

2024 ANNUAL GROUNDWATER MONITORING REPORT

LATTION PIT (AP-23) INCIDENT NO. NAUTOFAB000337 UNIT O, SECTION 23, TOWNSHIP 18S, RANGE 26E EDDY COUNTY, NEW MEXICO 32.729187, -104.349760 RANGER REFERENCE NO. 5375

PREPARED FOR:

EOG RESOURCES, INC. MIDLAND DIVISION 5509 CHAMPIONS DRIVE MIDLAND, TEXAS 79706

PREPARED BY:

RANGER ENVIRONMENTAL SERVICES, LLC P.O. BOX 201179 AUSTIN, TEXAS 78720

MARCH 20, 2025

Patrick K. Finn, P.G. (TX) Project Geoscientist

William Kierdorf, REM Project Manager

TABLE OF CONTENTS

1.0	SITE LOCATION AND BACKGROUND	1
2.0	GROUNDWATER MONITORING (2024)	3
3.1	Groundwater Monitoring Methodologies	3
3.2	2024 Groundwater Monitoring Results Summary	4
3.0	PROPOSED 2025 SITE ACTIVITIES	5

FIGURES

- Topographic Map
- Area Map
- Site Map
- Groundwater Gradient Maps
- Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps

TABLES

- Cumulative Well Gauging Data
- Cumulative Groundwater EPA Method 300.0: Anions
- Cumulative Groundwater Dissolved Metals (Table 1 of 2)
- Cumulative Groundwater Dissolved Metals (Table 2 of 2)
- Cumulative Groundwater TPH and VOC Data Summary
- Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

ATTACHMENTS

- Attachment 1 Site Photographs
- Attachment 2 Laboratory Analytical Reports
- Attachment 3 NMOCD Correspondence

2024 ANNUAL GROUNDWATER MONITORING REPORT LATTION PIT (AP-23) INCIDENT NO. NAUTOFAB000337 UNIT O, SECTION 23, TOWNSHIP 18S, RANGE 26E EDDY COUNTY, NEW MEXICO 32.729187, -104.349760 RANGER REFERENCE NO. 5375

1.0 SITE LOCATION AND BACKGROUND

The Lattion Pit (Site) is a historic oil and gas production pit formerly located at the Lattion Battery facility and former Lattion #1 well pad, an oil and gas production facility located on private land, approximately 8.25 miles south-southwest of Artesia, within Eddy County, New Mexico. The facility is situated in Unit O, Section 23, T18S-R26E at GPS coordinates 32.729187, -104.349760. In November 2021, operations of the Lattion Battery were transferred from EOG Resources, Inc. to Silverback Operating II (Silverback). Under the new operator, the Lattion Battery has been decommissioned, the Lattion #1 well has been plugged and abandoned, and all production equipment has been removed for the Site. Based on the site history and transaction history, EOG Resources, Inc. (EOG) maintains environmental responsibility for the impacts related to Incident No. NAUTOFAB000337 at the Site.

The Lattion #1 well and Lattion Battery were historically operated by H&S Oil Company (H&S) and an unlined earthen pit was formerly utilized by H&S for oil and gas fluid storage/impoundment (hereafter referred to as the "former production pit"). Based upon recent review of a historical aerial photograph from 1981, a former reserve pit is also located at the site to the north of the Lattion #1 well and to the east of the former production pit.

In 1997, Yates Petroleum Corporation (Yates) acquired from H&S the Lattion #1 well and Lattion Battery, as well as the former production pit. While operated by Yates, the former production pit underwent closure, and assessment of the former pit was also conducted. In September 2016, EOG acquired Yates and its associated assets including the Lattion #1 well and Lattion Battery which included the former production pit. The Lattion #1 well was subsequently plugged and abandoned by Silverback in March 2023. In early 2024, the Lattion Battery was decommissioned, and all production equipment was removed from the former Lattion Battery/Lattion #1 facility pad.

The production pit closure and assessment activities completed by Yates documented impacts to the native soil. Groundwater impacts were also documented at the site in the 2002 timeframe. The greatest impacts were observed upgradient of the former production pit (and former reserve pit) and as such the groundwater impacts were not believed to have been caused by the former pit operations and were instead thought to be possibly the result of irrigation seepage from the irrigated fields to the north of the site.

Due to the documented conditions at the Site, coordination with the New Mexico Oil and Gas Division (NMOCD) was initiated. Communication and coordination between the NMOCD and Yates continued until 2005 when a Stage I & II Abatement Plan was submitted to the NMOCD. Based on available information, no response was ever received from the NMOCD regarding this

STATE OF TEXAS PROFESSIONAL GEOSCIENTIST FIRM NO. 50140 • STATE OF TEXAS PROFESSIONAL ENGINEERING FIRM NO. F-6160

P.O. BOX 201179 AUSTIN, TX 78720 OFFICE: 512/335-1785 FAX: 512/335-0527

plan. During the 2005 to 2022 timeframe, a total of 13 groundwater monitoring events were conducted at the Site. In August 2020 and May 2021, additional soil investigation activities were completed at the Site.

EOG has engaged Ranger Environmental Services, LLC (Ranger) to assist in the continuation of the assessment and remediation efforts at the Site. In May 2023, Ranger personnel established communications with the NMOCD and began discussion of the Site with NMOCD representatives that included the steps needed to bring the Site into compliance with the current regulatory criteria and New Mexico Administrative Code (NMAC). Based on Ranger's communications with the NMOCD, a comprehensive *Site Chronology and Status Update* report, dated August 14, 2023, was submitted to the NMOCD to provide the NMOCD with a summary of the Site history and the cumulative soil and groundwater data so that a regulatory path forward could be established.

Based upon communications with the NMOCD, groundwater monitoring activities were continued at the subject site in 2023, with an annual groundwater monitoring event completed in November 2023. A March 26, 2024 "Annual Groundwater Monitoring Report" was prepared by Ranger and submitted to the NMOCD which documented the 2023 groundwater sampling activities and results. As noted in the 2023 annual report, the extensive groundwater analytical data potentially support the earlier project conclusions that affected groundwater may be flowing onto the subject site from the irrigated agricultural fields to the north. As such, further groundwater plume delineation activities were recommended to confirm whether this is the case, or whether there is an on-site release source. Based upon the recent determination that the larger eastern pit is a former reserve pit, not the former production pit that was subject to the NMOCD-requested abatement plans, the 2023 annual report recommended that a soil delineation work plan be prepared to attempt to complete the delineation of the soil impacts at the former production pit.

Lastly, the 2023 annual report also included recommendations to conduct quarterly groundwater monitoring activities at the Site beginning in the second quarter of 2024 with analysis of groundwater samples being limited to the six constituents of concern (COCs) which have historically been detected in exceedance of the NMAC 20.6.2.3103 criteria. By late April 2024, since no response had yet been received from the NMOCD in regard to the August 2023 *Site Chronology and Status Update* report or the March 2024 *Annual Groundwater Monitoring Report*, the recommended quarterly groundwater monitoring program was implemented at the Site. As noted in the 2023 annual report, upon NMOCD review of these reports the recommended subset of the site groundwater monitoring COCs will be modified if requested by the NMOCD.

On October 23, 2024, EOG and NMOCD representatives participated in a meeting to discuss the site status, the recommendations for additional site assessment that were presented in the 2023 annual report, and to determine an appropriate pathway forward for the site. Based on the meeting details, a Ranger-prepared *Assessment Workplan*, dated January 28, 2025, was prepared and submitted to the NMOCD which proposed the additional assessment activities that were discussed with the NMCOD in October 2024. An NMOCD response to the *Assessment Workplan* is currently pending.

This report has been prepared to provide details and results of the groundwater monitoring activities completed in 2024.

A *Topographic Map* and *Area Map* noting the location of the subject Site and surrounding areas are attached. A *Site Map* depicting the pertinent site features is also attached.

2.0 GROUNDWATER MONITORING (2024)

As summarized above, and as recommended in the 2023 annual report, quarterly groundwater monitoring activities were continued at the Site beginning in the second quarter of 2024. A total of three quarterly groundwater monitoring events were conducted at the Site in 2024. The monitoring events were conducted on April 30, 2024, September 24, 2024, and December 10, 2024.

Attached are cumulative summary tables of the Site well gauging data and groundwater laboratory analytical results. Also attached are isoconcentration maps for the primary site groundwater COCs (chloride, sulfate and TDS), groundwater gradient maps, and copies of the laboratory analytical reports. Below is a summary of the 2024 annual groundwater monitoring activities and results.

3.1 Groundwater Monitoring Methodologies

Upon arrival at the Site, the monitor wells were opened and allowed to equilibrate for approximately 30 minutes prior to the performance of any well gauging or sampling activities. Prior to sampling the groundwater in each monitor well, the wells were first gauged with a decontaminated interface probe to determine the depth to groundwater in each monitor well, and light nonaqueous phase liquid (LNAPL) thicknesses, if any. This data was utilized to determine the site groundwater flow direction and gradient.

Except as noted below, groundwater samples were subsequently collected from the site monitoring wells using low-flow sampling techniques. The wells were purged and sampled using a low flow rate (0.026 to 0.264 gpm) that minimized drawdown. The pump-intake was located in the middle or slightly above the middle of the saturated screened interval. The monitoring wells were purged until the field water quality parameters (i.e., pH, temperature, and conductivity) stabilized. Parameters were considered to have stabilized if, over three consecutive readings, the following criteria were met:

- pH ±0.1 unit
- Temperature within 3%
- Conductivity within 3%

An obstruction was encountered in monitor well MW-3 at the approximate depth of 41.70' bgs which prohibited placement of the low-flow pump in this well. As such, a new disposable bailer was utilized to collect the sample from this well during the April 30, 2024 sampling event. During the September 24, 2024 sampling event, monitor well MW-3 was able to be gauged but there was an insufficient amount of water in the well to enable sample collection. During the December 10, 2024 groundwater monitoring event, monitor wells MW-3 and MW-4 were both noted to be dry and could not be gauged or sampled.

All sample containers were filled with minimal turbulence. Due to sample turbidity, the samples collected for dissolved metals analysis were first field-filtered through a 10-micron pore size filter. Ranger personnel wore new nitrile gloves while handling each sample in order to prevent cross-contamination of samples.

All samples were containerized using properly selected and cleaned containers, which were preserved by the laboratory as needed for the particular analysis to be performed. All VOC sample vials were filled completely to minimize head space. The samples were subsequently

sealed in one or more ziplock bags and stored in a sample shuttle containing ice until arrival at the laboratory for chemical analysis. All sample containers were labeled with the project name, sample identification, date of sample collection, samplers' initials, and time sampled collected. Chain-of-custody forms were completed to document sample transport to the analytical laboratory.

As recommended in the 2023 annual report, the groundwater samples were subsequently analyzed for the six COCs which have been detected in the site groundwater in exceedance of the NMAC 20.6.2.3103 criteria on at least one or more occasions historically. Below is a summary of these COCs and the associated analytical methods:

- EPA Method 300.0: Fluoride, chloride, sulfate
- SM2540C MOD: Total dissolved solids
- EPA METHOD 200.7: Iron and manganese

All purge water generated during the well purging process was placed in a sealed and labeled 55gallon drum and was temporarily stored on-site pending off-site disposal.

3.2 2024 Groundwater Monitoring Results Summary

Well Gauging Results

No LNAPL was documented to be present in the site monitoring wells. The depth to groundwater in the site monitoring wells during 2024 was documented to range from approximately 52.89' bgs in MW-1 to a maximum of approximately 63.32' bgs in MW-3. As previously stated, during the December 10, 2024 event, monitor wells MW-3 and MW-4 were both found to be dry.

As illustrated on the attached groundwater gradient maps, the site groundwater gradient and flow direction was documented to be approximately 0.03 ft/ft predominantly to the southeast, consistent with historical results. Since MW-3 and MW-4 were both found to be dry during the December 10, 2024 monitoring event, the groundwater flow direction and gradient could not be determined for this event.

Groundwater Analytical Results

- Groundwater Anions (2024):
 - Chloride: Concentrations of chloride above the NMAC 20.6.2.3103 standard were documented in monitoring wells MW-1, MW-2 and MW-4. Upgradient monitor well MW-1 was again found to contain the highest site chloride concentration (1,900 mg/L).
 - Sulfate: Concentrations of sulfate above the NMAC 20.6.2.3103 standard were documented in all four monitoring wells. Upgradient monitor well MW-1 was again found to contain the highest site sulfate concentration (2,000 mg/L).
 - Fluoride: A fluoride concentration above the NMAC 20.6.2.3103 standard was documented in upgradient monitoring well MW-1 during the December 10, 2024 sampling event.

- *Dissolved Metals*: An iron concentration above the NMAC 20.6.2.3103 standard was documented in monitoring well MW-2 during the December 10, 2024 sampling event.
- *TDS*: Elevated TDS concentrations above the NMAC 20.6.2.3103 standard were documented in all four site monitoring wells. Upgradient monitor well MW-1 was again found to contain the highest site TDS concentration (6,400 mg/L).

In summary, the site groundwater gauging data is indicative of a declining water table condition with two site monitoring wells becoming dry in December 2024. The 2024 groundwater analytical data were generally consistent with historic results and are indicative of an overall stable condition. The 2024 groundwater monitoring data continue to support the earlier project conclusions that affected groundwater may be flowing onto the subject site from the irrigated agricultural fields to the north. Further site assessment activities will, however, be required to confirm whether this is the case, or whether there is an on-site release source.

3.0 PROPOSED 2025 SITE ACTIVITIES

Additional Site Assessment Activities

As discussed above, on October 24, 2024, NMOCD and EOG personnel met to discuss the subject Site and formulate a pathway for moving this project forward. Based on the meeting details, a Ranger-prepared *Assessment Workplan*, dated January 28, 2025, was prepared and submitted to the NMOCD which proposed the additional assessment activities that were discussed with the NMCOD in October 2024. An NMOCD response to the *Assessment Workplan* is currently pending.

Groundwater Sampling Activities

While awaiting an NMOCD response to the *Assessment Workplan*, the quarterly groundwater monitoring program recommended in the 2023 annual report will be continued. The first quarter monitoring event was completed on March 11, 2025.

