<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form C-101 August 1, 2011

Permit 305345

APPLICATION FOR PERMIT TO DRIL	., RE-ENTER, DEEPEN	I, PLUGBACK	, OR ADD A ZONE
--------------------------------	---------------------	-------------	-----------------

71 - 107 (1011 - 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Operator Name and Address	2. OGRID Number							
TAP ROCK OPERATING, LLC	372043							
523 Park Point Drive	3. API Number							
Golden, CO 80401		30-015-49174						
4. Property Code	5. Property Name	6. Well No.						
332044	Hamms State	218H						

7. Surface Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
M	34	23S	27E		996	S	497	W	Eddy

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
Р	34	23S	27E	Р	331	S	330	E	Eddv

9. Pool Information

PURPLE SAGE;WOLFCAMP (GAS)	98220

Additional Well Information

11. Work Type	12. Well Type	13. Cable/Rotary	14. Lease Type	15. Ground Level Elevation
New Well	GAS		State	3189
16. Multiple	17. Proposed Depth	18. Formation	19. Contractor	20. Spud Date
N	13952	Wolfcamp		1/31/2022
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

gg									
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC			
Surf	17.5	13.375	54.5	325	330	0			
Int1	12.25	9.625	40	2405	645	0			
Int2	8.75	7.625	29.7	8611	345	2100			
Prod	6.75	5.5	20	13952	355	8111			

Casing/Cement Program: Additional Comments

Tap Rock Operating LLC would like to request permission to have the option to run either a three or four string design for the Hamms State 218H. Additionally, Tap Rock requests the option of switching to a two stage cement job on the 7-5/8" intermediate casing string with the first stage lead and tail being pumped conventionally with the calculated top of cement to surface. If necessary, the second stage will be performed as a bradenhead squeeze with planned cement from the Brushy Canyon (anticipated loss zone) to surface if cement is not circulated to surface during the first stage. Additionally, a top out consisting of Class C cement will be executed as needed after the first two stages. Tap Rock also requests the option to run a DV tool, the depth will be adjusted depending on current hole conditions. Cement volumes will be adjusted accordingly. The DV tool will be set a minimum of 50' below the previous casing shoe and a maximum of 200' above the current casing shoe. If cement is

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Annular	5000	2500	
Double Ram	10000	5000	
Pipe	10000	5000	

knowledge and b	pelief.	ove is true and complete to the best of my .9 (A) NMAC ⊠ and/or 19.15.14.9 (B) NMAC		OIL CONSI	ERVATION DIVISION		
Printed Name:	Electronically filed by Chris	stian Combs	Approved By:	Katherine Pickford			
Title:	Regulatory Manager	Regulatory Manager			Geoscientist		
Email Address:	Email Address: ccombs@taprk.com			12/28/2021	Expiration Date: 12/28/2023		
Date:	12/21/2021 Phone: 720-360-4028			Conditions of Approval Attached			

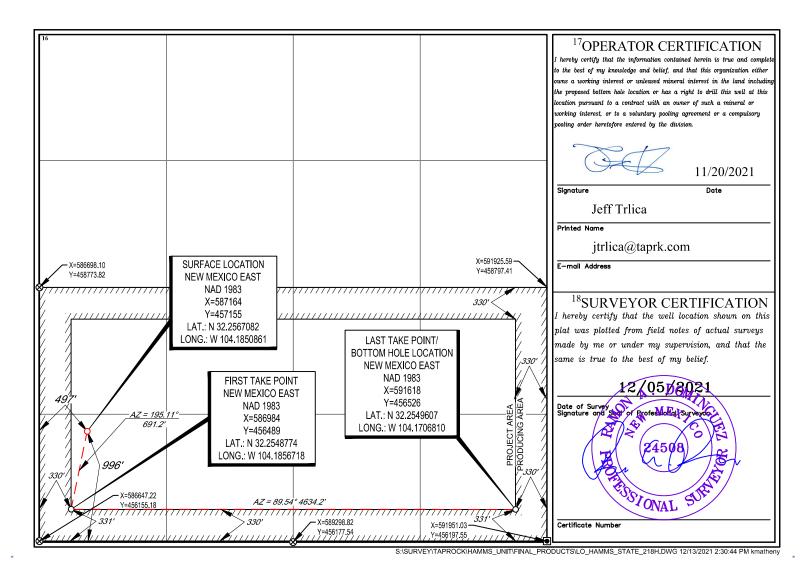
District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 1220 S. St. Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department **OIL CONSERVATION DIVISION** 1220 South St. Francis Dr. Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate **District Office**

