Form 3160-3 (June 2015)				FORM OMB N Expires: Ja	APPROV o. 1004-0 inuary 31	/ED)137 , 2018			
UNITED STATES DEPARTMENT OF THE II BUREAU OF LAND MANA	S NTERIC AGEME	DR NT		5. Lease Serial No.					
APPLICATION FOR PERMIT TO D	RILL O	R REENTER		6. If Indian, Allotee or Tribe Name					
1a. Type of work: DRILL	EENTER			7. If Unit or CA Age	reement,	Name and No.			
1b. Type of Well: Oil Well Gas Well Oil	ther			8 Lesse Name and Well No					
1c. Type of Completion: Hydraulic Fracturing Si									
2. Name of Operator				9. API Well No.					
3a. Address	3b. Phon	e No. (include area code	2)	10. Field and Pool,	or Exploi	ratory			
4. Location of Well (Report location clearly and in accordance w	vith any St	ate requirements.*)		11. Sec., T. R. M. or Blk. and Survey or Area					
At surface									
At proposed prod. zone									
14. Distance in miles and direction from nearest town or post offi	ice*			12. County or Paris	h	13. State			
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No o	f acres in lease	17. Spaci	ng Unit dedicated to t	his well				
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Prop	osed Depth	20. BLM	BIA Bond No. in file					
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Appr	oximate date work will s	start*	23. Estimated durat	ion				
	24. At	tachments							
The following, completed in accordance with the requirements of (as applicable)	f Onshore	Oil and Gas Order No. 1,	, and the H	Iydraulic Fracturing r	ule per 4	3 CFR 3162.3-3			
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the Item 20 above).	e operation	is unless covered by a	n existing	bond on file (see			
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office	m Lands, t	he 5. Operator certifica 6. Such other site spo BLM.	ation. ecific infor	mation and/or plans as	may be r	equested by the			
25. Signature	Na	me (Printed/Typed)			Date				
Title					1				
Approved by (Signature)	Na	me (Printed/Typed)			Date				
Title	Of	fice			1				
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds leg	gal or equitable title to the	ose rights	in the subject lease w	hich wou	Ild entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of	nake it a cr or represer	ime for any person know ntations as to any matter	vingly and within its	willfully to make to a jurisdiction.	any depai	rtment or agency			

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Page 2 of 74 Operator Certification Data Report

04/30/2020

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Bradley Bishop		Signed on: 04/29/2020
Title: Regulatory		
Street Address: PO Box	5270	
City: Hobbs	State: NM	Zip: 88260
Phone: (575)393-5905		
Email address: bbishop@	⊉mewbourne.com	
Field Represe	ntative	
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

Received by OCD: 3/19/2021 1:29:42 PM

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400052995

Operator Name: MEWBOURNE OIL COMPANY Well Name: BUFFALO TRACE 1/36 W1NC FED COM Well Type: CONVENTIONAL GAS WELL

Submission Date: 04/29/2020

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

APD ID:	10400052995	Tie to previous NOS?	Submission Date: 04/29/2020
BLM Office:	CARLSBAD	User: Bradley Bishop	Title: Regulatory
Federal/Indi	an APD: FED	Is the first lease penetrate	d for production Federal or Indian? FED
Lease numb	per: NMNM011039	Lease Acres: 360	
Surface acc	ess agreement in place?	Allotted?	Reservation:
Agreement	in place? NO	Federal or Indian agreeme	ent:
Agreement	number:		
Agreement	name:		
Keep applic	ation confidential? YES		
Permitting A	Agent? NO	APD Operator: MEWBOUR	RNE OIL COMPANY
Operator let	ter of designation:		

Operator Info

Operator Organization Name: MEWBOURNE OIL COMPANY
Operator Address: PO Box 5270
Operator PO Box:
Operator City: Hobbs State: NM
Operator Phone: (575)393-5905
Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan nam	ie:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: BUFFALO TRACE 1/36 W1NC FED COM	Well Number: 1H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: WELCH	Pool Name: PURPLE SAGE WOLFCAMP GAS

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Operator Name: MEWBOURNE OIL COMPANY Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Is the proposed well in a Helium production area? N	Use Existing Well Pad? Y	New surface disturbance? Y
Type of Well Pad: MULTIPLE WELL Well Class: HORIZONTAL	Multiple Well Pad Name: Buffa Trace 1/36 MD & NC Fed Com wells Number of Legs: 1	lo Number: 4
Well Work Type: Drill	-	
Well Type: CONVENTIONAL GAS WELL		
Describe Well Type:		
Well sub-Type: APPRAISAL		
Describe sub-type:		
Distance to town: 25 Miles Distance to ne	arest well: 50 FT Distar	nce to lease line: 330 FT
Reservoir well spacing assigned acres Measurement:	480 Acres	
Well plat: BuffaloTrace1_36W1NCFedCom1H_wellpl	at_20200310123853.pdf	
Well work start Date: 05/10/2020	Duration: 60 DAYS	

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	460	FNL	127	FW	26S	29E	12	Aliquot	32.06282	-	EDD	NEW	NEW	F	NMNM	299	0	0	Ν
Leg			5	L				NENW	45	103.9413	ΙY	MEXI	MEXI		011039	7			
#1										634		co	co						
KOP	146	FNL	146	FW	26S	29E	12	Aliquot	32.06379	-	EDD	NEW	NEW	F	NMNM	-	101	101	N
Leg			0	L				NENW	67	103.9407	Y	MEXI	MEXI		011039	713	39	31	
#1										62		со	co			4			

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
PPP	330	FSL	146	FW	26S	29E	1	Aliquot	32.06510	-	EDD	NEW	NEW	F	NMNM	-	108	106	Y
Leg			0	L				SESW	48	103.9408	Y	MEXI	MEXI		106690	761	87	08	
#1-1										068		CO	co			1			
PPP	0	FSL	146	FW	25S	29E	36	Aliquot	32.07896	-	EDD	NEW	NEW	S	STATE	-	159	106	Y
Leg			0	L				SESW	7	103.9412	Y	MEXI	MEXI			762	32	18	
#1-2										809		CO	CO			1			
EXIT	330	FNL	146	FW	25S	29E	36	Aliquot	32.09266	-	EDD	NEW	NEW	s	STATE	-	209	106	Y
Leg			0	L				NENW	09	103.9417	Y	MEXI	MEXI			763	15	28	
#1										495		CO	co			1			
BHL	330	FNL	146	FW	25S	29E	36	Aliquot	32.09266	-	EDD	NEW	NEW	s	STATE	-	209	106	Y
Leg			0	L				NENW	09	103.9417	Y	MEXI	MEXI			763	15	28	
#1										495		CO	CO			1			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

		W	ELL L	OCATIC	N AND AC	CREAGE DEDIC	CATION PLA	Τ				
1	API Number	г		2 Pool Code	2		³ Pool Na	me				
30 015 4	8102			98220)	PURPLE	SAGE; WO	LFCAN	MP GAS POOL			
4Property Cod	e				5 Property	Name				6 Well Number		
328113			BU	FFALO '	TRACE 1/	36 WINC FED	СОМ			1H		
7 OGRID N	Ю.				8 Operator	Name			9	Elevation		
14744	.			MEWI	BOURNE O	IL COMPANY				2997		
	¹⁰ Surface Location											
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/W	est line	County		
C C	12	26S	29E		460	NORTH	1275	WE	ST	EDDY		
			11	Bottom H	Iole Locatio	n If Different Fr	om Surface					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County		
C	36	25S	29E		330	NORTH	1650	WE	ST	EDDY		
12 Dedicated Acres	13 Joint	or Infill 14 (Consolidation	Code 15	Order No.							
640												

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400052995

Operator Name: MEWBOURNE OIL COMPANY

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Submission Date: 04/29/2020

Well Number: 1H

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
628679	UNKNOWN	2997	28	28	OTHER : Top Soil	NONE	N
628694	RUSTLER	2277	720	720	ANHYDRITE, DOLOMITE	NATURAL GAS, NONE, OIL	N
628681	TOP SALT	1955	1042	1042	SALT	NONE	N
726702	BASE OF SALT	-73	3070	3070	SALT	NONE	N
628686	LAMAR	-283	3280	3280	LIMESTONE	NATURAL GAS, OIL	N
628683	BELL CANYON	-323	3320	3320	SANDSTONE	NATURAL GAS, OIL	N
726703	CHERRY CANYON	-1158	4155	4155	SANDSTONE	NATURAL GAS, OIL	N
726704	MANZANITA	-1357	4354	4354	LIMESTONE	NATURAL GAS, OIL	N
726705	BRUSHY CANYON	-3777	6774	6774	SANDSTONE	NATURAL GAS, OIL	N
628688	BONE SPRING	-3993	6990	6990	LIMESTONE, SHALE	NATURAL GAS, OIL	N
726706	BONE SPRING 1ST	-4932	7929	7929	SANDSTONE	NATURAL GAS, OIL	N
726707	BONE SPRING 2ND	-5507	8504	8504	SANDSTONE	NATURAL GAS, OIL	N
726708	BONE SPRING 3RD	-6862	9859	9859	SANDSTONE	NATURAL GAS, OIL	N
628693	WOLFCAMP	-7233	10230	10230	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Highlighted data reflects the most recent changes

Show Final Text

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Pressure Rating (PSI): 5M

Rating Depth: 20915

Equipment: Annular, Pipe Ram, Blind Ram

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to choke manifold. Anchors are not required by manufacturer. A multibowl wellhead is being used. See attached schematic.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Choke Diagram Attachment:

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_5M_BOPE_Choke_Diagram_20200428142541.pdf

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Flex_Line_Specs_20200428142541.pdf

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Flex_Line_Specs_API_16C_20200428142542.pdf

BOP Diagram Attachment:

