0,01,2022 ,100.0 , 11112

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II

District I

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

<u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u>
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico

Form C-101 Revised July 18, 2013

Energy Minerals and Natural Resources

Oil Conservation Division

☐AMENDED REPORT

1220 South St. Francis Dr.

Santa Fe, NM 87505

APPLI	CATIO	IN FU		erator Name			KE-EN	iek,	DE.	EPEN	1, PL	<i>i</i> UGBA		OGRID I		AZUNE
Mack E	nergy Co	orporati		ociatoi inaine	anu Aud	ness						0138	37			71
				8211-096	80							30-01	5-23	^{3.} API Ni 593	ımber	
4. Prop	erty Code		Мс	Millan Fee		3	Property Na	ame						1	^{6.} We	il No.
			<u> </u>			^{7.} Sı	ırface Loc	cation								
UL - Lot	Section 15	Township 19S		Range 6E	Lo	t Idn	Feet from 2010		_{N/S} South	Line	18	Feet From	V	E/W Liı Vest	ne	County Eddy
					8.]	Propos	ed Bottom	1 Hole 1	Loca	tion						
UL - Lot	Section	Township	р	Range	Lo	t Idn	Feet from	m	N/S	Line		Feet From		E/W Lin	ne	County
			<u> </u>			9. Pc	l ool Inform	nation			1					
	Lake	е МсМі	llan; \	Wolfcamp	o, NW		Name									Pool Code 97463
					A	ddition	al Well In	ıforma	tion							
Re-entry	ork Type	Oil		Well Type			13. Cable/Rot	·		Privat	:e	se Type		3336	6.3	nd Level Elevation
N	Iultiple	830		roposed Depth		Wolfd	^{18.} Formatio	on			^{19.} Co	ntractor		7/1/2		0. Spud Date
Depth to Gro	und water	1 00		Dista	ince from		fresh water w	vell				Distar	nce to 1	nearest su		water
Type J-55 J-55	Hole 13 3,		Cas 9 5/8	sing Size	T Î	asing We				Depth		Sacks	of Cen	nent		Estimated TOC
L-80	8 5/8		<i>,</i> 5 1/2		20#			8300'				1,170				
L - 00	0 3/0	'	J 1/Z	Casir		nent Pr	ogram: A		nal C	ommer	nts	1,170				
					0		8									
				22.	Propo	sed Blo	owout Pre	ventio	n Pro	gram						
	Туре					Pressure				Test Pro	essure				Mai	nufacturer
Double Ra				3000				3000								
			•													
^{23.} I hereby c best of my kr	nowledge an	d belief.	_			-				OII	L CO	NSERV	ATIO	ON DI	VISI	ON
I further cer 19.15.14.9 (I Signature:	B) NMAC [licable.		9 (A) NI	MAC	and/or	Approv	ed By:	1	M	nic p	24	hu/		
Printed name	: Delilah	Flores						Title:	P	etrole	eum	Special	ist			
Title:	Regulat	tory Ted	chnicia	an I				Approv	ed Dat	te: 04/	04/20	022	Expi	ration D	ate: (04/04/2024
E-mail Addre	ess: delila	h@med														
Date: 3/30	/2022		F	Phone: 575-	-748-12	288		Condition	ons of	Approva	al Attaci	hed				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico

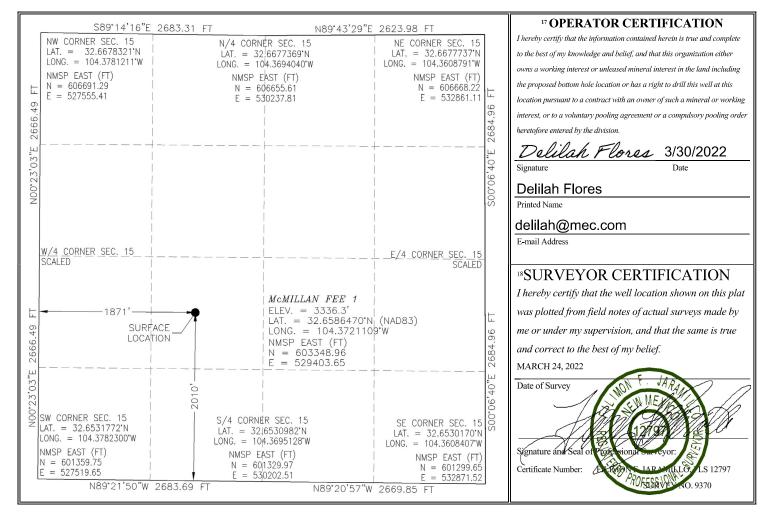
Energy, Minerals & Natural Resources Department **OIL CONSERVATION DIVISION** 1220 South St. Francis Dr.

