District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-144 Revised June 6, 2013 For temporary pits, below-grade tanks, and multi-well fluid management pits, submit to the appropriate NMOCD District Office. For permanent pits submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office. # Pit, Below-Grade Tank, or Proposed Alternative Method Permit or Closure Plan Application | Proposed Alternative Method Fermit of Closure Fran Application | |--| | Type of action: Below grade tank registration Permit of a pit or proposed alternative method BGT1 Modification Closure of a pit, below-grade tank, or proposed alternative method Modification to an existing permit/or registration Closure plan only submitted for an existing permitted or non-permitted pit, below-grade tank, or proposed alternative method | | Instructions: Please submit one application (Form C-144) per individual pit, below-grade tank or alternative request | | Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances. | | Operator: SIMCOE LLC Address: 1199 Main Ave., Suite 101, Durango, CO 81301 | | Address: 1199 Main Ave., Suite 101, Durango, CO 81301 | | Facility or well name: STOREY LS #001A & STOREY LS #008 | | API Number: 30-045-29248 & 30-045-21077 OCD Permit Number: | | U/L or Qtr/Qtr E Section 27 Township 28N Range 08W County: San Juan County | | Center of Proposed Design: Latitude 36.63465° Longitude -107.67432° NAD: □1927 ▼ 1983 | | Surface Owner: ▼ Federal ☐ State ☐ Private ☐ Tribal Trust or Indian Allotment | | ☐ Pit: Subsection F, G or J of 19.15.17.11 NMAC Temporary: ☐ Drilling ☐ Workover ☐ Permanent ☐ Emergency ☐ Cavitation ☐ P&A ☐ Multi-Well Fluid Management Low Chloride Drilling Fluid ☐ yes ☐ no ☐ Lined ☐ Unlined Liner type: Thickness | | 3. Below-grade tank: Subsection I of 19.15.17.11 NMAC TANK ID: A | | Volume: 95 bbl Type of fluid: Produced Water | | Tank Construction material: Steel | | Secondary containment with leak detection Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off | | ☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other ☐ Double Walled ☐ Double Bottom | | Liner type: Thicknessmil | | 4 | | Alternative Method: | | Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. | | s. Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks) Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church) Four foot height, four strands of barbed wire evenly spaced between one and four feet Alternate. Please specify | | Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks) Screen Netting Other | | |--|------------------| | ☐ Monthly inspections (If netting or screening is not physically feasible) | | | | | | Signs: Subsection C of 19.15.17.11 NMAC 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers Signed in compliance with 19.15.16.8 NMAC | | | | | | Variances and Exceptions: Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance. Please check a box if one or more of the following is requested, if not leave blank: Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval. | | | Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of accept material are provided below. Siting criteria does not apply to drying pads or above-grade tanks. | otable source | | General siting | | | Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank. - ■ NM Office of the State Engineer - iWATERS database search; □ USGS; □ Data obtained from nearby wells ■ NMOSE SJ 00163-S Well Log Data Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit. | Yes No NA Yes No | | NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells | □ NA | | Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks) - Written confirmation or verification from the municipality; Written approval obtained from the municipality | ☐ Yes ☐ No | | Within the area overlying a subsurface mine. (Does not apply to below grade tanks) - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division | ☐ Yes ☐ No | | Within an unstable area. (Does not apply to below grade tanks) Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map | ☐ Yes ☐ No | | Within a 100-year floodplain. (Does not apply to below grade tanks) - FEMA map | ☐ Yes ☐ No | | Below Grade Tanks | | | Within 100 feet of a continuously flowing watercourse, significant watercourse, lake bed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes 🗷 No | | Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site | ☐ Yes 🗷 No | | Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter) | | | Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.) - Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application. | ☐ Yes ☐ No | | - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image | | | Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Within 100 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | |---|--------------------------| | Temporary Pit Non-low chloride drilling fluid | | | Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site;
Aerial photo; Satellite image | ☐ Yes ☐ No | | Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application; - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Permanent Pit or Multi-Well Fluid Management Pit | | | Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). | | | - Topographic map; Visual inspection (certification) of the proposed site | Yes No | | Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image | ☐ Yes ☐ No | | Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. | | | - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Within 500 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | ☐ Yes ☐ No | | Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the do attached. | 9 NMAC