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Multi_Bowl_WH_20200428142604.pdf

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_5M_BOPE_Schematic_20200428142604.pdf

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	975	0	975	2997	2022	975	H-40	48	ST&C	1.73	3.88	DRY	6.88	DRY	11.5 6
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3200	0	3200	3065	-203	3200	J-55	36	LT&C	1.21	2.12	DRY	3.93	DRY	4.9
3	PRODUCTI ON	8.75	7.625	NEW	API	N	0	10600	0	10524	3065	-7527	10600	P- 110	39	FJ	2.13	2.43	DRY	1.85	DRY	2.9
4	LINER	6.12 5	4.5	NEW	API	N	10139	20915	10131	10628	-7134	-7631	10776	P- 110	13.5	LT&C	1.61	1.87	DRY	2.32	DRY	2.9

Section 3 - Casing

Casing Attachments

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Csg_assumptions_20200428142745.pdf

Casing ID: 2 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Csg_assumptions_20200428142811.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Csg_assumptions_20200428142852.pdf

 $Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Technical_Data_Sheet_VAM_HDL_7.625_x_39_P110_20200428142852.pdf$

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Casing ID: 4 String Type:LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Csg_assumptions_20200428142925.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	784	520	2.12	12.5	1102	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		784	975	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	2510	460	2.12	12.5	975	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail		2510	3200	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead	4354	3000	3325	20	2.12	12.5	42	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		3325	4354	100	1.34	14.8	134	25	Class C	Retarder
PRODUCTION	Lead	4354	4354	6842	150	2.12	12.5	318	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		6842	1060 0	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
LINER	Lead		1013 9	2091 5	430	2.97	11.2	1277	25	Class C	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud scavengers in surface hole

Describe the mud monitoring system utilized: Pason, PVT, and Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	975	SPUD MUD	8.6	8.8							
975	3200	SALT SATURATED	10	10							
3200	1052 4	WATER-BASED MUD	8.6	9.7							
1052 4	1062 8	OIL-BASED MUD	10	12							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL from KOP (10139') to surface (horizontal well - vertical portion of hole). Stated logs run will be in the Completion Report submitted to the BLM.

List of open and cased hole logs run in the well:

COMPENSATED NEUTRON LOG, DIRECTIONAL SURVEY, GAMMA RAY LOG, MEASUREMENT WHILE DRILLING, MUD LOG/GEOLOGIC LITHOLOGY LOG, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

None

Received by OCD: 3/19/2021 1:29:42 PM

Operator Name: MEWBOURNE OIL COMPANY

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6632

Anticipated Surface Pressure: 4293

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_H2S_Plan_20200428143550.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Dir_plot_20200428143623.pdf

 $Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Dir_plan_20200428143623.pdf$

Other proposed operations facets description:

Other proposed operations facets attachment:

Buffalo_Trace_1_36_W1NC_Fed_Com_1H_Add_Info_20200428143636.pdf

Other Variance attachment:

Page 13 of 74

CORPUS CHRISTI,	TEXAS 78405		PHONE: 361-887-9807 FAX: 361-887-0812 EMAIL: <i>Tim.Cantu@gates.com</i> WEB: www.gates.com	
10K CI	EMENTING ASSEMBI	LY PRESSURE T	EST CERTIFICATE	
Customer : Customer Ref. : Invoice No. :	AUSTIN DISTRIBUTING 4060578 500506	Test Date: Hose Serial No.: Created By:	4/30/2015 D-043015-7 JUSTIN CROPPER	
Product Description:	4 1/16 10K FLG	10K3.548.0CK4.1/1610KFLG	4 1/16 10K FLG	
Gates Part No. : Working Pressure :	4773-6290 10,000 PSI	Assembly Code : Test Pressure :	L36554102914D-043015-7 15,000 PSI	
Gates E & S N the Gates Oilf	Iorth America, Inc. certifie: Teld Roughneck Agreement/S	s that the following ho Specification requirem	ose assembly has been tested to ents and passed the 15 minute	
Gates E & S N the Gates Oilf hydrostatic test to 15,000 psi	Iorth America, Inc. certifie: field Roughneck Agreement/S per API Spec 7K/Q1, Fifth Ed in accordance with this produ minimum of 2.5 times t	s that the following he Specification requirem dition, June 2010, Tes uct number. Hose bur the working pressure	ose assembly has been tested to ents and passed the 15 minute st pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9.	
Gates E & S N the Gates Oilf hydrostatic test to 15,000 psi	Iorth America, Inc. certifie: field Roughneck Agreement/S : per API Spec 7K/Q1, Fifth Ed in accordance with this produ minimum of 2.5 times t	s that the following ho Specification requirem dition, June 2010, Tes uct number. Hose bur the working pressure	ose assembly has been tested to ents and passed the 15 minute st pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9.	
Gates E & S N the Gates Oilf hydrostatic test to 15,000 psi Quality Manager : Date : Signature :	Iorth America, Inc. certifie: field Roughneck Agreement/S : per API Spec 7K/Q1, Fifth Ed in accordance with this produ- minimum of 2.5 times to QUALITY / 4/30/2015 / / / / / / / / / / / / /	s that the following ho Specification requirem dition, June 2010, Tes uct number. Hose bur the working pressure Produciton: Date : Signature :	ose assembly has been tested to tents and passed the 15 minute st pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9. PRODUCTION 4/30/2015	
Gates E & S N the Gates Oilf hydrostatic test to 15,000 psi Quality Manager : Date : Signature :	Iorth America, Inc. certifie field Roughneck Agreement/S per API Spec 7K/Q1, Fifth Ed in accordance with this produ- minimum of 2.5 times t QUALITY 4/30/2015 4/30/2015	es that the following ho Specification requirem dition, June 2010, Tes uct number. Hose bur the working pressure Produciton: Date : Signature :	ose assembly has been tested to tents and passed the 15 minute st pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9. PRODUCTION 4/30/2015 Form-PTC - 01 Rev.0 2	

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX 77086 PHONE: (281) 602 - 4119 FAX: EMAIL: Troy.Schmidt@gates.com WEB: www.gates.com

10K CHOKE & KILL ASSEMBLY PRESSURE TEST CERTIFICATE

Customer:	A-7 AUSTIN INC DBA AUSTIN HOSE	Test Date:	8/20/2018		
Customer Ref.:	4101901	Hose Serial No.:	H-082018-10		
Invoice No.:	511956	Created By:	Moosa Naqvi		
		10			
Product Description:	10KF.	3.035.0CK41/1610KFLGFXDxFLT	L/E		
Product Description:	10KF. 4 1/16 in. Fixed Flange	Bind Fitting 2:	4 1/16 in. Float Flange		
Product Description:	10KF 4 1/16 in. Fixed Flange 68503010-9721632	End Fitting 2: Assembly Code:	4 1/16 in. Float Flange L40695052218H-082018-10		

Gates Engineering & Services North America certifies that the following hose assembly has successfully passed all pressure testing requirements set forth in Gates specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies), which include reference to Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test certificate to illustrate conformity to test requirements.

Quality:	QUALITY	Production:	PRODUCTION
Date :	8/20/2018	Date :	8/20/2018
Signature :	1000	Signature :	THE T
	Mossa N4m	/	Form PTC - 01 Rev.0 2
	t		-

Released to Imaging: 3/22/2021 8:09:28 AM

Received by OCD: 3/19/2021 1:29:42 PM

Page 17 of 74

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
			BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	V
If yes, does production casing cement tie back a minimum of 50' above the Reef?	L
Is well within the designated 4 string boundary	
is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	11
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
			BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well leasted within Capiton Deef?	V
Is well located within Capital Reel?	I
If yes, does production casing cement the back a minimum of 50° above the Reel?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well leasted in P. 111 P. and SOPA?	N
Is well located III K-111-P and SOPA?	1
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	N
Is well located in critical Cave/Karst?	N
If yes, are three strings cemented to surface?	

Hole	Casing	, Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
			BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	<u></u>
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Technical Specifications

Connection Type: HD-L Casing STANDARD	Size(O.D.): 7-5/8 in	Weight (Wall): 39.00 lb/ft (0.5 in)	Grade: P-110
P-110 110,000 125,000	Material Grade Minimum Yield Strength (psi.) Minimum Ultimate Strength (psi.)		
7.625 6.625 0.500 39.00 38.08 11.192	Pipe Dimensions Nominal Pipe Body O.D. (in.) Nominal Pipe Body I.D. (in.) Nominal Wall Thickness (in.) Nominal Weight (lbs./ft.) Plain End Weight (lbs./ft.) Nominal Pipe Body Area (sq. in.) Pipe Body Performance Properties	VAM USA 4424 W. Sam Hou: Houston, TX 7704 Phone: 713-479-32 Fax: 713-479-3234 E-mail: VAMUSAs	ston Pkwy. Suite 150 1 200 4 <u>ales@vam-usa.com</u>
1,231,000 11,080 12,620 11,500	Minimum Pipe Body Yield Strength (Ib Minimum Collapse Pressure (psi.) Minimum Internal Yield Pressure (psi.) Hydrostatic Test Pressure (psi.)	s.)	
7.625 6.551 6.500 4.51 6.939 62.0	Connection Dimensions Connection O.D. (in.) Connection I.D. (in.) Connection Drift Diameter (in.) Make-up Loss (in.) Critical Area (sq. in.) Joint Efficiency (%)		
763,000 (1) 867,000 (2) 14,310 763,000 11,080 12,620 41.0 8,500 (3)	Connection Performance Properties Joint Strength (lbs.) Reference Minimum Parting Load (lbs Reference String Length (ft) 1.4 Desig Compression Rating (lbs.) Collapse Pressure Rating (psi.) Internal Pressure Rating (psi.) Maximum Uniaxial Bend Rating [degra Recommended Torque Values Minimum Final Torque (ftlbs.)	s.) In Factor ees/100 ft]	
9,800 (3)	Maximum Final Torque (ftlbs.)		