AMENDED R	EPORT
-----------	-------


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number		² Pool Code ³ Pool Name						
30-015-49174		98220 PURPLE SAGE; WOLFCAMP						
⁴ Property Code		⁵ Pr	operty Name	⁶ Well Number				
332044		HAMM	MS STATE	218H				
⁷ OGRID No.		⁸ O _l	perator Name	⁹ Elevation				
#372043		TAP ROCK	OPERATING, LLC.	3189'				
10 Surface Location								

Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
M	34	23-S	27-E	-	996'	SOUTH	497'	WEST	EDDY	
	11Bottom Hole Location If Different From Surface									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
P	34	23-S	27–E	-	331'	SOUTH	330'	EAST	EDDY	
¹² Dedicated Acres	¹³ Joint or 1	Infill 14Co	nsolidation Coc	de ¹⁵ Ord	er No.					
320										

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

drilling fluids and solids must be contained in a steel closed loop system

API Number:

Permit 305345

Form APD Conditions

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

Operator Name and Address:

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

PERMIT CONDITIONS OF APPROVAL

and the real coo.	, a ritalibor.				
TAP ROCK OPERATING, LLC [372043]	30-015-49174				
523 Park Point Drive	Well:				
Golden, CO 80401	Hamms State #218H				
Condition					
ord Surface casing must be set 25' below top of Rustler Anhydrite or other competent layer in order to seal off protectable water					
Notify OCD 24 hours prior to casing & cement					
Will require a File As Drilled C-102 and a Directional Survey with the C-104					
The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud					
Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the opera	tor shall drill without interruption through the fresh				
water zone or zones and shall immediately set in cement the water protection string					
Cement is required to circulate on both surface and intermediate1 strings of casing					
	TAP ROCK OPERATING, LLC [372043] 523 Park Point Drive Golden, CO 80401 Condition				

kpickford Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud,

HAMMS STATE #218H

		Casing	Casing	Casing	Set	Sacks of	Planned		
Interval	Hole Size	OD	Weight	Grade	Depth	Cement	TOC	Mud Type	
Surface	17.5	13.375	54.5	J-55	325	331	0	Fresh Water	
Intermediate	9.875	7.625	29.7	P-110	5610	1140	1140	0	Diocal Bring
Intermediate	8.75	7.625	29.7	P-110	8611		0	Diesel Brine	
Production	6.75	5.5	20	P-110	13952	420	8411	ОВМ	

Intermediate mud system will be the direct brine emulsion fluid (brine based with diesel emulsified in it). Tap Rock requests the option of switching to a two stage cement job on the 7-5/8" intermediate casing string with the first stage lead and tail being pumped conventionally with the calculated top of cement to surface. If necessary, the second stage will be performed as a bradenhead squeeze with planned cement from the Brushy Canyon (anticipated loss zone) to surface if cement is not circulated to surface during the first stage. Additionally, a top out consisting of Class C cement will be executed as needed after the first two stages. Tap Rock also requests the option to run a DV tool, the depth will be adjusted depending on current hole conditions. Cement volumes will be adjusted accordingly. The DV tool will be set a minimum of 50' below the previous casing shoe and a maximum of 200' above the current casing shoe. If cement is not circulated to surface on the 1st stage job, the 2nd stage will be pumped as planned. The DVT set depth will be between 5,000-6,000'.

Tap Rock Resources, LLC

Eddy County, NM (NAD 83 NME) (Hamms State W2) Sec-34_T-23-S_R-27-E Hamms State W2 #218H

OWB

Plan: Plan #1

Standard Planning Report

15 December, 2021

Site:

Site

Intrepid Planning Report

EDM 5000.15 Single User Db Database: Company: Tap Rock Resources, LLC Project: Eddy County, NM (NAD 83 NME)

(Hamms State W2) Sec-34_T-23-S_R-27-E

Well: Hamms State W2 #218H

Wellbore: **OWB** Design: Plan #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Hamms State W2 #218H

KB @ 3215.0usft KB @ 3215.0usft

Grid

Minimum Curvature

Project	Eddy County,	NM ((NAD 83	NME.

US State Plane 1983 Map System: Geo Datum:

North American Datum 1983 Map Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

(Hamms State W2) Sec-34_T-23-S_R-27-E

Northing: 457,205.00 usft 32° 15' 24.641 N Site Position: Latitude: 104° 11' 6.308 W From: Мар Easting: 587,164.00 usft Longitude: **Position Uncertainty:** 0.0 usft Slot Radius: 13-3/16 " **Grid Convergence:** 0.08°

Well Hamms State W2 #218H

Well Position +N/-S -50.0 usft 457,155.00 usft 32° 15' 24.146 N Northing: Latitude:

0.0 usft 587,164.00 usft 104° 11' 6.309 W +E/-W Easting: Longitude:

Position Uncertainty 0.0 usft Wellhead Elevation: Ground Level: 3,189.0 usft

OWB Wellbore

Declination Field Strength Magnetics **Model Name** Sample Date **Dip Angle** (°) (°) (nT) 12/13/21 47.433.88230574 IGRF2015 6.75 59.94

Design Plan #1

Audit Notes:

Version: Phase: **PLAN** Tie On Depth: 0.0

> +N/-S +E/-W Direction

Vertical Section: Depth From (TVD) (usft) (usft) (usft) (°) 0.0 0.0 0.0 89.54

Date 12/15/21 **Plan Survey Tool Program**

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

0.0 MWD 13,952.9 Plan #1 (OWB)

OWSG MWD - Standard

Plan Sections Measured Vertical Build Dogleg Turn Depth Inclination **Azimuth** Depth +N/-S +E/-W Rate Rate Rate **TFO** (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (usft) (usft) (°) (°) (°) Target 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.00 1,500.0 0.00 0.00 1,500.0 0.0 0.0 0.00 0.00 0.00 0.00 2,450.3 9.50 214.53 2.446.0 -64.8 -44.6 1.00 1.00 0.00 214.53 -415.4 0.00 6.412.8 9.50 214.53 6.354.0 -603.7 0.00 0.00 0.00 7,363.1 0.00 0.00 7,300.0 -668.5 -460.0 1.00 -1.00 0.00 180.00 -460.0 0.00 8,711.1 0.00 0.00 8,648.0 -668.5 0.00 0.00 0.00 9,220.9 -664.0 103.0 10.00 10.06 9,601.1 89.00 89.54 10 00 89 54 13,952.9 89.00 89.54 9,296.7 -629.0 4,454.0 0.00 0.00 0.00 0.00 PBHL (Hamms Stat

Well:

IntrepidPlanning Report

Database: EDM 500
Company: Tap Rock
Project: Eddy Cou
Site: (Hamms

EDM 5000.15 Single User Db Tap Rock Resources, LLC Eddy County, NM (NAD 83 NME) (Hamms State W2) Sec-34_T-23-S_R-27-E

Hamms State W2 #218H

Wellbore: OWB
Design: Plan #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Hamms State W2 #218H

KB @ 3215.0usft KB @ 3215.0usft

Grid

Minimum Curvature

_									
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	1.00	214.53	1,600.0	-0.7	-0.5	-0.5	1.00	1.00	0.00
1,700.0	2.00	214.53	1,700.0	-2.9	-2.0	-2.0	1.00	1.00	0.00
1,800.0	3.00	214.53	1,799.9	-6.5	-4.5	-4.5	1.00	1.00	0.00
1,900.0	4.00	214.53	1,899.7	-11.5	-7.9	-8.0	1.00	1.00	0.00
2,000.0	5.00	214.53	1,999.4	-18.0	-12.4	-12.5	1.00	1.00	0.00
