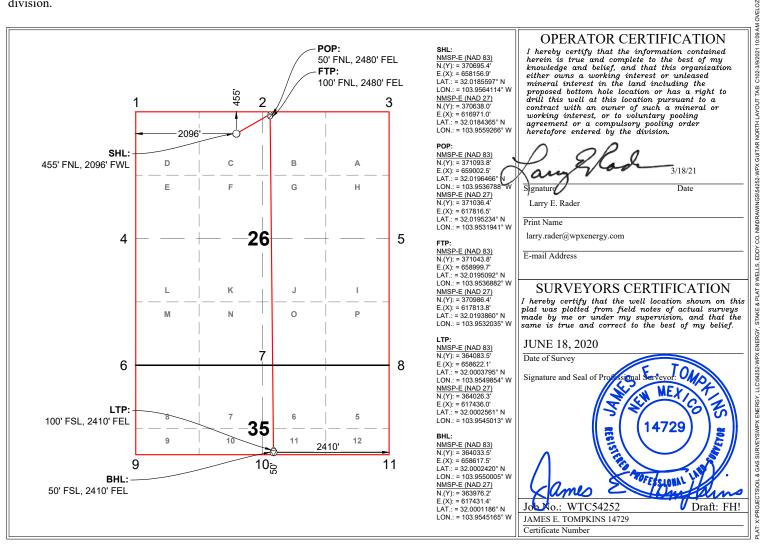
Form 3160-3 (June 2015) UNITED STATES		OMB No.	PPROVED 1004-0137 uary 31, 2018
DEPARTMENT OF THE INTI BUREAU OF LAND MANAG		5. Lease Serial No.	
APPLICATION FOR PERMIT TO DRIL	LL OR REENTER	6. If Indian, Allotee o	r Tribe Name
1a. Type of work: DRILL REEN	TER	7. If Unit or CA Agre	ement, Name and No.
1b. Type of Well: Oil Well Gas Well Other		8. Lease Name and W	Vall No.
1c. Type of Completion: Hydraulic Fracturing Single		s. Lease (valle and v	CH 140.
2. Name of Operator	,	9. API Well No. 30-015-49848	
3a. Address 3b.	Phone No. (include area code)	10. Field and Pool, or	Exploratory
4. Location of Well (Report location clearly and in accordance with	any State requirements.*)	11. Sec., T. R. M. or I	Blk. and Survey or Area
At surface			
At proposed prod. zone			
14. Distance in miles and direction from nearest town or post office*		12. County or Parish	13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	. No of acres in lease 17. Spacing	Unit dedicated to thi	s well
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	. Proposed Depth 20, BLM/B	IA Bond No. in file	
		23. Estimated duratio	n
2	4. Attachments		
The following, completed in accordance with the requirements of On (as applicable)	shore Oil and Gas Order No. 1, and the Hy	draulic Fracturing rul	e per 43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 	4. Bond to cover the operations Item 20 above).	unless covered by an	existing bond on file (se
3. A Surface Use Plan (if the location is on National Forest System La SUPO must be filed with the appropriate Forest Service Office).	ands, the 5. Operator certification. 6. Such other site specific inform BLM.	ation and/or plans as r	nay be requested by the
25. Signature	Name (Printed/Typed)]	Date
Title		-	
Approved by (Signature)	Name (Printed/Typed)]	Date
Title	Office	·	
Application approval does not warrant or certify that the applicant ho applicant to conduct operations thereon. Conditions of approval, if any, are attached.	lds legal or equitable title to those rights in	the subject lease wh	ch would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make of the United States any false, fictitious or fraudulent statements or re			y department or agency

*(Instructions on page 2)

DISTRICT I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-6720
DISTRICT II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
DISTRICT III
1000 Rio Brazos Rd., Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
DISTRICT IV
1220 S. St. Francis Dr., Santa Fc, NM 87505
Phone: (505) 476-3466 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-01	PI Number 5-49848		Pool Code 98220			PURPLE SAGE WOLFCAMP GAS POOL						
Property C 333183	ode		I	Property Name STEEL GUITAR 35-26-29 FED COM					mber H			
OGRID N 24628				WPX ENERGY PERMIAN, LLC					ion 2'			
	Surface Location											
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the North/South line		orth/South line Feet from the		County			
С	26	26-S	29-E		455	NORTH	2096	WEST	EDDY			
		•	Bott	om Hole I	Location If Diff	ferent From Surfac	ee		•			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County			
L11	35	26-S	29-E		50	SOUTH	2410	EAST	EDDY			
Dedicated Acres	Joint or	Infill	Consolidated Co	de Orde	r No.	•		•	•			
862.40												

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

WPX Energ	y Permian, LLC		OGRID:	246289	Date:	06 / 1	0 / 2022
Original 🗆	Amendment	due to □ 19.15.27.	9.D(6)(a) NMA	C □ 19.15.27.9.D((6)(b) NMAC □	Other.	
se describe:							
					wells proposed to	be dril	led or proposed to
ame	API	ULSTR	Footages				Anticipated oduced Water BBL/D
e recomplet				ral delivery point. Completion	Initial I	Flow	sed to be drilled or First Production Date
onal Pract through Fo	ices: 🛛 Attac of 19.15.27.8 I	h a complete descr NMAC.	ription of the ac	tions Operator wil	l take to comply	with th	ne requirements of
	Original se describe: Provide the ed from a sinuame Delivery Pour Schedule erecomplet ame on Equipment through Formal Praction of the pour section of the pour sect	Provide the following infed from a single well pad The ame API Delivery Point Name: D	Original Amendment due to 19.15.27. se describe:	Original	Original	Original Amendment due to 19.15.27.9.D(6)(a) NMAC 19.15.27.9.D(6)(b) NMAC see describe: Provide the following information for each new or recompleted well or set of wells proposed to a defrom a single well pad or connected to a central delivery point. API ULSTR Footages Anticipated Gas MCF/D Delivery Point Name: See attachment [See 1] Sed Schedule: Provide the following information for each new or recompleted well or set of wells e recompleted from a single well pad or connected to a central delivery point. API Spud Date TD Reached Date Completion Commencement Date Back I Don Equipment: Attach a complete description of how Operator will size separation equipment onal Practices: Attach a complete description of the actions Operator will take to comply through F of 19.15.27.8 NMAC.	Original