- Joint strength is the elastic limit or yield strength of the connection.
 Reference minimum parting load is the ultimate strength or parting load of the connection.
 Torque values are recommended and can be affected by field conditions.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any

warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

11/28/2018 3:33 PM

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
			BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well leasted within Capiton Deef?	V
Is well located within Capital Reel?	I
If yes, does production casing cement the back a minimum of 50° above the Reel?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well leasted in P. 111 P. and SOPA?	N
Is well located III K-111-P and SOPA?	IN
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	N
Is well located in critical Cave/Karst?	N
If yes, are three strings cemented to surface?	

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- 1 The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- 3 The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

- 1. <u>Well Control Equipment</u>
 - A. Choke manifold with minimum of one adjustable choke/remote choke.
 - B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
 - C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

A. Wind direction indicators as indicated on the wellsite diagram.B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office911 or 575-887-7551Ambulance Service911 or 575-885-2111Carlsbad Fire Dept911 or 575-885-2111Loco Hills Volunteer Fire Dept.911 or 575-677-3266Closest Medical Facility - Columbia Medical Center of Carlsbad575-492-5000

Mewbourne Oil Company	Hobbs District Office	575-393-5905
	Fax	575-397-6252
	2 nd Fax	575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

BHL: 330' FNL & 1460' FWL (Sec 36)

Page 27 of

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Buffalo Trace 1/36 W1NC Fed Com #1H Sec 12, T26S, R29E SHL: 460' FNL & 1275' FWL, Sec 12 BHL: 330' FNL & 1460' FWL, Sec 36

Plan: Design #1

Standard Planning Report

28 April, 2020

Database: Company: Project: Site: Well: Wellbore: Design:	Hobbs Mewb Eddy Buffald Sec 12 BHL: 3 Design	s ourne Oil Comj County, New M o Trace 1/36 W 2, T26S, R29E 330' FNL & 146 n #1	oany lexico NAD 83 1NC Fed Com 0' FWL, Sec 36	Local Co-ordir TVD Reference D 83 MD Reference Com #1H North Reference Survey Calcula Sec 36			ence: nod:	Site Buffalo Trac WELL @ 3025.0 WELL @ 3025.0 Grid Minimum Curva	Fed Com #1H Nell Elev) Nell Elev)	
Project	Eddy C	County, New Me	exico NAD 83							
Map System: Geo Datum: Map Zone:	US State North An New Me	e Plane 1983 nerican Datum xico Eastern Zo	1983 one		System Da	tum:	Gr	ound Level		
Site	Buffalo	Trace 1/36 W1	NC Fed Com #	¢1H						
Site Position: From: Position Uncertain	Map nty:	0.0	Northin Eastin Dusft Slot Ra	ng: g: adius:	386 662	,850.00 usft ,761.00 usft 13-3/16 "	Latitude: Longitude: Grid Converg	ence:		32.0629244 -103.9413629 0.21 °
Well	Sec 12,	T26S, R29E								
Well Position	+N/-S	0	.0 usft No	rthing:		386,850.00	usft Lat	itude:		32.0629244
	+E/-W	0	.0 usft Ea	sting:		662,761.00	usft Lor	igitude:		-103.9413629
Position Uncertain	nty	0	.0 usft We	ellhead Elevat	ion:	3,025.0	usft Gro	ound Level:		2,997.0 usft
Wellbore	BHL: 3	330' FNL & 146	0' FWL, Sec 36	;						
Magnetics	Мо	odel Name	Sample	e Date	Declina (°)	ition	Dip A (Nngle ')	Field S (r	itrength IT)
Magnetics	Mo	IGRF2010	Sample	e Date 2/31/2014	Declina (°)	r tion 7.31	Dip A (Angle ?) 59.89	Field S (r	trength IT) 48,103
Magnetics	Mo	del Name IGRF2010 #1	Sample	e Date 2/31/2014	Declina (°)	rtion 7.31	Dip A ('	Angle ?) 59.89	Field S (r	trength IT) 48,103
Magnetics Design Audit Notes:	Mo Design	iGRF2010 #1	Sample 1	e Date 2/31/2014	Declina (°)	rtion 7.31	Dip / (Nngle ?) 59.89	Field S (r	trength IT) 48,103
Magnetics Design Audit Notes: Version:	Mo Design	del Name IGRF2010 #1	Sample 1 Phase	2/31/2014	Declina (°) PROTOTYPE	tion 7.31 Tie	Dip A (' On Depth:	Nngle ?) 59.89	Field S (r	strength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section:	Ma	del Name IGRF2010 #1	Sample 1. Phase Phase	• Date 2/31/2014 •: P 7D)	Declina (°) PROTOTYPE +N/-S	tion 7.31 Tie +E	Dip A (' On Depth: /-W	ngle *) 59.89 Dir	Field S (r 0.0 ection	strength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section:	Mo	del Name IGRF2010 #1	Sample 1 Phase Pepth From (TV (usft)	• Date 2/31/2014 •: P 7D)	Declina (°) PROTOTYPE +N/-S (usft)	ntion 7.31 Tie +E (us	Dip A (' On Depth: /-W sft)	(ingle 2) 59.89 Dir	Field S (r 0.0 ection (°) 50.16	strength iT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section:	Mo	odel Name IGRF2010 #1	Sample 1. Phase Pepth From (TV (usft) 0.0	2/31/2014 2: P 2: P	Declina (°) PROTOTYPE +N/-S (usft) 0.0	ntion 7.31 Tie +E (us 0	Dip A (* On Depth: /-W sft) .0	(ingle 59.89 Dir 38	Field S (r 0.0 ection (°) 59.16	strength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	Ma	del Name IGRF2010 #1	Sample 1 Phase Pepth From (TV (usft) 0.0	e Date 2/31/2014 e: P 7D)	Declina (°) PROTOTYPE +N/-S (usft) 0.0	ntion 7.31 Tie +E (us 0	Dip A (' On Depth: /-W sft) .0	(ingle 2) 59.89 Dir 3;	Field S (r 0.0 ection (°) 59.16	strength iT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft)	Mo Design	Azimuth (°)	Sample 1. Phase Phase lepth From (TV (usft) 0.0 Vertical Depth (usft)	• Date 2/31/2014 •: P /D) +N/-S (usft)	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	ntion 7.31 Tie +E (us 0 Dogleg Rate (°/100usft)	Dip A (* On Depth: /-W sft) .0 Build Rate (°/100usft)	Signal States St	Field S (r 0.0 ection (°) 59.16 TFO (°)	trength IT) 48,103 Target
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0	Mo Design nclination (°) 0.00	del Name IGRF2010 #1 	Sample 1 Phase Pepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0	e Date 2/31/2014 e: P /D) +N/-S (usft) 0.0	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0	tion 7.31 Tie +E (u: 0 Dogleg Rate (°/100usft) 0.00	Dip A (*) On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00	(°/100usft)	Field S (r 0.0 ection (°) 59.16 TFO (°) 0.00	trength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 975.0	Mo Design nclination (°) 0.00 0.00	Azimuth (°) 0.00 0.00	Sample 1 Phase Pepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 975.0	 Date 2/31/2014 P P 'D) +N/-S (usft) 0.0 0.0 	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	ntion 7.31 Tie +E (u: 0 Dogleg Rate (°/100usft) 0.00 0.00	Dip <i>A</i> (* On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00	Angle 59.89 Dir Dir 38 Virial State (*/100usft) 0.00 0.00	Field S (r 0.0 ection (°) 59.16 TFO (°) 0.00 0.00	trength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0 975.0 1,131.1 9 982 4	Ma Design nclination (°) 0.00 0.00 2.34 2.34	Adel Name IGRF2010 #1 D Azimuth (°) 0.00 0.00 30.19 30.19	Sample 1 Phase Pepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 975.0 1,131.0 9.975.0	e Date 2/31/2014 e: P /D) +N/-S (usft) 0.0 0.0 0.0 2.8 315 2	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 1.6 183.4	tion 7.31 Tie +E (us 0 0 Dogleg Rate (°/100usft) 0.00 0.00 1.50 0.00	Dip 4 (*) On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00	single 59.89 Dir Dir 3: (°/100usft) 0.00 0.00 0.00 0.00	Field S (r 0.0 ection (°) 59.16 TFO (°) 0.00 0.00 30.19 0.00	trength IT) 48,103
Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0 975.0 1,131.1 9,982.4 10,138.5	Mo Design Design (°) 0.00 0.00 2.34 2.34 0.00	Azimuth (°) 0.00 0.00 0.00 30.19 0.00	Sample 1 Phase Pepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 975.0 1,131.0 9,975.0 10,131.0	e Date 2/31/2014 e: P (D) +N/-S (usft) 0.0 0.0 0.0 2.8 315.2 318.0	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 1.6 183.4 185.0	tion 7.31 Tie +E (u: 0 Dogleg Rate (°/100usft) 0.00 0.00 1.50 0.00 1.50	Dip <i>A</i> (' On Depth: /-W sft) .0 .0 Build Rate (°/100usft) 0.00 0.00 1.50 0.00 -1.50	Angle 59.89 59.89 Dir 38 Curn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Field S (r 0.0 ection (°) 59.16 TFO (°) 0.00 0.00 0.00 30.19 0.00 180.00	trength hT) 48,103 Target
Magnetics Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Ir (usft) 0.0 975.0 1,131.1 9,982.4 10,138.5 10,886.8	Mo Design Design (°) 0.00 0.00 2.34 2.34 2.34 0.00 89.89	Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Sample 1 Phase Pepth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 975.0 1,131.0 9,975.0 10,131.0 10,608.0	 Date 2/31/2014 2/31/2014 P P /D) +N/-S (usft) 0.0 0.0 2.8 315.2 318.0 793.8 	Declina (°) PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 1.6 183.4 185.0 169.4	tion 7.31 Tie +E (u: 0 Dogleg Rate (°/100usft) 0.00 0.00 1.50 0.00 1.50 12.01	Dip <i>A</i> (* On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00 -1.50 12.01	Angle 59.89 59.89 Dir 0.01 38 38 (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Field S (r 0.0 ection (°) 59.16 TFO (°) 0.00 0.00 0.00 30.19 0.00 180.00 -1.88	trength T) 48,103 Target KOP: 146' FNL & 146

.

