Form C-101 August 1, 2011

Permit 309114

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

16. Multiple

Depth to Ground water

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

1. Operator Nar	ne and Address RESOURCES I	NC						2. OGF	RID Number 7377	
P.O.	Box 2267 and, TX 79702	NC						3. API	Number 30-025-4979	3
4. Property Cod 325			5. Property Name QUIJOTE	2 STATE COM				6. Well	l No. 401H	
				7. S	urface Location					
UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet F	rom	E/W Line	County
Α	2	268	32	?E A	365	N		862	E	Le
				8. Propose	d Bottom Hole Loca	tion				
UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet Fro	m	E/W Line	County
Р	2	268	32	E P	100	S		1065	E	Le
				9. F	ool Information					
JENNINGS;U	PPER BONE SPI	RING SHALE							978	38
·	·			Additio	nal Well Information	1			·	
11. Work Type		12. Well Typ	e	13. Cable/Rotary		14. Lease Type		15. Ground L	evel Elevation	
New	Well	Ö	II.	1		State		33	340	

We will be using a closed-loop system in lieu of lined pits

17. Proposed Depth

15263

21. Proposed Casing and Cement Program

19. Contractor

20. Spud Date

2/28/2022

Distance to nearest surface water

18. Formation

Bone Spring

Distance from nearest fresh water well

			cpcccu cuc;	, and coment regram		
Type	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	16	13.375	54.5	840	350	0
Int1	12.25	9.625	40	4590	290	0
Int1	12.25	9.625	40	4000	670	0
Prod	7.875	5.5	17	15263	1430	4090

Casing/Cement Program: Additional Comments

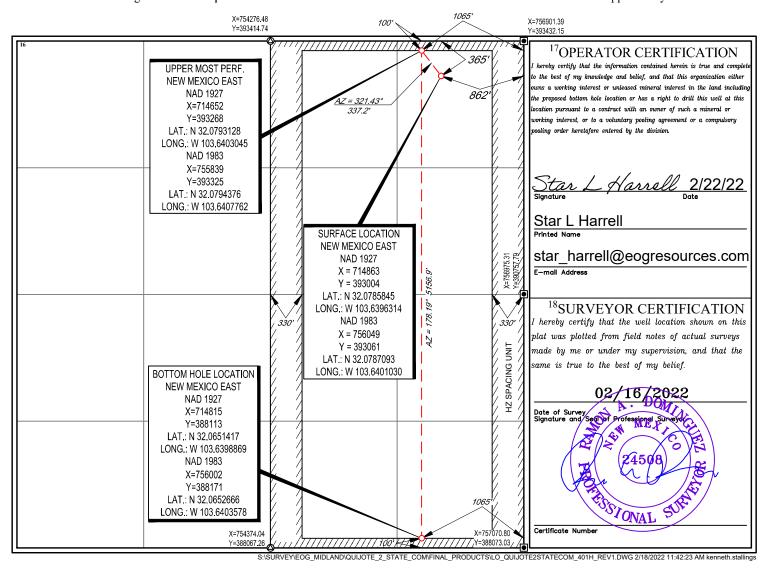
	22. Floposed Blowout Flevention Flogram								
Туре	Working Pressure	Test Pressure	Manufacturer						
Double Ram	5000	3000							

23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC ☑ and/or 19.15.14.9 (B) NMAC ☑, if applicable.				OIL CONSERVATION	ON DIVISION
Signature:					
Printed Name:	Electronically filed by Kay Maddo	x	Approved By:	Paul F Kautz	
Title:	Regulatory Agent		Title:	Geologist	
Email Address: kay_maddox@eogresources.com			Approved Date:	2/23/2022	Expiration Date: 2/23/2024
Date: 2/22/2022 Phone: 432-686-3658			Conditions of Appr	roval Attached	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals & Natural Resources
Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

FORM C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

	¹ API Number ² Pool Code 30-025-49793 97838		Jennings; Upper Bone Spring Shale			
İ	⁴ Property Code 325727			roperty Name 2 STATE COM 401H		
	⁷ OGRID №. 7377		- P	perator Name SOURCES, INC.	⁹ Elevation 3340'	

¹⁰Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A	2	26-S	32-E	_	365'	NORTH	862'	EAST	LEA
			¹¹ F	Bottom Ho	le Location If D	Different From Su	rface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	2	26-S	32-E	-	100'	SOUTH	1065'	EAST	LEA
12Dedicated Acres	¹³ Joint or l	nfill 14Co	nsolidation Cod	le ¹⁵ Ord	er No.				
320.00									

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Form APD Conditions

Permit 309114

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
EOG RESOURCES INC [7377]	30-025-49793
P.O. Box 2267	Well:
Midland, TX 79702	QUIJOTE 2 STATE COM #401H

OCD Reviewer	Condition
pkautz	Notify OCD 24 hours prior to casing & cement
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system
pkautz	1) SURFACE & INTERMEDIATE CASING - Cement must circulate to surface 2) PRODUCTION CASING - Cement must tie back into intermediate casing
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud

Quijote 2 State 401H

365' FNL

Revised Wellbore

KB: 3365' GL: 3340'

862' FEL

Section 2

T-26-S, R-32-E

API: 30-025-****

Bit Size: 16" 13-3/8", 54.5#, J-55, STC, 0' - 840' Bit Size: 12-1/4" 9-5/8" 40.#, J-55, LTC, 0' - 4,000" 9-5/8" 40.#, HCK-55, LTC, 4,000' - 4,590' TOC: 4,090' Bit Size: 7-7/8" 5-1/2" 17#, HCP-110, LTC@ 0' - 15,263' KOP: 9,729' Bit Size: 7-7/8"

Lateral: 15,263' MD, 10,334' TVD BH Location: 100' FSL & 1065' FEL Sec. 2

T-26-S R-32-E

Page 1 of 5

Quijote 2 State 401H

Permit Information:

Well Name: Quijote 2 State 401H

Location: SHL: 365' FNL & 862' FEL, Section 2, T-26-S, R-32-E, Lea Co., N.M.