FIGURES

Topographic Map Area Map Site Map Groundwater Gradient Maps Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps

Released to Imaging: 5/5/2025 4:32:49 PM

Released to Imaging: 5/5/2025 4:32:49 PM

Released to Imaging: 5/5/2025 4:32:49 PM

Page 14 of 103

Released to Imaging: 5/5/2025 4:32:49 PM

Released to Imaging: 5/5/2025 4:32:49 PM

Released to Imaging: 5/5/2025 4:32:49 PM

TABLES

Cumulative Well Gauging Data Cumulative Groundwater EPA Method 300.0: Anions Cumulative Groundwater Dissolved Metals (Table 1 of 2) Cumulative Groundwater Dissolved Metals (Table 2 of 2) Cumulative Groundwater TPH and VOC Data Summary Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

CUMULATIVE WELL GAUGING DATA LATTION PIT EDDY COUNTY, NEW MEXICO AP-23												
WELL NUMBER DATE CASING ELEV. (FT) DEPTH TO WATER (FT) LNAPL THICKNESS GW ELEVATION (FT) SCREENE INTERVA (FT)												
MW-1	9/18/2002	3,309.05	34.42	0.00	3274.63	35'-70'						
MW-1	9/19/2002	3,309.05	34.54	0.00	3274.51	35'-70'						
MW-1	11/3/2004	3,309.05	28.75	0.00	3280.30	35'-70'						
MW-1	12/2/2004	3,309.05	31.02	0.00	3278.03	35'-70'						
MW-1	12/15/2004	3,309.05	31.94	0.00	3277.11	35'-70'						
MW-1	12/21/2004	3,309.05	31.92	0.00	3277.13	35'-70'						
MW-1	12/30/2004	3,309.05	32.41	0.00	3276.64	35'-70'						
MW-1	3/6/2018	3,309.05	45.66	0.00	3263.39	35'-70'						
MW-1	3/27/2018	3,309.05	44.21	0.00	3264.84	35'-70'						
MW-1	3/21/2019	3,310.27	48.82	0.00	3261.45	35'-70'						
MW-1	10/28/2019	3,310.27	49.59	0.00	3260.68	35'-70'						
MW-1	9/17/2020	3,310.27	52.39	0.00	3257.88	35'-70'						
MW-1	8/17/2021	3,310.27	48.95	0.00	3261.32	35'-70'						
MW-1	11/29/2023	3,310.27	55.17	0.00	3255.10	35'-70'						
MW-1	4/30/2024	3,310.27	55.74	0.00	3254.53	35'-70'						
MW-1	9/24/2024	3,310.27	58.26	0.00	3252.01	35'-70'						
MW-1	12/10/2024	3,310.27	59.56	0.00	3250.71	35'-70'						

CUMULATIVE WELL GAUGING DATA LATTION PIT EDDY COUNTY, NEW MEXICO AP-23												
WELL NUMBERDATECASING ELEV. (FT)DEPTH TO WATER (FT-BTOC)LNAPL THICKNESS (FT)GW ELEVATION (FT)SCREEN INTERVA 												
MW-2	9/18/2002	3307.92	61.40	0.00	3246.52	40'-70'						
MW-2	9/19/2002	3307.92	61.65	0.00	3246.27	40'-70'						
MW-2 11/3/2004 3307.92 62.04 0.00 3245.88 40'-70'												
MW-2 12/2/2004 3307.92 61.67 0.00 3246.25 40'-70'												
MW-2	12/15/2004	3307.92	61.76	0.00	3246.16	40'-70'						
MW-2	12/21/2004	3307.92	61.31	0.00	3246.61	40'-70'						
MW-2	12/30/2004	3307.92	61.13	0.00	3246.79	40'-70'						
MW-2	3/6/2018	3307.92	54.04	0.00	3253.88	40'-70'						
MW-2	3/27/2018	3307.92	53.97	0.00	3253.95	40'-70'						
MW-2	3/21/2019	3,309.19	55.54	0.00	3253.65	40'-70'						
MW-2	10/28/2019	3,309.19	57.90	0.00	3251.29	40'-70'						
MW-2	9/17/2020	3,309.19	58.03	0.00	3251.16	40'-70'						
MW-2	8/17/2021	3,309.19	57.73	0.00	3251.46	40'-70'						
MW-2 11/29/2023 3,309.19 64.28 0.00 3244.91 40'-70'												
MW-2 4/30/2024 3,309.29 63.35 0.00 3245.94 40'-70'												
MW-2	9/24/2024	3,309.29	64.57	0.00	3244.72	40'-70'						
MW-2	12/10/2024	3,309.29	65.07	0.00	3244.22	40'-70'						

CUMULATIVE WELL GAUGING DATA LATTION PIT EDDY COUNTY, NEW MEXICO AP-23													
WELL NUMBERDATECASING ELEV. (FT)DEPTH TO WATER (FT-BTOC)LNAPL THICKNESS (FT)GW ELEVATION (FT)SCI SCI 													
MW-3 9/18/2002 3307.90 55.08 0.00 3252.82													
MW-3 9/19/2002 3307.90 58.73 0.00 3249.17													
MW-3 11/3/2004 3307.90 51.28 0.00 3256.62 40'-65'													
MW-3	MW-3 12/2/2004 3307.90 50.38 0.00 3257.52												
MW-3	MW-3 12/15/2004 3307.90 50.30 0.00 3257.60												
MW-3	12/21/2004	3307.90	50.01	0.00	3257.89	40'-65'							
MW-3	12/30/2004	3307.90	49.91	0.00	3257.99	40'-65'							
MW-3	3/6/2018	3307.90	57.43	0.00	3250.47	40'-65'							
MW-3	3/27/2018	3307.90	57.38	0.00	3250.52	40'-65'							
MW-3	3/21/2019	3309.00	59.13	0.00	3249.87	40'-65'							
MW-3	10/28/2019	3309.00	61.29	0.00	3247.71	40'-65'							
MW-3	9/17/2020	3309.00	61.75	0.00	3247.25	40'-65'							
MW-3	8/17/2021	3309.00	62.22	0.00	3246.78	40'-65'							
MW-3 11/29/2023 3309.00 65.74 0.00 3243.26 40'-65'													
MW-3	4/30/2024	3309.00	66.40	0.00	3242.60	40'-65'							
MW-3	9/24/2024	3309.00	66.52	0.00	3242.48	40'-65'							
MW-3	MW-3 12/10/2024 3309.00 DRY @ 66.63 BTOC 40'-65'												

CUMULATIVE WELL GAUGING DATA LATTION PIT EDDY COUNTY, NEW MEXICO AP-23													
WELL NUMBERDATECASING ELEV. (FT)DEPTH TO WATER (FT-BTOC)LNAPL THICKNESS (FT)GW ELEVATION (FT)SC SC 													
MW-4	9/18/2002	3307.63	38.17	0.00	3269.46	30'-55'							
MW-4 9/19/2002 3307.63 38.23 0.00 3269.40													
MW-4 11/3/2004 3307.63 32.95 0.00 3274.68 30'-													
MW-4	MW-4 12/2/2004 3307.63 33.96 0.00 3273.67												
MW-4	12/15/2004	3307.63	34.43	0.00	3273.20	30'-55'							
MW-4	12/21/2004	3307.63	34.32	0.00	3273.31	30'-55'							
MW-4	12/30/2004	3307.63	34.70	0.00	3272.93	30'-55'							
MW-4	3/6/2018	3307.63	47.31	0.00	3260.32	30'-55'							
MW-4	3/27/2018	3307.63	47.47	0.00	3260.16	30'-55'							
MW-4	3/21/2019	3308.88	51.51	0.00	3257.37	30'-55'							
MW-4	10/28/2019	3308.88	51.39	0.00	3257.49	30'-55'							
MW-4	9/17/2020	3308.88	52.58	0.00	3256.30	30'-55'							
MW-4	8/17/2021	3308.88	51.49	0.00	3257.39	30'-55'							
MW-4	11/29/2023	3308.88	56.19	0.00	3252.69	30'-55'							
MW-4	MW-4 04/30/224 3308.88 56.58 0.00 3252.30 30'-55'												
MW-4	9/24/2024	3308.88	57.53	0.00	3251.35	30'-55'							
MW-4	12/10/2024	3308.88	D	RY @ 58.10 BTC	OC O	30'-55'							

Notes:

1. Elevations referenced to a temporary on-site benchmark.

2. MW-1 located immediately adjacent to irrigated field.

3. BTOC = below top of casing

.

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS LATTION PIT EDDY COUNTY, NEW MEXICO AP-23 All Values Presented in Parts Per Million (mg/L) unless otherwise noted												
SAMPLE ID	DATE	All Values Pre	Chloride	Per Million (mg/l Bromide) unless otherwise Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N			
SB-2	10/20/2000		81,535									
N04/ 4	0/40/0000		1 770	1	1		T		r			
MVV-1	9/19/2002		1,770									
MW-1	3/17/2012		2,899	2.5		1 900						
MW-1	6/18/2012	1.3	1,400	3.1	< 0.50	2.000			< 1.0			
MW-1	9/12/2012	1.1	1,600	1.6	< 25	2,000			< 1.0			
MW-1	12/6/2012	1	1,700	< 2.0	< 0.50	2,000	< 2.0	<0.10				
MW-1	3/12/2013	1.9	1,500	2.3	< 10	1,800			< 2.0			
MW-1	6/27/2013	1.3	1,400	2.1	< 0.50	1,600			< 1.0			
MW-1	3/27/2018	0.42	1,700	2.2	< 0.50	1,700			< 1.0			
MW-1	3/21/2019	0.62	1,500	2.1	< 0.50	1,600			< 1.0			
MW-1	10/28/2019	1	1,500	2	< 0.50	1,600	<2.0	<0.10				
MW-1	9/17/2020	1.1	1,400	2.3	< 2.5	1,500			< 1.0			
N/V/ 1	3/21/2022	2	1,000	2.5	< 2.5	1,000	<2.0	<0.50				
MW-1	8/4/2022	3.2	1,000	3.2	< 10	1,300			< 1.0			
MW-1	11/29/2023	<2.0	2.000	1.1	< 0.50	2.000	<2.0	<0.10				
MW-1	4/30/2024	<2.0	1,800			1,900						
MW-1	9/24/2024	<2.0	1,800			1,800						
MW-1	12/10/2024	2.3	1,900			2,000						
MW-2	9/19/2002		709									
MW-2	11/3/2004		740									
MW-2	3/17/2012	1.3	790	1	< 0.50	1,200			2.2			
MW-2	6/18/2012	1.2	790	1.6	< 0.50	1,200			1.5			
MW-2	12/6/2012	0.98	890	< 2.0	< 0.50	1,300	<2.0	4.5				
MW-2	3/12/2013	0.62	880	1.2	< 10	1,200			2.8			
MW-2	6/27/2013	0.98	720	1.4	< 0.50	1,000			3.2			
MW-2	3/27/2018	0.44	640	1.1	< 0.50	980			2.4			
MW-2	3/21/2019	1	810	1.1	< 0.50	1,100			2			
MW-2	10/28/2019	0.87	800	1.2	< 2.5	1,000	<0.50	2.6				
MW-2	9/17/2020	<0.10	760	1.2	< 0.50	1,000			2.4			
MW-2	8/17/2021	0.9	730	1.1	< 2.5	1,100	<0.50	2.3				
MW-2	3/21/2022	< 2.0	690	1	< 10	1,000			2.3			
MW-2	8/4/2022	0.75	890	1.2	< 0.50	1,100		3.0	1.9			
MW-2	4/30/2023	0.38	530	0.07	< 0.50	1,100	<2.0	3.0				
MW-2	9/24/2024	0.79	450			920						
MW-2	12/10/2024	1.1	390			860						
MW-3	9/19/2002		59.1									
MW-3	11/3/2004		64									
MW-3	3/17/2012	< 2.0	42	0.13	< 0.50	950			< 1.0			
MW-3	6/18/2012	1.4	45	0.2	< 0.50	900			< 1.0			
MW-3	9/12/2012	1.3	45	0.11	< 10	990			< 1.0			
MW-3	3/12/2012	1.3	43	0.12	< 10	960	<0.10	<0.10				
MW-3	6/27/2013	1.4	43	0.12	< 0.50	1.000			< 1.0			
MW-3	3/27/2018	1.7	41	0.15	< 0.50	880			< 1.0			
MW-3	3/21/2019	1.6	47	0.12	< 0.50	900			< 1.0			
MW-3	10/28/2019	1.6	45	< 0.50	< 2.5	870	<0.50	<0.50				
MW-3	9/17/2020	1.3	45	< 0.50	< 2.5	920			< 1.0			
MW-3	8/17/2021	1.5	43	0.13	< 0.50	880	<0.10	<0.10				
MW-3	3/21/2022	1.4	42	0.14	< 0.50	970			< 1.0			
MW-3	8/4/2022	1.3	42	0.15	< 0.50	860			< 1.0			
MW-3	11/29/2023	1.3	43	0.14	< 0.50	890	<0.10	<0.10				
IVIVV-3	4/30/2024	1.4	42			870						

•

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS LATTION PIT EDDY COUNTY, NEW MEXICO AP-23													
All Values Presented in Parts Per Million (mg/L) unless otherwise noted													
SAMPLE ID DATE Fluoride Chloride Bromide Phosphorus, Orthophosphate (As P) Sulfate Nitrogen, Nitrite (As N) Nitrate+Nitri Nitrate (As N)													
MW-4	9/19/2002		1,280										
MW-4	11/3/2004		1,899										
MW-4	3/17/2012	< 2.0	1,200	< 2.0	< 10	1,800			< 1.0				
MW-4 6/18/2012 1.7 1,200 2.3 < 0.50 1,800 < 1.0													
MW-4 9/12/2012 1.3 1,200 1.5 <25 2,000 <1.0													
MW-4 12/6/2012 1.1 1,200 < 2.0 < 0.50 1,800 <2.0 <0.10													
MW-4 3/12/2013 1.9 1,100 1.5 < 10 1,700 < 1.0													
MW-4	6/27/2013	1.2	1,000	1.7	< 0.50	1,600			< 1.0				
MW-4 3/27/2018		0.62	930	1.7	< 0.50	1,400			< 1.0				
MW-4	3/21/2019	0.87	1,100	1.5	< 0.50	1,700			< 1.0				
MW-4	10/28/2019	1.2	990	1.5	< 0.50	1,500	<2.0	<0.10					
MW-4	9/17/2020	1.2	960	1.7	< 2.5	1,500			< 1.0				
MW-4	8/17/2021	2.5	1,100	1.6	< 2.5	1,800	<0.50	<0.50					
MW-4	3/21/2022	< 2.0	1,100	1.7	< 10	1,700			< 1.0				
MW-4	8/4/2022	2.2	1,000	1.6	< 0.50	1,700			< 1.0				
MW-4	11/29/2023	1.2	960	0.57	< 0.50	1,700	<2.0	<0.10					
MW-4	4/30/2024	0.55	910			1,600							
MW-4	9/24/2024	1.1	930			1,500							
20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)													
A. Human Health Standar	ds	1.6					1	10	10 ¹				
B. Other Standards for Domestic Water Supply 250 600													
C. Standards for Irrigation Use													
lotes: . This standards is for nitrate. The nitrite standard is 1.0 mg/L. . Exceedances of the listed closure criteria are highlighted in bold, red type.													