1.15.17.9 NMAC | | 11. Multi-Well Fluid Management Pit Checklist: Subsection B of 19.15.17.9 NMAC | | | Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the do attached. Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Departing and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC A List of wells with approved application for permit to drill associated with the pit. Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 and 19.15.17.13 NMAC Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Previously Approved Design (attach copy of design) API Number: or Permit Number: | | | TELEVIOUSIY ADDIOVED DESIGNALIACH CODY OF DESIGNET ALT INDINOEF. | | | Permissed Dispension Page | 12. | | |--|---|---------------------| | ## Bydringsologic Report - hased upon the requirements of Paragraph (1) of Subsection R of 19.15.17.9 NMAC | Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC | documents are | | Sinis Critics Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC | | | | Critifical Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Proceedia and Structural longerity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Call Dike Proceedia and Structural longerity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Call Dike Proceedia and Structural Dike Dike Proceedia and Structural Dike Dike Dike Dike Dike Dike Dike Dike | Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC | | | Disk Protection and Structural Integrity Design – based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design – based upon the uppropriate requirements of 19.15.17.11 NMAC Disk Protection Design – based upon the appropriate requirements of 19.15.17.11 NMAC Disk Protection Plan Protec | | | | Lines Precifications and Computability Assersance Construction and Installation Plan perportaine requirements of 19.15.17.11 NMAC Quality Control/Duality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Precipional and Overnopping Prevention Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Nationace of Intizondos Oxiosis, including 18.5, Prevention Plan Precipional Maintenance Plan Proposed Closures Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Proposed Closures Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Proposed Closures Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC Proposed Closures Plan - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC Proposed Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC Proposed Closure Plan - Based Vision Pack Permanent Pic Proposed Closure Plan - Based Vision Pack Permanent Pic Proposed Closure Method Waste Excavation and Removal Closure Plan - Based Vision Pack Permanent Pic Proposed Closure Method Waste Excavation and Removal Closure Plan Closure Velhold Proposed Closure Plan Proposed Closure Plan Proposed P | | | | Quality Control/Quality Assurance Construction and Installation Plan | Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC | | | Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Probacod and Overtoping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including Hs. Prevention Plan Proposed Closure Response Plan Proposed Closure | | | | State | | | | Promoted Chaurge: 19.15.17.13 NMAC 19.15.17.15 19.15.15.17.15 NMAC Promoted Chaurge: 19.15.17.15 Promot | Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC | | | Golf Field Waste Stream Characterization Monitoring and Inspection Plan Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC | | | | Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC | | | | Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.19 NMAC and 19.15.17.13 NMAC | | | | Proposed Closure: 19.15.1/3 NMAC Instructions: Please complete the applicable boxes, Baxes 14 through 18, in regards to the proposed closure plan. | | | | Proposed Closure: 19.13.7.13 NMAC Tsyre: or Dilling workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well Fluid Management Pit Market Excavation and Removal Waste Recoval (Closed-loop systems only) on-site Closure Method: Waste Excavation and Removal on-site Tench Burial On-site Trench | Closure Figure Subset upon the appropriate requirements of Subsection S of 17.75.1777 Turne and 17.75.1777 Figure | | | Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well Fluid Management Pit Alternative Proposed Closure Method: Waste Excavation and Removal (Closed-loop systems only) On-site Closure Method (Ohly for temporary pits and closed-loop systems) On-site Closure Method (Ohly for temporary pits and closed-loop systems) On-site Closure Method On-site Trench Burial Protocols and Procedures - based upon the appropriate
requirements of Subsection Confirmation Sampling Place Burial On-site Trench Burial Protocols and Procedures - based upon the appropriate requirements of Subsection Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection I of 19.15.17.13 NMAC Onlinear Statistic Place | | | | Alternative Proposed Closure Method: Waste Excavation and Removal Closed-loop systems only | Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan. | | | Proposed Closure Method: | | luid Management Pit | | On-site Closure Method (Only for temporary pits and closed-loop systems) New Yes No New Yes No New Yes No No Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells New Yes No Not Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Not Office of the State Engineer - iWATERS database; visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality; Written approval temporal branching of the proposed site Ves No Within 300 feet of a wetland. Ves No Written confirmation or verification on mer. Topographic map; Visual inspection (certification) of the proposed site Ves No Within 300 feet of a wetland. Us Fish and Wildlife Wetland Identification map; Visual inspection (certification) of the proposed site Ves No Within 300 feet of a wetland. Us Fish and Wildlife Wetland Identification map; Visual inspection (certification) of the proposed site Ves No Within 300 feet of a wetland. Us Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ves No Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Ve | Proposed Closure Method: 🗷 Waste Excavation and Removal | | | Alternative Closure Method On-site Trench Burial On-site Trench Burial | | | | Alternative Closure Method | | | | Closure plan. Please indicate, by a check mark in the box, that the documents are attached. Potocols and Procedures - based upon the appropriate requirements of 91.51.71.31 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. | | | | Closure plan. Please indicate, by a check mark in the box, that the documents are attached. Potocols and Procedures - based upon the appropriate requirements of 91.51.71.31 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. | 14. Wasta Evacuation and Damayal Clasura Plan Charklist: (10.15.17.13 NIMAC) Instructions: Each of the following items must be | attached to the | | Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. | | unacnea to the | | Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells NA Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells NA Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells NA Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Yes No Yes No No Ye | Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC | | | Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes No NA Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Yes No NA Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Yes No Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the | | | | Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Yes | | | | Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each stimg criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Yes No Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | | | | Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Yes No Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | Site Reciamation Plan - based upon the appropriate requirements of Subsection H of 19.13.17.13 NMAC | | | Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to 19.15.17.10 NMAC for guidance. Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Yes \ No Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | | | | Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | | eca matarial ara | | Ground water is less than 25 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells NA Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site NA Wishin 300 feet of a wetland. Second water is between 25-50 feet below the bottom of the buried waste. NA Pes No No Yes No Yes No | | | | - NM
Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark) Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | 19.15.17.10 NMAC for guidance. | | | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark) Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site | Ground water is less than 25 feet below the bottom of the buried waste | □ Vag□ Na | | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No Yes No No | | | | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No Yes No No | Ground water is between 25-50 feet below the bottom of the buried waste | | | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site NA NA NA NA Yes No | | | | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site NA Yes No | Ground water is more than 100 feet below the bottom of the buried waste. | ☐ Yes ☐ No | | lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells | | | - Topographic map; Visual inspection (certification) of the proposed site Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality □ Yes □ No Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site □ Yes □ No | | ☐ Yes ☐ No | | Within 300 feet from a
permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No Yes No | | | | - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes □ No Yes □ No Yes □ No | | | | at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | | ∐ Yes ∐ No | | at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence | ☐ Yes ☐ No | | Written confirmation or verification from the municipality; Written approval obtained from the municipality Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | at the time of initial application. | | | Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | | | | US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site Yes No | | Yes No | | | | □ Vec □ Mo | | | Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance | | | adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality | ☐ Yes ☐ No | |--|---------------------------------------| | Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division | ☐ Yes ☐ No | | Within an unstable area Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geologica | al | | Society; Topographic map | ☐ Yes ☐ No | | Within a 100-year floodplain FEMA map | ☐ Yes ☐ No | | On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the close by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection E of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19. Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standard Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC | .15.17.11 NMAC
of 19.15.17.11 NMAC | | 17. Operator Application Certification: | | | I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge a | nd belief. | | Name (Print): Steve Moskal Title: Environmental Coordinates | ator | | Signature: | | | e-mail address: smoskal@ikavenergy.com Telephone: (505) 330-9179 | | | 18. Modification of BGT OCD Approval: Modification of BGT Permit Application (including closure plan) Closure Plan (only) OCD Conditions (see attachment) | nt) | | OCD Representative Signature: <u>Jaclyn Burdine</u> Approval Date: <u>0</u> | 7/20/2022 | | Title: Environmental Specialist-A OCD Permit Number: BGT1 | | | Closure Report (required within 60 days of closure completion): 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and subnited to the division within 60 days of the completion of the closure activities. Please section of the form until an approved closure plan has been obtained and the closure activities have been completed. Closure Completion Date: | | | Closure Method: ☑ Waste Excavation and Removal ☐ On-Site Closure Method ☐ Alternative Closure Method ☐ Waste Removal (Cloud If different from approved plan, please explain. | osed-loop systems only) | | 21. Closure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Planark in the box, that the documents are attached. Proof of Closure Notice (surface owner and division) Proof of Deed Notice (required for on-site closure for private land only) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicable) Waste Material Sampling Analytical Results (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude NAD: | ease indicate, by a check | | 22. Operator Closure Certification: | | |---|--| | I hereby certify that the information and attachments s | submitted with this closure report is true, accurate and complete to the best of my knowledge and applicable closure requirements and conditions specified in the approved closure plan. | | Name (Print): | Title: | | Signature: | Date: | | e-mail address: | Telephone: | ## SITING AND HYDRO-GEOLOGICAL REPORT FOR STOREY LS 001A - TANK ID: 3004529248A #### Siting Criteria 19.15.17.10 NMAC Depth to groundwater at the site is estimated to be greater than 100 feet. This estimation is based on data from Stone and others (1983), and depth to groundwater data obtained from water wells permitted by the New Mexico State Engineer's Office (OSE, Figure 1). Local topography and proximity to adjacent water features are also considered. A topographic map of the site is provided as Figure 2 and demonstrates that the below grade tank (BGT) is not within 300 feet of any continuously flowing watercourse or within 200 feet of any other significant watercourse, lakebed, sinkhole or playa lake as measured from the ordinary high water mark. Figure 3 demonstrates that the BGT is not within 300 feet of a permanent residence, school, hospital, institution or church. Figure 4 demonstrates, based on a search of the OSE database and USGS topographic maps,