BHL: 100' FSL & 1065' FEL, Section 2, T-26-S, R-32-E, Lea Co., N.M.

Casing Program:

Section	Hole	Hole Interval		Csg Weight Gr		Conn	DFmin	DFmin	DFmin
Section	Size	intervar	OD	weight	Grade	Conn	Collapse	Burst	Tension
Surface	16"	0' - 840'	13.375"	54.5#	J-55	STC	1.125	1.25	1.6
INTMD Casing 1	12.25"	0' - 4,000'	9.625"	40#	J-55	LTC	1.125	1.25	1.6
INTMD Casing 2	12.25"	4,000' - 4,590'	9.625"	40#	HCK-55	LTC	1.125	1.25	1.6
Prod Vertical	7.875"	0' - 9,729'	5.5"	17#	HCP-110	LTC	1.125	1.25	1.6
Prod Lateral	7.875"	9,729' - 15,263'	5.5"	17#	HCP-110	LTC	1.125	1.25	1.6

Cementing Program:

	Ĭ		Wt.	Yld	Slummy Description		
Section	Depth	No. Sacks	ppg	Ft3/sk	Slurry Description		
G. C	0.401	250	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)		
Surface	840'	100	14.8 1.3		100 148 134		Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
Intermediate	4.5001	670	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)		
intermediate	4,590'	290	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx		
Production	15,263'	410	11.0 3.21 Lead: Class C + 3% CaCl2 + 3 4,090')		Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,090')		
Troduction	13,203	1020	14.4	1.2	Tail: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond		

Mud Program:

Section	Depth	Туре	Weight (ppg)	Viscosity	Water Loss
Surface	0 – 840'	Fresh - Gel	8.6-8.8	28-34	N/c
Intermediate	840' – 4,590'	Brine	8.6-8.8	28-34	N/c
Production	4,590' – 15,263' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Quijote 2 State 401H

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Quijote 2 State 401H Emergency Assistance Telephone List

PUBLIC SAFETY:		911 or
Lea County Sheriff's Department		(575) 396-3611
Rod Coffman		
Fire Department:		
Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		
Sante Fe		(575) 476-3441
Hobbs		(575) 241-7063
Artesia		(575) 629-6116
NMOCD Inspection Group - South: Gilbert Cordero		(575)-626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		
EOG / Midland	Office	(432) 686-3600
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Esteban Del Valle	Cell	(432) 269-7063
Daniel Moose	Cell	(432) 312-2803
Stephen Davis	Cell	(432) 235-9789
Drilling Manager		
Aj Dach	Cell	(817) 480-1167
Branden Keener	Cell	(210) 294-3729
Drilling Superintendent		
Jason Townsend	Cell	(210) 776-5131
Ryan Reynolds	Cell	(210) 215-5978
H&P Drilling	Con	(210) 210 05 10
H&P Drilling	Office	(432) 563-5757
Tool Pusher:	0 1110 0	(10-) 000 010
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett	2311	, , , , , , , , , , , , , , , , , , , ,
Safety:		
Brian Chandler (HSE Manager)	Office	(432) 686-3695
<i>U</i> ,	Cell	(817) 239-0251

Midland

Lea County, NM (NAD 83 NME) Quijote 2 State Com #401H

OH

Plan: Plan #0.1

Standard Planning Report

18 February, 2022

Planning Report

Database: Company: PEDM

Midland

Project:

Site:

Lea County, NM (NAD 83 NME) Quijote 2 State Com

Well: Wellbore: ОН

#401H

Plan #0.1

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Local Co-ordinate Reference:

Well #401H

KB = 26' @ 3366.0usft

KB = 26' @ 3366.0usft

Grid

Minimum Curvature

Design: Project

Lea County, NM (NAD 83 NME)

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983 System Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Quijote 2 State Com Site

Site Position: From:

Well Position

Wellbore

Мар

Northing: Easting:

393,066.99 usft 756,153.00 usft

13-3/16 "

Latitude: Longitude:

32.0787226°N 103.6397676°W

Position Uncertainty: 0.0 usft Slot Radius:

0.37

Well #401H

+N/-S

0.0 usft +E/-W 0.0 usft 0.0 usft

Northing: Easting: Wellhead Elevation:

393,061.00 usft 756,049.00 usft usft Latitude: Longitude: **Ground Level:**

32.0787080°N 103.6401035°W

3,340.0 usft

Position Uncertainty Grid Convergence:

Plan #0.1

ОН

Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)	
	IGRF2020	2/18/2022	6.49	59.73	47,330.85563874	

Design

Audit Notes:

Version:

Phase:

Depth From (TVD)

(usft)