2,100.0	6.00	214.53	2,098.9	-25.9	-17.8	-18.0	1.00	1.00	0.00
2,200.0	7.00	214.53	2,198.3	-35.2	-24.2	-24.5	1.00	1.00	0.00
2,300.0	8.00	214.53	2,297.4	-45.9	-31.6	-32.0	1.00	1.00	0.00
2,400.0	9.00	214.53	2,396.3	-58.1	-40.0	-40.5	1.00	1.00	0.00
2,450.3	9.50	214.53	2,446.0	-64.8	-44.6	-45.1	1.00	1.00	0.00
2,500.0	9.50	214.53	2,495.0	-71.5	-49.2	-49.8	0.00	0.00	0.00
2,600.0	9.50	214.53	2,593.6	-85.1	-58.6	-59.3	0.00	0.00	0.00
2,700.0	9.50	214.53	2,692.2	-98.7	-67.9	-68.7	0.00	0.00	0.00
2,800.0	9.50	214.53	2,790.8	-112.3	-77.3	-78.2	0.00	0.00	0.00
2,900.0	9.50	214.53	2,889.5	-125.9	-86.7	-87.7	0.00	0.00	0.00
3,000.0	9.50	214.53	2,988.1	-139.5	-96.0	-97.1	0.00	0.00	0.00
3,100.0	9.50	214.53	3,086.7	-153.1	-105.4	-106.6	0.00	0.00	0.00
3,200.0	9.50	214.53	3,185.4	-166.7	-114.7	-116.1	0.00	0.00	0.00
3,300.0	9.50	214.53	3,284.0	-180.3	-124.1	-125.5	0.00	0.00	0.00
3,400.0	9.50	214.53	3,382.6	-193.9	-133.5	-135.0	0.00	0.00	0.00
3,500.0	9.50	214.53	3,481.2	-207.5	-142.8	-144.5	0.00	0.00	0.00
3,600.0	9.50	214.53	3,579.9	-221.1	-152.2	-153.9	0.00	0.00	0.00
3,700.0	9.50	214.53	3,678.5	-234.8	-161.5	-163.4	0.00	0.00	0.00
3,800.0	9.50	214.53	3,777.1	-248.4	-170.9	-172.9	0.00	0.00	0.00
3,900.0	9.50	214.53	3,875.8	-262.0	-180.3	-182.3	0.00	0.00	0.00
4,000.0	9.50	214.53	3,974.4	-275.6	-189.6	-191.8	0.00	0.00	0.00
4,100.0	9.50	214.53	4,073.0	-289.2	-199.0	-201.3	0.00	0.00	0.00
4,200.0	9.50	214.53	4,171.6	-302.8	-208.3	-210.8	0.00	0.00	0.00
4,300.0	9.50	214.53	4,270.3	-316.4	-217.7	-220.2	0.00	0.00	0.00
4,400.0	9.50	214.53	4,368.9	-330.0	-227.0	-229.7	0.00	0.00	0.00
4,500.0	9.50	214.53	4,467.5	-343.6	-236.4	-239.2	0.00	0.00	0.00
4,600.0	9.50	214.53	4,566.1	-357.2	-245.8	-248.6	0.00	0.00	0.00
4,700.0	9.50	214.53	4,664.8	-370.8	-255.1	-258.1	0.00	0.00	0.00
4,800.0	9.50	214.53	4,763.4	-384.4	-264.5	-267.6	0.00	0.00	0.00
4,900.0	9.50	214.53	4,862.0	-398.0	-273.8	-277.0	0.00	0.00	0.00
5,000.0	9.50	214.53	4,960.7	-411.6	-283.2	-286.5	0.00	0.00	0.00
5,100.0	9.50	214.53	5,059.3	-425.2	-292.6	-296.0	0.00	0.00	0.00
5,200.0	9.50	214.53	5,157.9	-438.8	-301.9	-305.4	0.00	0.00	0.00

