRATA:<br>BAILER <b>(</b> )OTHER – SPECIFY: N/A                                                                            | TO<br>WI                | TAL ESTIMATED<br>ELL YIELD (gpm):    | 0.00                                          |
| 7       | WELL TES             | T TEST               | RESULTS - ATT                                                                       | ACH A COPY OF DATA COLLECTED DURING WELL TESTI                                                                                               | ING, INCLUI             | DING DISCHARGE                       | METHOD,                                       |
| OISI    |                      |                      |                                                                                     |                                                                                                                                              |                         |                                      |                                               |
| ERVI    | MISCELLA             | NEOUS IN             | FORMATION:                                                                          |                                                                                                                                              |                         |                                      |                                               |
| SUPI    | -                    |                      |                                                                                     |                                                                                                                                              |                         |                                      |                                               |
| RIG     |                      |                      |                                                                                     |                                                                                                                                              |                         |                                      |                                               |
| ST; ]   | 1                    |                      |                                                                                     |                                                                                                                                              | DSE C                   | NI SEP 28 2021                       | PW2:25                                        |
| TE.     | PRINT NAM            | ME(S) OF D           | RILL RIG SUPER                                                                      | VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WE                                                                                              | LL CONSTR               | UCTION OTHER TH                      | IAN LICENSEE:                                 |
| 4.      | Jesse Cote           |                      |                                                                                     |                                                                                                                                              |                         |                                      |                                               |
|         | BY SIGNIN            | IG BELOW             | , I CERTIFY TH                                                                      | AT TO THE BEST OF MY KNOWLEDGE AND BELIEF, T                                                                                                 | HE FOREGO               | DING IS A TRUE A                     | ND CORRECT                                    |
| URE     | RECORD O<br>WELL REC | F THE ABO            | OVE DESCRIBED<br>ALSO BE FILED                                                      | WELL. I ALSO CERTIFY THAT THE WELL TAG, IF REQUI<br>WITH THE PERMIT HOLDER WITHIN 30 DAYS AFTER THE                                          | RED, HAS BE<br>COMPLETI | EEN INSTALLED AN<br>ON OF WELL DRILL | ND THAT THIS<br>LING.                         |
| IATI    | 11/-                 |                      | Digitally signed by Mark Mumby                                                      |                                                                                                                                              |                         |                                      |                                               |
| SIGN    | 111/d E. f.          | Hunty )              | DN: cn=Mark Mumby, o=HRL Co<br>ou=Security Division,<br>email=mmumby@hrlcomp.com, c | us Mark E. Mumby                                                                                                                             |                         | 9/23/2021                            |                                               |
| .9      |                      | SIGNAT               | Date: 2021.09.23 10:39:25 -06'00'                                                   | R / PRINT SIGNEE NAME                                                                                                                        |                         | DATE                                 |                                               |
|         |                      | 2.01/11              | Jan St Ditted                                                                       |                                                                                                                                              |                         | 2                                    |                                               |
| FOI     | R OSE INTER          | NAL USE              | ~ (                                                                                 | WR                                                                                                                                           | -20 WELL R              | ECORD & LOG (Ve                      | rsion 04/30/2019)                             |
| FIL     | ENO.                 | -101                 | 55 20                                                                               |                                                                                                                                              | N NU.                   | DAIOM                                | PAGE 2 OF 2                                   |
|         | CATION               | 10-0                 | 05-07                                                                               | WELL TAG                                                                                                                                     | ID NO.                  | JITE                                 | FAGE 2 OF 2                                   |

# **Appendix C: Survey Reports**



2904 W 2nd St. Roswell, NM 88201 volce: 575.624.2420 fax: 575.624.2421 www.atkinseng.com

11/05/2020

Julie Linn, PG, RG Project Manager HRL Compliance Solutions, Inc. 2385 F <sup>1</sup>/<sub>2</sub> Road Grand Junction, CO 81505

RE: West Pearl Queen Injection Site Survey

Atkins Engineering Associates, Inc. (AEA) has completed the survey at the West Pearl Queen Injection Site, 1RP-5090, Lea County, New Mexico. The Site is located approximately at latitude 32.62257 and longitude -103.475628 in Lea County, New Mexico.

The table on the following page summarizes the coordinate and elevation data for the soil borings at ground surface and groundwater wells, top-of-casing (TOC) north side.

Horizontal coordinates are in US Survey Feet NAD 83 (2011) (EPOCH:2010.0000) New Mexico State Plane East Grid Coordinates, scaled to ground with a combined scale factor 1.0001865347887380997.

Orthometric Heights for groundwater sampling wells (GW-Well) established by running a level loop from a newly installed Temporary Benchmark (TBM). Orthometric Heights for soil borings established using RTK GPS observations tied to TBM. TBM is the top of a corner of a 2" pipe fence and now has an established Orthometric Height of 3737.61 feet NAVD88 and was determined using GPS observations tied to NGS Benchmark "R 97" with a published Orthometric Height of 3894.17 feet NAVD88.

Ryan C. Cortez, PS 22761

Date (Signed)



•

| Description   | Northing<br>(USft) | Easting<br>(USft) | Latitude<br>(DD) | Longitude<br>(DD) | Elevation<br>(USft) | Adjacent<br>Ground<br>(USft) |
|---------------|--------------------|-------------------|------------------|-------------------|---------------------|------------------------------|
| SB-1          | 591285.82          | 805407.04         | 32.62256571      | -103.47563073     | 3727.40             |                              |
| SB-2-GW-Well  | 591323.27          | 805345.79         | 32.62267000      | -103.47582864     | 3736.29             | 3736.49                      |
| SB-3          | 591492.39          | 805418.13         | 32.62313320      | -103.47558926     | 3734.79             |                              |
| SB-4-GW-Well  | 591429.62          | 805424.04         | 32.62296054      | -103.47557173     | 3734.71             | 3732.56                      |
| SB-5-GW-Well  | 591477.42          | 805307.41         | 32.62309452      | -103.47594927     | 3736.17             | 3734.91                      |
| SB-6          | 591489.37          | 805374.81         | 32.62312587      | -103.47573007     | 3734.55             |                              |
| SB-7-GW-Well  | 591427.37          | 805371.30         | 32.62295554      | -103.47574308     | 3732.36             | 3730.65                      |
| SB-8*         | 591412.08          | 805394.02         | 32.62291301      | -103.47566968     | 3731.22             |                              |
| SB-9          | 591385.45          | 805401.60         | 32.62283966      | -103.47564577     | 3733.19             |                              |
| SB-10*        | 591377.28          | 805365.42         | 32.62281800      | -103.47576349     | 3735.42             |                              |
| SB-11         | 591454.91          | 805338.88         | 32.62303196      | -103.47584764     | 3731.07             |                              |
| SB-12*        | 591434.45          | 805287.26         | 32.62297686      | -103.47601584     | 3735.68             |                              |
| SB-13-GW-Well | 591376.97          | 805327.67         | 32.62281799      | -103.47588611     | 3737.91             | 3736.41                      |
| SB-14-GW-Well | 591472.52          | 805447.61         | 32.62307793      | -103.47549405     | 3738.27             | 3736.74                      |
| SB-15*        | 591389.86          | 805299.08         | 32.62285405      | -103.47597862     | 3735.50             |                              |
| SB-16*        | 591429.73          | 805274.48         | 32.62296417      | -103.47605746     | 3736.01             |                              |
| SB-17         | 591431.91          | 805296.78         | 32.62296966      | -103.47598496     | 3735.48             |                              |
| SB-18         | 591465.97          | 805269.05         | 32.62306391      | -103.47607414     | 3735.44             |                              |
| TBM           | 591155.83          | 805430.29         | 32.62220792      | -103.47555861     | 3737.61             |                              |
| NGS-BM-R97    | 618385.15          | 811739.10         | 32.69690317      | -103.45433745     | 3894.17             |                              |

\* Soil Borings did not have a flag remaining in ground and were observed at adjusted coordinates of record.

•



2904 W 2nd St. Roswelt, NM 88201 volce: 575.624.2420 tax: 575.624.2421 www.atkinseng.com

05/06/2022

Ronald D. Hillman Vice President & General Counsel Armstrong Energy Corporation PO Box 1973 Roswell, NM 88202

RE: West Pearl Queen Injection Site Survey

Atkins Engineering Associates, Inc. (AEA) has completed the survey at the West Pearl Queen Injection Site, 1RP-5090, Lea County, New Mexico. The Site is located approximately at latitude 32.62257 and longitude -103.475628 in Lea County, New Mexico.

The following table summarizes the coordinate and elevation data for the new groundwater sampling wells (SB-20, SB-21, SB-22, SB-23), top-of-casing (TOC) north side.

|       |                 |                |               |                | Elevation | Adjacent |
|-------|-----------------|----------------|---------------|----------------|-----------|----------|
|       |                 |                |               |                | TOC       | Ground   |
| Name  | Northing (USft) | Easting (USft) | Latitude (DD) | Longitude (DD) | (USft)    | (USft)   |
| SB-20 | 591726.32       | 805399.52      | 32.62377656   | -103.47564359  | 3741.11   | 3738.23  |
| SB-21 | 591378.96       | 805769.41      | 32.62281365   | -103.47445140  | 3737.92   | 3736.04  |
| SB-22 | 591415.04       | 804954.50      | 32.62293089   | -103.47709705  | 3740.48   | 3736.38  |
| SB-23 | 591082.68       | 805339.15      | 32.62200890   | -103.47585652  | 3736.30   | 3733.87  |
| TBM   | 591155.83       | 805430.29      | 32.62220793   | -103.47555861  | 3737.61   |          |

Horizontal coordinates are in US Survey Feet NAD 83 (2011) (EPOCH:2010.0000) New Mexico State Plane East Grid Coordinates, scaled to ground with a combined scale factor 1.0001865347887380997.

Elevations (Orthometric Heights) for groundwater sampling wells established using RTK GPS observations tied to TBM. TBM is the top of a corner of a 2" pipe fence that has an established Orthometric Height of 3737.61 feet NAVD88 and was determined using GPS observations tied to NGS Benchmark "R 97" with a published Orthometric Height of 3894.17 feet NAVD88.

Ryan Cortez, PS 22761

2022

Date (Signed)



# Appendix D: Groundwater Lab Reports

•

Julie Linn



#### Project Id:

Contact:

**Project Location:** 

### Certificate of Analysis Summary 659152

HRL Compliance Solutions, Artesia, NM

#### Project Name: West Pearl Queen

**Date Received in Lab:** Thu 04.16.2020 17:45

**Report Date:** 04.23.2020 10:30

Project Manager: Erica Morales

|                                    | Lab Id:    | 659152-0   | 01      | 659152-0   | 002     | 659152-0         | 003     | 659152-          | 004     | 659152-0         | 005     | 659152-0         | 006     |
|------------------------------------|------------|------------|---------|------------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|---------|
| Analysis Paguastad                 | Field Id:  | SB 14      |         | SB 13      | 3       | SB 2             |         | SB 17            |         | SB 5             |         | SB 7             |         |
| Analysis Requested                 | Depth:     |            |         |            |         |                  |         |                  |         |                  |         |                  |         |
|                                    | Matrix:    | GROUND W   | ATER    | GROUND W   | VATER   | GROUND W         | VATER   | GROUND W         | VATER   | GROUND W         | ATER    | GROUND W         | VATER   |
|                                    | Sampled:   | 04.16.2020 | 08:40   | 04.16.2020 | 13:25   | 04.16.2020       | 14:50   | 04.16.2020       | 15:10   | 04.16.2020       | 16:03   | 04.16.2020       | 16:15   |
| BTEX by EPA 8021B                  | Extracted: | 04.20.2020 | 16:00   | 04.20.2020 | 16:00   | 04.20.2020       | 16:00   | 04.20.2020       | 16:00   | 04.20.2020       | 16:00   | 04.20.2020       | 16:00   |
| SUB: T104704400-19-19              | Analyzed:  | 04.21.2020 | 05:47   | 04.21.2020 | 07:26   | 04.21.2020       | 07:46   | 04.21.2020       | 08:06   | 04.21.2020       | 08:27   | 04.21.2020       | 08:47   |
|                                    | Units/RL:  | mg/L       | RL      | mg/L       | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      |
| Benzene                            |            | < 0.00200  | 0.00200 | 0.0254     | 0.00200 | < 0.00200        | 0.00200 | 0.00290          | 0.00200 | <0.00200         | 0.00200 | 0.0202           | 0.00200 |
| Toluene                            |            | <0.00200   | 0.00200 | < 0.00200  | 0.00200 | < 0.00200        | 0.00200 | < 0.00200        | 0.00200 | <0.00200         | 0.00200 | < 0.00200        | 0.00200 |
| Ethylbenzene                       |            | < 0.00200  | 0.00200 | < 0.00200  | 0.00200 | < 0.00200        | 0.00200 | 0.00565          | 0.00200 | < 0.00200        | 0.00200 | 0.0143           | 0.00200 |
| m,p-Xylenes                        |            | < 0.00400  | 0.00400 | < 0.00400  | 0.00400 | < 0.00400        | 0.00400 | 0.00913          | 0.00400 | < 0.00400        | 0.00400 | 0.00653          | 0.00400 |
| o-Xylene                           |            | < 0.00200  | 0.00200 | < 0.00200  | 0.00200 | < 0.00200        | 0.00200 | 0.00441          | 0.00200 | < 0.00200        | 0.00200 | 0.00263          | 0.00200 |
| Total Xylenes                      |            | < 0.00200  | 0.00200 | < 0.00200  | 0.00200 | < 0.00200        | 0.00200 | 0.0135           | 0.00200 | < 0.00200        | 0.00200 | 0.00916          | 0.00200 |
| Total BTEX                         |            | < 0.00200  | 0.00200 | 0.0254     | 0.00200 | < 0.00200        | 0.00200 | 0.0221           | 0.00200 | < 0.00200        | 0.00200 | 0.0437           | 0.00200 |
| Chloride by EPA 300                | Extracted: | 04.17.2020 | 15:38   | 04.17.2020 | 15:38   | 04.17.2020       | 15:38   | 04.17.2020       | 15:38   | 04.17.2020       | 15:38   | 04.17.2020       | 15:38   |
|                                    | Analyzed:  | 04.18.2020 | 11:23   | 04.18.2020 | 11:40   | 04.18.2020 11:45 |         | 04.18.2020 11:51 |         | 04.18.2020 11:56 |         | 04.18.2020 12:13 |         |
|                                    | Units/RL:  | mg/L       | RL      | mg/L       | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      |
| Chloride                           |            | 6840 X     | 250     | 928        | 10.0    | 1810             | 250     | 17300            | 250     | 12000            | 250     | 3470             | 250     |
| Specific Conductance @25C by       | Extracted: |            |         |            |         |                  |         |                  |         |                  |         |                  |         |
| SM2510B                            | Analyzed:  | 04.20.2020 | 11:15   | 04.20.2020 | 11:15   | 04.20.2020       | 11:15   | 04.20.2020       | 11:15   | 04.20.2020       | 11:15   | 04.20.2020       | 11:15   |
| SUB: T104704400-19-19              | Units/RL:  | umhos/cm   | RL      | umhos/cm   | RL      | umhos/cm         | RL      | umhos/cm         | RL      | umhos/cm         | RL      | umhos/cm         | RL      |
| Conductivity                       |            | 34200      | 10.0    | 4900       | 10.0    | 13000            | 10.0    | 27300            | 10.0    | 32300            | 10.0    | 22500            | 10.0    |
| TPH By SW8015 Mod                  | Extracted: | 04.17.2020 | 16:30   | 04.17.2020 | 16:30   | 04.17.2020       | 16:30   | 04.17.2020       | 16:30   | 04.17.2020       | 16:30   | 04.17.2020       | 16:30   |
|                                    | Analyzed:  | 04.21.2020 | 00:21   | 04.21.2020 | 00:41   | 04.21.2020       | 11:48   | 04.21.2020       | 01:21   | 04.21.2020       | 01:41   | 04.21.2020       | 02:02   |
|                                    | Units/RL:  | mg/L       | RL      | mg/L       | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      | mg/L             | RL      |
| Gasoline Range Hydrocarbons (GRO)  |            | <2.50      | 2.50    | <2.50      | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    |
| Diesel Range Organics (DRO)        |            | <2.50      | 2.50    | <2.50      | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    |
| Motor Oil Range Hydrocarbons (MRO) |            | <2.50      | 2.50    | <2.50      | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    | <2.50            | 2.50    |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Erica Morales Project Manager

Page 1 of 27

Julie Linn



### Certificate of Analysis Summary 659152

HRL Compliance Solutions, Artesia, NM

Project Name: West Pearl Queen

Page 84 of 198

Project Id:

Contact:

**Project Location:** 

**Date Received in Lab:** Thu 04.16.2020 17:45

**Report Date:** 04.23.2020 10:30

Project Manager: Erica Morales

|                       | Lab Id:    | 659152-0   | 01                   | 659152-0   | 02               | 659152-0   | 03               | 659152-0   | 004              | 659152-0   | 05               | 659152-0   | 006              |  |
|-----------------------|------------|------------|----------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|------------------|--|
| Analysis Roanostod    | Field Id:  | SB 14      |                      | SB 13      | ;                | SB 2       |                  | SB 17      |                  | SB 5       |                  | SB 7       |                  |  |
| Anulysis Requesieu    | Depth:     |            |                      |            |                  |            |                  |            |                  |            |                  |            |                  |  |
|                       | Matrix:    | GROUND W   | ATER                 | GROUND W   | ATER             | GROUND W   | ATER             | GROUND W   | VATER            | GROUND W   | ATER             | GROUND W   | WATER            |  |
|                       | Sampled:   | 04.16.2020 | 08:40                | 04.16.2020 | 13:25            | 04.16.2020 | 14:50            | 04.16.2020 | 15:10            | 04.16.2020 | 16:03            | 04.16.2020 | 16:15            |  |
| pH by SM4500-H        | Extracted: |            |                      |            |                  |            |                  |            |                  |            |                  |            |                  |  |
| SUB: T104704400-19-19 | Analyzed:  | 04.20.2020 | .20.2020 11:55 04.20 |            | 04.20.2020 11:55 |            | 04.20.2020 11:55 |            | 04.20.2020 11:55 |            | 04.20.2020 11:55 |            | 04.20.2020 11:55 |  |
|                       | Units/RL:  | Deg C      | RL                   | Deg C      | RL               | Deg C      | RL               | Deg C      | RL               | Deg C      | RL               | Deg C      | RL               |  |
| Temperature           |            | 22.4 K     |                      | 22.5 K     |                  | 22.3 K     |                  | 22.4 K     |                  | 22.6 K     |                  | 22.1 K     |                  |  |
| рН by SM4500-Н        | Extracted: |            |                      |            |                  |            |                  |            |                  |            |                  |            |                  |  |
| SUB: T104704400-19-19 | Analyzed:  | 04.20.2020 | 11:55                | 04.20.2020 | 11:55            | 04.20.2020 | 11:55            | 04.20.2020 | 11:55            | 04.20.2020 | 11:55            | 04.20.2020 | ) 11:55          |  |
|                       | Units/RL:  | SU         | RL                   | SU         | RL               | SU         | RL               | SU         | RL               | SU         | RL               | SU         | RL               |  |
| pH                    |            | 7.13 K     |                      | 7.84 K     |                  | 7.10 K     |                  | 6.94 K     |                  | 6.91 K     |                  | 7.29 K     |                  |  |

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Erica Morales Project Manager

Page 2 of 27



# **Analytical Report 659152**

for

# **HRL** Compliance Solutions

**Project Manager: Julie Linn** 

West Pearl Queen

#### 04.23.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)



04.23.2020

Project Manager: Julie Linn HRL Compliance Solutions 112 6th St. Artesia, NM 88210

Reference: XENCO Report No(s): 659152 West Pearl Queen Project Address:

#### Julie Linn:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 659152. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 659152 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Erica Morales Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 4 of 27



# Sample Cross Reference 659152

#### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id | Matrix | Date Collected   | Sample Depth | Lab Sample Id |
|-----------|--------|------------------|--------------|---------------|
| SB 14     | W      | 04.16.2020 08:40 |              | 659152-001    |
| SB 13     | W      | 04.16.2020 13:25 |              | 659152-002    |
| SB 2      | W      | 04.16.2020 14:50 |              | 659152-003    |
| SB 17     | W      | 04.16.2020 15:10 |              | 659152-004    |
| SB 5      | W      | 04.16.2020 16:03 |              | 659152-005    |
| SB 7      | W      | 04.16.2020 16:15 |              | 659152-006    |



### **CASE NARRATIVE**

Client Name: HRL Compliance Solutions Project Name: West Pearl Queen

Project ID: Work Order Number(s): 659152 Report Date: 04.23.2020 Date Received: 04.16.2020

#### Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

#### Analytical non conformances and comments:

Batch: LBA-3123450 Chloride by EPA 300

Lab Sample ID 659152-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 659152-001, -002, -003, -004, -005, -006.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3123568 BTEX by EPA 8021B

Benzene Relative Percent Difference (RPD) between matrix spike and duplicate was above quality control limits.

Samples in the analytical batch are: 659152-001, -002, -003, -004, -005, -006

Lab Sample ID 659152-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 659152-001, -002, -003, -004, -005, -006. The Laboratory Control Sample for Benzene is within laboratory Control Limits, therefore the data was accepted.



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Conductivity  |                     | COND                 | 34200    | 10.0                      | umhos/cn | 04.20.2020 11:15   |           | 1    |
|---------------|---------------------|----------------------|----------|---------------------------|----------|--------------------|-----------|------|
| Parameter     |                     | Cas Number           | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123463             |                      |          |                           |          | SUB: T104704400-   | 19-19     |      |
| Analyst:      | CHE                 |                      |          |                           |          |                    |           |      |
| Tech:         | CHE                 |                      |          |                           |          | % Moisture:        |           |      |
| Analytical M  | ethod: Specific Cor | nductance @25C by SM | M2510B   |                           |          |                    |           |      |
| Temperature   |                     | TEMP                 | 22.4     |                           | Deg C    | 04.20.2020 11:55   | К         | 1    |
| pH            |                     | 12408-02-5           | 7.13     |                           | SU       | 04.20.2020 11:55   | K         | 1    |
| Parameter     |                     | Cas Number           | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123462             |                      |          |                           |          | SUB: T104704400-   | 19-19     |      |
| Analyst:      | CHE                 |                      |          |                           |          |                    |           |      |
| Analytical Mo | ethod: pH by SM45   | 500-Н                |          |                           |          | % Moisture         |           |      |
|               |                     |                      |          |                           |          |                    |           |      |
| Chloride      |                     | 16887-00-6           | 6840     | 250                       | mg/L     | 04.18.2020 11:23   | X         | 500  |
| Parameter     |                     | Cas Number           | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123450             |                      |          |                           |          |                    |           |      |
| Analyst:      | MAB                 |                      | Date Pre | p: 04.17.2020 15:38       |          |                    |           |      |
| Tech:         | MAB                 | EPA 300              |          |                           |          | % Moisture:        | 0P        |      |
|               |                     | EDA 200              |          |                           |          |                    | 0D        |      |
| Lab Sample I  | d: 659152-001       |                      | Date Col | llected: 04.16.2020 08:40 |          |                    |           |      |
| Sample Id:    | SB 14               |                      | Matrix:  | Ground Water              |          | Date Received:04.1 | 6.2020 17 | 7:45 |

CO



#### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 14                |            | Matrix:       | Ground Water        |       | Date Received:04.16 | .2020 17:4 | 45 |
|---------------|----------------------|------------|---------------|---------------------|-------|---------------------|------------|----|
| Lab Sample I  | d: 659152-001        |            | Date Collecte | d: 04.16.2020 08:40 |       |                     |            |    |
| Analytical Me | ethod: TPH By SW8015 | Mod        |               |                     |       | Prep Method: SW80   | 015P       |    |
| Tech:         | DTH                  |            |               |                     |       | % Moisture:         |            |    |
| Analyst:      | DTH                  |            | Date Prep:    | 04.17.2020 16:30    |       |                     |            |    |
| Seq Number:   | 3123611              |            |               |                     |       |                     |            |    |
| Parameter     |                      | Cas Number | Result BI     |                     | Unite | Analysis Data       | Flag       | ъя |

| 1 arameter                         | Cas Mulliot | Kesun      | KL         |       | Units  | Analysis Date    | riag | Dii |   |
|------------------------------------|-------------|------------|------------|-------|--------|------------------|------|-----|---|
| Gasoline Range Hydrocarbons (GRO)  | PHC610      | <2.50      | 2.50       |       | mg/L   | 04.21.2020 00:21 | U    | 1   | _ |
| Diesel Range Organics (DRO)        | C10C28DRO   | <2.50      | 2.50       |       | mg/L   | 04.21.2020 00:21 | U    | 1   |   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835    | <2.50      | 2.50       |       | mg/L   | 04.21.2020 00:21 | U    | 1   |   |
| Surrogate                          |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |   |
| 1-Chlorooctane                     |             | 111-85-3   | 104        | %     | 70-135 | 04.21.2020 00:21 |      |     |   |
| o-Terphenyl                        |             | 84-15-1    | 108        | %     | 70-135 | 04.21.2020 00:21 |      |     |   |

| Analytical Me | thod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|-------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                     |            |                  | % Moisture:           |
| Analyst:      | KTL                     | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                 |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | UXF  | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00400  | 0.00400    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 05:47 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 99         | %     | 70-130 | 04.21.2020 05:47 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 113        | %     | 70-130 | 04.21.2020 05:47 |      |     |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 13                |                     | Matrix:  | Ground Water              |          | Date Received:04.1 | 6.2020 17 | 7:45 |
|---------------|----------------------|---------------------|----------|---------------------------|----------|--------------------|-----------|------|
| Lab Sample Io | d: 659152-002        |                     | Date Col | llected: 04.16.2020 13:25 |          |                    |           |      |
| Analytical Me | ethod: Chloride by E | PA 300              |          |                           |          | Prep Method: E30   | 0P        |      |
| Tech:         | MAB                  |                     |          |                           |          | % Moisture:        |           |      |
| Analyst:      | MAB                  |                     | Date Pre | p: 04.17.2020 15:38       |          |                    |           |      |
| Seq Number:   | 3123450              |                     |          |                           |          |                    |           |      |
| Parameter     |                      | Cas Number          | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Chloride      |                      | 16887-00-6          | 928      | 10.0                      | mg/L     | 04.18.2020 11:40   |           | 20   |
| Analytical Me | ethod: pH by SM450   | 0-H                 |          |                           |          |                    |           |      |
| Tech:         | CHE                  |                     |          |                           |          | % Moisture:        |           |      |
| Analyst:      | CHE                  |                     |          |                           |          |                    |           |      |
| Seq Number:   | 3123462              |                     |          |                           |          | SUB: T104704400-   | 19-19     |      |
| Parameter     |                      | Cas Number          | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| pH            |                      | 12408-02-5          | 7.84     |                           | SU       | 04.20.2020 11:55   | К         | 1    |
| Temperature   |                      | TEMP                | 22.5     |                           | Deg C    | 04.20.2020 11:55   | K         | 1    |
| Analytical Me | ethod: Specific Cond | luctance @25C by SI | M2510B   |                           |          |                    |           |      |
| Tech:         | CHE                  |                     |          |                           |          | % Moisture:        |           |      |
| Analyst:      | CHE                  |                     |          |                           |          |                    |           |      |
| Seq Number:   | 3123463              |                     |          |                           |          | SUB: T104704400-   | 19-19     |      |
| Parameter     |                      | Cas Number          | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Conductivity  |                      | COND                | 4900     | 10.0                      | umhos/cn | n 04.20.2020 11:15 |           | 1    |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 13                 |            | Matrix:      | Ground Water         |       | Date Received:04.16 | 5.2020 17:4 | 5   |
|---------------|-----------------------|------------|--------------|----------------------|-------|---------------------|-------------|-----|
| Lab Sample Id | : 659152-002          |            | Date Collect | ed: 04.16.2020 13:25 |       |                     |             |     |
| Analytical Me | thod: TPH By SW8015 M | Aod        |              |                      |       | Prep Method: SW8    | 015P        |     |
| Tech:         | DTH                   |            |              |                      |       | % Moisture:         |             |     |
| Analyst:      | DTH                   |            | Date Prep:   | 04.17.2020 16:30     |       |                     |             |     |
| Seq Number:   | 3123611               |            |              |                      |       |                     |             |     |
| Parameter     |                       | Cas Number | Result F     | L                    | Units | Analysis Date       | Flag        | Dil |

| Gasoline Range Hydrocarbons (GRO)  | PHC610    | <2.50      | ) 2.50     |       | mg/L   | 04.21.2020 00:41 | U    | 1 |
|------------------------------------|-----------|------------|------------|-------|--------|------------------|------|---|
| Diesel Range Organics (DRO)        | C10C28DRO | <2.50      | 2.50       |       | mg/L   | 04.21.2020 00:41 | U    | 1 |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835  | <2.50      | 2.50       |       | mg/L   | 04.21.2020 00:41 | U    | 1 |
| Surrogate                          |           | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |   |
| 1-Chlorooctane                     |           | 111-85-3   | 109        | %     | 70-135 | 04.21.2020 00:41 |      |   |
| o-Terphenyl                        |           | 84-15-1    | 118        | %     | 70-135 | 04.21.2020 00:41 |      |   |

| Analytical Me | thod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|-------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                     |            |                  | % Moisture:           |
| Analyst:      | KTL                     | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                 |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | 0.0254     | 0.00200    |       | mg/L   | 04.21.2020 07:26 |      | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:26 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:26 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00400  | 0.00400    |       | mg/L   | 04.21.2020 07:26 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:26 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:26 | U    | 1   |
| Total BTEX           |             | 0.0254     | 0.00200    |       | mg/L   | 04.21.2020 07:26 |      | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 105        | %     | 70-130 | 04.21.2020 07:26 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 123        | %     | 70-130 | 04.21.2020 07:26 |      |     |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Conductivity  |                     | COND                 | 13000    | 10.0                      | umhos/cn                          | n 04.20.2020 11:15 |       | 1   |  |
|---------------|---------------------|----------------------|----------|---------------------------|-----------------------------------|--------------------|-------|-----|--|
| Parameter     |                     | Cas Number           | Result   | RL                        | Units                             | Analysis Date      | Flag  | Dil |  |
| Seq Number:   | 3123463             |                      |          |                           |                                   | SUB: T104704400-   | 19-19 |     |  |
| Analyst:      | CHE                 |                      |          |                           |                                   |                    |       |     |  |
| Tech:         | CHE                 |                      |          |                           |                                   | % Moisture:        |       |     |  |
| Analytical Me | ethod: Specific Cor | nductance @25C by SM | M2510B   |                           |                                   |                    |       |     |  |
| Temperature   |                     | TEMP                 | 22.3     |                           | Deg C                             | 04.20.2020 11:55   | K     | 1   |  |
| pH            |                     | 12408-02-5           | 7.10     |                           | SU                                | 04.20.2020 11:55   | K     | 1   |  |
| Parameter     |                     | Cas Number           | Result   | RL                        | Units                             | Analysis Date      | Flag  | Dil |  |
| Seq Number:   | 3123462             |                      |          |                           |                                   | SUB: T104704400-   | 19-19 |     |  |
| Analyst:      | CHE                 |                      |          |                           |                                   | ,0 1.1015ta101     |       |     |  |
| Analytical Me | ethod: pH by SM45   | 500-Н                |          |                           |                                   | % Moisture         |       |     |  |
|               |                     |                      |          |                           |                                   |                    |       |     |  |
| Chloride      |                     | 16887-00-6           | 1810     | 250                       | mg/L                              | 04.18.2020 11:45   |       | 500 |  |
| Parameter     |                     | Cas Number           | Result   | RL                        | Units                             | Analysis Date      | Flag  | Dil |  |
| Seq Number:   | 3123450             |                      |          |                           |                                   |                    |       |     |  |
| Analyst:      | MAB                 |                      | Date Pre | p: 04.17.2020 15:38       |                                   |                    |       |     |  |
| Tech:         | MAB                 |                      |          |                           |                                   | % Moisture:        |       |     |  |
| Analytical Me | ethod: Chloride by  | EPA 300              |          |                           |                                   | Prep Method: E30   | 0P    |     |  |
| Lab Sample I  | d: 659152-003       |                      | Date Col | llected: 04.16.2020 14:50 |                                   |                    |       |     |  |
| Sample Id:    | SB 2                |                      | Matrix:  | Ground Water              | er Date Received:04.16.2020 17:45 |                    |       |     |  |

# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:<br>Lab Sample Id        | <b>SB 2</b><br>d: 659152-003                    |            | Matrix: Ground Water<br>Date Collected: 04.16.2020 14:50 |                  |       | Date Received:04.16.2020 17:45 |        |     |  |  |
|------------------------------------|-------------------------------------------------|------------|----------------------------------------------------------|------------------|-------|--------------------------------|--------|-----|--|--|
| Analytical Me<br>Tech:<br>Analyst: | ethod: TPH By SW8015 D<br>DTH<br>DTH<br>2122611 | Mod        | Date Prep:                                               | 04.17.2020 16:30 |       | Prep Method: S<br>% Moisture:  | W8015P |     |  |  |
| Seq Number:                        | 3123011                                         | Cas Number | Result R                                                 |                  | Unite | Analysis Data                  | Flog   | Dil |  |  |

| 1 al ameter                        | Cas Mullipe | Kesun      | KL         |       | Units  | Analysis Date    | riag | DII |
|------------------------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Gasoline Range Hydrocarbons (GRO)  | PHC610      | <2.50      | 0 2.50     |       | mg/L   | 04.21.2020 11:48 | U    | 1   |
| Diesel Range Organics (DRO)        | C10C28DRO   | <2.50      | 0 2.50     |       | mg/L   | 04.21.2020 11:48 | U    | 1   |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835    | <2.50      | 0 2.50     |       | mg/L   | 04.21.2020 11:48 | U    | 1   |
| Surrogate                          |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1-Chlorooctane                     |             | 111-85-3   | 82         | %     | 70-135 | 04.21.2020 11:48 |      |     |
| o-Terphenyl                        |             | 84-15-1    | 87         | %     | 70-135 | 04.21.2020 11:48 |      |     |

| Analytical Me | thod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|-------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                     |            |                  | % Moisture:           |
| Analyst:      | KTL                     | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                 |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00400  | 0.00400    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 07:46 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 99         | %     | 70-130 | 04.21.2020 07:46 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 94         | %     | 70-130 | 04.21.2020 07:46 |      |     |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Temperature   |                    | TEMP       | 22.4     |                           | Deg C | 04.20.2020 11:55 | K     | 1   |
|---------------|--------------------|------------|----------|---------------------------|-------|------------------|-------|-----|
| pH            |                    | 12408-02-5 | 6.94     |                           | SU    | 04.20.2020 11:55 | K     | 1   |
| Parameter     |                    | Cas Number | Result   | RL                        | Units | Analysis Date    | Flag  | Dil |
| Seq Number:   | 3123462            |            |          |                           |       | SUB: T104704400- | 19-19 |     |
| Analyst:      | CHE                |            |          |                           |       |                  |       |     |
| Tech:         | CHE                |            |          |                           |       | % Moisture:      |       |     |
| Analytical Me | ethod: pH by SM45  | 600-Н      |          |                           |       |                  |       |     |
| Chioride      |                    | 10887-00-0 | 17300    | 250                       | mg/L  | 04.18.2020 11:51 |       | 500 |
| Parameter     |                    | Cas Number | Result   | RL                        | Units | Analysis Date    | Flag  | Dil |
| Seq Number:   | 3123450            |            |          |                           |       |                  |       |     |
| Analyst:      | MAB                |            | Date Pre | ep: 04.17.2020 15:38      |       |                  |       |     |
| Tech:         | MAB                |            |          |                           |       | % Moisture:      |       |     |
| Analytical Me | ethod: Chloride by | EPA 300    |          |                           |       | Prep Method: E30 | 0P    |     |
| Lab Sample Id | d: 659152-004      |            | Date Co  | llected: 04.16.2020 15:10 |       |                  |       |     |
|               |                    |            |          |                           |       |                  |       |     |

CO

# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 17                  |            | Matrix:        | Ground Water       |       | Date Received:04.1 | 6.2020 17: | 45  |
|---------------|------------------------|------------|----------------|--------------------|-------|--------------------|------------|-----|
| Lab Sample Io | l: 659152-004          |            | Date Collected | 1:04.16.2020 15:10 |       |                    |            |     |
| Analytical Me | ethod: TPH By SW8015 I | Mod        |                |                    |       | Prep Method: SW8   | 8015P      |     |
| Tech:         | DTH                    |            |                |                    |       | % Moisture:        |            |     |
| Analyst:      | DTH                    |            | Date Prep:     | 04.17.2020 16:30   |       |                    |            |     |
| Seq Number:   | 3123611                |            |                |                    |       |                    |            |     |
| Parameter     |                        | Cas Number | Result RL      |                    | Units | Analysis Date      | Flag       | Dil |

|                                    |           |            |            |       |        | <b>,</b>         |      |   |
|------------------------------------|-----------|------------|------------|-------|--------|------------------|------|---|
| Gasoline Range Hydrocarbons (GRO)  | PHC610    | <2.50      | 0 2.50     |       | mg/L   | 04.21.2020 01:21 | U    | 1 |
| Diesel Range Organics (DRO)        | C10C28DRO | <2.5       | 0 2.50     |       | mg/L   | 04.21.2020 01:21 | U    | 1 |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835  | <2.5       | 0 2.50     |       | mg/L   | 04.21.2020 01:21 | U    | 1 |
| Surrogate                          |           | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |   |
| 1-Chlorooctane                     |           | 111-85-3   | 97         | %     | 70-135 | 04.21.2020 01:21 |      |   |
| o-Terphenyl                        |           | 84-15-1    | 103        | %     | 70-135 | 04.21.2020 01:21 |      |   |

| Analytical Me | ethod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|--------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                      |            |                  | % Moisture:           |
| Analyst:      | KTL                      | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                  |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | er Result  | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | 0.00290    | 0.00200    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:06 | U    | 1   |
| Ethylbenzene         | 100-41-4    | 0.00565    | 0.00200    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| m,p-Xylenes          | 179601-23-1 | 0.00913    | 0.00400    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| o-Xylene             | 95-47-6     | 0.00441    | 0.00200    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| Total Xylenes        | 1330-20-7   | 0.0135     | 0.00200    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| Total BTEX           |             | 0.0221     | 0.00200    |       | mg/L   | 04.21.2020 08:06 |      | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 102        | %     | 70-130 | 04.21.2020 08:06 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 101        | %     | 70-130 | 04.21.2020 08:06 |      |     |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Conductivity  |                       | COND               | 32300    | 10.0                      | umhos/cn | n 04.20.2020 11:15 |           | 1    |
|---------------|-----------------------|--------------------|----------|---------------------------|----------|--------------------|-----------|------|
| Parameter     |                       | Cas Number         | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123463               |                    |          |                           |          | SUB: T104704400-   | -19-19    |      |
| Analyst:      | CHE                   |                    |          |                           |          |                    |           |      |
| Tech:         | CHE                   |                    |          |                           |          | % Moisture:        |           |      |
| Analytical Me | ethod: Specific Condu | ictance @25C by SN | M2510B   |                           |          |                    |           |      |
| Temperature   |                       | TEMP               | 22.6     |                           | Deg C    | 04.20.2020 11:55   | К         | 1    |
| pH            |                       | 12408-02-5         | 6.91     |                           | SU       | 04.20.2020 11:55   | К         | 1    |
| Parameter     |                       | Cas Number         | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123462               |                    |          |                           |          | SUB: T104704400-   | -19-19    |      |
| Analyst:      | CHE                   |                    |          |                           |          | / Wolstale.        |           |      |
| Analytical Me | ethod: pH by SM4500   | )-Н                |          |                           |          | % Moisture         |           |      |
| Chloride      |                       | 16887-00-6         | 12000    | 250                       | mg/L     | 04.18.2020 11:56   |           | 500  |
| Parameter     |                       | Cas Number         | Result   | RL                        | Units    | Analysis Date      | Flag      | Dil  |
| Seq Number:   | 3123450               |                    |          |                           |          |                    |           |      |
| Analyst:      | MAB                   |                    | Date Pre | p: 04.17.2020 15:38       |          |                    |           |      |
| Tech:         | MAB                   |                    |          |                           |          | % Moisture:        |           |      |
| Analytical Me | ethod: Chloride by EF | PA 300             |          |                           |          | Prep Method: E30   | 0P        |      |
| Lab Sample I  | d: 659152-005         |                    | Date Col | llected: 04.16.2020 16:03 |          |                    |           |      |
| Sample Id:    | SB 5                  |                    | Matrix:  | Ground Water              |          | Date Received:04.1 | 6.2020 17 | /:45 |

# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 5                   |            | Matrix:       | Ground Water        |       | Date Received:04 | .16.2020 17 | :45 |
|---------------|------------------------|------------|---------------|---------------------|-------|------------------|-------------|-----|
| Lab Sample Io | l: 659152-005          |            | Date Collecte | d: 04.16.2020 16:03 |       |                  |             |     |
| Analytical Me | ethod: TPH By SW8015 M | Mod        |               |                     |       | Prep Method: SV  | W8015P      |     |
| Tech:         | DTH                    |            |               |                     |       | % Moisture:      |             |     |
| Analyst:      | DTH                    |            | Date Prep:    | 04.17.2020 16:30    |       |                  |             |     |
| Seq Number:   | 3123611                |            |               |                     |       |                  |             |     |
| Parameter     |                        | Cas Number | Result RI     |                     | Units | Analysis Date    | Flag        | Dil |

| 1 arameter                         | Cas Mullioci | i ittsuit  | KL         |       | Units  | Analysis Date    | riag | Dii |  |
|------------------------------------|--------------|------------|------------|-------|--------|------------------|------|-----|--|
| Gasoline Range Hydrocarbons (GRO)  | PHC610       | <2.50      | ) 2.50     |       | mg/L   | 04.21.2020 01:41 | U    | 1   |  |
| Diesel Range Organics (DRO)        | C10C28DRO    | <2.50      | ) 2.50     |       | mg/L   | 04.21.2020 01:41 | U    | 1   |  |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835     | <2.50      | ) 2.50     |       | mg/L   | 04.21.2020 01:41 | U    | 1   |  |
| Surrogate                          |              | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |  |
| 1-Chlorooctane                     |              | 111-85-3   | 90         | %     | 70-135 | 04.21.2020 01:41 |      |     |  |
| o-Terphenyl                        |              | 84-15-1    | 96         | %     | 70-135 | 04.21.2020 01:41 |      |     |  |

| Analytical Me | ethod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|--------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                      |            |                  | % Moisture:           |
| Analyst:      | KTL                      | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                  |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00400  | 0.00400    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:27 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 101        | %     | 70-130 | 04.21.2020 08:27 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 102        | %     | 70-130 | 04.21.2020 08:27 |      |     |



# **Certificate of Analytical Results 659152**

### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Parameter     |                    | Cas Number | Result    | RL                        | Units | Analysis Date    | Flag  | Dil |
|---------------|--------------------|------------|-----------|---------------------------|-------|------------------|-------|-----|
| Parameter     |                    | Cas Number | Result    | RL                        | Units | Analysis Date    | Flag  | Dil |
| D             |                    | <i>a</i>   |           |                           |       |                  |       |     |
| Seq Number:   | 3123462            |            |           |                           |       | SUB: T104704400- | 19-19 |     |
| Analyst:      | CHE                |            |           |                           |       |                  |       |     |
| Tech:         | CHE                |            |           |                           |       | % Moisture:      |       |     |
| Analytical Me | ethod: pH by SM45  | 00-H       |           |                           |       |                  |       |     |
|               |                    |            |           |                           |       |                  |       |     |
|               |                    |            |           |                           |       |                  |       |     |
|               |                    |            |           |                           |       |                  |       |     |
|               |                    |            |           |                           |       |                  |       |     |
| Chloride      |                    | 16887-00-6 | 3470      | 250                       | mg/L  | 04.18.2020 12:13 |       | 500 |
| Parameter     |                    | Cas Number | Result    | RL                        | Units | Analysis Date    | Flag  | Dil |
|               |                    |            |           |                           |       |                  |       |     |
| Sea Number:   | 3123450            |            | Date I le | p. 04.17.2020 13.30       |       |                  |       |     |
| Analyst:      | MAB                |            | Date Pre  | op: 04 17 2020 15:38      |       | ,                |       |     |
| Tech:         | MAB                |            |           |                           |       | % Moisture:      |       |     |
| Analytical Me | ethod: Chloride by | EPA 300    |           |                           |       | Prep Method: E30 | 0P    |     |
| Luo Sumpie I  | d: 659152-006      |            | Date Co   | neeted. 04.10.2020 10.15  |       |                  |       |     |
| Lab Sample I  |                    |            | Data Co   | llected: 0/ 16 2020 16:15 |       |                  |       |     |



# **Certificate of Analytical Results 659152**

#### HRL Compliance Solutions, Artesia, NM

West Pearl Queen

| Sample Id:    | SB 7                  |            | Matrix:    | Ground Water     |       | Date Received:04.16.2020 17:45 |      |     |  |  |
|---------------|-----------------------|------------|------------|------------------|-------|--------------------------------|------|-----|--|--|
| Lab Sample Id | : 659152-006          |            |            |                  |       |                                |      |     |  |  |
| Analytical Me | thod: TPH By SW8015 M | /lod       |            |                  |       | Prep Method: SW8               | 015P |     |  |  |
| Tech:         | DTH                   |            |            |                  |       | % Moisture:                    |      |     |  |  |
| Analyst:      | DTH                   |            | Date Prep: | 04.17.2020 16:30 |       |                                |      |     |  |  |
| Seq Number:   | 3123611               |            |            |                  |       |                                |      |     |  |  |
| Parameter     |                       | Cas Number | Result     | RL               | Units | Analysis Date                  | Flag | Dil |  |  |

| Gasoline Range Hydrocarbons (GRO)  | PHC610    | <2.5       | 0 2.50     |       | mg/L   | 04.21.2020 02:02 | U    | 1 |
|------------------------------------|-----------|------------|------------|-------|--------|------------------|------|---|
| Diesel Range Organics (DRO)        | C10C28DRO | <2.5       | 0 2.50     |       | mg/L   | 04.21.2020 02:02 | U    | 1 |
| Motor Oil Range Hydrocarbons (MRO) | PHCG2835  | <2.5       | 0 2.50     |       | mg/L   | 04.21.2020 02:02 | U    | 1 |
| Surrogate                          |           | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |   |
| 1-Chlorooctane                     |           | 111-85-3   | 104        | %     | 70-135 | 04.21.2020 02:02 |      |   |
| o-Terphenyl                        |           | 84-15-1    | 112        | %     | 70-135 | 04.21.2020 02:02 |      |   |

| Analytical Me | ethod: BTEX by EPA 8021B |            |                  | Prep Method: SW5030B  |
|---------------|--------------------------|------------|------------------|-----------------------|
| Tech:         | KTL                      |            |                  | % Moisture:           |
| Analyst:      | KTL                      | Date Prep: | 04.20.2020 16:00 |                       |
| Seq Number:   | 3123568                  |            |                  | SUB: T104704400-19-19 |

| Parameter            | Cas Numbe   | er Result  | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | 0.0202     | 0.00200    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/L   | 04.21.2020 08:47 | U    | 1   |
| Ethylbenzene         | 100-41-4    | 0.0143     | 0.00200    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| m,p-Xylenes          | 179601-23-1 | 0.00653    | 0.00400    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| o-Xylene             | 95-47-6     | 0.00263    | 0.00200    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| Total Xylenes        | 1330-20-7   | 0.00916    | 0.00200    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| Total BTEX           |             | 0.0437     | 0.00200    |       | mg/L   | 04.21.2020 08:47 |      | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 100        | %     | 70-130 | 04.21.2020 08:47 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 127        | %     | 70-130 | 04.21.2020 08:47 |      |     |

Page 101 of 198

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

\*\* Surrogate recovered outside laboratory control limit.

| BRL  | Below Reporting Limit.         | ND Not Detected.   |                  |                             |                                 |
|------|--------------------------------|--------------------|------------------|-----------------------------|---------------------------------|
| RL   | Reporting Limit                |                    |                  |                             |                                 |
| MDL  | Method Detection Limit         | SDL Sample Det     | ection Limit     | LOD Limit of Detection      |                                 |
| PQL  | Practical Quantitation Limit   | MQL Method Qua     | antitation Limit | LOQ Limit of Quantitation   | n                               |
| DL   | Method Detection Limit         |                    |                  |                             |                                 |
| NC   | Non-Calculable                 |                    |                  |                             |                                 |
| SMP  | Client Sample                  |                    | BLK              | Method Blank                |                                 |
| BKS/ | LCS Blank Spike/Laboratory     | Control Sample     | BKSD/LCSD        | Blank Spike Duplicate/Labor | catory Control Sample Duplicate |
| MD/S | <b>D</b> Method Duplicate/Samp | le Duplicate       | MS               | Matrix Spike                | MSD: Matrix Spike Duplicate     |
| + NE | ELAC certification not offered | for this compound. |                  |                             |                                 |

\* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation



#### QC Summary 659152

### **HRL Compliance Solutions**

West Pearl Queen

| Analytical Method:                | Chloride by EPA                  | 300                 |               | Prep M                |                   |              |          |      | Method: E300P |            |                    |      |
|-----------------------------------|----------------------------------|---------------------|---------------|-----------------------|-------------------|--------------|----------|------|---------------|------------|--------------------|------|
| Seq Number:                       | 3123450                          |                     |               | Matrix:               | Water             |              |          |      | Date P        | rep: 04.1  | 7.2020             |      |
| MB Sample Id:                     | 7701518-1-BLK                    |                     | LCS Sat       | nple Id:              | 7701518-          | 1-BKS        |          | LCS  | D Samp        | le Id: 770 | 1518-1-BSD         |      |
| Parameter                         | MI<br>Resul                      | 8 Spike<br>t Amount | LCS<br>Result | LCS<br>%Rec           | LCSD<br>Result    | LCSD<br>%Rec | Limits   | %RPD | RPD<br>Limit  | Units      | Analysis<br>Date   | Flag |
| Chloride                          | <0.50                            | 0 25.0              | 26.5          | 106                   | 26.5              | 106          | 90-110   | 0    | 20            | mg/L       | 04.18.2020 11:12   |      |
| Analytical Method:                | Chloride by EPA                  | 300                 |               |                       |                   |              |          | Pi   | rep Metl      | nod: E30   | 0P                 |      |
| Seq Number:                       | 3123450                          |                     |               | Matrix:               | Ground W          | Vater        |          |      | Date P        | rep: 04.1  | 7.2020             |      |
| Parent Sample Id:                 | 659152-001                       |                     | MS Sa         | nple Id:              | 659152-0          | 01 S         |          | MS   | D Samp        | le Id: 659 | 152-001 SD         |      |
| Parameter                         | Paren<br>Resul                   | t Spike<br>t Amount | MS<br>Result  | MS<br>%Rec            | MSD<br>Result     | MSD<br>%Rec  | Limits   | %RPD | RPD<br>Limit  | Units      | Analysis<br>Date   | Flag |
| Chloride                          | 684                              | 0 20.0              | 5820          | 0                     | 5640              | 0            | 90-110   | 3    | 20            | mg/L       | 04.18.2020 11:29   | Х    |
| Analytical Method:<br>Seq Number: | <b>pH by SM4500-H</b><br>3123462 | Ι                   |               | Matrix:               | Ground W          | Vater        |          |      |               |            |                    |      |
| Parent Sample Id:                 | 659152-001                       |                     | MD Sa         | nple Id:              | 659152-0          | 01 D         |          |      |               |            |                    |      |
| Parameter                         | Paren<br>Resul                   | t<br>t              | MD<br>Result  |                       |                   |              |          | %RPD | RPD<br>Limit  | Units      | Analysis<br>Date   | Flag |
| pH                                | 7.1                              | 3                   | 7.16          |                       |                   |              |          | 0    | 20            | SU         | 04.20.2020 11:55   |      |
| Temperature                       | 22.                              | 4                   | 22.4          |                       |                   |              |          | 0    | 20            | Deg C      | 04.20.2020 11:55   |      |
| Analytical Method:<br>Seq Number: | Specific Conduct<br>3123463      | ance @25C I         | by SM251(     | ) <b>B</b><br>Matrix: | Water<br>3123463- | 1-BKS        |          | LCS  | D Samn        | le Id: 312 | 3463-1-BSD         |      |
| MB Sample Id:                     | 5125405-1-DLK                    |                     | LCS Sa        | npic iu.              | 5125405-          | I-DK5        | <b>.</b> |      |               | U          | 0-1-D5D            |      |
| Parameter                         | MI<br>Resul                      | s Spike             | Result        | LCS<br>%Rec           | LCSD<br>Result    | LCSD<br>%Rec | Limits   | %RPD | Limit         | Units      | Date               | Flag |
| Conductivity                      | <10.                             | 0 1410              | 1410          | 100                   | 1420              | 101          | 80-120   | 1    | 20            | umhos/cm   | 1 04.20.2020 11:15 |      |
| Analytical Method:<br>Seq Number: | <b>Specific Conduct</b> 3123463  | ance @25C l         | oy SM251(     | ) <b>B</b><br>Matrix: | Ground W          | Vater        |          |      |               |            |                    |      |
| Parent Sample Id:                 | 659152-001                       |                     | MD Sa         | nple Id:              | 659152-0          | 01 D         |          |      |               |            |                    |      |
| Parameter                         | Paren<br>Resul                   | t<br>t              | MD<br>Result  |                       |                   |              |          | %RPD | RPD<br>Limit  | Units      | Analysis<br>Date   | Flag |
| Conductivity                      | 3420                             | 0                   | 34200         |                       |                   |              |          | 0    | 20            | umhos/cm   | 04.20.2020 11:15   |      |
|                                   |                                  |                     |               |                       |                   |              |          |      |               |            |                    |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference  $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$ 

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 20 of 27



#### QC Summary 659152

#### **HRL Compliance Solutions**

West Pearl Queen

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | Al Method: TPH By SW8015 Mod   ber: 3123611   ble Id: 7701672-1-BLK |              |                 |               | Matrix: Water<br>LCS Sample Id: 7701672-1-BKS |                |              |                  |           | Prep Method: SW8015P<br>Date Prep: 04.17.2020<br>LCSD Sample Id: 7701672-1-BSD |       |                  |      |  |
|----------------------------------------------------|---------------------------------------------------------------------|--------------|-----------------|---------------|-----------------------------------------------|----------------|--------------|------------------|-----------|--------------------------------------------------------------------------------|-------|------------------|------|--|
| Parameter                                          |                                                                     | MB<br>Result | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec                                   | LCSD<br>Result | LCSD<br>%Rec | Limits           | %RPD      | RPD<br>Limit                                                                   | Units | Analysis<br>Date | Flag |  |
| Gasoline Range Hydrocarbo                          | ons (GRO)                                                           | <2.50        | 100             | 88.1          | 88                                            | 75.6           | 76           | 70-135           | 15        | 35                                                                             | mg/L  | 04.20.2020 22:19 |      |  |
| Diesel Range Organics (                            | DRO)                                                                | <2.50        | 100             | 96.8          | 97                                            | 80.6           | 81           | 70-135           | 18        | 35                                                                             | mg/L  | 04.20.2020 22:19 |      |  |
| Surrogate                                          |                                                                     | MB<br>%Rec   | MB<br>Flag      | L(<br>%)      | CS<br>Rec                                     | LCS<br>Flag    | LCSD<br>%Rec | ) LCSI<br>2 Flag | D Li<br>; | mits                                                                           | Units | Analysis<br>Date |      |  |
| 1-Chlorooctane                                     |                                                                     | 73           |                 | 1             | 18                                            |                | 118          |                  | 70        | -135                                                                           | %     | 04.20.2020 22:19 |      |  |
| o-Terphenyl                                        |                                                                     | 71           |                 | 1             | 11                                            |                | 101          |                  | 70        | -135                                                                           | %     | 04.20.2020 22:19 |      |  |

| Analytical Method:        | TPH By SW8015 Mod |               |               | Prep Method: | SW            | 8015P            |      |
|---------------------------|-------------------|---------------|---------------|--------------|---------------|------------------|------|
| Seq Number:               | 3123611           | Matrix:       | Water         | Date Prep:   | 04.1          | 7.2020           |      |
|                           |                   | MB Sample Id: | 7701672-1-BLK |              |               |                  |      |
| Parameter                 |                   | MB            |               | τ            | J <b>nits</b> | Analysis         | Flag |
| 1 al allicici             |                   | Result        |               |              |               | Date             |      |
| Motor Oil Range Hydrocarb | oons (MRO)        | <2.50         |               | r            | ng/L          | 04.20.2020 21:59 |      |

| <b>Analytical Method:</b> | lod        |                  |                 |                            |            |               | Pi                           | rep Meth        | od: SW    | 8015P        |         |                  |      |
|---------------------------|------------|------------------|-----------------|----------------------------|------------|---------------|------------------------------|-----------------|-----------|--------------|---------|------------------|------|
| Seq Number:               | 3123611    |                  |                 |                            | Matrix:    | Water         |                              |                 |           | Date Pr      | ep: 04. | 17.2020          |      |
| Parent Sample Id:         | 659194-001 |                  |                 | MS Sample Id: 659194-001 S |            |               | MSD Sample Id: 659194-001 SD |                 |           |              |         |                  |      |
| Parameter                 |            | Parent<br>Result | Spike<br>Amount | MS<br>Result               | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec                  | Limits          | %RPD      | RPD<br>Limit | Units   | Analysis<br>Date | Flag |
| Gasoline Range Hydrocarb  | ons (GRO)  | <2.31            | 92.4            | 75.8                       | 82         | 61.2          | 65                           | 70-135          | 21        | 35           | mg/L    | 04.20.2020 23:20 | Х    |
| Diesel Range Organics     | (DRO)      | <2.31            | 92.4            | 78.4                       | 85         | 61.1          | 65                           | 70-135          | 25        | 35           | mg/L    | 04.20.2020 23:20 | Х    |
| Surrogate                 |            |                  |                 | N<br>%                     | 1S<br>Rec  | MS<br>Flag    | MSD<br>%Re                   | ) MSI<br>c Flag | ) Li<br>g | imits        | Units   | Analysis<br>Date |      |
| 1-Chlorooctane            |            |                  |                 | 1                          | 04         |               | 78                           |                 | 70        | -135         | %       | 04.20.2020 23:20 |      |

99

73

| Analytical Method:<br>Seq Number:<br>MB Sample Id: | <b>BTEX by EPA 8021</b><br>3123568<br>7701649-1-BLK | В               | Matrix: Water<br>LCS Sample Id: 7701649-1-BKS |             |                |              | Prep Method: SW5030B<br>Date Prep: 04.20.2020<br>LCSD Sample Id: 7701649-1-BSD |           |              |       |                  |      |
|----------------------------------------------------|-----------------------------------------------------|-----------------|-----------------------------------------------|-------------|----------------|--------------|--------------------------------------------------------------------------------|-----------|--------------|-------|------------------|------|
| Parameter                                          | MB<br>Result                                        | Spike<br>Amount | LCS<br>Result                                 | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits                                                                         | %RPD      | RPD<br>Limit | Units | Analysis<br>Date | Flag |
| Benzene                                            | < 0.00200                                           | 0.100           | 0.0822                                        | 82          | 0.0969         | 97           | 70-130                                                                         | 16        | 25           | mg/L  | 04.21.2020 03:28 |      |
| Toluene                                            | < 0.00200                                           | 0.100           | 0.0836                                        | 84          | 0.0948         | 95           | 70-130                                                                         | 13        | 25           | mg/L  | 04.21.2020 03:28 |      |
| Ethylbenzene                                       | < 0.00200                                           | 0.100           | 0.0862                                        | 86          | 0.0946         | 95           | 70-130                                                                         | 9         | 25           | mg/L  | 04.21.2020 03:28 |      |
| m,p-Xylenes                                        | < 0.00400                                           | 0.200           | 0.169                                         | 85          | 0.186          | 93           | 70-130                                                                         | 10        | 25           | mg/L  | 04.21.2020 03:28 |      |
| o-Xylene                                           | < 0.00200                                           | 0.100           | 0.0911                                        | 91          | 0.0943         | 94           | 70-130                                                                         | 3         | 25           | mg/L  | 04.21.2020 03:28 |      |
| Surrogate                                          | MB<br>%Rec                                          | MB<br>Flag      | L<br>%                                        | CS<br>Rec   | LCS<br>Flag    | LCSD<br>%Rec | LCSI<br>Flag                                                                   | D Li<br>ç | imits        | Units | Analysis<br>Date |      |
| 1,4-Difluorobenzene                                | 94                                                  |                 | 1                                             | 01          |                | 102          |                                                                                | 70        | -130         | %     | 04.21.2020 03:28 |      |
| 4-Bromofluorobenzene                               | 85                                                  |                 | 1                                             | 06          |                | 97           |                                                                                | 70        | -130         | %     | 04.21.2020 03:28 |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

o-Terphenyl

 $\label{eq:c-A} \begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$ 

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

04.20.2020 23:20

70-135

%



#### QC Summary 659152

Prep Method: SW5030B

#### **HRL Compliance Solutions**

West Pearl Queen

| Seq Number:          | Matrix: Ground Water |                 |              |            | Date Prep: 04.20.2020 |             |             |           |              |           |                  |      |
|----------------------|----------------------|-----------------|--------------|------------|-----------------------|-------------|-------------|-----------|--------------|-----------|------------------|------|
| Parent Sample Id:    | 659152-001           |                 | MS Sam       | ple Id:    | 659152-00             | 01 S        |             | MS        | D Sampl      | e Id: 659 | 152-001 SD       |      |
| Parameter            | Parent<br>Result     | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result         | MSD<br>%Rec | Limits      | %RPD      | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Benzene              | < 0.00200            | 0.100           | 0.0867       | 87         | 0.0652                | 65          | 70-130      | 28        | 25           | mg/L      | 04.21.2020 04:08 | XF   |
| Toluene              | < 0.00200            | 0.100           | 0.0855       | 86         | 0.0793                | 79          | 70-130      | 8         | 25           | mg/L      | 04.21.2020 04:08 |      |
| Ethylbenzene         | < 0.00200            | 0.100           | 0.0871       | 87         | 0.0871                | 87          | 70-130      | 0         | 25           | mg/L      | 04.21.2020 04:08 |      |
| m,p-Xylenes          | < 0.00400            | 0.200           | 0.168        | 84         | 0.174                 | 87          | 70-130      | 4         | 25           | mg/L      | 04.21.2020 04:08 |      |
| o-Xylene             | < 0.00200            | 0.100           | 0.0881       | 88         | 0.0917                | 92          | 70-130      | 4         | 25           | mg/L      | 04.21.2020 04:08 |      |
| Surrogate            |                      |                 | M<br>%I      | [S<br>Rec  | MS<br>Flag            | MSD<br>%Rec | MSE<br>Flag | ) Li<br>ç | imits        | Units     | Analysis<br>Date |      |
| 1,4-Difluorobenzene  |                      |                 | 9            | 9          |                       | 96          |             | 70        | -130         | %         | 04.21.2020 04:08 |      |
| 4-Bromofluorobenzene | e                    |                 | 9            | 6          |                       | 102         |             | 70        | -130         | %         | 04.21.2020 04:08 |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference  $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$ 

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec



# Chain of Custody

|                                                      | Midland, TX (480<br>Phoenix, AZ (480 | Houston,TX (281) 240-4<br>132) 704-5440 EL Paso,<br>) 355-0900 Atlanta,GA ( | Cha<br>200 Dallas,1<br>TX (915) 585<br>770) 449-880 | x (214) 9<br>-3443 Lui<br>0 Tampa | f Cu<br>02-0300<br>bbock,TX | San Ar<br>(806) 7<br>(620-20 | <b>bdy</b><br>ntonio,TX (<br>794-1296 (<br>000 West | (210) 509-33<br>Crasibad, Ni<br>Palm Beach | 334<br>M (432) 704<br>h <u>. FL (</u> 561 <u>) (</u> | 1-5440<br>689-6701                                         |        | Work (    | Order No:   | US9152                  |           |
|------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------|------------------------------|-----------------------------------------------------|--------------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------|-----------|-------------|-------------------------|-----------|
| Project Manager: Julie Li                            | ng                                   | Bill to: (if d                                                              | Bill to: (if different) ARL                         |                                   |                             |                              |                                                     |                                            | Work Order Comments                                  |                                                            |        |           |             |                         |           |
| company Name: H.R.L. Compliance Solutions            |                                      |                                                                             | Company Name:                                       |                                   |                             |                              |                                                     |                                            | Program: UST/PST PRP Brownfields RRC Superfund       |                                                            |        |           |             |                         |           |
| Address: 112 So 6th St.                              |                                      |                                                                             | dress:                                              | -                                 |                             | -                            |                                                     |                                            |                                                      | State of Project:                                          |        |           |             |                         |           |
| City, State ZIP: Qrtesia, NM                         |                                      |                                                                             | e ZIP:                                              |                                   |                             | 1                            |                                                     |                                            |                                                      | Reporting:Level II _Level III _ PST/UST _TRRP _ Level IV _ |        |           |             |                         |           |
| Phone: (970) 0                                       | 103-8747 E                           | mail: JIIAN                                                                 | Ohrl                                                | com                               | p .                         | COV                          | n                                                   |                                            |                                                      | Deliverables: EDD ADaPT Other:                             |        |           |             |                         |           |
| Project Name: 11/2St Pro                             | a Queen                              | Turn wound                                                                  | ANALYSIS PE                                         |                                   |                             |                              |                                                     | S REOL                                     | OUEST Preservative Code                              |                                                            |        |           |             |                         |           |
| Project Number:                                      | queat                                | Routine IN                                                                  | Pres.                                               | 1                                 |                             |                              |                                                     | TETON                                      |                                                      |                                                            | 11     |           |             |                         |           |
| Project Location                                     |                                      | Rush:                                                                       | 3                                                   |                                   |                             |                              | E                                                   |                                            |                                                      |                                                            |        |           | Mee         | DH: Me                  |           |
| Sampler's Name: J. LINA                              |                                      | Due Date:                                                                   | 1                                                   |                                   |                             |                              | F                                                   |                                            |                                                      |                                                            |        |           | Nor         |                         |           |
| PO #:                                                | Quote #:                             |                                                                             | 6                                                   | 3                                 |                             |                              | A                                                   |                                            |                                                      |                                                            |        |           | H2S         | 604: H2                 |           |
| SAMPLE RECEIPT Temp                                  | Blank: (Yes No We                    | Lice: Ces No                                                                | 2                                                   | 7                                 |                             |                              | 9                                                   |                                            |                                                      |                                                            |        |           |             | - 10                    |           |
| Temperature (°C):                                    | LIO Thermor                          | neter ID                                                                    | ers                                                 | 5                                 |                             |                              |                                                     |                                            |                                                      |                                                            |        |           | HCL         | .: HL                   |           |
| Received Intact: (Yes)                               | No T-                                | VM COT                                                                      | itain                                               | 7                                 |                             |                              | 3                                                   |                                            |                                                      |                                                            |        |           | Zn /        | Acetate+ NaOH: Zn       |           |
| Cooler Custody Seals: Yes (B)                        | N/A Correction Fa                    | ctor: -0.2                                                                  | Con                                                 |                                   |                             |                              | 20                                                  |                                            |                                                      |                                                            |        |           | TAT         | detate hadri. Zi        |           |
| Sample Custody Seals: Yes N                          | N/A Total Contain                    | ners: 42                                                                    | er of                                               | Di Di                             |                             |                              | 5                                                   |                                            |                                                      |                                                            |        |           | IA          | received by 4:00pm      | a lao, ir |
| Lab<br>ID Sample Identification                      | Matrix Date Time<br>Sampled Samp     | e Depth                                                                     | Numbe                                               | 9                                 | G                           | HO                           | Ele                                                 |                                            |                                                      |                                                            |        |           |             | Sample Comments         |           |
| SB14 C                                               | W 4-16-20 0840                       | ) - (                                                                       | JX                                                  | X                                 | N                           | x                            | X                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
| SB13(                                                | SW 4-16-20 1325                      | -                                                                           | JL                                                  | X                                 | X                           | X                            | X                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
| SB2 G                                                | W 4-16-20 14.51                      | ) - •                                                                       | 7 X                                                 | X                                 | X                           | X                            | X                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
| SBIT                                                 | W 4-16-20 151                        | 0 - 0                                                                       | 7 X                                                 | x                                 | x                           | x                            | L                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
| SB5 C                                                | SW 4-16-20 160                       | 3 -                                                                         | 7 X                                                 | x                                 | ×                           | X                            | X                                                   | 12.1                                       | 1                                                    |                                                            |        |           |             |                         |           |
| SB7 C                                                | 3W 4-16-20 1619                      | 5 -                                                                         | 7 x                                                 | X                                 | X                           | X                            | ×                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
|                                                      |                                      |                                                                             |                                                     |                                   |                             |                              | _                                                   |                                            |                                                      |                                                            |        |           |             |                         |           |
|                                                      |                                      |                                                                             |                                                     |                                   |                             |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |
|                                                      |                                      |                                                                             |                                                     |                                   |                             |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |
| 4<br>X                                               |                                      |                                                                             |                                                     |                                   |                             |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |
| Total 200.7 / 6010 200.8 / 6020                      | : 8RCF                               | RA 13PPM Texas                                                              | 11 AI St                                            | As Ba                             | a Be B                      | Cd (                         | Ca Cr (                                             | Co Cu Fe                                   | e Pb Ma                                              | Mn Mo                                                      | Ni K S | e Ag Sid  | D2 Na Sr TI | Sn U V Zn               | -         |
| Circle Method(s) and Metal(s) to b                   | be analyzed TCLP /                   | SPLP 6010: 8RCR.                                                            | A Sb As                                             | Ba Be                             | Cd Cr                       | Co                           | Cu Pb I                                             | Mn Mo N                                    | Vi Se Ag                                             | TIU                                                        |        |           | 1631 /      | 245.1 / 7470 / 7471 : 1 | łg        |
| Notice: Signature of this document and relinquishme  | nt of samples constitutes a valid pu | chase order from client co                                                  | ompany to Xer                                       | ico, its affi                     | liates and                  | subcon                       | tractors. It                                        | t assigns sta                              | indard terms                                         | s and condit                                               | ions   |           |             |                         |           |
| of Xenco. A minimum charge of \$75.00 will be applie | to each project and a charge of \$5  | ponsibility for any losses<br>for each sample submittee                     | or expenses i<br>d to Xenco, bu                     | t not analy                       | the client<br>zed. Thes     | t if such<br>te terms        | losses are<br>will be enf                           | e due to circu<br>forced unless            | mstances be<br>s previously                          | eyond the co<br>negotiated.                                | ntrol  |           |             |                         |           |
| Relinguished by: (Signature)                         | Received by: (Sig                    | nature)                                                                     | Date                                                | /Time                             |                             | Reli                         | nquishe                                             | ad by: (Si                                 | ignaturo                                             |                                                            | Pocoin | ad but /S | lignatura   | Date/Time               | -         |
| Miliol =                                             | PILA                                 | 1                                                                           | 4/                                                  | 201                               | 1.100                       | Rell                         | riquisile                                           | ou by. (5)                                 | gnature)                                             | 1                                                          | Receiv | eu by: (a | ngnature)   | Date/Time               |           |
|                                                      | un                                   |                                                                             | 111lel                                              | 201                               | 145                         |                              |                                                     |                                            |                                                      | -                                                          |        |           |             | -                       |           |
| 3                                                    |                                      |                                                                             | -                                                   |                                   | 4                           |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |
|                                                      |                                      |                                                                             |                                                     |                                   | 0                           |                              |                                                     | -                                          |                                                      |                                                            |        | _         |             | Revised Date 022619 Rev | 1.2019.1  |
|                                                      |                                      |                                                                             |                                                     |                                   |                             |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |
| <b>1</b>                                             |                                      |                                                                             |                                                     |                                   |                             |                              |                                                     |                                            |                                                      |                                                            |        |           |             |                         |           |