PROTOTYPE

+N/-S

(usft)

0.0

Tie On Depth: +E/-W

(usft)

0.0

0.0 Direction

(°)

180.55

Vertical Section:

0.0 Date 2/18/2022

Depth From Depth To (usft) (usft)

Survey (Wellbore)

Tool Name

Remarks

0.0

Plan Survey Tool Program

15,262.8 Plan #0.1 (OH) EOG MWD+IFR1 MWD + IFR1

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,600.1	4.00	326.23	1,599.9	5.8	-3.9	2.00	2.00	0.00	326.23	
6,813.0	4.00	326.23	6,800.1	308.2	-206.1	0.00	0.00	0.00	0.00	
7,013.0	0.00	178.21	7,000.0	314.0	-210.0	2.00	-2.00	0.00	180.00	
9,729.0	0.00	178.21	9,716.0	314.0	-210.0	0.00	0.00	0.00	0.00	KOP (Quijote 2 State
10,623.5	89.44	178.21	10,288.9	-253.1	-192.2	10.00	10.00	0.00	178.21	
15,262.8	89.44	178.21	10,334.0	-4,890.0	-47.0	0.00	0.00	0.00	0.00	PBHL (Quijote 2 State

eog resources

Planning Report

Database: Company: PEDM

Midland

Project:

Lea County, NM (NAD 83 NME)

Site: Quijote 2 State Com

 Well:
 #401H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #401H

KB = 26' @ 3366.0usft

KB = 26' @ 3366.0usft

Grid

esign:	Plan #0.1								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0 1,400.0	0.00 0.00	0.00 0.00	1,300.0 1,400.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
1,500.0	2.00	326.23	1,500.0	1.5	-1.0	-1.4	2.00	2.00	0.00
1,600.1	4.00	326.23	1,599.9	5.8	-3.9	-5.8	2.00	2.00	0.00
1,700.0	4.00	326.23	1,699.6	11.6	-7.8	-11.5	0.00	0.00	0.00
1,800.0	4.00	326.23	1,799.3	17.4	-11.6	-17.3	0.00	0.00	0.00
1,900.0	4.00	326.23	1,899.1	23.2	-15.5	-23.1	0.00	0.00	0.00
2,000.0	4.00	326.23	1,998.9	29.0	-19.4	-28.8	0.00	0.00	0.00
2,100.0	4.00	326.23	2,098.6	34.8	-23.3	-34.6	0.00	0.00	0.00
2,200.0	4.00	326.23	2,198.4	40.6	-27.2	-40.3	0.00	0.00	0.00
2,300.0	4.00	326.23	2,298.1	46.4	-31.0	-46.1	0.00	0.00	0.00
2,400.0	4.00	326.23	2,397.9	52.2	-34.9	-51.9	0.00	0.00	0.00
2,500.0	4.00	326.23	2,497.6	58.0	-38.8	-57.6	0.00	0.00	0.00
2,600.0	4.00	326.23	2,597.4	63.8	-42.7	-63.4	0.00	0.00	0.00
2,700.0	4.00	326.23	2,697.2	69.6	-46.6	-69.2	0.00	0.00	0.00
2,800.0	4.00	326.23	2,796.9	75.4	-50.4	-74.9	0.00	0.00	0.00
2,900.0	4.00	326.23	2,896.7	81.2	-54.3	-80.7	0.00	0.00	0.00
3,000.0	4.00	326.23	2,996.4	87.0	-58.2	-86.4	0.00	0.00	0.00
3,100.0 3.200.0	4.00 4.00	326.23 326.23	3,096.2	92.8 98.6	-62.1 -66.0	-92.2 -98.0	0.00	0.00 0.00	0.00
3,200.0	4.00	326.23	3,195.9 3,295.7	104.4	-69.8	-96.0 -103.7	0.00 0.00	0.00	0.00 0.00
3,400.0	4.00	326.23	3,395.4	110.2	-73.7	-103.7	0.00	0.00	0.00
3,500.0	4.00	326.23	3,495.2	116.0	-77.6	-115.3	0.00	0.00	0.00
3,600.0	4.00	326.23	3,595.0	121.8	-81.5	-121.0	0.00	0.00	0.00
3,700.0	4.00	326.23	3,694.7	127.6	-85.3	-126.8	0.00	0.00	0.00
3,800.0	4.00	326.23	3,794.5	133.4	-89.2	-132.6	0.00	0.00	0.00
3,900.0	4.00	326.23	3,894.2	139.2	-93.1	-138.3	0.00	0.00	0.00
4,000.0	4.00	326.23	3,994.0	145.0	-97.0	-144.1	0.00	0.00	0.00
4,100.0	4.00	326.23	4,093.7	150.8	-100.9	-149.8	0.00	0.00	0.00
4,200.0	4.00	326.23	4,193.5	156.6	-104.7	-155.6	0.00	0.00	0.00
4,300.0	4.00	326.23	4,293.3	162.4	-108.6	-161.4	0.00	0.00	0.00
4,400.0	4.00	326.23	4,393.0	168.2	-112.5	-167.1	0.00	0.00	0.00
4,500.0	4.00	326.23	4,492.8	174.0	-116.4	-172.9	0.00	0.00	0.00
4,600.0	4.00	326.23	4,592.5	179.8	-120.3	-178.7	0.00	0.00	0.00
4,700.0	4.00	326.23	4,692.3	185.6	-124.1	-184.4	0.00	0.00	0.00
4,800.0	4.00	326.23	4,792.0	191.4	-128.0	-190.2	0.00	0.00	0.00
4,900.0	4.00	326.23	4,891.8	197.2	-131.9	-196.0	0.00	0.00	0.00
5,000.0	4.00	326.23	4,991.5	203.0	-135.8	-201.7	0.00	0.00	0.00
5,000.0 5,100.0	4.00	326.23 326.23	4,991.5 5,091.3	203.0	-135.8 -139.7	-201.7 -207.5	0.00	0.00	0.00
5,100.0	4.00	326.23	5,091.3 5,191.1	214.6	-139.7 -143.5	-207.5 -213.2	0.00	0.00	0.00
5,300.0	4.00	326.23	5,191.1	220.4	-143.5	-213.2 -219.0	0.00	0.00	0.00