that there are no freshwater wells or springs within 1000 feet of the BGT. Figure 5 demonstrates that the BGT is not within a municipal boundary or a defined municipal freshwater well field. Figure 6 demonstrates that the BGT is not within 500 feet of a wetland. Figure 7 demonstrates that the BGT is not in an area overlying a subsurface mine. The BGT is not located in an unstable area. Figure 8 demonstrates that the BGT is not within the mapped FEMA 100-year floodplain. #### Local Geology and Hydrology This site is located on a mesa between Largo and Carrizo Canyons, but hundreds of feet higher in elevation than the surface of Largo Wash. Regional topography of Largo Canyon is composed of mesas dissected by deep, narrow canyons and arroyos. The more resistant cliff-forming sandstones of the San Jose Formation cap the interbedded siltstones, shales and sandstones of the Nacimiento Formation. Accumulations of talus and eroded sands at the base of canyon walls form steep to gentle slopes that transition into flat-bottomed arroyos within the canyons. Deposits of Quaternary alluvial and eolian sands occur prominently near the surface of Largo Canyon, especially near streams and washes. #### Regional Geology and Hydrology The San Juan Basin is situated in the Navajo section of the Colorado Plateau and is characterized by broad open valleys, mesas, buttes and hogbacks. Away from major valleys and canyons topographic relief is generally low. Native vegetation is sparse and shrubby. Drainage is mainly by the San Juan River, the only permanent stream in the Navajo Section of the Colorado Plateau. The San Juan River is a tributary of the Colorado River. Major tributaries include the Animas, Chaco and La Plata Rivers. Flow of the San Juan River across the basin is regulated by the Navajo Dam, located about 30 miles northeast of Farmington, New Mexico. The climate is arid to semiarid with an average annual precipitation of 8 to 10 inches. Soils within the basin consist of weathered parent rock derived from predominantly physical means mostly from eolian depositional system with fluvial having a lesser impact. Cretaceous and Tertiary sandstones, as well as Quaternary Alluvial deposits, serve as the primary aquifers in the San Juan Basin (Stone et al., 1983). The San Jose Formation of Eocene age occurs in both New Mexico and Colorado, and its outcrop forms the land surface over much of the eastern half of the central basin. It overlies the Nacimiento Formation in the area generally south of the Colorado-New Mexico border and overlies the Animas Formation in the general area north of the State Line. The San Jose Formation was deposited in various fluvial-type environments. In general, the unit consists of an interbedded sequence of sandstone, siltstone, and shale. Thickness of the San Jose Formation increases from west to east. Groundwater is associated with alluvial and fluvial sandstone aquifers. The occurrence of groundwater is mainly controlled by distribution of sandstone in the formation. The reported or measured discharge from numerous water wells completed in the formation range from 0.15 to 61 gallons per minute (gpm) and with a median of 5 gpm. Most of the wells provide water for livestock and domestic purposes. The formation is suitable for recharge from precipitation due to overlying soils being sandy, highly permeable and absorbent. Low annual precipitation, relatively high transpiration and evaporation rates and deep dissection of the formation by the San Juan River and its main tributaries all tend to reduce the effective recharge to the formation. Aquifers within the coarser and continuous sandstone bodies of the Nacimiento Formation of Paleocene age are between 0 and 1000 feet deep in the majority of the basin as well (Stone et al., 1983). #### References Circular 154—Guidebook to coal geology of northwest New Mexico By E. C. Beaumont, J. W. Shomaker, W. J. Stone, and others, 1976 Stone, et al., 1983, Hydrogeology and Water Resources of the San Juan Basin, New Mexico, Socorro, New Mexico Bureau of Mines and Mineral Resources Hydrologic Report 6, 70 p ### **GROUNDWATER LESS THAN 50 FT.** **WELL NAME: STOREY LS 001A** API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 **FIGURE** 1 ### New Mexico Office of the State Engineer ## **Point of Diversion Summary** (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) Well Tag **POD Number** Q64 Q16 Q4 Sec Tws Rng X SJ 00163 S 28N 08W 257354 4060237* **Driller License:** 727 **Driller Company:** AZTEC WELL SERVICING CO. INC. **Driller Name:** **Drill Start Date:** 09/04/1978 **Drill Finish Date:** 09/06/1978 Plug Date: Artesian Log File Date: 09/13/1978 9.63 **PCW Rcv Date:** Depth Well: Source: **Estimated Yield:** **Pump Type: Casing Size:** **Pipe Discharge Size:** 1450 feet Depth Water: 20 GPM 800 feet Water Bearing Stratifications: Top Bottom Description 0 1450 Sandstone/Gravel/Conglomerate The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data. 1/19/21 2:41 PM POINT OF DIVERSION SUMMARY ^{*}UTM location was derived from PLSS - see Help ## **PROXIMITY TO WATERCOURSES** **WELL NAME: STOREY LS 001A** API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 2 ### PROXIMITY TO PERMANENT STRUCTURE WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 3 bp ## PROXIMITY TO WATER WELLS WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 4 bp ## PROXIMITY TO MUNICIPAL BOUNDARY WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 5 ## PROXIMITY TO WETLANDS WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 6 ## PROXIMITY TO SUBSURFACE MINES WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M.NM23 FIGURE **7** ### PROXIMITY TO FLOODPLAIN WELL NAME: STOREY LS 001A API NUMBER: 3004529248 TANK ID: 3004529248A SECTION 27, TOWNSHIP 28.0N, RANGE 08W, P.M. NM23 FIGURE 8 #### SOUTHERN SAN JUAN BASIN (SSJB) #### **Figure Citation List** #### March 2010 #### Figure 1: Groundwater Less Than 50 ft. #### Layers: #### Water Wells: iWaters Database: NMOSE/ISC (Dec. 2009) New Mexico Office of the State Engineer (OSE) /ISC iWaters database. (Data updated: 12/2009. Data received: 03/09/2010). Data available from: http://www.ose.state.nm.us/waters.db_index.html. #### Cathodic Wells: Tierra Corrosion Control, Inc. (Aug. 2008) Tierra Corrosion Control, Inc. 1700 Schofield Ln. Farmington, NM 87401. Driller's Data Log. (Data collected: All data are associated with cathodic protection wells installed at BP facilities between 2008-2009. Data received: 05/06/2010). #### Hydrogeological Evaluation: Wright Water Engineers, Inc. (2008) Evaluation completed by Wright Water Engineers, Inc. Durango Office. Data created using digital statewide geology at 1:500,000 from USGS in combination with 10m Digital Elevation Model (DEM) from NRCS. (Data compiled: 2008.) Results: Spatial Polygons representing "Groundwater likely to be less than 50 ft." and "Groundwater suspected to be less than 50 ft.". #### Surficial Geology: USGS (1963/1987) Data digitized and rectified by Geospatial Consultants. (Data digitized: 03/23/2010). Original hard copy maps sourced from United States Geological Survey (USGS). Data available from: http://pubs.er.usgs.gov/. Geology, Structure and Uranium Deposits of the Shiprock Quadrangle, New Mexico and Arizonia. 1:250,000. I - 345. Compiled by Robert B. O'Sullivan and Helen M. Beikman. 1963. Geologic Map of the Aztec 1 x 2 Quadrangle, Northwestern New Mexico and Southern Colorado. 1:250,000. I - 1730. Compiled by Kim Manley, Glenn R. Scott, and Reinhard A. Wobus. 1987. #### **Aerial Imagery:** Conoco (Summer 2009) ConocoPhillips Company. (Flown: Summer 2009). 12 in. High Resolution Orthoimagery, Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. Figure Chanou Luc Page Lot 5 #### Figure 2: Proximity to Watercourses #### Layers: #### Perennial Streams: #### NHD, USGS (2010) National Hydrography Dataset (NHD). U.S. Geological Survey. (Data last updated: 02/19/2010. Data received: 03/09/2010). High-resolution: 1:24,000. Digital Representation of USGS 24k Topographic map series with field updates as required. Data available from: http://nhd.usgs.gov/. #### Intermittent Streams: #### NHD, USGS (2010) National Hydrography Dataset (NHD). U.S. Geological Survey. (Data last updated: 02/19/2010. Data received: 03/09/2010). High-resolution: 1:24,000. Digital Representation of USGS 24k Topographic map series with field updates as required. Data available from: http://nhd.usgs.gov/. #### Water Bodies: #### NHD, USGS (2010) National Hydrography Dataset (NHD). U.S. Geological Survey. (Data last updated: 02/19/2010. Data received: 03/09/2010). High-resolution: 1:24,000. Digital representation of USGS 24k Topographic map series with field updates as required. Data available from: http://nhd.usgs.gov/. #### **USGS Topographic Maps:** #### USGS (2007) USGS 24k Topographic map series. 1:24000. Maps are seamless, scanned images of USGS paper topographic maps. Data available from: http://store.usgs.gov. #### Figure 3: Proximity to Permanent Structure #### Layers: #### **Aerial Imagery:** #### Conoco (Summer 2009) ConocoPhillips Company. (Flown: Summer 2009). 12 in. High Resolution
Orthoimagery. Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. Figure Citation List: Page 2 of 5 #### Figure 4: Proximity to Water Wells #### Layers: #### Water Wells: iWaters Database: NMOSE/ISC (Dec. 2009) New Mexico Office of the State Engineer (OSE) /ISC iWaters database. (Data updated: 12/2009. Data received: 03/09/2010). Data available from: http://www.ose.state.nm.us/waters db index.html. #### Springs/Seeps: NHD, USGS (2010) National Hydrography Dataset (NHD). U.S. Geological Survey. (Data last updated: 02/19/2010. Data received: 03/09/2010). High-resolution: 1:24,000. Digital representation of USGS 24k Topographic map series with field updates as required. Data available from: http://nhd.usgs.gov/. #### Aerial Imagery: Conoco (Summer 2009) ConocoPhillips Company. (Flown: Summer 2009). 12 in. High Resolution Orthoimagery. Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. #### Figure 5: Proximity to Municipal Boundary #### Layers: #### **Municipal Boundary:** San Juan County, New Mexico (2010) Data provided by San Juan County GIS Division. (Data received: 03/25/2010). Shaded Relief: NED, USGS (1999) National Elevation Dataset (NED). U.S. Geological Survey, EROS Data Center. (Data created: 1999. Data downloaded: April, 2010). Resolution: 10 meter (1/3 arc-second). Data available from: http://ned.usgs.gov/. #### StreetMap North America: Tele Atlas North America, Inc., ESRI (2008) Data derived from Tele Atlas Dynamap/Transportation North America, version 5.2. (Data updated: annually. Data series issue: 2008). Figure Citation List: Page 3 of 5 #### Figure 6: Proximity to Wetlands #### Layers: #### Wetlands: NWI (2010) National Wetlands Inventory (NWI). U.S Fish and Wildlife Service. (Data last updated: 09/25/2009. Data received: 03/21/2010). Data available from: http://www.fws.gov/wetlands/. #### Aerial Imagery: Conoco (Summer 2009) ConocoPhillips Company. (Flown: Summer 2009). 12 in. High Resolution Orthoimagery. Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. #### Figure 7: Proximity to Subsurface Mine #### Layers: #### Subsurface Mine: NM Mining and Minerals Division (2010) New Mexico Mining and Minerals Division. (Data received: 03/12/2010). Contact: Susan Lucas Kamat, Geologist. Provided PLSS NM locations (Sections) for the two subsurface mines located in San Juan and Rio Arriba counties. #### Aerial Imagery: Conoco (Summer 2009) ConocoPhillips Company. (Flown: Summer 2009). 12 in. High Resolution Orthoimagery. Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. Figure Citation List: Page 4 of 5 #### Figure 8: Proximity to FEMA Floodplain #### Layers: #### **FEMA Floodplain:** #### FEMA (varying years) Data digitized and rectified by Wright Water Engineers, Inc. (Data digitized: August 2008), Digitized from hard copy Flood Insurance Rate Maps (FIRMs) (varying years) of San Juan County. #### Aerial Imagery: Conoco (Summer 2009) ConocoPhillips Company, (Flown: Summer 2009). 