Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM011039 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well ✓ Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone BUFFALO TRACE 1/36 W1MD FED CON 2H 2. Name of Operator 9. API Well No. MEWBOURNE OIL COMPANY 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) WELCH/PURPLE SAGE WOLFCAMP GA PO Box 5270, Hobbs, NM 88240 (575) 393-5905 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 12/T26S/R29E/NMP At surface NWNW / 460 FNL / 1245 FWL / LAT 32.0629227 / LONG -103.94146 At proposed prod. zone NWNW / 330 FNL / 895 FWL / LAT 32.0789671 / LONG -103,9431057 12. County or Parish 13. State 14. Distance in miles and direction from nearest town or post office* **EDDY** NM 25 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 330 feet location to nearest 480.0 property or lease line, ft. 360 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 50 feet 10431 feet / 20732 feet FED: NM1693 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 2997 feet 05/10/2020 60 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by the SUPO must be filed with the appropriate Forest Service Office). 25. Signature Name (Printed/Typed) Date (Electronic Submission) BRADLEY BISHOP / Ph: (575) 393-5905 04/29/2020 Regulatory Name (Printed/Typed) Date

Title Approved by (Signature) (Electronic Submission)

12/04/2020 Cody Layton / Ph: (575) 234-5959

Title Office

Assistant Field Manager Lands & Minerals Carlsbad Field Office

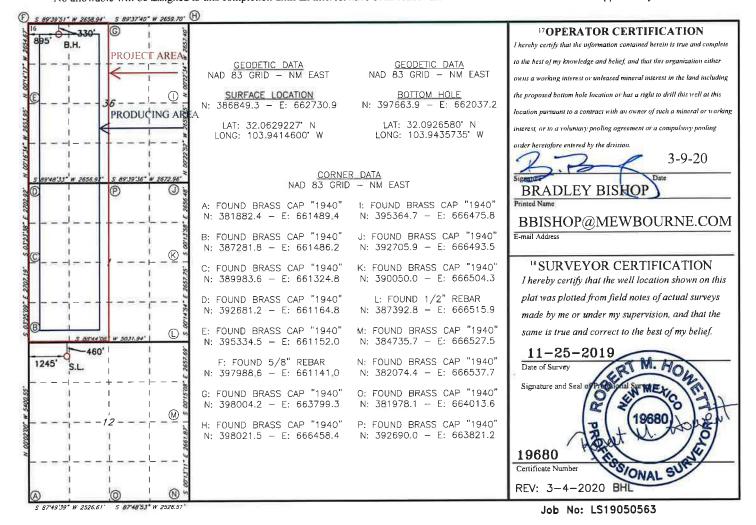
Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

District I 1625 N French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S St Francis Dr., Santa Fc, NM 87505


1220 S St Francis Dr , Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-102
Revised August 1, 2011
Submit one copy to appropriate
District Office

WELL LOCATION AND ACREAGE DEDICATION PLAT

I	API Number			² Pool Code 98220		³ Pool Name PURPLE SAGE; WOLFCAMP GAS POOL							
4Property Code BUFFALO TRACE 1/36 W1MD FED COM													
7 OGRID NO. 14744 MEWBOURNE OIL COMPANY 2997'													
	¹⁰ Surface Location												
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County				
D	12	26S	29E		460	NORTH	1245	WEST	EDDY				
			11 I	Bottom H	ole Location	on If Different Fr	om Surface						
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County				
D	36	25S	29E		330 NORTH 895 WEST EDDY								
12 Dedicated Acres	13 Joint	or Infill 14 (Consolidation	Code 15 C	Order No.								
640													

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division

1220 South St. Francis Dr.
Santa Fe, NM 87505

Date	e: <u>1-6-20</u>		GAS CA	PTURE PL	AN		
	Original Amended - Reason for A	Amendment:_	•	· & OGRID 1	No.: <u>Mewbo</u>	urne Oil Con	npany - 14744
	s Gas Capture Plan out completion (new drill,				o reduce we	ll/production	facility flaring/venting for
	z: Form C-129 must be sub ll(s)/Production Facilit	•	•	eding 60 days a	illowed by Rul	e (Subsection A	4 of 19.15.18.12 NMAC).
The	well(s) that will be loca	ated at the pro	oduction facility a	are shown in	the table bel	OW	
THC	Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
	Buffalo Trace 1/36 W1MD Fed Com 2H		D- 12-26S-29E	460' FNL & 1245' FV	VL 0	NA	ONLINE AFTER FRAC
Wel place We 3,400 (per be conf of the of t	te. The gas produced low/himperson low/himpe	o a production from production from production igh pressure connect the far and le future. In so changes to Processing Prompression open	n facility after fletion facility is de gathering system cility to low/highdrilling, completio addition, Mewbodrilling and complete drilling and complete drilling and complete for the complete for the facility of the facil	edicated to no located in pressure gas on and estima ourne Oil Completion scheme. 36 , Blk. s and gathering	western EDDY Othering syst ted first prod ompany and dules. Gas 58 T1S g system pre	County, New em. Mewboruction date for Western from these Culberson Cossures.	Mexico. It will require ourne Oil Company provides or wells that are scheduled to have periodic wells will be processed arounty, Texas. The actual flow
							action tanks and gas will be duced fluids contain minima

sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Western system at that time. Based on current information, it is Operator's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

12/07/2020

APD ID: 10400052981

Submission Date: 04/29/2020

Highlighted data reflects the most recent changes

Operator Name: MEWBOURNE OIL COMPANY

Well Number: 2H

Well Type: CONVENTIONAL GAS WELL

Well Name: BUFFALO TRACE 1/36 W1MD FED COM

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

ormation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
628152	UNKNOWN	2997	28	28	OTHER : Top Soil	NONE	N
628167	RUSTLER	2287	710	710	ANHYDRITE	NONE	N
628154	TOP SALT	1965	1032	1032	SALT	NONE	N
725813	BASE OF SALT	-63	3060	3060	SALT	NONE	N
628159	LAMAR	-263	3260	3260	LIMESTONE	NATURAL GAS, OIL	N
628156	BELL CANYON	-303	3300	3300	SANDSTONE	NATURAL GAS, OIL	N
725814	CHERRY CANYON	-1127	4124	4124	SANDSTONE	NATURAL GAS, OIL	N
725815	MANZANITA	-1337	4334	4334	LIMESTONE	NATURAL GAS, OIL	N
628161	BONE SPRING	-3973	6970	6970	LIMESTONE, SHALE	NATURAL GAS, OIL	N
725817	BONE SPRING 1ST	-4912	7909	7909	SANDSTONE	NATURAL GAS, OIL	N
725818	BONE SPRING 2ND	-5487	8484	8484	SANDSTONE	NATURAL GAS, OIL	N
725816	BRUSHY CANYON	-6757	9754	9754	SANDSTONE	NATURAL GAS, OIL	N
725819	BONE SPRING 3RD	-6842	9839	9839	SANDSTONE	NATURAL GAS, OIL	N
628166	WOLFCAMP	-7213	10210	10210	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Pressure Rating (PSI): 5M

Rating Depth: 20732

Equipment: Annular, Pipe Ram, Blind Ram

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. Anchors are not required by manufacturer. A multibowl wellhead is being used. See attached schematic.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Choke Diagram Attachment:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_5M_BOPE_Choke_Diagram_20200427144557.pdf

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Flex_Line_Specs_20200427144557.pdf

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Flex_Line_Specs_API_16C_20200427144558.pdf

BOP Diagram Attachment:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Multi_Bowl_WH_20200427144609.pdf

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_5M_BOPE_Schematic_20200427144609.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	975	0	975	2997	2022	975	H-40	48	ST&C	1.73	3.88	DRY	6.88	DRY	11.5 6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3200	0	3200	3065	-203	3200	J-55	36	LT&C	1.21	2.12	DRY	3.93	DRY	4.9
3	PRODUCTI ON	8.75	7.625	NEW	API	N	0	10500	0	10371	3065	-7374	10500	P- 110	39	FJ	2.16	2.46	DRY	1.86	DRY	3.01
4	LINER	6.12 5	4.5	NEW	API	N	9945	20732	9933	10431	-6936	-7434	10787	P- 110	13.5	LT&C	1.64	1.91	DRY	2.32	DRY	2.9