Section 2 – Enhanced Plan <u>EFFECTIVE APRIL 1, 2022</u>

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🗵 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have	capacity to gather 100%	of the anticipated natural ga
production volume from the well prior to the date of fire	st production.		

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the same segment is a connected to the same segment.	he
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s)).

A 441- 4	Onerator's nlar			·	4 - 41		1:
 - Апаси (Unerator's niat	i to manage	production	in response	to the	increased	line pressiire

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provides	'ided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific info	rmation
for which confidentiality is asserted and the basis for such assertion.	

NATURAL GAS MANAGEMENT PLAN Section 1 - Plan Description

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point

										Anticipated	
										Gas	Anticipated Produc
Well Name	Central Delivery Point Name:	API	ULS	TR		SHL FOOTAGES	S	FORMATION	Oil BBL/D	MCF/D	BBL/D
STEEL GUITAR 35-26-29 FED COM 413H	GUITAR NORTH PAD/Separator and storage tanks will be constructed on the west side of the 8.3108-acre drilling pad.			26-26S-29E	455 FNL	2096 FWL		PURPLE SAGE WOLFCAMP	(+/-) 7190 m	:fd/(+/-) 1563 b	opd/(+/-) 8597 bwpd
STEEL GUITAR 35-26-29 FED COM 412H	GUITAR NORTH PAD/Separator and storage tanks will be constructed on the west side of the 8.3108-acre drilling pad.			26-26S-29E	449 FNL	2039 FWL		PURPLE SAGE WOLFCAMP	(+/-) 7190 m	fd/(+/-) 1563 b	opd/(+/-) 8597 bwpd
STEEL GUITAR 35-26-29 FED COM 411H	GUITAR NORTH PAD/Separator and storage tanks will be constructed on the west side of the 8.3108-acre drilling pad.			26-26S-29E	442 FNL	1976 FWL		PURPLE SAGE WOLFCAMP	(+/-) 7190 m	fd/(+/-) 1563 b	opd/(+/-) 8597 bwpd
STEEL GUITAR 35-26-29 FED COM 423H	GUITAR NORTH PAD/Separator and storage tanks will be constructed on the west side of the 8.3108-acre drilling pad.			26-26S-29E	452 FNL	2066 FWL		PURPLE SAGE WOLFCAMP	(+/-) 7190 m	fd/(+/-) 1563 b	opd/(+/-) 8597 bwpd
STEEL GUITAR 35-26-29 FED COM 422H	GUITAR NORTH PAD/Separator and storage tanks will be constructed on the west side of the 8.3108-acre drilling pad.			26-26S-29E	445 FNL	2006 FWL		PURPLE SAGE WOLFCAMP	(+/-) 7190 m	:fd/(+/-) 1563 b	opd/(+/-) 8597 bwpd

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

				Completion		First
			TD Reached	Commencem	Initial Flow	Production
Well Name	API	Spud Date	Date	ent Date	back Date	Date
STEEL GUITAR 35-26-29 FED COM 413H		12/1/2023	12/31/2023	4/29/2024	4/29/2024	4/29/2024
STEEL GUITAR 35-26-29 FED COM 412H		12/1/2023	12/31/2023	4/29/2024	4/29/2024	4/29/2024
STEEL GUITAR 35-26-29 FED COM 411H		12/1/2023	12/31/2023	4/29/2024	4/29/2024	4/29/2024
STEEL GUITAR 35-26-29 FED COM 423H		12/1/2023	12/31/2023	4/29/2024	4/29/2024	
STEEL GUITAR 35-26-29 FED COM 422H		12/1/2023	12/31/2023	4/29/2024	4/29/2024	4/29/2024

Dates above are subject to change

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

- 🖾 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or
- D Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following:

Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (t) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- **(b)** Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:
Printed Name: Jeff Walla
Title: Surface Land and Regulatory Manager
E-mail Address:
Date:
Phone:
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

VI. Separation Equipment

WPX Energy Permian, LLC (WPX) utilizes a "stage separation" process in which oil and gas separation is carried out through a series of separators operating at successively reduced pressures. Hydrocarbon liquids are produced into a high-pressure inlet separator, then carried through one or more lower pressure separation vessels before entering the storage tanks. The purpose of this separation process is to attain maximum recovery of liquid hydrocarbons from the fluids and allow maximum capture of produced gas into the sales pipeline. WPX utilizes a series of Low-Pressure Compression units to capture gas off the staged separation and send it to the sales pipeline. This process minimizes the amount of flash gas that enters the end-stage storage tanks that is subsequently vented or flared.

VII. Operational Practices

WPX Energy Permian, LLC will employ best management practices and control technologies to maximize the recovery and minimize waste of natural gas through venting and flaring.