Final 1.000



#### **Inter-Office Shipment**

Page 1 of 1

#### IOS Number 62277

Date/Time: 04/17/20 11:29

Lab# From: Carlsbad

Lab# To: Midland

Air Bill No.:

**Delivery Priority:** 

Created by: Elizabeth Mcclellan

Please send report to: Erica Morales

Address: 1089 N Canal Street

E-Mail: erica.morales@xenco.com

| Sample Id  | Matrix | Client Sample Id | Sample Collection | Method   | Method Name                         | Lab Due  | HT Due         | РМ  | Analytes             | Sign |
|------------|--------|------------------|-------------------|----------|-------------------------------------|----------|----------------|-----|----------------------|------|
| 659152-001 | W      | SB 14            | 04/16/20 08:40    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-001 | W      | SB 14            | 04/16/20 08:40    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-001 | W      | SB 14            | 04/16/20 08:40    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 08:55 | EIM |                      |      |
| 659152-002 | W      | SB 13            | 04/16/20 13:25    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-002 | W      | SB 13            | 04/16/20 13:25    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 13:40 | EIM |                      |      |
| 659152-002 | W      | SB 13            | 04/16/20 13:25    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-003 | W      | SB 2             | 04/16/20 14:50    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-003 | W      | SB 2             | 04/16/20 14:50    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 15:05 | EIM |                      |      |
| 659152-003 | W      | SB 2             | 04/16/20 14:50    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-004 | W      | SB 17            | 04/16/20 15:10    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 15:25 | EIM |                      |      |
| 659152-004 | W      | SB 17            | 04/16/20 15:10    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-004 | W      | SB 17            | 04/16/20 15:10    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-005 | W      | SB 5             | 04/16/20 16:03    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-005 | W      | SB 5             | 04/16/20 16:03    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 16:18 | EIM |                      |      |
| 659152-005 | W      | SB 5             | 04/16/20 16:03    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-006 | W      | SB 7             | 04/16/20 16:15    | SM2510B  | Specific Conductance @25C by SM2510 | 04/22/20 | 05/14/20       | EIM |                      |      |
| 659152-006 | W      | SB 7             | 04/16/20 16:15    | SW8021B  | BTEX by EPA 8021B                   | 04/22/20 | 04/30/20       | EIM | BR4FBZ BZ BZME EBZ X |      |
| 659152-006 | W      | SB 7             | 04/16/20 16:15    | SM4500-Н | pH by SM4500-H                      | 04/22/20 | 04/16/20 16:30 | EIM |                      |      |

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 04/17/2020

Received By:

Brianna Teel

Date Received: 04/20/2020 10:20

Cooler Temperature: 0.6

Released to Imaging: 10/29/2024 7:37:14 AM

Page 24 of 27

Final 1.000



### **XENCO** Laboratories

# ABORATORIES Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 62277

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used :

| Sent By:     | Elizabeth McClellan | Date Sent:     | 04/17/2020 11:29 AM |
|--------------|---------------------|----------------|---------------------|
| Received By: | Brianna Teel        | Date Received: | 04/20/2020 10:20 AM |

#### Sample Receipt Checklist

Comments

| #1 *Temperature of cooler(s)?                             | .6  |
|-----------------------------------------------------------|-----|
| #2 *Shipping container in good condition?                 | Yes |
| #3 *Samples received with appropriate temperature?        | Yes |
| #4 *Custody Seals intact on shipping container/ cooler?   | Yes |
| #5 *Custody Seals Signed and dated for Containers/coolers | Yes |
| #6 *IOS present?                                          | Yes |
| #7 Any missing/extra samples?                             | No  |
| #8 IOS agrees with sample label(s)/matrix?                | Yes |
| #9 Sample matrix/ properties agree with IOS?              | Yes |
| #10 Samples in proper container/ bottle?                  | Yes |
| #11 Samples properly preserved?                           | Yes |
| #12 Sample container(s) intact?                           | Yes |
| #13 Sufficient sample amount for indicated test(s)?       | Yes |
| #14 All samples received within hold time?                | Yes |

\* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

**Corrective Action Taken:** 

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

Brille

Brianna Teel

Date: 04/20/2020

### **XENCO** Laboratories

### Prelogin/Nonconformance Report- Sample Log-In

| Client: HRL Compliance Solutions                        | Acceptable Temperature Range: 0 - 6 degC        |     |                                                         |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------|-----|---------------------------------------------------------|--|--|--|--|
| Date/ Time Received: 04.16.2020 05.45.00 PM             | Air and Metal samples Acceptable Range: Ambient |     |                                                         |  |  |  |  |
| Work Order #: 659152                                    | Temperature Measuring device used : T-NM-007    |     |                                                         |  |  |  |  |
| Sample Rec                                              | ceipt Checklist                                 |     | Comments                                                |  |  |  |  |
| #1 *Temperature of cooler(s)?                           |                                                 | 1   |                                                         |  |  |  |  |
| #2 *Shipping container in good condition?               | ١                                               | /es |                                                         |  |  |  |  |
| #3 *Samples received on ice?                            | ١                                               | /es |                                                         |  |  |  |  |
| #4 *Custody Seals intact on shipping container/ cooler? | ١                                               | /es |                                                         |  |  |  |  |
| #5 Custody Seals intact on sample bottles?              | ١                                               | /es |                                                         |  |  |  |  |
| #6*Custody Seals Signed and dated?                      | ١                                               | /es |                                                         |  |  |  |  |
| #7 *Chain of Custody present?                           | ١                                               | /es |                                                         |  |  |  |  |
| #8 Any missing/extra samples?                           | I                                               | No  |                                                         |  |  |  |  |
| #9 Chain of Custody signed when relinquished/ received? | ١                                               | /es |                                                         |  |  |  |  |
| #10 Chain of Custody agrees with sample labels/matrix?  | ١                                               | /es |                                                         |  |  |  |  |
| #11 Container label(s) legible and intact?              | ١                                               | /es |                                                         |  |  |  |  |
| #12 Samples in proper container/ bottle?                | ١                                               | /es |                                                         |  |  |  |  |
| #13 Samples properly preserved?                         | ١                                               | /es |                                                         |  |  |  |  |
| #14 Sample container(s) intact?                         |                                                 | No  | Samples split in lab for Chloride<br>Method. 4-17-20 EM |  |  |  |  |
| #15 Sufficient sample amount for indicated test(s)?     | ١                                               | (es |                                                         |  |  |  |  |
| #16 All samples received within hold time?              | ١                                               | (es |                                                         |  |  |  |  |
| #17 Subcontract of sample(s)?                           | ١                                               | (es | SM4500H, SM2510 and BTEX subbed to Midland.             |  |  |  |  |
| #18 Water VOC samples have zero headspace?              | ١                                               | (es |                                                         |  |  |  |  |

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#: 10Fox1971
## **XENCO** Laboratories

## Prelogin/Nonconformance Report- Sample Log-In

**Client: HRL Compliance Solutions** 

Date/ Time Received: 04.16.2020 05.45.00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 659152

Sample Receipt Checklist

A032690e

Checklist completed by: Elizabeth McClellan

Date: 04.17.2020

Checklist reviewed by:

Date: 04.17.2020



5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com





# envirotech

**Practical Solutions for a Better Tomorrow** 

# **Analytical Report**

## Armstrong

Project Name: West Peariqueen 10

.

Work Order: E205154

Job Number: 20071-0001

Received: 5/27/2022

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 6/3/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979) Date Reported: 6/3/22

Chris Cortez 2904 W 2nd St. Roswell, NM 88201

Project Name: West Peariqueen 10 Workorder: E205154 Date Received: 5/27/2022 12:37:00PM

Chris Cortez,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 5/27/2022 12:37:00PM, under the Project Name: West Peariqueen 10.

The analytical test results summarized in this report with the Project Name: West Peariqueen 10 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com



Page 111 of 198

•

## Table of Contents

| Title Page                                          | 1  |
|-----------------------------------------------------|----|
| Cover Page                                          | 2  |
| Table of Contents                                   | 3  |
| Sample Summary                                      | 4  |
| Sample Data                                         | 6  |
| SB 2                                                | 6  |
| SB 4                                                | 7  |
| SB 7                                                | 8  |
| SB 13                                               | 9  |
| SB 14                                               | 10 |
| SB 20                                               | 11 |
| SB 21                                               | 12 |
| SB 22                                               | 13 |
| SB 23                                               | 14 |
| Trip Blank                                          | 15 |
| QC Summary Data                                     | 16 |
| QC - Volatile Organics by EPA 8021B                 | 16 |
| QC - Nonhalogenated Organics by EPA 8015D - GRO     | 17 |
| QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO | 18 |
| QC - Anions by EPA 300.0/9056A                      | 19 |
| Definitions and Notes                               | 20 |
| Chain of Custody etc.                               | 21 |

#### **Sample Summary**

| Armstrong<br>2904 W 2nd St.<br>Roswell NM, 88201 |                            | Project Name:<br>Project Number:<br>Project Manager: | West Peariqueen 10<br>20071-0001<br>Chris Cortez |          | <b>Reported:</b> 06/03/22 16:29 |
|--------------------------------------------------|----------------------------|------------------------------------------------------|--------------------------------------------------|----------|---------------------------------|
| Client Sample ID                                 | Lab Sample ID              | Matrix                                               | Sampled                                          | Received | Container                       |
| SB 2                                             | E205154-01A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mL                      |
|                                                  | E205154-01B                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-01C                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-01D                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-01E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-01F                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-01G                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
| B 4                                              | E205154-02A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mL                      |
|                                                  | E205154-02B                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-02C                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-02D                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-02E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-02F                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-02G                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
| В 7                                              | E205154-03A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mL                      |
|                                                  | E205154-03B                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-03C                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-03D                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-03E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-03F                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-03G                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
| R 13                                             | F205154-04A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mL                      |
| 5 15                                             | E205154-04R                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial. 40mL: HCl             |
|                                                  | E205154-04C                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-04D                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-04E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-04F                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-04G                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
| R 1/                                             | E205154 05A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mI                      |
| D 14                                             | E205154-05R                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial 40mI · HCl             |
|                                                  | E205154-05B                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-05C                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-05E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-05E                | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial, 40mL; HCl             |
|                                                  | E205154-05F                |                                                      | 05/26/22                                         | 05/27/22 | VOA Vial 40mI · HCl             |
| 2 20                                             | E205154-050                | Δαμοομα                                              | 05/26/22                                         | 05/27/22 | Poly 125mI                      |
| 5 20                                             | E203134-00A<br>E205154 04D | Aqueous                                              | 05/26/22                                         | 05/27/22 | VOA Vial 40mI · HCl             |
|                                                  | E203134-00B                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VOA Vial AlmI · HCl             |
|                                                  | E203134-00C                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VOA Vial AlmI · HCl             |
|                                                  | E203134-00D                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VOA Vial 40mL HCl               |
|                                                  | E203154-06E                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VOA Vial, 40mL; HUI             |
|                                                  | E203134-06F                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VOA Vial, 40mL; HUI             |
|                                                  | E205154-06G                | Aqueous                                              | 05/20/22                                         | 05/27/22 | VUA VIAI, 40ML; HUI             |
| B 21                                             | E205154-07A                | Aqueous                                              | 05/26/22                                         | 05/27/22 | Poly 125mL                      |



#### Sample Summarv

|                                                                     |               | Sumple Sum                       | inter y                          |                |                     |
|---------------------------------------------------------------------|---------------|----------------------------------|----------------------------------|----------------|---------------------|
| ArmstrongProject 12904 W 2nd St.Project 1Roswell NM, 88201Project 1 |               | Project Name:<br>Project Number: | West Peariqueen 10<br>20071-0001 |                | Reported:           |
|                                                                     |               | Project Manager:                 | Chris Cortez                     | 06/03/22 16:29 |                     |
| Client Sample ID                                                    | Lab Sample ID | Matrix                           | Sampled                          | Received       | Container           |
| SB 21                                                               | E205154-07B   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-07C   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-07D   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-07E   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-07F   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-07G   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
| SB 22                                                               | E205154-08A   | Aqueous                          | 05/26/22                         | 05/27/22       | Poly 125mL          |
|                                                                     | E205154-08B   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-08C   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-08D   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-08E   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-08F   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-08G   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
| SB 23                                                               | E205154-09A   | Aqueous                          | 05/26/22                         | 05/27/22       | Poly 125mL          |
|                                                                     | E205154-09B   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-09C   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-09D   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-09E   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-09F   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     | E205154-09G   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
| rip Blank                                                           | E205154-10A   | Aqueous                          | 05/26/22                         | 05/27/22       | VOA Vial, 40mL; HCl |
|                                                                     |               | 1                                |                                  |                |                     |



|                                                |               | I —        |                    |          |          |                    |
|------------------------------------------------|---------------|------------|--------------------|----------|----------|--------------------|
| Armstrong                                      | Project Name: | Wes        | West Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Numbe | er: 200    | 20071-0001         |          |          | Reported:          |
| Roswell NM, 88201                              | Project Manag | er: Chr    | is Cortez          |          |          | 6/3/2022 4:29:06PM |
|                                                |               | SB 2       |                    |          |          |                    |
|                                                |               | E205154-01 |                    |          |          |                    |
|                                                |               | Reporting  |                    |          |          |                    |
| Analyte                                        | Result        | Limit      | Dilution           | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L          | ug/L       | Analys             | t: IY    |          | Batch: 2223037     |
| Benzene                                        | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND            | 2.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |               | 102 %      | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L          | mg/L       | Analys             | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND            | 0.100      | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |               | 90.3 %     | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L          | mg/L       | Analys             | t: JL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND            | 1.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Oil Range Organics (C28-C36)                   | ND            | 2.00       | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: n-Nonane                            |               | 91.3 %     | 50-200             | 06/02/22 | 06/02/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L          | mg/L       | Analys             | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 112           | 4.00       | 2                  | 06/02/22 | 06/02/22 |                    |

## Sample Data



## Sample Data

| Armstrong                                      | Project Name | Wes         | st Peariqueen 10 |          |                    |                |
|------------------------------------------------|--------------|-------------|------------------|----------|--------------------|----------------|
| 2904 W 2nd St.                                 | Project Numb | ber: 200    | 20071-0001       |          |                    | Reported:      |
| Roswell NM, 88201                              | Project Mana | ger: Chr    | is Cortez        |          | 6/3/2022 4:29:06PM |                |
|                                                |              | <b>SB 4</b> |                  |          |                    |                |
|                                                |              | E205154-02  |                  |          |                    |                |
|                                                |              | Reporting   |                  |          |                    |                |
| Analyte                                        | Result       | Limit       | Dilution         | Prepared | Analyzed           | Notes          |
| Volatile Organics by EPA 8021B                 | ug/L         | ug/L        | Analys           | t: IY    |                    | Batch: 2223037 |
| Benzene                                        | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| Ethylbenzene                                   | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| Toluene                                        | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| o-Xylene                                       | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| p,m-Xylene                                     | ND           | 2.00        | 1                | 06/02/22 | 06/02/22           |                |
| Total Xylenes                                  | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| Surrogate: 4-Bromochlorobenzene-PID            |              | 97.3 %      | 70-130           | 06/02/22 | 06/02/22           |                |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L         | mg/L        | Analys           | t: IY    |                    | Batch: 2223037 |
| Gasoline Range Organics (C6-C10)               | ND           | 0.100       | 1                | 06/02/22 | 06/02/22           |                |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |              | 90.2 %      | 70-130           | 06/02/22 | 06/02/22           |                |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L         | mg/L        | Analys           | t: JL    |                    | Batch: 2223017 |
| Diesel Range Organics (C10-C28)                | ND           | 1.00        | 1                | 06/02/22 | 06/02/22           |                |
| Oil Range Organics (C28-C36)                   | ND           | 2.00        | 1                | 06/02/22 | 06/02/22           |                |
| Surrogate: n-Nonane                            |              | 97.4 %      | 50-200           | 06/02/22 | 06/02/22           |                |
| Anions by EPA 300.0/9056A                      | mg/L         | mg/L        | Analys           | t: KL    |                    | Batch: 2223038 |
| Chloride                                       | 28.7         | 2.00        | 1                | 06/02/22 | 06/02/22           |                |



## Sample Data

|                                                |               | L                     |                  |          |          |                    |
|------------------------------------------------|---------------|-----------------------|------------------|----------|----------|--------------------|
| Armstrong                                      | Project Name: | Wes                   | st Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Numbe | er: 200               | 20071-0001       |          |          | Reported:          |
| Roswell NM, 88201                              | Project Manag | Manager: Chris Cortez |                  |          |          | 6/3/2022 4:29:06PM |
|                                                |               | <b>SB 7</b>           |                  |          |          |                    |
|                                                |               | E205154-03            |                  |          |          |                    |
|                                                |               | Reporting             |                  |          |          |                    |
| Analyte                                        | Result        | Limit                 | Dilution         | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L          | ug/L                  | Analys           | t: IY    |          | Batch: 2223037     |
| Benzene                                        | 5.09          | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | 8.44          | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | ND            | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND            | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND            | 2.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND            | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |               | 103 %                 | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L          | mg/L                  | Analys           | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | 0.136         | 0.100                 | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |               | 92.5 %                | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L          | mg/L                  | Analys           | t: ЛL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND            | 1.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Oil Range Organics (C28-C36)                   | ND            | 2.00                  | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: n-Nonane                            |               | 93.5 %                | 50-200           | 06/02/22 | 06/02/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L          | mg/L                  | Analys           | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 30.6          | 2.00                  | 1                | 06/02/22 | 06/02/22 |                    |

## Sample Data

|                                                |                               | ·· <b>I</b> · · |                    |          |          |                    |
|------------------------------------------------|-------------------------------|-----------------|--------------------|----------|----------|--------------------|
| Armstrong                                      | Project Name                  | : Wes           | West Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Numb                  | ber: 200        | 20071-0001         |          |          | Reported:          |
| Roswell NM, 88201                              | Project Manager: Chris Cortez |                 |                    |          |          | 6/3/2022 4:29:06PM |
|                                                |                               | SB 13           |                    |          |          |                    |
|                                                |                               | E205154-04      |                    |          |          |                    |
|                                                |                               | Reporting       | ;                  |          |          |                    |
| Analyte                                        | Result                        | Limit           | Dilution           | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L                          | ug/L            | Analys             | t: IY    |          | Batch: 2223037     |
| Benzene                                        | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND                            | 2.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |                               | 104 %           | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L                          | mg/L            | Analys             | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND                            | 0.100           | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |                               | 88.9 %          | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L                          | mg/L            | Analys             | t: JL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND                            | 1.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Oil Range Organics (C28-C36)                   | ND                            | 2.00            | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: n-Nonane                            |                               | 96.5 %          | 50-200             | 06/02/22 | 06/02/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L                          | mg/L            | Analys             | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 188                           | 4.00            | 2                  | 06/02/22 | 06/02/22 |                    |

## Sample Data

| Armstrong                                      | Project Name | : Wes                     | West Peariqueen 10 |          |          |                    |
|------------------------------------------------|--------------|---------------------------|--------------------|----------|----------|--------------------|
| 2904 W 2nd St.                                 | Project Numb | ber: 200                  | 20071-0001         |          |          | Reported:          |
| Roswell NM, 88201                              | Project Mana | ect Manager: Chris Cortez |                    |          |          | 6/3/2022 4:29:06PM |
|                                                |              | SB 14                     |                    |          |          |                    |
|                                                |              | E205154-05                |                    |          |          |                    |
|                                                |              | Reporting                 | ,                  |          |          |                    |
| Analyte                                        | Result       | Limit                     | Dilution           | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L         | ug/L                      | Analys             | t: IY    |          | Batch: 2223037     |
| Benzene                                        | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND           | 2.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |              | 105 %                     | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L         | mg/L                      | Analys             | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND           | 0.100                     | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |              | 89.5 %                    | 70-130             | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L         | mg/L                      | Analys             | t: JL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND           | 1.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Oil Range Organics (C28-C36)                   | ND           | 2.00                      | 1                  | 06/02/22 | 06/02/22 |                    |
| Surrogate: n-Nonane                            |              | 97.6 %                    | 50-200             | 06/02/22 | 06/02/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L         | mg/L                      | Analys             | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 711          | 40.0                      | 20                 | 06/02/22 | 06/03/22 |                    |



## Sample Data

|                                                |              | L          |                 |          |          |                    |
|------------------------------------------------|--------------|------------|-----------------|----------|----------|--------------------|
| Armstrong                                      | Project Name | e: Wes     | t Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Numb | ber: 200   | 20071-0001      |          |          | Reported:          |
| Roswell NM, 88201                              | Project Mana | nger: Chr  | is Cortez       |          |          | 6/3/2022 4:29:06PM |
|                                                |              | SB 20      |                 |          |          |                    |
|                                                |              | E205154-06 |                 |          |          |                    |
|                                                |              | Reporting  |                 |          |          |                    |
| Analyte                                        | Result       | Limit      | Dilution        | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L         | ug/L       | Analys          | t: IY    |          | Batch: 2223037     |
| Benzene                                        | 1.56         | 1.00       | 1               | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND           | 1.00       | 1               | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | 13.0         | 1.00       | 1               | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND           | 1.00       | 1               | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND           | 2.00       | 1               | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND           | 1.00       | 1               | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |              | 101 %      | 70-130          | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L         | mg/L       | Analys          | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND           | 0.100      | 1               | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |              | 89.6 %     | 70-130          | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L         | mg/L       | Analys          | t: JL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND           | 1.00       | 1               | 06/02/22 | 06/03/22 |                    |
| Oil Range Organics (C28-C36)                   | ND           | 2.00       | 1               | 06/02/22 | 06/03/22 |                    |
| Surrogate: n-Nonane                            |              | 101 %      | 50-200          | 06/02/22 | 06/03/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L         | mg/L       | Analys          | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 185000       | 2000       | 1000            | 06/02/22 | 06/02/22 |                    |



## Sample Data

|                                                |              | I                    |                  |          |          |                    |
|------------------------------------------------|--------------|----------------------|------------------|----------|----------|--------------------|
| Armstrong                                      | Project Name | : Wes                | st Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Numb | ber: 200             | 20071-0001       |          |          | Reported:          |
| Roswell NM, 88201                              | Project Mana | anager: Chris Cortez |                  |          |          | 6/3/2022 4:29:06PM |
|                                                |              | SB 21                |                  |          |          |                    |
|                                                |              | E205154-07           |                  |          |          |                    |
|                                                |              | Reporting            |                  |          |          |                    |
| Analyte                                        | Result       | Limit                | Dilution         | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L         | ug/L                 | Analyst          | : IY     |          | Batch: 2223037     |
| Benzene                                        | ND           | 1.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND           | 1.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | 5.77         | 1.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND           | 1.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND           | 2.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND           | 1.00                 | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |              | 106 %                | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L         | mg/L                 | Analyst          | : IY     |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND           | 0.100                | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |              | 90.9 %               | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L         | mg/L                 | Analyst          | : JL     |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND           | 1.00                 | 1                | 06/02/22 | 06/03/22 |                    |
| Oil Range Organics (C28-C36)                   | ND           | 2.00                 | 1                | 06/02/22 | 06/03/22 |                    |
| Surrogate: n-Nonane                            |              | 102 %                | 50-200           | 06/02/22 | 06/03/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L         | mg/L                 | Analyst          | : KL     |          | Batch: 2223038     |
| Chloride                                       | 96800        | 2000                 | 1000             | 06/02/22 | 06/02/22 |                    |



## Sample Data

|                                                |             | I          |                  |          |          |                    |
|------------------------------------------------|-------------|------------|------------------|----------|----------|--------------------|
| Armstrong                                      | Project Nam | ie: Wes    | st Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Num | ber: 200   | 20071-0001       |          |          | Reported:          |
| Roswell NM, 88201                              | Project Man | ager: Chr  | is Cortez        |          |          | 6/3/2022 4:29:06PM |
|                                                |             | SB 22      |                  |          |          |                    |
|                                                |             | E205154-08 |                  |          |          |                    |
|                                                |             | Reporting  | ,                |          |          |                    |
| Analyte                                        | Result      | Limit      | Dilution         | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L        | ug/L       | Analys           | st: IY   |          | Batch: 2223037     |
| Benzene                                        | ND          | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND          | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | 17.5        | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND          | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND          | 2.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND          | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |             | 95.9 %     | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L        | mg/L       | Analys           | st: IY   |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND          | 0.100      | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |             | 92.2 %     | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L        | mg/L       | Analys           | st: JL   |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND          | 1.00       | 1                | 06/02/22 | 06/03/22 |                    |
| Oil Range Organics (C28-C36)                   | ND          | 2.00       | 1                | 06/02/22 | 06/03/22 |                    |
| Surrogate: n-Nonane                            |             | 101 %      | 50-200           | 06/02/22 | 06/03/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L        | mg/L       | Analys           | st: KL   |          | Batch: 2223038     |
| Chloride                                       | 170000      | 2000       | 1000             | 06/02/22 | 06/02/22 |                    |



## Sample Data

|                                                |              | L          |                  |          |          |                    |
|------------------------------------------------|--------------|------------|------------------|----------|----------|--------------------|
| Armstrong                                      | Project Nam  | e: Wes     | st Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                                 | Project Num  | ber: 200   | 20071-0001       |          |          | Reported:          |
| Roswell NM, 88201                              | Project Mana | ager: Chr  | Chris Cortez     |          |          | 6/3/2022 4:29:06PM |
|                                                |              | SB 23      |                  |          |          |                    |
|                                                |              | E205154-09 |                  |          |          |                    |
|                                                |              | Reporting  |                  |          |          |                    |
| Analyte                                        | Result       | Limit      | Dilution         | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B                 | ug/L         | ug/L       | Analys           | t: IY    |          | Batch: 2223037     |
| Benzene                                        | ND           | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                                   | ND           | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Toluene                                        | 3.09         | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| o-Xylene                                       | ND           | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                                     | ND           | 2.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                                  | ND           | 1.00       | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID            |              | 101 %      | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - GRO     | mg/L         | mg/L       | Analys           | t: IY    |          | Batch: 2223037     |
| Gasoline Range Organics (C6-C10)               | ND           | 0.100      | 1                | 06/02/22 | 06/02/22 |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID        |              | 91.7 %     | 70-130           | 06/02/22 | 06/02/22 |                    |
| Nonhalogenated Organics by EPA 8015D - DRO/ORO | mg/L         | mg/L       | Analys           | t: JL    |          | Batch: 2223017     |
| Diesel Range Organics (C10-C28)                | ND           | 1.00       | 1                | 06/02/22 | 06/03/22 |                    |
| Oil Range Organics (C28-C36)                   | ND           | 2.00       | 1                | 06/02/22 | 06/03/22 |                    |
| Surrogate: n-Nonane                            |              | 99.6 %     | 50-200           | 06/02/22 | 06/03/22 |                    |
| Anions by EPA 300.0/9056A                      | mg/L         | mg/L       | Analys           | t: KL    |          | Batch: 2223038     |
| Chloride                                       | 76100        | 2000       | 1000             | 06/02/22 | 06/02/22 |                    |



## Sample Data

|                                     |                | •         |               |          |          |                    |
|-------------------------------------|----------------|-----------|---------------|----------|----------|--------------------|
| Armstrong                           | Project Name:  | West      | Peariqueen 10 |          |          |                    |
| 2904 W 2nd St.                      | Project Number | : 2007    | 1-0001        |          |          | Reported:          |
| Roswell NM, 88201                   | Project Manage | r: Chris  | Cortez        |          |          | 6/3/2022 4:29:06PM |
|                                     | Т              | rip Blank |               |          |          |                    |
|                                     | E              | 205154-10 |               |          |          |                    |
|                                     |                | Reporting |               |          |          |                    |
| Analyte                             | Result         | Limit     | Dilution      | Prepared | Analyzed | Notes              |
| Volatile Organics by EPA 8021B      | ug/L           | ug/L      | Analyst       | IY       |          | Batch: 2223037     |
| Benzene                             | ND             | 1.00      | 1             | 06/02/22 | 06/02/22 |                    |
| Ethylbenzene                        | ND             | 1.00      | 1             | 06/02/22 | 06/02/22 |                    |
| Toluene                             | ND             | 1.00      | 1             | 06/02/22 | 06/02/22 |                    |
| o-Xylene                            | ND             | 1.00      | 1             | 06/02/22 | 06/02/22 |                    |
| p,m-Xylene                          | ND             | 2.00      | 1             | 06/02/22 | 06/02/22 |                    |
| Total Xylenes                       | ND             | 1.00      | 1             | 06/02/22 | 06/02/22 |                    |
| Surrogate: 4-Bromochlorobenzene-PID | 8              | 88.6 %    | 70-130        | 06/02/22 | 06/02/22 |                    |

envirotech Inc.