Casing Attachments

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Csg_assumptions_20200427144648.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Csg_assumptions_20200427144719.pdf

Casing ID: 3

٦

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Csg_assumptions_20200427144838.pdf$

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Technical_Data_Sheet_VAM_HDL_7.625_x_39_P110_20200427144839.p

ui

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Casing Attachments

Casing ID: 4

String Type:LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Csg_assumptions_20200427144922.pdf$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	784	520	2.12	12.5	1102	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		784	975	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	2510	460	2.12	12.5	975	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail	1	2510	3200	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead	4334	3000	3321	20	2.12	12.5	42	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		3200	4334	100	1.34	14.8	134	25	Class C	Retarder
PRODUCTION	Lead	4334	4334	6742	150	2.12	12.5	318	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		6742	1050 0	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
LINER	Lead		9945	2073 2	430	2.97	11.2	1277	25	Class C	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud scavengers in surface hole

Describe the mud monitoring system utilized: Pason, PVT, and Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	975	SPUD MUD	8.6	8.8		J					
975	3200	SALT SATURATED	10	10	P						
3200	1037 1	WATER-BASED MUD	8.6	9.7							
1037 1	1043 1	OIL-BASED MUD	10	12							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL in deeper offset Buffalo Trace 1/36 W1NC Fed Com #1H

List of open and cased hole logs run in the well:

COMPENSATED NEUTRON LOG, DIRECTIONAL SURVEY, GAMMA RAY LOG, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGIC LITHOLOGY LOG, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

None

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6509

Anticipated Surface Pressure: 4214

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_H2S_Plan_20200427145239.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Dir_plan_20200427145304.pdf Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Dir_plot_20200427145304.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Add_Info_20200427145313.pdf

Other Variance attachment:

SL: 460' FNL & 1245' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 895' FWL (Sec 36, T25S, R29E)

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10500'	7.625"	39	P110	FJ	2.16	2.46	1.86	3.01
6.125"	9945'	20732'	4.5"	13.5	P110	LTC	1.64	1.91	2.32	2.90
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SL: 460' FNL & 1245' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 895' FWL (Sec 36, T25S, R29E)

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10500'	7.625"	39	P110	FJ	2.16	2.46	1.86	3.01
6.125"	9945'	20732'	4.5"	13.5	P110	LTC	1.64	1.91	2.32	2.90
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

SL: 460' FNL & 1245' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 895' FWL (Sec 36, T25S, R29E)

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10500'	7.625"	39	P110	FJ	2.16	2.46	1.86	3.01
6.125"	9945'	20732'	4.5"	13.5	P110	LTC	1.64	1.91	2.32	2.90
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Technical Specifications

Connection Type: HD-L Casing STANDARD	Size(O.D.): 7-5/8 in	Weight (Wall): 39.00 lb/ft (0.5 in)	Grade: P-110
P-110 110,000 125,000	Material Grade Minimum Yield Strength (psi.) Minimum Ultimate Strength (psi.)		USA
7.625 6.625 0.500 39.00 38.08 11.192	Pipe Dimensions Nominal Pipe Body O.D. (in.) Nominal Pipe Body I.D. (in.) Nominal Wall Thickness (in.) Nominal Weight (lbs./ft.) Plain End Weight (lbs./ft.) Nominal Pipe Body Area (sq. in.)	Houston, TX Phone: 713- Fax: 713-479	479-3200
1,231,000 11,080 12,620 11,500 7.625 6.551	Pipe Body Performance Properties Minimum Pipe Body Yield Strength (Ik Minimum Collapse Pressure (psi.) Minimum Internal Yield Pressure (psi.) Hydrostatic Test Pressure (psi.) Connection Dimensions Connection O.D. (in.) Connection I.D. (in.)	1	
6.500 4.51 6.939 62.0	Connection Drift Diameter (in.) Make-up Loss (in.) Critical Area (sq. in.) Joint Efficiency (%)		
	Connection Performance Propertie) Joint Strength (lbs.)) Reference Minimum Parting Load (lbs Reference String Length (ft) 1.4 Desig Compression Rating (lbs.) Collapse Pressure Rating (psi.) Internal Pressure Rating (psi.) Maximum Uniaxial Bend Rating [degr	s.) gn F <mark>actor</mark>	
	Recommended Torque Values) Minimum Final Torque (ftlbs.)) Maximum Final Torque (ftlbs.)		

(1) Joint strength is the elastic limit or yield strength of the connection.(2) Reference minimum parting load is the ultimate strength or parting load of the connection.(3) Torque values are recommended and can be affected by field conditions.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any

warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

11/28/2018 3:33 PM

SL: 460' FNL & 1245' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 895' FWL (Sec 36, T25S, R29E)

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10500'	7.625"	39	P110	FJ	2.16	2.46	1.86	3.01
6.125"	9945'	20732'	4.5"	13.5	P110	LTC	1.64	1.91	2.32	2.90
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Buffalo Trace 1/36 W1MD Fed Com #2H

Sec 12, T26S, R29E

SHL: 460' FNL & 1245' FWL, Sec 12 BHL: 330' FNL & 895' FWL, Sec 36

Plan: Design #1

Standard Planning Report

27 April, 2020

Database: Company:

Hobbs

Design #1

Mewbourne Oil Company

TVD Reference: Eddy County, New Mexico NAD 83 MD Reference:

WELL @ 3025.0usft (Original Well Elev)

Project: Site:

Buffalo Trace 1/36 W1MD Fed Com #2H

North Reference:

WELL @ 3025.0usft (Original Well Elev)

Site Buffalo Trace 1/36 W1MD Fed Com #2H

Well: Sec 12, T26S, R29E

Wellbore: BHL: 330' FNL & 895' FWL, Sec 36 **Survey Calculation Method:**

Local Co-ordinate Reference:

Minimum Curvature

Design: Project

Eddy County, New Mexico NAD 83

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983 System Datum:

Ground Level

Map Zone:

New Mexico Eastern Zone

Site Buffalo Trace 1/36 W1MD Fed Com #2H

Northing: Site Position: From: Мар Easting:

386,849.00 usft Latitude: Longitude: 662,731.00 usft

32.0629219

Position Uncertainty:

0.0 usft Slot Radius: 13-3/16 " Grid Convergence: -103.9414598 0.21

Well Sec 12, T26S, R29E

Well Position +N/-S

0.0 usft +E/-W 0.0 usft Northing: Easting:

386,849.00 usft 662,731.00 usft

Latitude: Longitude:

32.0629219 -103.9414598

Position Uncertainty

0.0 usft

Wellhead Elevation:

3,025.0 usft

Ground Level:

2,997.0 usft

Wellbore	BHL: 330' FNL & 895' FV	VL, Sec 36			
Magnetics	Model Name	Sample Date	Declination	Dip Angle	Field Strength
			(°)	(°)	(nT)
	IGRE2010	12/31/2014	7.31	59 89	48 103

Design	Design #1					
Audit Notes:						
Version:		Phase:	PROTOTYPE	Tie On Depth:	0.0	
Vertical Section:		Depth From (TVD) (usft)	+N/-S (usft)	+E/-W (usft)	Direction (°)	
		0.0	0.0	0.0	356.33	

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	

Database: Hobbs Company:

Mewbourne Oil Company

Eddy County, New Mexico NAD 83

Buffalo Trace 1/36 W1MD Fed Com #2H

Well:

Project:

Site:

Sec 12, T26S, R29E

Wellbore: Design:

BHL: 330' FNL & 895' FWL, Sec 36 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Buffalo Trace 1/36 W1MD Fed Com #2H

WELL @ 3025.0usft (Original Well Elev) WELL @ 3025.0usft (Original Well Elev)