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

All Values Presented in Parts Per Million (mg/L)

All Values Presented in Parts Per Million (mg/L)																		
SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-1	3/17/2012		0.02			< 0.0020	880	< 0.0060		0.41	350	0.032			4.8	< 0.0050	290	0.015
MW-1	6/18/2012		0.018			< 0.0020	940	< 0.0060		< 0.020	350	0.028			4.3	< 0.0050	370	0.012
MW-1	9/12/2012		0.02			< 0.0020	830	< 0.0060		0.68	320	0.25			4.2	< 0.0050	230	0.017
MW-1	12/6/2012		0.022			< 0.0020	940	< 0.0060		< 0.020	370	0.2			5.5	< 0.0050	310	0.033
MW-1	3/12/2013		0.019			< 0.0020	820	< 0.0060		0.2	300	0.33			4.3	< 0.0050	230	< 0.010
MW-1	6/27/2013		0.018			< 0.0020	910	< 0.0060		0.031	300	0.16			4.9	< 0.050	200	0.021
MW-1	3/27/2018		0.015			< 0.0020	910	< 0.0060		< 0.020	350	0.14			4.2	0.031	280	0.02
MW-1	3/21/2019	< 0.020	0.014	< 0.0020	0.32	< 0.0020	940	< 0.0060	< 0.0060	0.048	320	0.22	< 0.0080	< 0.010	4.1	0.011	230	0.017
MW-1	10/28/2019	< 0.020	0.018	< 0.0020	0.35	< 0.0020	920	< 0.0060	< 0.0060	< 0.020	330	0.14	< 0.0080	< 0.010	4.3	0.016	230	0.046
MW-1	9/17/2020	<0.10	0.017	< 0.010	0.39	< 0.010	970	< 0.030	< 0.030	<0.10	370	0.25	< 0.040	< 0.050	5.1	< 0.025	320	<0.050
MW-1	8/17/2021	< 0.10	0.04	< 0.010	0.36	< 0.010	940	< 0.030	< 0.030	0.3	370	1.7	< 0.040	< 0.050	5.3	< 0.025	270	< 0.050
MW-1	3/21/2022	< 0.020	0.027	< 0.0020	0.39	< 0.0020	1,000	< 0.0060	0.0071	1.2	340	0.33	< 0.0080	< 0.010	6.1	< 0.0050	250	< 0.010
MW-1	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	920	< 0.060	< 0.060	< 0.20	330	0.13	< 0.080	< 0.10	< 10	< 0.050	220	0.29
MW-1	11/29/2023	< 0.020	0.018	< 0.0020	0.37	< 0.0020	980	< 0.0060	< 0.0060	< 0.020	410	0.077	< 0.0080	< 0.010	5.3	0.023	400	< 0.010
MW-1	4/30/2024									< 0.020		0.18						
MW-1	9/24/2024									< 0.020		0.16						
MW-1	12/10/2024									<0.050		0.15						
MW-2	3/17/2012		0.014			< 0.0020	570	< 0.0060		0.044	180	0.0027			4.6	< 0.0050	81	< 0.010
MW-2	6/18/2012		0.014			< 0.0020	550	< 0.0060		0.061	180	0.0032			4.6	< 0.0050	89	0.01
MW-2	9/12/2012		0.013			< 0.0020	570	< 0.0060		0.041	180	0.0026			4.1	< 0.0050	86	0.011
MW-2	12/6/2012		0.016			< 0.0020	600	< 0.0060		< 0.020	200	0.0023			5.1	< 0.0050	100	< 0.010
MW-2	3/12/2013		0.012			< 0.0020	560	< 0.0060		0.023	180	0.0021			4.6	< 0.0050	92	< 0.010
MW-2	6/27/2013		0.013			< 0.0020	610	< 0.0060		0.035	170	0.0021			4.7	< 0.050	87	< 0.010
MW-2	3/27/2018		0.013			< 0.0020	580	< 0.0060		0.04	180	0.0023			4.5	0.021	97	0.028
MW-2	3/21/2019	< 0.020	0.012	< 0.0020	0.067	< 0.0020	570	< 0.0060	< 0.0060	0.025	170	0.0025	< 0.0080	< 0.010	4.2	0.0079	85	0.022
MW-2	10/28/2019	< 0.020	0.012	< 0.0020	0.067	< 0.0020	600	< 0.0060	< 0.0060	0.026	190	< 0.0020	< 0.0080	< 0.010	4.5	0.015	94	0.031
MW-2	9/17/2020	<0.10	0.015	<0.010	<0.20	<0.010	610	<0.030	<0.030	<0.10	200	< 0.010	<0.040	<0.050	5.4	<0.025	100	<0.050
MW-2	8/17/2021	< 0.020	0.012	< 0.0020	0.071	< 0.0020	510	< 0.0060	< 0.0060	0.039	160	0.0029	< 0.0080	< 0.010	4.5	< 0.0050	89	0.015
MW-2	3/21/2022	< 0.020	0.014	< 0.0020	0.083	< 0.0020	520	< 0.0060	< 0.0060	0.027	160	0.0041	< 0.0080	< 0.010	4.3	< 0.0050	100	0.011
MW-2	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	570	< 0.060	< 0.060	< 0.20	180	< 0.020	< 0.080	< 0.10	< 10	< 0.050	99	< 0.10
MW-2	11/29/2023	< 0.020	0.010	< 0.0020	0.062	< 0.0020	610	< 0.0060	< 0.0060	< 0.020	200	< 0.0020	< 0.0080	< 0.010	4.7	0.014	110	< 0.010
MW-2	4/30/2024									0.020		0.0030						
MW-2	9/24/2024									<0.020		0.050						
MW-2	12/10/2024									3.3		0.074						
	1	T	1	1	1	1		1			1	1	,		T			.
MW-3	3/17/2012		0.019			< 0.0020	270	< 0.0060		< 0.020	100	0.042			2.7	< 0.0050	34	0.016
MW-3	6/18/2012		0.017			< 0.0020	270	< 0.0060		< 0.020	99	0.0029			2.8	< 0.0050	36	0.026
MW-3	9/12/2012		0.017			< 0.0020	270	< 0.0060		< 0.020	97	0.03			2.3	< 0.0050	33	< 0.010
MW-3	12/6/2012		0.019			< 0.0020	270	< 0.0060		< 0.020	110	< 0.0020			3.2	< 0.0050	39	< 0.010
MW-3	3/12/2013		0.018			< 0.0020	240	< 0.0060		0.22	92	0.06			2.4	< 0.0050	34	< 0.010

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

All Values	Presented in	Parts Per	Million	(ma/l)
	T resenteu m			

SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-3	6/27/2013		0.018			< 0.0020	260	< 0.0060		< 0.020	98	0.0034			2.8	< 0.025	34	< 0.010
MW-3	3/27/2018		0.018			< 0.0020	280	< 0.0060		< 0.020	100	0.089			2.8	0.011	37	0.032
MW-3	3/21/2019	< 0.020	0.018	< 0.0020	0.11	< 0.0020	270	< 0.0060	< 0.0060	< 0.020	95	0.037	0.009	< 0.010	2.5	< 0.0050	34	0.027
MW-3	10/28/2019	< 0.020	0.018	< 0.0020	0.11	< 0.0020	240	< 0.0060	< 0.0060	< 0.020	100	0.012	< 0.0080	< 0.010	2.8	0.0071	34	0.068
MW-3	9/17/2020	<0.10	0.018	<0.010	<0.20	<0.010	290	<0.030	<0.030	<0.10	110	0.011	<0.040	<0.050	<5.0	<0.025	36	<0.050
MW-3	8/17/2021	< 0.020	0.019	< 0.0020	0.12	< 0.0020	280	< 0.0060	< 0.0060	< 0.020	100	< 0.0020	< 0.0080	< 0.010	2.7	< 0.0050	33	0.047
MW-3	3/21/2022	< 0.020	0.024	< 0.0020	0.14	< 0.0020	270	< 0.0060	< 0.0060	< 0.020	100	0.22	< 0.0080	< 0.010	3	< 0.0050	40	0.014
MW-3	8/4/2022	< 0.20	0.021	< 0.020	< 0.40	< 0.020	280	< 0.060	< 0.060	< 0.20	110	< 0.020	< 0.080	< 0.10	< 10	< 0.050	34	0.19
MW-3	11/29/2023	< 0.020	0.021	< 0.0020	0.11	< 0.0020	280	< 0.0060	< 0.0060	< 0.020	110	0.0074	< 0.0080	< 0.010	2.8	0.0072	33	< 0.010
MW-3	4/30/2024									< 0.020		0.051						
		•				-					•	•						
MW-4	3/17/2012		0.016			< 0.0020	780	< 0.0060		0.071	310	0.051			3.6	< 0.0050	200	0.012
MW-4	6/18/2012		0.016			< 0.0020	780	< 0.0060		0.14	300	0.073			3.5	< 0.0050	220	0.043
MW-4	9/12/2012		0.013			< 0.0020	760	< 0.0060		0.021	300	0.048			3.2	< 0.0050	200	< 0.010
MW-4	12/6/2012		0.016			< 0.0020	780	< 0.0060		0.086	320	0.076			4.2	< 0.0050	230	0.02
MW-4	3/12/2013		0.013			< 0.0020	710	< 0.0060		0.089	280	0.049			3.7	< 0.0050	180	0.038
MW-4	6/27/2013		0.014			< 0.0020	750	< 0.0060		0.27	280	0.063			4.3	< 0.050	180	0.019
MW-4	3/27/2018		0.011			< 0.0020	770	< 0.0060		0.023	290	0.027			3.7	0.025	150	0.027
MW-4	3/21/2019	< 0.020	0.011	< 0.0020	0.16	< 0.0020	750	< 0.0060	< 0.0060	< 0.020	280	0.031	< 0.0080	< 0.010	3.5	0.0092	140	0.03
MW-4	10/28/2019	< 0.020	0.012	0.0023	0.17	< 0.0020	720	< 0.0060	< 0.0060	< 0.020	250	0.032	< 0.0080	< 0.010	3.6	0.019	130	0.023
MW-4	9/17/2020	<0.10	0.012	<0.010	<0.20	<0.010	760	<0.030	<0.030	<0.10	300	0.053	<0.040	<0.050	<5.0	<0.025	150	<0.050
MW-4	8/17/2021	< 0.020	0.012	< 0.0020	0.19	< 0.0020	710	< 0.0060	< 0.0060	0.03	280	0.042	< 0.0080	< 0.010	4.2	< 0.0050	140	0.019
MW-4	3/21/2022	< 0.020	0.014	< 0.0020	0.2	< 0.0020	730	< 0.0060	0.0066	< 0.020	300	0.035	< 0.0080	< 0.010	4	< 0.0050	150	< 0.010
MW-4	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	720	< 0.060	< 0.060	< 0.20	290	0.036	< 0.080	< 0.10	< 10	< 0.050	120	< 0.10
MW-4	11/29/2023	0.12	0.010	< 0.0020	0.16	< 0.0020	720	< 0.0060	< 0.0060	0.24	290	0.043	< 0.0080	< 0.010	3.8	0.016	140	< 0.010
MW-4	4/30/2024									0.04		0.076						
MW-4	9/24/2024									<0.020		0.11						
20.6.2.3103 NMAC GW ST (<10,000 mg/L)	ANDARDS																	
A. Human Health Star	ndards		2	0.004		0.005		0.05								0.05		
B. Other Standards for Domest	tic Water Supply									1.0		0.2						10
C. Standards for Irrigat	tion Use	5.0			0.75				0.05				1.0	0.2				
Notes:																		
1. Exceedances of the listed closur	e criteria are highli	ghted in bold, re	d type.															

Page	<i>33</i>	of	<i>103</i>
------	-----------	----	------------

.

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23											
		A	II Values Present	ed in Parts Per N	lillion (mg/L)						
SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uranium		
MW-1	3/17/2012		0.0015	< 0.0060	< 0.0050	< 0.00020	0.0052		0.002		
MW-1	6/18/2012		0.0021	< 0.0060	< 0.0050	< 0.00020	0.0086		0.0027		
MW-1	9/12/2012		0.0023	0.0062	< 0.0010	< 0.00020	0.0083		0.0057		
MW-1	3/12/2013		0.0025	< 0.0060	< 0.0050	< 0.00020	0.0045		0.0027		
MW-1	6/27/2013		0.0063	< 0.0060	< 0.0050	< 0.00020	0.022		< 0.0050		
MW-1	3/27/2018		< 0.0050	< 0.0050	< 0.0025	< 0.00020	< 0.0050		< 0.0025		
MVV-1	3/21/2019	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.00020	< 0.010	< 0.0025	< 0.0050		
MW-1	9/17/2020	< 0.0030	< 0.0000	< 0.000	< 0.0023		< 0.0050	< 0.0025	< 0.0023		
MW-1	8/17/2021	< 0.0010	0.0023	< 0.030	< 0.0025		< 0.0010	< 0.0012	< 0.0025		
MW-1	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0012	0.0036		
MW-1	8/4/2022	< 0.0010	0.0016	< 0.060	< 0.00050		< 0.0010	< 0.00025	0.0009		
MIVV-1	11/29/2023	< 0.0050	0.0073	< 0.0060	< 0.0025		< 0.0050	< 0.0012	0.0028		
MW-2	3/17/2012		0.0019	< 0.0060	< 0.0050	< 0.00020	0.025		0.0061		
MW-2	6/18/2012		0.0022	< 0.0060	< 0.0050	< 0.00020	0.024		0.0069		
MW-2	9/12/2012		0.0019	0.0021	< 0.0010	< 0.00020	0.027		0.0071		
MW-2	12/6/2012		0.0018	< 0.0060	< 0.0010	< 0.00020	0.026		0.0078		
MW-2 MW-2	6/27/2013		0.0045	< 0.0060	< 0.0050	< 0.00020	0.020		0.0069		
MW-2	3/27/2018		< 0.0050	< 0.0010	< 0.0025	< 0.00020	0.017		0.0059		
MW-2	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.00020	0.013	< 0.00050	0.0054		
MW-2	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		0.018	< 0.0025	0.0058		
MW-2 MW-2	9/17/2020 8/17/2021	< 0.010	< 0.010	< 0.030	< 0.0050		0.013	< 0.0050	0.0052		
MW-2	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		0.012	< 0.0012	0.0043		
MW-2	8/4/2022	< 0.0010	0.0011	< 0.060	< 0.00050		0.016	< 0.00025	0.0056		
MW-2	11/29/2023	< 0.0050	0.0044	< 0.0060	0.0051		0.020	< 0.0012	0.0055		
MW-3	3/17/2012		0.0012	< 0.0060	< 0.0050	< 0.00020	< 0.0010		< 0.0010		
MW-3	6/18/2012		< 0.0010	< 0.0060	< 0.0050	< 0.00020	< 0.0010		< 0.0010		
MW-3	9/12/2012		0.0012	0.0021	< 0.0010	< 0.00020	< 0.0010		< 0.0010		
MW-3	12/6/2012		< 0.0010	< 0.0060	< 0.0010	< 0.00020	0.001		0.0011		
MW-3	3/12/2013		< 0.0010	< 0.0060	0.0064	< 0.00020	< 0.0010		< 0.0010		
MW-3	3/27/2018		0.0013	< 0.0000	< 0.00050	< 0.00020	< 0.0027		0.00057		
MW-3	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.00020	< 0.010	< 0.00050	< 0.0050		
MW-3	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0025	< 0.0025		
MW-3	9/17/2020	< 0.010	< 0.010	< 0.030	< 0.0050		< 0.010	< 0.0050	< 0.0050		
MW-3	3/21/2022	< 0.0010	< 0.0014	< 0.0050	< 0.00050		< 0.0010	< 0.00025	< 0.0025		
MW-3	8/4/2022	< 0.0010	0.0024	< 0.060	< 0.00050		< 0.0010	< 0.00025	0.00057		
MW-3	11/29/2023	< 0.0050	0.0030	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0025		
	0/17/0010		0.0014	0.0000	0.0050	0.00000	0.0040	1	0.0000		
MW-4	3/17/2012 6/18/2012		0.0014	< 0.0060	< 0.0050	< 0.00020	0.0042		0.0036		
MW-4	9/12/2012		0.0017	< 0.0050	< 0.0050	< 0.00020	< 0.0050		0.0033		
MW-4	12/6/2012		0.0014	< 0.0060	< 0.0010	< 0.00020	0.0059		0.0037		
MW-4	3/12/2013		0.0012	< 0.0060	< 0.0050	< 0.00020	0.0036		0.0028		
MW-4	6/27/2013		0.0041	< 0.0060	< 0.0050	< 0.00020	0.017		0.0025		
MW-4	3/21/2019	< 0.0010	< 0.0010	0.0015	< 0.00050	< 0.00020	< 0.000	< 0.00050	< 0.0023		
MW-4	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0025	< 0.0025		
MW-4	9/17/2020	< 0.010	< 0.010	<0.030	< 0.0050		< 0.010	< 0.0050	< 0.0050		
MW-4	8/17/2021	< 0.0010	0.001	< 0.0060	< 0.0025		< 0.0010	< 0.0012	< 0.0025		
MW-4	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0012	< 0.0025		
MW-4	11/29/2023	< 0.0050	0.0054	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0025		
20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)											
A. Human Health Standar	ds	0.006	0.01		0.015	0.002	0.05	0.002	0.03		
B. Other Standards for Domestic W C. Standards for Irrigation	/ater Supply Use			1.0							
Notes: 1. Exceedances of the listed closure criteri	a are highlighted ir	bold, red type.									