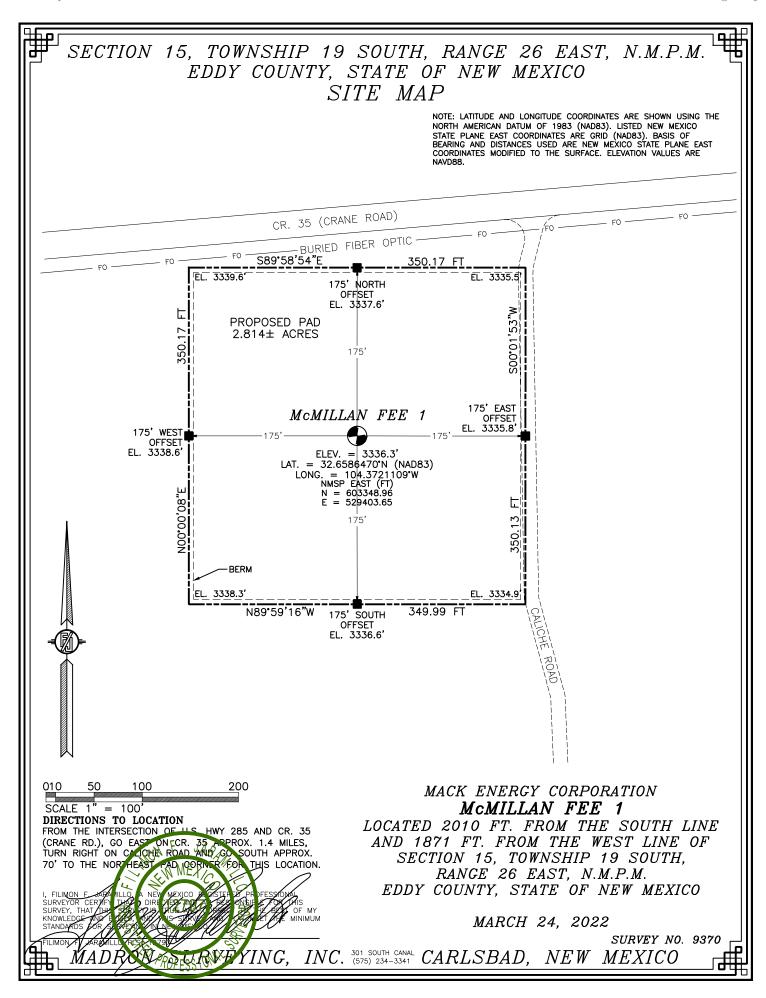
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

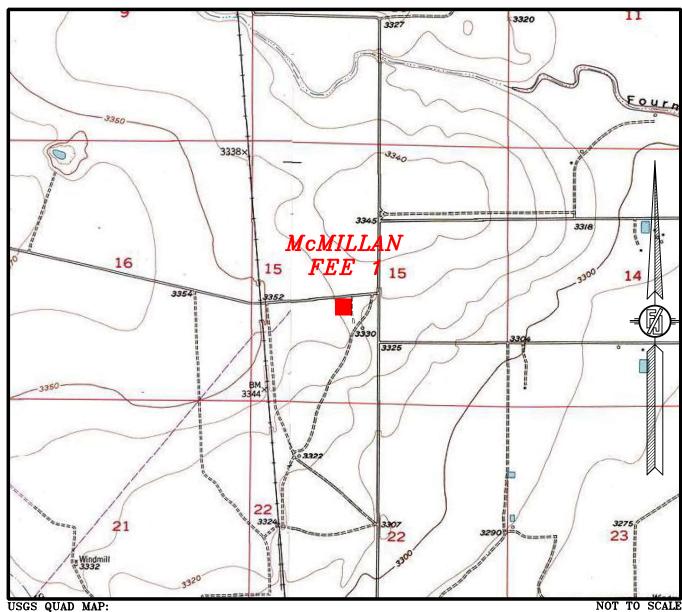
WELL LOCATION AND ACREAGE DEDICATION PLAT

			THEREFIGE DEDICTION TETT	
¹ API Numbe	er	² Pool Code	³ Pool Name	
30-015-23593		97463	Lake McMillan; Wolfcamp, NW	
⁴ Property Code		⁵ P.	roperty Name	⁶ Well Number
332726		McM	ILLAN FEE	1
⁷ OGRID No.		8 O	perator Name	⁹ Elevation
13837		MACK ENER	GY CORPORATION	3336.3


Surface Location


	UL or lot no. K	Section 15	Township 19 S	Range 26 E	Lot Idn	Feet from the 2010	North/South line SOUTH	Feet from the 1871	East/West line WEST	County EDDY
L	N.	13	17.5) - 44 T1				WEST	EDD1
				1 11	3oπom H	iole Location	If Different Fr	om Surface		
	UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County

12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No.

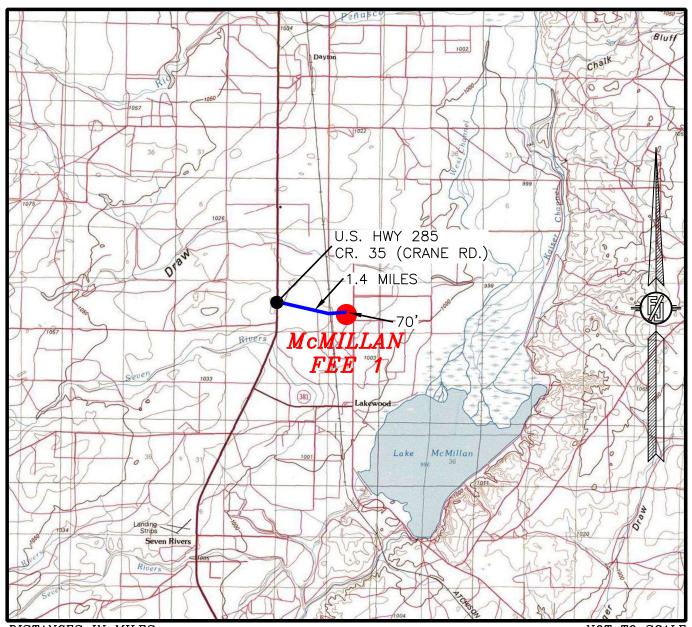

40

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP

USGS QUAD MAP: LAKE McMILLAN NORTH DAYTON

MACK ENERGY CORPORATION


McMILLAN FEE 1

LOCATED 2010 FT. FROM THE SOUTH LINE AND 1871 FT. FROM THE WEST LINE OF SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