	Design #1								
ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	NL & 1245' FWL		0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 600.0	0.00 0.00	0.00 0.00	500.0 600.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
975.0	0.00	0.00	975.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.38	311.16	1,000.0	0.1	-0.1	0.1	1.50	1.50	0.00
1,100.0 1,177.6	1.88 3.04	311.16 311.16	1,100.0 1,177.5	1.3 3.5	-1.5 -4.0	1.4 3.8	1.50 1.50	1.50 1.50	0.00 0.00
1,177.6	3.04	311.16	1,177.5	3.5 4.3	-4.0 -4.9	3.6 4.6	0.00	0.00	0.00
1,300.0	3.04	311.16	1,299.7	7.8	-8.9	8.4	0.00	0.00	0.00
1,400.0	3.04	311.16	1,399.6	11.3	-12.9	12.1	0.00	0.00	0.00
1,500.0	3.04	311.16	1,499.5	14.8	-16.9	15.8	0.00	0.00	0.00
1,600.0 1,700.0	3.04 3.04	311.16 311.16	1,599.3 1,699.2	18.3 21.8	-20.9 -24.9	19.6 23.3	0.00 0.00	0.00 0.00	0.00 0.00
1,800.0	3.04	311.16	1,799.0	25.3	-28.9	27.1	0.00	0.00	0.00
1,900.0	3.04	311.16	1,898.9	28.7	-32.9	30.8	0.00	0.00	0.00
2,000.0	3.04	311.16	1,998.7	32.2	-36.9	34.5	0.00	0.00	0.00
2,100.0	3.04	311.16	2,098.6	35.7	-40.9	38.3	0.00	0.00	0.00
2,200.0	3.04	311.16	2,198.5	39.2	-44.9	42.0	0.00	0.00	0.00
2,300.0	3.04	311.16	2,298.3	42.7	-48.8	45.7	0.00	0.00	0.00
2,400.0	3.04	311.16	2,398.2	46.2	-52.8	49.5	0.00	0.00	0.00
2,500.0	3.04	311.16	2,498.0	49.7	-56.8	53.2	0.00	0.00	0.00
2,600.0	3.04	311.16	2,597.9	53.2	-60.8	57.0	0.00	0.00	0.00
2,700.0	3.04	311.16	2,697.8	56.7	-64.8	60.7	0.00	0.00	0.00
2,800.0	3.04	311.16	2,797.6	60.2	-68.8	64.4	0.00	0.00	0.00
2,900.0	3.04	311.16	2,897.5	63.6	-72.8	68.2	0.00	0.00	0.00
3,000.0	3.04	311.16	2,997.3	67.1	-76.8	71.9	0.00	0.00	0.00
3,100.0	3.04	311.16	3,097.2	70.6	-80.8	75.7	0.00	0.00	0.00
3,200.0	3.04	311.16	3,197.1	74.1	-84.8	79.4	0.00	0.00	0.00
3,300.0	3.04	311.16	3,296.9	77.6	-88.8	83.1	0.00	0.00	0.00
3,400.0	3.04	311.16	3,396.8	81.1	-92.8	86.9	0.00	0.00	0.00
3,500.0	3.04	311.16	3,496.6	84.6	-96.8	90.6	0.00	0.00	0.00
3,600.0	3.04	311.16	3,596.5	88.1	-100.7	94.4	0.00	0.00	0.00
3,700.0	3.04	311.16	3,696.4	91.6	-104.7	98.1	0.00	0.00	0.00
3,800.0	3.04	311.16	3,796.2	95.1	-108.7	101.8	0.00	0.00	0.00
3,900.0	3.04	311.16	3,896.1	98.6	-112.7	105.6	0.00	0.00	0.00
4,000.0	3.04	311.16	3,995.9	102.0	-116.7	109.3	0.00	0.00	0.00
4,100.0	3.04	311.16	4,095.8	105.5	-120.7	113.0	0.00	0.00	0.00
4,200.0	3.04	311.16	4,195.7	109.0	-124.7	116.8	0.00	0.00	0.00
4,300.0	3.04	311.16	4,295.5	112.5	-128.7	120.5	0.00	0.00	0.00
4,400.0	3.04	311.16	4,395.4	116.0	-132.7	124.3	0.00	0.00	0.00
4,500.0	3.04	311.16	4,495.2	119.5	-136.7	128.0	0.00	0.00	0.00
4,600.0	3.04	311.16	4,595.1	123.0	-140.7	131.7	0.00	0.00	0.00
4,700.0	3.04	311.16	4,694.9	126.5	-144.7	135.5	0.00	0.00	0.00
4,800.0	3.04	311.16	4,794.8	130.0	-148.6	139.2	0.00	0.00	0.00
4,900.0	3.04	311.16	4,894.7	133.5	-152.6	143.0	0.00	0.00	0.00
5,000.0	3.04	311.16	4,994.5	136.9	-156.6	146.7	0.00	0.00	0.00

Database: Company:

Project:

Site:

Hobbs

opps

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Buffalo Trace 1/36 W1MD Fed Com #2H

Well:

Sec 12, T26S, R29E

Wellbore: BHL: 330'
Design: Design #1

BHL: 330' FNL & 895' FWL, Sec 36

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Buffalo Trace 1/36 W1MD Fed Com #2H

WELL @ 3025.0usft (Original Well Elev)
WELL @ 3025.0usft (Original Well Elev)