- During drilling operations, WPX will utilize flares and/or combustors to capture and control
 natural gas, where technically feasible. If flaring is deemed technically in-feasible, WPX will
 employ best management practices to minimize or reduce venting to the extent possible.
- During completions operations, WPX will utilize Green Completion methods to capture gas
 produced during well completions that is otherwise vented or flared. If capture is technically infeasible, flares and/or combustors will be used to capture and control flow back fluids entering
 into frac tanks during initial flowback. Upon indication of first measurable hydrocarbon
 volumes, WPX will turn operations to onsite separation vessels and flow to the gathering
 pipeline.
- During production operations, WPX will take every practical effort to minimize waste of natural gas through venting and flaring by:
 - Designing and constructing facilities in a manner consistent to achieve maximum capture and control of hydrocarbon liquids & produced gas
 - Utilizing a closed-loop capture system to collect and route produced gas to sales line via low pressure compression, or to a flare/combustor
 - Flaring in lieu of venting, where technically feasible
 - Utilizing auto-ignitors or continuous pilots, with thermocouples connected to Scada, to quickly detect and resolve issues related to malfunctioning flares/combustors
 - Employ the use of automatic tank gauging to minimize storage tank venting during loading events
 - Installing air-driven or electric-driven pneumatics & combustion engines, where technically feasible to minimize venting to the atmosphere
 - Confirm equipment is properly maintained and repaired through a preventative maintenance and repair program to ensure equipment meets all manufacturer specifications
 - Conduct and document AVO inspections on the frequency set forth in Part 27 to detect and repair any onsite leaks as quickly and efficiently as is feasible

VIII. Best Management Practices during Maintenance

WPX Energy Permian, LLC will utilize best management practices to minimize venting during active and planned maintenance activities. WPX is operating under guidance that production facilities permitted under NOI permits have no provisions to allow high pressure flaring and high pressure flaring is only allowed in disruption scenarios so long as the duration is less than eight hours. When technically feasible, flaring during maintenance activities will be utilized in lieu of venting to the atmosphere. WPX will work with third-party operators during scheduled maintenance of downstream pipeline or processing plants to address those events ahead of time to minimize venting. Actions considered include identifying alternative capture approaches or planning to temporarily reduce production or shut in the well to address these circumstances.

PXENERGY...

WPX Energy Permian, LLC

Drilling Plan

Well STEEL GUITAR 35-26-29 FED COM 413H

Surface: 455 FNL 2096 FWL (S26) T26S R29E Sec 26 Location Bottom Hole: 50 FSL 2410 FEL (S35) T26S R29E Sec 35

County/State Eddy, NM

2,892 feet above sea level. The elevation of the unprepared ground is

The geologic name of the surface formation is Quaternary

A rotary rig will be utilized to drill the well to 17026' MD, then will be cased and cemented. This equipment will then be rigged down and the well will be completed with a workover rig.

Proposed depth is 17,026 feet MD.

1) Estimated Tops:

Formation Name	MD	TVD	Bearing	BHP (psi)	MASP (psi)
Quaternary	0	0	Water	, ,	, , , , , , , , , , , , , , , , , , ,
Bell Canyon	3036	3029	Oil/Gas		
Cherry Canyon	4086	4069	Oil/Gas		
Brushy Canyon	5185	5158	Oil/Gas		
Bone Spring 1st	7739	7689	Oil/Gas		
Bone Spring 2nd	8368	8312	Oil/Gas		
Bone Spring 3rd	9651	9589	Oil/Gas		
KOP	9724	9662	Oil/Gas		
Wolfcamp	10005	9927	Oil/Gas		
Landing Point (Wolfcamp)	10474	10139	Oil/Gas		
TD	17026	10139	Oil/Gas	6854	4623

2) Notable Formations:

Any usable fresh water zones encountered will be adequately protected and reported. All usable water zones, potential hydrocarbon zones, and valuable mineral zones will be isolated.

Useable water will be protected by surface casing set and cemented to surface.

3) Pressure Control Equipment:

The blowout preventer equipment (BOPE) will consist of 3 rams (10,000 psi WP) with 2 pipe rams (one of which may be variable), 1 blind ram and 1 annular preventer (5,000 psi WP) will be installed. The BOPE will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. A rotating head will be installed as needed. Units will be hydraulically operated.

An accumulator that meets the requirements of Onshore Order 2 for the pressure rating of the BOP stack will be present.

BOPE will be inspected and operated as recommended in Onshore Order 2. A third party company will test the BOPE. After surface casing is set and the BOPE is nippled up, pressure tests will be conducted to 250 psi low and 5000 psi high (50% of WP) with the annular tested to 250 psi low and 2500 psi high (50% of WP).

A 20" x 13-3/8" x 9-5/8" x 7" 10M multi-bowl wellhead w/ 9-5/8" and 7" mandrel hangers will be install after setting surface casing and utilized until total depth is reached. The 9-5/8" and 7" casings will be set using a mandrel in the casing head and the stack will not be retested at these casing points.

The following BOPE will be installed, tested and operational:

- Drilling spool or blowout preventer with two (2) side outlets;
 - · Choke line side shall be 3" minimum diameter;
 - Two (2) adjustable chokes with one (1) remotely controlled from the rig floor and pressure gauge.
 - Kill side shall be at least 2" diameter;
 - Two (2) manual valves and one (1) check valve.

Auxiliary equipment is as follows:

- Upper kelly cock valve with a handle available;
- Lower kelly cock valve with a handle available;
- A float valve will be used in the drill string, either in a float sub or in the mud motor;

.Devon - General

• Safety valves and subs with a full opening sized to fit all drill strings and collars will be available on the rig floor in the open position.