## **OC Summary Data**

|                                     |        | •                                |                  | J                           |      |               |             |              |                    |
|-------------------------------------|--------|----------------------------------|------------------|-----------------------------|------|---------------|-------------|--------------|--------------------|
| Armstrong<br>2904 W 2nd St          |        | Project Name:<br>Project Number: | W<br>20          | /est Peariquee<br>)071-0001 | n 10 |               |             |              | Reported:          |
| Roswell NM, 88201                   |        | Project Manager:                 | Cl               | hris Cortez                 |      |               |             |              | 6/3/2022 4:29:06PM |
|                                     |        | Volatile O                       | rganics <b>k</b> | oy EPA 802                  | 21B  |               |             |              | Analyst: IY        |
| Analyte                             | Result | Reporting<br>Limit               | Spike<br>Level   | Source<br>Result            | Rec  | Rec<br>Limits | RPD         | RPD<br>Limit |                    |
|                                     | ug/L   | ug/L                             | ug/L             | ug/L                        | %    | %             | %           | %            | Notes              |
| Blank (2223037-BLK1)                |        |                                  |                  |                             |      |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Benzene                             | ND     | 1.00                             |                  |                             |      |               |             |              |                    |
| Ethylbenzene                        | ND     | 1.00                             |                  |                             |      |               |             |              |                    |
| Toluene                             | ND     | 1.00                             |                  |                             |      |               |             |              |                    |
| o-Xylene                            | ND     | 1.00                             |                  |                             |      |               |             |              |                    |
| p,m-Xylene                          | ND     | 2.00                             |                  |                             |      |               |             |              |                    |
| Total Xylenes                       | ND     | 1.00                             |                  |                             |      |               |             |              |                    |
| Surrogate: 4-Bromochlorobenzene-PID | 166    |                                  | 160              |                             | 104  | 70-130        |             |              |                    |
| LCS (2223037-BS1)                   |        |                                  |                  |                             |      |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Benzene                             | 94.8   | 1.00                             | 100              |                             | 94.8 | 70-130        |             |              |                    |
| Ethylbenzene                        | 91.0   | 1.00                             | 100              |                             | 91.0 | 70-130        |             |              |                    |
| Toluene                             | 94.4   | 1.00                             | 100              |                             | 94.4 | 70-130        |             |              |                    |
| o-Xylene                            | 95.0   | 1.00                             | 100              |                             | 95.0 | 70-130        |             |              |                    |
| p,m-Xylene                          | 188    | 2.00                             | 200              |                             | 94.0 | 70-130        |             |              |                    |
| Total Xylenes                       | 283    | 1.00                             | 300              |                             | 94.3 | 70-130        |             |              |                    |
| Surrogate: 4-Bromochlorobenzene-PID | 165    |                                  | 160              |                             | 103  | 70-130        |             |              |                    |
| LCS Dup (2223037-BSD1)              |        |                                  |                  |                             |      |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Benzene                             | 102    | 1.00                             | 100              |                             | 102  | 70-130        | 7.00        | 20           |                    |
| Ethylbenzene                        | 97.0   | 1.00                             | 100              |                             | 97.0 | 70-130        | 6.44        | 20           |                    |
| Toluene                             | 101    | 1.00                             | 100              |                             | 101  | 70-130        | 6.94        | 20           |                    |
| o-Xylene                            | 101    | 1.00                             | 100              |                             | 101  | 70-130        | 5.90        | 20           |                    |
| p,m-Xylene                          | 200    | 2.00                             | 200              |                             | 100  | 70-130        | 6.18        | 20           |                    |
| Total Xylenes                       | 301    | 1.00                             | 300              |                             | 100  | 70-130        | 6.08        | 20           |                    |
| Surrogate: 4-Bromochlorobenzene-PID | 163    |                                  | 160              |                             | 102  | 70-130        |             |              |                    |



## **QC Summary Data**

|                                         |        | <u> </u>           |                | v                |         |               |             |              |                    |
|-----------------------------------------|--------|--------------------|----------------|------------------|---------|---------------|-------------|--------------|--------------------|
| Armstrong                               |        | Project Name:      | W              | /est Peariqueer  | n 10    |               |             |              | Reported:          |
| 2904 W 2nd St.                          |        | Project Number     | : 2            | 0071-0001        |         |               |             |              |                    |
| Roswell NM, 88201                       |        | Project Manager    | r: C           | hris Cortez      |         |               |             |              | 6/3/2022 4:29:06PM |
|                                         | No     | onhalogenated      | Organics       | by EPA 80        | 15D - G | RO            |             |              | Analyst: IY        |
| Analyte                                 | Result | Reporting<br>Limit | Spike<br>Level | Source<br>Result | Rec     | Rec<br>Limits | RPD         | RPD<br>Limit |                    |
|                                         | mg/L   | mg/L               | mg/L           | mg/L             | %       | %             | %           | %            | Notes              |
| Blank (2223037-BLK1)                    |        |                    |                |                  |         |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Gasoline Range Organics (C6-C10)        | ND     | 0.100              |                |                  |         |               |             |              |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID | 0.145  |                    | 0.160          |                  | 90.3    | 70-130        |             |              |                    |
| LCS (2223037-BS2)                       |        |                    |                |                  |         |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Gasoline Range Organics (C6-C10)        | 0.953  | 0.100              | 1.00           |                  | 95.3    | 70-130        |             |              |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID | 0.147  |                    | 0.160          |                  | 92.0    | 70-130        |             |              |                    |
| LCS Dup (2223037-BSD2)                  |        |                    |                |                  |         |               | Prepared: 0 | 6/02/22 A    | analyzed: 06/02/22 |
| Gasoline Range Organics (C6-C10)        | 1.02   | 0.100              | 1.00           |                  | 102     | 70-130        | 6.78        | 20           |                    |
| Surrogate: 1-Chloro-4-fluorobenzene-FID | 0.147  |                    | 0.160          |                  | 91.9    | 70-130        |             |              |                    |



## **QC Summary Data**

|                                      | -                                |                | v                           |         |               |             |              |                    |
|--------------------------------------|----------------------------------|----------------|-----------------------------|---------|---------------|-------------|--------------|--------------------|
| Armstrong<br>2904 W 2nd St.          | Project Name:<br>Project Number: | W<br>20        | est Peariqueer<br>0071-0001 | n 10    |               |             |              | Reported:          |
| Roswell NM, 88201                    | Project Manager                  | : Cl           | hris Cortez                 |         |               |             |              | 6/3/2022 4:29:06PM |
| No                                   | onhalogenated Org                | ganics by      | EPA 8015I                   | ) - DRO | /ORO          |             |              | Analyst: JL        |
| Analyte Resu                         | Reporting<br>lt Limit            | Spike<br>Level | Source<br>Result            | Rec     | Rec<br>Limits | RPD         | RPD<br>Limit |                    |
| mg/I                                 | . mg/L                           | mg/L           | mg/L                        | %       | %             | %           | %            | Notes              |
| Blank (2223017-BLK1)                 |                                  |                |                             |         |               | Prepared: 0 | 6/02/22 A    | nalyzed: 06/02/22  |
| Diesel Range Organics (C10-C28) ND   | 1.00                             |                |                             |         |               |             |              |                    |
| Oil Range Organics (C28-C36) ND      | 2.00                             |                |                             |         |               |             |              |                    |
| Surrogate: n-Nonane 2.26             | í                                | 2.50           |                             | 90.4    | 50-200        |             |              |                    |
| LCS (2223017-BS1)                    |                                  |                |                             |         |               | Prepared: 0 | 6/02/22 A    | nalyzed: 06/02/22  |
| Diesel Range Organics (C10-C28) 7.87 | 1.00                             | 12.5           |                             | 63.0    | 36-132        |             |              |                    |
| Surrogate: n-Nonane 2.41             |                                  | 2.50           |                             | 96.4    | 50-200        |             |              |                    |
| LCS Dup (2223017-BSD1)               |                                  |                |                             |         |               | Prepared: 0 | 6/02/22 A    | nalyzed: 06/02/22  |
| Diesel Range Organics (C10-C28) 6.19 | 1.00                             | 12.5           |                             | 49.5    | 36-132        | 23.9        | 20           | R3                 |
| Surrogate: n-Nonane 2.22             |                                  | 2.50           |                             | 88.7    | 50-200        |             |              |                    |



## **QC Summary Data**

| Armstrong<br>2904 W 2nd St.<br>Roswell NM, 88201 |                | Project Name:<br>Project Number:<br>Project Manager: | V<br>2<br>C            | /est Peariqueer<br>0071-0001<br>hris Cortez | n 10     |                    |             |                   | <b>Reported:</b><br>6/3/2022 4:29:06PM |
|--------------------------------------------------|----------------|------------------------------------------------------|------------------------|---------------------------------------------|----------|--------------------|-------------|-------------------|----------------------------------------|
|                                                  |                | Anions                                               | by EPA                 | 300.0/9056A                                 | ۱.       |                    |             |                   | Analyst: KL                            |
| Analyte                                          | Result<br>mg/L | Reporting<br>Limit<br>mg/L                           | Spike<br>Level<br>mg/L | Source<br>Result<br>mg/L                    | Rec<br>% | Rec<br>Limits<br>% | RPD<br>%    | RPD<br>Limit<br>% | Notes                                  |
| Blank (2223038-BLK1)                             |                |                                                      |                        |                                             |          |                    | Prepared: 0 | 5/02/22 A         | nalyzed: 06/02/22                      |
| Chloride                                         | ND             | 2.00                                                 |                        |                                             |          |                    |             |                   |                                        |
| LCS (2223038-BS1)                                |                |                                                      |                        |                                             |          |                    | Prepared: 0 | 5/02/22 A         | nalyzed: 06/02/22                      |
| Chloride                                         | 25.6           | 2.00                                                 | 25.0                   |                                             | 102      | 90-110             |             |                   |                                        |
| LCS Dup (2223038-BSD1)                           |                |                                                      |                        |                                             |          |                    | Prepared: 0 | 5/02/22 A         | nalyzed: 06/02/22                      |
| Chloride                                         | 26.3           | 2.00                                                 | 25.0                   |                                             | 105      | 90-110             | 2.79        | 20                |                                        |

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.



| Armstrong         | Project Name:    | West Peariqueen 10 |                |
|-------------------|------------------|--------------------|----------------|
| 2904 W 2nd St.    | Project Number:  | 20071-0001         | Reported:      |
| Roswell NM, 88201 | Project Manager: | Chris Cortez       | 06/03/22 16:29 |

R3 The RPD exceeded the acceptance limit. LCS spike recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with \*\* are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.



|    | 1. S. |
|----|-------------------------------------------|
| e  | Project Information                       |
| ē  |                                           |
| S  |                                           |
| Se |                                           |

| Page _ | 1 | _of_ | Rece |
|--------|---|------|------|
|        |   |      | ive  |

| Project: WEST Per Queun                              | 11                             | Bill                                          | То                   | 100           |        | Nor I      | La      | b Us    | e Only    | 1        | -          |                      |            | TAT                          | e                 | EPA Pr                | ogran            |
|------------------------------------------------------|--------------------------------|-----------------------------------------------|----------------------|---------------|--------|------------|---------|---------|-----------|----------|------------|----------------------|------------|------------------------------|-------------------|-----------------------|------------------|
|                                                      | 10                             | Attention: Atkins                             | sengin               | eering        | Lab    | WO#        | -       | 1       | Job N     | umb      | er         | 1D                   | 2D         | 3D                           | Standard          | CWA                   | SDW              |
| Project Manager Chr. 5 Co                            | ALL I                          | Address: 2904 W 2                             | nd St                | 70001         | Eá     | 105        | 10      | 1       | 900       | 11-      | 000        |                      |            |                              | X                 |                       | 19.3             |
| Address: 2904 IN Lino                                | St. al                         | City, State, Zip KOSW                         | Rell MM              | 66201         | ~      |            |         |         | Analys    | is and   | d Meth     | od                   |            | 1                            | 1.                |                       | RCR              |
| Phone: C 75 MODIL 21                                 | 000001                         | Phone: D /Silver                              | March 1              | Daala         |        | 10         | _       |         | -         | _        |            | _                    |            |                              |                   |                       |                  |
| Email:                                               | 0                              | Email: Xany Intig                             | WUTKIN               | strigion      | 8015   | 8015       | $\cap$  |         | 1         | 2        | U          |                      |            |                              | NINAL CO.         | State                 | TV               |
| Report due by:                                       |                                |                                               |                      |               | yd (   | P          | 3021    | 260     | 10        | 300.0    | 00         |                      |            |                              |                   | UT AZ                 |                  |
| Time Date Sampled Matrix No.                         | of Sample ID                   |                                               |                      | Lab           | O/ORC  | OLDRC      | EX by 8 | C by 8. | etals 60  | oride    | 66         |                      |            |                              |                   | Remarks               |                  |
| Sampled Contain                                      | T CO O                         |                                               |                      | Number        | NG     | \ <u>\</u> | BT      | 0<br>N  | ž         | 5/       |            |                      | +          |                              |                   | Remarks               |                  |
| 120312012 AV                                         | 1 302                          | <u>i i i i i i i i i i i i i i i i i i i </u> |                      |               | X      | X          | X       |         | X         |          |            | _                    | _          |                              |                   |                       |                  |
| 500 1 1 =                                            | 7 SB4                          |                                               |                      | 2             | 1      | C          |         |         |           | -        |            |                      |            |                              |                   |                       |                  |
|                                                      | 1 SB 5                         |                                               |                      | 3             | V      |            |         |         |           |          |            |                      |            |                              |                   |                       |                  |
| 1444 -                                               | 7 SB7                          |                                               | 3                    | 14            |        |            |         |         |           |          |            |                      |            |                              |                   |                       |                  |
| 1120 -                                               | TORI                           | 2                                             |                      | FX            |        |            |         | _       |           |          |            |                      |            |                              | -                 |                       |                  |
| VII -                                                | 1 301                          |                                               | <u> </u>             | P             |        |            | +       |         |           |          |            | -                    | -          |                              | -                 |                       |                  |
|                                                      | 1201                           | 4                                             | 5                    | A             |        |            |         |         |           |          | 6          |                      | _          |                              |                   | £                     |                  |
| 409                                                  | 7 SB2                          | 20                                            | 6                    | X             |        |            |         |         |           |          |            |                      |            |                              |                   |                       | 1                |
| 1320 -                                               | 7 SB ?                         | 21                                            | 7                    | 8             |        |            |         |         |           |          |            |                      |            |                              |                   |                       |                  |
| 345                                                  | 7 SB -                         | 22                                            | 8                    | 9             |        | 1          |         |         |           |          |            |                      |            |                              | 1                 |                       | 200 - 200 M (200 |
| BE                                                   | 7 SB                           | 23,                                           | 9                    | IØ            |        |            |         |         |           |          |            | 1                    |            |                              |                   |                       |                  |
| Additional Instructions: OLPCS                       | e eur BGD                      | DE PACIAGE                                    | SIN ALO              | SAM ALE       | 21     | (          | 270     | Y       | ( )       |          | Anto       | ~                    |            |                              | A comes )         |                       |                  |
| (field campler) attest to the validity and authent   |                                |                                               |                      |               | -      | Le i       | pic     |         | L GF      | One      | JACO .     | ,00                  | ~ / :      | - MU                         | aves              |                       |                  |
| late or time of collection is considered fraud and i | may be grounds for legal actio | n. <u>Sampled by:</u>                         | liy mislabelling the | sample locati | on,    |            |         | F       | bampies r | ice at a | n avg tem  | preserva<br>Ip above | 0 but less | t be received<br>s than 6 °C | on subsequent day | y are sampled o<br>s. | r receive        |
| Relinquished by: (Signature)                         | Date Time                      | Received by: Signature                        | 2)                   | Date          | 1 ·    | Time       | 1.      | -       |           | ( )<br>( |            | l                    | ab Us      | se Only                      |                   |                       | Particia.        |
| nen to                                               | 5/2014 18.1                    | 3 Amb                                         | the                  | 5/26          | 22     | 18         | 315     |         | Receiv    | ved o    | on ice:    | 6                    | DIN        |                              |                   |                       |                  |
| Relinquished by: (Signature)                         | Date Time                      | Received by: (Signature                       | 2)                   | Date          | 22     | Time       | 40      |         |           |          |            | t                    |            |                              |                   |                       |                  |
| Poling(i/had but(gapture)                            | 5-40-CC /84                    | to the st                                     | 5                    | 2-66-4        | 2      | 18.        | :70     | -       | <u>T1</u> |          | 1          | <u>T2</u>            |            |                              | <u>T3</u>         |                       |                  |
|                                                      | 5-27-22 17:3                   | 7 auto                                        | hta                  | 5/27/2        | 2      | 12:        | 37      |         | AVG T     | emp      | °c 4       | f                    |            |                              |                   |                       |                  |
| Sample Matrix: S - Soil, Sd Solid, Sg - Sludge, A -  | Aqueous, <b>O</b> - Other      |                                               |                      | Container     | Type:  | g - g      | lass, p | - pol   | ly/plas   | tic, a   | g - aml    | oer gla              | iss, v -   | VOA                          |                   |                       |                  |
| Note: Samples are discarded 30 days after r          | esults are reported unless     | other arrangements are made.                  | Hazardous san        | nples will be | returr | ned to     | client  | or dis  | sposed    | of at    | the clie   | nt expe              | ense.      | The repo                     | rt for the analy  | sis of the ab         | ove              |
|                                                      | received by the laboratory     | with this COC. The liability of t             | he laboratory is     | limited to th | ne amo | ount p     | aid for | on th   | ne repo   | rt.      | _          |                      |            |                              |                   |                       |                  |
| samples is applicable only to those samples          |                                |                                               |                      |               |        |            |         | -       |           |          |            |                      |            |                              |                   |                       |                  |
| samples is applicable only to those samples          |                                |                                               |                      |               |        |            | 1       |         | 6         | 122      | 200 (C-0)  |                      |            | 0                            |                   |                       |                  |
| samples is applicable only to those samples          |                                |                                               |                      |               |        |            |         | 2       | 3         | F        |            | יר                   | Vi         | ir                           | ot                | 0                     | -                |
| samples is applicable only to those samples          |                                |                                               | Dago 01              | of 22         |        |            | (       | 2       | 3         | E        | <b>P</b> I | יר                   | Vİ         | ir                           | ot                | ec                    |                  |

## **Envirotech Analytical Laboratory**

## Sample Receipt Checklist (SRC)

| Client:                   | Armstrong                                                                                                                                                             | Date Received:                 | 05/27/22 12 | 2:37               |            | Work Order ID: | E205154           |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------|--------------------|------------|----------------|-------------------|
| Phone:                    | (575) 624-2420                                                                                                                                                        | Date Logged In:                | 05/27/22 14 | 4:33               |            | Logged In By:  | Caitlin Christian |
| Email:                    |                                                                                                                                                                       | Due Date:                      | 06/03/22 1  | 7:00 (4 day TAT)   |            |                |                   |
|                           |                                                                                                                                                                       |                                |             |                    |            |                |                   |
| <u>Chain of (</u>         | Custody (COC)                                                                                                                                                         |                                |             |                    |            |                |                   |
| 1. Does th                | e sample ID match the COC?                                                                                                                                            | 1 4 600                        | Yes         |                    |            |                |                   |
| 2. Does th                | e number of samples per sampling site location mate                                                                                                                   | h the COC                      | Yes         |                    |            |                |                   |
| 3. Were sa                | imples dropped off by client or carrier?                                                                                                                              |                                | Yes         | Carrier: <u>Co</u> | ourrier    |                |                   |
| 4. Was the                | COC complete, i.e., signatures, dates/times, request                                                                                                                  | ed analyses?                   | Yes         |                    |            |                |                   |
| 5. Were al                | I samples received within holding time?<br>Note: Analysis, such as pH which should be conducted in t<br>i.e, 15 minute hold time, are not included in this disucssior | the field,<br>1.               | Yes         |                    |            | Commen         | ts/Resolution     |
| Sample T                  | urn Around Time (TAT)                                                                                                                                                 |                                |             | Г                  |            |                |                   |
| 6. Did the                | COC indicate standard TAT, or Expedited TAT?                                                                                                                          |                                | Yes         |                    |            |                |                   |
| Sample C                  | ooler                                                                                                                                                                 |                                |             |                    |            |                |                   |
| 7. Was a s                | ample cooler received?                                                                                                                                                |                                | Yes         |                    |            |                |                   |
| 8. If yes, v              | vas cooler received in good condition?                                                                                                                                |                                | Yes         |                    |            |                |                   |
| 9. Was the                | sample(s) received intact, i.e., not broken?                                                                                                                          |                                | Yes         |                    |            |                |                   |
| 10. Were c                | custody/security seals present?                                                                                                                                       |                                | No          |                    |            |                |                   |
| 11. If yes,               | were custody/security seals intact?                                                                                                                                   |                                | NA          |                    |            |                |                   |
| 12. Was the               | e sample received on ice? If yes, the recorded temp is 4°C, i.<br>Note: Thermal preservation is not required, if samples are a<br>minutes of sampling                 | .e., 6°±2°C<br>received w/i 15 | Yes         |                    |            |                |                   |
| 13. If no v               | risible ice, record the temperature. Actual sample t                                                                                                                  | emperature: <u>4°</u>          | <u>C</u>    |                    |            |                |                   |
| Sample C                  | ontainer                                                                                                                                                              |                                |             |                    |            |                |                   |
| 14. Are aq                | ueous VOC samples present?                                                                                                                                            |                                | Yes         |                    |            |                |                   |
| 15. Are V                 | OC samples collected in VOA Vials?                                                                                                                                    |                                | Yes         |                    |            |                |                   |
| 16. Is the l              | head space less than 6-8 mm (pea sized or less)?                                                                                                                      |                                | Yes         |                    |            |                |                   |
| 17. Was a                 | trip blank (TB) included for VOC analyses?                                                                                                                            |                                | Yes         |                    |            |                |                   |
| 18. Are no                | on-VOC samples collected in the correct containers?                                                                                                                   |                                | Yes         |                    |            |                |                   |
| 19. Is the a              | ppropriate volume/weight or number of sample containe                                                                                                                 | ers collected?                 | Yes         |                    |            |                |                   |
| <u>Field Lab</u>          | <u>el</u>                                                                                                                                                             |                                |             |                    |            |                |                   |
| 20. Were f                | field sample labels filled out with the minimum infor                                                                                                                 | mation:                        |             |                    |            |                |                   |
| Sa                        | imple ID?                                                                                                                                                             |                                | Yes         |                    |            |                |                   |
| Da                        | ate/Time Collected?                                                                                                                                                   |                                | Yes         | _                  |            |                |                   |
| Samula P                  | reservation                                                                                                                                                           |                                | Yes         |                    |            |                |                   |
| 21 Does t                 | he COC or field labels indicate the samples were pre                                                                                                                  | served?                        | Ves         |                    |            |                |                   |
| 21. Does t<br>22. Are sa  | mple(s) correctly preserved?                                                                                                                                          |                                | Ves         |                    |            |                |                   |
| 24. Is lab                | filteration required and/or requested for dissolved me                                                                                                                | etals?                         | No          |                    |            |                |                   |
| Multinha                  | se Samnle Matrix                                                                                                                                                      |                                |             |                    |            |                |                   |
| 26 Does t                 | he sample have more than one phase i.e. multiphase                                                                                                                    | <u>-</u> ?                     | No          |                    |            |                |                   |
| 20. Does t<br>27. If yes. | does the COC specify which phase(s) is to be analyz                                                                                                                   | ved?                           | NA          |                    |            |                |                   |
| C                         |                                                                                                                                                                       |                                | 117         |                    |            |                |                   |
| Subcontra                 |                                                                                                                                                                       | .9                             | λτ.         |                    |            |                |                   |
| $2\delta$ . Are sa        | subcontract laboratory specified by the client and if                                                                                                                 | /:<br>so.who?                  | INO<br>NA   | Subcontract I at.  | <b>n</b> 0 |                |                   |
| 27. was a                 | subcontract laboratory specificu by the chefit and his                                                                                                                | 50 WIIU:                       | 11/1        | Subcontract Lab:   | ца         |                |                   |
| Client In                 | struction                                                                                                                                                             |                                |             |                    |            |                |                   |

Signature of client authorizing changes to the COC or sample disposition.



envirotech Inc.

•



5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com





# envirotech

**Practical Solutions for a Better Tomorrow** 

# **Analytical Report**

## West Pearl Queen

Project Name: Aecwpea\_SPJ\_21

• - -

Work Order: E304026

Job Number: 20071-0001

Received: 4/7/2023

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 4/14/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 4/14/23

Chris Cortez 2904 W 2nd St Roswell, NM 88201

Project Name: Aecwpea\_SPJ\_21 Workorder: E304026 Date Received: 4/7/2023 8:15:00AM

Chris Cortez,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/7/2023 8:15:00AM, under the Project Name: Aecwpea\_SPJ\_21.

The analytical test results summarized in this report with the Project Name: Aecwpea\_SPJ\_21 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com



•

## Table of Contents

| Title Page                                  | 1  |
|---------------------------------------------|----|
| Cover Page                                  | 2  |
| Table of Contents                           | 3  |
| Sample Summary                              | 4  |
| SB-4                                        | 8  |
| SB-7                                        | 11 |
| SB-13                                       | 14 |
| SB-14                                       | 17 |
| SB-20                                       | 20 |
| SB-21                                       | 23 |
| SB-22                                       | 26 |
| SB-23                                       | 29 |
| SB-5                                        | 32 |
| QC Summary Data                             | 35 |
| QC - Volatile Organic Compounds by EPA8260B | 35 |
| QC - Anions by EPA 300.0/9056A              | 38 |
| Definitions and Notes                       | 39 |
| Chain of Custody etc.                       | 40 |

#### **Sample Summary**

|                                   |                            | Sample Sum                       | mary                         |          |                     |  |  |  |
|-----------------------------------|----------------------------|----------------------------------|------------------------------|----------|---------------------|--|--|--|
| West Pearl Queen<br>2904 W 2nd St |                            | Project Name:<br>Project Number: | Aecwpea_SPJ_21<br>20071-0001 |          | Reported:           |  |  |  |
| Roswell NM, 88201                 |                            | Project Manager:                 | Chris Cortez                 |          | 04/14/23 11:08      |  |  |  |
| Client Sample ID                  | Lab Sample ID              | Matrix                           | Sampled                      | Received | Container           |  |  |  |
| SB-2                              | E304026-01A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-01B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-01C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-01D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-4                               | E304026-02A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-02B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-02C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-02D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-7                               | E304026-03A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-03B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-03C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-03D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-13                              | E304026-04A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-04B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-04C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-04D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-14                              | E304026-05A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-05B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-05C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-05D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-20                              | E304026-06A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-06B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-06C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
|                                   | E304026-06D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-21                              | E304026-07A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-07B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
|                                   | E304026-07C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
|                                   | E304026-07D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL; HCl |  |  |  |
| B-22                              | E304026-08A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
|                                   | E304026-08R                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
|                                   | E304026-08C                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
|                                   | E304026-08D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
| B-23                              | F304026-09A                | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mL          |  |  |  |
| <i>,</i>                          | F304026-07A                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial. 40mL HCl  |  |  |  |
|                                   | E304026-09D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
|                                   | E304026-09D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial, 40mL: HCl |  |  |  |
| R-5                               | E20/026 10 A               | Aqueous                          | 04/05/23                     | 04/07/23 | Poly 125mI          |  |  |  |
| <b>U-U</b>                        | E304020-10A<br>E20/026 10D | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial 40mL · HCl |  |  |  |
|                                   | E304020-10B                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Vial 40mL HCl   |  |  |  |
|                                   | E304026-10C                | Aqueous                          | 04/05/22                     | 04/07/22 | VOA Vial 40mL HOI   |  |  |  |
|                                   | E304026-10D                | Aqueous                          | 04/05/23                     | 04/07/23 | VOA Viai, 40mL; HCl |  |  |  |



| West Pearl Queen                        | Project Name:    | Aecwp     | ea_SPJ_21 |          |          |                      |
|-----------------------------------------|------------------|-----------|-----------|----------|----------|----------------------|
| 2904 W 2nd St                           | Project Number:  | 20071-    | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris C   | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         |                  | SB-2      |           |          |          |                      |
|                                         | E30              | 4026-01   |           |          |          |                      |
|                                         |                  | Reporting |           |          |          |                      |
| Analyte                                 | Result           | Limit     | Dilution  | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L      | Analyst   | : IY     |          | Batch: 2315002       |
| Acetone                                 | ND               | 40.0      | 1         | 04/13/23 | 04/13/23 | G1c                  |
| Benzene                                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromobenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromochloromethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromodichloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromoform                               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromomethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| n-Butyl Benzene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| sec-Butylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| tert-Butylbenzene                       | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Carbon Tetrachloride                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chlorobenzene                           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroform                              | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloromethane                           | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromochloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.2-Dibromo-3-chloropropane (DBCP)      | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.2-Dibromoethane (EDB)                 | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromomethane                          | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.2-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.3-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.4-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.1-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.2-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.1-Dichloroethene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1.2-Dichloroethene                  | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1.2-Dichloroethene                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.3-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2.2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1 1-Dichloropropene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1 3-Dichloropropene                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans 1.3 Dichloropropene               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Discorronyl Ether (DIPE)                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethylbenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethyl tert-Butyl Ether (ETRE)           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Heyachlorobutadiene                     | ND               | 5.00      | -         | 04/13/23 | 04/13/23 |                      |
| 2-Hevanone                              | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-HCAMUNE                               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| A Isopropylucitzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2 Butanone (MEK)                        | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Buanone (MEK)<br>Mathylana Chlorida   | ND               | 2 0.0     | 1         | 04/13/23 | 04/13/23 |                      |
| wiemyrene Chionae                       |                  | 2.00      | 1         | 0        | 0.10.20  |                      |

## Sample Data



## Sample Data

|                                         | Da.             | mpic D    | ala          |          |          |                      |  |  |  |
|-----------------------------------------|-----------------|-----------|--------------|----------|----------|----------------------|--|--|--|
| West Pearl Queen                        | Project Name:   | Aeo       | cwpea_SPJ_21 |          |          |                      |  |  |  |
| 2904 W 2nd St                           | Project Number  | 200       | 20071-0001   |          |          | Reported:            |  |  |  |
| Roswell NM, 88201                       | Project Manager | r: Chi    | Chris Cortez |          |          | 4/14/2023 11:08:40AM |  |  |  |
|                                         |                 | SB-2      |              |          |          |                      |  |  |  |
|                                         | E               | 304026-01 |              |          |          |                      |  |  |  |
| Reporting                               |                 |           |              |          |          |                      |  |  |  |
| Analyte                                 | Result          | Limit     | Dilution     | Prepared | Analyzed | Notes                |  |  |  |
| Volatile Organic Compounds by EPA 8260B | ug/L            | ug/L      | Analys       | st: IY   |          | Batch: 2315002       |  |  |  |
| 1-Methylnaphthalene                     | ND              | 10.0      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 2-Methylnaphthalene                     | ND              | 10.0      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 4-Methyl-2-pentanone (MIBK)             | ND              | 20.0      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Methyl tert-Butyl Ether (MTBE)          | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Naphthalene                             | ND              | 5.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| n-Propyl Benzene                        | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Styrene                                 | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| tert-Amyl Methyl ether (TAME)           | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,1,1,2-Tetrachloroethane               | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,1,2,2-Tetrachloroethane               | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Tetrachloroethene                       | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,2,3-Trichlorobenzene                  | ND              | 5.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,2,4-Trichlorobenzene                  | ND              | 5.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,1,1-Trichloroethane                   | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,1,2-Trichloroethane                   | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Trichloroethene                         | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Trichlorofluoromethane (Freon-11)       | ND              | 2.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,2,3-Trichloropropane                  | ND              | 2.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,2,4-Trimethylbenzene                  | ND              | 5.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| 1,3,5-Trimethylbenzene                  | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Toluene                                 | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Vinyl chloride                          | ND              | 2.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| o-Xylene                                | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| p.m-Xylene                              | ND              | 2.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Total Xylenes                           | ND              | 1.00      | 1            | 04/13/23 | 04/13/23 |                      |  |  |  |
| Surrogate: Bromofluorobenzene           | 9               | 2.7 %     | 70-130       | 04/13/23 | 04/13/23 | -                    |  |  |  |
| Surrogate: 1,2-Dichloroethane-d4        | 9               | 9.3 %     | 70-130       | 04/13/23 | 04/13/23 |                      |  |  |  |
| Surrogate: Toluene-d8                   | i               | 102 %     | 70-130       | 04/13/23 | 04/13/23 |                      |  |  |  |



## Sample Data

|                           |                  | L                 |           |                |                |                      |
|---------------------------|------------------|-------------------|-----------|----------------|----------------|----------------------|
| West Pearl Queen          | Project Name:    | Aecwp             | ea_SPJ_21 |                |                |                      |
| 2904 W 2nd St             | Project Number:  | umber: 20071-0001 |           |                |                | Reported:            |
| Roswell NM, 88201         | Project Manager: | Chris (           | Cortez    |                |                | 4/14/2023 11:08:40AM |
|                           |                  | SB-2              |           |                |                |                      |
|                           | E3               | 04026-01          |           |                |                |                      |
|                           |                  | Reporting         |           |                |                |                      |
| Analyte                   | Result           | Limit             | Dilution  | Prepared       | Analyzed       | Notes                |
| Anions by EPA 300.0/9056A | Batch: 2314052   |                   |           |                |                |                      |
| Chloride                  | 81.3             | 40.0              | 20        | 04/07/23       | 04/07/23       |                      |
| Nitrate-N                 | ND               | 5.00              | 20        | 04/07/23 08:14 | 04/07/23 10:57 |                      |



## Sample Data

|                                         | Dam              | pic Da    | i cu      |          |          |                      |
|-----------------------------------------|------------------|-----------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwp     | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 20071-    | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris C   | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         | S                | B-4       |           |          |          |                      |
|                                         | E304             | 4026-02   |           |          |          |                      |
|                                         |                  | Reporting |           |          |          |                      |
| Analyte                                 | Result           | Limit     | Dilution  | Prepared | Analyzed | Notes                |
| Valatila Organia Compounds by EPA 8260P | 11g/L            | uø/L      | Analyst   | : IY     |          | Batch: 2315002       |
| Volatile Organic Compounds by EFA 8200B | ND               | 40.0      | 1         | 04/13/23 | 04/13/23 | Glb                  |
| Benzene                                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromohenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromochloromethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromodichloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromoform                               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromomethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| n-Butyl Benzene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| sec-Butylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| tert-Butylbenzene                       | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Carbon Tetrachloride                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chlorobenzene                           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroform                              | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloromethane                           | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromochloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromoethane (EDB)                 | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromomethane                          | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,4-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,2-Dichloroethene                  | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,2-Dichloroethene                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloropropene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,3-Dichloropropene                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,3-Dichloropropene               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Diisopropyl Ether (DIPE)                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethylbenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Hexachlorobutadiene                     | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Hexanone                              | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Isopropylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Isopropyltoluene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Butanone (MEK)                        | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Methylene Chloride                      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |



## Sample Data

|                                         | Jui              |                 | uta         |          |          |                      |
|-----------------------------------------|------------------|-----------------|-------------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aec             | wpea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 2007            | 20071-0001  |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | r: Chris Cortez |             |          |          | 4/14/2023 11:08:40AM |
|                                         |                  | SB-4            |             |          |          |                      |
|                                         | E3               | 04026-02        |             |          |          |                      |
|                                         |                  | Reporting       |             |          |          |                      |
| Analyte                                 | Result           | Limit           | Dilution    | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L            | Analyst     | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND               | 20.0            | 1           | 04/13/23 | 04/13/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Naphthalene                             | ND               | 5.00            | 1           | 04/13/23 | 04/13/23 |                      |
| n-Propyl Benzene                        | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Styrene                                 | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| tert-Amyl Methyl ether (TAME)           | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,1,2-Tetrachloroethane               | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,2,2-Tetrachloroethane               | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Tetrachloroethene                       | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND               | 5.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,4-Trichlorobenzene                  | ND               | 5.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,1-Trichloroethane                   | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,2-Trichloroethane                   | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Trichloroethene                         | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Trichlorofluoromethane (Freon-11)       | ND               | 2.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,3-Trichloropropane                  | ND               | 2.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,4-Trimethylbenzene                  | ND               | 5.00            | 1           | 04/13/23 | 04/13/23 |                      |
| 1,3,5-Trimethylbenzene                  | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Toluene                                 | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Vinyl chloride                          | ND               | 2.00            | 1           | 04/13/23 | 04/13/23 |                      |
| o-Xylene                                | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| p,m-Xylene                              | ND               | 2.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Total Xylenes                           | ND               | 1.00            | 1           | 04/13/23 | 04/13/23 |                      |
| Surrogate: Bromofluorobenzene           | 92               | .6%             | 70-130      | 04/13/23 | 04/13/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | 10               | )3 %            | 70-130      | 04/13/23 | 04/13/23 |                      |
| Surrogate: Toluene-d8                   | 10               | 01 %            | 70-130      | 04/13/23 | 04/13/23 |                      |



## Sample Data

|                           |                  | I         |            |                |                      |                |  |  |
|---------------------------|------------------|-----------|------------|----------------|----------------------|----------------|--|--|
| West Pearl Queen          | Project Name:    | Aecwp     | ea_SPJ_21  |                |                      |                |  |  |
| 2904 W 2nd St             | Project Number:  | 20071-    | 20071-0001 |                |                      | Reported:      |  |  |
| Roswell NM, 88201         | Project Manager: | Chris (   | Cortez     |                | 4/14/2023 11:08:40AM |                |  |  |
|                           |                  | SB-4      |            |                |                      |                |  |  |
|                           | E3(              | 04026-02  |            |                |                      |                |  |  |
|                           |                  | Reporting |            |                |                      |                |  |  |
| Analyte                   | Result           | Limit     | Dilution   | Prepared       | Analyzed             | Notes          |  |  |
| Anions by EPA 300.0/9056A | mg/L             | mg/L      | Analy      | st: BA         |                      | Batch: 2314052 |  |  |
| Chloride                  | 86.2             | 2.00      | 1          | 04/07/23       | 04/07/23             |                |  |  |
| Nitrate-N                 | ND               | 0.250     | 1          | 04/07/23 08:14 | 04/07/23 10:47       |                |  |  |



## Sample Data

|                                         | Sam              |            | <i>ца</i> |                      |          |                |
|-----------------------------------------|------------------|------------|-----------|----------------------|----------|----------------|
| West Pearl Queen                        | Project Name:    | bea_SPJ_21 |           |                      |          |                |
| 2904 W 2nd St                           | Project Number:  | 20071-     | -0001     |                      |          | Reported:      |
| Roswell NM, 88201                       | Project Manager: | Chris (    | Cortez    | 4/14/2023 11:08:40AM |          |                |
|                                         | S                | <b>B-7</b> |           |                      |          |                |
|                                         | E304             | 026-03     |           |                      |          |                |
|                                         |                  | Reporting  |           |                      |          |                |
| Analyte                                 | Result           | Limit      | Dilution  | Prepared             | Analyzed | Notes          |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L       | Analyst   | : IY                 |          | Batch: 2315002 |
| Acetone                                 | ND               | 40.0       | 1         | 04/13/23             | 04/13/23 | Gle            |
| Benzene                                 | 9.28             | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Bromobenzene                            | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Bromochloromethane                      | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Bromodichloromethane                    | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Bromoform                               | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Bromomethane                            | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| n-Butyl Benzene                         | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| sec-Butylbenzene                        | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| tert-Butylbenzene                       | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Carbon Tetrachloride                    | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Chlorobenzene                           | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Chloroethane                            | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| Chloroform                              | ND               | 5.00       | 1         | 04/13/23             | 04/13/23 |                |
| Chloromethane                           | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| 2-Chlorotoluene                         | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 4-Chlorotoluene                         | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Dibromochloromethane                    | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.2-Dibromo-3-chloropropane (DBCP)      | ND               | 5.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.2-Dibromoethane (EDB)                 | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| Dibromomethane                          | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.2-Dichlorobenzene                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.3-Dichlorobenzene                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.4-Dichlorobenzene                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Dichlorodifluoromethane (Freon-12)      | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.1-Dichloroethane                      | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.2-Dichloroethane                      | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.1-Dichloroethene                      | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| cis-1.2-Dichloroethene                  | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| trans-1.2-Dichloroethene                | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.2-Dichloropropane                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.3-Dichloropropane                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 2.2-Dichloropropane                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1.1-Dichloropropene                     | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| cis-1,3-Dichloropropene                 | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| trans-1.3-Dichloropropene               | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Diisopropyl Ether (DIPE)                | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Ethylbenzene                            | 5.34             | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| Hexachlorobutadiene                     | ND               | 5.00       | 1         | 04/13/23             | 04/13/23 |                |
| 2-Hexanone                              | ND               | 20.0       | 1         | 04/13/23             | 04/13/23 |                |
| Isopropylbenzene                        | 2.26             | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 4-Isopropyltoluene                      | ND               | 1.00       | 1         | 04/13/23             | 04/13/23 |                |
| 2-Butanone (MEK)                        | ND               | 20.0       | 1         | 04/13/23             | 04/13/23 |                |
| Methylene Chloride                      | ND               | 2.00       | 1         | 04/13/23             | 04/13/23 |                |
| 1-Methylnaphthalene                     | ND               | 10.0       | 1         | 04/13/23             | 04/13/23 |                |
| 2-Methylnaphthalene                     | ND               | 10.0       | 1         | 04/13/23             | 04/13/23 |                |
| =                                       |                  |            |           |                      |          |                |



## Sample Data

|                                         | Sai             | mpic D    | uta         |          |          |                      |
|-----------------------------------------|-----------------|-----------|-------------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:   | Aec       | wpea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number: | 2007      | 20071-0001  |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager | Chri      | s Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         |                 | SB-7      |             |          |          |                      |
|                                         | E               | 304026-03 |             |          |          |                      |
|                                         |                 | Reporting |             |          |          |                      |
| Analyte                                 | Result          | Limit     | Dilution    | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L            | ug/L      | Analyst     | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND              | 20.0      | 1           | 04/13/23 | 04/13/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Naphthalene                             | ND              | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |
| n-Propyl Benzene                        | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Styrene                                 | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| tert-Amyl Methyl ether (TAME)           | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,1,2-Tetrachloroethane               | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,2,2-Tetrachloroethane               | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Tetrachloroethene                       | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND              | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,4-Trichlorobenzene                  | ND              | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,1-Trichloroethane                   | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,1,2-Trichloroethane                   | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Trichloroethene                         | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Trichlorofluoromethane (Freon-11)       | ND              | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,3-Trichloropropane                  | ND              | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,2,4-Trimethylbenzene                  | ND              | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |
| 1,3,5-Trimethylbenzene                  | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Toluene                                 | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Vinyl chloride                          | ND              | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |
| o-Xylene                                | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| p,m-Xylene                              | ND              | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Total Xylenes                           | ND              | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |
| Surrogate: Bromofluorobenzene           | 95              | 5.5 %     | 70-130      | 04/13/23 | 04/13/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | 99              | 0.3 %     | 70-130      | 04/13/23 | 04/13/23 |                      |
| Surrogate: Toluene-d8                   | 1               | 02 %      | 70-130      | 04/13/23 | 04/13/23 |                      |



## Sample Data

|                           | Sum              | pre Da       |           |                |                |                      |
|---------------------------|------------------|--------------|-----------|----------------|----------------|----------------------|
| West Pearl Queen          | Project Name:    | Aecwp        | ea_SPJ_21 |                |                |                      |
| 2904 W 2nd St             | Project Number:  | 20071-       | 0001      |                |                | Reported:            |
| Roswell NM, 88201         | Project Manager: | Chris C      | Cortez    |                |                | 4/14/2023 11:08:40AM |
|                           | S                | 5 <b>B-7</b> |           |                |                |                      |
|                           | E30              | 4026-03      |           |                |                |                      |
|                           |                  | Reporting    |           |                |                |                      |
| Analyte                   | Result           | Limit        | Dilution  | Prepared       | Analyzed       | Notes                |
| Anions by EPA 300.0/9056A | mg/L             | mg/L         | Analys    | st: BA         |                | Batch: 2314052       |
| Chloride                  | 27.0             | 4.00         | 2         | 04/07/23       | 04/07/23       |                      |
| Nitrate-N                 | ND               | 0.500        | 2         | 04/07/23 08:14 | 04/07/23 10:18 | H2                   |


### Sample Data

|                                         | Sam              | pic Dat   | a         |          |          |                      |
|-----------------------------------------|------------------|-----------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwp     | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 20071-    | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris C   | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         | S                | B-13      |           |          |          |                      |
|                                         | E304             | 4026-04   |           |          |          |                      |
|                                         |                  | Reporting |           |          |          |                      |
| Analyte                                 | Result           | Limit     | Dilution  | Prepared | Analyzed | Notes                |
| Valatile Organic Compounds by FPA 8260R | ug/L             | ug/L      | Analyst   | : IY     |          | Batch: 2315002       |
| Acetone                                 | ND               | 40.0      | 1         | 04/13/23 | 04/13/23 | G1d                  |
| Benzene                                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromobenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromochloromethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromodichloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromoform                               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromomethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| n-Butyl Benzene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| sec-Butylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| tert-Butylbenzene                       | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Carbon Tetrachloride                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chlorobenzene                           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroform                              | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloromethane                           | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromochloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromoethane (EDB)                 | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromomethane                          | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.3-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,4-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,2-Dichloroethene                  | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,2-Dichloroethene                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1.1-Dichloropropene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,3-Dichloropropene                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,3-Dichloropropene               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Diisopropyl Ether (DIPE)                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethylbenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Hexachlorobutadiene                     | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Hexanone                              | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Isopropylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Isopropyltoluene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Butanone (MEK)                        | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Methylene Chloride                      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |
|                                         |                  |           |           |          |          |                      |

## Sample Data

|                                                        | Sal                                                  | npic D              | ala                                 |          |          |                                          |
|--------------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------------|----------|----------|------------------------------------------|
| West Pearl Queen<br>2904 W 2nd St<br>Roswell NM, 88201 | Project Name:<br>Project Number:<br>Project Manager: | Aec<br>200'<br>Chri | wpea_SPJ_21<br>71-0001<br>is Cortez |          |          | <b>Reported:</b><br>4/14/2023 11:08:40AM |
|                                                        | E                                                    | SB-13               |                                     |          |          |                                          |
|                                                        | E.                                                   | 04020-04            |                                     |          |          |                                          |
| Analyte                                                | Result                                               | Reporting<br>Limit  | Dilution                            | Prepared | Analyzed | Notes                                    |
| Volatile Organic Compounds by EPA 8260B                | ug/L                                                 | ug/L                | Analyst                             | :: IY    |          | Batch: 2315002                           |
| 4-Methyl-2-pentanone (MIBK)                            | ND                                                   | 20.0                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Methyl tert-Butyl Ether (MTBE)                         | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Naphthalene                                            | ND                                                   | 5.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| n-Propyl Benzene                                       | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Styrene                                                | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| tert-Amyl Methyl ether (TAME)                          | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,1,1,2-Tetrachloroethane                              | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,1,2,2-Tetrachloroethane                              | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Tetrachloroethene                                      | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,2,3-Trichlorobenzene                                 | ND                                                   | 5.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,2,4-Trichlorobenzene                                 | ND                                                   | 5.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,1,1-Trichloroethane                                  | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,1,2-Trichloroethane                                  | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Trichloroethene                                        | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Trichlorofluoromethane (Freon-11)                      | ND                                                   | 2.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,2,3-Trichloropropane                                 | ND                                                   | 2.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,2,4-Trimethylbenzene                                 | ND                                                   | 5.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| 1,3,5-Trimethylbenzene                                 | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Toluene                                                | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Vinyl chloride                                         | ND                                                   | 2.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| o-Xylene                                               | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| p,m-Xylene                                             | ND                                                   | 2.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Total Xylenes                                          | ND                                                   | 1.00                | 1                                   | 04/13/23 | 04/13/23 |                                          |
| Surrogate: Bromofluorobenzene                          | 93                                                   | 8.4 %               | 70-130                              | 04/13/23 | 04/13/23 |                                          |
| Surrogate: 1,2-Dichloroethane-d4                       | 1                                                    | 02 %                | 70-130                              | 04/13/23 | 04/13/23 |                                          |
| Surrogate: Toluene-d8                                  | 1                                                    | 00 %                | 70-130                              | 04/13/23 | 04/13/23 |                                          |
|                                                        |                                                      |                     |                                     |          |          |                                          |



### Sample Data

|                           |                 | T         |                      |                |                |                |
|---------------------------|-----------------|-----------|----------------------|----------------|----------------|----------------|
| West Pearl Queen          | Project Name:   | Aecwp     | ea_SPJ_21            |                |                |                |
| 2904 W 2nd St             | Project Number: | 20071-    | 20071-0001           |                |                | Reported:      |
| Roswell NM, 88201         |                 |           | 4/14/2023 11:08:40AM |                |                |                |
|                           | S               | SB-13     |                      |                |                |                |
|                           | E3(             | 4026-04   |                      |                |                |                |
|                           |                 | Reporting |                      |                |                |                |
| Analyte                   | Result          | Limit     | Dilution             | Prepared       | Analyzed       | Notes          |
| Anions by EPA 300.0/9056A | mg/L            | mg/L      | Analys               | st: BA         |                | Batch: 2314052 |
| Chloride                  | 424             | 20.0      | 10                   | 04/07/23       | 04/07/23       |                |
| Nitrate-N                 | ND              | 2.50      | 10                   | 04/07/23 08:14 | 04/07/23 11:07 |                |



### Sample Data

|                                         | Sum              | pie Dat   |           |          |          |                      |
|-----------------------------------------|------------------|-----------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwpe    | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 20071-0   | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris C   | ortez     |          |          | 4/14/2023 11:08:40AM |
|                                         | S                | B-14      |           |          |          |                      |
|                                         | E304             | 4026-05   |           |          |          |                      |
|                                         |                  | Reporting |           |          |          |                      |
| Analyte                                 | Result           | Limit     | Dilution  | Prepared | Analyzed | Notes                |
|                                         | л                | /1        | A         | . IV     |          | D. 1. 2215002        |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L      | Anaiyst   | 04/12/22 | 04/12/22 | Batch: 2315002       |
| Acetone                                 | ND               | 40.0      | 1         | 04/13/23 | 04/13/23 | Gle                  |
| Benzene                                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromobenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromochloromethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromodicniorometnane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromonorm                               | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Bromometnane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| n-Butyl Benzene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| sec-Butylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| tert-Butylbenzene                       | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Carbon letrachioride                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chlorobenzene                           | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroethane                            | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Chloroform                              | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
|                                         | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Chlorotoluene                         | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromochloromethane                    | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromoethane (EDB)                 | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dibromomethane                          | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| I,4-Dichlorobenzene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloroethane                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,2-Dichloroethene                  | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,2-Dichloroethene                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2,2-Dichloropropane                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloropropene                     | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| cis-1,3-Dichloropropene                 | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| trans-1,3-Dichloropropene               | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Diisopropyl Ether (DIPE)                | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethylbenzene                            | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| Hexachlorobutadiene                     | ND               | 5.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Hexanone                              | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Isopropylbenzene                        | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 4-Isopropyltoluene                      | ND               | 1.00      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Butanone (MEK)                        | ND               | 20.0      | 1         | 04/13/23 | 04/13/23 |                      |
| Methylene Chloride                      | ND               | 2.00      | 1         | 04/13/23 | 04/13/23 |                      |
| l-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |
| 2-Methylnaphthalene                     | ND               | 10.0      | 1         | 04/13/23 | 04/13/23 |                      |



## Sample Data

|                                         | Sal                              | npic D            | ala                    |          |          |                      |
|-----------------------------------------|----------------------------------|-------------------|------------------------|----------|----------|----------------------|
| West Pearl Queen<br>2904 W 2nd St       | Project Name:<br>Project Number: | Aec. 2007         | wpea_SPJ_21<br>71-0001 |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager:                 | ger: Chris Cortez |                        |          |          | 4/14/2023 11:08:40AM |
|                                         |                                  | SB-14             |                        |          |          |                      |
|                                         | E3                               | 04026-05          |                        |          |          |                      |
|                                         |                                  | Reporting         |                        |          |          |                      |
| Analyte                                 | Result                           | Limit             | Dilution               | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L                             | ug/L              | Analyst                | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND                               | 20.0              | 1                      | 04/13/23 | 04/13/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Naphthalene                             | ND                               | 5.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| 1-Propyl Benzene                        | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Styrene                                 | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ert-Amyl Methyl ether (TAME)            | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,1,1,2-Tetrachloroethane                | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,1,2,2-Tetrachloroethane                | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Fetrachloroethene                       | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND                               | 5.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,2,4-Trichlorobenzene                   | ND                               | 5.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| 1,1,1-Trichloroethane                   | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| 1,1,2-Trichloroethane                   | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Frichloroethene                         | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Frichlorofluoromethane (Freon-11)       | ND                               | 2.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,2,3-Trichloropropane                   | ND                               | 2.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,2,4-Trimethylbenzene                   | ND                               | 5.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| ,3,5-Trimethylbenzene                   | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Foluene                                 | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Vinyl chloride                          | ND                               | 2.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| p-Xylene                                | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| , m-Xylene                              | ND                               | 2.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Total Xylenes                           | ND                               | 1.00              | 1                      | 04/13/23 | 04/13/23 |                      |
| Surrogate: Bromofluorobenzene           | 92                               | .2 %              | 70-130                 | 04/13/23 | 04/13/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | 10                               | 03 %              | 70-130                 | 04/13/23 | 04/13/23 |                      |
| Surrogate: Toluene-d8                   | 10                               | 02 %              | 70-130                 | 04/13/23 | 04/13/23 |                      |
|                                         |                                  |                   |                        |          |          |                      |



### Sample Data

|                           |                  | L         |            |                      |                |                |
|---------------------------|------------------|-----------|------------|----------------------|----------------|----------------|
| West Pearl Queen          | Project Name:    | Aecwp     | ea_SPJ_21  |                      |                |                |
| 2904 W 2nd St             | Project Number:  | 20071-    | 20071-0001 |                      |                | Reported:      |
| Roswell NM, 88201         | Project Manager: | Chris (   |            | 4/14/2023 11:08:40AM |                |                |
|                           | S                | B-14      |            |                      |                |                |
|                           | E30              | 4026-05   |            |                      |                |                |
|                           |                  | Reporting |            |                      |                |                |
| Analyte                   | Result           | Limit     | Dilution   | Prepared             | Analyzed       | Notes          |
| Anions by EPA 300.0/9056A | mg/L             | mg/L      | Analy      | st: BA               |                | Batch: 2314052 |
| Chloride                  | 388              | 40.0      | 20         | 04/07/23             | 04/07/23       |                |
| Nitrate-N                 | ND               | 5.00      | 20         | 04/07/23 08:14       | 04/07/23 11:27 |                |



### Sample Data

|                                         |                            | r           |           |          |          |                      |
|-----------------------------------------|----------------------------|-------------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:              | Aecwp       | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number: 20071-0001 |             |           |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager:           | Chris C     | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         | S                          | B-20        | -         |          | -        |                      |
|                                         | E304                       | 4026-06     |           |          |          |                      |
|                                         |                            | Reporting   |           |          |          |                      |
| Analyte                                 | Result                     | Limit       | Dilution  | Prepared | Analyzed | Notes                |
| Valatile Organic Compounds by EPA 8260B | uø/L                       | ug/L        | Analyst   | : IY     |          | Batch: 2315002       |
| Acetone                                 | ND                         | 200         | 5         | 04/10/23 | 04/10/23 | Date: 2010002        |
| Benzene                                 | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromobenzene                            | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromochloromethane                      | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromodichloromethane                    | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromoform                               | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromomothana                            | ND                         | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| n Rutyl Banzana                         | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
|                                         |                            | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| sec-bulyIDenzene                        |                            | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| tert-Butylbenzene                       |                            | 5.00        | 5         | 04/10/22 | 04/10/23 |                      |
| Carbon letrachloride                    | ND                         | 5.00        | 5         | 04/10/22 | 04/10/23 |                      |
| Chlorobenzene                           | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloroethane                            | ND                         | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloroform                              | ND                         | 25.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloromethane                           | ND                         | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Chlorotoluene                         | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 4-Chlorotoluene                         | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Dibromochloromethane                    | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND                         | 25.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dibromoethane (EDB)                 | ND                         | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Dibromomethane                          | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dichlorobenzene                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,3-Dichlorobenzene                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,4-Dichlorobenzene                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND                         | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,1-Dichloroethane                      | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dichloroethane                      | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1,1-Dichloroethene                      | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| cis-1,2-Dichloroethene                  | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| trans-1.2-Dichloroethene                | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2-Dichloropropane                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.3-Dichloropropane                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 2 2-Dichloropropane                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1 1-Dichloropropene                     | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| cis_1_3_Dichloronronene                 | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| trans 1.3 Dichloropropene               | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Discontrol Ether (DIPE)                 |                            | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Ethylhongono                            |                            | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Eurytoenzene                            |                            | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Emyr tert-Butyr Einer (ETBE)            |                            | 25.00       | 5         | 04/10/23 | 04/10/23 |                      |
| nexachiorobutadiene                     |                            | 23.0<br>100 | 5         | 04/10/22 | 04/10/22 |                      |
| 2-Hexanone                              | ND                         | 100         | 5         | 04/10/23 | 04/10/23 |                      |
| Isopropylbenzene                        | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 4-Isopropyltoluene                      | ND                         | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Butanone (MEK)                        | ND                         | 100         | 5         | 04/10/23 | 04/10/23 |                      |
| Methylene Chloride                      | 187                        | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 1-Methylnaphthalene                     | ND                         | 50.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Methylnaphthalene                     | ND                         | 50.0        | 5         | 04/10/23 | 04/10/23 |                      |



## Sample Data

|                                         | Jan              | npic Da           | ata         |          |          |                      |
|-----------------------------------------|------------------|-------------------|-------------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aec               | wpea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 2007              | 20071-0001  |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | ger: Chris Cortez |             |          |          | 4/14/2023 11:08:40AM |
|                                         |                  | SB-20             |             |          |          |                      |
|                                         | E3               | 04026-06          |             |          |          |                      |
|                                         |                  | Reporting         |             |          |          |                      |
| Analyte                                 | Result           | Limit             | Dilution    | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L              | Analyst     | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND               | 100               | 5           | 04/10/23 | 04/10/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Naphthalene                             | ND               | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| n-Propyl Benzene                        | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Styrene                                 | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| tert-Amyl Methyl ether (TAME)           | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1,2-Tetrachloroethane               | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2,2-Tetrachloroethane               | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Tetrachloroethene                       | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND               | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trichlorobenzene                  | ND               | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1-Trichloroethane                   | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2-Trichloroethane                   | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Trichloroethene                         | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Trichlorofluoromethane (Freon-11)       | ND               | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichloropropane                  | ND               | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trimethylbenzene                  | ND               | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,3,5-Trimethylbenzene                  | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Toluene                                 | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Vinyl chloride                          | ND               | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| o-Xylene                                | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| p,m-Xylene                              | ND               | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| Total Xylenes                           | ND               | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Surrogate: Bromofluorobenzene           | 91               | .0 %              | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | 10               | )6 %              | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: Toluene-d8                   | 10               | 00 %              | 70-130      | 04/10/23 | 04/10/23 |                      |



### Sample Data

|                           |                  | -p                            |            |                |                |                |  |
|---------------------------|------------------|-------------------------------|------------|----------------|----------------|----------------|--|
| West Pearl Queen          | Project Name:    | Aecwp                         | ea_SPJ_21  |                |                |                |  |
| 2904 W 2nd St             | Project Number:  | 20071-                        | 20071-0001 |                |                | Reported:      |  |
| Roswell NM, 88201         | Project Manager: | Project Manager: Chris Cortez |            |                |                |                |  |
|                           | S                | SB-20                         |            |                |                |                |  |
|                           | E30              | 4026-06                       |            |                |                |                |  |
|                           |                  | Reporting                     |            |                |                |                |  |
| Analyte                   | Result           | Limit                         | Dilution   | Prepared       | Analyzed       | Notes          |  |
| Anions by EPA 300.0/9056A | mg/L             | mg/L                          | Analys     | st: BA         |                | Batch: 2314052 |  |
| Chloride                  | 61700            | 2000                          | 1000       | 04/07/23       | 04/07/23       |                |  |
| Nitrate-N                 | ND               | 250                           | 1000       | 04/07/23 08:14 | 04/07/23 09:59 |                |  |



### Sample Data

|                                         | ~~~              | r-• - •   |           |          |          |                      |
|-----------------------------------------|------------------|-----------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwp     | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 20071-    | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris (   | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         | SI               | B-21      |           |          |          |                      |
|                                         | E304             | 1026-07   |           |          |          |                      |
|                                         |                  | Reporting |           |          |          |                      |
| Analyte                                 | Result           | Limit     | Dilution  | Prenared | Analyzed | Notes                |
|                                         | result           | Lant      | Diración  |          |          | 1.0.00               |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L      | Analyst   | IY       |          | Batch: 2315002       |
| Acetone                                 | ND               | 200       | 5         | 04/10/23 | 04/10/23 | Gla                  |
| Benzene                                 | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Bromobenzene                            | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Bromochloromethane                      | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Bromodichloromethane                    | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Bromoform                               | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Bromomethane                            | ND               | 10.0      | 5         | 04/10/23 | 04/10/23 |                      |
| n-Butyl Benzene                         | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| sec-Butylbenzene                        | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| tert-Butylbenzene                       | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Carbon Tetrachloride                    | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Chlorobenzene                           | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Chloroethane                            | ND               | 10.0      | 5         | 04/10/23 | 04/10/23 |                      |
| Chlorotorm                              | ND               | 25.0      | 5         | 04/10/23 | 04/10/23 |                      |
| Chloromethane                           | ND               | 10.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Uniorotoluene                         | ND               | 5.00      | 5<br>5    | 04/10/23 | 04/10/23 |                      |
| 4-Uniorotoluene                         | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Dipromocniorometnane                    |                  | 25.00     | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      |                  | 23.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dioromoeinane (EDB)                 |                  | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1 2 Dioklarahanzana                     |                  | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1,2-Dichlorobenzene                     |                  | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.3-Dichlorobenzene                     | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Diablerodifluoromethano (From 12)       | ND               | 10.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 1 1-Dichloroethane                      | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2-Dichloroethane                      | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2 Dichloroethene                      | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| cis-1 2-Dichloroethene                  | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| trans-1.2-Dichloroethene                | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2-Dichloropropane                     | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.3-Dichloropropane                     | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 2.2-Dichloropropane                     | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 1.1-Dichloropropene                     | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| cis-1,3-Dichloropropene                 | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| trans-1,3-Dichloropropene               | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Diisopropyl Ether (DIPE)                | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Ethylbenzene                            | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| Hexachlorobutadiene                     | ND               | 25.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Hexanone                              | ND               | 100       | 5         | 04/10/23 | 04/10/23 |                      |
| Isopropylbenzene                        | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 4-Isopropyltoluene                      | ND               | 5.00      | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Butanone (MEK)                        | ND               | 100       | 5         | 04/10/23 | 04/10/23 |                      |
| Methylene Chloride                      | 56.6             | 10.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 1-Methylnaphthalene                     | ND               | 50.0      | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Methylnaphthalene                     | ND               | 50.0      | 5         | 04/10/23 | 04/10/23 |                      |



## Sample Data

|                                         | Da.             | mpic D            | ata         |          |          |                      |
|-----------------------------------------|-----------------|-------------------|-------------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:   | Aec               | wpea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number  | : 200             | 20071-0001  |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager | ger: Chris Cortez |             |          |          | 4/14/2023 11:08:40AM |
|                                         |                 | SB-21             |             |          |          |                      |
|                                         | E               | 304026-07         |             |          |          |                      |
|                                         |                 | Reporting         | Ţ.          |          |          |                      |
| Analyte                                 | Result          | Limit             | Dilution    | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L            | ug/L              | Analyst     | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND              | 100               | 5           | 04/10/23 | 04/10/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Naphthalene                             | ND              | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| n-Propyl Benzene                        | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Styrene                                 | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| tert-Amyl Methyl ether (TAME)           | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1,2-Tetrachloroethane               | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2,2-Tetrachloroethane               | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Tetrachloroethene                       | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND              | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trichlorobenzene                  | ND              | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1-Trichloroethane                   | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2-Trichloroethane                   | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Trichloroethene                         | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Trichlorofluoromethane (Freon-11)       | ND              | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichloropropane                  | ND              | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trimethylbenzene                  | ND              | 25.0              | 5           | 04/10/23 | 04/10/23 |                      |
| 1,3,5-Trimethylbenzene                  | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Toluene                                 | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Vinyl chloride                          | ND              | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| o-Xylene                                | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| p,m-Xylene                              | ND              | 10.0              | 5           | 04/10/23 | 04/10/23 |                      |
| Total Xylenes                           | ND              | 5.00              | 5           | 04/10/23 | 04/10/23 |                      |
| Surrogate: Bromofluorobenzene           | 8               | 9.7 %             | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | Ĺ               | 103 %             | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: Toluene-d8                   | i               | 100 %             | 70-130      | 04/10/23 | 04/10/23 |                      |
|                                         |                 |                   |             |          |          |                      |



### **Sample Data**

|                           |                  | T                             |            |                |                |           |  |
|---------------------------|------------------|-------------------------------|------------|----------------|----------------|-----------|--|
| West Pearl Queen          | Project Name:    | Aecwp                         | bea_SPJ_21 |                |                |           |  |
| 2904 W 2nd St             | Project Number:  | 20071-                        | 20071-0001 |                |                | Reported: |  |
| Roswell NM, 88201         | Project Manager: | Project Manager: Chris Cortez |            |                |                |           |  |
|                           | S                | B-21                          |            |                |                |           |  |
|                           | E30              | 4026-07                       |            |                |                |           |  |
|                           |                  | Reporting                     |            |                |                |           |  |
| Analyte                   | Result           | Limit                         | Dilution   | Prepared       | Analyzed       | Notes     |  |
| Anions by EPA 300.0/9056A | mg/L             | mg/L                          | Analy      |                | Batch: 2314052 |           |  |
| Chloride                  | 94400            | 2000                          | 1000       | 04/07/23       | 04/07/23       |           |  |
| Nitrate-N                 | ND               | 250                           | 1000       | 04/07/23 08:14 | 04/07/23 12:07 |           |  |



## Sample Data

|                                         | Sam              | pie Da      | la        |          |          |                      |
|-----------------------------------------|------------------|-------------|-----------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwp       | ea_SPJ_21 |          |          |                      |
| 2904 W 2nd St                           | Project Number:  | 20071-      | 0001      |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager: | Chris C     | Cortez    |          |          | 4/14/2023 11:08:40AM |
|                                         | S                | B-22        |           |          |          |                      |
|                                         | E304             | 4026-08     |           |          |          |                      |
|                                         |                  | Reporting   |           |          |          |                      |
| Analyte                                 | Result           | Limit       | Dilution  | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L        | Analyst   | : IY     |          | Batch: 2315002       |
| Acetone                                 | ND               | 200         | 5         | 04/10/23 | 04/10/23 | G1a                  |
| Benzene                                 | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromobenzene                            | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromochloromethane                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromodichloromethane                    | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromoform                               | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Bromomethane                            | ND               | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| n-Butvl Benzene                         | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| sec-Butylbenzene                        | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| tert-Butylbenzene                       | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Carbon Tetrachloride                    | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Chlorobenzene                           | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloroethane                            | ND               | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloroform                              | ND               | 25.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Chloromethane                           | ND               | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Chlorotoluene                         | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 4-Chlorotaluene                         | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Dibromochloromethane                    | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1 2-Dibromo-3-chloropropage (DBCP)      | ND               | 25.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2-Dibromoethane (EDB)                 | ND               | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| Dibromomethane                          | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2 Dichlorohenzene                     | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.3 Dichlorobenzene                     | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.4 Dichlorobenzene                     | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Dichlorodifluoromethane (Freen 12)      | ND               | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.1 Dishlaraathara                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2 Dichloroothane                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.1 Dishlaraathara                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| rig 1.2 Disklargethere                  | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| trans 1.2 Disklars there                | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2 Dichlargeronge                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 1.2 Dichlemenenene                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 2.2 Dishlarananana                      | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| 2,2-Dichloropropane                     | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| I,I-Dichloropropene                     | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| cis-1,3-Dichloropropene                 | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| trans-1,3-Dichloropropene               | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Disopropyl Ether (DIPE)                 | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Ethylbenzene                            | ND               | 5.00        | 5         | 04/10/23 | 04/10/23 |                      |
| Einyi ieri-Butyi Etner (EIBE)           |                  | 25.00       | 5         | 04/10/22 | 0//10/23 |                      |
| nexachiorobutadiene                     | ND               | ∠3.0<br>100 | 5         | 04/10/22 | 04/10/22 |                      |
| 2-Hexanone                              | ND               | 100         | 5         | 04/10/22 | 04/10/23 |                      |
| Isopropylbenzene                        | ND               | 5.00        | 5         | 04/10/22 | 04/10/23 |                      |
| 4-isopropyltoluene                      | ND               | 5.00        | 5         | 04/10/22 | 04/10/23 |                      |
| 2-Butanone (MEK)                        | ND               | 100         | 5         | 04/10/23 | 04/10/23 |                      |
| Methylene Chloride                      | 254              | 10.0        | 5         | 04/10/23 | 04/10/23 |                      |
| I-Methylnaphthalene                     | ND               | 50.0        | 5         | 04/10/23 | 04/10/23 |                      |
| 2-Methylnaphthalene                     | ND               | 50.0        | 5         | 04/10/23 | 04/10/23 |                      |