eog resources

Planning Report

Database: Company: Project: PEDM

Midland

Lea County, NM (NAD 83 NME)

Site: Quijote 2 State Com

 Well:
 #401H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #401H

KB = 26' @ 3366.0usft KB = 26' @ 3366.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	4.00	326.23	5,390.6	226.2	-151.3	-224.8	0.00	0.00	0.00
5,500.0	4.00	326.23	5,490.3	232.0	-155.2	-230.5	0.00	0.00	0.00
5,600.0	4.00	326.23	5,590.1	237.8	-159.1	-236.3	0.00	0.00	0.00
5,700.0	4.00	326.23	5,689.8	243.6	-162.9	-242.1	0.00	0.00	0.00
5,800.0	4.00	326.23 326.23	5,789.6	249.4 255.2	-166.8 -170.7	-247.8 -253.6	0.00	0.00	0.00
5,900.0	4.00		5,889.4				0.00	0.00	0.00
6,000.0	4.00	326.23	5,989.1	261.0	-174.6	-259.3	0.00	0.00	0.00
6,100.0	4.00	326.23	6,088.9	266.8	-178.5	-265.1	0.00	0.00	0.00
6,200.0	4.00	326.23	6,188.6	272.6	-182.3	-270.9	0.00	0.00	0.00
6,300.0 6,400.0	4.00 4.00	326.23 326.23	6,288.4 6,388.1	278.4 284.2	-186.2 -190.1	-276.6 -282.4	0.00 0.00	0.00 0.00	0.00 0.00
6,500.0	4.00	326.23	6,487.9	290.0	-194.0	-288.2	0.00	0.00	0.00
6,600.0	4.00	326.23	6,587.6	295.8	-197.9	-293.9	0.00	0.00	0.00
6,700.0	4.00	326.23	6,687.4	301.6	-201.7	-299.7	0.00	0.00	0.00
6,800.0	4.00	326.23 326.23	6,787.2	307.4 308.2	-205.6	-305.5 -306.2	0.00	0.00	0.00
6,813.0	4.00		6,800.1		-206.1		0.00	0.00	0.00
6,900.0	2.26	326.23	6,887.0	312.1	-208.8	-310.1	2.00	-2.00	0.00
7,000.0	0.26	326.23	6,987.0	314.0	-210.0	-311.9	2.00	-2.00	0.00
7,013.0	0.00	178.21	7,000.0	314.0	-210.0	-312.0	2.00	-2.00	0.00
7,100.0 7,200.0	0.00	0.00 0.00	7,087.0	314.0	-210.0	-312.0	0.00	0.00	0.00
	0.00		7,187.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,300.0	0.00	0.00	7,287.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,400.0	0.00	0.00	7,387.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,487.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,587.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,687.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,787.0	314.0	-210.0	-312.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,887.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,000.0	0.00	0.00	7,987.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,100.0 8,200.0	0.00 0.00	0.00 0.00	8,087.0 8,187.0	314.0 314.0	-210.0 -210.0	-312.0 -312.0	0.00 0.00	0.00 0.00	0.00 0.00
8,300.0	0.00	0.00	8,287.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,387.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,500.0	0.00 0.00	0.00 0.00	8,487.0 8,587.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,600.0 8,700.0	0.00	0.00	8,587.0 8,687.0	314.0 314.0	-210.0 -210.0	-312.0 -312.0	0.00 0.00	0.00 0.00	0.00 0.00
8,800.0	0.00	0.00	8,787.0	314.0	-210.0	-312.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,887.0	314.0	-210.0	-312.0	0.00	0.00	0.00
9,000.0 9,100.0	0.00 0.00	0.00 0.00	8,987.0 9,087.0	314.0 314.0	-210.0 -210.0	-312.0 -312.0	0.00 0.00	0.00 0.00	0.00 0.00
9,100.0	0.00	0.00	9,087.0	314.0	-210.0 -210.0	-312.0 -312.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,287.0	314.0	-210.0	-312.0	0.00	0.00	0.00
9,400.0 9,500.0	0.00 0.00	0.00 0.00	9,387.0 9,487.0	314.0 314.0	-210.0 -210.0	-312.0 -312.0	0.00 0.00	0.00 0.00	0.00 0.00
9,500.0	0.00	0.00	9,487.0 9,587.0	314.0	-210.0 -210.0	-312.0 -312.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,687.0	314.0	-210.0	-312.0	0.00	0.00	0.00
9,729.0	0.00	178.21	9,716.0	314.0	-210.0	-312.0	0.00	0.00	0.00
9,750.0	e 2 State Com #4 2.10	401Н) 178.21	9,737.0	313.6	-210.0	-311.6	10.00	10.00	0.00
9,800.0	7.10	178.21	9,786.8	309.6	-209.9	-307.6	10.00	10.00	0.00
9,850.0	12.10	178.21	9,836.1	301.3	-209.6	-299.3	10.00	10.00	0.00
9,900.0	17.10	178.21	9,884.4	288.7	-209.2	-286.7	10.00	10.00	0.00
9,950.0	22.10	178.21	9,931.5	271.9	-208.7	-269.9	10.00	10.00	0.00
შ,შე0.0	22.10	1/0.21	ان. ۱ د ق , ق	211.8	-200.7	-209.9	10.00	10.00	0.00