WPX Energy Permian, LLC requests a variance to drill this well using a co-flex line between the BOP and the choke manifold. Certification for proposed co-flex hose is attached. The hose is required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

4) Casing Program:

S	Section	Hole Size	Top (MD)	Bottom (MD)	Bottom (TVD)	Casing OD	Weight (ppf)	Grade	Threads
	Surf	17-1/2"	0	501	501	13-3/8"	54.5	J-55	BT&C
	Int_1	12-1/4"	0	3225	3131	9-5/8"	40.0	J-55	BT&C
	Int_2	8-3/4"	0	10474	10139	7"	29.0	VAXP P-110	BT&C
	Liner	6-1/8"	9,724	17026	10139	4-1/2"	13.5	VA-EP-P110	VARN

Safety	Factors
Collapse	1.125
Burst	1.000
Tension	1.600

	Design F	actors	
Section	Collapse	Burst	Tension
Surf	5.13	24.77	18.82
Int_1	1.87	5.73	4.03
Int_2	2.53	6.20	3.47
Liner	2.39	5.56	4.49

Centralizers will be run as follows:

- One (1) centralizer on each of the bottom three jts of casing beginning with the shoe jt;
- One (1) centralizer every third jt from above bottom three jts to planned top of cement (TOC).

5) Cement Program:

Section	Hole Size	Casing OD	Cap _{Ann} (cuft/ft)					
Surf	17.50	13.375	0.6946					
Туре	Cmt Btm	Cmt Top	Cubic Feet	Yield	Excess	Sacks	Weight	Blend & Additives
Lead	248	0	172	2.38	50%	109	12	Class C + 0.50 BWOB Accelerator + 2.00 BWOB Sodium Metasilicate
Tail	501	248	132	1.32	50%	200	14.8	Class C

Section	Hole Size	Casing OD	Cap _{Ann} (cuft/ft)	Prev Csg ID	Cap _{Csg-Csg} (cuft/ft)			
Int_1	12.25	9.625	0.3132	12.615	0.3627			
Туре	Cmt Btm	Cmt Top	Cubic Feet	Yield	Excess	Sacks	Weight	Blend &
туре	Cmt Btm	Cilit Top	Cubic reet	rieiu	Excess	Sacks	weight	Additives
Lead	501	0	182	1.98	30%	EEO	12.5	Class C/Poz 35/65 + 3.00 BWOW Salt + 6.00
Leau	2635	501	668	1.50	30%	- 558	12.5	BWOB Bentonite
Tail	3225	2635	185	1.32	30%	200	14.8	Class C + 0.15 BWOB Retarder

Section	Hole Size	Casing OD	Cap _{Ann} (cuft/ft)	Prev Csg ID	Cap _{Csg-Csg} (cuft/ft)			
Int_2	8.75	7.00	0.1503	8.835	0.1585			
Туре	Cmt Btm	Cmt Top	Cubic Feet	Yield	Excess	Sacks	Weight	Blend &
Туре	CIIIC BUIII	Cilit Top	Cubic reet	Tielu	LACESS	Jacks	Weight	Additives
	3225	0	511		30%			Class C + 50% Poz +
Lead	9724	3225	977	3.01	30%	643	11	2.75 lb/sk LCM + 0.10 BWOB Sodium Metasilicate + 0.25 BWOB Retarder + 10.0 BWOB Bentonite
Tail	10474	9724	113	1.26	30%	116	14.2	Class H + 50% Poz + 0.15 BWOB Sodium Metasilicate + 0.15 BWOB Retarder + 0.30 BWOB Dispersant + 0.40 BWOB Fluid Loss + 2.0 BWOB Bentonite

.Devon - General

Section	Hole Size	Casing OD	Cap _{Ann} (cuft/ft)	Prev Csg ID	Cap _{Csg-Csg} (cuft/ft)			
Liner	6.125	4.50	0.0942	6.184	0.0981			
Туре	Cmt Btm	Cmt Top	Cubic Feet	Yield	Excess	Sacks	Weight	Blend & Additives
	10474	9724	74		20%			Class H + 50% Poz +
Tail	17026	10474	617	1.25	20%	663	14.2	0.15 BWOB Sodium Metasilicate + 0.15 BWOB Retarder + 0.30 BWOB Retarder + 0.40 BWOB Behuid Loss + 2.0 BWOB Behuid Loss + 2.0

6) Drilling Fluids Program:

An electronic mud monitoring system satisfying the requirements of Onshore Order 1 will be used. All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Section	Hole Size	TMD	Mud Wt.	Vis	PV	YP	Fluid Loss	Туре
Surf	17-1/2"	501	8.5 to 8.9	32 to 36	1 - 6	1 - 6	NC	Fresh Wtr
Int_1	12-1/4"	3,225	9.8 to 10.0	28 to 30	1 - 3	1 - 3	NC	Brine
Int_2	8-3/4"	10,474	8.9 to 9.4	28 to 36	1 - 3	1 - 3	NC	Cut Brine
Liner	6-1/8"	17,026	11.5 to 12.5	50 to 55	20-22	8 - 10	8 - 10	OBM

Mud checks will be performed every 24 hours.

The following mud system monitoring equipment will be in place during drilling:

- Visual pit markers
- Pit volume totalizer (PVT)
- Stroke counter
- Gas detection
- Mud-gas separator (gas buster)
- Flow sensor

A closed-loop system will be in place during all phases of drilling. Cuttings disposal will be at an off-site disposal facility.

7) Formation Evaluation Program:

No core or drill stem test is planned.

A 2-person mud-logging program will be used from Int_1 9-5/8" casing point to TD.

No electronic logs are planned.

8) Abnormal Conditions:

No abnormal pressure or temperature is expected.

Maximum expected bottom hole pressure is 6854 psi at 10139' TVD. Expected bottom hole temperature is <200°F.