# Sample Data

|                                                        | Sa                                                                                          | mpic D    | ala      |          |          |                                          |  |  |  |  |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------|----------|----------|----------|------------------------------------------|--|--|--|--|--|--|--|
| West Pearl Queen<br>2904 W 2nd St<br>Roswell NM, 88201 | Accwpea_SPJ_214 W 2nd StProject Number:20071-0001well NM, 88201Project Manager:Chris Cortez |           |          |          |          | <b>Reported:</b><br>4/14/2023 11:08:40AM |  |  |  |  |  |  |  |
| SB-22<br>E304026-08                                    |                                                                                             |           |          |          |          |                                          |  |  |  |  |  |  |  |
|                                                        |                                                                                             | Reporting |          |          |          |                                          |  |  |  |  |  |  |  |
| Analyte                                                | Result                                                                                      | Limit     | Dilution | Prepared | Analyzed | Notes                                    |  |  |  |  |  |  |  |
| Volatile Organic Compounds by EPA 8260B                | ug/L                                                                                        | ug/L      | Analys   | t: IY    |          | Batch: 2315002                           |  |  |  |  |  |  |  |
| 4-Methyl-2-pentanone (MIBK)                            | ND                                                                                          | 100       | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Methyl tert-Butyl Ether (MTBE)                         | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Naphthalene                                            | ND                                                                                          | 25.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| n-Propyl Benzene                                       | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Styrene                                                | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| tert-Amyl Methyl ether (TAME)                          | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,1,1,2-Tetrachloroethane                              | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                              | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Tetrachloroethene                                      | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,2,3-Trichlorobenzene                                 | ND                                                                                          | 25.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,2,4-Trichlorobenzene                                 | ND                                                                                          | 25.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,1,1-Trichloroethane                                  | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,1,2-Trichloroethane                                  | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Trichloroethene                                        | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Trichlorofluoromethane (Freon-11)                      | ND                                                                                          | 10.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,2,3-Trichloropropane                                 | ND                                                                                          | 10.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,2,4-Trimethylbenzene                                 | ND                                                                                          | 25.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| 1,3,5-Trimethylbenzene                                 | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Toluene                                                | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Vinyl chloride                                         | ND                                                                                          | 10.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| o-Xylene                                               | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| p,m-Xylene                                             | ND                                                                                          | 10.0      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Total Xylenes                                          | ND                                                                                          | 5.00      | 5        | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Surrogate: Bromofluorobenzene                          | 9                                                                                           | 1.5 %     | 70-130   | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Surrogate: 1,2-Dichloroethane-d4                       | i                                                                                           | 105 %     | 70-130   | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |
| Surrogate: Toluene-d8                                  | i                                                                                           | 101 %     | 70-130   | 04/10/23 | 04/10/23 |                                          |  |  |  |  |  |  |  |



### **Sample Data**

|                           |                  | - <b>I</b> |            |                |                |                      |
|---------------------------|------------------|------------|------------|----------------|----------------|----------------------|
| West Pearl Queen          | Project Name:    | Aecwp      | ea_SPJ_21  |                |                |                      |
| 2904 W 2nd St             | Project Number:  | 20071-     | 20071-0001 |                |                | Reported:            |
| Roswell NM, 88201         | Project Manager: | Chris (    | Cortez     |                |                | 4/14/2023 11:08:40AM |
|                           | 5                | SB-22      |            |                |                |                      |
|                           | E3(              | 04026-08   |            |                |                |                      |
|                           |                  | Reporting  |            |                |                |                      |
| Analyte                   | Result           | Limit      | Dilution   | Prepared       | Analyzed       | Notes                |
| Anions by EPA 300.0/9056A | mg/L             | mg/L       | Analys     | st: BA         |                | Batch: 2314052       |
| Chloride                  | 124000           | 2000       | 1000       | 04/07/23       | 04/07/23       |                      |
| Nitrate-N                 | ND               | 250        | 1000       | 04/07/23 08:14 | 04/07/23 10:37 |                      |



### Sample Data

|                                         | ~ ••••••]        | <b>2</b> //  |           |          |                  |                      |
|-----------------------------------------|------------------|--------------|-----------|----------|------------------|----------------------|
| West Pearl Queen                        | Project Name:    | Aecwp        | ea_SPJ_21 |          |                  | <b>n</b> / 1         |
| 2904 W 2nd St                           | Project Number:  | 0001         |           |          | <b>Reported:</b> |                      |
| Koswell NM, 88201                       | Project Manager: | Chris C      | ortez     |          |                  | 4/14/2023 11:08:40AM |
|                                         | SI               | 3-23         |           |          |                  |                      |
|                                         | E304             | 026-09       |           |          |                  |                      |
|                                         |                  | Reporting    |           |          |                  |                      |
| Analyte                                 | Result           | Limit        | Dilution  | Prepared | Analyzed         | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L         | Analyst   | : IY     |                  | Batch: 2315002       |
| Acetone                                 | ND               | 200          | 5         | 04/10/23 | 04/10/23         | Gle                  |
| Benzene                                 | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Bromobenzene                            | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Bromochloromethane                      | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Bromodichloromethane                    | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Bromoform                               | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Bromomethane                            | ND               | 10.0         | 5         | 04/10/23 | 04/10/23         |                      |
| n-Butyl Benzene                         | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| sec-Butylbenzene                        | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| tert-Butylbenzene                       | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Carbon Tetrachloride                    | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Caloon retractionae                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Chloroethane                            | ND               | 10.0         | 5         | 04/10/23 | 04/10/23         |                      |
|                                         | ND               | 25.0         | 5         | 04/10/23 | 04/10/23         |                      |
|                                         | ND               | 25.0         | 5         | 04/10/23 | 04/10/23         |                      |
|                                         | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 2-Chlorotoluene                         | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 4-Chlorotoluene                         | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Dibromochloromethane                    | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND               | 25.0         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,2-Dibromoethane (EDB)                 | ND               | 10.0         | 5         | 04/10/23 | 04/10/23         |                      |
| Dibromomethane                          | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,2-Dichlorobenzene                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,3-Dichlorobenzene                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,4-Dichlorobenzene                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Dichlorodifluoromethane (Freon-12)      | ND               | 10.0         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,1-Dichloroethane                      | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,2-Dichloroethane                      | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,1-Dichloroethene                      | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| cis-1,2-Dichloroethene                  | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| trans-1,2-Dichloroethene                | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,2-Dichloropropane                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,3-Dichloropropane                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 2,2-Dichloropropane                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 1,1-Dichloropropene                     | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| cis-1,3-Dichloropropene                 | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| rans-1,3-Dichloropropene                | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Diisopropyl Ether (DIPE)                | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Ethylbenzene                            | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| Hexachlorobutadiene                     | ND               | 25.0         | 5         | 04/10/23 | 04/10/23         |                      |
| 2-Hexanone                              | ND               | 100          | 5         | 04/10/23 | 04/10/23         |                      |
| sopropylbenzene                         | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 4-Isopropyltoluene                      | ND               | 5.00         | 5         | 04/10/23 | 04/10/23         |                      |
| 2-Butanone (MEK)                        | ND               | 100          | 5         | 04/10/23 | 04/10/23         |                      |
| Methylene Chloride                      |                  | 100          | -         |          |                  |                      |
| menty tene entonice                     | 54.0             | 10.0         | 5         | 04/10/23 | 04/10/23         |                      |
| 1-Methylnanhthalene                     | 54.0<br>ND       | 10.0<br>50.0 | 5<br>5    | 04/10/23 | 04/10/23         |                      |



## Sample Data

|                                         | Ja              | mpic D    | ata         |          |          |                      |
|-----------------------------------------|-----------------|-----------|-------------|----------|----------|----------------------|
| West Pearl Queen                        | Project Name:   | Aec       | wpea_SPJ_21 |          |          | <b>D</b>             |
| 2904 W 2nd St                           | Project Number: | 200       | 71-0001     |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager | : Chr     | 1s Cortez   |          |          | 4/14/2023 11:08:40AM |
|                                         |                 | SB-23     |             |          |          |                      |
|                                         | E               | 304026-09 |             |          |          |                      |
|                                         |                 | Reporting | ç           |          |          |                      |
| Analyte                                 | Result          | Limit     | Dilution    | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L            | ug/L      | Analyst     | : IY     |          | Batch: 2315002       |
| 4-Methyl-2-pentanone (MIBK)             | ND              | 100       | 5           | 04/10/23 | 04/10/23 |                      |
| Methyl tert-Butyl Ether (MTBE)          | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Naphthalene                             | ND              | 25.0      | 5           | 04/10/23 | 04/10/23 |                      |
| n-Propyl Benzene                        | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Styrene                                 | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| tert-Amyl Methyl ether (TAME)           | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1,2-Tetrachloroethane               | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2,2-Tetrachloroethane               | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Tetrachloroethene                       | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichlorobenzene                  | ND              | 25.0      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trichlorobenzene                  | ND              | 25.0      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,1-Trichloroethane                   | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,1,2-Trichloroethane                   | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Trichloroethene                         | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Trichlorofluoromethane (Freon-11)       | ND              | 10.0      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,3-Trichloropropane                  | ND              | 10.0      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,2,4-Trimethylbenzene                  | ND              | 25.0      | 5           | 04/10/23 | 04/10/23 |                      |
| 1,3,5-Trimethylbenzene                  | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Toluene                                 | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Vinyl chloride                          | ND              | 10.0      | 5           | 04/10/23 | 04/10/23 |                      |
| p-Xylene                                | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| o,m-Xylene                              | ND              | 10.0      | 5           | 04/10/23 | 04/10/23 |                      |
| Total Xylenes                           | ND              | 5.00      | 5           | 04/10/23 | 04/10/23 |                      |
| Surrogate: Bromofluorobenzene           | 90              | 0.7 %     | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: 1,2-Dichloroethane-d4        | 1               | 03 %      | 70-130      | 04/10/23 | 04/10/23 |                      |
| Surrogate: Toluene-d8                   | 1               | 02 %      | 70-130      | 04/10/23 | 04/10/23 |                      |



### Sample Data

|                           |                  | -p        |           |                |                      |                |
|---------------------------|------------------|-----------|-----------|----------------|----------------------|----------------|
| West Pearl Queen          | Project Name:    | Aecwp     | ea_SPJ_21 |                |                      |                |
| 2904 W 2nd St             | Project Number:  | 20071-    | 0001      |                |                      | Reported:      |
| Roswell NM, 88201         | Project Manager: | Chris C   | Cortez    |                | 4/14/2023 11:08:40AM |                |
|                           | S                | SB-23     |           |                |                      |                |
|                           | E30              | 4026-09   |           |                |                      |                |
|                           |                  | Reporting |           |                |                      |                |
| Analyte                   | Result           | Limit     | Dilution  | Prepared       | Analyzed             | Notes          |
| Anions by EPA 300.0/9056A | mg/L             | mg/L      | Analys    | st: BA         |                      | Batch: 2314052 |
| Chloride                  | 25700            | 2000      | 1000      | 04/07/23       | 04/07/23             |                |
| Nitrate-N                 | ND               | 250       | 1000      | 04/07/23 08:14 | 04/07/23 11:47       |                |



## Sample Data

|                                         | Sam                              |                 |                   |          |          |                      |
|-----------------------------------------|----------------------------------|-----------------|-------------------|----------|----------|----------------------|
| West Pearl Queen<br>2904 W 2nd St       | Project Name:<br>Project Number: | Aecwp<br>20071- | ea_SPJ_21<br>0001 |          |          | Reported:            |
| Roswell NM, 88201                       | Project Manager:                 | Chris C         | Cortez            |          |          | 4/14/2023 11:08:40AM |
|                                         | S                                | B-5             |                   |          |          |                      |
|                                         |                                  | 026-10          |                   |          |          |                      |
|                                         |                                  | 020 10          |                   |          |          |                      |
|                                         |                                  | Reporting       |                   | D 1      |          | NT /                 |
| Analyte                                 | Result                           | Limit           | Dilution          | Prepared | Analyzed | Notes                |
| Volatile Organic Compounds by EPA 8260B | ug/L                             | ug/L            | Analyst           | : IY     |          | Batch: 2315002       |
| Acetone                                 | ND                               | 40.0            | 1                 | 04/13/23 | 04/13/23 | G1                   |
| Benzene                                 | 2.61                             | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Bromobenzene                            | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Bromochloromethane                      | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Bromodichloromethane                    | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Bromoform                               | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Bromomethane                            | ND                               | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| n-Butyl Benzene                         | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| sec-Butylbenzene                        | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| tert-Butylbenzene                       | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Carbon Tetrachloride                    | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Chlorobenzene                           | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Chloroethane                            | ND                               | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Chloroform                              | ND                               | 5.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Chloromethane                           | ND                               | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 2-Chlorotoluene                         | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 4-Chlorotoluene                         | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Dibromochloromethane                    | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromo-3-chloropropane (DBCP)      | ND                               | 5.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,2-Dibromoethane (EDB)                 | ND                               | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Dibromomethane                          | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichlorobenzene                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichlorobenzene                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,4-Dichlorobenzene                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Dichlorodifluoromethane (Freon-12)      | ND                               | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethane                      | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloroethane                      | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloroethene                      | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| cis-1,2-Dichloroethene                  | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| trans-1,2-Dichloroethene                | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,2-Dichloropropane                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,3-Dichloropropane                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 2,2-Dichloropropane                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1,1-Dichloropropene                     | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| cis-1,3-Dichloropropene                 | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| trans-1,3-Dichloropropene               | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Diisopropyl Ether (DIPE)                | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Ethylbenzene                            | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Ethyl tert-Butyl Ether (ETBE)           | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| Hexachlorobutadiene                     | ND                               | 5.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 2-Hexanone                              | ND                               | 20.0            | 1                 | 04/13/23 | 04/13/23 |                      |
| Isopropylbenzene                        | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 4-Isopropyltoluene                      | ND                               | 1.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 2-Butanone (MEK)                        | ND                               | 20.0            | 1                 | 04/13/23 | 04/13/23 |                      |
| Methylene Chloride                      | 3.21                             | 2.00            | 1                 | 04/13/23 | 04/13/23 |                      |
| 1-Methylnaphthalene                     | ND                               | 10.0            | 1                 | 04/13/23 | 04/13/23 |                      |
| 2-Methylnaphthalene                     | ND                               | 10.0            | 1                 | 04/13/23 | 04/13/23 |                      |



## Sample Data

| West Pearl Queen                        | Project Name:    | Aec       | wpea_SPJ_21 |          |          |                      |  |  |  |  |  |
|-----------------------------------------|------------------|-----------|-------------|----------|----------|----------------------|--|--|--|--|--|
| 2904 W 2nd St                           | Project Number:  | 200       | 71-0001     |          |          | Reported:            |  |  |  |  |  |
| Roswell NM, 88201                       | Project Manager: | Chr       | is Cortez   |          |          | 4/14/2023 11:08:40AM |  |  |  |  |  |
|                                         |                  | SB-5      |             |          |          |                      |  |  |  |  |  |
|                                         | E                | 304026-10 |             |          |          |                      |  |  |  |  |  |
|                                         |                  | Reporting |             |          |          |                      |  |  |  |  |  |
| Analyte                                 | Result           | Limit     | Dilution    | Prepared | Analyzed | Notes                |  |  |  |  |  |
| Volatile Organic Compounds by EPA 8260B | ug/L             | ug/L      | Analyst     | :: IY    |          | Batch: 2315002       |  |  |  |  |  |
| 4-Methyl-2-pentanone (MIBK)             | ND               | 20.0      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Methyl tert-Butyl Ether (MTBE)          | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Naphthalene                             | ND               | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| n-Propyl Benzene                        | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Styrene                                 | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| tert-Amyl Methyl ether (TAME)           | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,1,1,2-Tetrachloroethane               | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane               | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Tetrachloroethene                       | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,2,3-Trichlorobenzene                  | ND               | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,2,4-Trichlorobenzene                  | ND               | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,1,1-Trichloroethane                   | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,1,2-Trichloroethane                   | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Trichloroethene                         | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Trichlorofluoromethane (Freon-11)       | ND               | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,2,3-Trichloropropane                  | ND               | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,2,4-Trimethylbenzene                  | ND               | 5.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| 1,3,5-Trimethylbenzene                  | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Toluene                                 | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Vinyl chloride                          | ND               | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| o-Xylene                                | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| p,m-Xylene                              | ND               | 2.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Total Xylenes                           | ND               | 1.00      | 1           | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Surrogate: Bromofluorobenzene           | 92               | 2.9 %     | 70-130      | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Surrogate: 1,2-Dichloroethane-d4        | 1                | 03 %      | 70-130      | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |
| Surrogate: Toluene-d8                   | 1                | 02 %      | 70-130      | 04/13/23 | 04/13/23 |                      |  |  |  |  |  |



### Sample Data

|                           |                  | -p        |           |                      |                |                |
|---------------------------|------------------|-----------|-----------|----------------------|----------------|----------------|
| West Pearl Queen          | Project Name:    | Aecwp     | ea_SPJ_21 |                      |                |                |
| 2904 W 2nd St             | Project Number:  | 20071-    | 0001      |                      |                | Reported:      |
| Roswell NM, 88201         | Project Manager: | Chris C   | Cortez    | 4/14/2023 11:08:40AM |                |                |
|                           | S                | SB-5      |           |                      |                |                |
|                           | E30              | 4026-10   |           |                      |                |                |
|                           |                  | Reporting |           |                      |                |                |
| Analyte                   | Result           | Limit     | Dilution  | Prepared             | Analyzed       | Notes          |
| Anions by EPA 300.0/9056A | mg/L             | mg/L      | Analy     | st: BA               |                | Batch: 2314052 |
| Chloride                  | 11300            | 200       | 100       | 04/07/23             | 04/07/23       |                |
| Nitrate-N                 | 6.44             | 5.00      | 20        | 04/07/23 08:14       | 04/07/23 09:51 | H2             |



# QC Summary Data

| West Pearl Queen                                     |        | Project Name:      | Ad             | ecwpea_SPJ_2     | 21       |               |              |              | Reported:             |
|------------------------------------------------------|--------|--------------------|----------------|------------------|----------|---------------|--------------|--------------|-----------------------|
| 2904 W 2nd St                                        |        | Project Number:    | 20             | 0071-0001        |          |               |              |              | 14/2022 11:00:40 + 14 |
| Roswell NM, 88201                                    |        | Project Manager:   | Ch             | hris Cortez      |          |               |              | 4/           | 14/2023 11:08:40AM    |
|                                                      | ,      | Volatile Organic   | Compo          | unds by EP       | PA 82601 | B             |              |              | Analyst: IY           |
| Analyte                                              | Result | Reporting<br>Limit | Spike<br>Level | Source<br>Result | Rec      | Rec<br>Limits | RPD          | RPD<br>Limit |                       |
|                                                      | ug/L   | ug/L               | ug/L           | ug/L             | %        | %             | %            | %            | Notes                 |
| Blank (2315002-BLK1)                                 |        |                    |                |                  |          | I             | Prepared: 04 | 4/10/23 Ana  | alyzed: 04/10/23      |
| Acetone                                              | ND     | 40.0               |                |                  |          |               | 1            |              |                       |
| Benzene                                              | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Bromobenzene<br>Bromochloromethane                   | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Bromodichloromethane                                 | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Bromoform                                            | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Bromomethane                                         | ND     | 2.00               |                |                  |          |               |              |              |                       |
| n-Butyl Benzene                                      | ND     | 1.00               |                |                  |          |               |              |              |                       |
| sec-Butylbenzene                                     | ND     | 1.00               |                |                  |          |               |              |              |                       |
| tert-Butylbenzene                                    | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Chlorobenzene                                        | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Chloroethane                                         | ND     | 2.00               |                |                  |          |               |              |              |                       |
| Chloroform                                           | ND     | 5.00               |                |                  |          |               |              |              |                       |
| Chloromethane                                        | ND     | 2.00               |                |                  |          |               |              |              |                       |
| 2-Chlorotoluene                                      | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 4-Chlorotoluene                                      | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1 2-Dibromo-3-chloropropane (DBCP)                   | ND     | 5.00               |                |                  |          |               |              |              |                       |
| 1,2-Dibromoethane (EDB)                              | ND     | 2.00               |                |                  |          |               |              |              |                       |
| Dibromomethane                                       | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,2-Dichlorobenzene                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,3-Dichlorobenzene                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,4-Dichlorobenzene                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1 1-Dichloroethane                                   | ND     | 2.00               |                |                  |          |               |              |              |                       |
| 1,2-Dichloroethane                                   | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,1-Dichloroethene                                   | ND     | 1.00               |                |                  |          |               |              |              |                       |
| cis-1,2-Dichloroethene                               | ND     | 1.00               |                |                  |          |               |              |              |                       |
| trans-1,2-Dichloroethene                             | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,2-Dichloropropane                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 2 2-Dichloropropane                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,1-Dichloropropene                                  | ND     | 1.00               |                |                  |          |               |              |              |                       |
| cis-1,3-Dichloropropene                              | ND     | 1.00               |                |                  |          |               |              |              |                       |
| trans-1,3-Dichloropropene                            | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Diisopropyl Ether (DIPE)                             | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Ethylbenzene                                         | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Ethyl tert-Butyl Ether (E1BE)<br>Heyachlorobutadiene | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 2-Hexanone                                           | ND     | 20.0               |                |                  |          |               |              |              |                       |
| Isopropylbenzene                                     | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 4-Isopropyltoluene                                   | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 2-Butanone (MEK)                                     | ND     | 20.0               |                |                  |          |               |              |              |                       |
| Methylene Chloride                                   | ND     | 2.00               |                |                  |          |               |              |              |                       |
| 2-Methylnaphthalene                                  | ND     | 10.0               |                |                  |          |               |              |              |                       |
| 4-Methyl-2-pentanone (MIBK)                          | ND     | 20.0               |                |                  |          |               |              |              |                       |
| Methyl tert-Butyl Ether (MTBE)                       | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Naphthalene                                          | ND     | 5.00               |                |                  |          |               |              |              |                       |
| n-Propyl Benzene                                     | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Styrene<br>tart Amyl Mathyl athan (TAME)             | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1 1 2 Tetrachloroethane                              | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,1,2,2-Tetrachloroethane                            | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Tetrachloroethene                                    | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,2,3-Trichlorobenzene                               | ND     | 5.00               |                |                  |          |               |              |              |                       |
| 1,2,4-Trichlorobenzene                               | ND     | 5.00               |                |                  |          |               |              |              |                       |
| 1,1,1-Trichloroethane                                | ND     | 1.00               |                |                  |          |               |              |              |                       |
| 1,1,2-1richloroethane                                | ND     | 1.00               |                |                  |          |               |              |              |                       |
| Trichlorofluoromethane (Freon-11)                    | ND     | 2.00               |                |                  |          |               |              |              |                       |
| 1,2,3-Trichloropropane                               | ND     | 2.00               |                |                  |          |               |              |              |                       |
| 1,2,4-Trimethylbenzene                               | ND     | 5.00               |                |                  |          |               |              |              |                       |



## QC Summary Data

| W. D. C.                           |                | <b>.</b>         |              | •<br>         |              |                  |              |             |                      |
|------------------------------------|----------------|------------------|--------------|---------------|--------------|------------------|--------------|-------------|----------------------|
| West Pearl Queen                   |                | Project Name:    | A            | ecwpea_SPJ_21 |              |                  |              |             | Reported:            |
| 2904 W 2nd St                      |                | Project Number:  | 2            | 00/1-0001     |              |                  |              | 4/1         | 14/2022 11 00 40 434 |
| Roswell NM, 88201                  |                | Project Manager: | 0            | Chris Cortez  |              |                  |              | 4/.         | 14/2023 11:08:40AM   |
|                                    |                | Volatile Organio | e Compo      | ounds by EPA  | 8260E        | 3                |              |             | Analyst: IY          |
| Analyte                            |                | Reporting        | Spike        | Source        | P            | Rec              | DDD          | RPD         |                      |
|                                    | Result<br>ug/L | ug/L             | ug/L         | ug/L          | Kec<br>%     | 2<br>%           | %            | 2000 Elinin | Notes                |
|                                    | 8              |                  | -8-          | -8-           | 70           | 70               | 70           | 70          | rotes                |
| Blank (2315002-BLK1)               |                |                  |              |               |              |                  | Prepared: 04 | 4/10/23 Ana | lyzed: 04/10/23      |
| 1,3,5-Trimethylbenzene             | ND             | 1.00             |              |               |              |                  |              |             |                      |
| Toluene                            | ND             | 1.00             |              |               |              |                  |              |             |                      |
| Vinyl chloride                     | ND             | 2.00             |              |               |              |                  |              |             |                      |
| o-Aylene                           | ND             | 2.00             |              |               |              |                  |              |             |                      |
| Total Xylenes                      | ND             | 1.00             |              |               |              |                  |              |             |                      |
| Surrogate: Bromofluorobenzene      | 9.21           |                  | 10.0         |               | 92.1         | 70-130           |              |             |                      |
| Surrogate: 1 2-Dichloroethane-d4   | 9.89           |                  | 10.0         |               | 98.9         | 70-130           |              |             |                      |
| Surrogate: Toluene-d8              | 10.3           |                  | 10.0         |               | 103          | 70-130           |              |             |                      |
| Surrogue. Tomene uo                | 10.5           |                  |              |               |              |                  |              |             |                      |
| LCS (2315002-BS1)                  |                |                  |              |               |              |                  | Prepared: 04 | 4/10/23 Ana | lyzed: 04/10/23      |
| Acetone                            | 55.8           | 40.0             | 100          |               | 55.8         | 20-185           |              |             |                      |
| Benzene                            | 45.0           | 1.00             | 50.0         |               | 90.0         | 70-130           |              |             |                      |
| Bromoform                          | 38.5           | 1.00             | 50.0         |               | 77.1<br>00.0 | 70-131           |              |             |                      |
| Bromomethane                       | 50.0<br>45.5   | 2.00             | 50.0         |               | 99.9         | 22-187<br>70-130 |              |             |                      |
| Carbon Tetrachloride               | 45.3           | 1.00             | 50.0         |               | 90.5         | 70-130           |              |             |                      |
| Chlorobenzene                      | 49.4           | 1.00             | 50.0         |               | 98.8         | 70-130           |              |             |                      |
| 2-Chlorotoluene                    | 47.1           | 1.00             | 50.0         |               | 94.2         | 70-130           |              |             |                      |
| Dibromochloromethane               | 41.8           | 1.00             | 50.0         |               | 83.6         | 70-130           |              |             |                      |
| 1,2-Dichlorobenzene                | 45.4           | 1.00             | 50.0         |               | 90.8         | 70-130           |              |             |                      |
| Dichlorodifluoromethane (Freon-12) | 67.2           | 2.00             | 50.0         |               | 134          | 50-180           |              |             |                      |
| 1,1-Dichloroethane                 | 45.2           | 1.00             | 50.0         |               | 90.5<br>89.0 | 70-130<br>80-120 |              |             |                      |
| 2 2-Dichloropropane                | 53.4           | 1.00             | 50.0         |               | 107          | 50-120           |              |             |                      |
| cis-1,3-Dichloropropene            | 46.3           | 1.00             | 50.0         |               | 92.5         | 70-130           |              |             |                      |
| Ethylbenzene                       | 46.2           | 1.00             | 50.0         |               | 92.4         | 80-120           |              |             |                      |
| Isopropylbenzene                   | 42.5           | 1.00             | 50.0         |               | 84.9         | 70-130           |              |             |                      |
| Methyl tert-Butyl Ether (MTBE)     | 78.9           | 1.00             | 100          |               | 78.9         | 70-130           |              |             |                      |
| Naphthalene                        | 37.9           | 5.00             | 50.0         |               | 75.8         | 70-140           |              |             |                      |
| Trichloroethene                    | 46.6           | 1.00             | 50.0         |               | 93.2         | 70-130           |              |             |                      |
| Toluene                            | 45.7           | 1.00             | 50.0         |               | 91.4         | 80-120           |              |             |                      |
| o-Xylene                           | 46.1           | 1.00             | 50.0         |               | 92.2         | 70-130           |              |             |                      |
| p,m-Xylene                         | 92.7           | 2.00             | 100          |               | 92.7         | 70-130           |              |             |                      |
| Total Xylenes                      | 139            | 1.00             | 150          |               | 92.5         | 70-130           |              |             |                      |
| Surrogate: Bromofluorobenzene      | 10.1           |                  | 10.0         |               | 101          | 70-130           |              |             |                      |
| Surrogate: 1,2-Dichloroethane-d4   | 9.69           |                  | 10.0         |               | 96.9         | 70-130           |              |             |                      |
| Surrogate: Toluene-d8              | 10.3           |                  | 10.0         |               | 103          | 70-130           |              |             |                      |
| Matrix Spike (2315002-MS1)         |                |                  |              | Source: E     | 304002-0     | )1               | Prepared: 04 | 4/10/23 Ana | lyzed: 04/10/23      |
| Acetone                            | 3330           | 2000             | 5000         | ND            | 66.6         | 10-190           |              |             |                      |
| Benzene                            | 2310           | 50.0             | 2500         | ND            | 92.3         | 59-133           |              |             |                      |
| Bromoform                          | 2140           | 50.0             | 2500         | ND            | 85.5         | 66-140           |              |             |                      |
| Bromomethane                       | 2680           | 100              | 2500<br>2500 | ND<br>ND      | 107<br>904   | 1/-190           |              |             |                      |
| Carbon Tetrachloride               | 2280           | 50.0             | 2500         | ND            | 91.4         | 61-139           |              |             |                      |
| Chlorobenzene                      | 2520           | 50.0             | 2500         | ND            | 101          | 70-130           |              |             |                      |
| 2-Chlorotoluene                    | 2400           | 50.0             | 2500         | ND            | 96.0         | 67-134           |              |             |                      |
| Dibromochloromethane               | 2230           | 50.0             | 2500         | ND            | 89.4         | 70-132           |              |             |                      |
| 1,2-Dichlorobenzene                | 2340           | 50.0             | 2500         | ND            | 93.4         | 70-130           |              |             |                      |
| Dichlorodifluoromethane (Freon-12) | 2870           | 100              | 2500         | ND            | 115          | 50-180           |              |             |                      |
| 1,1-Dichloroethane                 | 2310           | 50.0             | 2500<br>2500 |               | 92.2<br>89.4 | 04-134<br>49_144 |              |             |                      |
| 2.2-Dichloropropane                | 2560           | 50.0             | 2500         | ND            | 102          | 45-165           |              |             |                      |
| cis-1,3-Dichloropropene            | 2380           | 50.0             | 2500         | ND            | 95.1         | 70-130           |              |             |                      |
| Ethylbenzene                       | 2350           | 50.0             | 2500         | ND            | 94.2         | 62-136           |              |             |                      |
| Isopropylbenzene                   | 2160           | 50.0             | 2500         | ND            | 86.4         | 67-136           |              |             |                      |
| Methyl tert-Butyl Ether (MTBE)     | 4420           | 50.0             | 5000         | ND            | 88.5         | 61-136           |              |             |                      |
| Naphthalene                        | 2180           | 250              | 2500<br>2500 | ND            | 87.0<br>82.0 | 65 125           |              |             |                      |
| ten-Amyi metnyi ether (IAME)       | 2070           | 50.0             | 2300         | ND            | 02.9         | 00-100           |              |             |                      |