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,100.0	3.04	311.16	5,094.4	140.4	-160.6	150.4	0.00	0.00	0.00
5,200.0	3.04	311.16	5,194.2	143.9	-164.6	154.2	0.00	0.00	0.00
5,300.0	3.04	311.16	5,294.1	147.4	-168.6	157.9	0.00	0.00	0.00
5,400.0	3.04	311.16	5,394.0	150.9	-172.6	161.6	0.00	0.00	0.00
5,500.0	3.04	311.16	5,493.8	154.4	-176.6	165.4	0.00	0.00	0.00
5,600.0	3.04	311.16	5,593.7	157.9	-180.6	169.1	0.00	0.00	0.00
5,700.0	3.04	311.16	5,693.5	161.4	-184.6	172.9	0.00	0.00	0.00
5,800.0	3.04	311.16	5,793.4	164.9	-188.6	176.6	0.00	0.00	0.00
5,900.0	3.04	311.16	5,893.3	168.4	-192.6	180.3	0.00	0.00	0.00
6,000.0	3.04	311.16	5,993.1	171.8	-196.6	184.1	0.00	0.00	0.00
6,100.0	3.04	311.16	6,093.0	175.3	-200.5	187.8	0.00	0.00	0.00
6,200.0	3.04	311.16	6,192.8	178.8	-204.5	191.6	0.00	0.00	0.00
0.000.0	2.04	244.40	0.000.7	400.0	200 5	405.0	0.00	0.00	0.00
6,300.0	3.04	311.16	6,292.7	182.3	-208.5	195.3	0.00	0.00	0.00
6,400.0 6,500.0	3.04 3.04	311.16 311.16	6,392.6	185.8 189.3	-212.5 -216.5	199.0 202.8	0.00 0.00	0.00 0.00	0.00
6,500.0 6.600.0	3.04	311.16	6,492.4 6,592.3	189.3	-216.5 -220.5	202.8 206.5		0.00	0.00
6,700.0	3.04	311.16	6,592.3 6,692.1	192.6	-220.5 -224.5	210.2	0.00 0.00	0.00	0.00 0.00
	3.04					210.2		0.00	
6,800.0	3.04	311.16	6,792.0	199.8	-228.5	214.0	0.00	0.00	0.00
6,900.0	3.04	311.16	6,891.9	203.3	-232.5	217.7	0.00	0.00	0.00
7,000.0	3.04	311.16	6,991.7	206.7	-236.5	221.5	0.00	0.00	0.00
7,100.0	3.04	311.16	7,091.6	210.2	-240.5	225.2	0.00	0.00	0.00
7,200.0	3.04	311.16	7,191.4	213.7	-244.5	228.9	0.00	0.00	0.00
7,300.0	3.04	311.16	7,291.3	217.2	-248.4	232.7	0.00	0.00	0.00
7,400.0	3.04	311.16	7,391.2	220.7	-252.4	236.4	0.00	0.00	0.00
7,500.0	3.04	311.16	7,491.0	224.2	-256.4	240.2	0.00	0.00	0.00
7,600.0	3.04	311.16	7,590.9	227.7	-260.4	243.9	0.00	0.00	0.00
7,700.0	3.04	311.16	7,690.7	231.2	-264.4	247.6	0.00	0.00	0.00
7,800.0	3.04	311.16	7,790.6	234.7	-268.4	251.4	0.00	0.00	0.00
7,900.0	3.04	311.16	7,890.4	238.2	-272.4	255.1	0.00	0.00	0.00
8,000.0	3.04	311.16	7,990.3	241.6	-276.4	258.8	0.00	0.00	0.00
8,100.0	3.04	311.16	8,090.2	245.1	-280.4	262.6	0.00	0.00	0.00
8,200.0	3.04	311.16	8,190.0	248.6	-284.4	266.3	0.00	0.00	0.00
8,300.0	3.04	311.16	8,289.9	252.1	-288.4	270.1	0.00	0.00	0.00
8,400.0	3.04	311.16	8,389.7	255.6	-292.4	273.8	0.00	0.00	0.00
8,500.0	3.04	311.16	8,489.6	259.1	-296.4	277.5	0.00	0.00	0.00
8,600.0	3.04	311.16	8,589.5	262.6	-300.3	281.3	0.00	0.00	0.00
8,700.0	3.04	311.16	8,689.3	266.1	-304.3	285.0	0.00	0.00	0.00
8,800.0	3.04	311.16	8,789.2	269.6	-308.3	288.8	0.00	0.00	0.00
8,900.0	3.04	311.16	8,889.0	273.1	-312.3	292.5	0.00	0.00	0.00
9,000.0	3.04	311.16	8,988.9	276.5	-316.3	296.2	0.00	0.00	0.00
9,100.0	3.04	311.16	9,088.8	280.0	-320.3	300.0	0.00	0.00	0.00
9,200.0	3.04	311.16	9,188.6	283.5	-324.3	303.7	0.00	0.00	0.00
9,300.0	3.04	311.16	9,288.5	287.0	-328.3	307.4	0.00	0.00	0.00
9,400.0	3.04	311.16	9,388.3	290.5	-332.3	311.2	0.00	0.00	0.00
9,500.0	3.04	311.16	9,488.2	294.0	-336.3	314.9	0.00	0.00	0.00
9,600.0	3.04	311.16	9,588.1	297.5	-340.3	318.7	0.00	0.00	0.00
9,700.0	3.04	311.16	9,687.9	301.0	-344.3	322.4	0.00	0.00	0.00
9,742.6	3.04	311.16	9,730.5	302.5	-346.0	324.0	0.00	0.00	0.00
9,800.0	2.18	311.16	9,787.8	304.2	-347.9	325.8	1.50	-1.50	0.00
9,900.0	0.68	311.16	9,887.8	305.8	-349.8	327.6	1.50	-1.50	0.00
9,945.2	0.00	0.00	9,933.0	306.0	-350.0	327.8	1.50	-1.50	0.00
KOP: 147' F	NL & 895' FWL (Sec 12)							
10,000.0	6.58	358.13	9,987.6	309.1	-350.1	330.9	12.01	12.01	0.00

Database: Hobbs Company:

Project:

Site:

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Buffalo Trace 1/36 W1MD Fed Com #2H

Well: Sec 12, T26S, R29E

BHL: 330' FNL & 895' FWL, Sec 36 Wellbore:

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Buffalo Trace 1/36 W1MD Fed Com #2H

WELL @ 3025.0usft (Original Well Elev) WELL @ 3025.0usft (Original Well Elev)

anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,100.0	18.59	358.13	10,085.1	330.9	-350.8	352.7	12.01	12.01	0.00
10,200.0	30.60	358.13	10,175.8	372.4	-352.2	394.2	12.01	12.01	0.00
10,300.0	42.61	358.13	10,255.9	431.9	-354.1	453.7	12.01	12.01	0.00
10,400.0	54.62	358.13	10,321.9	506.7	-356.6	528.5	12.01	12.01	0.00
10,500.0	66.64	358.13	10,370.9	593.7	-359.4	615.5	12.01	12.01	0.00
10,600.0	78.65	358.13	10,400.7	688.9	-362.5	710.7	12.01	12.01	0.00
10,693.5	89.87	358.13	10,410.0	781.7	-365.6	803.5	12.01	12.01	0.00
	0' FSL & 895' FW		,		555.5	000.0			5.55
10,700.0	89.88	358.13	10,410.0	788.2	-365.8	810.0	0.09	0.09	0.00
10,700.0	89.88	358.13	10,410.2	888.2	-369.1	910.0	0.09	0.09	0.00
10,900.0	89.88	358.13	10,410.4	988.1	-372.3	1,009.9	0.00	0.00	0.00
10,800.0			10,410.4		-312.3	1,009.9			
11,000.0	89.88	358.13	10,410.6	1,088.1	-375.6	1,109.9	0.00	0.00	0.00
11,100.0	89.88	358.13	10,410.9	1,188.0	-378.9	1,209.8	0.00	0.00	0.00
11,200.0	89.88	358.13	10,411.1	1,288.0	-382.1	1,309.8	0.00	0.00	0.00
11,300.0	89.88	358.13	10,411.3	1,387.9	-385.4	1,409.7	0.00	0.00	0.00
11,400.0	89.88	358.13	10,411.5	1,487.9	-388.7	1,509.7	0.00	0.00	0.00
								0.00	
11,500.0	89.88	358.13	10,411.7	1,587.8	-392.0	1,609.6	0.00 0.00	0.00	0.00
11,600.0	89.88	358.13	10,411.9	1,687.7	-395.2	1,709.6		0.00	0.00
11,700.0	89.88	358.13	10,412.1	1,787.7	-398.5	1,809.5	0.00	0.00	0.00
11,800.0	89.88	358.13	10,412.3	1,887.6	-401.8	1,909.5	0.00	0.00	0.00
11,900.0	89.88	358.13	10,412.5	1,987.6	-405.0	2,009.4	0.00	0.00	0.00
12,000.0	89.88	358.13	10,412.7	2,087.5	-408.3	2,109.4	0.00	0.00	0.00
12,100.0	89.88	358.13	10,412.9	2,187.5	-411.6	2,209.3	0.00	0.00	0.00
12,200.0	89.88	358.13	10,413.2	2,287.4	-414.9	2,309.3	0.00	0.00	0.00
12,300.0	89.88	358.13	10,413.4	2,387.4	-418.1	2,409.2	0.00	0.00	0.00
12,400.0	89.88	358.13	10,413.6	2,487.3	-421.4	2,509.2	0.00	0.00	0.00
12,500.0	89.88	358.13	10,413.8	2,587.3	-424.7	2,609.1	0.00	0.00	0.00
12,600.0	89.88	358.13	10,414.0	2,687.2	-427.9	2,709.1	0.00	0.00	0.00
12,700.0	89.88	358.13	10,414.2	2,787.2	-431.2	2,809.1	0.00	0.00	0.00
12,800.0	89.88	358.13	10,414.4	2,887.1	-434.5	2,909.0	0.00	0.00	0.00
12,900.0	89.88	358.13	10,414.6	2,987.0	-437.8	3,009.0	0.00	0.00	0.00
13,000.0	89.88	358.13	10,414.8	3,087.0	-441.0	3,108.9	0.00	0.00	0.00
13,100.0	89.88	358.13	10,415.0	3,186.9	-441.0 -444.3	3,108.9	0.00	0.00	0.00
13,200.0	89.88	358.13	10,415.2	3,286.9	-444.3 -447.6	3,308.8	0.00	0.00	0.00
	89.88 89.88				-447.6 -450.8		0.00		0.00
13,300.0		358.13 358.13	10,415.5	3,386.8		3,408.8 3,508.7		0.00	
13,400.0	89.88	358.13	10,415.7	3,486.8	-454.1	3,508.7	0.00	0.00	0.00
13,500.0	89.88	358.13	10,415.9	3,586.7	-457.4	3,608.7	0.00	0.00	0.00
13,600.0	89.88	358.13	10,416.1	3,686.7	-460.7	3,708.6	0.00	0.00	0.00
13,700.0	89.88	358.13	10,416.3	3,786.6	-463.9	3,808.6	0.00	0.00	0.00
13,800.0	89.88	358.13	10,416.5	3,886.6	-467.2	3,908.5	0.00	0.00	0.00
13,900.0	89.88	358.13	10,416.7	3,986.5	-470.5	4,008.5	0.00	0.00	0.00
14,000.0	89.88	358.13	10,416.9	4,086.5	-473.7	4,108.4	0.00	0.00	0.00
14,100.0	89.88	358.13	10,417.1	4,186.4	-477.0	4,208.4	0.00	0.00	0.00
14,200.0	89.88	358.13	10,417.3	4,286.4	-480.3	4,308.3	0.00	0.00	0.00
14,300.0	89.88	358.13	10,417.5	4,386.3	-483.6	4,408.3	0.00	0.00	0.00
14,400.0	89.88	358.13	10,417.8	4,486.2	-486.8	4,508.2	0.00	0.00	0.00
14.500.0	89.88	358.13	10,418.0	4,586.2	-490.1	4,608.2	0.00	0.00	0.00
14,600.0	89.88	358.13	10,418.2	4,686.1	-493.4	4,708.1	0.00	0.00	0.00
14,700.0	89.88	358.13	10,418.4	4,786.1	-496.7	4,808.1	0.00	0.00	0.00
14,800.0	89.88	358.13	10,418.6	4,886.0	-499.9	4,908.0	0.00	0.00	0.00
14,900.0	89.88	358.13	10,418.8	4,986.0	-503.2	5,008.0	0.00	0.00	0.00
15,000.0	89.88	358.13	10,419.0	5,085.9	-506.5	5,107.9	0.00	0.00	0.00
15,100.0	89.88	358.13	10,419.2	5,185.9	-509.7	5,207.9	0.00	0.00	0.00
15,200.0	89.88	358.13	10,419.4	5,285.8	-513.0	5,307.8	0.00	0.00	0.00