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

All Values Presented in Parts Per Million (mg/L)														
SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
SB-2	10/20/2000	<1.00	<0.5	<0.5		0.004	<0.001	<0.001	<0.002					
					-	-				-				
MW-1	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-1	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-1	3/17/2012				<0.002	<0.002	<0.002	<0.002	<0.004	<0.002	<0.002	<0.004	<0.008	<0.008
MW-1	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	9/12/2012					<0.002	<0.002	<0.002	<0.004			<0.004		
MW-1	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-1	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
										•				
MW-2	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-2	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-2	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-2	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-2	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
				1	1	1				1	1			
MW-3	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-3	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-3	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-3	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		

Page 34 of 103

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

					All Values	Presented in Par	ts Per Million (m	ng/L)						
SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
MW-3	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-3	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-4	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-4	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-4	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-4	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-4	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-4	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-4	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-4	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-4	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
20.6.2.3103 NMAC GW STANI (<10,000 mg/L)	DARDS													
A. Human Health Standards				0.005	1	0.7	0.62			0.03 ¹	0.03 ¹	0.03 ¹		
B. Other Standards for Domestic Water Supply			0.1											
C. Standards for Irrigation Use														
lotes:														
The 0.02 mg/L standard is for total pape	thalono plus mono	mothylpaphthalor	00											

The 0.03 mg/L standard is for total naphthalene plus monomethylnaphthalenes.
Exceedances of the listed closure criteria are highlighted in bold, red type.

•

CUMULATIVE GROUNDWATER SPECIFIC CONDUCTANCE, pH, ALKALINITY, AND TDS LATTION PIT										
EDDY COUNTY, NEW MEXICO										
			AI 23							
	Al	I Values Presente	ed in Parts Per N	lillion (mg/L)						
		Conductivity			TDS					
SAMPLE ID	DATE	µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	(mg/L)			
MW-1	9/19/2002						6,140			
MW-1	11/3/2004						8,172			
MW-1	6/18/2012	6700	7.07	200	< 2.0	200	5,080			
MW-1	9/12/2012	6600		160	< 2.0	160	5.270			
MW-1	12/6/2012	7000	7.13	170	< 2.0	170	5,760			
MW-1	3/12/2013	6500	7.38	160	< 2.0	160	5,380			
MW-1	6/27/2013	6800	7.28	140	< 2.0	140	5,330			
MW-1	3/27/2018	6600	7.48	151.7	< 2.000	151.7	5,460			
MW-1	3/21/2019	6400	6.99	177.8	< 2.000	177.8	5,230			
MW-1	10/28/2019	6900	7.39	168.6	< 2.000	168.6	5,550			
	9/17/2020	7000	7.41	169.8	< 2.000	169.8	5,650			
MW-1	3/21/2022	7300	7.05	100.4	< 2.000	100.4	6 140			
MW-1	8/4/2022	6800	7.53	124.9	< 2.000	124.9	5,990			
MW-1	11/29/2023	8100	7.33	205.2	< 2.000	205.2	6,400			
MW-1	4/30/2024						6,200			
MW-1	9/24/2024						6,400			
MW-1	12/10/2024						6,000			
M\W_2	9/19/2002						3 /20			
MW-2	11/3/2002						3,420			
MW-2	3/17/2012	3,800	7.28	150	< 2.0	150	3,090			
MW-2	6/18/2012	3,900	7.34	150	< 2.0	150	3,260			
MW-2	9/12/2012	4,300		140	< 2.0	140	3,370			
MW-2	12/6/2012	4,300	7.75	140	< 2.0	140	3,510			
MW-2	3/12/2013	4,200	7.48	150	< 2.0	150	3,360			
MW-2	6/27/2013	4,300	7.36	150	< 2.0	150	3,380			
MW-2	3/27/2018	3,600	7.66	156.9	< 2.000	156.9	2,870			
NIV/ 2	3/21/2019	3,900	7.52	140.8	< 2.000	140.8	2,920			
MW-2	9/17/2020	4,300	7.52	149.2	< 2.000	149.2	3,110			
MW-2	8/17/2021	3,800	7.40	152.5	< 2.000	152.5	2.920			
MW-2	3/21/2022	3,600	7.83	152.7	< 2.000	152.7	2,840			
MW-2	8/4/2022	4,200	7.69	150.4	< 2.000	150.4	3,530			
MW-2	11/29/2023	4,700	7.37	144.5	< 2.000	144.5	3,350			
MW-2	4/30/2024						2,800			
MW-2	9/24/2024						2,600			
MW-2	12/10/2024						2,100			
MW-3	9/19/2002						1,700			
MW-3	11/3/2004						1,545			
MW-3	3/17/2012	1,800	7.43	180	< 2.0	180	1,590			
MW-3	6/18/2012	1,900	7.55	180	< 2.0	180	1,590			
MW-3	9/12/2012	1,900		180	< 2.0	180	1,580			
MW-3	12/6/2012	1,800	7.60	180	< 2.0	180	1,600			
MW-3	3/12/2013	1,900	7.70	190	< 2.0	190	1,620			
NIV/-3	3/27/2013	2,000	7 96	190	< 2.0	190	1,030			
MW-3	3/21/2010	1,900	7.35	175.8	< 2 000	175.8	1,610			
MW-3	10/28/2019	1,900	7.73	182.6	< 2.000	182.6	1,590			
MW-3	9/17/2020	1,900	7.69	177.7	< 2.000	177.7	1,600			
MW-3	8/17/2021	1,900	7.53	176.2	< 2.000	176.2	1,590			
MW-3	3/21/2022	1,900	7.85	183	< 2.000	183	1,630			
.

CUM	IULATIVE GROU	NDWATER SPECIF LA EDDY COU	TIC CONDUCT TTION PIT NTY, NEW ME	ANCE, pH, ALKALI XICO	NITY, AND TDS				
			AP-23						
	Δ	II Values Presente	d in Parts Per	Million (mg/L)					
			<u></u>		Alkalinity (mg/L	kalinity (mg/L)			
SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)		
MW-3	8/4/2022	1,900	7.88	195.5	< 2.000	195.5	1,670		
MW-3	11/29/2023	1,900	7.68	194.8	< 2.000	194.8	1,610		
MW-3	4/30/2024						1,700		
	·	· · ·		•	-	<u> </u>			
MW-4	9/19/2002						5,350		
MW-4	11/3/2004						5,650		
MW-4	3/17/2012	5,400	7.16	160	< 2.0	160	4,470		
MW-4	6/18/2012	5,500	7.27	160	< 2.0	160	4,880		
MW-4	9/12/2012	5,800		160	< 2.0	160	4,370		
MW-4	12/6/2012	5,700	7.26	160	< 2.0	160	4,550		
MW-4	3/12/2013	5,600	7.46	160	< 2.0	160	4,450		
MW-4	6/27/2013	5,800	7.36	160	< 2.0	160	4,340		
MW-4	3/27/2018	5,400	7.66	146.7	< 2.000	146.7	4,360		
MW-4	3/21/2019	5,400	7.16	144.7	< 2.000	144.7	4,170		
MW-4	10/28/2019	5,500	7.46	147.6	< 2.000	147.6	4,200		
MW-4	9/17/2020	5,300	7.68	141.6	< 2.000	141.6	4,310		
MW-4	8/17/2021	5,500	7.27	148.2	< 2.000	148.2	4,200		
MW-4	3/21/2022	5,400	7.74	142.7	< 2.000	142.7	4,280		
MW-4	8/4/2022	5,400	7.54	140	< 2.000	140	4,640		
MW-4	11/29/2023	5,200	7.55	157.5	< 2.000	157.5	3,950		
MW-4	4/30/2024						4,300		
MW-4	9/24/2024						4,200		
20.6.2.3103 NMAC GW STAN (<10,000 mg/L) A. Human Health Standa	DARDS								
B Other Standards for Domestic	Vater Supply		6 to 9				1 000		
C. Standards for Irrigation	Use		0103				1,000		
otes: Exceedances of the listed closure criter	ia are highlighted	in bold, red type.							

ATTACHMENT 1 – SITE PHOTOGRAPHS

PHOTOGRAPH NO. 1 – View of former production pit location with monitor well "MW-1" visible. The view is towards the northwest.

(Approximate GPS: 32.729102,-104.349881)

PHOTOGRAPH NO. 2 – A view of the approximate former reserve pit area and monitor wells "MW-4" and "MW-3". The view is towards the northeast. (*Approximate GPS: 32.728827, -104.349882*)

ATTACHMENT 2 – LABORATORY ANALYTICAL REPORTS

Received by OCD: 3/27/2025 1:59:02 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Will Kierdorf Ranger Environmental Services, Inc 7215 McNeil Drive PO BOX 201179 Austin, Texas 78729 Generated 5/13/2024 3:58:05 PM

JOB DESCRIPTION

Lattions Pit

JOB NUMBER

885-3776-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by

(505)345-3975

Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com

Generated 5/13/2024 3:58:05 PM

Released to Imaging: 5/5/2025 4:32:49 PM

Page 44 of 103

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Chain of Custody	19
Receipt Checklists	21

Job ID: 885-3776-1

Definitions/Glossary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

120

Qualifiers	S	3
HPLC/IC Qualifier	Qualifier Description	A
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
General Ch	nemistry	
Qualifier	Qualifier Description	
F3	Duplicate RPD exceeds the control limit	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Ranger Environmental Services, Inc Project: Lattions Pit

Job ID: 885-3776-1

Job ID: 885-3776-1

Eurofins Albuquerque

Job Narrative 885-3776-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/2/2024 7:55 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.1°C.

HPLC/IC

Method 300_OF_28D_PREC: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for analytical batch 885-4390 recovered outside control limits for the following analytes: CI. Sample requiring Chloride analysis will be re-analyzed on a later run.

Method 300_OF_28D_PREC: SO4 failure on bracketing CCB. Analytes requiring sulfate analysis will be re-run on a future batch.

MW-3 (885-3776-3), MW-4 (885-3776-4) and (CCB 885-4390/50)

Method 300_OF_28D_PREC: Due to high concentrations of some analytes, the software failed to correctly identify affected crows. These sample results will be reported from dilution results.

MW-1 (885-3776-1) and MW-2 (885-3776-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540C_SingleDry: The sample duplicate (DUP) precision for analytical batch 885-4400 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 885-3776-1

Total Dissolved Solids (SM 2540C)	6200		500	mg/L			05/06/24 10:19	1	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
General Chemistry									
Manganese	0.18		0.0020	mg/L			05/06/24 08:29	1	
Iron	ND		0.020	mg/L			05/06/24 08:29	1	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Diss	olved							
Manganese	0.30		0.0020	mg/L		05/06/24 13:54	05/07/24 16:25	1	9
Iron	2.0		0.25	mg/L		05/06/24 13:54	05/07/24 16:27	5	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	8
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	I Recoverabl	le						
Sulfate	1900		100	mg/L			05/07/24 20:44	200	
Fluoride	ND		2.0	mg/L			05/03/24 19:00	20	
Chloride	1800		100	mg/L			05/07/24 20:44	200	
Method: EPA 300.0 - Anions, Ion Cl Analyte	hromatograp Result	ohy Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Date Collected: 04/30/24 08:36							Watri	x. water	
Client Sample ID: MW-1						Lab Sar	nple ID: 885- Motriv	3776-1	
Project/Site: Lattions Pit									
Client: Ranger Environmental Services, Inc Job ID: 885-3776-1								5-3776-1	

Eurofins Albuquerque

		Client	Sample Res	sults						
Client: Ranger Environmental Services Project/Site: Lattions Pit	, Inc					Job ID: 885-3776-1				
Client Sample ID: MW-2						Lab Sar	nple ID: 885-	3776-2		
Date Collected: 04/30/24 11:41							Matrix	c: Water		
Date Received: 05/02/24 07:55										
Method: EPA 300.0 - Anions, Ion Ch	romatograp	ohy							_	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Chloride	530		25	mg/L			05/07/24 20:57	50		
Fluoride	0.38		0.10	mg/L			05/03/24 19:15	1		
Sulfate	1100		25	mg/L			05/07/24 20:57	50		
Method: EPA 200.7 Rev 4.4 - Metals	(ICP) - Tota	I Recoverabl	e							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	0	
Iron	1.5		0.25	mg/L		05/06/24 13:54	05/07/24 16:30	5	0	
Manganese	0.034		0.0020	mg/L		05/06/24 13:54	05/07/24 16:29	1	Q	
Method: EPA 200.7 Rev 4.4 - Metals	(ICP) - Diss	olved							9	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Iron	0.020		0.020	mg/L			05/06/24 08:31	1		
Manganese	0.0030		0.0020	mg/L			05/06/24 08:31	1		
General Chemistry										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Dissolved Solids (SM 2540C)	2800		250	mg/L		<u> </u>	05/06/24 10:19	1		

.

Client Sample Results

		Client	Sample Res	sults						
Client: Ranger Environmental Service Project/Site: Lattions Pit	s, Inc					Job ID: 885-3776-1				
Client Sample ID: MW-3						Lab Sar	nple ID: 885-	3776-3		
Date Collected: 04/30/24 09:15							Matrix	x: Water		
Date Received: 05/02/24 07:55										
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Chloride	42		10	mg/L			05/07/24 21:10	20		
Fluoride	1.4		0.50	mg/L			05/03/24 20:16	5		
Sulfate	870		25	mg/L			05/10/24 11:05	50		
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Tota	l Recoverab	le							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	0	
Iron	16		1.0	mg/L		05/06/24 13:54	05/09/24 09:42	20	0	
Manganese	0.46		0.0020	mg/L		05/06/24 13:54	05/07/24 16:32	1	Q	
Method: EPA 200.7 Rev 4.4 - Metals	s (ICP) - Diss	olved							3	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Iron	ND		0.020	mg/L		·	05/06/24 08:34	1		
Manganese	0.051		0.0020	mg/L			05/06/24 08:34	1		
General Chemistry										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Dissolved Solids (SM 2540C)	1700		250	mg/L			05/06/24 10:19	1		

Eurofins Albuquerque

.