12 in. High Resolution Orthoimagery. Projected coordinate system name: NAD_1983_StatePlane_New_Mexico_West_FIPS_3003_Feet. Provided as tiled .tiff images and indexed using polygon index layer. Figure Citation List: Page 5 of 5 #### SIMCOE LLC #### SAN JUAN BASIN, NORTHWEST NEW MEXICO #### BELOW-GRADE TANK DESIGN AND CONSTRUCTION PLAN Pursuant to Rule 19.15.17.11 NMAC, SIMCOE LLC (SIMCOE) shall construct a below-grade tank (BGT) or modify an existing permitted BGT according to the following plan. Any deviations from this plan will be addressed on the New Mexico Oil Conservation Division's (NMOCD) form C-144 at the time of submittal. #### **Design and Construction Plan** - 1. SIMCOE will design and construct a BGT which will be constructed to contain liquids and prevent contamination of fresh water and protect public health and the environment. - 2. SIMCOE as the well operator shall install and maintain a well sign that adheres to 19.15.16.8 NMAC. The sign will be posted at the well site to address, at a minimum; - a. Well Number - b. Property name - c. Operators name - d. Location by footage, quarter-quarter section, township and range (or unit letter) - e. API number - f. Emergency contact information - 3. SIMCOE will fence or enclose its BGTs in a manner that prevents unauthorized access and shall maintain its fence in good repair. - 4. SIMCOE will fence or enclose a BGT located within 1,000 feet of a permanent residence, school, hospital, institution or church with, at a minimum a chain link security fence at least six (6) feet in height with at least two (2) strands of barbed wire at the top. SIMCOE will ensure that all gates associated with the fence are closed and locked when responsible personnel are not on-site. - 5. SIMCOE is requesting NMOCD's approval for an alternative fence design that provides, at a minimum, equivalent protection to the design specified in Paragraph 3 of Subsection D of 19.15.17.11 NMAC for BGTs beyond the stated distance in paragraph 4 of this document. SIMCOE's proposed design for its BGTs will utilize 48" steel mesh field-fence (hog wire) with a metal or steel top rail. Perimeter T-post will be installed roughly every 10 feet. - 6. SIMCOE will construct an expanded metal covering that completely covers the top of the BGT. The covering will be constructed such that it will prevent hazardous conditions to wildlife, including migratory birds - 7. SIMCOE shall construct the BGT of materials that are resistant to produced water, any contained liquids, and damage from sunlight. SIMCOE's BGTs will be constructed of fiberglass or carbon steel that meets the requirements of ASTM A36. - 8. SIMCOE's BGTs shall have a properly constructed earthen foundation consisting of a level base free of rocks, debris, sharp edges, or irregularities as to prevent punctures, cracks or indentations to the tank bottom as demonstrated on the design drawing. - 9. SIMCOE will construct and operate the BGT to prevent surface water run-on by using both earthen berms and leaving a portion of the BGT above the original grade as demonstrated on the design drawing. - 10. SIMCOE will construct and operate the BGT to prevent overflow and overfilling of the BGT. Overflow will be prevented by use of either a manual shut off valve or an electronic high fluid level detector that will automatically engage an electronic shut-off valve when a one (1) foot freeboard is reached. The high-level automatic alarm notifies well optimizers when liquid level has reached within a pre-set distance to the top of the BGT. The high-level alarm will trigger the automatic shutdown valve which will close in the well until the liquid level can be lowered. - 11. SIMCOE will construct and install a double-walled tank design per Subparagraph (b) of Paragraph (4) of Subsection I of19.15.17.11 NMAC with a two (2) inch diameter leak detection port. The floor supports located in the annular space of the tank bottom will be channeled to allow outward movement of liquid between the walls. Leak detection will be monitored per SIMCOE's Operating and Maintenance Plan. The walls of the BGT will be constructed of fiberglass or carbon steel that meets the ASTM A36 standard. SIMCOE's BGT design will ensure containment of tank contents and protect underlying groundwater. The production equipment line drain is manual or automated drain that allows water level in production equipment (generally the separator) to be maintained within the equipment's operating parameters. The environmental drain is a manually operated drain that is used to drain liquids off of equipment. The tank drain is a manually operated drain, typically in the closed position that is used to rid the condensate tank of any water accumulation. The vent drain is a manually operated drain off the discharge of production equipment (usually the separator) and is used to blowdown the wellsite. The swab drain line is a manually operated drain originating between the wellhead and separator and is used during well workovers when large amounts of liquid are removed from the well and sent straight to the BGT. - 12. SIMCOE owned and operated single walled BGTs constructed and installed prior to June 16, 2008 that has the side walls open for visual inspection and that does not meet all the requirements in Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC is not required to equip or retrofit the BGT to comply with Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC so long as it demonstrates integrity. If the existing BGT does not demonstrate integrity, SIMCOE shall promptly drain the BGT and remove it from service and comply with the closure requirements of 19.15.17.13 NMAC. - 13. SIMCOE owned and operated single walled BGTs constructed and installed prior to June 16, 2008 and where any portion of the tank sidewall is below the ground surface and not visible shall equip or retrofit the BGT to comply with Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC, or close it, by June 16, 2013. If the existing BGT does not demonstrate integrity, SIMCOE shall promptly drain the BGT, remove it from service and comply with the closure requirements of 19.15.17.13 NMAC. - 14. SIMCOE owned and operated double walled BGTs constructed and installed prior to June 16, 2008 and which does not meet all the requirements in Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC is not required to equip or retrofit the BGT to comply with Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC so long as it