MARCH 24, 2022

SURVEY NO. 9370

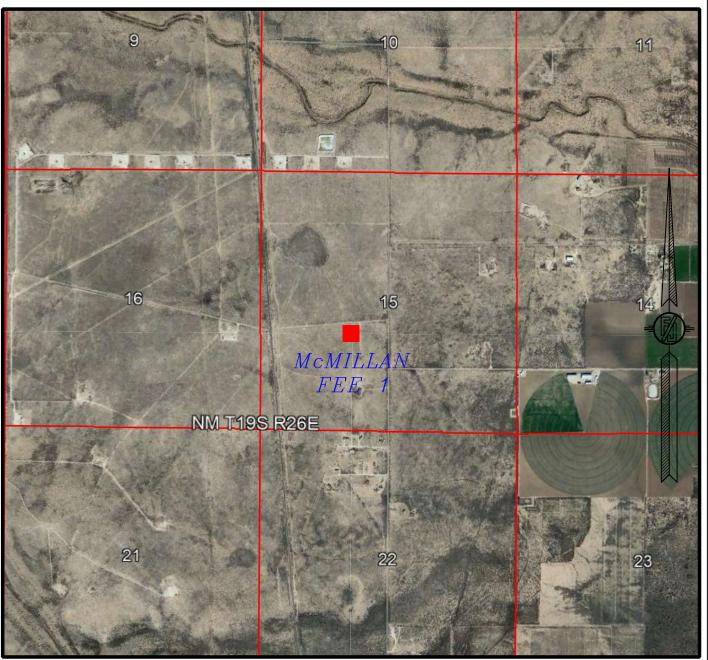
SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO VICINITY MAP

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF U.S. HWY 285 AND CR. 35 (CRANE RD.), GO EAST ON CR. 35 APPROX. 1.4 MILES, TURN RIGHT ON CALICHE ROAD AND GO SOUTH APPROX. 70' TO THE NORTHEAST PAD CORNER FOR THIS LOCATION.


MACK ENERGY CORPORATION McMILLAN FEE 1

LOCATED 2010 FT. FROM THE SOUTH LINE AND 1871 FT. FROM THE WEST LINE OF SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