Job ID: 885-3776-1

Project/Site: Lattions Pit								
Client Sample ID: MW-4					Lab Sar	nple ID: 885-	3776-4	
Date Collected: 04/30/24 10:05						Matrix	x: Water	
Date Received: 05/02/24 07:55								
Method: EPA 300.0 - Anions, Ion Chromatog	raphy							
Analyte Re	sult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	910	50	mg/L			05/07/24 21:23	100	
Fluoride	.55	0.10	mg/L			05/03/24 20:46	1	
Sulfate 1	500	50	mg/L			05/07/24 21:23	100	
Method: EPA 200.7 Rev 4.4 - Metals (ICP) - 1	otal Recovera	ıble						
Analyte Re	sult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	•
Iron	36	2.5	mg/L		05/06/24 13:54	05/09/24 09:44	50	Ō
Manganese	.83	0.0020	mg/L		05/06/24 13:54	05/07/24 16:36	1	Q
Method: EPA 200.7 Rev 4.4 - Metals (ICP) - I	issolved							
Analyte Re	sult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron 0.)40	0.020	mg/L			05/06/24 08:36	1	
Manganese 0.)76	0.0020	mg/L			05/06/24 08:36	1	
General Chemistry								
Analyte Re	sult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids (SM 2540C) 4	300	500	mg/L			05/06/24 10:19	1	

Eurofins Albuquerque

QC Sample Results

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-4390/4 Matrix: Water	ab Sample ID: MB 885-4390/4 atrix: Water						ample ID: Metho Prep Type: 1	d Blank [otal/NA
Analysis Batch: 4390								otantit
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			05/03/24 10:39	1
Fluoride	ND		0.10	mg/L			05/03/24 10:39	1
Sulfate	ND		0.50	mg/L			05/03/24 10:39	1
- Lab Sample ID: LCS 885-4390/5					CI	ient Sample	ID: Lab Control	Sample
Matrix: Water							Prep Type: 1	fotal/NA

Analysis Batch: 4390

	Sp	ke LCS	LCS			%Rec	
Analyte	Ado	ed Result	Qualifier Unit	D %	%Rec	Limits	
Chloride	5	00 4.55	mg/L		91	90 - 110	
Fluoride	0.8	00 0.489	mg/L		98	90 - 110	
Sulfate	1	0.0 9.35	mg/L		93	90 - 110	

Lab Sample ID: MRL 885-4390/3

Matrix: Water Analysis Batch: 4390

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	0.500	0.521		mg/L		104	50 - 150	
Fluoride	0.100	0.0888	J	mg/L		89	50 - 150	
Sulfate	0.500	0.534		mg/L		107	50 - 150	

Lab Sample ID: MB 885-4496/1-A

Matrix: Water

Analysis Batch: 4540

	MB	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.5	mg/L		05/07/24 12:04	05/07/24 12:53	1
Fluoride	ND		0.30	mg/L		05/07/24 12:04	05/07/24 12:53	1
Sulfate	ND		1.5	mg/L		05/07/24 12:04	05/07/24 12:53	1

Lab Sample ID: LCS 885-4496/2-A **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 4540 Prep Batch: 4496 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 15.0 14.0 mg/L 93 90 - 110

Lab Sample ID: MB 885-4540/18 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 4540 МВ МВ Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 05/07/24 09:41 mg/L 1 Fluoride ND 0.10 mg/L 05/07/24 09:41 1 ND 05/07/24 09:41 Sulfate 0.50 mg/L 1

Eurofins Albuquerque

Page 51 of 103

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 4496

Lab Sample ID: LCS 885-4540/19

Lab Sample ID: MRL 885-4540/17

QC Sample Results

LCS LCS

4.71

0.474

9.55

Result Qualifier

Unit

mg/L

mg/L

mg/L

D

Spike

Added

5.00

0.500

10.0

Prep Type: Total/NA

%Rec Limits 94 90 - 110 95 90 - 110 95 90 - 110 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

% Poo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec

Matrix: Water Analysis Batch: 4540

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 4540

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	0.500	0.520		mg/L		104	50 - 150	
Fluoride	0.100	0.103		mg/L		103	50 - 150	
Sulfate	0.500	0.491	J	mg/L		98	50 - 150	

Lab Sample ID: MB 885-4791/4 Matrix: Water

Analysis Batch: 4791

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			05/10/24 08:49	1
Fluoride	ND		0.10	mg/L			05/10/24 08:49	1
Sulfate	ND		0.50	ma/L			05/10/24 08:49	1

Lab Sample ID: LCS 885-4791/5

Matrix: Water

Analys	sis Bat	ch: 47	91	

	Эріке	L03	103				/onec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.00	4.59		mg/L		92	90 - 110	 _
Fluoride	0.500	0.523		mg/L		105	90 - 110	
Sulfate	10.0	9.52		mg/L		95	90 - 110	

100 100

Sniko

Lab Sample ID: MRL 885-4791/3 Matrix: Water

Analysis Batch: 4791

	Spike	MRL	MRL			%Rec	
Analyte	Added	Result	Qualifier Un	nit D	%Rec	Limits	
Chloride	0.500	0.512	mg	g/L	102	50 - 150	
Fluoride	0.100	0.113	mg	g/L	113	50 - 150	
Sulfate	0.500	0.560	mg	g/L	112	50 - 150	

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 885-4392/17 Matrix: Water Analysis Batch: 4392						Client Sa	ample ID: Metho Prep Type: 1	d Blank ſotal/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.020	mg/L			05/06/24 08:22	1
Manganese	ND		0.0020	mg/L			05/06/24 08:22	1

Eurofins Albuquerque

QC Sample Results

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 885-4392/19							Clie	ent	Sample	ID: Lab Contro	ol Sample
Matrix: Water										Prep Type	: Total/NA
Analysis Batch: 4392											
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.500	0.518		mg/L			104	85 - 115	
Manganese			0.500	0.470		mg/L			94	85 - 115	
							Clie	ent	Sample	ID: Lab Contro	ol Sample
Matrix: Water										Prep Type	: Total/NA
Analysis Batch: 4392											
····· , ··· ····			Spike	LLCS	LLCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.0200	0.0230		mg/L		_	115	50 - 150	
Manganese			0.00200	0.00184	J	mg/L			92	50 - 150	
Lab Sample ID: MRL 885-4392/14							Cli	ent	Sample	Lab Contro	oi Sample
Matrix: Water										Prep Type	: Iotal/NA
Analysis Batch: 4392			Calles	MDI	MDI					% Doo	
Analyta			Spike		WIRL Outelifier	11			% Dee	%Rec	
			Added	Result	Quaimer			<u> </u>			
Manganaga			0.0200	0.0207	J	mg/L			103	50 - 150	
			0.00200	0.00192	J	IIIg/L			90	50 - 150	
Lab Sample ID: MRL 885-4550/15							Clie	ent	Sample	ID: Lab Contro	ol Sample
Matrix: Water										Prep Type	: Total/NA
Analysis Batch: 4550											
			Spike	MRL	MRL					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.0200	0.0185	J	mg/L		_	92	50 - 150	
Manganese			0.00200	0.00193	J	mg/L			96	50 - 150	
_ Lab Sample ID: MRL 885-4684/14							Clie	ent	Sample	ID: Lab Contro	ol Sample
Matrix: Water										Prep Type	Total/NA
Analysis Batch: 4684											
			Spike	MRL	MRL					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.0200	0.0185	J	mg/L		_	93	50 - 150	
Manganese			0.00200	0.00190	J	mg/L			95	50 - 150	
- Lab Sample ID: MR 995 4426/1 A									Client S	ample ID: Mot	and Blank
Matrix: Water									Bron -	Type: Total Po	
Analysis Patch: 4550									Fleb	Drop R	tob: 4426
Analysis Batch. 4550	мв	мв								гтер Ба	11011. 4420
Analyte	Result	Qualifier		RL	Unit		D	P	repared	Analyzed	Dil Fac
Iron	ND			0.050	mg/L		(05/0	6/24 13:54	05/07/24 13:21	1
Manganese	ND		C	0.0020	mg/L		C	05/0	6/24 13:54	05/07/24 13:21	1
							0.1		0	ID. Lak Oast	
Lad Sample ID: LCS 885-4426/3-A							Clie	ent	Sample	Lab Contro	oi Sample
Watrix: Water									Prep	iype: iotal Re	coverable
Analysis Batch: 4550			Caller	1.00	1.09					Prep Ba	atcn: 4426
Analyta			ъріке 	LUS	0	11-14		P	0/ Da-	%Rec	
			Added	Kesult	Qualifier			_		85 115	
Manganasa			0.500	0.474		mg/L			90	95 115	
Ivialiyaliese			0.500	0.407		ing/L			93	00 - 110	

Page 53 of 103 Job ID: 885-3776-1

QC Sample Results

Job ID: 885-3776-1

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Lab Sample ID: 885-3776-1 DU

Matrix: Water

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: LLCS 885-4426/2-A Matrix: Water Analysis Batch: 4550					Client	t Sample Prep	ID: Lab Control Type: Total Rec Prep Bat	Sample overable ch: 4426
	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	0.0200	0.0208	J	mg/L		104	50 - 150	
Manganese	0.00200	0.00212		mg/L		106	50 - 150	
Method: 2540C - Solids, Total Dissolved	(TDS)							
Lab Sample ID: MB 885-4400/1						Client S	Sample ID: Metho	od Blank
Matrix: Water							Prep Type:	Total/NA
Analysis Batch: 4400								
MB	MB							
Analyte Result	Qualifier	RL	Unit		D P	repared	Analyzed	Dil Fac
Total Dissolved Solids ND		50	mg/L				05/06/24 10:19	1
Lab Sample ID: LCS 885-4400/2 Matrix: Water Analysis Batch: 4400					Client	t Sample	e ID: Lab Control Prep Type:	Sample Total/NA
-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	1000	1010		mg/L		101	80 - 120	

Client Sample ID: MW-1 Prep Type: Total/NA

Analysis Batch: 4400								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	6200		6980	F3	mg/L		 12	10

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Client Sample ID

MW-1

MW-2

MW-3

MW-4

Method Blank

Lab Control Sample

Lab Control Sample

Prep Batch

Job ID: 885-3776-1

Prep Batch: 4496

HPLC/IC

Lab Sample ID

885-3776-1

885-3776-2

885-3776-3

885-3776-4

MB 885-4390/4

LCS 885-4390/5

MRL 885-4390/3

Analysis Batch: 4390

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-4496/1-A	Method Blank	Total/NA	Water	300_Prep	
LCS 885-4496/2-A	Lab Control Sample	Total/NA	Water	300_Prep	

Analysis Batch: 4540

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3776-1	MW-1	Total/NA	Water	300.0	
885-3776-2	MW-2	Total/NA	Water	300.0	
885-3776-3	MW-3	Total/NA	Water	300.0	
885-3776-4	MW-4	Total/NA	Water	300.0	
MB 885-4496/1-A	Method Blank	Total/NA	Water	300.0	4496
MB 885-4540/18	Method Blank	Total/NA	Water	300.0	
LCS 885-4496/2-A	Lab Control Sample	Total/NA	Water	300.0	4496
LCS 885-4540/19	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-4540/17	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 4791

Lab Sample ID 885-3776-3	Client Sample ID MW-3	Prep Type Total/NA	Matrix Water	Method Prep Batch 300.0
MB 885-4791/4	Method Blank	Total/NA	Water	300.0
LCS 885-4791/5	Lab Control Sample	Total/NA	Water	300.0
MRL 885-4791/3	Lab Control Sample	Total/NA	Water	300.0

Metals

Analysis Batch: 4392

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3776-1	MW-1	Dissolved	Water	200.7 Rev 4.4	
885-3776-2	MW-2	Dissolved	Water	200.7 Rev 4.4	
885-3776-3	MW-3	Dissolved	Water	200.7 Rev 4.4	
885-3776-4	MW-4	Dissolved	Water	200.7 Rev 4.4	
MB 885-4392/17	Method Blank	Total/NA	Water	200.7 Rev 4.4	
LCS 885-4392/19	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
LLCS 885-4392/18	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-4392/14	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

Prep Batch: 4426

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3776-1	MW-1	Total Recoverable	Water	200.2	
885-3776-2	MW-2	Total Recoverable	Water	200.2	
885-3776-3	MW-3	Total Recoverable	Water	200.2	
885-3776-4	MW-4	Total Recoverable	Water	200.2	

Eurofins Albuquerque

P

Method

300.0

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Water

Water

Water

Water

Water

Water

Water

Released to Imaging: 5/5/2025 4:32:49 PM

QC Association Summary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Metals (Continued)

Prep Batch: 4426 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 885-4426/1-A	Method Blank	Total Recoverable	Water	200.2	
LCS 885-4426/3-A	Lab Control Sample	Total Recoverable	Water	200.2	
LLCS 885-4426/2-A	Lab Control Sample	Total Recoverable	Water	200.2	

Analysis Batch: 4550

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3776-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-3	MW-3	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-4	MW-4	Total Recoverable	Water	200.7 Rev 4.4	4426
MB 885-4426/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	4426
LCS 885-4426/3-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	4426
LLCS 885-4426/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	4426
MRL 885-4550/15	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

Analysis Batch: 4684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3776-3	MW-3	Total Recoverable	Water	200.7 Rev 4.4	4426
885-3776-4	MW-4	Total Recoverable	Water	200.7 Rev 4.4	4426
MRL 885-4684/14	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

General Chemistry

Analysis Batch: 4400

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3776-1	MW-1	Total/NA	Water	2540C	
885-3776-2	MW-2	Total/NA	Water	2540C	
885-3776-3	MW-3	Total/NA	Water	2540C	
885-3776-4	MW-4	Total/NA	Water	2540C	
MB 885-4400/1	Method Blank	Total/NA	Water	2540C	
LCS 885-4400/2	Lab Control Sample	Total/NA	Water	2540C	
885-3776-1 DU	MW-1	Total/NA	Water	2540C	

Job ID: 885-3776-1

Job ID: 885-3776-1

Lab Sample ID: 885-3776-1 Matrix: Water

Client Sample ID: MW-1 Date Collected: 04/30/24 08:36 Date Received: 05/02/24 07:55

Project/Site: Lattions Pit

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		200	4540	SS	EET ALB	05/07/24 20:44
Total/NA	Analysis	300.0		20	4390	SS	EET ALB	05/03/24 19:00
Dissolved	Analysis	200.7 Rev 4.4		1	4392	VP	EET ALB	05/06/24 08:29
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		1	4550	JR	EET ALB	05/07/24 16:25
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		5	4550	JR	EET ALB	05/07/24 16:27
Total/NA	Analysis	2540C		1	4400	KB	EET ALB	05/06/24 10:19

Client Sample ID: MW-2

Date Collected: 04/30/24 11:41 Date Received: 05/02/24 07:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		50	4540	SS	EET ALB	05/07/24 20:57
Total/NA	Analysis	300.0		1	4390	SS	EET ALB	05/03/24 19:15
Dissolved	Analysis	200.7 Rev 4.4		1	4392	VP	EET ALB	05/06/24 08:31
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		1	4550	JR	EET ALB	05/07/24 16:29
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		5	4550	JR	EET ALB	05/07/24 16:30
Total/NA	Analysis	2540C		1	4400	KB	EET ALB	05/06/24 10:19

Client Sample ID: MW-3

Date Collected: 04/30/24 09:15 Date Received: 05/02/24 07:55

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		20	4540	SS	EET ALB	05/07/24 21:10
Total/NA	Analysis	300.0		5	4390	SS	EET ALB	05/03/24 20:16
Total/NA	Analysis	300.0		50	4791	SS	EET ALB	05/10/24 11:05
Dissolved	Analysis	200.7 Rev 4.4		1	4392	VP	EET ALB	05/06/24 08:34
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		1	4550	JR	EET ALB	05/07/24 16:32
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		20	4684	JR	EET ALB	05/09/24 09:42
Total/NA	Analysis	2540C		1	4400	KB	EET ALB	05/06/24 10:19

Client Sample ID: MW-4

Date Collected: 04/30/24 10:05 Date Received: 05/02/24 07:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		100	4540	SS	EET ALB	05/07/24 21:23

Eurofins Albuquerque

Lab Sample ID: 885-3776-4

Lab Sample ID: 885-3776-2 Matrix: Water

c: Water

Lab Sample ID: 885-3776-3

Matrix: Water

Matrix: Water

Job ID: 885-3776-1

Matrix: Water

5 6 7

Lab Sample ID: 885-3776-4

Project/Site: Lattions Pit Client Sample ID: MW-4 Date Collected: 04/30/24 10:05 Date Received: 05/02/24 07:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	4390	SS	EET ALB	05/03/24 20:46
Dissolved	Analysis	200.7 Rev 4.4		1	4392	VP	EET ALB	05/06/24 08:36
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		1	4550	JR	EET ALB	05/07/24 16:36
Total Recoverable	Prep	200.2			4426	JF	EET ALB	05/06/24 13:54
Total Recoverable	Analysis	200.7 Rev 4.4		50	4684	JR	EET ALB	05/09/24 09:44
Total/NA	Analysis	2540C		1	4400	KB	EET ALB	05/06/24 10:19

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Released to Imaging: 5/5/2025 4:32:49 PM