Database:	Hobbs	Local Co-ordinate Reference:	Site Buffalo Trace 1/36 W1NC Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3025.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3025.0usft (Original Well Elev)
Site:	Buffalo Trace 1/36 W1NC Fed Com #1H	North Reference:	Grid
Well:	Sec 12, T26S, R29E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FNL & 1460' FWL, Sec 36		
Design:	Design #1		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	()	()	. ,	(4010)	()	· · /	· /	· · ·	· · ·
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 460' FN	NL & 1275' FWL	(Sec 12)							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00		0.0	0.0	0.0	0.00	0.00	0.00
975.0	0.00	0.00	975.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.38	30.19	1,000.0	0.1	0.0	0.1	1.50	1.50	0.00
1,100.0	1.88	30.19	1,100.0	1.8	1.0	1.8	1.50	1.50	0.00
1,131.1	2.34	30.19	1,131.0	2.8	1.6	2.7	1.50	1.50	0.00
1,200.0	2.34	30.19	1,199.9	5.2	3.0	5.1	0.00	0.00	0.00
1,300.0	2.34	30.19	1,299.8	8.7	5.1	8.6	0.00	0.00	0.00
1,400.0	2.34	30.19	1,399.7	12.2	7.1	12.1	0.00	0.00	0.00
1,500.0	2.34	30.19	1,499.6	15.8	9.2	15.6	0.00	0.00	0.00
1,600.0	2.34	30.19	1,599.6	19.3	11.2	19.1	0.00	0.00	0.00
1,700.0	2.34	30.19	1,699.5	22.8	13.3	22.6	0.00	0.00	0.00
1 800 0	2.34	30.10	1 700 /	26.4	15.3	26.1	0.00	0.00	0.00
1,000.0	2.34	30.19	1,799.4	20.4	13.3	20.1	0.00	0.00	0.00
2 000 0	2.34	30.19	1,099.3	29.9	17.4	29.0	0.00	0.00	0.00
2,000.0	2.34	30.19	2 000 1	37.0	21.5	36.6	0.00	0.00	0.00
2,100.0	2.34	30.19	2,000.1	40.5	23.6	40.1	0.00	0.00	0.00
2,200.0	2.01	00.10	2,100.1	10.0	20.0	10.1	0.00	0.00	0.00
2,300.0	2.34	30.19	2,299.0	44.0	25.6	43.6	0.00	0.00	0.00
2,400.0	2.34	30.19	2,398.9	47.6	27.7	47.1	0.00	0.00	0.00
2,500.0	2.34	30.19	2,498.8	51.1	29.7	50.6	0.00	0.00	0.00
2,600.0	2.34	30.19	2,598.7	54.6	31.8	54.1	0.00	0.00	0.00
2,700.0	2.34	30.19	2,698.6	58.1	33.8	57.6	0.00	0.00	0.00
2,800.0	2.34	30.19	2,798.6	61.7	35.9	61.1	0.00	0.00	0.00
2,900.0	2.34	30.19	2,898.5	65.2	37.9	64.6	0.00	0.00	0.00
3,000.0	2.34	30.19	2,998.4	68.7	40.0	68.1	0.00	0.00	0.00
3,100.0	2.34	30.19	3,098.3	72.3	42.0	71.6	0.00	0.00	0.00
3,200.0	2.34	30.19	3,198.2	75.8	44.1	75.1	0.00	0.00	0.00
3 300 0	2 34	30.10	3 208 1	70 3	46.1	78.6	0.00	0.00	0.00
3,00.0	2.34	30.19	3 308 1	82.0	48.2	82.1	0.00	0.00	0.00
3 500 0	2.04	30.19	3 498 0	86.4	50.3	85.6	0.00	0.00	0.00
3 600 0	2.34	30.19	3 597 9	89.9	52.3	89.1	0.00	0.00	0.00
3 700 0	2.34	30 19	3 697 8	93.4	54.4	92.6	0.00	0.00	0.00
0,10010			0,00110			02.0	0.00	0.00	0.00
3,800.0	2.34	30.19	3,797.7	97.0	56.4	96.1	0.00	0.00	0.00
3,900.0	2.34	30.19	3,897.6	100.5	58.5	99.6	0.00	0.00	0.00
4,000.0	2.34	30.19	3,997.6	104.0	60.5	103.1	0.00	0.00	0.00
4,100.0	2.34	30.19	4,097.5	107.6	62.6	106.6	0.00	0.00	0.00
4,200.0	2.34	30.19	4,197.4	111.1	64.6	110.1	0.00	0.00	0.00
4,300.0	2.34	30.19	4,297.3	114.6	66.7	113.6	0.00	0.00	0.00
4,400.0	2.34	30.19	4,397.2	118.2	68.7	117.1	0.00	0.00	0.00
4,500.0	2.34	30.19	4,497.1	121.7	70.8	120.6	0.00	0.00	0.00
4,600.0	2.34	30.19	4,597.1	125.2	72.8	124.1	0.00	0.00	0.00
4,700.0	2.34	30.19	4,697.0	128.8	74.9	127.6	0.00	0.00	0.00
1 800 0	2 24	20 10	1 706 0	122.2	77.0	121 1	0.00	0.00	0.00
4,000.0	2.34	30.19	-,190.9 1 206 2	132.5	70.0	131.1	0.00	0.00	0.00
5 000 0	2.34	30.19	4 996 7	130.0	7 9.0 81 1	134.0	0.00	0.00	0.00
5,000.0	2.04	00.19	7,000.1	100.0	01.1	100.1	0.00	0.00	0.00

4/28/2020 11:36:50AM

Database:	Hobbs	Local Co-ordinate Reference:	Site Buffalo Trace 1/36 W1NC Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3025.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3025.0usft (Original Well Elev)
Site:	Buffalo Trace 1/36 W1NC Fed Com #1H	North Reference:	Grid
Well:	Sec 12, T26S, R29E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FNL & 1460' FWL, Sec 36		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
(usit)	()	0	(usit)	(usit)	(usit)	(usit)	(71000310)	(/ loousity	(/ loousity
5,100.0	2.34	30.19	5,096.6	142.9	83.1	141.6	0.00	0.00	0.00
5,200.0	2.34	30.19	5,196.6	146.4	85.2	145.1	0.00	0.00	0.00
5,300.0	2.34	30.19	5,296.5	149.9	87.2	148.6	0.00	0.00	0.00
5,400.0	2.34	30.19	5,396.4	153.5	89.3	152.1	0.00	0.00	0.00
5,500.0	2.34	30.19	5,496.3	157.0	91.3	155.6	0.00	0.00	0.00
5,600.0	2.34	30.19	5,596.2	160.5	93.4	159.1	0.00	0.00	0.00
5,700.0	2.34	30.19	5,696.1	164.1	95.4	162.6	0.00	0.00	0.00
5 800 0	2 34	30.10	5 796 1	167.6	97.5	166 1	0.00	0.00	0.00
5,000.0	2.34	30.19	5 896 0	107.0	99.6	169.6	0.00	0.00	0.00
6,000,0	2.04	30.19	5 995 9	174.6	101.6	173.1	0.00	0.00	0.00
6 100 0	2.04	30.19	6 095 8	178.2	101.0	176.1	0.00	0.00	0.00
6 200 0	2.34	30.19	6 195 7	181 7	105.7	180.1	0.00	0.00	0.00
0,200.0	2.04	00.10	0,100.7	101.7	100.7	100.1	0.00	0.00	0.00
6,300.0	2.34	30.19	6,295.6	185.2	107.8	183.6	0.00	0.00	0.00
6,400.0	2.34	30.19	6,395.6	188.8	109.8	187.1	0.00	0.00	0.00
6,500.0	2.34	30.19	6,495.5	192.3	111.9	190.6	0.00	0.00	0.00
6,600.0	2.34	30.19	6,595.4	195.8	113.9	194.1	0.00	0.00	0.00
6,700.0	2.34	30.19	6,695.3	199.4	116.0	197.6	0.00	0.00	0.00
6,800.0	2.34	30.19	6,795.2	202.9	118.0	201.1	0.00	0.00	0.00
6,900.0	2.34	30.19	6,895.1	206.4	120.1	204.6	0.00	0.00	0.00
7,000.0	2.34	30.19	6,995.1	210.0	122.1	208.1	0.00	0.00	0.00
7,100.0	2.34	30.19	7,095.0	213.5	124.2	211.6	0.00	0.00	0.00
7,200.0	2.34	30.19	7,194.9	217.0	126.3	215.1	0.00	0.00	0.00
7,300.0	2.34	30.19	7,294.8	220.5	128.3	218.6	0.00	0.00	0.00
7,400.0	2.34	30.19	7,394.7	224.1	130.4	222.1	0.00	0.00	0.00
7,500.0	2.34	30.19	7,494.6	227.6	132.4	225.6	0.00	0.00	0.00
7,600.0	2.34	30.19	7,594.6	231.1	134.5	229.1	0.00	0.00	0.00
7,700.0	2.34	30.19	7,694.5	234.7	136.5	232.6	0.00	0.00	0.00
7.800.0	2.34	30.19	7,794,4	238.2	138.6	236.1	0.00	0.00	0.00
7,900.0	2.34	30.19	7.894.3	241.7	140.6	239.6	0.00	0.00	0.00
8.000.0	2.34	30.19	7,994.2	245.3	142.7	243.1	0.00	0.00	0.00
8.100.0	2.34	30.19	8.094.1	248.8	144.7	246.6	0.00	0.00	0.00
8,200.0	2.34	30.19	8,194.1	252.3	146.8	250.1	0.00	0.00	0.00
8 300 0	2 34	30.19	8 294 0	255.8	148.8	253.6	0.00	0.00	0.00
8 400 0	2.34	30 19	8 393 9	259.4	150.9	257.1	0.00	0.00	0.00
8 500 0	2.34	30 19	8 493 8	262.9	153.0	260.6	0.00	0.00	0.00
8 600 0	2 34	30 19	8 593 7	266.4	155.0	264 1	0.00	0.00	0.00
8.700.0	2.34	30.19	8.693.6	270.0	157.1	267.6	0.00	0.00	0.00
0,000,0	0.04	20.10	9 702 6	070 F	150 1	071 1	0.00	0.00	0.00
0,000.0	2.34	30.19	0,793.0	273.5	109.1	271.1	0.00	0.00	0.00
8,900.0	2.34	30.19	0,093.5	277.0	101.2	274.0	0.00	0.00	0.00
9,000.0	2.34	30.19	0,993.4	200.0	105.2	270.1	0.00	0.00	0.00
9,100.0	2.34	30.19	9,093.3	204.1	105.5	201.0	0.00	0.00	0.00
3,200.0	2.04	50.15	3,135.2	207.0	107.5	200.1	0.00	0.00	0.00
9,300.0	2.34	30.19	9,293.1	291.2	169.4	288.6	0.00	0.00	0.00
9,400.0	2.34	30.19	9,393.1	294.7	171.4	292.1	0.00	0.00	0.00
9,500.0	2.34	30.19	9,493.0	298.2	173.5	295.6	0.00	0.00	0.00
9,600.0	2.34	30.19	9,592.9	301.7	175.5	299.1	0.00	0.00	0.00
9,700.0	2.34	30.19	9,692.8	305.3	177.6	302.6	0.00	0.00	0.00
9,800.0	2.34	30.19	9,792.7	308.8	179.7	306.1	0.00	0.00	0.00
9,900.0	2.34	30.19	9,892.6	312.3	181.7	309.6	0.00	0.00	0.00
9,982.4	2.34	30.19	9,975.0	315.2	183.4	312.5	0.00	0.00	0.00
10,000.0	2.08	30.19	9,992.6	315.8	183.7	313.1	1.50	-1.50	0.00
10,100.0	0.58	30.19	10,092.5	317.8	184.9	315.1	1.50	-1.50	0.00
10,138.5	0.00	0.00	10,131.0	318.0	185.0	315.2	1.50	-1.50	0.00