eog resources

Planning Report

Database: Company: PEDM

Midland

Project:

Lea County, NM (NAD 83 NME)

Site: Quijote 2 State Com

 Well:
 #401H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #401H

KB = 26' @ 3366.0usft

KB = 26' @ 3366.0usft

Grid

Design:	Plan #0.1								
Planned Survey									
Planned Survey									
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,000.0	27.10	178.21	9,977.0	251.1	-208.0	-249.1	10.00	10.00	0.00
10,050.0	32.10	178.21	10,020.4	226.5	-207.3	-224.5	10.00	10.00	0.00
· ·	37.10	178.21	,	198.1		-224.3 -196.1		10.00	
10,100.0			10,061.6		-206.4		10.00		0.00
10,150.0	42.10	178.21	10,100.1	166.3	-205.4	-164.3	10.00	10.00	0.00
10,200.0	47.10	178.21	10,135.7	131.2	-204.3	-129.2	10.00	10.00	0.00
·	2 State Com #4								
10.250.0	52.10	178.21	10.168.1	93.1	-203.1	-91.2	10.00	10.00	0.00
10,300.0	57.10	178.21	10,197.0	52.4	-201.8	-50.5	10.00	10.00	0.00
10,350.0	62.10	178.21	10,197.0	9.3	-200.5	-7.4	10.00	10.00	0.00
· ·	67.10	178.21	,						
10,400.0	67.10	1/0.21	10,243.8	-35.8	-199.0	37.7	10.00	10.00	0.00
10,450.0	72.10	178.21	10,261.2	-82.6	-197.6	84.5	10.00	10.00	0.00
10,500.0	77.10	178.21	10,274.5	-130.8	-196.1	132.7	10.00	10.00	0.00
10,550.0	82.10	178.21	10,283.5	-179.9	-194.5	181.8	10.00	10.00	0.00
10,600.0	87.10	178.21	10,288.2	-229.7	-193.0	231.5	10.00	10.00	0.00
10,623.5	89.44	178.21	10,288.9	-253.1	-192.2	254.9	10.00	10.00	0.00
10,700.0	89.44	178.21	10,289.7	-329.6	-189.8	331.4	0.00	0.00	0.00
10,800.0	89.44	178.21	10,290.6	-429.6	-186.7	431.3	0.00	0.00	0.00
10,900.0	89.44	178.21	10,291.6	-529.5	-183.6	531.2	0.00	0.00	0.00
11,000.0	89.44	178.21	10,292.6	-629.4	-180.4	631.1	0.00	0.00	0.00
11,100.0	89.44	178.21	10,293.6	-729.4	-177.3	731.1	0.00	0.00	0.00
44 200 0	00.44	470.04	40.004.5	000.0	474.0	004.0	0.00	0.00	0.00
11,200.0	89.44	178.21	10,294.5	-829.3	-174.2	831.0	0.00	0.00	0.00
11,300.0	89.44	178.21	10,295.5	-929.3	-171.1	930.9	0.00	0.00	0.00
11,400.0	89.44	178.21	10,296.5	-1,029.2	-167.9	1,030.8	0.00	0.00	0.00
11,500.0	89.44	178.21	10,297.4	-1,129.2	-164.8	1,130.7	0.00	0.00	0.00
11,600.0	89.44	178.21	10,298.4	-1,229.1	-161.7	1,230.6	0.00	0.00	0.00
11,700.0	89.44	178.21	10,299.4	-1,329.1	-158.5	1,330.5	0.00	0.00	0.00
11,800.0	89.44	178.21	10,300.4	-1,429.0	-155.4	1,430.4	0.00	0.00	0.00
11,900.0	89.44	178.21	10,301.3	-1,529.0	-152.3	1,530.4	0.00	0.00	0.00
12,000.0	89.44	178.21	10,302.3	-1,628.9	-149.1	1,630.4	0.00	0.00	0.00
12,100.0	89.44	178.21	10,303.3	-1,728.9	-149.1	1,730.2	0.00	0.00	0.00
12,100.0	09.44	170.21	10,303.3	-1,720.9	-140.0	1,730.2	0.00	0.00	0.00
12,200.0	89.44	178.21	10,304.2	-1,828.8	-142.9	1,830.1	0.00	0.00	0.00
12,300.0	89.44	178.21	10,305.2	-1,928.7	-139.8	1,930.0	0.00	0.00	0.00
12,400.0	89.44	178.21	10,306.2	-2,028.7	-136.6	2,029.9	0.00	0.00	0.00
12,500.0	89.44	178.21	10,307.2	-2,128.6	-133.5	2,129.8	0.00	0.00	0.00
12,600.0	89.44	178.21	10,308.1	-2,228.6	-130.4	2,229.7	0.00	0.00	0.00
12,700.0	89.44	178.21	10,309.1	-2,328.5	-127.2	2,329.6	0.00	0.00	0.00
12,800.0	89.44	178.21	10,310.1	-2,428.5	-124.1	2,429.6	0.00	0.00	0.00
12,900.0	89.44	178.21	10,311.0	-2,528.4	-121.0	2,529.5	0.00	0.00	0.00
13,000.0	89.44	178.21	10,312.0	-2,628.4	-117.8	2,629.4	0.00	0.00	0.00
13,100.0	89.44	178.21	10,313.0	-2,728.3	-114.7	2,729.3	0.00	0.00	0.00
13,200.0	89.44	178.21	10,314.0	-2,828.3	-111.6	2,829.2	0.00	0.00	0.00
13,300.0	89.44	178.21	10,314.9	-2,928.2	-108.4	2,929.1	0.00	0.00	0.00
13,400.0	89.44	178.21	10,315.9	-3,028.2	-105.4	3,029.0	0.00	0.00	0.00
13,500.0	89.44	178.21	10,316.9	-3,128.1	-103.3	3,128.9	0.00	0.00	0.00
13,600.0	89.44	178.21	10,317.8	-3,128.1	-102.2	3,128.8	0.00	0.00	0.00
13,000.0	09.44	170.21	10,317.0	-5,220.0	-99.1	3,220.0	0.00	0.00	0.00
13,700.0	89.44	178.21	10,318.8	-3,328.0	-95.9	3,328.8	0.00	0.00	0.00
13,800.0	89.44	178.21	10,319.8	-3,427.9	-92.8	3,428.7	0.00	0.00	0.00
13,833.4	89.44	178.21	10,320.1	-3,461.3	-91.8	3,462.0	0.00	0.00	0.00
· ·	e 2 State Com		· · · · · · · · · · · · · · · · · · ·						
13,900.0	89.44	178.21	10,320.8	-3,527.9	-89.7	3,528.6	0.00	0.00	0.00
14,000.0	89.44	178.21	10,320.8	-3,627.8	-86.5	3,628.5	0.00	0.00	0.00
14,000.0	09.44	1/0.21	10,321.1	-5,021.0	-00.5	3,020.3	0.00	0.00	0.00
14,100.0	89.44	178.21	10,322.7	-3,727.8	-83.4	3,728.4	0.00	0.00	0.00
14,200.0	89.44	178.21	10,323.7	-3,827.7	-80.3	3,828.3	0.00	0.00	0.00
14,300.0	89.44	178.21	10,324.6	-3,927.7	-77.1	3,928.2	0.00	0.00	0.00