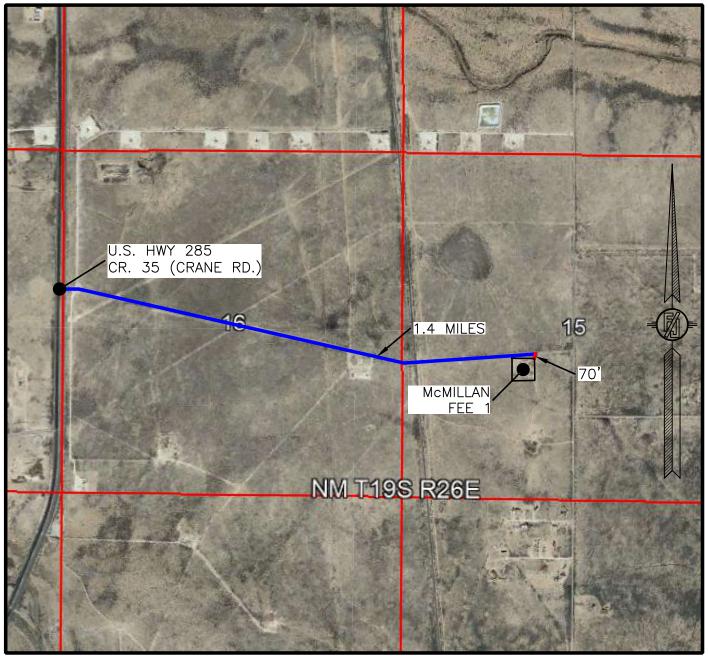
MARCH 24, 2022

SURVEY NO. 9370

SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO AERIAL PHOTO

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH DEC. 2021

MACK ENERGY CORPORATION

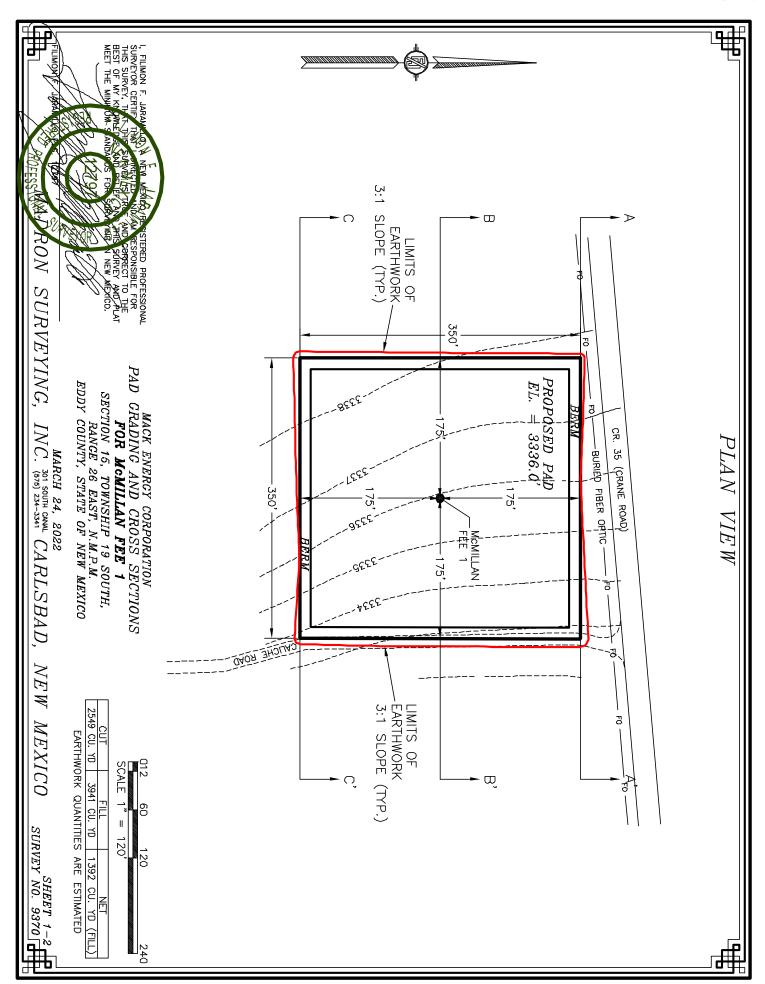

McMILLAN FEE 1

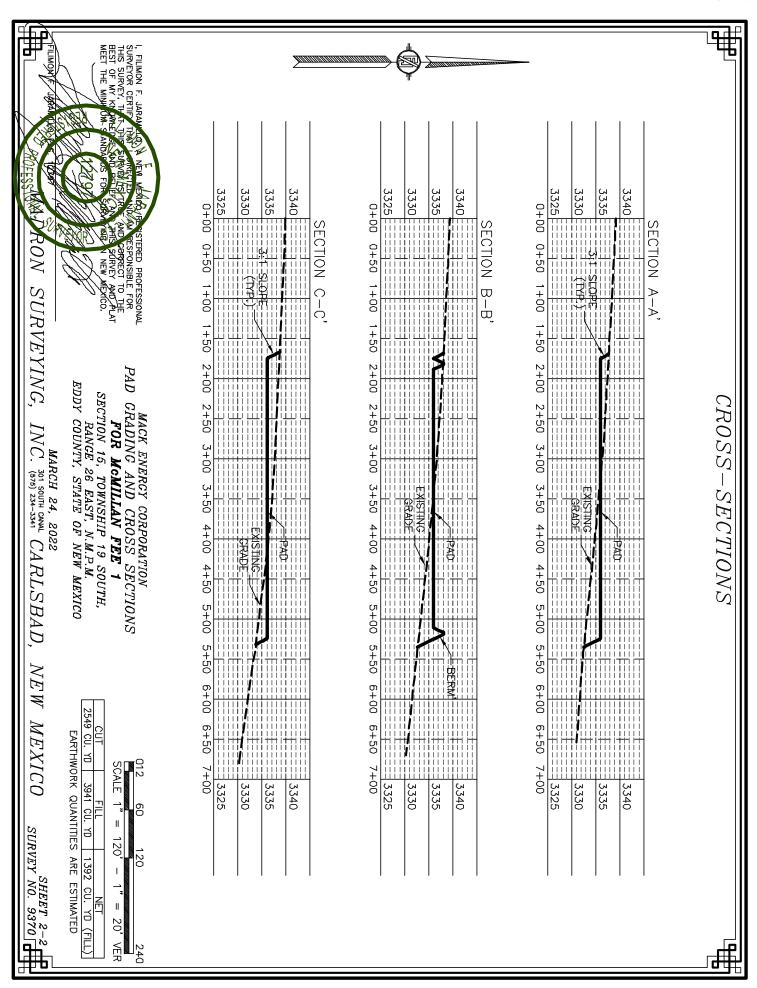
LOCATED 2010 FT. FROM THE SOUTH LINE AND 1871 FT. FROM THE WEST LINE OF SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

MARCH 24, 2022

SURVEY NO. 9370

SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO AERIAL ACCESS ROUTE MAP

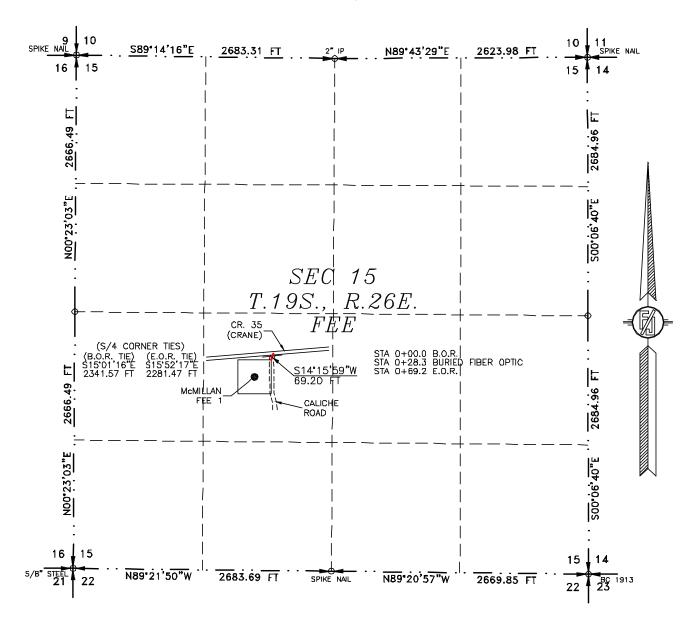

NOT TO SCALE AERIAL PHOTO: GOOGLE EARTH DEC. 2021


MACK ENERGY CORPORATION
McMILLAN FEE 1

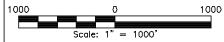
LOCATED 2010 FT. FROM THE SOUTH LINE AND 1871 FT. FROM THE WEST LINE OF SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