Well:

IntrepidPlanning Report

Database: EDM 5000.15 Single User Db
Company: Tap Rock Resources, LLC
Project: Eddy County, NM (NAD 83 NME)
Site: (Hamms State W2) Sec-34_T-23-S_R-27-E

(Hamms State W2) Sec-34_T-23 Hamms State W2 #218H

Wellbore: OWB
Design: Plan #1

Local Co-ordinate Reference: TVD Reference:

MD Reference:
North Reference:

Survey Calculation Method:

Well Hamms State W2 #218H

KB @ 3215.0usft KB @ 3215.0usft

Grid

Minimum Curvature

Design.	riaii # i								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	9.50	214.53	5,256.5	-452.4	-311.3	-314.9	0.00	0.00	0.00
5,400.0 5,500.0 5,600.0 5,700.0 5,800.0	9.50 9.50 9.50 9.50 9.50	214.53 214.53 214.53 214.53 214.53	5,355.2 5,453.8 5,552.4 5,651.1 5,749.7	-466.0 -479.6 -493.2 -506.8 -520.4	-320.6 -330.0 -339.4 -348.7 -358.1	-324.4 -333.8 -343.3 -352.8 -362.2	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
5,900.0 6,000.0 6,100.0 6,200.0 6,300.0	9.50 9.50 9.50 9.50 9.50	214.53 214.53 214.53 214.53 214.53	5,848.3 5,946.9 6,045.6 6,144.2 6,242.8	-534.0 -547.6 -561.2 -574.8 -588.4	-367.4 -376.8 -386.2 -395.5 -404.9	-371.7 -381.2 -390.6 -400.1 -409.6	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
6,400.0 6,412.8 6,500.0 6,600.0 6,700.0	9.50 9.50 8.63 7.63 6.63	214.53 214.53 214.53 214.53 214.53	6,341.4 6,354.0 6,440.2 6,539.2 6,638.4	-602.0 -603.7 -615.0 -626.7 -636.9	-414.2 -415.4 -423.2 -431.2 -438.3	-419.1 -420.3 -428.1 -436.3 -443.4	0.00 0.00 1.00 1.00 1.00	0.00 0.00 -1.00 -1.00	0.00 0.00 0.00 0.00 0.00
6,800.0 6,900.0 7,000.0 7,100.0 7,200.0	5.63 4.63 3.63 2.63 1.63	214.53 214.53 214.53 214.53 214.53	6,737.8 6,837.4 6,937.2 7,037.0 7,136.9	-645.7 -653.1 -659.0 -663.5 -666.6	-444.3 -449.4 -453.5 -456.6 -458.7	-449.5 -454.6 -458.8 -461.9 -464.0	1.00 1.00 1.00 1.00 1.00	-1.00 -1.00 -1.00 -1.00 -1.00	0.00 0.00 0.00 0.00 0.00
7,300.0 7,363.1 7,400.0 7,500.0 7,600.0	0.63 0.00 0.00 0.00 0.00	214.53 0.00 0.00 0.00 0.00	7,236.9 7,300.0 7,336.9 7,436.9 7,536.9	-668.2 -668.5 -668.5 -668.5	-459.8 -460.0 -460.0 -460.0 -460.0	-465.2 -465.4 -465.4 -465.4	1.00 1.00 0.00 0.00 0.00	-1.00 -1.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
7,700.0 7,800.0 7,900.0 8,000.0 8,100.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	7,636.9 7,736.9 7,836.9 7,936.9 8,036.9	-668.5 -668.5 -668.5 -668.5	-460.0 -460.0 -460.0 -460.0 -460.0	-465.4 -465.4 -465.4 -465.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
8,200.0 8,300.0 8,400.0 8,500.0 8,600.0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	8,136.9 8,236.9 8,336.9 8,436.9 8,536.9	-668.5 -668.5 -668.5 -668.5 -668.5	-460.0 -460.0 -460.0 -460.0 -460.0	-465.4 -465.4 -465.4 -465.4	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
8,700.0 8,711.1 8,750.0 8,800.0 8,850.0	0.00 0.00 3.89 8.89 13.89	0.00 0.00 89.54 89.54 89.54	8,636.9 8,648.0 8,686.9 8,736.6 8,785.6	-668.5 -668.5 -668.4 -668.4	-460.0 -460.0 -458.7 -453.1 -443.2	-465.4 -465.4 -464.0 -458.5 -448.6	0.00 0.00 10.00 10.00 10.00	0.00 0.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
8,900.0 8,950.0 9,000.0 9,050.0 9,100.0	18.89 23.89 28.89 33.89 38.89	89.54 89.54 89.54 89.54 89.54	8,833.5 8,880.1 8,924.8 8,967.5 9,007.7	-668.3 -668.1 -667.9 -667.7 -667.5	-429.1 -410.9 -388.7 -362.7 -333.0	-434.5 -416.3 -394.0 -368.0 -338.3	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
9,150.0 9,200.0 9,250.0 9,300.0 9,350.0	43.89 48.89 53.89 58.89 63.89	89.54 89.54 89.54 89.54 89.54	9,045.2 9,079.7 9,110.9 9,138.6 9,162.5	-667.2 -666.9 -666.6 -666.3 -665.9	-299.9 -263.8 -224.7 -183.1 -139.2	-305.3 -269.1 -230.0 -188.4 -144.5	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00
9,400.0 9,450.0 9,500.0	68.89 73.89 78.89	89.54 89.54 89.54	9,182.5 9,198.5 9,210.2	-665.6 -665.2 -664.8	-93.4 -46.0 2.6	-98.7 -51.4 -2.8	10.00 10.00 10.00	10.00 10.00 10.00	0.00 0.00 0.00

Well:

IntrepidPlanning Report

Database: EDM 50
Company: Tap Roo
Project: Eddy Co
Site: (Hamms

EDM 5000.15 Single User Db Tap Rock Resources, LLC Eddy County, NM (NAD 83 NME) (Hamms State W2) Sec-34_T-23-S_R-27-E

Hamms State W2 #218H

Wellbore: OWB
Design: Plan #1

Local Co-ordinate Reference: TVD Reference:

MD Reference:
North Reference:

Survey Calculation Method:

Well Hamms State W2 #218H

KB @ 3215.0usft KB @ 3215.0usft

Grid Minimum Curvature

Design:	Plan #1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,550.0	83.89	89.54	9,217.7	-664.4	52.0	46.6	10.00	10.00	0.00
9,601.1	89.00	89.54	9,220.9	-664.0	103.0	97.6	10.00	10.00	0.00
9,700.0	89.00	89.54	9,222.6	-663.2	201.8	196.5	0.00	0.00	0.00
9,800.0	89.00	89.54	9,224.3	-662.4	301.8	296.5	0.00	0.00	0.00
9,900.0	89.00	89.54	9,226.1	-661.6	401.8	396.5	0.00	0.00	0.00
10,000.0	89.00	89.54	9,227.8	-660.8	501.8	496.5	0.00	0.00	0.00
10,100.0	89.00	89.54	9,229.6	-660.0	601.8	596.4	0.00	0.00	0.00
10,200.0	89.00	89.54	9,231.3	-659.2	701.7	696.4	0.00	0.00	0.00
10,300.0	89.00	89.54	9,233.0	-658.4	801.7	796.4	0.00	0.00	0.00
10,400.0	89.00	89.54	9,234.8	-657.6	901.7	896.4	0.00	0.00	0.00
10,500.0	89.00	89.54	9,236.5	-656.8	1,001.7	996.4	0.00	0.00	0.00
10,600.0	89.00	89.54	9,238.3	-655.9	1,101.7	1,096.4	0.00	0.00	0.00
10,700.0	89.00	89.54	9,240.0	-655.1	1,201.7	1,196.4	0.00	0.00	0.00
10,800.0	89.00	89.54	9,241.7	-654.3	1,301.6	1,296.3	0.00	0.00	0.00
10,900.0	89.00	89.54	9,243.5	-653.5	1,401.6	1,396.3	0.00	0.00	0.00
11,000.0	89.00	89.54	9,245.2	-652.7	1,501.6	1,496.3	0.00	0.00	0.00
11,100.0	89.00	89.54	9,247.0	-651.9	1,601.6	1,596.3	0.00	0.00	0.00
11,200.0	89.00	89.54	9,248.7	-651.1	1,701.6	1,696.3	0.00	0.00	0.00
11,300.0	89.00	89.54	9,250.5	-650.3	1,801.5	1,796.3	0.00	0.00	0.00
11,400.0	89.00	89.54	9,252.2	-649.5	1,901.5	1,896.3	0.00	0.00	0.00
11,500.0	89.00	89.54	9,253.9	-648.7	2,001.5	1,996.2	0.00	0.00	0.00
11,600.0	89.00	89.54	9,255.7	-647.9	2,101.5	2,096.2	0.00	0.00	0.00
11,700.0 11,800.0 11,900.0 12,000.0 12,100.0	89.00 89.00 89.00 89.00	89.54 89.54 89.54 89.54 89.54	9,257.4 9,259.2 9,260.9 9,262.6 9,264.4	-647.1 -646.3 -645.5 -644.7 -643.9	2,201.5 2,301.5 2,401.4 2,501.4 2,601.4	2,196.2 2,296.2 2,396.2 2,496.2 2,596.1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
12,200.0	89.00	89.54	9,266.1	-643.1	2,701.4	2,696.1	0.00	0.00	0.00
12,300.0	89.00	89.54	9,267.9	-642.3	2,801.4	2,796.1	0.00	0.00	0.00
12,400.0	89.00	89.54	9,269.6	-641.5	2,901.3	2,896.1	0.00	0.00	0.00
12,500.0	89.00	89.54	9,271.4	-640.7	3,001.3	2,996.1	0.00	0.00	0.00
12,600.0	89.00	89.54	9,273.1	-639.9	3,101.3	3,096.1	0.00	0.00	0.00
12,700.0	89.00	89.54	9,274.8	-639.1	3,201.3	3,196.1	0.00	0.00	0.00
12,800.0	89.00	89.54	9,276.6	-638.3	3,301.3	3,296.0	0.00	0.00	0.00
12,900.0	89.00	89.54	9,278.3	-637.5	3,401.3	3,396.0	0.00	0.00	0.00
13,000.0	89.00	89.54	9,280.1	-636.7	3,501.2	3,496.0	0.00	0.00	0.00
13,100.0	89.00	89.54	9,281.8	-635.9	3,601.2	3,596.0	0.00	0.00	0.00
13,200.0	89.00	89.54	9,283.5	-635.1	3,701.2	3,696.0	0.00	0.00	0.00
13,300.0	89.00	89.54	9,285.3	-634.2	3,801.2	3,796.0	0.00	0.00	0.00
13,400.0	89.00	89.54	9,287.0	-633.4	3,901.2	3,895.9	0.00	0.00	0.00
13,500.0	89.00	89.54	9,288.8	-632.6	4,001.1	3,995.9	0.00	0.00	0.00
13,600.0	89.00	89.54	9,290.5	-631.8	4,101.1	4,095.9	0.00	0.00	0.00
13,700.0	89.00	89.54	9,292.2	-631.0	4,201.1	4,195.9	0.00	0.00	0.00
13,800.0	89.00	89.54	9,294.0	-630.2	4,301.1	4,295.9	0.00	0.00	0.00
13,900.0	89.00	89.54	9,295.7	-629.4	4,401.1	4,395.9	0.00	0.00	0.00
13,952.9	89.00	89.54	9,296.7	-629.0	4,454.0	4,448.8	0.00	0.00	0.00

Intrepid **Planning Report**

EDM 5000.15 Single User Db Database: Company: Tap Rock Resources, LLC Project: Eddy County, NM (NAD 83 NME) (Hamms State W2) Sec-34_T-23-S_R-27-E Site:

Hamms State W2 #218H

OWB Wellbore: Design: Plan #1

Local Co-ordinate Reference: **TVD Reference:**

MD Reference: North Reference: **Survey Calculation Method:** Well Hamms State W2 #218H

KB @ 3215.0usft KB @ 3215.0usft

Grid Minimum Curvature

Design Targets

Well:

Target Name

- hit/miss target Dip Angle Dip Dir. **TVD** +N/-S +E/-W **Northing Easting** - Shape (usft) (usft) (usft) (usft) (usft) Longitude Latitude PBHL (Hamms State ' 1.00 89.54 9,296.7 -629.0 4,454.0 456,526.00 591,618.00 32° 15' 17.858 N 104° 10' 14.449 W plan hits target centerRectangle (sides W100.0 H4,634.0 D30.0)

FTP (Hamms State W 0.00 0.00 9,297.0 -666.0 -180.0 456,489.00 586,984.00 32° 15′ 17.558 N 104° 11' 8.416 W

plan misses target center by 139.1usft at 9366.5usft MD (9169.5 TVD, -665.8 N, -124.3 E)
 Point

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	275.0	275.0	Rustler Anhydrite			
	510.0	510.0	Top Salt			
	1,970.5	1,970.0	Base Salt			
	2,176.6	2,175.0	Delaware Mountain Gp			
	2,252.2	2,250.0	Lamar			
	2,257.2	2,255.0	Bell Canyon			
	2,358.2	2,355.0	Ramsey Sand			
	3,052.6	3,040.0	Cherry Canyon			
	4,147.6	4,120.0	Brushy Canyon			
	5,658.4	5,610.0	Bone Spring Lime			
	5,688.8	5,640.0	Upper Avalon			
	6,084.2	6,030.0	Middle Avalon			
	6,449.2	6,390.0	Lower Avalon			
	6,762.0	6,700.0	1st Bone Spring Sand			
	7,002.8	6,940.0	2nd Bone Spring Carb			
	7,338.1	7,275.0	2nd Bone Spring Sand			
	7,528.1	7,465.0	3rd Bone Spring Carb			
	8,713.1	8,650.0	3rd Bone Spring Sand			
	9,029.2	8,950.0	3rd BS W Sand			
	9,109.4	9,015.0	Wolfcamp A X Sand			
	9,192.9	9,075.0	Wolfcamp A Y Sand			
	9,312.7	9,145.0	Wolfcamp A Lower			

Plan Annotations				
Measured Depth (usft)	Vertical Depth (usft)	Local Coor	+E/-W	Comment
` '		(usft)	(usft)	
1,500.0	1,500.0	0.0	0.0	NUDGE - Build 1.00
2,450.3	2,446.0	-64.8	-44.6	HOLD - 3962.4 at 2450.3 MD
6,412.8	6,354.0	-603.7	-415.4	DROP1.00
7,363.1	7,300.0	-668.5	-460.0	HOLD - 1348.0 at 7363.1 MD
8,711.1	8,648.0	-668.5	-460.0	KOP - DLS 10.00 TFO 89.54
9,601.1	9,220.9	-664.0	103.0	EOC - 4351.8 hold at 9601.1 MD
13,952.9	9,296.7	-629.0	4,454.0	TD at 13952.9

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: ____ Tap Rock Operating LLC ___ OGRID: ___ 372043 ___ Date: _12/21/2021_

If Other, please describe: III. Well(s): Provide the be recompleted from a si Well Name	following in	d or connected to a c	entral delivery p	point.		•			
well Name	API	ULSTR	F	ootages	Anticij Oil BE	-	Anticipat Gas MCF/D	P	rticipated roduced Water
Hamms State #218H		Sec 34, T23S R 27	E 996 FSL,	497 FWL	964		2025	374	
V. Anticipated Schedule proposed to be recompleted. Well Name					int.	Initia		First Pr	e drilled or roduction
Hamms State #218H		3/7/22	3/17/22	5/19/22		5/25/2	22	6/16/22	2
VI. Separation Equipm VII. Operational Pract Subsection A through F of VIII. Best Management during active and planned	ices: ⊠ Atta of 19.15.27.8 t Practices:	ach a complete described by the second secon	ription of the ac	ctions Operator	will take t	to comp	oly with the	e requir	rements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
				, ,

XI. Map. Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100% of the a	anticipated natural gas
production volume from the well prior to the date of first production.	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the same segment, or portion, or por	the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s	s).

$\overline{}$	1 0		4 .		4			1.11	
- 1	Attach Or	perator's	nlan to	manage	production	in response	to the incre	ased line nre	essure

XIV.	Confidentiality: Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in
Section	on 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information
for w	hich confidentiality is asserted and the basis for such assertion.