Planning Report

Database: Company: PEDM Midland

Project: Lea County, NM (NAD 83 NME)

Site: Quijote 2 State Com

 Well:
 #401H

 Wellbore:
 OH

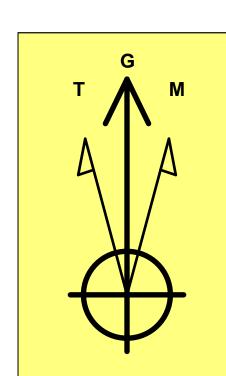
 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #401H


KB = 26' @ 3366.0usft KB = 26' @ 3366.0usft

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,400.0	89.44	178.21	10,325.6	-4,027.6	-74.0	4,028.1	0.00	0.00	0.00
14,500.0	89.44	178.21	10,326.6	-4,127.6	-70.9	4,128.1	0.00	0.00	0.00
14,600.0	89.44	178.21	10,327.6	-4,227.5	-67.8	4,228.0	0.00	0.00	0.00
14,700.0	89.44	178.21	10,328.5	-4,327.5	-64.6	4,327.9	0.00	0.00	0.00
14,800.0	89.44	178.21	10,329.5	-4,427.4	-61.5	4,427.8	0.00	0.00	0.00
14,900.0	89.44	178.21	10,330.5	-4,527.3	-58.4	4,527.7	0.00	0.00	0.00
15,000.0	89.44	178.21	10,331.4	-4,627.3	-55.2	4,627.6	0.00	0.00	0.00
15,100.0	89.44	178.21	10,332.4	-4,727.2	-52.1	4,727.5	0.00	0.00	0.00
15,200.0	89.44	178.21	10,333.4	-4,827.2	-49.0	4,827.4	0.00	0.00	0.00
15,262.8	89.44	178.21	10,334.0	-4,890.0	-47.0	4,890.2	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Quijote 2 State Co - plan hits target ce - Rectangle (sides \	nter	178.21	9,716.0	314.0	-210.0	393,375.00	755,839.00	32.0795748°N	103.6407750°W
FTP (Quijote 2 State Co - plan misses target - Point		0.00 .9usft at 102	10,289.0 00.0usft MD	264.0 (10135.7 TVD	-210.0), 131.2 N, -20	393,325.00 04.3 E)	755,839.00	32.0794374°N	103.6407760°W
PBHL (Quijote 2 State C - plan hits target ce - Rectangle (sides \	nter	178.21 (,145.0)	10,334.0	-4,890.0	-47.0	388,171.00	756,002.00	32.0652673°N	103.6403566°W