MARCH 24, 2022

SURVEY NO. 9370



ACCESS ROAD PLAT


EXISTING ROAD FOR ACCESS TO McMILLAN FEE 1

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO MARCH 24, 2022

SEE NEXT SHEET (2-2) FOR DESCRIPTION

GENERAL NOTES

1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 1-2

MADRON SURVEYING (INC. 301 SO (575)

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN NEW MEXICO.

CERTIFICATE IS EXECUTED AT CARLSBAD.

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341

SURVEY NO. 9370

NEW MEXICO

ACCESS ROAD PLAT

EXISTING ROAD FOR ACCESS TO McMILLAN FEE 1

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M.

EDDY COUNTY, STATE OF NEW MEXICO
MARCH 24, 2022

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING FEE LAND IN SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M., EDDY COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE NE/4 SW/4 OF SAID SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M., WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. BEARS S15'01'16"E, A DISTANCE OF 2341.57 FEET;

THENCE \$14'15'59"W A DISTANCE OF 69.20 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 15, TOWNSHIP 19 SOUTH, RANGE 26 EAST, N.M.P.M. BEARS \$15'52'17"E, A DISTANCE OF 2281.47 FEET;

SAID STRIP OF LAND BEING 69.20 FEET OR 4.19 RODS IN LENGTH, CONTAINING 0.048 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

NE/4 SW/4 69.20 L.F. 4.19 RODS 0.048 ACRES

SURVEYOR CERTIFICATE

GENERAL NOTES

- 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.
- 2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 2-2

MADRON SURVEYING, INC. 301 SO (575)

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE, OF NEW MEXICO.

IN WITH BY WIFE OF THE CERTIFICATE IS EXECUTED AT CARLSBAD.

NEW MIXES, HIEW 2051 (BA OF TABCH 2024)

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341

SURVEY NO. 9370

BAD. NEW MEXICO

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description <u>Effective May 25, 2021</u>

ergy Corpo	ration	OGRID: <u>01</u>	3837	Date	: <u>03</u> /	29 / 2022
l Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	□ 19.15.27.9.D((6)(b) NMAC [Other.	
:						
				wells proposed	to be dri	lled or proposed to
API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	P	Anticipated roduced Water BBL/D
	Sec. 15 T19S R26E	2010 FSL 1871 FWL	100	100	1,00	00
			al delivery point. Completion	Initia	Flow	First Production Date
	7/1/2022	8/1/2022	8/15/2022	8/15/20	22	8/15/2022
ices: ⋈ Attac of 19.15.27.8 t Practices:)	ch a complete descr NMAC. ☑ Attach a complet	ription of the act	ions Operator wil	l take to compl	y with t	he requirements of
	following in ngle well pad API oint Name: e: Provide the ted from a sir API ent: 🛮 Attack ices: 🔻 Attack of 19.15.27.8	following information for each ingle well pad or connected to a complete description of the pad or connected to a complete description of 19.15.27.8 NMAC.	API Spud Date TD Reached Date API Spud Date TD Reached Date 7/1/2022 8/1/2022 ent: X Attach a complete description of the act of 19.15.27.8 NMAC. t Practices: X Attach a complete description of the act of 19.15.27.8 NMAC.	Amendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6) following information for each new or recompleted well or set of a nigle well pad or connected to a central delivery point. API ULSTR Footages Anticipated Oil BBL/D Sec. 15 T19S R26E 2010 FSL 1871 FWL 100 Sint Name: e: Provide the following information for each new or recompleted well from a single well pad or connected to a central delivery point. API Spud Date TD Reached Completion Commencement API Spud Date TD Reached Completion Commencement 7/1/2022 8/1/2022 8/15/2022 ent: ☒ Attach a complete description of how Operator will size sep ices: ☒ Attach a complete description of the actions Operator will of 19.15.27.8 NMAC. t Practices: ☒ Attach a complete description of Operator's best in	API ULSTR Footages Anticipated Gas MCF/D Sec. 15 T19S R26E 2010 FSL 1871 FWL 100 100 Sint Name: [See: Provide the following information for each new or recompleted well or set of wells proposed ted from a single well pad or connected to a central delivery point. API Spud Date TD Reached Completion Initial Date Commencement Date Back 7/1/2022 8/1/2022 8/15/2022 8/15/2022 8/15/2022 Cent: ★ Attach a complete description of how Operator will size separation equipment of 19.15.27.8 NMAC. t Practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices: ★ Attach a complete description of Operator's best management practices.	API Sec. 15 T19S R26E 2010 FSL 1871 FWL 100 100 1,00 Sint Name: [Sec 19.15.2] E. Provide the following information for each new or recompleted well or set of wells proposed to be dringle well pad or connected to a central delivery point. API Sec 15 T19S R26E 2010 FSL 1871 FWL 100 100 1,00 Sint Name: [See 19.15.2] E. Provide the following information for each new or recompleted well or set of wells proposed from a single well pad or connected to a central delivery point. API Spud Date TD Reached Completion Initial Flow Back Date T/1/2022 8/1/2022 8/15/2022 8/15/2022 8/15/2022 Ent: X Attach a complete description of how Operator will size separation equipment to opices: X Attach a complete description of the actions Operator will take to comply with tof 19.15.27.8 NMAC. It Practices: X Attach a complete description of Operator's best management practices to