Accreditation/Certification Summary

Client: Ranger Environmental Services,	Inc
Project/Site: Lattions Pit	

Job ID: 885-3776-1

Laboratory: Eurofins Albuquerque The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DateOregonNELAPNM10000102-26-25

Ō		(- 1 -	V			Г		PAGE <u>/</u> OF 🍌	دا
วิ	hain-	-04-Cu	istody Record	I urn-Around	ime					
Client E	:0G / R	anger Env		□ Standard	🔳 Rush_	EOG TAT				
				Project Name	, 0rT			ANALY	SIS LABOKAIC	ALL A
Mailing Ad	dress EO	<u> 16 - 5509 C</u>	hampions Drive, Midland Tx				4901	Hawkins NE - Albi	uaueraue. NM 87109	
Ranger F	O Box 2	:01179, Ai	ustin TX 78720	Project # 537	5			505-345-3975 F	ax 505-345-4107	
Phone #	521-33	35-1785						Analy	sis Request	37.76 COC
email or	Fax# V	Vill@Ran	gerEnv com	Project Manaç	jer W Kierdo	orf	((
QA/QC P	ackage						лкс			
Stance	Jard		Level 4 (Full Validation)				1/0			
Accredit	ation	🗆 Az Col	mpliance	Sampler wik	teasons & J	, MARTINEZ	יייר ספר ביייר ביייר ביייר ביייר ביי			
	v V			On Ice:	B-Yes I	%	/ 0	 1s		
EDD	(Type)_	Excel		# of Coolers;		いちもち	. ⊽ਰ ਬਿਹ (il p		
				Cooler Temp	iciualing CF);	21-00-12	12D(3021	əyər		
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	87EX ((sits 992		
42/0E/3	0836	AR	1-11	SEE NOTES	ととしょう			×		
	141		MW-d		ICE -					<u> </u>
	2915		Mw-3							
	1005		カー・ハレジ	-1	1					
-1			7250 6: 2014	3 SMEL URS	110	me sizint.		×		-
										_
	Timo	Dalinguiche	ad h			-1-C]]			
5/1/24	1333			Kecelved by	via ,	uate lime	Remarks t	sill to EOG Midland	attn Chase Settle	
Date	Time	Relinguishe	at hu	Panalyad by	the second	OILIN 1200		MU PLOSTEC (MNOZ)	TWSIZE, IX ASIT NE PUBSIE	(sanh)
per lat	1902	(ruhan 11 m			Wut Funzer Ju St212	2
	recessary :	samples subr	nitted to Hall Environmental may be subc	contracted to other a	redited laboratories	This serves as notice of the	I iis possibility Any	sub-contracted data will be	s clearly notated on the analytical report	

Released to Imaging: 5/5/2025 4:32:49 PM

Page 19 of 21

5/13/2024

.

Lattions Pit Analysis Request

- o Chloride
- o Fluoride
- o Iron
- o Manganese
- o Sulfate
- o Total Dissolved Solids

& PLEASE CALL FOR TREP BLAM DEREUSING

Login Sample Receipt Checklist

Client: Ranger Environmental Services, Inc

Login Number: 3776 List Number: 1 Creator: Casarrubias, Tracy

sampling.

Question	Answer	Comment	
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True	Samples not Frozen	
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
TCEQ Mtd 1005 soil sample was frozen/delivered for prep within 48H of	True		

Job Number: 885-3776-1

List Source: Eurofins Albuquerque

Received by OCD: 3/27/2025 1:59:02 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Will Kierdorf Ranger Environmental Services, Inc 7215 McNeil Drive PO BOX 201179 Austin, Texas 78729 Generated 10/9/2024 3:26:31 PM

JOB DESCRIPTION

Lattions Pit

JOB NUMBER

885-12611-1

ËOL

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by

(505)345-3975

Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com

Generated 10/9/2024 3:26:31 PM

Released to Imaging: 5/5/2025 4:32:49 PM

2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	18

Definitions/Glossary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit Job ID: 885-12611-1

,		
Qualifiers		3
HPLC/IC		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Metals		5
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	6
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	0
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Eurofins Albuquerque

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

RER

RPD

TEF

TEQ TNTC

RL

Case Narrative

Client: Ranger Environmental Services, Inc Project: Lattions Pit

4 5 6 7 8 9

Page 67 of 103

Job ID: 885-12611-1

Eurofins Albuquerque

Job ID: 885-12611-1

Job Narrative 885-12611-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/26/2024 8:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C.

HPLC/IC

Method 300_OF_28D_PREC: The following sample was diluted due to the nature of the sample matrix: MW-1 (885-12611-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 885-12611-1

Client: Ranger Environmental Service	es, inc						JOD ID: 885-	12011-1	
Project/Site: Lattions Pit									
Client Sample ID: MW-1						Lab Sam	ple ID: 885-1	2611-1	
Date Collected: 09/24/24 09:20							Matri	x: Water	
Date Received: 09/26/24 08:00									
Method: EPA 300.0 - Anions, Ion C	hromatograg	ohy							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	1800		100	mg/L			10/02/24 09:10	200	
Fluoride	ND		2.0	mg/L			09/29/24 13:21	20	
Sulfate	1800		100	mg/L			10/02/24 09:10	200	
Method: EPA 200.7 Rev 4.4 - Metal	s (ICP) - Tota	I Recoverab	е						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	8
Iron	0.47		0.050	mg/L		09/28/24 11:19	10/01/24 13:07	1	
Manganese	0.16		0.0020	mg/L		09/28/24 11:19	10/01/24 13:07	1	0
		a base of							3
Method: EPA 200.7 Rev 4.4 - Metal	s (ICP) - Diss			11 14		Durant	A	D!!	
Analyte	Result	Qualifier	RL		<u> </u>	Prepared	Analyzed		
Iron	ND		0.020	mg/L			09/27/24 13:58	1	
Manganese	0.16		0.0020	mg/L			09/27/24 13:58	1	
General Chemistry									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids (SM 2540C)	6400		500	mg/L			10/01/24 08:16	1	

Eurofins Albuquerque

Job ID: 885-12611-1

Total Dissolved Solids (SM 2540C)	2600		500	mg/L			10/01/24 08:16	1	
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac	
General Chemistry									
Manganese	0.050		0.0020	mg/L			09/27/24 14:02	1	
Iron	ND		0.020	mg/L			09/27/24 14:02	1	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Method: EPA 200.7 Rev 4.4 - Metal	s (ICP) - Diss	olved							
Manganese	0.24		0.0020	mg/L		09/28/24 11:19	10/01/24 13:19	1	9
Iron	5.0		0.50	mg/L		09/28/24 11:19	10/01/24 13:29	10	U
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	8
Method: EPA 200.7 Rev 4.4 - Metal	s (ICP) - Tota	l Recoverab	le						
Sulfate	920		25	mg/L			10/02/24 09:23	50	
Fluoride	0.79		0.10	mg/L			09/29/24 13:33	1	
Chloride	450		25	mg/L			10/02/24 09:23	50	
Method: EPA 300.0 - Anions, Ion C Analyte	hromatograp Result	o <mark>hy</mark> Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Date Received: 09/26/24 08:00									
Date Collected: 09/24/24 10:20							Matri	x: Water	
Client Sample ID: MW-2						Lab Sam	ple ID: 885-1	2611-2	
Project/Site: Lattions Pit									
Client: Ranger Environmental Service	es, inc						JOD ID: 885-	12011-1	

Eurofins Albuquerque

.

Client Sample Results

Page 70 of 103

	Client	Sample Res	sults					
Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit						Job ID: 885-	12611-1	2
Client Sample ID: MW-4					Lab Sam	ple ID: 885-1	2611-3	
Date Collected: 09/24/24 10:50						Matrix	x: Water	
Date Received: 09/26/24 08:00								
Method: EPA 300.0 - Anions, Ion Chromatograp	ohy							
Analyte Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride 930		50	mg/L			10/02/24 09:35	100	
Fluoride 1.1		0.10	mg/L			09/29/24 13:58	1	
Sulfate 1500		50	mg/L			10/02/24 09:35	100	
Method: EPA 200.7 Rev 4.4 - Metals (ICP) - Tota	I Recoverabl	e						
Analyte Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	0
Iron 30	; _	2.5	mg/L		09/28/24 11:19	10/01/24 13:31	50	0
Manganese 1.1		0.010	mg/L		09/28/24 11:19	10/01/24 13:24	5	Q
Method: EPA 200.7 Rev 4.4 - Metals (ICP) - Diss	olved							
Analyte Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron ND		0.020	mg/L			09/27/24 14:06	1	
Manganese 0.11		0.0020	mg/L			09/27/24 14:06	1	
General Chemistry								
Analyte Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids (SM 2540C) 4200		500	mg/L			10/01/24 08:16	1	

Eurofins Albuquerque

.

QC Sample Results

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-13338/4				Client Sa	ample ID: Metho	d Blank
Matrix: Water					Prep Type: 7	Total/NA
Analysis Batch: 13338						
МВ	MB					
Analyte Result	Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride ND	0.50	mg/L			09/29/24 10:41	1
Fluoride ND	0.10	mg/L			09/29/24 10:41	1
Sulfate ND	0.50	mg/L			09/29/24 10:41	1

Lab Sample ID: LCS 885-13338/5 Matrix: Water

Analysis Batch: 13338

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.00	4.63		mg/L		93	90 - 110	
Fluoride	0.500	0.493		mg/L		99	90 - 110	
Sulfate	10.0	9.21		mg/L		92	90 - 110	

Lab Sample ID: MRL 885-13338/3

Matrix: Water Analysis Batch: 13338

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	0.500	0.513		mg/L		103	50 - 150	
Fluoride	0.100	0.112		mg/L		112	50 - 150	
Sulfate	0.500	0.525		mg/L		105	50 - 150	

Lab Sample ID: MB 885-13575/4

Matrix: Water

Analysis Batch: 13575

		ND						
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			10/02/24 08:30	1
Fluoride	ND		0.10	mg/L			10/02/24 08:30	1
Sulfate	ND		0.50	mg/L			10/02/24 08:30	1

Lab Sample ID: LCS 885-13575/5 Matrix: Water

Analysis Batch: 13575

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier Ur	nit D	%Rec	Limits	
Chloride	5.00	4.91	m	g/L	98	90 - 110	
Fluoride	0.500	0.517	m	g/L	103	90 - 110	
Sulfate	10.0	9.46	mg	g/L	95	90 - 110	

Lab Sample ID: MRL 885-13575/3

Matrix: Water Analysis Batch: 13575

Spike	MRL	MRL				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.500	0.522		mg/L		104	50 - 150	
0.100	0.108		mg/L		108	50 - 150	
0.500	0.483	J	mg/L		97	50 - 150	
	Spike Added 0.500 0.100 0.500	Spike MRL Added Result 0.500 0.522 0.100 0.108 0.500 0.483	Spike MRL MRL Added Result Qualifier 0.500 0.522 0.100 0.100 0.108 J	Spike MRL MRL Added Result Qualifier Unit 0.500 0.522 mg/L 0.100 0.108 mg/L 0.500 0.483 J mg/L	Spike MRL MRL Added Result Qualifier Unit D 0.500 0.522 mg/L D 0.100 0.108 mg/L D 0.500 0.483 J mg/L	Spike MRL MRL Added Result Qualifier Unit D %Rec 0.500 0.522 mg/L 104 0.100 0.108 mg/L 108 0.500 0.483 J mg/L 97	Spike MRL MRL %Rec Added Result Qualifier Unit D %Rec Limits 0.500 0.522 mg/L 104 50 - 150 0.100 0.108 mg/L 108 50 - 150 0.500 0.483 J mg/L 97 50 - 150

Eurofins Albuquerque

Page 71 of 103

Job ID: 885-12611-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

QC Sample Results

Job ID: 885-12611-1

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 885-13232/40									Client Sa	mple ID: Metho	d Blank
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 13232											
• •	мв	MB					_	_			
	Result	Qualifier		:			<u> </u>	P	repared	Analyzed	
Iron			0.020		mg/L					09/27/24 13:53	1
Manganese	ND		0.0020)	mg/L					09/27/24 13:53	1
							Clie	ent	Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 13232											
· ····, ··· ···			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.500	0.541		mg/L		_	108	85 - 115	
Manganese			0.500	0.548		mg/L			110	85 - 115	
						-					
Lab Sample ID: LLCS 885-13232/41							Clie	ent	Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 13232											
			Spike	LLCS	LLCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Iron			0.0200	0.0161	J	mg/L			80	50 - 150	
Manganese			0.00200	0.00201		mg/L			101	50 - 150	
Lab Sample ID: MRL 885-13232/37							Clie	ent	Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 13232			.								
Australia			Бріке	MRL		11		_	0/ D	%Rec	
			Added	Result		Unit		_			
Manganasa			0.0200	0.0210	J	mg/L			105	50 - 150	
Manganese			0.00200	0.00165	J	mg/∟			93	50 - 150	
Lab Sample ID: MRL 885-13463/14							Clie	ent	Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type:	Total/NA
Analysis Batch: 13463											
			Spike	MRL	MRL					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
lron			0.0200	0.0143	J	mg/L		_	71	50 - 150	
Manganese			0.00200	0.00179	J	mg/L			90	50 - 150	
Lab Sample ID: MB 885-13236/1-A									Client Sa	ample ID: Metho	od Blank
Matrix: Water									Prep 1	Type: Total Rec	overable
Analysis Batch: 13463										Prep Batc	h: 13236
	MB	MB									
Analyte	Result	Qualifier	RL	·	Unit		<u>D</u>	Ρ	repared	Analyzed	Dil Fac
Iron	ND		0.050)	mg/L		C	9/2	8/24 11:19	10/01/24 10:45	1
Manganese	ND		0.0020)	mg/L		C	9/2	8/24 11:19	10/01/24 10:45	1
									0		O arrest a
Lap Sample ID: LCS 885-13236/6-A							Clie	ent	Sample	D: Lab Control	Sample
watrix: water									Prep I	ype: lotal kec	
Analysis Batch: 13463			Calle	1.00	1.00					Prep Batc	n: 13236
Auchide			ъріке Алілі	LCS	LUS	11		_	0/ D	%ReC	
			Added	Result	Qualifier	unit		<u>u</u>			
Nongeneee			0.500	0.476		mg/L			95	00 - 115	
wanganese			0.500	0.467		mg/L			93	05 - 115	

Eurofins Albuquerque
Job ID: 885-12611-1

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: LLCS 885-13236/5-A Matrix: Water	X						Clier	nt Sample Prep	e ID: Lab Control Type: Total Rec	l Sample overable	
Analysis Batch: 13463			Spike	LLCS	LLCS				Prep Batc %Rec	h: 13236	5
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Iron			0.0200	0.0157	J	mg/L		78	50 - 150		6
Manganese			0.00200	0.00176	J	mg/L		88	50 - 150		
 Method: 2540C - Solids, Total E	Dissolved	(TDS)									7
Lab Sample ID: MB 885-13340/1								Client S	Sample ID: Metho	od Blank	8
Matrix: Water									Prep Type:	Total/NA	
Analysis Batch: 13340											9
	MB	MB									
Analyte	Result	Qualifier		RL	Unit		D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	ND			50	mg/L				10/01/24 08:16	1	
Lab Sample ID: LCS 885-13340/2 Matrix: Water							Clier	nt Sample	e ID: Lab Control Prep Type:	l Sample Total/NA	

Analysis Batch: 13340										
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids			1000	1020		mg/L		102	80 - 120	
Lab Sample ID: 885-12611-2 DU									Client Sample ID	: MW-2
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 13340										
	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	2600			2390		mg/L			8	10