Database: Company:

Project:

Hobbs

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Buffalo Trace 1/36 W1MD Fed Com #2H

Site: Buffalo Trace 1/36 W Well: Sec 12, T26S, R29E

Wellbore: Sec 12, 1265, R29E

Wellbore: BHL: 330' FNL & 895' FWL, Sec 36

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Buffalo Trace 1/36 W1MD Fed Com #2H

WELL @ 3025.0usft (Original Well Elev)
WELL @ 3025.0usft (Original Well Elev)

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,300.0 15,400.0	89.88 89.88	358.13 358.13	10,419.6 10,419.8	5,385.8 5,485.7	-516.3 -519.6	5,407.8 5,507.7	0.00 0.00	0.00 0.00	0.00 0.00
15,500.0	89.88	358.13	10,420.1	5,585.7	-522.8	5,607.7	0.00	0.00	0.00
15,600.0	89.88	358.13	10,420.3	5,685.6	-526.1	5,707.6	0.00	0.00	0.00
15,700.0 15,749.5	89.88 89.88	358.13 358.13	10,420.5 10,420.6	5,785.5 5,835.0	-529.4 -531.0	5,807.6 5,857.0	0.00 0.00	0.00 0.00	0.00 0.00
	. & 895' FWL (Se		,	-,		-,			
15,800.0	89.88	358.13	10,420.7	5,885.5	-532.6	5,907.5	0.00	0.00	0.00
15,900.0	89.88	358.13	10,420.9	5,985.4	-535.9	6,007.5	0.00	0.00	0.00
16,000.0	89.88	358.13	10,421.1	6,085.4	-539.2	6,107.4	0.00	0.00	0.00
16,100.0	89.88	358.13	10,421.3	6,185.3	-542.5	6,207.4	0.00	0.00	0.00
16,200.0	89.88	358.13	10,421.5	6,285.3	-545.7 540.0	6,307.3	0.00	0.00	0.00
16,300.0	89.88	358.13	10,421.7	6,385.2	-549.0	6,407.3	0.00	0.00	0.00
16,400.0	89.88	358.13	10,421.9	6,485.2	-552.3	6,507.2	0.00	0.00	0.00
16,500.0 16,600.0	89.88 89.88	358.13 358.13	10,422.1 10,422.4	6,585.1 6,685.1	-555.5 -558.8	6,607.2 6,707.1	0.00 0.00	0.00 0.00	0.00 0.00
16,700.0	89.88	358.13	10,422.4	6,785.0	-562.1	6,807.1	0.00	0.00	0.00
16,800.0	89.88	358.13	10,422.8	6,885.0	-565.4	6,907.0	0.00	0.00	0.00
16,900.0	89.88	358.13	10,423.0	6,984.9	-568.6	7,007.0	0.00	0.00	0.00
17,000.0	89.88	358.13	10,423.2	7,084.8	-571.9	7,106.9	0.00	0.00	0.00
17,100.0	89.88	358.13	10,423.4	7,184.8	-575.2	7,206.9	0.00	0.00	0.00
17,200.0	89.88	358.13	10,423.6	7,284.7	-578.4	7,306.8	0.00	0.00	0.00
17,300.0	89.88	358.13	10,423.8	7,384.7	-581.7	7,406.8	0.00	0.00	0.00
17,400.0	89.88	358.13	10,424.0	7,484.6	-585.0	7,506.7	0.00	0.00	0.00
17,500.0	89.88	358.13	10,424.2	7,584.6	-588.3	7,606.7	0.00	0.00	0.00
17,600.0 17,700.0	89.88 89.88	358.13 358.13	10,424.4 10,424.7	7,684.5 7,784.5	-591.5 -594.8	7,706.6 7,806.6	0.00 0.00	0.00 0.00	0.00 0.00
17,800.0	89.88	358.13	10,424.7	7,784.4	-598.1	7,906.5	0.00	0.00	0.00
17,900.0	89.88	358.13	10,425.1	7,984.4	-601.3	8,006.5	0.00	0.00	0.00
18,000.0	89.88	358.13	10,425.3	8,084.3	-604.6	8,106.4	0.00	0.00	0.00
18,100.0	89.88	358.13	10,425.5	8,184.3	-607.9	8,206.4	0.00	0.00	0.00
18,200.0	89.88	358.13	10,425.7	8,284.2	-611.2	8,306.3	0.00	0.00	0.00
18,300.0	89.88	358.13	10,425.9	8,384.1	-614.4	8,406.3	0.00	0.00	0.00
18,400.0	89.88	358.13	10,426.1	8,484.1	-617.7	8,506.2	0.00	0.00	0.00
18,500.0	89.88	358.13	10,426.3	8,584.0	-621.0	8,606.2	0.00	0.00	0.00
18,600.0 18,700.0	89.88 89.88	358.13 358.13	10,426.5 10,426.7	8,684.0 8,783.9	-624.2 -627.5	8,706.1 8,806.1	0.00 0.00	0.00 0.00	0.00 0.00
18,800.0	89.88	358.13	10,426.7	8,883.9	-630.8	8,906.0	0.00	0.00	0.00
18,900.0	89.88	358.13	10,427.2	8,983.8	-634.1	9,006.0	0.00	0.00	0.00
19,000.0	89.88	358.13	10,427.4	9,083.8	-637.3	9,105.9	0.00	0.00	0.00
19,100.0	89.88	358.13	10,427.6	9,183.7	-640.6	9,205.9	0.00	0.00	0.00
19,200.0 19,300.0	89.88	358.13 358.13	10,427.8 10,428.0	9,283.7	-643.9 647.1	9,305.8 9,405.8	0.00 0.00	0.00	0.00
	89.88	358.13		9,383.6	-647.1			0.00	0.00
19,400.0	89.88 80.88	358.13 358.13	10,428.2	9,483.6	-650.4 -653.7	9,505.7 9,605.7	0.00 0.00	0.00	0.00 0.00
19,500.0 19,600.0	89.88 89.88	358.13 358.13	10,428.4 10,428.6	9,583.5 9,683.4	-653.7 -657.0	9,605.7 9,705.6	0.00	0.00 0.00	0.00
19,700.0	89.88	358.13	10,428.8	9,783.4	-660.2	9,805.6	0.00	0.00	0.00
19,800.0	89.88	358.13	10,429.0	9,883.3	-663.5	9,905.5	0.00	0.00	0.00
19,900.0	89.88	358.13	10,429.3	9,983.3	-666.8	10,005.5	0.00	0.00	0.00
	89.88	358.13	10,429.5	10,083.2	-670.0	10,105.4	0.00	0.00	0.00
20,000.0				*					
20,000.0 20,100.0 20,200.0	89.88 89.88	358.13 358.13	10,429.7 10,429.9	10,183.2 10,283.1	-673.3 -676.6	10,205.4 10,305.3	0.00 0.00	0.00 0.00	0.00 0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Eddy County, New Mexico NAD 83
Site: Buffalo Trace 1/36 W1MD Fed Com #2H