1200

1600

2000

2400

2800-

3200-

3600-

4000

4400-

10400-

10800

11200-

KOP (Quijote 2 State Com #401H)

--FTP (Quijote 2 State Com #401H) -

. - - - - - -

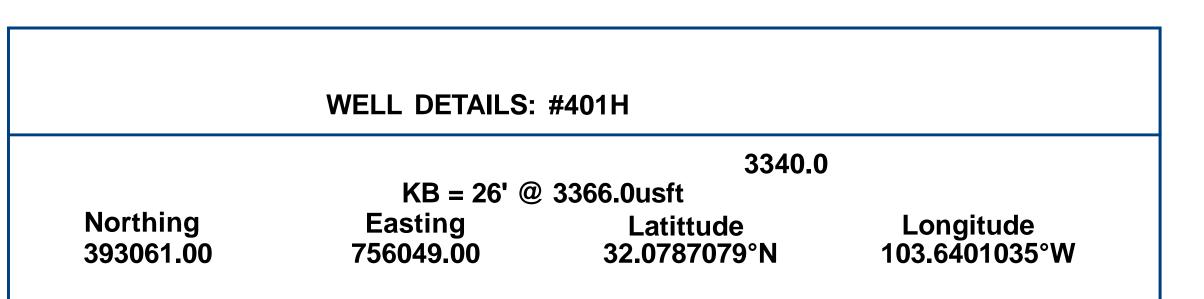
Azimuths to Grid North True North: -0.37° Magnetic North: 6.12°

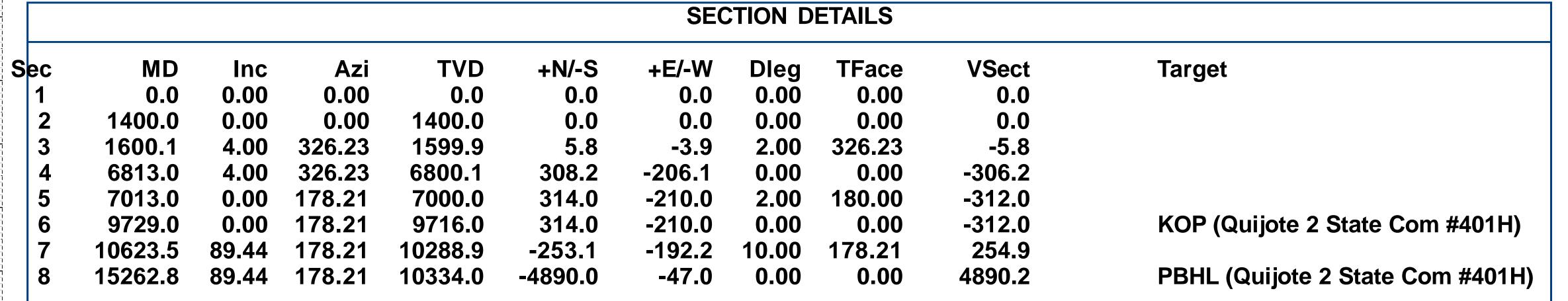
Magnetic Field Strength: 47330.9nT Dip Angle: 59.73° Date: 2/18/2022 Model: IGRF2020

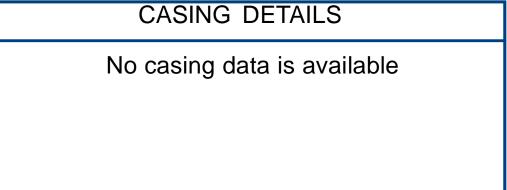
To convert a Magnetic Direction to a Grid Direction, Add 6.12° To convert a Magnetic Direction to a True Direction, Add 6.49° East To convert a True Direction to a Grid Direction, Subtract 0.37°

Lea County, NM (NAD 83 NME)