10

QC Association Summary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Analysis Batch: 13338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-12611-1	MW-1	Total/NA	Water	300.0	
885-12611-2	MW-2	Total/NA	Water	300.0	
885-12611-3	MW-4	Total/NA	Water	300.0	
MB 885-13338/4	Method Blank	Total/NA	Water	300.0	
LCS 885-13338/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-13338/3	Lab Control Sample	Total/NA	Water	300.0	

Lab Sample ID 885-12611-1	Client Sample ID MW-1	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
885-12611-2	MW-2	Total/NA	Water	300.0	
885-12611-3	MW-4	Total/NA	Water	300.0	
MB 885-13575/4	Method Blank	Total/NA	Water	300.0	
LCS 885-13575/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-13575/3	Lab Control Sample	Total/NA	Water	300.0	

Metals

Filtration Batch: 13134

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-12611-1	MW-1	Dissolved	Water	Filtration	
885-12611-2	MW-2	Dissolved	Water	Filtration	
885-12611-3	MW-4	Dissolved	Water	Filtration	

Analysis Batch: 13232

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-12611-1	MW-1	Dissolved	Water	200.7 Rev 4.4	13134
885-12611-2	MW-2	Dissolved	Water	200.7 Rev 4.4	13134
885-12611-3	MW-4	Dissolved	Water	200.7 Rev 4.4	13134
MB 885-13232/40	Method Blank	Total/NA	Water	200.7 Rev 4.4	
LCS 885-13232/42	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
LLCS 885-13232/41	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-13232/37	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

Prep Batch: 13236

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-12611-1	MW-1	Total Recoverable	Water	200.2	
885-12611-2	MW-2	Total Recoverable	Water	200.2	
885-12611-3	MW-4	Total Recoverable	Water	200.2	
MB 885-13236/1-A	Method Blank	Total Recoverable	Water	200.2	
LCS 885-13236/6-A	Lab Control Sample	Total Recoverable	Water	200.2	
LLCS 885-13236/5-A	Lab Control Sample	Total Recoverable	Water	200.2	

Analysis Batch: 13463

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-12611-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	13236
885-12611-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	13236
885-12611-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	13236
885-12611-3	MW-4	Total Recoverable	Water	200.7 Rev 4.4	13236
885-12611-3	MW-4	Total Recoverable	Water	200.7 Rev 4.4	13236
MB 885-13236/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	13236

Eurofins Albuquerque

Page 74 of 103

Job ID: 885-12611-1

QC Association Summary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Metals (Continued)

Analysis Batch: 13463 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 885-13236/6-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	13236
LLCS 885-13236/5-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	13236
MRL 885-13463/14	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

General Chemistry

Analysis Batch: 13340

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-12611-1	MW-1	Total/NA	Water	2540C	
885-12611-2	MW-2	Total/NA	Water	2540C	
885-12611-3	MW-4	Total/NA	Water	2540C	
MB 885-13340/1	Method Blank	Total/NA	Water	2540C	
LCS 885-13340/2	Lab Control Sample	Total/NA	Water	2540C	
885-12611-2 DU	MW-2	Total/NA	Water	2540C	

10/9/2024

Job ID: 885-12611-1

Client: Ranger Environmental Services, Inc

Job ID: 885-12611-1

Lab Sample ID: 885-12611-1 Matrix: Water

Lab Sample ID: 885-12611-2

Client Sample ID: MW-1 Date Collected: 09/24/24 09:20 Date Received: 09/26/24 08:00

Project/Site: Lattions Pit

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		20	13338	RC	EET ALB	09/29/24 13:21
Total/NA	Analysis	300.0		200	13575	JT	EET ALB	10/02/24 09:10
Dissolved	Filtration	Filtration			13134	тс	EET ALB	09/26/24 17:31
Dissolved	Analysis	200.7 Rev 4.4		1	13232	VP	EET ALB	09/27/24 13:58
Total Recoverable	Prep	200.2			13236	JE	EET ALB	09/28/24 11:19
Total Recoverable	Analysis	200.7 Rev 4.4		1	13463	JR	EET ALB	10/01/24 13:07
Total/NA	Analysis	2540C		1	13340	ES	EET ALB	10/01/24 08:16

Client Sample ID: MW-2 Date Collected: 09/24/24 10:20

Date Received: 09/26/24 08:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	13338	RC	EET ALB	09/29/24 13:33
Total/NA	Analysis	300.0		50	13575	JT	EET ALB	10/02/24 09:23
Dissolved	Filtration	Filtration			13134	тс	EET ALB	09/26/24 17:31
Dissolved	Analysis	200.7 Rev 4.4		1	13232	VP	EET ALB	09/27/24 14:02
Total Recoverable	Prep	200.2			13236	JE	EET ALB	09/28/24 11:19
Total Recoverable	Analysis	200.7 Rev 4.4		1	13463	JR	EET ALB	10/01/24 13:19
Total Recoverable	Prep	200.2			13236	JE	EET ALB	09/28/24 11:19
Total Recoverable	Analysis	200.7 Rev 4.4		10	13463	JR	EET ALB	10/01/24 13:29
Total/NA	Analysis	2540C		1	13340	ES	EET ALB	10/01/24 08:16

Client Sample ID: MW-4

Date Collected: 09/24/24 10:50 Date Received: 09/26/24 08:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	13338	RC	EET ALB	09/29/24 13:58
Total/NA	Analysis	300.0		100	13575	JT	EET ALB	10/02/24 09:35
Dissolved	Filtration	Filtration			13134	тс	EET ALB	09/26/24 17:31
Dissolved	Analysis	200.7 Rev 4.4		1	13232	VP	EET ALB	09/27/24 14:06
Total Recoverable	Prep	200.2			13236	JE	EET ALB	09/28/24 11:19
Total Recoverable	Analysis	200.7 Rev 4.4		5	13463	JR	EET ALB	10/01/24 13:24
Total Recoverable	Prep	200.2			13236	JE	EET ALB	09/28/24 11:19
Total Recoverable	Analysis	200.7 Rev 4.4		50	13463	JR	EET ALB	10/01/24 13:31
Total/NA	Analysis	2540C		1	13340	ES	EET ALB	10/01/24 08:16

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Matrix: Water

Lab Sample ID: 885-12611-3

Matrix: Water

Accreditation/Certification Summary

Client: Ranger Environmental Services,	Inc
Project/Site: Lattions Pit	

Job ID: 885-12611-1

Laboratory: Eurofins Albuquerque
The accreditations/certifications listed below are applicable to this report

AuthorityProgramIdentification NumberExpiration DateOregonNELAPNM10000102-26-25

Received by OCD: 3/27/2025 1:59:02 PM

NTA NTA NTO 885.1261		PUSEL PUSEL PONU HUNDES FEL COLLO
PAGE ENVIRONME YSIS LABOR/ Ibuquerque, NM 87109 Fax 505-345-4107		nd attn: Chase Settle nd attn: Chase Settle hast2(Hwos), ¢ / <snoru istry In Murt Outy S hu of asonu Hwos Duss in of asonu huest pristed</snoru
HALL ANAL 4901 Hawkins NE - A Tel. 505-345-3975	TPH:8015D(GRO \ DRO \ MRO)	marks: Bill to EOG Midlar marks: Bill to EOG Midlar かた いのみら、オメ るらの ート のたて いのみら、オメ るらの ート ろった たいし、 サイ れのメ わい うらった しいゆうど のいんじ
EOG TAT		Date Time Rer 9 35 M 1153 0 Date Time 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nd Time: ard ■ Rush ime: ∠arr zowi P 5375	anager: W. Kierdo . Kreawre J. 1 A Yes Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative Preservative P	Via: Via: Via: Via: CUNN
Turn-Arou	Project Ma Sampler: L On Ice: # of Coole Container Type and SEE Mon	Received by <u>UUUUUU</u> Received by <u>SCU</u> ubcontracted to oth
stody Record	Internation Internatio Internation Internation Internation Internation Intern	d by: d by: للألفطيات Mailed to Hall Environmental may be si
l-U/-CU: Ranger Env. 06 - 5509 Ch	Will@Rang	Relinquishe Relinquishe
hain :006/F	Time Construction: Construction: AC Instruction: Instruction:	Time: IIS3 Time: IQUD

Page 16 of 18

10/9/2024

Received by OCD: 3/27/2025 1:59:02 PM

Lattions Pit Analysis Request

- o Chloride
- o Fluoride
- o Iron
- o Manganese
- o Sulfate
- o Total Dissolved Solids

A PER DISCUSSION WITH A. FREEMAN ON 9/24 - FILTER FOR DISSOLVED METALS IN LAB.

ODNE TO LEMETED WATER IN MW-4 ALL BOTTLE SETS HERE NOT ABLE TO BE FILLED - PLEASE ANALYZE ALL CONSTETLENTS ADDRE POSSEBLE.

Login Sample Receipt Checklist

Client: Ranger Environmental Services, Inc

Login Number: 12611 List Number: 1 Creator: Casarrubias, Tracy

sampling.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
TCEQ Mtd 1005 soil sample was frozen/delivered for prep within 48H of	N/A	

11

Received by OCD: 3/27/2025 1:59:02 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Will Kierdorf Ranger Environmental Services, Inc 7215 McNeil Drive PO BOX 201179 Austin, Texas 78729 Generated 12/20/2024 10:24:19 AM

JOB DESCRIPTION

Lattions Pit

JOB NUMBER

885-16886-1

EOL

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by

(505)345-3975

Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com

Generated 12/20/2024 10:24:19 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	14
Receipt Checklists	16

Page 83 of 103

Job ID: 885-16886-1

Definitions/Glossary

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Qualifiers

DLC

EDL

LOD

LOQ

MCL MDA

MDC

MDL

MPN

MQL

NC

ND

NEG POS

PQL PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

ML

Quantoro		3
Metals		
Qualifier	Qualifier Description	4
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Cher	mistry	5
Qualifier	Qualifier Description	
E	Result exceeded calibration range.	6
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	Ŭ
CFL	Contains Free Liquid	Q
CFU	Colony Forming Unit	3
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	

Case Narrative

Client: Ranger Environmental Services, Inc. Project: Lattions Pit

Job ID: 885-16886-1

4 5 6 7 8 9

Page 85 of 103

Job ID: 885-16886-1

Eurofins Albuquerque

Job Narrative 885-16886-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/12/2024 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.1°C.

HPLC/IC

Method 300_OF_28D_PREC: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 885-17579 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or nonhomogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 2540C_SingleDry: The analysis volume selected for the following samples produced a base result greater than 200mg before calculation of the final result: MW-1 (885-16886-1) and (885-16886-A-1 DU). Reanalysis was not be performed due to no trapped moisture observed. The reference method specifies that no more than 200mg of weight be recovered for a chosen sample analysis volume in order to produce the best data precision. As such, since no moisture was observed, these data have been qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Ranger Environmental Services, Inc

Job ID: 885-16886-1

Project/Site: Lattions Pit										
Client Sample ID: MW-1 Lab Sample ID: 885-16886-1										
Date Collected: 12/10/24 10:18							Matrix	k: Water		
Date Received: 12/12/24 07:45										
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Chloride	1900		100	mg/L			12/13/24 19:49	200		
Fluoride	2.3		1.0	mg/L			12/12/24 19:48	10		
Sulfate	2000		50	mg/L			12/12/24 19:59	100		
Method: EPA 200.7 Rev 4.4 - Metal	s (ICP) - Tota	I Recoverabl	e							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	0	
Iron	ND		0.050	mg/L		12/16/24 09:00	12/19/24 14:20	1	0	
Manganese	0.15		0.010	mg/L		12/16/24 09:00	12/17/24 16:59	5		
									9	
General Chemistry										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Dissolved Solids (SM 2540C)	6000	E	100	mg/L			12/17/24 10:06	1		

Client: Ranger Environmental Services, Inc

Job ID: 885-16886-1

Project/Site: Lattions Pit										
Client Sample ID: MW-2 Lab Sample ID: 885-16886-2										
Date Collected: 12/10/24 09:01							Matri	x: Water		
Date Received: 12/12/24 07:45										
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5	
Chloride	390		50	mg/L			12/12/24 21:05	100		
Fluoride	1.1		1.0	mg/L			12/12/24 20:54	10		
Sulfate	860		50	mg/L			12/12/24 21:05	100		
Method: EPA 200.7 Rev 4.4 - Meta	ls (ICP) - Tota	I Recoverabl	e							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	8	
Iron	3.3		0.25	mg/L		12/16/24 09:00	12/19/24 14:23	5	0	
Manganese	0.074		0.010	mg/L		12/16/24 09:00	12/17/24 17:02	5		
									9	
General Chemistry										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total Dissolved Solids (SM 2540C)	2100		250	mg/L			12/17/24 10:06	1		

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-17579/51						Client Sample ID: Metho						
Matrix: Water							Prep Type: 1	Total/NA				
Analysis Batch: 17579												
	МВ	МВ										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac				
Chloride	ND		0.50	mg/L			12/12/24 16:29	1				
Fluoride	ND		0.10	mg/L			12/12/24 16:29	1				
Sulfate	ND		0.50	mg/L			12/12/24 16:29	1				
- Lab Sample ID: LCS 885-17579/52					CI	ient Sample	ID: Lab Control	Sample				

Matrix: Water Analysis Batch: 17579

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.00	4.84		mg/L		97	90 - 110	
Fluoride	0.500	0.510		mg/L		102	90 - 110	
Sulfate	10.0	9.60		mg/L		96	90 - 110	

Lab Sample ID: MRL 885-17579/3

Matrix: Water Analysis Batch: 17579

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	0.500	0.518		mg/L		104	50 - 150	
Fluoride	0.100	0.100		mg/L		100	50 - 150	
Sulfate	0.500	0.524		mg/L		105	50 - 150	

Lab Sample ID: 885-16886-1 MS Matrix: Water

Analysis Batch: 17579					
	Sample	Sample	Spike	MS	MS
Analuta	Deput	Qualifian	Addad	Beault	Qualifi

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	2.3		5.00	6.81		mg/L		89	70 - 130	

Lab Sample ID: 885-16886-1 MSD Matrix: Water

Analysis Batch: 17579											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	2.3		5.00	7.87		mg/L		111	70 - 130	14	20

Lab Sample ID: MB 885-17697/61 Matrix: Water

Analysis Batch	: 1	7	697	7
----------------	-----	---	-----	---

	MB	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50	mg/L			12/13/24 18:37	1
Fluoride	ND		0.10	mg/L			12/13/24 18:37	1
Sulfate	ND		0.50	mg/L			12/13/24 18:37	1