(i)

Section 3 - Certifications Effective May 25, 2021

	<u>Effective May 25, 2021</u>
Operator certifies that, a	after reasonable inquiry and based on the available information at the time of submittal:
one hundred percent of	to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering
hundred percent of the a into account the current	able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. box, Operator will select one of the following:
Well Shut-In. ☐ Opera D of 19.15.27.9 NMAC	tor will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection ; or
alternative beneficial us	Plan. ☐ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential ses for the natural gas until a natural gas gathering system is available, including:
(a)	power generation on lease;
(b)	power generation for grid; compression on lease;
(c) (d)	liquids removal on lease;
(e)	reinjection for underground storage;
(f)	reinjection for temporary storage;
(g)	reinjection for enhanced oil recovery;
(h)	fuel cell production; and

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Jeffrey Trlica
Title: Regulatory Analyst
E-mail Address: jtrlica@taprk.com
Date: 12/21/2021
Phone: 720-772-5910
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. **Separation Equipment:** Attach a complete description of how Operator will size separation equipment to optimize gas capture:

Each surface facility design includes the following process equipment: 3-phase separators (1 separator per well), a sales gas scrubber, one or two 3-phase heater treaters, a vapor recovery tower (VRT), a VRU compressor, multiple water and oil tanks, as well as flare knockouts (HP & LP), and flares (HP & LP). All process vessels will be sized to separate oil, water, gas based upon typical/historical & predicted well performance. Each process vessel will be fitted with an appropriately sized PSV as per ASME code requirements to mitigate vessel rupture and loss of containment. Additionally, the process vessels will be fitted with pressure transmitters tied to the facility control system which will allow operations to monitor pressures and when necessary, shut-in the facility to avoid vessel over-pressure and the potential vent of natural gas. Natural gas will preferentially be sold to pipeline, and only during upset/emergency conditions will gas be directed to the HP flare system. Flash gas from both the 3-phase heater treater and the VRT will be recompressed using a VRU compressor and this gas will also preferentially be directed to the gas sales pipeline. Oil tanks & water tanks will be fitted with 16 oz thief hatches as well as PVRVs to protect the tanks from rupture/collapse. Additionally, the tank vapor outlets and tank vapor capture system will be sized to keep tank pressures below 12 oz. The tank vapor capture system will include a tank vapor blower & knockout as well as a lowpressure flare and knockout. Tank vapors will preferentially be directed to the VRU and the sales gas pipeline. Only during process upsets/emergency conditions will tank vapors be directed to the LP flare system.

VII. **Operational Practices:** Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC. ← See attached reg for requirements.

- During drilling operations- Gas meters will be installed at the shakers and Volume
 Totalizers will be installed on the pits. In the event that elevated gas levels, or a pit
 gain are observed, returns will be diverted to a gas buster. Gas coming off the gas
 buster will be combusted at the flare stack. A 10' or taller flare will be located at
 least 100' from the SHL.
- During completions operations, including stimulation and frac plug drill out operations, hydrocarbon production to surface is minimized. When gas production does occur, gas will be combusted at a flare stack. A 10' or taller flare will be located at least 100' from the SHL.
- During production operations, all process vessels (separators, heater treaters, VRTs, Tanks) will recompress (where necessary) and route gas outlets into the natural gas gathering pipeline. Gas will preferentially be routed to natural gas gathering pipeline and the flare system will be used only during emergency, malfunction, or if the gas does not meet pipeline specifications. In the event of flaring off-specification gas, operations will pull gas samples twice a week and will also route gas back to pipeline as soon as the gas meets specification. Exceptions to this will include only those qualified exceptions per the regulation 19.15.27.8 Subsection D.

• To comply with state performance standards, separation and storage equipment will be designed to handle the maximum anticipated throughput and pressure to minimize waste and reduce the likelihood of venting gas to atmosphere. Additionally, each storage atmospheric tank (Oil & Water) will be fitted with a level transmitter to facilitate gauging of the tank without opening of the thief hatch. Any gas collected through the tank vent system is expected to be recompressed and routed to sales. However, in the event of an emergency, the tank vapor capture system will be designed to combust the gas using a flare stack fitted with a continuous or automatic ignitor. The flare stack will be properly anchored and will be located a minimum of 100 feet from the well and storage tanks. Operators will conduct weekly AVO inspections. These AVO inspection records will be stored for the required 5-year period and will be made available upon Division request.

VIII. **Best Management Practices:** Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

• When performing routine or preventive maintenance on a vessel or tank, initially all inlet valves are closed, and the vessel or tank is allowed to depressurize through the normal outlet connections to gas sales and/or liquid tanks. Once the vessel or tank is depressurized to lowest acceptable sales outlet pressure, usually around 20 psig, a temporary low-pressure flowline is connected from the vessel or tank to the Vapor Recovery Unit (VRU) for further pressure reduction. Once depressurized to less than 1-2 psig, the remaining natural gas in the vessel or tank is vented to atmosphere through a controlled pressure relief valve. Once the vessel or tank is depressurized to atmospheric pressure, the vessel or tank can be safely opened, and maintenance performed.