4/28/2020 11:36:50AM

Database:	Hobbs	Local Co-ordinate Reference:	Site Buffalo Trace 1/36 W1NC Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3025.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3025.0usft (Original Well Elev)
Site:	Buffalo Trace 1/36 W1NC Fed Com #1H	North Reference:	Grid
Well:	Sec 12, T26S, R29E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FNL & 1460' FWL, Sec 36		
Design:	Design #1		

Planned Survey

Mea: De (u	sured epth isft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
KO	P. 146' F	NI & 1460' FW/	(Sec 12)	. ,	()	()	. ,	. ,	. ,	
1	0 200 0	7 30	358 12	10 102 /	322.0	184 0	310.2	12 01	12.01	0.00
1	0,200.0	10.40	358 12	10,132.4	345 1	184.1	342.3	12.01	12.01	0.00
1	0,300.0	13. 4 0 31 /1	358 12	10,209.0	387.0	182.7	385.2	12.01	12.01	0.00
1	0,400.0	/3/3	358 12	10,079.0	448 5	180.7	445.8	12.01	12.01	0.00
	0,000.0	40.40	550.12	10,400.0	++0.5	100.7	440.0	12.01	12.01	0.00
1	0,600.0	55.44	358.12	10,523.8	524.3	178.2	521.6	12.01	12.01	0.00
1	0,700.0	67.45	358.12	10,571.5	611.9	175.4	609.3	12.01	12.01	0.00
1	0,800.0	79.46	358.12	10,600.0	707.5	172.2	704.9	12.01	12.01	0.00
1	0,886.8	89.89	358.12	10,608.0	793.8	169.4	791.2	12.01	12.01	0.00
FTF	P/LP: 330	' FSL & 1460' FW	/L (Sec 1)							
1	0,900.0	89.89	358.12	10,608.0	807.0	169.0	804.4	0.00	0.00	0.00
1	1 000 0	80 80	358 12	10 608 2	906.9	165 7	904 4	0.00	0.00	0.00
1	1,000.0	80.80	358 12	10,000.2	1 006 0	162.4	1 004 4	0.00	0.00	0.00
1	1,100.0	80.80	358 12	10,000.4	1,000.9	102.4	1,004.4	0.00	0.00	0.00
1	1 300.0	80 80	350.12	10,000.0	1 206 9	155.2	1 204 4	0.00	0.00	0.00
1	1,000.0	09.09 09.09	350.12	10,000.0	1 306 7	100.9	1,204.4	0.00	0.00	0.00
1	1,400.0	09.09	550.12	10,009.0	1,300.7	152.0	1,304.3	0.00	0.00	0.00
1	1,500.0	89.89	358.12	10,609.2	1,406.7	149.3	1,404.3	0.00	0.00	0.00
1	1,600.0	89.89	358.12	10,609.4	1,506.6	146.1	1,504.3	0.00	0.00	0.00
1	1,700.0	89.89	358.12	10,609.6	1,606.6	142.8	1,604.3	0.00	0.00	0.00
1	1,800.0	89.89	358.12	10,609.8	1,706.5	139.5	1,704.3	0.00	0.00	0.00
1	1,900.0	89.89	358.12	10,610.0	1,806.5	136.2	1,804.3	0.00	0.00	0.00
1.	2 000 0	80.80	358 12	10 610 2	1 006 /	133.0	1 004 2	0.00	0.00	0.00
1.	2,000.0	80.80	358 12	10,010.2	2,006,3	133.0	2 004 2	0.00	0.00	0.00
1	2,100.0	09.09	250.12	10,010.4	2,000.3	129.7	2,004.2	0.00	0.00	0.00
1	2,200.0	09.09	250.12	10,010.0	2,100.3	120.4	2,104.2	0.00	0.00	0.00
1.	2,300.0	80.80	358 12	10,010.0	2,200.2	123.1	2,204.2	0.00	0.00	0.00
1.	2,400.0	09.09	550.12	10,011.0	2,300.2	119.9	2,304.2	0.00	0.00	0.00
1:	2,500.0	89.89	358.12	10,611.2	2,406.1	116.6	2,404.2	0.00	0.00	0.00
1:	2,600.0	89.89	358.12	10,611.4	2,506.1	113.3	2,504.1	0.00	0.00	0.00
1:	2,700.0	89.89	358.12	10,611.6	2,606.0	110.0	2,604.1	0.00	0.00	0.00
1:	2,800.0	89.89	358.12	10,611.8	2,706.0	106.8	2,704.1	0.00	0.00	0.00
1:	2,900.0	89.89	358.12	10,612.0	2,805.9	103.5	2,804.1	0.00	0.00	0.00
1	3 000 0	89 89	358 12	10 612 2	2 905 9	100.2	2 904 1	0.00	0.00	0.00
1	3 100 0	80 80	358 12	10 612 4	3 005 8	96.0	3 004 1	0.00	0.00	0.00
1	3 200 0	80 80	358 12	10 612 6	3 105 8	03.7	3 104 0	0.00	0.00	0.00
1	3 300 0	89 89	358 12	10 612 8	3 205 7	90.4	3 204 0	0.00	0.00	0.00
1	3 400 0	89 89	358 12	10 613 0	3 305 6	87 1	3 304 0	0.00	0.00	0.00
	_,	00.00			0,000.0	01.1	0,001.0	0.00	0.00	0.00
1	3,500.0	89.89	358.12	10,613.2	3,405.6	83.8	3,404.0	0.00	0.00	0.00
1	3,600.0	89.89	358.12	10,613.4	3,505.5	80.6	3,504.0	0.00	0.00	0.00
1	3,700.0	89.89	358.12	10,613.6	3,605.5	77.3	3,604.0	0.00	0.00	0.00
1	3,800.0	89.89	358.12	10,613.8	3,705.4	74.0	3,703.9	0.00	0.00	0.00
1:	3,900.0	89.89	358.12	10,614.0	3,805.4	70.7	3,803.9	0.00	0.00	0.00
1.	4,000.0	89.89	358.12	10,614.2	3,905.3	67.5	3,903.9	0.00	0.00	0.00
1	4.100.0	89.89	358.12	10.614.4	4.005.3	64.2	4,003.9	0.00	0.00	0.00
1	4,200.0	89.89	358.12	10,614.6	4,105.2	60.9	4,103.9	0.00	0.00	0.00
1	4,300.0	89.89	358.12	10.614.8	4,205.2	57.6	4,203.9	0.00	0.00	0.00
1	4,400.0	89.89	358.12	10,615.0	4,305.1	54.4	4,303.8	0.00	0.00	0.00
	4 500 0		050.40	40.015.0						
1	4,500.0	89.89	358.12	10,615.2	4,405.1	51.1	4,403.8	0.00	0.00	0.00
1.	4,600.0	89.89	358.12	10,615.4	4,505.0	47.8	4,503.8	0.00	0.00	0.00
1	4,700.0	89.89	358.12	10,615.6	4,604.9	44.5	4,603.8	0.00	0.00	0.00
1	4,800.0	89.89	358.12	10,615.8	4,704.9	41.3	4,703.8	0.00	0.00	0.00
1	4,900.0	89.89	358.12	10,616.0	4,804.8	38.0	4,803.8	0.00	0.00	0.00
1	5,000.0	89.89	358.12	10,616.2	4,904.8	34.7	4,903.7	0.00	0.00	0.00
1	5,100.0	89.89	358.12	10,616.4	5,004.7	31.4	5,003.7	0.00	0.00	0.00
1	5 200 0	89.89	358.12	10.616.6	5,104.7	28.2	5,103.7	0.00	0.00	0.00