# QC Summary Data

| West Pearl Queen<br>2904 W 2nd St<br>Roswell NM, 88201 |        | Project Name:<br>Project Number:<br>Project Manager: |                | Aecwpea_SPJ_21<br>20071-0001<br>Chris Cortez |         |               |              |              | <b>Reported:</b><br>4/14/2023 11:08:40AM |  |
|--------------------------------------------------------|--------|------------------------------------------------------|----------------|----------------------------------------------|---------|---------------|--------------|--------------|------------------------------------------|--|
|                                                        |        | Volatile Organic                                     | Comp           | ounds by EPA                                 | A 82601 | B             |              | Analyst: IY  |                                          |  |
| Analyte                                                | Result | Reporting<br>Limit                                   | Spike<br>Level | Source<br>Result                             | Rec     | Rec<br>Limits | RPD          | RPD<br>Limit |                                          |  |
|                                                        | ug/L   | ug/L                                                 | ug/L           | ug/L                                         | %       | %             | %            | %            | Notes                                    |  |
| Matrix Spike (2315002-MS1)                             |        |                                                      |                | Source: E                                    | 304002- | 01            | Prepared: 04 | 4/10/23 Ai   | nalyzed: 04/10/23                        |  |
| Trichloroethene                                        | 2330   | 50.0                                                 | 2500           | ND                                           | 93.2    | 49-148        |              |              |                                          |  |
| Toluene                                                | 2370   | 50.0                                                 | 2500           | ND                                           | 94.9    | 67-130        |              |              |                                          |  |
| o-Xylene                                               | 2380   | 50.0                                                 | 2500           | ND                                           | 95.0    | 70-130        |              |              |                                          |  |
| p,m-Xylene                                             | 4740   | 100                                                  | 5000           | ND                                           | 94.8    | 65-135        |              |              |                                          |  |
| Total Xylenes                                          | 7110   | 50.0                                                 | 7500           | ND                                           | 94.9    | 65-135        |              |              |                                          |  |
| Surrogate: Bromofluorobenzene                          | 498    |                                                      | 500            |                                              | 99.6    | 70-130        |              |              |                                          |  |
| Surrogate: 1,2-Dichloroethane-d4                       | 487    |                                                      | 500            |                                              | 97.3    | 70-130        |              |              |                                          |  |
| Surrogate: Toluene-d8                                  | 510    |                                                      | 500            |                                              | 102     | 70-130        |              |              |                                          |  |
| Matrix Spike Dup (2315002-MSD1)                        |        |                                                      |                | Source: E                                    | 304002- | 01            | Prepared: 04 | 4/10/23 Ai   | nalyzed: 04/10/23                        |  |
| Acetone                                                | 3390   | 2000                                                 | 5000           | ND                                           | 67.8    | 10-190        | 1.79         | 30           |                                          |  |
| Benzene                                                | 2280   | 50.0                                                 | 2500           | ND                                           | 91.3    | 59-133        | 1.09         | 20           |                                          |  |
| Bromoform                                              | 2130   | 50.0                                                 | 2500           | ND                                           | 85.3    | 66-140        | 0.234        | 20           |                                          |  |
| Bromomethane                                           | 2560   | 100                                                  | 2500           | ND                                           | 102     | 17-190        | 4.68         | 20           |                                          |  |
| sec-Butylbenzene                                       | 2240   | 50.0                                                 | 2500           | ND                                           | 89.6    | 66-139        | 0.934        | 20           |                                          |  |
| Carbon Tetrachloride                                   | 2320   | 50.0                                                 | 2500           | ND                                           | 92.6    | 61-139        | 1.33         | 20           |                                          |  |
| Chlorobenzene                                          | 2480   | 50.0                                                 | 2500           | ND                                           | 99.3    | 70-130        | 1.44         | 20           |                                          |  |
| 2-Chlorotoluene                                        | 2360   | 50.0                                                 | 2500           | ND                                           | 94.4    | 67-134        | 1.64         | 20           |                                          |  |
| Dibromochloromethane                                   | 2240   | 50.0                                                 | 2500           | ND                                           | 89.4    | 70-132        | 0.0224       | 20           |                                          |  |
| 1,2-Dichlorobenzene                                    | 2350   | 50.0                                                 | 2500           | ND                                           | 94.1    | 70-130        | 0.746        | 20           |                                          |  |
| Dichlorodifluoromethane (Freon-12)                     | 2760   | 100                                                  | 2500           | ND                                           | 111     | 50-180        | 3.69         | 20           |                                          |  |
| 1,1-Dichloroethane                                     | 2290   | 50.0                                                 | 2500           | ND                                           | 91.8    | 64-134        | 0.522        | 20           |                                          |  |
| 1,1-Dichloroethene                                     | 2240   | 50.0                                                 | 2500           | ND                                           | 89.7    | 49-144        | 0.290        | 20           |                                          |  |
| 2,2-Dichloropropane                                    | 2350   | 50.0                                                 | 2500           | ND                                           | 04.4    | 70 120        | 0.781        | 20           |                                          |  |
| cis-1,3-Dichloropropene                                | 2300   | 50.0                                                 | 2500           | ND                                           | 02.3    | 62-136        | 1 99         | 20           |                                          |  |
| Isopropulbenzene                                       | 2110   | 50.0                                                 | 2500           | ND                                           | 84.5    | 67-136        | 2 20         | 20           |                                          |  |
| Methyl tert-Butyl Ether (MTBE)                         | 4460   | 50.0                                                 | 5000           | ND                                           | 89.2    | 61-136        | 0.878        | 20           |                                          |  |
| Naphthalene                                            | 2230   | 250                                                  | 2500           | ND                                           | 89.0    | 60-160        | 2.25         | 20           |                                          |  |
| tert-Amyl Methyl ether (TAME)                          | 2100   | 50.0                                                 | 2500           | ND                                           | 83.9    | 65-135        | 1.17         | 20           |                                          |  |
| Trichloroethene                                        | 2300   | 50.0                                                 | 2500           | ND                                           | 91.9    | 49-148        | 1.38         | 20           |                                          |  |
| Toluene                                                | 2290   | 50.0                                                 | 2500           | ND                                           | 91.6    | 67-130        | 3.62         | 20           |                                          |  |
| o-Xylene                                               | 2320   | 50.0                                                 | 2500           | ND                                           | 92.7    | 70-130        | 2.49         | 20           |                                          |  |
| p,m-Xylene                                             | 4600   | 100                                                  | 5000           | ND                                           | 92.1    | 65-135        | 2.88         | 20           |                                          |  |
| Total Xylenes                                          | 6920   | 50.0                                                 | 7500           | ND                                           | 92.3    | 65-135        | 2.75         | 20           |                                          |  |
| Surrogate: Bromofluorobenzene                          | 495    |                                                      | 500            |                                              | 98.9    | 70-130        |              |              |                                          |  |
| Surrogate: 1,2-Dichloroethane-d4                       | 494    |                                                      | 500            |                                              | 98.7    | 70-130        |              |              |                                          |  |
| Surrogate: Toluene-d8                                  | 506    |                                                      | 500            |                                              | 101     | 70-130        |              |              |                                          |  |



# **QC Summary Data**

|                                   |        |                                  |                | v                         |          |               |             |              |                     |
|-----------------------------------|--------|----------------------------------|----------------|---------------------------|----------|---------------|-------------|--------------|---------------------|
| West Pearl Queen<br>2904 W 2nd St |        | Project Name:<br>Project Number: | A<br>20        | ecwpea_SPJ_2<br>0071-0001 | 1        |               |             |              | Reported:           |
| Roswell NM, 88201                 |        | Project Manager:                 | С              | hris Cortez               |          |               |             | 4            | /14/2023 11:08:40AM |
|                                   |        | Anions                           | by EPA 3       | 300.0/9056A               |          |               |             |              | Analyst: BA         |
| Analyte                           | Result | Reporting<br>Limit               | Spike<br>Level | Source<br>Result          | Rec      | Rec<br>Limits | RPD         | RPD<br>Limit |                     |
|                                   | mg/L   | mg/L                             | mg/L           | mg/L                      | %        | %             | %           | %            | Notes               |
| Blank (2314052-BLK1)              |        |                                  |                |                           |          |               | Prepared: 0 | 4/07/23 An   | alyzed: 04/07/23    |
| Chloride                          | ND     | 2.00                             |                |                           |          |               |             |              |                     |
| Nitrate-N                         | ND     | 0.250                            |                |                           |          |               |             |              |                     |
| LCS (2314052-BS1)                 |        |                                  |                |                           |          |               | Prepared: 0 | 4/07/23 An   | alyzed: 04/07/23    |
| Chloride                          | 25.3   | 2.00                             | 25.0           |                           | 101      | 90-110        |             |              |                     |
| Nitrate-N                         | 2.62   | 0.250                            | 2.50           |                           | 105      | 90-110        |             |              |                     |
| Matrix Spike (2314052-MS1)        |        |                                  |                | Source: <b>F</b>          | 2304026- | 02            | Prepared: 0 | 4/07/23 An   | alyzed: 04/07/23    |
| Chloride                          | 112    | 2.00                             | 25.0           | 86.2                      | 103      | 80-120        |             |              |                     |
| Nitrate-N                         | 3.45   | 0.250                            | 2.50           | ND                        | 138      | 80-120        |             |              | M2                  |
| Matrix Spike Dup (2314052-MSD1)   |        |                                  |                | Source: <b>F</b>          | 304026-  | 02            | Prepared: 0 | 4/07/23 An   | alyzed: 04/07/23    |
| Chloride                          | 111    | 2.00                             | 25.0           | 86.2                      | 101      | 80-120        | 0.277       | 20           |                     |
| Nitrate-N                         | 3.41   | 0.250                            | 2.50           | ND                        | 137      | 80-120        | 1.04        | 20           | M2                  |

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.



| West Pearl Queen  | Project Name:    | Aecwpea_SPJ_21 |                |
|-------------------|------------------|----------------|----------------|
| 2904 W 2nd St     | Project Number:  | 20071-0001     | Reported:      |
| Roswell NM, 88201 | Project Manager: | Chris Cortez   | 04/14/23 11:08 |
|                   |                  |                |                |

- G1 pH > 2. Sample had a pH of 5.5.
- G1a pH >2. Sample had a pH of 3.0.
- G1b pH >2. Sample had a pH of 4.5.
- G1c pH >2. Sample had a pH of 5.0.
- G1d pH >2. Sample had a pH of 5.5
- G1e pH >2. Sample had a pH of 5.5.
- H2 Sample was received with an insufficient amount of time to prepare and analyze the sample within the method prescribed holding time. The analysis was performed as quickly as possible per client request.
- M2 Matrix spike recovery was outside quality control limits. The associated LCS spike recovery was acceptable.
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- Note (1): Methods marked with \*\* are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.



Project Information

#### Chain of Custody

Page \_\_\_\_\_ of \_\_\_\_\_

Received by OCD: 7/22/2024 8:42:53 AM

| Client: West Pear 1 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AtKinsensiver 10, 109                                                                                    |                               |                 |                   | La                | b Us            | e On             | ly -            |                           |                   | r         |              | Τ/        | AT          |                | EPA Pr            | ogram                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|-------------------|-----------------|------------------|-----------------|---------------------------|-------------------|-----------|--------------|-----------|-------------|----------------|-------------------|---------------------------------------|
| Project: ACCWDCa_SPJ_21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Attention: Court Court CZ                                                                                | <u> </u>                      | Lab             | WO#               | 1~                |                 | Jobi             | Num             | ber                       |                   | 1D        | 2D           | 3D        | Star        | dard           | CWA               | SDWA                                  |
| Address: 2904 W 200 St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | City, State, Zip Por LIL. DM                                                                             | 83201                         | ╞╧┊             | 504               | 14                |                 |                  |                 | <u>- DX</u><br>nd M       | <u>S</u><br>ethod |           |              |           | └ <u>}</u>  | <u> </u>       |                   | RCRA                                  |
| City, State, Zip 205Woll, Nm 88201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phone: 575) 420-024-2                                                                                    | 428                           |                 |                   |                   |                 |                  | 315 0           |                           |                   |           |              |           |             |                |                   | RCKA                                  |
| $\frac{Phone: (5^{-} - 5)(6^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} - 2^{-} -$ | Email: Kariza (a)a+Kins                                                                                  | engra                         | 3015            | 01S               |                   |                 |                  |                 | $ \Psi $                  |                   |           |              |           |             |                | State             |                                       |
| Report due by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          | ,                             | 8 Aq C          | 8 Aq              | 8021              | 260             | 91               | 300.0           | E                         |                   |           |              |           | N           | M CO           | UT AZ             | TX                                    |
| Time<br>Sampled Date Sampled Matrix No. of<br>Containers Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          | Lab                           | RO/OR           | RO/DR             | TEX by            | DC by 8         | etals 6          | Iloride         | EF 1                      |                   |           |              |           | -           |                | Remarks           |                                       |
| 12504/5/73 Ag, 4 5B-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>ר</u>                                                                                                 | Number                        | ā               | 0                 | -                 | ×<br>V          | Σ                | ð               |                           |                   |           |              |           |             |                |                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                               |                 |                   |                   |                 |                  | ÷               | $\overrightarrow{\gamma}$ |                   |           |              |           |             |                |                   |                                       |
| 1040 30-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · H                                                                                                      | Z                             |                 |                   |                   |                 |                  | 1               |                           |                   |           |              |           |             |                |                   |                                       |
| 1012 SB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7                                                                                                       | 3                             |                 |                   |                   |                 |                  |                 |                           |                   |           |              |           |             |                |                   |                                       |
| 1133 SB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -13                                                                                                      | 4                             |                 |                   |                   |                 |                  |                 | $\square$                 |                   |           |              |           |             |                |                   |                                       |
| 1233 SB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 14                                                                                                     | 5                             |                 |                   |                   | $\top$          |                  |                 |                           |                   |           |              |           |             |                |                   |                                       |
| 1005 SR-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -20                                                                                                      | 10                            |                 |                   |                   |                 |                  |                 |                           |                   |           | -            |           |             |                |                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                                                                                                       | 17                            |                 |                   |                   | +               |                  | +               |                           |                   |           |              |           |             |                |                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 21                                                                                                     | 1                             |                 |                   |                   | 4               |                  | -+              |                           |                   | -+        | _            |           |             |                |                   |                                       |
| 1050 J JB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          | 8                             |                 |                   |                   |                 |                  |                 |                           |                   |           |              |           |             |                |                   |                                       |
| 1248 SB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 23                                                                                                     | 9                             |                 |                   |                   |                 |                  |                 |                           |                   |           |              |           |             |                |                   |                                       |
| 926         SB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 5                                                                                                      | ÍΔ                            |                 |                   |                   |                 |                  |                 |                           |                   |           |              |           |             |                |                   |                                       |
| Additional Instructions: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                               |                 |                   |                   |                 |                  | ┦               | -t                        | L                 |           | ]            |           |             | ·····          |                   |                                       |
| I, (field sampler), attest to the validity and authenticity of this sample. I am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aware that tampering with or intentionally mislabelling t                                                | he sample loo                 | ation,          |                   | 1                 | -               | Samples          | requi           | ring ther                 | rmal pre          | servatio  | on musi      | t be reco | eived on ic | e the day th   | ey are sampled    | or received                           |
| Relinquished by: (Signature) Date 1 Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beceived by:                                                                                             | Date                          |                 | lime              | <u> </u>          | =               | packed i         | in ice a        | t an avg                  | ; temp a          | bove 0    | but less     | than 6    | °C on sub   | equent days    | i.                |                                       |
| Kenne 4/0/23/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 00-10-                                                                                                | 4.6.2                         | 3               | 16                | 00                |                 | Recei            | ived            | on ic                     | :e: /             |           | D USE<br>/ N | e∙Uni     | Y i         |                |                   |                                       |
| Retinquished by (Signatore) Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Received by: (Signatore)                                                                                 | Date                          | 3               | lime              | 1                 | -               |                  |                 |                           |                   | Ċ.        |              |           |             |                |                   |                                       |
| Reinogumed by: (Signature) Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received by: (Signature)                                                                                 | Date /                        | =               | ( /<br>Fime       | <u> </u>          | 2-[             | T1               |                 |                           |                   | <u>T2</u> |              |           | <u> </u>    | ing states and |                   |                                       |
| Marengafer 46-23 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 author hite                                                                                           | 4/7/2                         | 3               | 8:1               | 15                | Į,              | AVG <sup>·</sup> | Tem             | p°C_                      | 4                 | ŧ         |              |           | 4           |                |                   |                                       |
| Sample Matrix: S - Soft, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other<br>Note: Samples are discarded 30 days after results are constant units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | Container                     | Туре:           | g - gl            | ass, p            | - po            | ly/pla           | stic,           | ag - a                    | mber              | glass     | i, v - \     | VOA       |             |                |                   |                                       |
| samples is applicable only to those samples received by the laborat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss other arrangements are made. Hazardous sam<br>bry with this COC. The liability of the laboratory is l | ples will be<br>imited to the | return<br>e amo | ed to (<br>unt pa | client<br>aid for | or dis<br>on th | posed            | l of ai<br>ort. | t the c                   | lient e           | expens    | se. Tl       | he rep    | ort for t   | he analys      | is of the ab      | ove                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                               |                 |                   |                   |                 |                  |                 |                           |                   |           |              | -         |             |                |                   | لــــــــــــــــــــــــــــــــــــ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                               |                 |                   |                   |                 | 3                | (               | ρ                         | r                 |           | J            | ĬI        | r <b>c</b>  | <b>\</b> †     | 6                 | - h                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                               |                 |                   |                   |                 |                  | •               | $\smile$                  |                   |           |              |           |             |                | $\mathbf{\nabla}$ |                                       |

Page 40 of 41

•

## **Envirotech Analytical Laboratory**

### Sample Receipt Checklist (SRC)

| Chent: West Four Queen Date Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l: 04/07/23                                                           | 08:15             | Work Order ID: | E304026           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|----------------|-------------------|
| Phone: (575) 624-2420 Date Logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n: 04/06/23                                                           | 16:19             | Logged In By:  | Caitlin Christian |
| Email: Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04/13/23                                                              | 17:00 (4 day TAT) |                |                   |
| <u>Chain of Custody (COC)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                   |                |                   |
| 1. Does the sample ID match the COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                                   |                   |                |                   |
| 2. Does the number of samples per sampling site location match the COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes                                                                   |                   |                |                   |
| 3. Were samples dropped off by client or carrier?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                                                                   | Carrier: Courier  |                |                   |
| 4. Was the COC complete, i.e., signatures, dates/times, requested analyses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                   |                   |                |                   |
| 5. Were all samples received within holding time?<br>Note: Analysis, such as pH which should be conducted in the field,<br>i.e, 15 minute hold time, are not included in this disucssion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                   |                   | Comment        | ts/Resolution     |
| <u>Sample Turn Around Time (TAT)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                   |                |                   |
| 6. Did the COC indicate standard TAT, or Expedited TAT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                   |                   |                |                   |
| Sample Cooler_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       |                   |                |                   |
| 7. Was a sample cooler received?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                                                                   |                   |                |                   |
| 8. If yes, was cooler received in good condition?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                                                                   |                   |                |                   |
| 9. Was the sample(s) received intact, i.e., not broken?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                   |                   |                |                   |
| 10. Were custody/security seals present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                    |                   |                |                   |
| 11. If yes, were custody/security seals intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                    |                   |                |                   |
| 12. Was the sample received on ice? If yes, the recorded temp is 4°C, i.e., 6°±2°C<br>Note: Thermal preservation is not required, if samples are received w/i 1<br>minutes of sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes<br>5                                                              |                   |                |                   |
| 13. If no visible ice, record the temperature. Actual sample temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>4°C</u>                                                            |                   |                |                   |
| Sample Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                   |                |                   |
| 14. Are aqueous VOC samples present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Var                                                                   |                   |                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ies                                                                   |                   |                |                   |
| 15. Are VOC samples collected in VOA Vials?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                   |                   |                |                   |
| <ul><li>15. Are VOC samples collected in VOA Vials?</li><li>16. Is the head space less than 6-8 mm (pea sized or less)?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>Yes                                                            |                   |                |                   |
| <ul><li>15. Are VOC samples collected in VOA Vials?</li><li>16. Is the head space less than 6-8 mm (pea sized or less)?</li><li>17. Was a trip blank (TB) included for VOC analyses?</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes<br>Yes<br>No                                                      |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes<br>Yes<br>No<br>Yes                                               |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes<br>Yes<br>No<br>Yes<br>Yes                                        |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes<br>Yes<br>No<br>Yes<br>Yes                                        |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes<br>Yes<br>No<br>Yes<br>Yes                                        |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes<br>Yes<br>No<br>Yes<br>Yes                                        |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes<br>Yes<br>No<br>Yes<br>Yes<br>Yes<br>Yes                          |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>No                          |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Date stee COC or field labels indicate the correct same reservation</li> </ul>                                                                                                                                                                                                                                                                                                                      | Yes<br>Yes<br>No<br>Yes<br>Yes<br>Yes<br>No                           |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> </ul>                                                                                                                                                                                                                                                                                                                        | Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>Yes                           |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> <li>22. Are sample(s) correctly preserved?</li> <li>24. Is lab filteration required and/or requested for discoluted metals?</li> </ul>                                                                                                                                                                                       | Yes<br>Yes<br>No<br>Yes<br>Yes<br>Yes<br>No<br>Yes<br>Yes             |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> <li>22. Are sample(s) correctly preserved?</li> <li>24. Is lab filteration required and/or requested for dissolved metals?</li> </ul>                                                                                                                                                                                        | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No             |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> <li>22. Are sample(s) correctly preserved?</li> <li>24. Is lab filteration required and/or requested for dissolved metals?</li> <li>Multiphase Sample Matrix</li> </ul>                                                                                                                                                      | Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No              |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> <li>22. Are sample(s) correctly preserved?</li> <li>24. Is lab filteration required and/or requested for dissolved metals?</li> <li>Multiphase Sample Matrix</li> <li>26. Does the sample have more than one phase, i.e., multiphase?</li> </ul>                                                                             | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>No       |                   |                |                   |
| <ul> <li>15. Are VOC samples collected in VOA Vials?</li> <li>16. Is the head space less than 6-8 mm (pea sized or less)?</li> <li>17. Was a trip blank (TB) included for VOC analyses?</li> <li>18. Are non-VOC samples collected in the correct containers?</li> <li>19. Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>20. Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>21. Does the COC or field labels indicate the samples were preserved?</li> <li>22. Are sample(s) correctly preserved?</li> <li>24. Is lab filteration required and/or requested for dissolved metals?</li> <li>Multiphase Sample Matrix</li> <li>26. Does the sample have more than one phase, i.e., multiphase?</li> <li>27. If yes, does the COC specify which phase(s) is to be analyzed?</li> </ul> | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>No<br>No |                   |                |                   |
| <ol> <li>Are VOC samples collected in VOA Vials?</li> <li>Is the head space less than 6-8 mm (pea sized or less)?</li> <li>Was a trip blank (TB) included for VOC analyses?</li> <li>Are non-VOC samples collected in the correct containers?</li> <li>Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>Does the COC or field labels indicate the samples were preserved?</li> <li>Are sample(s) correctly preserved?</li> <li>Is lab filteration required and/or requested for dissolved metals?</li> <li>Multiphase Sample Matrix</li> <li>Does the Sample have more than one phase, i.e., multiphase?</li> <li>If yes, does the COC specify which phase(s) is to be analyzed?</li> </ol>                                             | Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>No<br>No  |                   |                |                   |
| <ol> <li>Are VOC samples collected in VOA Vials?</li> <li>Is the head space less than 6-8 mm (pea sized or less)?</li> <li>Was a trip blank (TB) included for VOC analyses?</li> <li>Are non-VOC samples collected in the correct containers?</li> <li>Is the appropriate volume/weight or number of sample containers collected?</li> <li>Field Label</li> <li>Were field sample labels filled out with the minimum information:<br/>Sample ID?<br/>Date/Time Collected?<br/>Collectors name?</li> <li>Sample Preservation</li> <li>Does the COC or field labels indicate the samples were preserved?</li> <li>Are sample(s) correctly preserved?</li> <li>Is lab filteration required and/or requested for dissolved metals?</li> <li>Multiphase Sample Matrix</li> <li>Does the COC specify which phase(s) is to be analyzed?</li> <li>Subcontract Laboratory</li> <li>Are samples required to get sent to a subcontract laboratory?</li> </ol>                   | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>No<br>Yes<br>Yes<br>No<br>No<br>No |                   |                |                   |

Signature of client authorizing changes to the COC or sample disposition.



envirotech Inc.

•

Received by OCD: 7/22/2024 8:42:53 AM Page 173 of 198 FE-1 State of New Mexico State Engineer WELL SCHEDULE Source of data: Obser Owner D Other. 19/1 Record by Date\_ tea LOCATION: County\_ Man\_ 11 OWNER MUS V -DRILLER .... Completed. USHST TOPO SITUATION \_ Rept Meas Use\_ DEPTH\_\_\_\_\_ft CASING 6 in to \_\_\_\_\_ ft Log\_ PUMP: Type \_\_\_\_\_\_ \_\_\_\_\_ Make \_\_\_\_\_ \_\_\_\_\_ Size of dischg\_\_\_\_ in. Ser.no./model\_ PRIME MOVER: Make \_\_\_\_\_ alemotor HP\_\_\_\_ ul angle un tower Power/Fuel Wind Ser no PUMP DRIVE: Gear Head Belt Head Pump Jack VHS Make\_ \_ Ser.no. WATER LEVEL: 62.76 ft rept 3/8 2 6" X 3" wooden clamp 8 19 6/ above Top which is 1.2 ft above below PERMANENT RP is \_\_\_\_\_\_ which is 0.25 ft above described MP and 0.95 ft above below a 15 dia REMARKS Well discharger into 3235451032 AQUIFER(S): Tog \_\_\_\_ DPN\_23 Well No. \_\_\_\_ on Photo \_\_\_\_\_ F Reteased to Imaging: 10/29/2024 4:37:14 AM 20.35. 5. 3 1- 4158

Remarks cont. X 12 take the toz 62/02 Sutedu o paspara Dwell. Two 10 diameter x 1.5 tall stul tank are located 12 NE & 15 diameter tank. a 12' diameter X 8' tall steel tank is located 10 last I well. need 4- wheel drive to get to well. 10-23-79 RLT lollected water Sample. SKETCH: 11-27-79 I.H RESAMPLE

N # July 3, 91, KD.SD - RP is also Top of 55 gel, berrel filled with concrete 0.03 ft below Top of ces ing and 0.75 ft abu, 61/2×61/2 concret slab.

9/14/95- BAING 4×4 52

The 15' x 12' Storage for NIC Won Discharges into has hardly no water Bottom is not completely covered w/water, two small Stik tanks to Eof this storage tanks s contain # 6" of water each.

| INITIAL WATER-           | DEPTH TO WATER |        |       |       |  |  |  |  |
|--------------------------|----------------|--------|-------|-------|--|--|--|--|
| LEVEL MEASUBEMENT        |                |        | Below |       |  |  |  |  |
|                          | lst            | 2nd    | 3rd   | LS    |  |  |  |  |
| Date May 8, 1961         | 65.00          | 66.00  |       | 62.76 |  |  |  |  |
| Hour PM Obs <u>H1-BP</u> | 2.22           | 3.24   |       | 1.20  |  |  |  |  |
| Not POA ( ) POA ( )      | 62.781         | 62.761 |       | 61.56 |  |  |  |  |

W L meas after pump shut off \_\_\_\_ min. Pumping W L () Remarks Will pumped sciently.

MA E2:24:8 4202/22/7 :7.2024 8:42:53 MM

------

Page 175 of 198

#### STATE ENGINEER Technical Division

| Owner Federal                   | DE            | PTH TO W     | ATER    | WATER     |
|---------------------------------|---------------|--------------|---------|-----------|
| Use: Ctack                      | Belo          | w MIP        | Below   | LEVEL     |
| JIOCK                           | lst           | 2nd          | LSD     | ELEV      |
| Date March 8,196                | 65.00         | 66.00        | 62.770  | 3685      |
| HourPM Obs HL-BP                | 2.22          | 3.24         | 1.20    | . 62      |
| Not POA ( ) POA ( )             | 62.78         | 62.76        | 61.56   | 3623      |
| W L meas after pump shut        | off           | min.         | Pumping | WL()      |
| Remarks Well Runned 1           | cantly.       |              |         |           |
|                                 | 1             |              |         |           |
| Date April 6,1966               | 57.00         | 58.00        | 55 07   | 3685      |
| HourPM ObsGB-PM                 | 1,93          | 2.93         | 1.20    | 54        |
| Not POA ( ) POA ( )             | 55.07         | 55.07        | 53.87   | 3631      |
| W L meas after pump shut        | off           | min.         | Pumping | WL()      |
| Remarks                         | 25            |              |         |           |
|                                 |               |              |         |           |
| Date Jaman 2/ 197/              |               |              | 0000    | -1        |
| 1145 AM a twp                   | 60.00         | 58.00        | 55.18   | 3685      |
| Hour PM Obs REO                 | 4.22          | 2.22         | 1,20    | 35        |
| Not POA () POA $(\times)$       | 55.78         | 55.78        | 54.58   | 36301     |
| W L meas after pump shut        | off <u>35</u> | min.         | Pumping | WL()      |
| Remarks Shut off at 11:28       | AM .          | Some M       | P       | 1992 - 19 |
| A TRACTOR                       | 1 100         | - Lano       |         |           |
| Date JAN 19,1976                |               | 30           |         |           |
| Hour 3.40 AM Obs 84             |               |              | -       |           |
| Not POA ( ) POA ( )             |               |              |         |           |
| W L meas after pump shut        | off           | min.         | Pumping | ; W L ( ) |
| Remarks Need 4 W.D              | . to          | get t        | o Well  |           |
|                                 |               | and a second |         |           |
| T. didada                       | Longi         | tudo 0       | PN 15   | 10404     |
| _Released to Imaging 10/29/2022 | Long1         | M 20         | 25 5 5  | 2111211   |
| File No Ling Starte             | ocation       | NO LU.       | 00.0.   | 1764.     |

Feb. 19, 1976 PSH Suissmi of bespeled Not POA - 10:45 A.M. 5.4.76 1.20 59.00 4.97 54.03 WV ES:24:8 4707/27/2 000 861 fo 9/1 280 d.

1



STATE ENGINEER Technical Division

| Owner / i i/[                               | DEI                    | WATER   |         |           |
|---------------------------------------------|------------------------|---------|---------|-----------|
| Vi Di Riein                                 | Belo                   | w MIP   | Below   | LEVEL     |
| use stock                                   | lst                    | 2nd     | LSD     | ELEV      |
| Date Feb 19,1976<br>Hour 1 45 AM Ob RM Hatt | 60.00                  | 61.00   | 54.76   | 3685      |
| PM ODS                                      | 5.24                   | 6.24    | 1.20    | 34        |
| Not POA $(\times)$ POA $()$                 | 54.76                  | 54.76-  | 53,56   | 363/      |
| W L meas after pump shut<br>Remarks         | off                    | min.    | Pumping | ; W L ( ) |
|                                             | Manufacture Contemport |         |         |           |
| Date Feb 17,198                             | 58.00                  | 59.00   | 54,60   | 3685-     |
| Hour 4:26 AM Obs AM                         | 3.40                   | 4,39    | 1.20.   | 53        |
| Not POA () POA ()                           | 54,60                  | 54.61   | 53.40   | 3632      |
| W L meas after pump shut                    | off                    | min.    | Pumping | ; W L ( ) |
| Remarks NEED                                | 4WE                    | ) - 01  | RA      | LOT       |
| of ERFO                                     | RTd                    |         |         | ~         |
| Date April 2,1986                           | 59.00                  | 55.00   | 5403    | 3685      |
| Hour 1 43 AM Obs ABM                        | 41.97                  | 12.97   | 1.20    | 53        |
| Not POA ( ×) POA ( )                        | 54.03                  | 54.03   | 52.83   | 3632      |
| W L meas after pump shut<br>Remarks         | off                    | min.    | Pumping | ;WL()     |
|                                             |                        |         |         |           |
| Date July 3,1991                            | 5700                   | 58.00   | TE 18   | 21.85     |
| Hour 10,54 AM Obs KD-SD                     | 182                    | 287     | 195     | 54        |
| Not POA () $POA(X)$                         | 5518                   | 55 18   | 54 73   | 3/31/     |
| W I mood often nump shut                    | 0ff 55                 | min     | Dumping | WI()      |
| Remarks / NTV. betwon 1                     | 15 \$ 2                | no ma   | AS. 5 M | TINS      |
| Shut off at 9:59                            |                        | ×1.5    |         |           |
| Latitude                                    | Longi                  | tude DP | N 25-   | 10404     |
| Fierferd 8d to Imating Sala 10/20/2019      | 204 \$ 1.92 J          | 20,3    | 5.5.3   | 1424      |
| 1000000 10 11105 10/27/202                  |                        | 474     |         | 4         |

WA 41:76:7 4202/92/01 :2mgpm1 of bozbalo2 생활한 관습 ាក់រុះ ព្រះបទ 35 65.00 10.54 ()55 149 gastra si k 68.00 13.50 NAR BRIT 54.46 4.50 يىتىمى يەخە يېچىد ¥614.55 2 F FRAZ RELAT LARDA RALA  $\{g(x)\}$ MOR LOF N 1.75 بالجراد که به اور Brain 1923 and and the second 영국의 그를 수 1 ्र पुरुषका १४ weind auge 요즘 이 지금 말. President de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de Y. 60 88 S. C. ALL RIT HE ni de la companya de la

861 fo 8/1 280

WV ES:74:8 +707/77/2 :050 &q pairas H

Page 179 of 198

# Received by OCD: 7/22/2024 8:42:53 AM STATE ENGINEER **Technical** Division

| Owner                                    | DE            | DEPTH TO WATER |         |           |  |
|------------------------------------------|---------------|----------------|---------|-----------|--|
| Use CLIV                                 | Belo          | w MIP          | Below   | LEVEL     |  |
| USC STR                                  | lst           | <u>2nd</u>     | LSD     | ELEV      |  |
| XDate <u>JAN</u> <u>25</u> ,19 <u>76</u> | 65.00         | 65.00          | 54.43   | 3685      |  |
| Hour 11/5 PM Obs P/-                     | 10.56         | 10.57          | 0.95    | 5.3       |  |
| Not POA () POA (X)                       | 54.44         | 54,43          | 53.48   | 3632'     |  |
| W L meas after pump shut                 | off <u>30</u> | min.           | Pumping | gWL()     |  |
| Remarks <u>MP=TC</u> See                 | note          | · wm           | NAS NO  | <i>4</i>  |  |
| pumping any water                        | UN AI         | rival 1        | and len | thors?    |  |
| Date,19                                  |               |                |         |           |  |
| HourPM Obs                               |               |                |         |           |  |
| Not POA () POA ()                        |               |                |         |           |  |
| W L meas after pump shut                 | off           | min.           | Pumping | gWL()     |  |
| Remarks                                  |               |                |         |           |  |
|                                          |               |                |         |           |  |
| Date,19                                  | [             |                |         |           |  |
| Hour AM Obs                              |               |                |         |           |  |
| Not POA ( ) POA ( )                      |               |                |         |           |  |
| W L meas after pump shut                 | off           | min.           | Pumping | g W L ( ) |  |
| Remarks                                  |               | ·              |         |           |  |
| · · · ·                                  |               |                |         |           |  |
| Date .19                                 |               |                |         |           |  |
| Hour AM Obs                              |               |                |         |           |  |
| Not POA () POA ()                        |               |                |         |           |  |
| W I more often numn shut                 |               |                | Dumping |           |  |
| Remarks                                  |               | uiii.          | ւտորույ | 5 " - ( ) |  |
|                                          |               |                |         |           |  |
| Latitude                                 | Longi         | tude 25        | - 1040  | 4         |  |
|                                          |               | No 20,         | 35.6.   | 31424     |  |
| Released to Imaging: 10/29/202           | 4 7:37:14 A   | M              |         |           |  |

į.