Section 2 **Enhanced Plan**

			E APRIL 1, 2022	
Beginning April 1, 2 reporting area must of			with its statewide natural ga	as capture requirement for the applicable
☐ Operator certifies capture requirement	-	-	tion because Operator is in o	compliance with its statewide natural gas
IX. Anticipated Nat	tural Gas Producti	on:		
We	ell	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF
X. Natural Gas Gat	thering System (NO	GGS):		
Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
production operation	is to the existing or	planned interconnect of t		ticipated pipeline route(s) connecting the em(s), and the maximum daily capacity of nected.
		thering system □ will □ the date of first product		ather 100% of the anticipated natural gas
				ed to the same segment, or portion, of the line pressure caused by the new well(s).
☐ Attach Operator's	s plan to manage pro	oduction in response to the	ne increased line pressure.	
Section 2 as provided	d in Paragraph (2) o		27.9 NMAC, and attaches a f	SA 1978 for the information provided in full description of the specific information

(i)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: ☐ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery; fuel cell production; and (h)

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

other alternative beneficial uses approved by the division.

- Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become (a) unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Printed Name: Delilah Flores Title: Regulatory Technician I E-mail Address:
Regulatory Technician I
E mail Address
delilah@mec.com
Date: 3/29/2022
Phone:
575-748-1288
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment:

Mack Energy Corporation(MEC) production facilities include separation equipment designed to efficiently separate gas from liquid phases to optimize gas capture based on projected and estimated volumes from the targeted pool of our completion project. MEC will utilize flowback separation equipment and production separation equipment designed and built to industry specifications after the completion to optimize gas capture and send gas to sales or flare based on analytical composition. MEC operates facilities that are typically multi-well facilities. Production separation equipment is upgraded prior to new wells being completed, if determined to be undersized or inadequate. This equipment is already on-site and tied into our sales gas lines prior to the new drill operations.

VII. Operational Practices:

- 1. Subsection (A) Venting and Flaring of Natural Gas. MEC understands the requirements of NMAC 19.15.27.8 which outlines that the venting and flaring of natural gas during drilling, completion or production operations that constitutes waste as defined in 19.15.2 are prohibited.
- 2. Subsection (B) Venting and Flaring during drilling operations. This gas capture plan isn't for a well being drilled.
- 3. Subsection (C) Venting and flaring during completion or recompletion. Flowlines will be routed for flowback fluids into a completion or storage tank and if feasible under well conditions, flare rather than vent and commence operation of a separator as soon as it is technically feasible for a separator to function.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
- 4. Subsection (D) Venting and flaring during production operations o At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.
 - Monitor manual liquid unloading for wells on-site or in close proximity (<30 minutes' drive time), take reasonable actions to achieve a stabilized rate and pressure at the earliest practical time, and take reasonable actions to minimize venting to the maximum extent practicable.
 - MEC will not vent or flare except during the approved activities listed in NMAC 19.15.27.8 (D)
 14.
- 5. Subsection (E) Performance standards \circ All tanks and separation equipment are designed for maximum throughput and pressure to minimize waste.
 - If a flare is utilized during production operations it will have a continuous pilot and is located more than 100 feet from any known well or storage tanks.
 - At any point in the well life (completion, production, inactive) an audio, visual and olfactory inspection be performed at prescribed intervals (weekly or monthly) pursuant to Subsection D of 19.15.27.8 NMAC, to confirm that all production equipment is operating properly and there are no leaks or releases.

- 6. Subsection (F) Measurement or estimation of vented and flared natural gas o Measurement equipment is installed to measure the volume of natural gas flared from process piping.
 - When measurement isn't practicable, estimation of vented and flared natural gas will be completed as noted in 19.15.27.8 (F) 5-6.

VIII. Best Management Practices:

- 1. MEC has adequate storage and takeaway capacity for wells it chooses to complete as the flowlines at the sites are already in place and tied into a gathering system.
- 2. MEC will flare rather than vent vessel blowdown gas when technically feasible during active and/or planned maintenance to equipment on-site.
- 3. MEC combusts natural gas that would otherwise be vented or flared, when technically feasible.
- 4. MEC will shut in wells in the event of a takeaway disruption, emergency situation, or other operations where venting or flaring may occur due to equipment failures.
- 5. MEC has a gas gathering system in place(CTB-887)a with multiple purchaser's to limit venting or flaring, due to purchaser shut downs.