4/28/2020 11:36:50AM

COMPASS 5000.1 Build 72

Database:	Hobbs	Local Co-ordinate Reference:	Site Buffalo Trace 1/36 W1NC Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3025.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3025.0usft (Original Well Elev)
Site:	Buffalo Trace 1/36 W1NC Fed Com #1H	North Reference:	Grid
Well:	Sec 12, T26S, R29E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FNL & 1460' FWL, Sec 36		
Design:	Design #1		

Planned Survey

Measu Dept (usfi	ıred th t)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15 3	300.0	89 89	358 12	10 616 8	5 204 6	24.9	5 203 7	0.00	0.00	0.00
15,4	400.0	89.89	358.12	10,617.0	5,304.6	21.6	5,303.7	0.00	0.00	0.00
15.5	E00 0	90.90	250 10	10 617 0	E 404 E	10.2	E 402 7	0.00	0.00	0.00
15,0	600.0 600.0	80.80	358 12	10,017.2	5,404.5	10.3	5,403.7	0.00	0.00	0.00
15,0	700.0	80.80	358 12	10,017.4	5,504.5	11.1	5,503.0	0.00	0.00	0.00
15,7	800.0	80.80	358 12	10,017.0	5,004.4	85	5,000.0	0.00	0.00	0.00
15.0	900.0	89.89	358 12	10,618.0	5 804 3	5.0	5 803 6	0.00	0.00	0.00
10,0		00.00	000.12	10,010.0	5,004.0	0.2	5,000.0	0.00	0.00	0.00
15,9	931.7	89.89	358.12	10,618.1	5,836.0	4.2	5,835.3	0.00	0.00	0.00
PPP2	: 0' FSL	& 1460' FWL (S	Sec 36)	10.010.0	5 00 4 0	0.0	5 000 0	0.00	0.00	0.00
16,0	000.0	89.89	358.12	10,618.2	5,904.2	2.0	5,903.6	0.00	0.00	0.00
16,1	100.0	89.89	358.12	10,618.4	6,004.2	-1.3	6,003.6	0.00	0.00	0.00
16,2	200.0	89.89	358.12	10,618.6	6,104.1	-4.6	6,103.5	0.00	0.00	0.00
10,3	300.0	09.09	300.12	10,010.0	0,204.1	-7.9	0,203.5	0.00	0.00	0.00
16,4	400.0	89.89	358.12	10,619.0	6,304.0	-11.1	6,303.5	0.00	0.00	0.00
16,5	500.0	89.89	358.12	10,619.2	6,404.0	-14.4	6,403.5	0.00	0.00	0.00
16,6	600.0	89.89	358.12	10,619.4	6,503.9	-17.7	6,503.5	0.00	0.00	0.00
16,7	700.0	89.89	358.12	10,619.6	6,603.9	-21.0	6,603.5	0.00	0.00	0.00
16,8	800.0	89.89	358.12	10,619.8	6,703.8	-24.2	6,703.5	0.00	0.00	0.00
16,9	900.0	89.89	358.12	10,620.0	6,803.8	-27.5	6,803.4	0.00	0.00	0.00
17,0	0.000	89.89	358.12	10,620.2	6,903.7	-30.8	6,903.4	0.00	0.00	0.00
17,1	100.0	89.89	358.12	10,620.4	7,003.7	-34.1	7,003.4	0.00	0.00	0.00
17,2	200.0	89.89	358.12	10,620.6	7,103.6	-37.3	7,103.4	0.00	0.00	0.00
17,3	300.0	89.89	358.12	10,620.8	7,203.5	-40.6	7,203.4	0.00	0.00	0.00
17.4	400.0	89.89	358.12	10.621.0	7.303.5	-43.9	7.303.4	0.00	0.00	0.00
17.5	500.0	89.89	358.12	10.621.2	7.403.4	-47.2	7.403.3	0.00	0.00	0.00
17.6	600.0	89.89	358.12	10.621.4	7.503.4	-50.4	7.503.3	0.00	0.00	0.00
17,7	700.0	89.89	358.12	10,621.6	7,603.3	-53.7	7,603.3	0.00	0.00	0.00
17,8	800.0	89.89	358.12	10,621.8	7,703.3	-57.0	7,703.3	0.00	0.00	0.00
17 9	900 0	89 89	358 12	10 622 0	7 803 2	-60.3	7 803 3	0.00	0.00	0.00
18 (000.0	89.89	358 12	10,622.2	7 903 2	-63.5	7 903 3	0.00	0.00	0.00
18,0	100.0	89.89	358 12	10,622.4	8 003 1	-66.8	8 003 2	0.00	0.00	0.00
18,2	200.0	89.89	358.12	10.622.6	8,103,1	-70.1	8.103.2	0.00	0.00	0.00
18,3	300.0	89.89	358.12	10,622.8	8,203.0	-73.4	8,203.2	0.00	0.00	0.00
18/	100 0	80 80	358 12	10 623 0	8 303 0	-76.6	8 303 2	0.00	0.00	0.00
18 4	500.0	89.89	358 12	10,023.0	8 402 9	-70.0	8 403 2	0.00	0.00	0.00
18,0	600.0	89.89	358 12	10,623.4	8 502 8	-83.2	8 503 2	0.00	0.00	0.00
18,0	700.0	89.89	358 12	10,623,6	8 602 8	-86.5	8 603 1	0.00	0.00	0.00
18,8	800.0	89.89	358.12	10,623.8	8,702.7	-89.7	8,703.1	0.00	0.00	0.00
18 0	000 0	80 80	358 12	10 624 0	8 802 7	-93.0	8 803 1	0.00	0.00	0.00
19,0	000.0	89.89	358 12	10,024.0	8 902 6	-95.0	8 903 1	0.00	0.00	0.00
19,0	100.0	89.89	358 12	10,624.2	9,002.6	-99.6	9,003,1	0.00	0.00	0.00
19,2	200.0	89.89	358 12	10,624.6	9 102 5	-102.8	9 103 1	0.00	0.00	0.00
19,3	300.0	89.89	358.12	10,624.8	9,202.5	-106.1	9,203.0	0.00	0.00	0.00
10	400.0	00 00	350 10	10 625 0	0 303 1	100 /	0 202 0	0.00	0.00	0.00
19,2	+00.0 500.0	09.09 80 80	358 12	10,020.0	9,302.4 9,402.4	-109.4 -112 A	9,303.0 9 403 0	0.00	0.00	0.00
19,0	600.0	89.89	358 12	10,625.4	9 502 3	-115.9	9 503 0	0.00	0.00	0.00
19,0	700.0	89 89	358 12	10.625.6	9,602.3	-119.2	9,603.0	0.00	0.00	0.00
19,8	800.0	89.89	358.12	10,625.8	9,702.2	-122.5	9,703.0	0.00	0.00	0.00
10,0	000.0	00.00	050.40	10,000,0	0,000.4	405.7	0,000,0	0.00	0.00	0.00
19,9	900.0	89.89	358.12	10,020.0	9,802.1	-125.7	9,802.9	0.00	0.00	0.00
20,0	100.0	89.89	300.1Z	10,020.2	9,902.1	-129.0	9,902.9 10,002.0	0.00	0.00	0.00
20,1	200.0	89.89 00 00	300.12 350 10	10,020.4	10,002.0	-132.3	10,002.9	0.00	0.00	0.00
20,2	200.0	09.09 09.09	350.12 350.12	10,020.0	10,102.0	-100.0 _120.0	10,102.9	0.00	0.00	0.00
20,3	000.0	09.09	JJ0.12	10,020.0	10,201.9	-130.0	10,202.9	0.00	0.00	0.00

4/28/2020 11:36:50AM

Received by OCD: 3/19/2021 1:29:42 PM

Planning Report

Database: Company:	Hobbs Mewbourne Oil Company	Local Co-ordinate Reference: TVD Reference:	Site Buffalo Trace 1/36 W1NC Fed Com #1H WELL @ 3025.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3025.0usft (Original Well Elev)
Site:	Buffalo Trace 1/36 W1NC Fed Com #1H	North Reference:	Grid
Well:	Sec 12, 126S, R29E	Survey Calculation Method:	Minimum Curvature
wellbore:	BHL: 330 FNL & 1460 FVVL, Sec 36		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,400.0	89.89	358.12	10,627.0	10,301.9	-142.1	10,302.9	0.00	0.00	0.00
20,500.0	89.89	358.12	10,627.2	10,401.8	-145.4	10,402.8	0.00	0.00	0.00
20,600.0	89.89	358.12	10,627.4	10,501.8	-148.7	10,502.8	0.00	0.00	0.00
20,700.0	89.89	358.12	10,627.6	10,601.7	-151.9	10,602.8	0.00	0.00	0.00
20,800.0	89.89	358.12	10,627.8	10,701.7	-155.2	10,702.8	0.00	0.00	0.00
20,900.0	89.89	358.12	10,628.0	10,801.6	-158.5	10,802.8	0.00	0.00	0.00
20,915.4	89.89	358.12	10,628.0	10,817.0	-159.0	10,818.2	0.00	0.00	0.00
BHL: 330' FM	NL & 1460' FWL	(Sec 36)							