In accordance with Onshore Order 6, WPX Energy Permian, LLC does not anticipate that there will be enough H2S to meet the BLM's minimum requirements for the submission of an "H2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. However, since WPX Energy Permian, LLC has an H2S safety package on all wells, an "H2S Drilling Operations Plan" is attached.

Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely.

All personnel will be familiar with all aspects of safe operation of equipment being used.

9) Other Information

The anticipated spud date is upon approval. Expected duration is 30 days to drill the well.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

08/09/2021

APD ID: 10400063017

Submission Date: 10/08/2020

Highlighted data reflects the most recent changes

Operator Name: WPX ENERGY PERMIAN LLC

Well Name: STEEL GUITAR 35-26-29 FED COM

Well Number: 413H

Show Final Text

Well Type: OTHER

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
899067	QUATERNARY	2971	0	0	ALLUVIUM, OTHER : Quaternary	USEABLE WATER	N
899068	BELL CANYON	-58	3029	3036	SANDSTONE, SHALE	NATURAL GAS, OIL	N
899069	CHERRY CANYON	-1098	4069	4086	SANDSTONE, SHALE	NATURAL GAS, OIL	N
899070	BRUSHY CANYON	-2187	5158	5185	SANDSTONE, SHALE	NATURAL GAS, OIL	N
899072	BONE SPRING 1ST	-4718	7689	7739	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
899073	BONE SPRING 2ND	-5341	8312	8368	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
899074	BONE SPRING 3RD	-6618	9589	9651	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
899075	WOLFCAMP	-6956	9927	10005	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 10139

Equipment: 10M - BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below intermediate casing, a BOP/BOPE system with the above minimum rating will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested. 5M - BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below surface casing, a BOP/BOPE system with the above minimum rating will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart. Devon requests a variance to run a 5M annular on a 1 OM BOP system. See separately attached variance request and support documents in AFMSS.

Testing Procedure: 10M - A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. 5M annular on 10M system will be tested to 100% of rated working pressure. 5M - A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing

Commitment Runs Deep

Design Plan
Operation and Maintenance Plan
Closure Plan

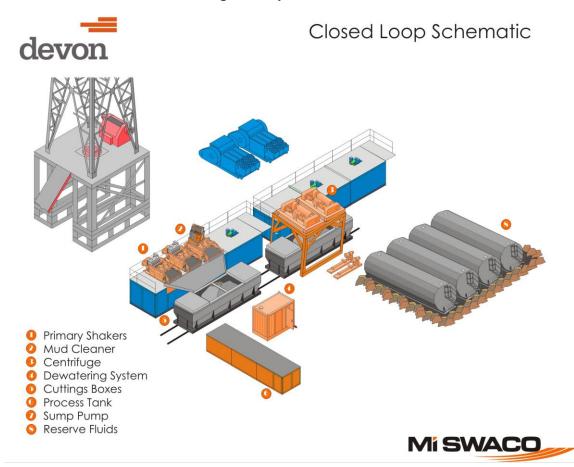
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependant on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

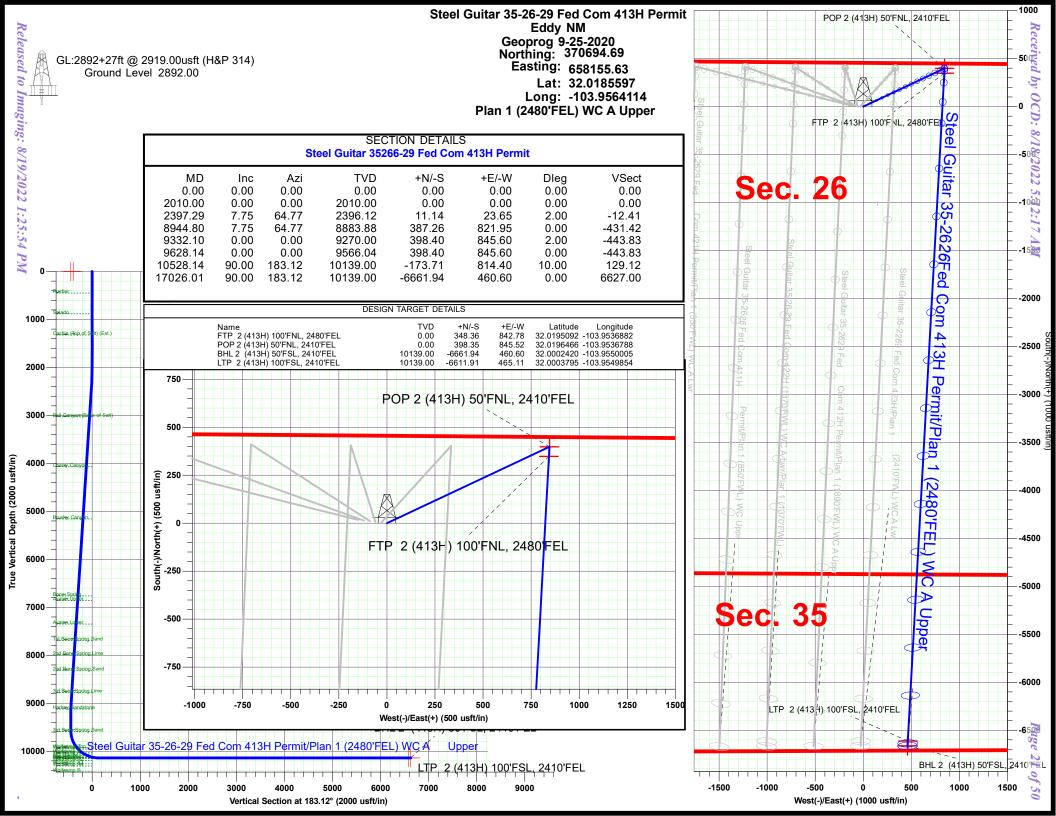
Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe


dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

Planning Report - Geographic

TVD Reference:

MD Reference:

North Reference:

EDM r5000.16_Prod US Database:

WPX Energy Permian, LLC Company:

Eddy NM Project: Site: Steel Guitar East

Well: Steel Guitar 35-26-29 Fed Com 413H

> Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper **Local Co-ordinate Reference:**

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

183.12

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

Minimum Curvature

Project Eddy NM

Wellbore:

US State Plane 1983 Map System: North American Datum 1983 Geo Datum: Map Zone: New Mexico Eastern Zone

System Datum: Mean Sea Level

0.00

Site Steel Guitar East

Northing: 370,722.80 usft Site Position: Latitude: 32.0186393 -103.9571762 657,918.50 usft Мар Easting: Longitude: From: 0.00 usft 0.20° **Position Uncertainty:** Slot Radius: 13.200 in **Grid Convergence:**

Steel Guitar 35-26-29 Fed Com 413H Permit Well

Well Position 370,694.69 usft 32.0185597 +N/-S 0.00 usft Northing: Latitude: +E/-W 0.00 usft 658,155.64 usft Longitude: -103.9564114 Easting:

0.00 usft 2,892.00 usft **Position Uncertainty** Wellhead Elevation: **Ground Level:**

Wellbore Wellbore #1 Magnetics **Model Name** Sample Date Declination Dip Angle Field Strength (°) (nT) 48,629.19802655 IGRF200510 12/31/2009 59.98 7.91

Design Plan 1 (2480'FEL) WC A Upper **Audit Notes:** PLAN 0.00 Version: Phase: Tie On Depth: +N/-S Vertical Section: Depth From (TVD) +E/-W Direction (usft) (usft) (usft) (°)

0.00

MWD+HDGM

4/27/2021 **Plan Survey Tool Program** Date

Depth To

Depth From

0.00

Tool Name (usft) (usft) Survey (Wellbore) Remarks

OWSG MWD + HDGM

17,026.01 Plan 1 (2480'FEL) WC A Upper (

0.00

4/27/2021 10:27:31AM Page 2 COMPASS 5000.16 Build 96

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Wellbore:

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

an Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,010.00	0.00	0.00	2,010.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,397.29	7.75	64.77	2,396.12	11.14	23.65	2.00	2.00	0.00	64.77	
8,944.81	7.75	64.77	8,883.88	387.26	821.95	0.00	0.00	0.00	0.00	
9,332.10	0.00	0.00	9,270.00	398.40	845.60	2.00	-2.00	0.00	180.00	
9,628.14	0.00	0.00	9,566.04	398.40	845.60	0.00	0.00	0.00	0.00	
10,528.14	90.00	183.12	10,139.00	-173.71	814.40	10.00	10.00	0.00	183.12	
17,026.01	90.00	183.12	10,139.00	-6,661.94	460.60	0.00	0.00	0.00	0.00	

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore: Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