demonstrates integrity. If the existing BGT does not demonstrate integrity, SIMCOE shall promptly drain the BGT, remove it from service and comply with the closure requirements of 19.15.17.13 NMAC. - 15. The general specifications for the design and construction of the BGT have been provided in the attached SIMCOE design and construction schematic. #### SIMCOE LLC SAN JUAN BASIN. NORTHWEST NEW MEXICO #### BELOW-GRADE TANK OPERATING AND MAINTENANCE PLAN Pursuant to Rule 19.15.17.12 NMAC, SIMCOE LLC (SIMCOE) shall maintain and operate a below-grade tank (BGT) by following the plan shown below. Deviations from this plan will be addressed with a submittal to the New Mexico Oil Conservation Division (NMOCD) using form C-144 at the time of the BGT registration or modification to an existing BGT registration. #### **Operating and Maintenance Plan** - 1. SIMCOE's BGTs will be operated to contain liquids and solids. SIMCOE will maintain the integrity of the BGT and secondary containment system as to prevent impacts to fresh water and to protect public health and the environment. SIMCOE will use automated high fluid level alarms and automated shut-off valves to ensure that liquids are contained within the vessel and that the vessel does not overflow. These alarms and shut-off valves will be consistent with those demonstrated in the design plan. - 2. SIMCOE will not knowingly discharge to or store any hazardous waste in a BGT. - 3. If a BGT develops a leak below the liquid surface, SIMCOE shall remove all liquid above the damage or leak within 48 hours of discovery, notify the appropriate division office pursuant to 19.15.29 NMAC and repair the damage or replace the BGT as applicable. - 4. SIMCOE will adhere to Subsection D of 19.15.17.12 NMAC. The requirements are as follows; - a. SIMCOE shall not allow a below-grade tank to overflow or allow surface water run-on to enter the BGT. - b. SIMCOE shall remove any measurable layer of oil from the fluid surface of a BGT. - c. SIMCOE shall inspect the BGT for leakage and damage at least monthly and will document the integrity of each tank at least annually and maintain record of the integrity for five years. - d. SIMCOE shall maintain adequate freeboard to prevent overtopping of the below-grade tank. - e. If SIMCOE discovers that the BGT tank does not demonstrate integrity or that the BGT develops any of the conditions identified in Paragraph (5) of Subsection A of 19.15.17.12 NMAC, SIMCOE shall repair the damage or close the existing BGT pursuant to the closure requirements of 19.15.17.13 NMAC. - f. If any of SIMCOE's BGTs are equipped or retrofitted to comply with Paragraphs (1) through (4) of Subsection I of 19.15.17.11 NMAC, then SIMCOE shall visually inspect the area beneath the BGT during the retrofit and document any areas that are wet, discolored or showing other evidence of a release on form C-141. SIMCOE will attempt to measure and report to the division the concentration of contaminants in the wet or discolored soil with respect to the standards set forth in Table I of 19.15.17.13 NMAC. If there is no wet or discolored soil or if the concentration of contaminants in the wet or discolored soil is less than the standard set forth in Table I of 19.15.17.13 NMAC, then SIMCOE shall proceed with the closure requirements of 19.15.17.13 NMAC prior to initiating the retrofit or replacement. # SIMCOE LLC (formerly BPX Energy Inc.) SAN JUAN BASIN, NORTHWEST NEW MEXICO #### BELOW-GRADE TANK CLOSURE PLAN This plan will address the method, procedures, and protocols for closure of below-grade tanks (BGTs) on SIMCOE LLC (SIMCOE) well sites pursuant to Subsection A of 19.15.17.13 NMAC. As stipulated in Paragraph (1) of Subsection C of 19.15.17.13 NMAC, SIMCOE will not commence closure without first obtaining approval of the closure plan submitted pursuant to Paragraph (3) of Subsection B of 19.15.17.9 NMAC. If deviations from this plan are necessary, SIMCOE will request preapproval from the Division District III office of any specific changes and will be included on form C-144. SIMCOE shall close its BGTs within 60 days of cessation of the operation as required by Paragraph (4) of Subsection G of 19.15.17.13 NMAC. #### **General Closure Plan** - 1. SIMCOE shall notify the surface owner by certified mail; return receipt requested that it plans to close a BGT. Notice given will be at least 72 hours in advanced, but not more than one week prior to any closure operation. The notice shall include the well name, API number, and legal description of the location. Evidence of mailing of the notice to the address of the surface owner shown in the county tax records demonstrates compliance with this requirement. - 2. SIMCOE shall notify the Division District III office verbally and in writing at least 72 hours, but not more than one week, prior to any closure operation. The notice shall include the Operator's name, and the location of the BGT to be closed by unit letter, section, township and range. If the BGT closure is associated with a particular well, then the notice shall also include the well's name, number and API number. - 3. Within 60 days of cessation of operations, SIMCOE shall remove liquids and sludge from the BGT prior to implementing a closure method and dispose of the liquids and sludge in a NMOCD approved facility. The facilities to be used are: - a. SIMCOE LLC Crouch Mesa Landfarm, Permit NM-02-003 (Solids) - b. JFJ Landfarm, Permit NM-01-010(B) (Solids and Sludge) - c. Basin Disposal, Permit NM-01-0005 (Liquids) - d. Envirotech Inc Soil Remediation Facility, Permit NM-01-0011 (Solids and Sludge) - e. SIMCOE LLC Operated E.E. Elliott SWD #1, API 30-045-27799 (Liquids) - f. SIMCOE LLC Operated 13 GCU SWD #1, API 30-045-28601 (Liquids) - g. SIMCOE LLC Operated GCU 259 SWD, API 30-045-20006 (Liquids) - h. SIMCOE LLC Operated GCU 306 SWD, API 30-045-24286 (Liquids) - i. SIMCOE LLC Operated GCU 307 SWD, API 30-045-24248 (Liquids) - j. SIMCOE LLC Operated GCU 328 SWD, API 30-045-24735 (Liquids) - k. SIMCOE LLC Operated Pritchard SWD #1, API 30-045-28351 (Liquids) - 4. SIMCOE shall remove the BGT and dispose of it in a NMOCD approved facility or recycle, reuse, or reclaim it in a manner that the Division District III office approves. Documentation as to the final disposition of the removed BGT will be provided in the final closure report. - 5. Within six months of cessation of operations, SIMCOE shall remove any on-site equipment associated with a BGT unless the equipment is required for some other purpose. - 6. SIMCOE shall test the soils beneath the BGT to determine whether a release has occurred. SIMCOE shall collect at a minimum: a five (5) point composite sample to include any obvious stained or wet soils, or other evidence of a release under the BGT. The composite sample shall be collected and analyzed as required for the constituents listed in Table I within Subparagraph (a) of Paragraph (3) of Subsection C of 19.15.17.13 NMAC (see Table 1 on following page). | Clo | | ble 1