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 460' FNL & 1275' - plan hits target ce - Point	F 0.00 enter	0.00	0.0	0.0	0.0	386,850.00	662,761.00	32.0629244	-103.9413629
KOP: 146' FNL & 1460' - plan hits target ce - Point	'I 0.00 enter	0.00	10,131.0	318.0	185.0	387,168.00	662,946.00	32.0637967	-103.9407620
FTP/LP: 330' FSL & 14 - plan hits target ce - Point	6 0.00 enter	0.00	10,608.0	793.8	169.4	387,643.80	662,930.40	32.0651048	-103.9408068
PPP2: 0' FSL & 1460' F - plan hits target ce - Point	•\ 0.00 enter	0.00	10,618.1	5,836.0	4.2	392,686.00	662,765.21	32.0789670	-103.9412809
BHL: 330' FNL & 1460 - plan hits target ce - Point	0.00 onter	0.00	10,628.0	10,817.0	-159.0	397,667.00	662,602.00	32.0926609	-103.9417495

Intent As Drilled		
API #		
Operator Name:	Property Name:	Well Number

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longitude				NAD

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longitude				NAD

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitude				Longituc	le		NAD		

Is this wall the detining wall for the Uprizontal Specing Upit?	
IS THIS WELLTHE DETITING WELLTOF THE HOLIZOFILAL SUBCINE OFFICE	

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

Operator Name: Property Name: Well Num	API #		
	Operator Name:	Property Name:	Well Number

KZ 06/29/2018

Received by OCD: 3/19/2021 1:29:42 PM

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400052995

Operator Name: MEWBOURNE OIL COMPANY Well Name: BUFFALO TRACE 1/36 W1NC FED COM Well Type: CONVENTIONAL GAS WELL

Submission Date: 04/29/2020

Row(s) Exist? NO

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

SUPO Data Report

Page 36 of 74

04/30/2020

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

BuffaloTrace1_36W1NCFedCom1H_existingroadmap_20200107144004.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES									
New Road Map:									
BuffaloTrace1_36W1NCFedCom1H_newroadmap_20200107144018.pdf									
New road type: RESOURCE									
Length: 361.84 Feet Width (ft.): 30									
Max slope (%): 3 Max grade (%): 3									
Army Corp of Engineers (ACOE) permit required? N									
ACOE Permit Number(s):									
New road travel width: 14									
New road access erosion control: None									
New road access plan or profile prepared? N									
New road access plan attachment:									
Access road engineering design? N									
Access road engineering design attachment:									
Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth:

Offsite topsoil source description: Topsoil will be on edge of lease road.

Onsite topsoil removal process:

Access other construction information: None

Access miscellaneous information: None

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

BuffaloTrace1_36W1NCFedCom1H_existingwellmap_20200107144037.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Battery will be to the West.

Production Facilities map:

 $BuffaloTrace 1_36 W1NCFedCom 1 H_production facility map_20200107144054. pdf$

Section 5 - Location and Types of Water Supply

Water Source Table

eived by OCD: 3/19/2021 1:29:42 PM		1 uge 50 0
perator Name: MEWBOURNE OIL	COMPANY	
ell Name: BUFFALO TRACE 1/36 V	W1NC FED COM Well Numb	ber: 1H
Water source type: IRRIGATION		
Water source use type:	SURFACE CASING	
	STIMULATION	
	DUST CONTROL	
	INTERMEDIATE/PRODUCTION CASING	
Source latitude: 31.998123		Source longitude: -103.94242
Source datum: NAD83		
Vater source permit type:	WATER WELL	
Nater source transport method:	TRUCKING	
Source land ownership: PRIVATE		
Source transportation land owner Nater source volume (barrels): 20	rship: COMMERCIAL	Source volume (acre-feet): 0.2595907
Source transportation land owner Water source volume (barrels): 20 Source volume (gal): 84588	rship: COMMERCIAL 014	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION	SURFACE CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type:	SURFACE CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type:	SURFACE CASING STIMULATION	Source volume (acre-feet): 0.2595907
Source transportation land owner Vater source volume (barrels): 20 Source volume (gal): 84588 Vater source type: IRRIGATION Vater source use type:	SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type:	SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type: Source latitude: 32.04928	SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type: Source latitude: 32.04928 Source datum: NAD83 Nater source permit type:	SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type: Source latitude: 32.04928 Source datum: NAD83 Nater source permit type: Nater source transport method:	eship: COMMERCIAL 2014 SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING WATER WELL TRUCKING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type: Source latitude: 32.04928 Source datum: NAD83 Nater source permit type: Vater source transport method: Source land ownership: FEDERAL	eship: COMMERCIAL 2014 SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING WATER WELL TRUCKING	Source volume (acre-feet): 0.2595907
Source transportation land owner Nater source volume (barrels): 20 Source volume (gal): 84588 Nater source type: IRRIGATION Nater source use type: Source latitude: 32.04928 Source datum: NAD83 Nater source permit type: Nater source transport method: Source land ownership: FEDERAL	rship: COMMERCIAL 14 SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING WATER WELL TRUCKING - rship: COMMERCIAL	Source volume (acre-feet): 0.2595907
Source transportation land owner Water source volume (barrels): 20 Source volume (gal): 84588 Water source type: IRRIGATION Water source use type: Source latitude: 32.04928 Source datum: NAD83 Water source permit type: Nater source permit type: Nater source transport method: Source land ownership: FEDERAL Source transportation land owner Nater source volume (barrels): 20	rship: COMMERCIAL 14 SURFACE CASING STIMULATION DUST CONTROL INTERMEDIATE/PRODUCTION CASING WATER WELL TRUCKING - rship: COMMERCIAL 014	Source volume (acre-feet): 0.2595907

•

Received by OCD: 3/19/2021 1:29:42 PM

Operator Name: MEWBOURNE OIL COMPANY

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Water source and transportation map:

 $BuffaloTrace 1_36 W1NCFedCom 1H_watersource and transmap_20200107144109.pdf$

Water source comments: BOTH SOURCES SHOWN ON ONE MAP

New water well? N

New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of aquifer:	
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside diameter	r (in.):
New water well casing?	Used casing source:	
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth (ft.):	
Well Production type:	Completion Method:	
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche - both sources shown on one map.

Construction Materials source location attachment:

BuffaloTrace1_36W1NCFedCom1H_calichesourceandtransmap_20200107144129.pdf

Section 7 - Methods for Handling Waste

Waste type: SEWAGE Waste content description: Human waste & grey water Amount of waste: 1500 gallons Waste disposal frequency : Weekly Safe containment description: 2,000 gallon plastic container Safe containmant attachment:

Page 4 of 11

Well Number: 1H

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: DRILLING

Waste content description: Drill cuttings

Amount of waste: 940 barrels

Waste disposal frequency : One Time Only

Safe containment description: Drill cuttings will be properly contained in steel tanks (20 yard roll off bins.)

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

Disposal type description:

FACILITY

Disposal location description: NMOCD approved waste disposal locations are CRI or Lea Land, both facilities are located on HWY 62/180, Sec. 27 T20S R32E.

Waste type: GARBAGE

Waste content description: Garbage & trash

Amount of waste: 1500 pounds

Waste disposal frequency : One Time Only

Safe containment description: Enclosed trash trailer

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: N Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BuffaloTrace1_36W1NCFedCom1H_wellsitelayout_20200107144142.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: Buffalo Trace 1/36 MD & NC Fed Com wells Multiple Well Pad Number: 4

Recontouring attachment:

Drainage/Erosion control construction: None

Drainage/Erosion control reclamation: None

Received by OCD: 3/19/2021 1:29:42 PM		Page 42 of 74
Operator Name: MEWBOURNE OIL Co	OMPANY	
Well Name: BUFFALO TRACE 1/36 W	INC FED COM Well Number: 1H	
Well pad proposed disturbance (acres): 6.83	Well pad interim reclamation (acres): 1.6	Well pad long term disturbance (acres): 5.23
Road proposed disturbance (acres):	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance (acres): 0
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 0 Other proposed disturbance (acres): 0	Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 7.08	Total interim reclamation: 1.6	Total long term disturbance: 5.23

Disturbance Comments: In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging. **Reconstruction method:** The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used.

Soil treatment: NA

Existing Vegetation at the well pad: Various brush & grasses

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Various brush & grasses

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: NA

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: NA

Existing Vegetation Community at other disturbances attachment:

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? $\ensuremath{\mathbb{N}}$

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? $\ensuremath{\mathbb{N}}$

Received by OCD: 3/19/2021 1:29:42 PM		Page 43 of 74
(Operator Name: MEWBOURNE OIL C	OMPANY	
Well Name: BUFFALO TRACE 1/36 W	1NC FED COM	M Well Number: 1H
)
Seed harvest description:		
Seed harvest description attachment		
Seed Management		
Seed Table		
Seed Summar	у	Total pounds/Acre:
Seed Type Pou	nds/Acre	
Seed reclamation attachment:		
Operator Contact/Respor	sible Offici	ial Contact Info
First Name:		Last Name:
Phone:		Email:
Seedbed prep: Final seedbed preparat to seeding, dozer tracking, or other impr Seed BMP: To seed the area, the prope	on will consist o inting in order to er BLM seed miz	of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to break the soil crust and create seed germination micro-sites. xture, free of noxious weeds, will be used.
Seed method: drilling or broadcasting s	eed over entire	e reclaimed area.
Existing invasive species? N		
Existing invasive species treatment of	lescription:	
Existing invasive species treatment a	ttachment:	
Weed treatment plan description: NA		
Weed treatment plan attachment:		
Monitoring plan description: vii. All re the area is not redisturbed, and that ero Monitoring plan attachment:	claimed areas v sion and invasiv	will be monitored periodically to ensure that revegetation occurs, that ve/noxious weeds are controlled.
Success standards: regrowth within 1	full growing sea	ason of reclamation.
Pit closure description: NA		
Pit closure attachment:		
Section 11 Surface Own	rshin	

•

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Disturbance type: EXISTING ACCESS ROAD Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD
Describe:
Surface Owner: BUREAU OF LAND MANAGEMENT
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:
Military Local Office:
USFWS Local Office:
Other Local Office:
USFS Region:
USFS Forest/Grassland: USFS Ranger District:

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Use APD as ROW?