Casing Design Well: McMillan Fee #1 (Re-Entry)

String Size & Function: 5 1/2 in Production x

Total Depth: 8300 ft **TVD:** 8300 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 9.3 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 9.3 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 9.3 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: 4013.88 psi Burst: 4013.88 psi, joint strength: 4013.88 psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 3000 psi

1st segment	8300 ft to		0 ft	Mal	ke up Torqu	e ft-lbs	Total ft =	8300
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
5.5 inches	20 #/ft	L-80	LT&C	4200	3150	5250		
Collapse Resistance	Internal Yield	Joint S	Strength	Body	y Yield	Drift	1	
8.830 psi	9.190 psi	41	6 .000 #	46	6 .000 #	4.653		

2nd segment	ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

3rd segment	0 ft to	0 ft	Make up Tor	que ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

4th segment	0 ft to	(0 ft	1	Make up Torq	ue ft-lbs	Total ft =
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	Strength	В	ody Yield	Drift	
psi	psi		,000 #		,000 #		

5th segment	0 ft to	0 f	t	N	/lake up Toro	que ft-lbs	Total ft =	_
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint Stre	ength	В	ody Yield	Drift		
psi	psi	,	000#		,000 #			

6th segment	0 ft to	0 ft	Make up Torq	ue ft-lbs
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

Select 1st segment bottom	8300	S.F.	Actual		Desire
		collapse	2.199866	>=	1.125
8300 ft to 0 ft		burst-b	2.783061	>=	1.25
5.5 0 L-80 LT&C		burst-t	3.063333		
Top of segment 1 (ft)	0	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	#DIV/0!	>=	1.125
		burst-b	0	>=	1.25
0 ft to 0 ft		burst-t	0		
0 0 0 0		jnt strngth	2.921762	>=	1.8

BHP @ TD for:

McMillan Fee #1 (re-Entry) In Place Casing Design Well: String Size & Function: 8 5/8 in intermediate x surface 1630 ft **Total Depth:** 1630 ft TVD: **Pressure Gradient for Calculations** (While drilling) Mud weight, collapse: 9.6 #/gal Safety Factor Collapse: 1.125 9.6_#/gal 1.25 Mud weight, burst: Safety Factor Burst: Safety Factor Joint Strength ______1.8 9.6 #/gal Mud weight for joint strength: Burst: 813.696 psi, joint strength: 813.696 psi

10 #/gal Partially evacuated hole? Pressure gradient remaining:

813.696 psi

500 psi Max. Shut in surface pressure:

collapse:

1st segment	1630 ft to		0 ft	Ма	ke up Torqu	e ft-lbs	Total ft =	1630
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
8.625 inches	24 #/ft	J-55	ST&C	2440	1830	3050		
Collapse Resistance	Internal Yield	Joint S	Strength	Bod	y Yield	Drift		
1,370 psi	2,950 psi	24	4 ,000 #	38	1 ,000 #	7.972		

2nd segment	ft to		ft	1	Make up Torq	ue ft-lbs	Total ft =	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint	Strength	E	Body Yield	Drift	1	
psi	psi		,000 #		,000 #			

3rd segment	0 ft to	0 ft		Make up Torque ft-lbs			
O.D.	Weight	Grade Thread	s opt.	min.	mx.		
inches	#/ft						
Collapse Resistance	Internal Yield	Joint Strength		Body Yield	Drift		
psi	psi	,000 #		,000 #			

4th segment	0 ft to	0 ft		ı	Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	ody Yield	Drift	
psi	psi		,000 #		,000 #		

5th segment	0 ft to	0 ft			Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	I
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	Е	Body Yield	Drift	1
psi	psi		,000#		,000 #		

6th segment	0 ft to	0 ft]	Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	Body Yield	Drift	
psi	psi		,000 #		,000 #		

Select 1st segment bottom	1630	S.F.	Actual		Desire
		collapse	1.683675	>=	1.125
1630 ft to 0 ft		burst-b	5.525338	>=	1.25
8.625 0 J-55 ST&C		burst-t	5.9		
Top of segment 1 (ft)	0	S.F.	Actual		Desire
Select 2nd segment from bottom		collapse	#DIV/0!	>=	1.125
		burst-b	0	>=	1.25
0 ft to 0 ft		burst-t	0		
0 0 0 0		jnt strngth	7.311069	>=	1.8

Casing Design Well: McMillan Fee #1 (Re-Entry) In Place

String Size & Function: 13 3/8 in surface x intermediate

Total Depth: 355 ft

Pressure Gradient for Calculations (While drilling)

Mud weight, collapse: 9.6 #/gal Safety Factor Collapse: 1.125

Mud weight, <u>burst</u>: 9.6 #/gal Safety Factor Burst: 1.25

Mud weight for joint strength: 9.6 #/gal Safety Factor Joint Strength 1.8

BHP @ TD for: collapse: <u>177.216</u> psi Burst: <u>177.216</u> psi, joint strength: <u>177.216</u> psi

Partially evacuated hole? Pressure gradient remaining: 10 #/gal

Max. Shut in surface pressure: 500 psi

1st segment	355 ft to	() ft	Make	up Torque	ft-lbs	Total ft =	355
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
13.375 inches	54.5 #/ft	K-55	ST&C	6,890	5,170	8,610		
Collapse Resistance	Internal Yield	Joint S	Strength	Body `	Yield	Drift		
1,400	2,730 psi	689	9 ,000 #	853	,000 #	12.459	***************************************	

2nd segment	0 ft to		0 ft		Make up Torq	ue ft-lbs	Total ft =	
O.D.	Weight	Grade	Threads	opt.	min.	mx.		
inches	#/ft							
Collapse Resistance	Internal Yield	Joint	Strength	E	Body Yield	Drift	1	
psi	psi		,000 #		,000 #			