Eurofins Albuquerque

Page 88 of 103

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-1

Client Sample ID: MW-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 885-17697/62							Clie	nt Sample	ID: Lab Control	Sample
Matrix: Water									Prep Type: ⁻	Total/NA
Analysis Batch: 17697										
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	0	%Rec	Limits	
Chloride			5.00	4.94		mg/L		99	90 - 110	
Fluoride			0.500	0.546		mg/L		109	90 - 110	
Sulfate			10.0	9.86		mg/L		99	90 - 110	
Lab Sample ID: MRL 885-17697/3							Clie	nt Sample	ID: Lab Control	Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 17697										
			Spike	MRL	MRL				%Rec	
Analyte			Added	Result	Qualifier	Unit	0	%Rec	Limits	
Chloride			0.500	0.528		mg/L		106	50 - 150	
Fluoride			0.100	0.106		mg/L		106	50 - 150	
Sulfate			0.500	0.518		mg/L		104	50 - 150	
Method: 200.7 Rev 4.4 - Metals (I	CP)									
l ab Sample ID: MRI 885-18001/14							Clie	nt Sample	D: I ab Control	Sample
Matrix: Water									Prep Type: "	
Analysis Batch: 18001										
······, ····			Spike	MRL	MRL				%Rec	
Analyte			Added	Result	Qualifier	Unit	0	%Rec	Limits	
Iron			0.0200	0.0215	J	mg/L		108	50 - 150	
Manganese			0.00200	0.00237		mg/L		118	50 - 150	
Lab Sample ID: MRL 885-18187/42							Clie	nt Sample	ID: Lab Control	Sample
Matrix: Water									Prep Type:	Total/NA
Analysis Batch: 18187										
			Spike	MRL	MRL				%Rec	
Analyte			Added	Result	Qualifier	Unit	0	%Rec	Limits	
Iron			0.0200	0.0192	J	mg/L		96	50 - 150	
Manganese			0.00200	0.00198	J	mg/L		99	50 - 150	
Lab Sample ID: MB 885-17808/1-A								Client S	ample ID: Metho	d Blank
Matrix: Water								Prep	Type: Total Reco	overable
Analysis Batch: 18001									Prep Batcl	n: 17808
	МВ	МВ								
Analyte	Result	Qualifier		RL	Unit		D	Prepared	Analyzed	Dil Fac
Iron	ND			0.050	mg/L		12	/16/24 09:00	12/17/24 12:48	1
Manganese	ND		0	.0020	mg/L		12	/16/24 09:00	12/17/24 12:48	1
Lab Sample ID: LCS 885-17808/6-A							Clie	nt Sample	ID: Lab Control	Sample
Matrix: Water								Prep	Type: Total Reco	verable
Analysis Batch: 18001									Prep Batcl	n: 17808

Analysis Batch: 18001							Prep	Batch: 17808
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	0.500	0.523		mg/L		105	85 - 115	
Manganese	0.500	0.506		mg/L		101	85 - 115	

Eurofins Albuquerque

Job ID: 885-16886-1

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Lab Sample ID: LLCS 885-17808/5-A

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Job ID: 885-16886-1

Client Sample ID: Lab Control Sample

5	
6	
8	
9	

Matrix: Water											Prep	Type: Total	Recov	erable
Analysis Batch: 18001												Prep E	Batch:	17808
-				Spike		LLCS	LLCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Iron				0.0200		0.0218	J	mg/L		_	109	50 - 150		
Manganese				0.00200		0.00202		mg/L			101	50 - 150		
Method: 2540C - Solids, Total	Dissolv	ed (1	TDS)											
_ Lab Sample ID: MB 885-17913/1											Client	Sample ID: M	ethod	Blank
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 17913														
-		МВ М	ИВ											
Analyte	Res	sult C	Qualifier		RL		Unit		D	Ρ	repared	Analyzed	ł	Dil Fac
Total Dissolved Solids		ND			50		mg/L					12/17/24 10	:06	1
- Lab Sample ID: LCS 885-17913/2									CI	ient	Sampl	e ID: Lab Cor	trol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 17913														
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Total Dissolved Solids				1000		1010		mg/L		-	101	80 - 120		
- Lab Sample ID: 885-16886-1 DU												Client Sam	ole ID:	MW-1
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 17913														
-	Sample S	Sampl	e			DU	DU							RPD
Analyte	Result (Qualifi	ier			Result	Qualifier	Unit		D			RPD	Limit
Total Dissolved Solids	6000	E				5970	E	mg/L		_			0.9	10

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Ranger Environmental Services, Inc Project/Site: Lattions Pit

Prep Batch

Page 91 of 103

Job ID: 885-16886-1

Method

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

Matrix

Water

Water

Water

Water

Water

Water

Water

Water

Water

7

Analysis Batch: 17697

Lab Sample ID 885-16886-1	Client Sample ID MW-1	Prep Type Total/NA	Matrix Water	Method Prep Batch 300.0
MB 885-17697/61	Method Blank	Total/NA	Water	300.0
LCS 885-17697/62	Lab Control Sample	Total/NA	Water	300.0
MRL 885-17697/3	Lab Control Sample	Total/NA	Water	300.0

Metals

HPLC/IC

Lab Sample ID

885-16886-1

885-16886-1

885-16886-2

885-16886-2

MB 885-17579/51

LCS 885-17579/52

MRL 885-17579/3

885-16886-1 MS

885-16886-1 MSD

Analysis Batch: 17579

Prep Batch: 17808

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-16886-1	MW-1	Total Recoverable	Water	200.2	
885-16886-2	MW-2	Total Recoverable	Water	200.2	
MB 885-17808/1-A	Method Blank	Total Recoverable	Water	200.2	
LCS 885-17808/6-A	Lab Control Sample	Total Recoverable	Water	200.2	
LLCS 885-17808/5-A	Lab Control Sample	Total Recoverable	Water	200.2	

Analysis Batch: 18001

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-16886-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	17808
885-16886-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	17808
MB 885-17808/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	17808
LCS 885-17808/6-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	17808
LLCS 885-17808/5-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	17808
MRL 885-18001/14	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

Analysis Batch: 18187

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-16886-1	MW-1	Total Recoverable	Water	200.7 Rev 4.4	17808
885-16886-2	MW-2	Total Recoverable	Water	200.7 Rev 4.4	17808
MRL 885-18187/42	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	
MRL 885-18187/42	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	

General Chemistry

Analysis Batch: 17913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-16886-1	MW-1	Total/NA	Water	2540C	
885-16886-2	MW-2	Total/NA	Water	2540C	
MB 885-17913/1	Method Blank	Total/NA	Water	2540C	
LCS 885-17913/2	Lab Control Sample	Total/NA	Water	2540C	
885-16886-1 DU	MW-1	Total/NA	Water	2540C	

Eurofins Albuquerque

Client Sample ID

MW-1

MW-1

MW-2

MW-2

MW-1

MW-1

Method Blank

Lab Control Sample

Lab Control Sample

Project/Site: Lattions Pit

Client Sample ID: MW-1

Client: Ranger Environmental Services, Inc

Job ID: 885-16886-1

Lab Sample ID: 885-16886-1

Date Collected: 12/10/24 10:18 Date Received: 12/12/24 07:45

_	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		10	17579	EH	EET ALB	12/12/24 19:48
Total/NA	Analysis	300.0		100	17579	EH	EET ALB	12/12/24 19:59
Total/NA	Analysis	300.0		200	17697	EH	EET ALB	12/13/24 19:49
Total Recoverable	Prep	200.2			17808	JE	EET ALB	12/16/24 09:00
Total Recoverable	Analysis	200.7 Rev 4.4		5	18001	JR	EET ALB	12/17/24 16:59
Total Recoverable	Prep	200.2			17808	JE	EET ALB	12/16/24 09:00
Total Recoverable	Analysis	200.7 Rev 4.4		1	18187	JR	EET ALB	12/19/24 14:20
Total/NA	Analysis	2540C		1	17913	DL	EET ALB	12/17/24 10:06

Client Sample ID: MW-2

Date Collected: 12/10/24 09:01 Date Received: 12/12/24 07:45

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		10	17579	EH	EET ALB	12/12/24 20:54
Total/NA	Analysis	300.0		100	17579	EH	EET ALB	12/12/24 21:05
Total Recoverable	Prep	200.2			17808	JE	EET ALB	12/16/24 09:00
Total Recoverable	Analysis	200.7 Rev 4.4		5	18001	JR	EET ALB	12/17/24 17:02
Total Recoverable	Prep	200.2			17808	JE	EET ALB	12/16/24 09:00
Total Recoverable	Analysis	200.7 Rev 4.4		5	18187	JR	EET ALB	12/19/24 14:23
Total/NA	Analysis	2540C		1	17913	DL	EET ALB	12/17/24 10:06

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Matrix: Water

Lab Sample ID: 885-16886-2

Matrix: Water

Accreditation/Certification Summary

Client: Ranger Environmental Services, In-	С
Project/Site: Lattions Pit	

Job ID: 885-16886-1

Laboratory: Eurofins Albuquerque

The accreditations/certifications listed below are applicable to this report.

3 4 5 6 7 8 9 Authority Program Identification Number Expiration Date Oregon NELAP NM100001 02-25-25

Around Time: HALL ENVIRONMENT	ect Name: Travis prr	1901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	t Manager: W. Kierdorf	оъм / с	oler: W. KGERDORE) 22			er Temp(Inauding CP): 0.2 -0. (フロ・1) 8021 8021	ainer Preservative HEAL No. See A	NOTES SELE MORES							red by: Via: Date Time Remarks: Bill to EOG Attn Chase Settle	HANDING 12/11/34 1153 BOTTLE SET: 1×500 ML HUD POUR	rounter 12/12/72. Use time
		901 Ha	Fel. 50		0	(008	V V	43) 9	Chlorid		-						Ks: Bill	ות גבו	
		4		(OAM \ C	סאמ	10	ев (1508	X T PH:80			-	+	$\left \right $	+	+ +	Remark	Barr	
h for Tor				rdorf			ON 🗆	ONDAN	02-0.176.1	e HEAL No.		<u> </u>						Date Time	8511 hc/11/21	I did'y JUHS
Time:	0r1	75)	Ider: W. Kiel)	REERDORS	8 Yes		(including CF)	Preservative Type	SEE MORS	7						Via:	· · · ·	ria: .
Turn-Around	Project Name	Project #: 53		Project Mana		Sampler: 🖌	On Ice:	# of Coolers:	Cooler Temp	Container Type and #	SEE NOTES	て						Received by:	Culturad	Received by
stody Record ger Env.	amnions Drive Midland TX 70706	Istin TX 78720		terEnv.com	Level 4 (Full Validation)	npliance				Sample Name	1-MW	mu-2						d by:		
CCu sia/Ran	2 - 5509 Ch	1179, Au	5-1785	'ill@Rang)	D Az Cor	□ Other_	Excel		Matrix	AR	AQ						Selinquishe	2	Celinquisne
DG-Arte	EDC:	O Box 20	521-33	Fax#: W	ackage: ard	ttion:	U	Type)		ime	1018	1060						ime:	ŝ	9 c2
	ailing Add	anger: P	, anod	mail or	A/QC P	ccredite	I NELA	EDD		ate 7	the full	-1						ate:	Yu/24 1	hild

Received by OCD: 3/27/2025 1:59:02 PM

Released to Imaging: 5/5/2025 4:32:49 PM

ived by OCD: 3/27/2025 1:59:02 PM	.	Page 95 of 103
	J UF &	1
Lattions Pit Analysis Request		3
• Chloride		5
 Fluoride Iron 		
 Manganese Sulfate 		
 Total Dissolved Solids 		8
		9
		10

Login Sample Receipt Checklist

Client: Ranger Environmental Services, Inc

Login Number: 16886 List Number: 1 Creator: McQuiston, Steven

sampling.

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
TCEQ Mtd 1005 soil sample was frozen/delivered for prep within 48H of	N/A	

Job Number: 885-16886-1

List Source: Eurofins Albuquerque

ATTACHMENT 3 – NMOCD CORRESPONDENCE

Subject: Groundwater Sampling Notification NAUTOFAB000337

James Kennedy <James_Kennedy@eogresources.com> to Velez, Nelson, EMNRD, michael.buchanan@emnrd.nm.gov, Chase Settle 👻

You are viewing an attached message. Rangerenv.com Mail can't verify the authenticity of attached messages.

Mr. Velez/ Mr. Buchanan,

Please find attached the groundwater sampling notification for the above referenced site. The sampling notification has also been uploaded to the NMOCD Portal System. Samplir annual groundwater report uploaded to the NMOCD Portal in April 2024. If you have any questions or concerns, please contact myself or Chase Settle.

Regards, James

James F. Kennedy

Environmental Supervisor Midland Division C: 432-258-4346 O: 432-848-9146

One attachment • Scanned by Gmail (i)

Subject: RE: [EXTERNAL] Groundwater Sampling Notification NAUTOFAB000741

?

Buchanan, Michael, EMNRD <Michael.Buchanan@emnrd.nm.gov>

to James Kennedy, Velez, Nelson, EMNRD, Chase Settle 👻

You are viewing an attached message. Rangerenv.com Mail can't verify the authenticity of attached messages.

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning, James

Thank you for providing the groundwater sampling notification for the four (4) pits: Williams, Scripps, Lattion and Inex. These notifications will be accepted as part of the record. Regards,

Mike Buchanan

 From: James Kennedy lightblue Sent: Wednesday, April 24, 2024 9:28 AM

 To: Velez, Nelson, EMNRD <<u>Nelson,Velez@emnrd.nm.gov</u>>; Buchanan, Michael, EMNRD <<u>Michael.Buchanan@emnrd.nm.gov</u>>

 Cc: Chase Settle <<u>Chase_Settle@eogresources.com</u>>

 Subject: [EXTERNAL] Groundwater Sampling Notification NAUTOFAB000741

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Mr. Velez/ Mr. Buchanan,

Please find attached the groundwater sampling notification for the above referenced site. The sampling notification has also been uploaded to the NMOCD Portal System. Samplir annual groundwater report uploaded to the NMOCD Portal in April 2024. If you have any questions or concerns, please contact myself or Chase Settle.

Regards, James

James F. Kennedy

Environmental Supervisor Midland Division C: 432-258-4346 O: 432-848-9146

eog resources

?

James Kennedy «James_Kennedy@eogresources.com» to Velez, Nelson, EMNRD, Buchanan, Michael, EMNRD, Chase Settle ▼ Thu, Sep 12, 2:19 PM (23 hours ago)

Mr. Velez/ Mr. Buchanan,

Please find attached the groundwater sampling notification for the above referenced site. The sampling notification has also been uploaded to the NMOCD Portal System. Sampling will be conducted in accordance with the protocols referenced in the annual groundwater report uploaded to the NMOCD Portal in April 2024. If you have any questions or concerns, please contact myself or Chase Settle.

Regards, James

James F. Kennedy

Environmental Supervisor Midland Division C: 432-258-4346 O: 432-848-9146

One attachment · Scanned by Gmail ()

Annual Annua
Security Sectors Security 1998
Incompletence a second distance in the second second
A dama dan dan dan dan dan dan dan dan dan da
num toom

04

Subject: Groundwater Sample Notice nAUTOFAB000337 (Lattion)

James Kennedy <James_Kennedy@eogresources.com> to Buchanan, Michael, EMNRD, Chase Settle ▼ @ 3:34 PM (35 minut

Mr. Buchanan,

Please find attached the groundwater sampling notification for the above referenced site. The sampling notification has also been uploaded to the NMOCD Portal System. Sampling will be conducted in accorda with the protocols referenced in the annual groundwater report uploaded to the NMOCD Portal in April . If you have any questions or concerns, please contact myself or Chase Settle.

Regards, James

James F. Kennedy Environmental Supervisor Midland Division C: 432-258-4346 O: 432-848-9146

One attachment • Scanned by Gmail 🛈

Site Name	Lattion Pit
Location	O-23-18S-26E; Eddy County, NM
Incident ID	NAUTOFAB000337
Source & Description of Activities	Groundwater Sampling
Expected Duration for Activities	Week of 12/09/2024
Env Consultant	Ranger Environmental Services, LLC
	Yes - Starting Tuesday, 12/10/2024 @ 0800
	4 samples
	NMOCD Mr. Mike Buchanan
Sampling Notification Required	(Michael.Buchanan@emnrd.nm.gov)
Sample Number	4
Driving Directions	Directions to the site can be provided after an email request
Sampler Information	Chase Settle 575-703-6537 chase_settle@eogresources.com

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS						
Operator:	OGRID:					
EOG RESOURCES INC	7377					
5509 Champions Drive	Action Number:					
Midland, TX 79706	406801					
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)					

CONDITIONS		
Created By	Condition	Condition Date
michael.buchanan	The 2024 Annual Groundwater Report for the Lattion Pit is accepted for the record. A recently submitted Assessment Work Plan to address further delineation for the earthen pit is currently under review by OCD.	5/5/2025

Action 406801