Section 12 - Other Information

Right of Way needed? N ROW Type(s):

ROW Applications

SUPO Additional Information: NONE

Use a previously conducted onsite? Y

Previous Onsite information: DEC 19 2019 Met w/Chelsie Dugan, Paul Murphy, Dustin Mudgett (BLM) & RRC Surveying. Staked location approved @ 460' FNL & 1275' FWL, Sec 12, T26S, R29E, Eddy Co., NM. (Elevation @ 2997'). Pad is 420 x 930 w/pit area to the N. Topsoil staked 30 wide to the S. Pad will be built over buried MOC SWD pipeline. Reclaim S 100. Battery will be to the W. Approx. 362 of new road needed off NW corner of pad heading N to Pipeline Rd. Will require cattle guard. Location is in PA. Lat. 32.0629245 N, Long.: -103.9413634 W NAD 83.

Other SUPO Attachment

BuffaloTrace1_36W1NCFedCom1H_interimreclamationdiagram_20200107144334.pdf BuffaloTrace1_36W1NCFedCom1H_gascaptureplan_20200107144342.pdf

Released to Imaging: 3/22/2021 8:09:28 AM

Released to Imaging: 3/22/2021 8:09:28 AM

EXISTING WELL MAP BUFFALO TRACE 1/36 W1NC FED COM #1H

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 1-8-20

 \boxtimes Original

Operator & OGRID No.: Mewbourne Oil Company - 14744

□ Amended - Reason for Amendment:_

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Buffalo Trace 1/36 W1NC Fed Com 1H		C- 12-26S-29E	460' FNL & 1275' FW	L 0	NA	ONLINE AFTER FRAC

Gathering System and Pipeline Notification

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>____westerp</u>____ system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
 - Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: **PWD surface owner:** Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment:

PWD disturbance (acres):

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Number: 1H

Received b	v OCD:	3/19/2021	1:29:42 PM
LLUUUUT UT U		CI X ZI M CM X	ATTACK THE A LOAD

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

 Produced Water Disposal (PWD) Location:

 PWD surface owner:
 PWD disturbance (acres):

 Surface discharge PWD discharge volume (bbl/day):
 Surface Discharge NPDES Permit?

 Surface Discharge NPDES Permit attachment:
 Surface Discharge site facilities information:

 Surface discharge site facilities map:
 Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

PWD disturbance (acres):

Injection well name:

Injection well API number:

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400052995 **Operator Name: MEWBOURNE OIL COMPANY** Well Name: BUFFALO TRACE 1/36 W1NC FED COM Well Type: CONVENTIONAL GAS WELL

Bond Information

Federal/Indian APD: FED BLM Bond number: NM1693 **BIA Bond number:** Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? **BLM** reclamation bond number: Forest Service reclamation bond number: Forest Service reclamation bond attachment: **Reclamation bond number: Reclamation bond amount: Reclamation bond rider amount:** Additional reclamation bond information attachment:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT											
¹ API Number 2 Pool Code ³ Pool Name											
30 015 4	48102	2 98220 PURPLE SAGE; WOLFCAMP GAS F					S POOL				
4 Property Cod	ie				5 Property	Name				6 Well Number	
328113			BU	FFALO '	TRACE 1/	36 WINC FED	СОМ			1H	
7 OGRID N	١O.				8 Operator	r Name			9	Elevation	
14744	1			MEWI	BOURNE O	DIL COMPANY				2997	
					¹⁰ Surface	e Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/W	est line	County	
C C	12	26S	29E		460	NORTH	1275	WE	ST	EDDY	
· · · · ·			11	Bottom H	Iole Locatio	on If Different Fr	om Surface				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line		County	
C	36	25S	29E	9E 330 NORTH 1650 WEST EDD					EDDY		
12 Dedicated Acres	13 Joint	or Infill 14 C	onsolidation	Code 15	Order No.						
640											

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 1-8-20

 \boxtimes Original

Operator & OGRID No.: Mewbourne Oil Company - 14744

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Buffalo Trace 1/36 W1NC Fed Com 1H		C- 12-26S-29E	460' FNL & 1275' FW	L0	NA	ONLINE AFTER FRAC

Gathering System and Pipeline Notification

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>____westerp</u>____ system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
 - Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Mewbourne Oil Company Buffalo Trace 1/36 W1NC Fed Com #1H Sec 12, T26S, R29E SL: 460' FNL & 1275' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 1460' FWL (Sec 36, T25S, R29E)

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
				BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well leasted within Capiton Deef?	V
Is well located within Capital Reel?	I
If yes, does production casing cement the back a minimum of 50° above the Reel?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well leasted in P. 111 P. and SOPA?	N
Is well located III K-111-P and SOPA?	1
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	N
Is well located in critical Cave/Karst?	N
If yes, are three strings cemented to surface?	

Mewbourne Oil Company Buffalo Trace 1/36 W1NC Fed Com #1H Sec 12, T26S, R29E SL: 460' FNL & 1275' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 1460' FWL (Sec 36, T25S, R29E)

Hole	Casing	, Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
				BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N		
Is casing new? If used, attach certification as required in Onshore Order #1	Y		
Is casing API approved? If no, attach casing specification sheet.			
Is premium or uncommon casing planned? If yes attach casing specification sheet.			
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y		
justification (loading assumptions, casing design criteria).			
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y		
collapse pressure rating of the casing?			
Is well leasted within Coniton Deef?	V		
Is well located within Capital Reel?	I		
If yes, does production casing cement the back a minimum of 50° above the Reel?			
Is well within the designated 4 string boundary.			
Is well located in SOPA but not in R-111-P?	Ν		
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back			
500' into previous casing?			
Is well located in P. 111 P. and SOPA?	N		
Is well located III K-111-F and SOFA?	1		
If yes, are the first three strings cemented to surface?			
Is 2 nd string set 100' to 600' below the base of salt?			
Is well located in high Cave/Karst?	N		
If yes, are there two strings cemented to surface?			
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?			
Is well located in critical Cave/Karst?	N		
If yes are there three strings cemented to surface?	11		
In yes, are there three strings cemented to surface?			

Mewbourne Oil Company Buffalo Trace 1/36 W1NC Fed Com #1H Sec 12, T26S, R29E SL: 460' FNL & 1275' FWL (Sec 12, T26S, R29E) BHL: 330' FNL & 1460' FWL (Sec 36, T25S, R29E)

Hole	Casing	, Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	950'	13.375"	48	H40	STC	1.73	3.88	6.88	11.56
12.25"	0'	3200'	9.625"	36	J55	LTC	1.21	2.12	3.93	4.90
8.75"	0'	10600'	7.625"	39	P110	FJ	2.13	2.43	1.85	2.98
6.125"	10139'	20915'	4.5"	13.5	P110	LTC	1.61	1.87	2.32	2.90
			BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well leasted within Capiton Deef?	V
Is well located within Capital Reel?	I
If yes, does production casing cement the back a minimum of 50° above the Reel?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well leasted in P. 111 P. and SOPA?	N
Is well located in K-111-P and SOPA?	1N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well leasted in anitical Cave/Konst?	N
	IN
If yes, are there three strings cemented to surface?	

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: **PWD surface owner:** Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment:

PWD disturbance (acres):

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres): PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Number: 1H

Received b	v OCD: 3	3/19/2021	1:29:42 PM
necercu v		I I FI M U M I	X + M / + T M X 17X

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

PWD disturbance (acres):

Injection well name:

Injection well API number:

Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? N

 Produced Water Disposal (PWD) Location:

 PWD surface owner:
 PWD disturbance (acres):

 Surface discharge PWD discharge volume (bbl/day):
 Surface Discharge NPDES Permit?

 Surface Discharge NPDES Permit attachment:
 Surface Discharge site facilities information:

 Surface discharge site facilities map:
 Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Well Name: BUFFALO TRACE 1/36 W1NC FED COM

Well Number: 1H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400052995 **Operator Name: MEWBOURNE OIL COMPANY** Well Name: BUFFALO TRACE 1/36 W1NC FED COM Well Type: CONVENTIONAL GAS WELL

Bond Information

Federal/Indian APD: FED BLM Bond number: NM1693 **BIA Bond number:** Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? **BLM** reclamation bond number: Forest Service reclamation bond number: Forest Service reclamation bond attachment: **Reclamation bond number: Reclamation bond amount: Reclamation bond rider amount:** Additional reclamation bond information attachment:

District I 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410

District IV

COMMENTS

Action 21414

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS									
Operator:			OGRID:	Action Number:	Action Type:				
MEWBOURNE OIL CO	P.O. Box 5270	Hobbs, NM88241	14744	21414	FORM 3160-3				
Created By	Comment			Comment Date	Comment Date				
kpickford	KP GEO Review 3/22/2021	GEO Review 3/22/2021			03/22/2021				

District I 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410

District IV

CONDITION	١S

Action 21414

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:				OGRID:		Action Number:	Action Type:	
	MEWBOURNE OIL CO	P.O. Box 5270	Hobbs, NM88241	1	14744	21414	FORM 3160-3	
OCD	Condition							
Reviewer								
kpickford	Notify OCD 24 hours prior to casing & cement							
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104							
kpickford	ford Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string							
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system							