3rd segment	0 ft to	0 ft	Make up Torqı	Make up Torque ft-lbs			
O.D.	Weight	Grade Threads	opt. min.	mx.			
inches	#/ft						
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift			
psi	psi	,000 #	,000 #				

4th segment	0 ft to	0 ft		ı	Make up Torque ft-lbs		
O.D.	Weight	Grade	Threads	opt.	min.	mx.	
inches	#/ft						
Collapse Resistance	Internal Yield	Joint S	trength	В	ody Yield	Drift	
psi	psi		,000#		,000 #		

5th segment	0 ft to	0 ft		Make up Torque ft-lbs		Total ft =
O.D.	Weight	Grade Th	reads opt.	min.	mx.	
inches	#/ft					
Collapse Resistance	Internal Yield	Joint Streng	jth	Body Yield	Drift	1
psi	psi	,00,	0#	,000 #		

6th segment	0 ft to 0 ft		Make up Torque ft-lbs	
O.D.	Weight	Grade Threads	opt. min.	mx.
inches	#/ft			
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift
psi	psi	,000 #	,000 #	

Select 1st s	egment bott	tom		355	S.F.	Actual		Desire
					collapse	7.899964	>=	1.125
355 ft	to	0 ft			burst-b	5.38054	>=	1.25
13.375	0 K-55	ST&C			burst-t	5.46		
	Тор	of segment '	1 (ft)	0	S.F.	Actual		Desire
Select 2nd	segment fro	m bottom			collapse	#DIV/0!	>=	1.125
					burst-b	0	>=	1.25
0 ft	to	0 ft			burst-t	0		
0	0	0	0		jnt strngth	41.74306	>=	1.8

MEC re-entry plans

Target Formations: Wolfcamp (7015') & Upper Penn (7846')

PTD: 8300'

San Andres 1315'

Yeso 2928'

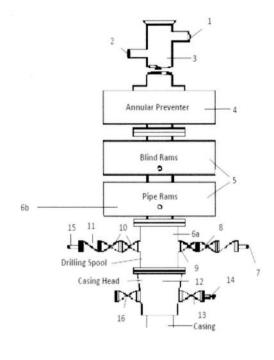
Bone Spring 4630'

Bone Spring Sd 6571'

Wolfcamp 7015'

Cisco 7846'

Canyon 8260'


Mack Energy Corporation

Minimum Blowout Preventer Requirements

5000 psi Working Pressure 13 5/8 inch- 5 MWP 11 Inch - 5 MWP

Stack Requirements

NO.	Items Min.			
140.	items	I.D.	Min. Nominal	
1	Flowline		2"	
2	Fill up line		2"	
3	Drilling nipple			
4	Annular preventer			
5	Two single or one dual hydraulically operated rams			
6a	Drilling spool with 2" min. kill line and 3" min choke line outlets		2" Choke	
6b	2" min. kill line and 3" min. choke line outlets in ram. (Alternate to 6a above)			
7	Valve Gate Plug	3 1/8		
8	Gate valve-power operated	3 1/8		
9	Line to choke manifold		3"	
10	Valve Gate Plug	2 1/16		
11	Check valve	2 1/16		
12	Casing head			
13	Valve Gate Plug	1 13/16		
14	Pressure gauge with needle valve			
15	Kill line to rig mud pump manifold		2"	

OPTIONAL

	OI IIO.		
16	Flanged Valve	1 13/16	

CONTRACTOR'S OPTION TO

CONTRACTOR'S OPTION TO FURNISH:

- All equipment and connections above bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum.
- Automatic accumulator (80 gallons, minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure.
- BOP controls, to be located near drillers' position.
- Kelly equipped with Kelly cock.
- Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used.
- Kelly saver-sub equipped with rubber casing protector at all times.
- Plug type blowout preventer tester.
- Extra set pipe rams to fit drill pipe in use on location at all times.
- Type RX ring gaskets in place of Type R.

MEC TO FURNISH:

- Bradenhead or casing head and side valves.
- 2. Wear bushing. If required.

GENERAL NOTES:

- Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager.
- All connections, valves, fittings, piping, etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service.
- Controls to be of standard design and each marked, showing opening and closing position
- Chokes will be positioned so as not to hamper or delay changing of choke beans.

- Replaceable parts for adjustable choke, or bean sizes, retainers, and choke wrenches to be conveniently located for immediate use.
- All valves to be equipped with hand-wheels or handles ready for immediate use.
- Choke lines must be suitably anchored.
- . Handwheels and extensions to be connected and ready for use
- Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency.
- All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted.
- Casinghead connections shall not be used except in case of emergency.

Released to Imaging: 4/4/2022 3:17:57 PM

 Does not use kill line for routine fill up operations.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 94420

COMMENTS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960 Artesia, NM 882110960	Action Number: 94420
	Action Type: [C-101] Drilling Non-Federal/Indian (APD)

COMMENTS

Created By	Comment	Comment Date
kpickfore	This is a re-entry of a P&Ad well. Name change and operator to be changed once re-entry is commenced.	4/1/2022

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 94420

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	94420
	Action Type:
	[C-101] Drilling Non-Federal/Indian (APD)

CONDITIONS

Created By		Condition Date
kpickford	Notify NMOCD 24 Hours Prior to beginning operations	4/1/2022