Quijote 2 State Com

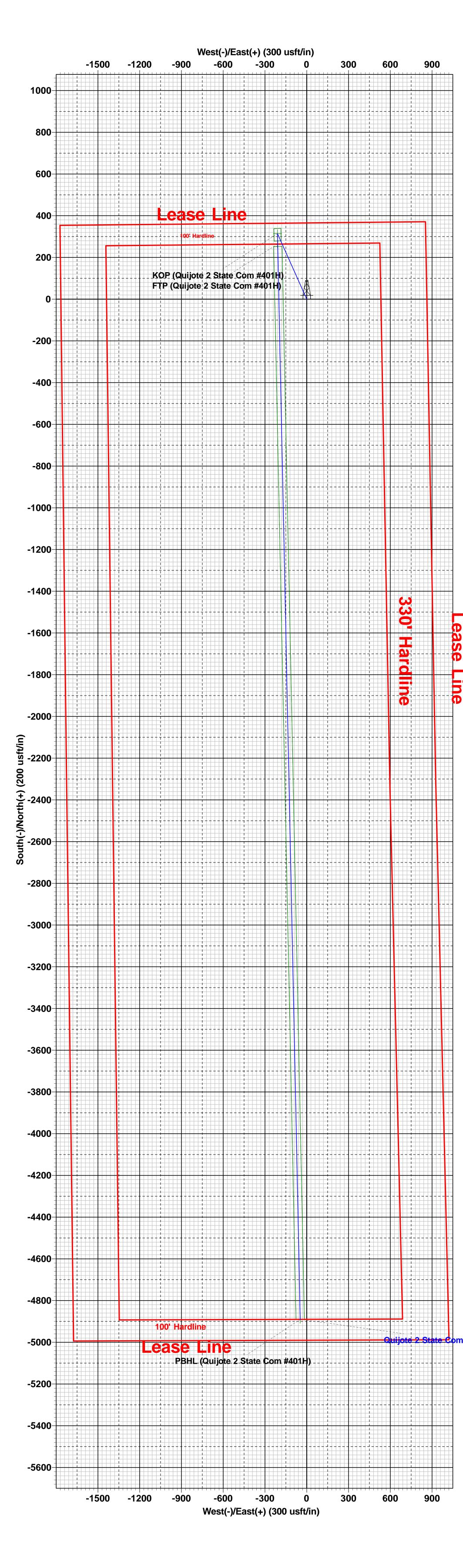

#401H


Plan #0.1


PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980

Zone: New Mexico Eastern Zone System Datum: Mean Sea Level



1400

Vertical Section at 180.55° (200 usft/in)

Name	TVD	+N/-S	+E/-W	Northing	Easting
KOP (Quijote 2 State Com #401H)	9716.0	314.0	-210.0	393375.00	755839.00
PBHL (Quijote 2 State Com #401H)	10334.0	-4890.0	-47.0	388171.00	756002.00
FTP (Quijote 2 State Com #401H)	10289.0	264.0	-210.0	393325.00	755839.00

Lea County, NM (NAD 83 NME) Quijote 2 State Com

10:39, February 18 2022

2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 5000

PBHL (Quijote 2 Sta

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:EOG l	Dagauraag Ind	OCDI	D. 7277		Data)/22/2022		
i. Operator:EOG	Resources, Inc	OGKI	D: /3//		Date: \(\)	2/22/2022		
II. Type: ⊠ Origina Other.	l □ Amendm	ent due to \square 19.15	5.27.9.D(6)(a) NN	MAC □ 19.15.27.	9.D(6)(b) NM	IAC □		
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a si					wells propose	d to be dri	lled or proposed to	
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipate Gas MCF		Anticipated roduced Water BBL/D	
Quijote 2 State Com 401H		A-2-26S-32E	365' FNL & 862' FEL	+/- 1000	+/- 3500	+/- 3	+/- 3000	
IV. Central Delivery PV. Anticipated Schedu or proposed to be recom	ıle: Provide th	e following inform	nation for each ne	ew or recompleted	well or set of			
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		ial Flow ck Date	First Production Date	
Quijote 2 State Com 401H		3/1/22	03/15/22	05/01/22	06/0	1/22	07/01/22	
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Managemen during active and planne	ices: ⊠ Attac of 19.15.27.8 t Practices: □	ch a complete desc NMAC. ⊠ Attach a comple	ription of the act	tions Operator wi	ll take to con	ply with t	he requirements of	

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

	EFFECTIV	E APRIL 1, 2022			
		with its statewide natural g	as capture requirement for the applicab		
-	-	tion because Operator is in o	compliance with its statewide natural ga		
tural Gas Productio	on:				
ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF		
hering System (NG	GGS):				
System	ULSTR of Tie-in	Anticipated Gathering Start Date Available Maximum Daily C of System Segment Tie			
s to the existing or point of the natural gas gas. The natural gas gas rom the well prior to Operator \(\square\) does \(\square\) described splan to manage profits: \(\square\) Operator assorting in Paragraph (2) of	blanned interconnect of the gathering system will the thering system will to the date of first product does not anticipate the datove will continue to be duction in response to the tests confidentiality pursuants.	he natural gas gathering systewhich the well(s) will be considered with the well(s) will be considered with the well(s) will be considered with the expansion well(s) connect meet anticipated increases in the increased line pressure. uant to Section 71-2-8 NMS 27.9 NMAC, and attaches a first which we will be considered with the considered with	em(s), and the maximum daily capacity nected. gather 100% of the anticipated natural gated to the same segment, or portion, of the line pressure caused by the new well(s) SA 1978 for the information provided		
	that it is not require for the applicable recural Gas Production and Gas Production and accurate and legal sto the existing or point of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the well prior to the system of the natural gas gas from the paragraph (2) of the natural gas gas from the prior to the natural gas gas from the prior to the natural gas gas from the natural ga	API Complete this section. That it is not required to complete this section the applicable reporting area. Complete this section. Complete this section. Complete this section area. Com	that it is not required to complete this section because Operator is in of for the applicable reporting area. The section because Operator is in of the applicable reporting area. The section because Operator is in order to the applicable reporting area. The section because Operator is in order to the applicable reporting area. Anticipated Average Natural Gas Rate MCF/E The section because Operator is in order to the applicable reporting area. The section because Operator is in order to the applicable reporting area. Anticipated Average Natural Gas Rate MCF/E System ULSTR of Tie-in Anticipated Gathering		

(i)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; (c) compression on lease; (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; (h) fuel cell production; and

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Star L Harrell
Printed Name: Star L Harrell
Title: Sr Regulatory Specialist
E-mail Address: Star_Harrell@eogresources.com
Date: 2/22/2022
Phone: (432) 848-9161
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release
 gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction
 and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which
 point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.