Beneath Below-Grade Tanks | | |--|-------------|--|-----------------------| | Depth below bottom of pit to
groundwater less than 10,000 mg/l
TDS | Constituent | Method* | Limit** | | | Chloride | EPA 300.0 | 600 mg/kg | | <50 feet | ТРН | EPA SW-846
Method 418.1 | 100 mg/kg | | _ | BTEX | EPA SW-846 Method
8021B or 8260B | 50 mg/kg | | | Benzene | EPA SW-846 Method
8021B or 8015M | 10 mg/kg | | | Chloride | EPA 300.0 | 10,000 mg/kg | | | ТРН | EPA SW-846
Method 418.1 | 2,500 mg/kg | | 51 feet-100 feet | GRO+DRO | EPA SW-846
Method 8015M | 1,000 mg/kg | | | BTEX | EPA SW-846 Method
8021B or 8260B | 50 mg/kg | | | Benzene | EPA SW-846 Method
8021B or 8015M
EPA 300.0 | 10 mg/kg 20,000 mg/kg | | | Chloride | | 20,000 mg/kg | | | (TPH) | EPA SW-846
Method 418.1 | 2,500 mg/kg | | > 100 feet | GRO+DRO | EPA SW-846
Method 8015M | 1,000 mg/kg | | | BTEX | EPA SW-846 Method
8021B or 8260B | (50 mg/kg) | | | Benzene | EPA SW-846 Method
8021B or 8015M | 10 mg/kg | Notes: mg/Kg = milligram per kilogram, BTEX = benzene, toluene, ethylbenzene, and total xylenes, TPH = total petroleum hydrocarbons, TDS = total dissolved solids. - * Or other test methods approved by the division - ** Numerical limits or natural background level, whichever is greater - 7. If any contaminant concentration exceeds those standards set in Table I, SIMCOE will acknowledge NMOCD's position to require additional delineation upon review of the results. SIMCOE will not proceed with any further closure activities until approval is first granted by NMOCD. - 8. If the sampling demonstrates that all contaminant constituents do not exceed the concentrations specified in Table I, then SIMCOE shall backfill the excavation, with non-waste containing, uncontaminated, earthen material. - 9. SIMCOE shall reclaim the BGT location and all areas associated with the BGT including associated access roads to a safe and stable condition that blends with the surrounding undisturbed area. SIMCOE shall substantially restore the impacted surface area to the condition that existed prior to oil and gas operations by placement of the soil cover as provided in Paragraph (2) of Subsection H of 19.15.17.13 NMAC, re-contour the BGT location and associated areas to a contour that approximates the original contour and blends with the surrounding topography and re-vegetate according to Paragraph (5) of Subsection H of 19.15.17.13 NMAC. - 10. SIMCOE may propose an alternative to the re-vegetation or recontouring requirement if it can demonstrate to the NMOCD's District III office that the proposed alternative provides equal or greater prevention of erosion, and protection of fresh water, public health and the environment. SIMCOE will seek surface owner approval of the proposed alternative and provide written
documentation of the surface owner's approval to NMOCD for its approval. - 11. Areas reasonably needed for production operations or for subsequent drilling operations shall be compacted, covered, paved, or otherwise stabilized and maintained in such a way as to minimize dust and erosion to the extent practicable. - 12. The soil cover for closures after site contouring, where the BGT has been removed and if necessary remediated beneath the BGT to chloride concentrations less than 600 mg/kg as analyzed by EPA Method 300.0, shall consist of the background thickness of topsoil or one foot or suitable material, whichever is greater. - 13. The soil cover will be constructed to the site's existing grade and all practicable efforts will be made to prevent ponding of water and erosion of the cover material. - 14. All areas disturbed by the closure of the BGT, except areas reasonably needed for production operations or for subsequent drilling operations, shall be reclaimed as early and as nearly as practicable to their original condition or their final land use and shall be maintained to control dust and minimize erosion to the extent practicable. - 15. Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area then shall be reseeded in the first favorable growing season following closure of the BGT. - 16. Reclamation of all disturbed areas no longer in use shall be considered complete when all ground surface disturbing activities at the site have been completed, and a uniform vegetative cover has been established that reflects a life-form ratio of plus or minus fifty percent (50%) of pre-disturbance levels and a total percent plant cover of at least seventy percent (70%) of pre-disturbance levels, excluding noxious weeds. - 17. The re-vegetation and reclamation obligations imposed by other applicable federal or tribal agencies on lands managed by those agencies shall supersede these provisions and govern the obligations of SIMCOE subject to those provisions, provided that the other requirements provide equal or better protection of fresh water, human health and the environment. - 18. Pursuant to Subparagraph (e) of Paragraph (5) of Subsection H of 19.15.17.13 NMAC, SIMCOE shall notify the NMOCD when reclamation and re-vegetation has been successfully achieved. - 19. Within 60 days of closure completion, SIMCOE shall submit a closure report on NMOCD's form C-144, and will include the following; - a. necessary attachments to document all closure activities - b. sampling results - c. information required by 19.15.17 NMAC - d. details on back-filling, capping and covering, where applicable. - 20. SIMCOE shall certify that all information in the report and attachments is accurate, truthful, and compliant with all applicable closure requirements and conditions specified in the approved closure plan. District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** CONDITIONS Action 15006 #### **CONDITIONS** | Operator: | OGRID: | |---------------------------|----------------------------------| | SIMCOE LLC | 329736 | | 1199 Main Ave., Suite 101 | Action Number: | | Durango, CO 81301 | 15006 | | | Action Type: | | | [C-144] PIT Generic Plan (C-144) | #### CONDITIONS | Created By | | Condition
Date | |------------|------|-------------------| | jburdine | None | 7/20/2022 |