Page 180 of 198

## QUALITY CONTROL SHEET - STATE ENGINEER

| Date    | Collector | POC | Remarks and Use | CI.     | SC   | X |
|---------|-----------|-----|-----------------|---------|------|---|
| 6/18/90 | KF        | EDP | SHK POA 66°     | 350     | 3839 |   |
| 9/14/95 | 72        | DP  | POA femp. =4    | 230     | 3220 |   |
|         |           |     |                 |         |      | - |
|         |           |     | S 2             |         | - 1  |   |
|         |           |     |                 | 3.74    |      |   |
|         |           | 1   |                 |         |      |   |
|         |           |     |                 |         |      |   |
|         | 1         |     |                 |         |      |   |
|         |           |     |                 |         |      |   |
|         | 2         | 5   |                 |         | 1    |   |
|         |           | 1   |                 | and the |      |   |
|         |           | 2   |                 |         |      |   |
|         | 1         |     |                 |         |      |   |
|         |           |     |                 |         |      |   |
|         |           |     |                 |         |      |   |
|         |           |     |                 |         |      | - |
|         |           |     |                 | 8       |      | 1 |
|         |           |     |                 |         |      |   |
|         |           |     |                 |         |      |   |
|         |           |     |                 |         |      | - |
|         |           | 1   | 11              |         |      |   |
|         |           |     |                 | 34 M.S. |      | 1 |

X- More Complete Analysis Available on Sample

100 Aquifer(s) \_ D.P.N Released to Imaging: 10/29/2024 7:37:14 AM File No. Location No.
| Received by OCD   | : 7/22/2024 8:42:53 AM                | Page 181 of 198            |
|-------------------|---------------------------------------|----------------------------|
| FE-1              | State of New Mexico<br>State Engineer |                            |
| WELL SCHEDULE     |                                       |                            |
| Source of data    | a: Obser 🗵 Owner 🔲 🤇                  | Other                      |
| Date 7-1          | 1991 Record by 17.01                  | art S. Dirman              |
| LOCATION: Cour    | nty <u>Lea</u> Map <u>I</u>           | 07. 4.4                    |
| OWNER Mrs.        | Virgil Linem Kl.                      | ein                        |
| DRILLER           | Completed                             | <u></u> 19                 |
| TOPO SITUATIO     | N                                     | Elev <u>3679</u>           |
| DEPTH             | ft Rept Meas W                        | use Aban, Stock            |
| CASING            | . in to ft Log                        |                            |
| PUMP: Type        | <u>019</u> Make                       |                            |
| Ser.no./model     | Size of di                            | ischg in.                  |
| PRIME MOVER:      | Make                                  | HP                         |
| Ser.no.           | Power                                 | r/Fuel                     |
| PUMP DRIVE:       | Gear Head 🔲 Belt He                   | ead D Pump Jack            |
| Make              | Ser no                                |                            |
| WATER LEVEL: 2    | ft rept <u>74/y</u> 3_1               | 19 <u>9</u> above<br>below |
| ·····             | which is                              | ft above LS                |
| PERMANENT RP      | is                                    |                            |
|                   |                                       |                            |
| which is          | ft above described MP and             | d ft above LS              |
| REMARKS & W       | From Stall by 20'd                    | iaun 67 west of            |
| AQUIFER(S):       |                                       |                            |
| Well No           | on Photo DPN _                        |                            |
| FReleased to Imag | ing: 10/29/2024 135;14AM20.3          | 5.6.3,3133                 |

\_ \_ \_

(measured) Remarks cont. <u>windmill</u> <u>Shown on 7600</u> <u>Linam well. Sampled by Ranone</u> <u>10-28-79 Shown on 107.4.4 at 331313</u>

#### SKETCH:

N

| INITIAL WATER-                                                     | DEPTH TO WATER |       |        |       |  |
|--------------------------------------------------------------------|----------------|-------|--------|-------|--|
| LEVEL MEASUREMENT                                                  |                | Below |        |       |  |
|                                                                    | lst            | 2nd   | 3rd    | LS    |  |
| Date $-\frac{7\mu/4}{3}$ , 19 $\frac{97}{10}$                      |                | DRy   |        |       |  |
| Hour $\underline{\qquad}_{PM}$ Obs $\underline{RO} \underline{SD}$ |                | V     |        |       |  |
| Not POA ( )                                                        |                |       |        |       |  |
| W L meas after pump shut<br>Remarks                                | off            | min.  | Pumpin | gWL() |  |

861 fo 781 a8n

Received by OCD: 7/22/2024 8:42:53 AM



### QUALITY CONTROL SHEET - STATE ENGINEER

| _Date    | Collector | POC  | Remarks | and Use                                | <u>CI.</u> | SC   | X             |
|----------|-----------|------|---------|----------------------------------------|------------|------|---------------|
| 10/23/19 | RLT       | lesk | Stock - | WM. POR                                | B76        | 5154 |               |
|          |           |      |         |                                        |            |      | Γ             |
|          |           |      |         |                                        |            |      | 1             |
|          |           |      |         |                                        |            |      | +             |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         | •••••••••••••••••••••••••••••••••••••• |            | <br> | <b> </b>      |
|          |           |      |         | ·····                                  |            |      |               |
|          | ******    |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      | -             |
|          |           |      |         | *****                                  |            |      | <del> -</del> |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         | *******                                |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         | <u></u>                                |            |      |               |
|          |           |      |         |                                        |            |      |               |
|          |           |      |         |                                        |            |      |               |

X More Complete Analysis Available on Sample

#### Received by OCD: 7/22/2024 8:42:53 AM

FE-1 State of New Mexico State Engineer WELL SCHEDULE Source of data: Obser Owner Other\_ Date \_\_\_\_\_\_ 19 61 Record by For LOCATION: County\_Lea \_\_\_\_ Map 107.4.0 OWNER Mrs. Verail Tinam Klein \_ Completed \_\_\_\_\_ 12/13 DRILLER W.J. Van hou - 1959 USBST Elev 3678 TOPO SITUATION\_ DEPTH 70 ft Rept Meas Use not CASING 5 in to 70 ft Log Dulles PUMP: Type hone Make Ser.no./model\_\_\_\_\_\_ Size of dischg\_\_\_\_\_\_ in. PRIME MOVER: Make \_\_\_\_\_ \_\_\_\_\_ HP \_\_\_\_\_ \_\_\_\_\_ Power/Fuel \_\_\_\_\_ Ser.no. \_ PUMP DRIVE: Gear Head Belt Head Pump Jack \_\_\_\_ Ser.no\_\_\_\_ VHS Make\_ WATER LEVEL: 60.25 ft rept 3/8 196/ above Gelow which is 1.55 ft above below PERMANENT RP is \_ which is \_\_\_\_\_ft above described MP and \_\_\_\_\_ft above below LS REMARKS Well is located 65 last of windmill AQUIFER(S): Tog 323536 103301101 Well No. \_\_\_\_ on Photo \_\_\_\_\_ DPN \_25-10403 Filetedised to Imaging: 10/29/2024 Tc37: 14 AM20. 35.6. 33/332

Page 184 of 198

Remarks cont. Show MY FILLE # 1202/6401 : Suispul of pospolog 6 SKETCH: N DEPTH TO WATER INITIAL WATER-Below MP Below LEVEL MEASUREMENT 2nd 1st 3rd LS Date Mar .196 70.00 71.00 60,25 AM Obs HEL Hour . 1.53 10.75 Not POA  $(\chi)$ POA ( 60.26 8.70 60.2 5 W L meas after pump shut off\_ min. Pumping W L ( ) Remarks. 18.3

Keceived by OCD: 7/22/2024 8:42:53 AM

Received by OCD: 7/22/2024 8:42:53 AM

Page 186 of 198

### STATE ENGINEER Technical Division

| Owner Viraillinam                            | DEPTH TO WATER |          |            | WATER        |
|----------------------------------------------|----------------|----------|------------|--------------|
| Use not in lice                              | Belo           | w MP     | Below      | LEVEL        |
| not in use                                   | IST            | 2nd      | LSD        | ELEV         |
| AM ,19 G                                     | 70.00          | 71.00    | 60.25      | 3678         |
| HourPM Obs HL-BP                             | 9.74           | 10.75    | 1.55       | 59           |
| Not POA ( $\chi$ ) POA ()                    | 60.26          | 60.25    | 58,70      | 3619-        |
| W L meas after pump shut                     | off            | min.     | Pumping    | gWL()        |
| Remarks                                      |                |          |            |              |
|                                              |                | 1        |            |              |
| Date March 2, 1966                           |                |          |            |              |
| Hour AM Obs GWB                              |                |          |            |              |
| Not POA ( ) POA ( )                          |                |          |            |              |
| W L meas after pump shut                     | off            | min.     | Pumping    | gWL()        |
| Remarks U.T.M. 3                             | -10-66         | GWB      | UTM        |              |
| Need 4 wheel d                               | ine to         | get to 1 | well.      | and the      |
| Date January 21, 1971                        | 6500           | 66.20    | 5913       | 3678 -       |
| Hour 100 AM Obs KEO                          | 5.87           | 6.87     | 1.55       | 58-          |
| Not POA () POA ()                            | 59.13          | 59.13    | 57.58      | 3620         |
| W.M. Shutott /2"<br>W L meas after pump shut | off            | min.     | Pumping    | gWL()        |
| Remarks M.P. top CSG. E. s                   | ide,           | This is  | 0.63'26    | rove present |
| L.S. Is lac. 60'-65'                         | Eofeg          | mipped,  | operation. | gmill        |
| Date Feb 19,1976                             | 1.3 10         | 1400     | 62.79      | 36781        |
| Hour 1:45 AM Obs My harf                     | 0.21           | 1.21     | 1.55       | 61           |
| Not POA () POA ()                            | 62.79          | 62.79    | 61.24      | 36171        |
| W L meas after pump shut                     | off            | min.     | Pumping    | gWL()        |
| Remarks Some MI                              | Ø              |          |            |              |
|                                              |                |          |            |              |
|                                              |                |          |            |              |
| Latitude                                     | Longi          | tude D   | DN 25-     | 10405        |

Received by OCD: 7/22/2024 8:42:53 AM STATE ENGINEER

**Page 187 of 198** 

Technical Division

| Owner                                        | DEPTH TO WATER WATE   |               |         |           |
|----------------------------------------------|-----------------------|---------------|---------|-----------|
|                                              | Belo                  | w MIP         | Below   | LEVEL     |
| Use                                          | lst                   | 2nd           | LSD     | ELEV      |
| Date <u>APril</u> <u>1984</u>                | 6500                  | 60.00         | 58.46   | 3478      |
| Hour $\frac{1:38}{PM}$ Obs $\frac{R17}{ABM}$ | 10.54                 | 1-53          | 155     | 57        |
| Not POA (X) POA ()                           | 58.46                 | 53 47         | 56.91   | 3521      |
| W L meas after pump shut<br>Remarks          | off                   | min.          | Pumping | ; W L ( ) |
|                                              | -                     |               |         |           |
| Date <u>741 3,199/</u>                       | 60.00                 | 61,00         | 58,50   | 3878      |
| Hour 11:20 AM Obs KO.SD                      | 1.50                  | 2,50          | 1,55    | 57        |
| Not POA ( POA ( )                            | 58,50                 | 58,50         | 5695    | 30211     |
| W L meas after pump shut                     | off                   | min.          | Pumping | ; W L ( ) |
| Remarks Now Equip, w                         | The str               | 1 p.p.        | e ton   | ver a     |
| AER motor - mill. Disc                       | L. 47'                | west in       | to 20'  | 120018    |
| Date March 5, 1996                           | 79.00                 | 74.00         | 57,94   | 3678      |
| Hour 11:50 AM Obs PF                         | 21.06                 | 16.06         | 1.55    | 56        |
| Not POA () POA ()                            | 57,94                 | 57.94         | 56.39   | 3622V     |
| W L meas after pump shut                     | off <u>25</u>         | min.          | Pumping | 5 W L ( ) |
| Remarks Brake held goo                       | d                     |               | •       |           |
|                                              |                       |               |         |           |
| Date,19                                      |                       |               |         |           |
| Hour AM Obs                                  |                       |               |         |           |
| Not POA () POA ()                            |                       |               |         |           |
| W L meas after pump shut<br>Remarks          | off                   | min.          | Pumping | 5 W L ( ) |
|                                              |                       |               |         |           |
| Latitude                                     | _ Longi               | tude <u>2</u> | 5-104   | 103       |
| Fikeledsed to Imaging: 10/29/202             | 4 <del>09:37:14</del> | 18 20.3       | 5.6, 33 | 1332      |

## Appendix E: USGS Protocol

# GWPD 17—Conducting an Instantaneous Change in Head (Slug) Test with a Mechanical Slug and Submersible Pressure Transducer

#### VERSION: 2010.1

**PURPOSE**: To obtain data from which an estimate of hydraulic conductivity of an aquifer can be calculated.

During a slug test the water level in a well is changed rapidly, and the rate of water-level response to that change is measured. From these data, an estimate of hydraulic conductivity can be calculated using appropriate analytical methods (for example, Ferris and Knowles, 1963).

A slug test requires a rapid ("instantaneous") water-level change and measurement of the water-level response at high frequency. A rapid change in water level can be induced in many ways, including injecting or withdrawing water, increasing or decreasing air pressure in the well casing, or adding a mechanical device like a plastic rod to displace water. The water-level changes can be measured with many methods, including steel tape, electric tape, air line, wireline/float, and submersible pressure transducers.

One of the most common methods in use is displacement of water with a mechanical slug, measurement of water levels with a submersible pressure transducer, and recording water levels with a data logger. This method combines ease of use, accuracy, and rapidity of water-level measurement. This document describes the mechanical slug/pressure transducer method. This technical procedure can be used with slight modifications if other approaches are used to instantaneously change the water level or measure water-level change.

### **Materials and Instruments**

- 1. Tools or key to open the well.
- 2. Field notebook; Pencil or pen, blue or black ink. Strikethrough, date, and initial errors; no erasures.
- 3. Well-construction diagram.
- 4. Data logger and submersible pressure transducer. A 10-pound-per-square-inch (psi) pressure transducer commonly is used for slug tests because it combines adequate accuracy with an acceptable range of measurement.

5. Slug of polyvinyl chloride (PVC) or other relatively inert material (fig. 1). A slug of solid PVC (fig. 1*C*) is ideal because PVC caps (fig. 1*A*) can catch the well casing during insertion, and PVC plugs (fig. 1*B*) can come loose during the rapid removal of the slug.

Select the largest diameter and length of slug that will fit in the well without disturbing the transducer. The slug should have a displacement that will provide an adequate change in water level. The slug should displace enough water to provide a measurable change in water level, but not so large as to significantly increase the saturated thickness of the aquifer, disturb the transducer, or affect the speed at which one can raise or lower the slug. A water-level rise between 0.5 and 3 feet (ft) often is adequate. In low permeability formations, a smaller displacement will take less time for full recovery. In high permeability formations (1 to 100 ft per day), a larger displacement is desirable and practical. This usually can be generated with a slug diameter about 1 inch less than the well diameter and a length of 3 ft or more (lengths greater than 5 ft are awkward to handle in the field). Tables 1 and 2, respectively, provide theoretical displacement volumes for various slugs and volumes necessary for specific water-level changes.

- 6. Nylon cord or other strong line of sufficient length to reach below the water level in order to secure the slug.
- 7. Wooden rod, or 2 by 4 to secure the slug line.
- 8. Tripod or other device to support the slug line (optional).
- 9. Bungee cord or other device to secure the transducer cable and support line.
- 10. Water level measuring device (steel or electric tape).
- 11. Appropriate decontamination equipment, if necessary.
- 12. Field computer (optional).
- 13. Stopwatch (optional).

#### 146 Groundwater Technical Procedures of the U.S. Geological Survey



**Figure 1.** Polyvinyl chloride (PVC) plastic slug. *A*, Solid 2-inch PVC pipe with external cap. *B*, Solid 2-inch PVC pipe with internal plug. *C*, Solid 2-inch PVC rod.

| Table 1.  | Slug displacement volume, in cubic feet, for a specific slug diameter |
|-----------|-----------------------------------------------------------------------|
| and lengt | h.                                                                    |

| Slug length | Slug diameter (inches) |       |       |       |       |       |       |
|-------------|------------------------|-------|-------|-------|-------|-------|-------|
| (feet)      | 1                      | 1.5   | 2     | 2.5   | 3     | 3.5   | 4     |
| 2           | 0.011                  | 0.025 | 0.044 | 0.068 | 0.098 | 0.134 | 0.175 |
| 3           | 0.016                  | 0.037 | 0.065 | 0.102 | 0.147 | 0.200 | 0.262 |
| 4           | 0.022                  | 0.049 | 0.087 | 0.136 | 0.196 | 0.267 | 0.349 |
| 5           | 0.027                  | 0.061 | 0.109 | 0.170 | 0.245 | 0.334 | 0.436 |
| 6           | 0.033                  | 0.074 | 0.131 | 0.205 | 0.295 | 0.401 | 0.524 |

Table 2. Volume of water, in cubic feet, required to raise the water level a prescribed distance within a specific well diameter.

| Well diameter<br>(inches) | 0.3-foot rise | 0.5-foot rise | 1-foot rise | 1.5-foot rise | 2-foot rise | 3-foot rise |
|---------------------------|---------------|---------------|-------------|---------------|-------------|-------------|
| 2                         | 0.007         | 0.011         | 0.022       | 0.033         | 0.044       | 0.065       |
| 3                         | 0.015         | 0.025         | 0.049       | 0.074         | 0.098       | 0.147       |
| 4                         | 0.026         | 0.044         | 0.087       | 0.131         | 0.175       | 0.262       |
| 6                         | 0.059         | 0.098         | 0.196       | 0.295         | 0.393       | 0.589       |
| 8                         | 0.105         | 0.175         | 0.349       | 0.524         | 0.698       | 1.047       |
| 10                        | 0.164         | 0.273         | 0.545       | 0.818         | 1.091       | 1.636       |

## **Data Accuracy and Limitations**

- 1. The accuracy of a slug test is a function of many factors, including well construction, field procedures, and analysis method. Rapidly changing the water level in a well can be done by submerging an object (slug) in the water, causing the water level to rise instantaneously. Displaced water will move from the well to the geologic formation until the hydraulic head falls to the original static or equilibrium level. This is called a falling head test or "slug in test." After the water level reaches equilibrium, quickly removing the slug causes the water level to fall instantaneously. Water will move from the formation into the well until the hydraulic head returns to the equilibrium level. This is called a rising head test, "slug-out test," or bailer test. Because the early-time data for these tests are most important for the subsequent analysis, the data logger should begin collecting data just before the slug is submerged or removed from the well. The initial time can be adjusted during analysis, but the logger must be collecting data at a frequency of at least several samples per second when the water level begins to change. After the first minute or two of data collection, the sampling interval can be increased. Data loggers designed for aquifer tests and slug tests frequently have internal programs that allow for rapid data collection at early time and gradual increase of the sampling interval over time (a logarithmic time scale).
- 2. Some transducers have more rapid recording rates than others. If the slug test is being done in a formation of high hydraulic conductivity, select a transducer that can transmit at very small time increments (tenths of a second).
- 3. Due to the accuracy limitations of slug tests, results should be reported to one significant figure.

## Advantages

- 1. Potentially contaminated water requiring special disposal is not removed from the well.
- 2. The slug test can be conducted quickly and is therefore relatively inexpensive.
- 3. Only one well is needed for the test (no need for other observation wells), and a pump is not required.
- 4. Because the slug-test data to be analyzed for an estimate of hydraulic conductivity are collected within a few minutes of the test initiation, this technique can be used near pumped wells or where well interference is expected, as long as the expected water-level changes occur slowly in comparison to the time for which the slug-test data will be analyzed.

## Disadvantages

- 1. The collected data represent only a small volume of aquifer material near the tested well.
- 2. The test may be influenced by the well filter pack, skin effects, or poor well development.

## Assumptions

- 1. Operator is familiar with the operation of data loggers and submersible pressure transducers. The data logger/ transducer can measure and record at a high frequency (less than or equal to one second in highly transmissive formations).
- 2. The well is free of obstructions which might hinder water-level measurement or introduction or removal of the mechanical slug.
- 3. The water level is easily accessible from the surface (within approximately 100 ft) and is within the length of the transducer cable.
- 4. Column of water in the well is long enough to cover the transducer and the slug.
- 5. The well is properly constructed and developed.
- 6. Well construction details such as well depth, screen length, borehole radius, filter pack, and well radius are known.
- 7. The hydraulic conductivity of the aquifer is not extremely low. A slug test is an acceptable method in low-permeability formations, but a transducer may not be necessary in this situation. The water level in the well should recover within minutes or hours for this procedure.

### Instructions

- 1. Confirm well identification with well-construction diagram.
- 2. Measure the total depth of the well (see GWPD 11).
- 3. Measure the water level in the well (see GWPD 1 or GWPD 4). This should be repeated at the end of the test for long duration slug tests. The column of water in the well should be long enough to cover the transducer and the slug.
- 4. Document the static water level, well diameter, well depth, and screened interval in field notebook. The diameter of the hole, nature of filter pack, and type of screen also are documented, if known.

### 148 Groundwater Technical Procedures of the U.S. Geological Survey

- 5. Place the transducer in the well below the level at which the slug will be submerged, but not so low that the range of transducer might be exceeded at the highest anticipated water level. Secure the transducer in place. The transducer should not move during the test.
- 6. Measure (estimate) the maximum length of slug line that will be used. This length should allow the slug to completely submerge, about 1 ft below water surface.
- 7. Allow the transducer to adjust to the new pressure and temperature following manufacturer's guidance. This also provides time for the water level to recover prior to the test.
- 8. If needed, set up a tripod or some other device from which the slug can be lowered and raised in the well. Lower the clean, decontaminated slug to a point just above the water level and secure it in place. Take care not to move or kink the transducer line (fig. 2*A*). A simple approach of securing the slug is to tie a loop of cord that would hold the slug about 1 ft above the water surface and then tie off a second loop at the length of cord required for the entire slug to submerge. Put both of these loops over a rod or a wooden 2 by 4 that can rest across the top of the well casing.
- 9. Prepare the data logger. The data logger should be set to record data as frequently as possible during the first minutes of the test, and it can be set to record less frequently during later time. Recording in seconds on a logarithmic time scale meets this objective.
- 10. Establish a starting water level for the transducer and data logger. Data analysis is based on the change in water level rather than a comparison to a standard datum. The transducer starting water level can be set to zero, a value equal to the head of water above the transducer, or any other value.

#### **Slug In Test**

- 11. Begin the test by starting the data logger and nearly simultaneously submerging the slug quickly but gently into the water to minimize disturbance at the water surface or movement of the transducer cable (fig. 2*B*). Secure the slug cord to the wooden rod to maintain its position below the water level.
- 12. After 1 minute and periodically thereafter, check the status of the water-level reading with the data logger/ transducer or with a water-level measuring tape.
- 13. When the water level is equal to the initial water level, or when readings change less than 0.01 ft per 10 minutes, stop the test. This is the end of the falling head, or slug in test. You are now ready to begin the rising head, or slug out test.

#### **Slug Out Test**

- 14. Establish a starting water level for the transducer and data logger. Data analysis is based on the change in water level rather than a comparison to a standard datum. The transducer starting water level can be set to zero, a value equal to the head of water above the transducer, or any other value.
- 15. Prepare the data logger. The data logger should be set to record data as frequently as possible during the first minutes of the test, and it can be set to record less frequently during later time. Recording in seconds on a logarithmic time scale meets this objective.
- 16. Begin the test by starting the data logger and nearly simultaneously withdrawing the slug quickly but gently from the water to minimize disturbance at the water surface or movement of the transducer cable. The slug need not be withdrawn completely out of the well, but should



**Figure 2.** Well diagram with polyvinyl chloride (PVC) plastic slug (*A*) poised just above the water level for falling head or slug in test, (*B*) submerged below the water level for falling head or slug in test, (*C*) removed just above the water level for rising head or slug out test, and (*D*) removed from the well for rising head or slug out test.

### GWPD 17—Conducting instantaneous change in head (slug) test with mechanical slug and submersible pressure transducer 149

be out of the water (fig. 2C or 2D). Secure the slug cord to the wooden rod to maintain its position above the water level.

- 17. After 1 minute and periodically thereafter, check the status of the water-level reading with the data logger/ transducer or with a measuring tape.
- 18. When the water level is equal to the initial water level, or when readings change less than 0.01 ft per 10 minutes, stop the test. This is the end of the rising head, or slug out test.
- 19. Review the data for completeness and accuracy. This can be done on the data logger or on a field computer (pre-ferred). Optionally, the test can be analyzed in the field on a field computer using aquifer test software.
- 20. Repeat the entire procedure at least once as time permits, so two complete sets of falling and rising head test data are collected (four tests).

### **Data Recording**

- 1. All calibration and maintenance data associated with the data logger, steel or electric tape, and submersible pressure transducer are recorded in calibration and maintenance equipment logbooks.
- 2. Complete a field report with date, time, well identifier, type of test (rising or falling head), composition and dimensions (or volume) of the slug, and the name of data files. (Use site ID or well name, date, and year in the file name: for example, 424531077564201.19960101, or Well8.19960101).
- 3. Data are downloaded to an office computer for processing. Results are interpreted and submitted for Bureau approval. Original data are stored in the office aquifer test archive, and result is recorded on the Ground-Water Site Inventory form (fig. 3, Form 9-1904-D1).

.

### 150 Groundwater Technical Procedures of the U.S. Geological Survey

| FORM NO. 9-1904-D1<br>Revised January 2010, NWIS 4.9                                                       |                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Coded by                                                                                                   | File Code                                                                                                                  |
| Checked by                                                                                                 | Date                                                                                                                       |
| Entered by                                                                                                 | Regional approval date                                                                                                     |
| U.S DEPT<br>GEOLC                                                                                          | . OF THE INTERIOR<br>DGICAL SURVEY                                                                                         |
| <b>GROUNDWA</b><br>Hyd                                                                                     | ATER SITE INVENTORY<br>draulics Data                                                                                       |
| AGENCY<br>CODE (C4) SITE ID (C1)                                                                           |                                                                                                                            |
| RECORD TYPE (C744) $H Y D R$ RECORD SEQUENCE N                                                             | O. (C790)                                                                                                                  |
| HYDRAULIC UNIT<br>IDENTIFIER (C100)                                                                        | F                                                                                                                          |
| HYDRAULICS<br>UNIT TYPE<br>(C103)<br>aquifer confining<br>unit                                             |                                                                                                                            |
| REMARKS - Method of determining hydraulics data (C104)                                                     |                                                                                                                            |
|                                                                                                            |                                                                                                                            |
| HYDRAULICS<br>SOURCE<br>AGENCY (C305)                                                                      | B-READY<br>AG (C874) Y C P L<br>ready to condi-<br>display, tional, propri-<br>tional, propri-<br>etary, local use<br>only |
| RECORD TYPE (C746)                                                                                         | RENT RECORD (C99)                                                                                                          |
| TRANSMISSIVITY(C107)                                                                                       |                                                                                                                            |
| HORIZONTAL<br>CONDUCTIVITY (C108)                                                                          | VERTICAL<br>CONDUCTIVITY (C109)                                                                                            |
| STORAGE<br>COEFFICIENT (C110)                                                                              | LEAKANCE                                                                                                                   |
| DIFFUSIVITY (C112)                                                                                         | SPECIFIC STORAGE         (C113)                                                                                            |
| BAROMETRIC EFFICIENCY<br>(Percent) (C271)                                                                  | POROSITY<br>(C306) •                                                                                                       |
| WEB-READY<br>FLAG (C875) Y C P L<br>ready to condi- propri-<br>display, to condi- etary, local use<br>only |                                                                                                                            |



### GWPD 17—Conducting instantaneous change in head (slug) test with mechanical slug and submersible pressure transducer 151

## **Procedures References**

- Cunningham, W.L., and Schalk, C.W., comps., 2011a, Groundwater technical procedures of the U.S. Geological Survey, GWPD 1—Measuring water levels by use of a graduated steel tape: U.S. Geological Survey Techniques and Methods 1–A1, 4 p.
- Cunningham, W.L., and Schalk, C.W., comps., 2011b, Groundwater technical procedures of the U.S. Geological Survey, GWPD 3—Establishing a permanent measuring point and other reference marks: U.S. Geological Survey Techniques and Methods 1–A1, 13 p.
- Cunningham, W.L., and Schalk, C.W., comps., 2011c, Groundwater technical procedures of the U.S. Geological Survey, GWPD 4—Measuring water levels by use of an electric tape: U.S. Geological Survey Techniques and Methods 1–A1, 6 p.
- Cunningham, W.L., and Schalk, C.W., comps., 2011d, Groundwater technical procedures of the U.S. Geological Survey, GWPD 11—Measuring well depth by use of a graduated steel tape: U.S. Geological Survey Techniques and Methods 1–A1, 10 p.

## **Method References**

- American Society for Testing of Materials, 1991, ASTM Method D4044-91: Philadelphia, Pennsylvania, American Society for Testing of Materials.
- Ferris, J.G., and Knowles, D.B., 1963, The slug-injection test for estimating the coefficient of transmissibility of an aquifer, *in* Bentall, Ray, comp., Methods of determining permeability, transmissibility, and drawdown: U.S. Geological Survey Water-Supply Paper 1536–I, p. 299–304.
- Hoopes, B.C., ed., 2004, User's manual for the National Water Information System of the U.S. Geological Survey, Ground-Water Site-Inventory System (version 4.4): U.S. Geological Survey Open-File Report 2005–1251, 274 p.

## **Analysis References**

- Bouwer, Herman, 1989, The Bouwer and Rice slug test—An update: Ground Water, v. 27, no. 3, p. 304–309.
- Bouwer, Herman, and Rice, R.C., 1976, A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, v. 12, no. 3, p. 423–428.
- Butler, J.J., Jr., 1997, The design, performance, and analysis of slug tests: Boca Raton, Florida, Lewis Publishers, 252 p.

Cooper, H.H., Bredehoeft, J.D., and Papodopulos, S.S., 1967, Response of a finite-diameter well to an instantaneous charge of water: Water Resources Research, v. 3, no. 1, p. 263–269.

Dawson, K.J., and Istok, J.D., 1991, Aquifer testing—Design and analysis of pumping and slug tests: Chelsea, Michigan, Lewis Publishers, 344 p.

Halford, K.J., and Kuniansky, E.L., 2002, Documentation of spreadsheets for the analysis of aquifer-test and slug-test data: U.S. Geological Survey Open-File Report 02–197, 54 p. (Also available at *http://pubs.usgs.gov/of/2002/ofr02197/*.)

- Hvorslev, M.J., 1951, Time lag and soil permeability in ground-water observations: Vicksburg, Mississippi, U.S. Army Corps of Engineers, Waterways Experiment Station, Bulletin No. 36, p. 1–50.
- HydroSOLVE, Inc., 1998, AQTESOLV for Windows User's Guide: Reston, Virginia, HydroSOLVE, 128 p.
- Krusman, G.P., and deRidder, N.A., 1990, Analysis and evaluation of pumping test data (2d ed.): Wageningen, The Netherlands, International Institute for Land Reclamation and Improvement, 377 p.

### Fw: [EXTERNAL] RE: West Pearl Queen; incident #: NOY1816446096

rhillman <rhillman@aecnm.com> Fri 7/19/2024 7:10 AM To:sdutton <sdutton@aecnm.com> Cc:kaa <kaa@aecnm.com>

1 attachments (13 MB)
 2024-07-02\_WPQ\_Workplan\_Submittal(1).pdf;

Shelby:

Would you be so kind as to submit the attached plan to the OCD through the portal? At your earliest convenience. Please include the email below from Nelson Valdez.

Thanks! Ron

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>

Sent: Thursday, July 18, 2024 2:41 PM

To: Christopher Cortez <chris@atkinseng.com>; Austin Weyant <austin@atkinseng.com> Cc: rhillman <rhillman@aecnm.com>; kaa <kaa@aecnm.com>; Romero, Rosa, EMNRD <RosaM.Romero@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Buchanan, Michael, EMNRD <Michael.Buchanan@emnrd.nm.gov> Subject: Re: [EXTERNAL] RE: West Pearl Queen; incident #: NOY1816446096

[CAUTION: This email originated from outside Armstrong Energy Corp. Do not click links or open attachments unless you recognize the sender and know the content is safe]

Good afternoon Chris,

Thank you for inquiry. Your time extension request is hereby approved. Remediation Due date has been updated to October 29, 2024.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

OCD requires that Armstrong Energy provide us with an update of the soil remediation upon completion. In addition, any water data generated must be provided as well. Please submit within Permitting under the groundwater abatement portal.

A time extension may be requested in order to complete the Stage 1 abatement plan required.

If you have any further questions or concerns, please reach out to any OCD personnel attached in this thread.

Have a safe and productive day!

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.nm.gov/ocd\_



From: Christopher Cortez <chris@atkinseng.com>

Sent: Friday, June 28, 2024 3:25 PM

**To:** Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>; Austin Weyant <austin@atkinseng.com>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>

Cc: rhillman@aecnm.com <rhillman@aecnm.com>; kaa <kaa@aecnm.com>; Romero, Rosa, EMNRD <RosaM.Romero@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov> Subject: [EXTERNAL] RE: West Pearl Queen; incident #: NOY1816446096

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

Armstrong Energy Corporation is requesting an extension for the current deadline of July 1, 2024 for Remedial Closure. Armstrong Energy is requesting an additional 120 days (October 29, 2024)

It is Armstrong Energy Corporation's desire to comply with Divisions request for a comprehensive Stage 1 Abatement Plan proposal to be submitted to the director for her review.

After extensive review of the available data and site conditions, we believe our proposed initial actions and the stabilization of the site through remedial soil closure is a necessary step, to provide that comprehensive plan. A workplan for these initial actions will be submitted no later than July 2, 2024 (we are coordinating with AEC staff who are traveling today), and additional time will be needed for NMOCD review and scheduling of work so proper excavation for remedial closure can be completed.

AEA has blocked time for its drill crew in September 2024 (earliest available based on contracted obligations) to properly abandon the portions of the existing temporary monitoring well network –once receiving OCD approval. Prior to that sampling and other data collection work will be performed in late August. We believe that this will give enough time to complete the remedial closure process under NMAC 19.25.29 by late October, as requested.

Once the initial work and data is collected, we believe a full Stage 1 Abatement Plan can be completed in Late 2024 or 1<sup>st</sup> quarter 2025, with the full investigation to occur in 2025.

Thanks for your consideration,

Chris Cortez 575.914.0174

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Wednesday, May 1, 2024 9:07 AM
To: Austin Weyant <austin@atkinseng.com>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>
Cc: Christopher Cortez <chris@atkinseng.com>; rhillman@aecnm.com; kaa <kaa@aecnm.com>; Romero, Rosa, EMNRD
<RosaM.Romero@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; 
Subject: Re: [EXTERNAL] RE: West Pearl Queen; incident #: NOY1816446096

Good morning Austin,

Your 60-day time extension request is approved. Remediation Due date has been updated to July 1, 2024.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u> <u>http://www.emnrd.state.nm.us/OCD/</u>



District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 365911

CONDITIONS Operator: OGRID: ARMSTRONG ENERGY CORP 1092 P.O. Box 1973 Action Number: Roswell, NM 88202 365911 Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

#### CONDITIONS

| Created | Condition                | Condition Date |
|---------|--------------------------|----------------|
| Ву      |                          |                |
| nvelez  | Accepted for the record. | 10/28/2024     |