Well: Sec 12, T26S, R29E

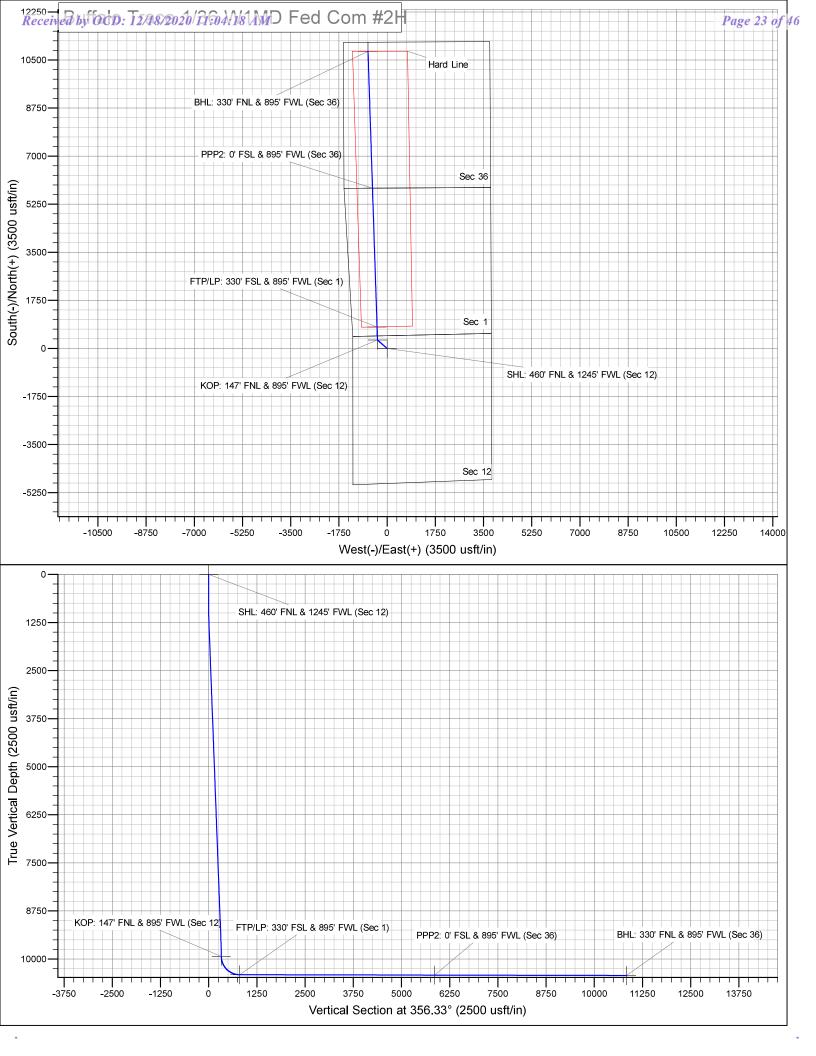
Wellbore: BHL: 330' FNL & 895' FWL, Sec 36

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:


Site Buffalo Trace 1/36 W1MD Fed Com #2H

WELL @ 3025.0usft (Original Well Elev)
WELL @ 3025.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,400.0	89.88	358.13	10,430.3	10,483.0	-683.1	10,505.2	0.00	0.00	0.00
20,500.0	89.88	358.13	10,430.5	10,583.0	-686.4	10,605.2	0.00	0.00	0.00
20,600.0	89.88	358.13	10,430.7	10,682.9	-689.7	10,705.1	0.00	0.00	0.00
20,700.0	89.88	358.13	10,430.9	10,782.9	-692.9	10,805.1	0.00	0.00	0.00
20,732.2	89.88	358.13	10,431.0	10,815.0	-694.0	10,837.2	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 460' FNL & 1245 - plan hits target c - Point		0.00	0.0	0.0	0.0	386,849.00	662,731.00	32.0629219	-103.9414598
KOP: 147' FNL & 895' - plan hits target c - Point		0.00	9,933.0	306.0	-350.0	387,155.00	662,381.00	32.0637666	-103.9425860
FTP/LP: 330' FSL & 89 - plan hits target c - Point		0.00	10,410.0	781.7	-365.6	387,630.70	662,365.40	32.0650744	-103.9426308
PPP2: 0' FSL & 895' F - plan hits target c - Point		0.00	10,420.6	5,835.0	-531.0	392,684.00	662,200.02	32.0789671	-103.9431057
BHL: 330' FNL & 895' - plan hits target c - Point		0.00	10,431.0	10,815.0	-694.0	397,664.00	662,037.00	32.0926583	-103.9435739

Inten	t X	As Dril	led												
API#															
-	rator Nai vbourne	me: e Oil Co.				1	perty N falo Ti			W11	MD I	ed C	Com	Well Number 2H	
						l									
	Off Point										ı		ı		
UL D	Section 12	Township 26S	Range 29E	Lot	Feet 147				Feet 895		Fron W	n E/W	County Eddy		
132.0	^{ide} 063766	86			Longitu -103		25860)					NAD 83		
					•										
	Take Poir		T =	T T			- ·	. 10	l = .			= 0.1			
UL M	Section 1	Township 26S	Range 29E	Lot	Feet 330		From N S	1/5	Feet 895		W	n E/W	County Eddy		
32.0	^{ide} 065074	14			Longitu -103		26308	}					NAD 83		
Loot T	aka Dain	+ /LTD)													
UL	ake Poin	Township	Range	Lot	Feet	Fro	m N/S	Feet		From	F/M	Count			
D	36	25S	29E	Lot	330	N		895		W Edd			ly		
32.0)92658	30			Longitu -103		35735	<u>,</u>				NAD 83			
الماء الماء	معالم المديد			- 11- wi-	. a makal Co		- ! ! -: : + `		,	7					
is this	s well the	defining v	vell for th	e Horiz	ontai Sį	pacin	g Unit?	<u> </u>	<u> </u>	J					
Is this	well an	infill well?		N]										
	ll is yes p ng Unit.	lease prov	ide API if	availab	le, Opei	rator	Name	and v	vell nu	umbei	r for I	Definir	ng well fo	r Horizontal	
API#															
Ope	rator Nai	me:				Pro	perty N	lame:						Well Number	

KZ 06/29/2018

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mewbourne Oil Company

LEASE NO.: | NMNM011039

WELL NAME & NO.: | BUFFALO TRACE 1-36 W1MD Fed Com 2H

SURFACE HOLE FOOTAGE: 460'/N & 1245'/W **BOTTOM HOLE FOOTAGE** 330'/N & 895'/W

LOCATION: | Section 12, T.26 S., R.29 E., NMP

COUNTY: Eddy County, New Mexico

COA

H2S	© Yes	• No	
Potash	None	© Secretary	© R-111-P
Cave/Karst Potential	C Low	Medium	○ High
Cave/Karst Potential	Critical		
Variance	© None	Flex Hose	Other
Wellhead	© Conventional	• Multibowl	© Both
Other	4 String Area	Capitan Reef	□WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	☐ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 652 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

Page 1 of 8

Approval Date: 12/04/2020

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 3200 feet. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 Excess cement calculates to 19%, additional cement might be required.
 - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 7-5/8 inch production casing is:

Option 1 (Single Stage):

Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Excess cement calculates to 4%, additional cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Page 2 of 8

- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

Page 3 of 8

Approval Date: 12/04/2020

• In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as

Page 4 of 8

well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

Page 5 of 8

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

Page 6 of 8

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 7 of 8

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA10012020

Page 8 of 8

Approval Date: 12/04/2020

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- 1 The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Cente	r of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office Fax 2 nd Fax	575-393-5905 575-397-6252 575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: GARBAGE

Waste content description: Garbage & trash

Amount of waste: 1500

pounds

Waste disposal frequency : One Time Only

Safe containment description: Enclosed trash trailer

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Waste type: DRILLING

Waste content description: Drill cuttings

Amount of waste: 940

barrels

Waste disposal frequency: One Time Only

Safe containment description: Drill cuttings will be properly contained in steel tanks (20 yard roll off bins.)

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: NMOCD approved waste disposal locations are CRI or Lea Land, both facilities are located

on HWY 62/180, Sec. 27 T20S R32E.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BuffaloTrace1_36W1MDFedCom2H_wellsitelayout_20200107142844.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: Buffalo Trace 1/36 MD & NC Fed Com

wells

Multiple Well Pad Number: 4

Recontouring attachment:

Drainage/Erosion control construction: None

Drainage/Erosion control reclamation: None

Page 37 of 46

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

12/07/2020

APD ID: 10400052981

Submission Date: 04/29/2020

Highlighted data reflects the most recent changes

Operator Name: MEWBOURNE OIL COMPANY

Well Number: 2H

Show Final Text

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - Geologic Formations

ormation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
628152	UNKNOWN	2997	28	28	OTHER : Top Soil	NONE	N
628167	RUSTLER	2287	710	710	ANHYDRITE	NONE	N
628154	TOP SALT	1965	1032	1032	SALT	NONE	N
725813	BASE OF SALT	-63	3060	3060	SALT	NONE	N
628159	LAMAR	-263	3260	3260	LIMESTONE	NATURAL GAS, OIL	N
628156	BELL CANYON	-303	3300	3300	SANDSTONE	NATURAL GAS, OIL	N
725814	CHERRY CANYON	-1127	4124	4124	SANDSTONE	NATURAL GAS, OIL	N
725815	MANZANITA	-1337	4334	4334	LIMESTONE	NATURAL GAS, OIL	N
628161	BONE SPRING	-3973	6970	6970	LIMESTONE, SHALE	NATURAL GAS, OIL	N
725817	BONE SPRING 1ST	-4912	7909	7909	SANDSTONE	NATURAL GAS, OIL	N
725818	BONE SPRING 2ND	-5487	8484	8484	SANDSTONE	NATURAL GAS, OIL	N
725816	BRUSHY CANYON	-6757	9754	9754	SANDSTONE	NATURAL GAS, OIL	N
725819	BONE SPRING 3RD	-6842	9839	9839	SANDSTONE	NATURAL GAS, OIL	N
628166	WOLFCAMP	-7213	10210	10210	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: BUFFALO TRACE 1/36 W1MD FED COM Well Number: 2H

Pressure Rating (PSI): 5M

Rating Depth: 20732

Equipment: Annular, Pipe Ram, Blind Ram

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. Anchors are not required by manufacturer. A multibowl wellhead is being used. See attached schematic.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Choke Diagram Attachment:

 $Buffalo_Trace_1_36_W1MD_Fed_Com_2H_5M_BOPE_Choke_Diagram_20200427144557.pdf$

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Flex_Line_Specs_20200427144557.pdf

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Flex_Line_Specs_API_16C_20200427144558.pdf

BOP Diagram Attachment:

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_Multi_Bowl_WH_20200427144609.pdf

Buffalo_Trace_1_36_W1MD_Fed_Com_2H_5M_BOPE_Schematic_20200427144609.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	975	0	975	2997	2022	975	H-40	48	ST&C	1.73	3.88	DRY	6.88	DRY	11.5 6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3200	0	3200	3065	-203	3200	J-55	36	LT&C	1.21	2.12	DRY	3.93	DRY	4.9
3	PRODUCTI ON	8.75	7.625	NEW	API	N	0	10500	0	10371	3065	-7374	10500	P- 110	39	FJ	2.16	2.46	DRY	1.86	DRY	3.01
4	LINER	6.12 5	4.5	NEW	API	N	9945	20732	9933	10431	-6936	-7434	10787	P- 110	13.5	LT&C	1.64	1.91	DRY	2.32	DRY	2.9

Casing Attachments

GATES E & S NORTH AMERICA, INC. **134 44TH STREET** CORPUS CHRISTI, TEXAS 78405

PHONE: 361-887-9807 FAX: 361-887-0812

EMAIL: Tim.Cantu@gates.com

www.gates.com

10K CEMENTING ASSEMBLY PRESSURE TEST CERTIFICATE

Customer:

AUSTIN DISTRIBUTING

Test Date: Hose Serial No.: 4/30/2015

Customer Ref.: Invoice No.:

4060578 500506

Created By:

D-043015-7 JUSTIN CROPPER

Product Description:

10K3.548.0CK4.1/1610KFLGE/E LE

End Fitting 1:

4 1/16 10K FLG

End Fitting 2:

4 1/16 10K FLG

Gates Part No.: Working Pressure:

4773-6290 10,000 PSI Assembly Code:

L36554102914D-043015-7

Test Pressure:

15,000 PSI

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.

Quality Manager:

Date:

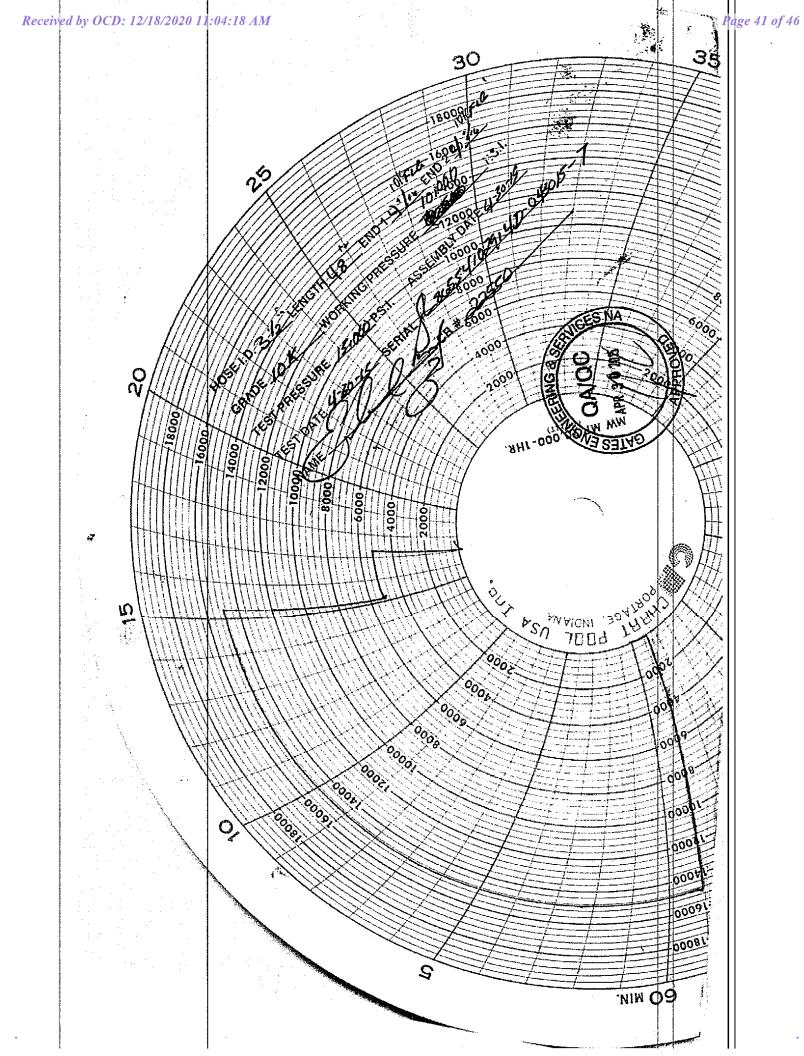
Signature:

QUALITY

4/30/2015

Produciton:

Date:


Signature :

PRODUCTION

4/30/2015

Forn PTC - 01 Rev.0 2

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX 77086 PHONE: (281) 602 - 4119

FAX:

EMAIL: Troy.Schmidt@gates.com

WEB: www.gates.com

10K CHOKE & KILL ASSEMBLY PRESSURE TEST CERTIFICATE

A-7 AUSTIN INC DBA AUSTIN HOSE Test Date: 8/20/2018 Customer: Hose Serial No.: H-082018-10 Customer Ref .: 4101901 Created By: Moosa Nagvi Invoice No.: 511956 10KF3.035.0CK41/1610KFLGFXDxFLT_L/E Product Description: End Fitting 2: End Fitting 1: 4 1/16 in. Fixed Flange 4 1/16 in. Float Flange Assembly Code: L40695052218H-082018-10 Gates Part No.: 68503010-9721632 Test Pressure: 15,000 psi. 10,000 psi. Working Pressure:

Gates Engineering & Services North America certifies that the following hose assembly has successfully passed all pressure testing requirements set forth in Gates specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies), which include reference to Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test certificate to illustrate conformity to test requirements.

Quality:

Date:

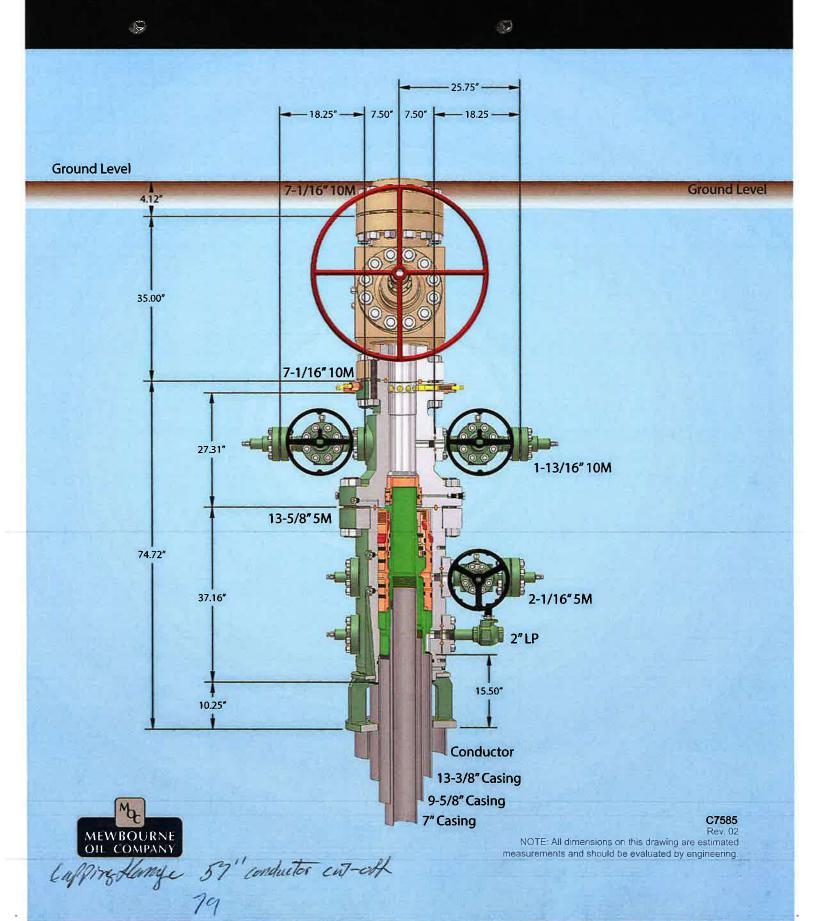
Signature:

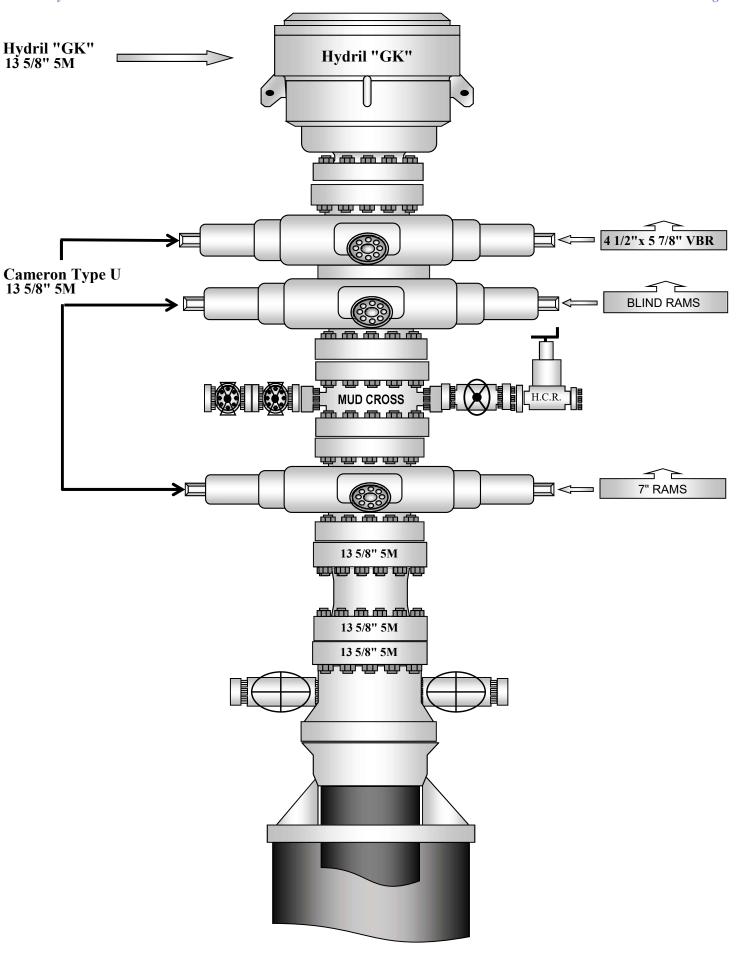
QUALITY

8/20/2018

Production: Date :

Signature:


Form PTC - 01 Rev.0 2


PRODUCTION

8/20/2018

13-5/8" MN-DS Wellhead System

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III
1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 12536

COMMENTS

Operator:			OGRID:	Action Number:	Action Type:
MEWBOURNE OIL CO	P.O. Box 5270	Hobbs, NM88241	14744	12536	FORM 3160-3

Created By	Comment	Comment Date
kpickford	KP GEO Review 12/18/2020	12/18/2020

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III
1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 12536

CONDITIONS OF APPROVAL

Operator:			OGRID:	Action Number:	Action Type:
MEWBOURNE OIL CO	P.O. Box 5270	Hobbs, NM88241	14744	12536	FORM 3160-3

OCD	Condition
Reviewer	
kpickford	Will require a directional survey with the C-104
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system