Planned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.00 100.00 200.00 300.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 100.00 200.00 300.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	370,694.69 370,694.69 370,694.69 370,694.69	658,155.64 658,155.64 658,155.64 658,155.64	32.0185597 32.0185597 32.0185597 32.0185597	-103.9564114 -103.9564114 -103.9564114 -103.9564114
400.00 448.00	0.00 0.00	0.00 0.00	400.00 448.00	0.00 0.00	0.00 0.00	370,694.69 370,694.69	658,155.64 658,155.64	32.0185597 32.0185597	-103.9564114 -103.9564114
Rustler									
500.00 600.00 700.00	0.00 0.00 0.00	0.00 0.00 0.00	500.00 600.00 700.00	0.00 0.00 0.00	0.00 0.00 0.00	370,694.69 370,694.69 370,694.69	658,155.64 658,155.64 658,155.64	32.0185597 32.0185597 32.0185597	-103.9564114 -103.9564114 -103.9564114
800.00 880.00	0.00 0.00	0.00 0.00	800.00 880.00	0.00 0.00	0.00 0.00	370,694.69 370,694.69	658,155.64 658,155.64	32.0185597 32.0185597	-103.9564114 -103.9564114
Salado									
900.00 1,000.00 1,100.00 1,200.00 1,300.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	900.00 1,000.00 1,100.00 1,200.00 1,300.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	370,694.69 370,694.69 370,694.69 370,694.69 370,694.69	658,155.64 658,155.64 658,155.64 658,155.64 658,155.64	32.0185597 32.0185597 32.0185597 32.0185597 32.0185597	-103.9564114 -103.9564114 -103.9564114 -103.9564114 -103.9564114
1,323.00	0.00	0.00	1,323.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
	Top of Salt) (E								
1,400.00	0.00	0.00	1,400.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
1,500.00 1,600.00	0.00	0.00 0.00	1,500.00 1,600.00	0.00 0.00	0.00 0.00	370,694.69 370,694.69	658,155.64 658,155.64	32.0185597 32.0185597	-103.9564114 -103.9564114
1,700.00	0.00	0.00	1,700.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
1,800.00	0.00	0.00	1,800.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
1,900.00	0.00	0.00	1,900.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
2,000.00	0.00	0.00	2,000.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
2,010.00	0.00	0.00	2,010.00	0.00	0.00	370,694.69	658,155.64	32.0185597	-103.9564114
Start Bu									
2,100.00	1.80	64.77	2,099.99	0.60	1.28	370,695.29	658,156.91	32.0185614	-103.9564073
2,200.00	3.80	64.77	2,199.86	2.68	5.70 13.27	370,697.38	658,161.33	32.0185671	-103.9563930
2,300.00 2,397.29	5.80 7.75	64.77 64.77	2,299.51 2,396.12	6.25 11.14	23.65	370,700.94 370,705.83	658,168.90 658,179.28	32.0185768 32.0185901	-103.9563685 -103.9563350
Hold	7.75	04.77	2,090.12	11.17	25.05	370,703.03	030,179.20	32.0103301	-103.9303330
2,400.00	7.75	64.77	2,398.80	11.30	23.98	370,705.99	658,179.61	32.0185905	-103.9563339
2,500.00	7.75	64.77	2,497.88	17.04	36.17	370,711.73	658,191.80	32.0186062	-103.9562945
2,600.00	7.75	64.77	2,596.97	22.79	48.36	370,717.48	658,204.00	32.0186219	-103.9562551
2,700.00	7.75	64.77	2,696.06	28.53	60.55	370,723.22	658,216.19	32.0186376	-103.9562157
2,800.00	7.75	64.77	2,795.15	34.27	72.75	370,728.97	658,228.38	32.0186532	-103.9561763
2,900.00	7.75	64.77	2,894.23	40.02	84.94	370,734.71	658,240.57	32.0186689	-103.9561369
3,000.00 3,036.01	7.75 7.75	64.77 64.77	2,993.32 3,029.00	45.76 47.83	97.13 101.52	370,740.46 370,742.52	658,252.77 658,257.16	32.0186846 32.0186902	-103.9560975 -103.9560833
	yon (Base of		3,029.00	47.00	101.52	370,742.32	030,237.10	32.0100902	-103.9300033
3,100.00	7.75	64.77	3,092.41	51.51	109.32	370,746.20	658,264.96	32.0187003	-103.9560581
3,200.00	7.75	64.77	3,191.50	57.25	121.52	370,751.94	658,277.15	32.0187159	-103.9560187
3,300.00	7.75	64.77	3,290.58	63.00	133.71	370,757.69	658,289.34	32.0187316	-103.9559793
3,400.00	7.75	64.77	3,389.67	68.74	145.90	370,763.43	658,301.54	32.0187473	-103.9559399
3,500.00	7.75	64.77	3,488.76	74.49	158.09	370,769.18	658,313.73	32.0187630	-103.9559005
3,600.00	7.75	64.77	3,587.85	80.23	170.29	370,774.92	658,325.92	32.0187786	-103.9558610
3,700.00 3,800.00	7.75 7.75	64.77 64.77	3,686.93 3,786.02	85.97 91.72	182.48 194.67	370,780.67 370,786.41	658,338.11 658,350.31	32.0187943 32.0188100	-103.9558216 -103.9557822
3,900.00	7.75	64.77	3,885.11	97.46	206.86	370,786.41	658,362.50	32.0188257	-103.9557428

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Wellbore:

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

ned Survey	,								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
						, ,			
4,000.00	7.75	64.77	3,984.20	103.21	219.06	370,797.90	658,374.69	32.0188413	-103.955703
4,085.58	7.75	64.77	4,069.00	108.12	229.49	370,802.82	658,385.13	32.0188547	-103.955669
Cherry C									
4,100.00	7.75	64.77	4,083.29	108.95	231.25	370,803.64	658,386.88	32.0188570	-103.955664
4,200.00	7.75	64.77	4,182.37	114.70	243.44	370,809.39	658,399.08	32.0188727	-103.955624
4,300.00	7.75	64.77	4,281.46	120.44	255.63	370,815.13	658,411.27	32.0188884	-103.955585
4,400.00	7.75	64.77	4,380.55	126.19	267.83	370,820.88	658,423.46	32.0189040	-103.955545
4,500.00	7.75	64.77	4,479.64	131.93	280.02	370,826.62	658,435.65	32.0189197	-103.955506
4,600.00	7.75	64.77	4,578.72	137.67	292.21	370,832.37	658,447.85	32.0189354	-103.955467
4,700.00	7.75	64.77	4,677.81	143.42	304.40	370,838.11	658,460.04	32.0189511	-103.955427
4,800.00	7.75	64.77	4,776.90	149.16	316.60	370,843.86	658,472.23	32.0189667	-103.955388
4,900.00	7.75	64.77	4,875.99	154.91	328.79	370,849.60	658,484.43	32.0189824	-103.955348
5,000.00	7.75	64.77	4,975.07	160.65	340.98	370,855.34	658,496.62	32.0189981	-103.955309
5,100.00	7.75	64.77	5,074.16	166.40	353.17	370,861.09	658,508.81	32.0190137	-103.955270
5,184.61	7.75	64.77	5,158.00	171.26	363.49	370,865.95	658,519.13	32.0190270	-103.955236
Brushy (Canyon								
5,200.00	7.75	64.77	5,173.25	172.14	365.37	370,866.83	658,521.00	32.0190294	-103.955230
5,300.00	7.75	64.77	5,272.34	177.89	377.56	370,872.58	658,533.20	32.0190451	-103.95519
5,400.00	7.75	64.77	5,371.42	183.63	389.75	370,878.32	658,545.39	32.0190608	-103.95515°
5,500.00	7.75	64.77	5,470.51	189.37	401.94	370.884.07	658,557.58	32.0190764	-103.95511
5,600.00	7.75	64.77	5,569.60	195.12	414.14	370,889.81	658,569.77	32.0190921	-103.95507
5,700.00	7.75	64.77	5,668.69	200.86	426.33	370,895.56	658,581.97	32.0191078	-103.95503
5,800.00	7.75	64.77	5.767.77	206.61	438.52	370,901.30	658,594.16	32.0191235	-103.95499
5,900.00	7.75	64.77	5,866.86	212.35	450.71	370,907.04	658,606.35	32.0191391	-103.954954
6,000.00	7.75	64.77	5,965.95	218.10	462.91	370,912.79	658,618.54	32.0191548	-103.95491
6,100.00	7.75	64.77	6,065.04	223.84	475.10	370,918.53	658,630.74	32.0191705	-103.95487
6,200.00	7.75	64.77	6,164.12	229.59	487.29	370,924.28	658,642.93	32.0191862	-103.954836
6,300.00	7.75	64.77	6,263.21	235.33	499.48	370,930.02	658,655.12	32.0192018	-103.95479
6,400.00	7.75	64.77	6,362.30	241.07	511.68	370,935.77	658,667.31	32.0192175	-103.95475
6,500.00	7.75	64.77	6,461.39	246.82	523.87	370,941.51	658,679.51	32.0192332	-103.95471
6,600.00	7.75	64.77	6,560.47	252.56	536.06	370,947.26	658,691.70	32.0192489	-103.954678
6,700.00	7.75	64.77	6,659.56	258.31	548.26	370,953.00	658,703.89	32.0192645	-103.95463
6,800.00	7.75	64.77	6,758.65	264.05	560.45	370,958.74	658,716.08	32.0192802	-103.95460
6,804.39	7.75	64.77	6,763.00	264.30	560.98	370,959.00	658,716.62	32.0192809	-103.95459
		04.77	0,705.00	204.50	300.90	370,939.00	030,7 10.02	32.0192009	-103.934390
Bone Sp	•	04.77	0.057.74	200.00	F70.04	270 004 40	658.728.28	20.0402050	400.05450
6,900.00	7.75	64.77	6,857.74	269.80	572.64	370,964.49	,	32.0192959	-103.95456
6,901.28	7.75	64.77	6,859.00	269.87	572.80	370,964.56	658,728.43	32.0192961	-103.954560
Avalon U									
7,000.00	7.75	64.77	6,956.82	275.54	584.83	370,970.23	658,740.47	32.0193115	-103.95452
7,100.00	7.75	64.77	7,055.91	281.29	597.03	370,975.98	658,752.66	32.0193272	-103.95448
7,200.00	7.75	64.77	7,155.00	287.03	609.22	370,981.72	658,764.85	32.0193429	-103.95444
7,300.00	7.75	64.77	7,254.09	292.77	621.41	370,987.47	658,777.05	32.0193586	-103.95440
7,395.79	7.75	64.77	7,349.00	298.28	633.09	370,992.97	658,788.72	32.0193736	-103.954365
Avalon L									
7,400.00	7.75	64.77	7,353.17	298.52	633.60	370,993.21	658,789.24	32.0193742	-103.95436
7,500.00	7.75	64.77	7,452.26	304.26	645.80	370,998.96	658,801.43	32.0193899	-103.95432
7,600.00	7.75	64.77	7,551.35	310.01	657.99	371,004.70	658,813.62	32.0194056	-103.95428
7,700.00	7.75	64.77	7,650.44	315.75	670.18	371,010.44	658,825.82	32.0194213	-103.95424
7,738.92	7.75	64.77	7,689.00	317.99	674.93	371,012.68	658,830.56	32.0194274	-103.95423
1st Bone	Spring Sand								
7,800.00	7.75	64.77	7,749.52	321.50	682.37	371,016.19	658,838.01	32.0194369	-103.95420
7,900.00	7.75	64.77	7,848.61	327.24	694.57	371,021.93	658,850.20	32.0194526	-103.95416

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Wellbore:

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

Diamed Company									
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
8,000.00	7.75	64.77	7,947.70	332.99	706.76	371,027.68	658,862.39	32.0194683	-103.9541273
8,047.74	7.75	64.77	7,995.00	335.73	712.58	371,030.42	658,868.21	32.0194758	-103.9541084
	e Spring Lime								
8,100.00	7.75	64.77	8,046.79	338.73	718.95	371,033.42	658,874.59	32.0194840	-103.9540878
8,200.00 8,300.00	7.75 7.75	64.77 64.77	8,145.88 8,244.96	344.47 350.22	731.14 743.34	371,039.17 371,044.91	658,886.78 658,898.97	32.0194996 32.0195153	-103.9540484 -103.9540090
8,367.66	7.75	64.77	8,312.00	354.10	751.58	371,048.80	658,907.22	32.0195153	-103.9539824
	e Spring Sand		0,012.00	001.10	701.00	07 1,0 10.00	000,007.22	02.0100200	100.000021
8,400.00	7.75	64.77	8,344.05	355.96	755.53	371,050.66	658,911.16	32.0195310	-103.9539696
8,500.00	7.75	64.77	8,443.14	361.71	767.72	371,056.40	658,923.36	32.0195467	-103.9539302
8,600.00	7.75	64.77	8,542.23	367.45	779.91	371,062.14	658,935.55	32.0195623	-103.9538908
8,700.00	7.75	64.77	8,641.31	373.20	792.11	371,067.89	658,947.74	32.0195780	-103.9538514
8,800.00	7.75	64.77	8,740.40	378.94	804.30	371,073.63	658,959.93	32.0195937	-103.9538120
8,834.92	7.75	64.77	8,775.00	380.95	808.56	371,075.64	658,964.19	32.0195991	-103.9537983
8,900.00	Spring Lime 7.75	64.77	8,839.49	384.69	816.49	371,079.38	658,972.13	32.0196093	-103.9537726
8,944.81	7.75	64.77	8,883.88	387.26	821.95	371,081.95	658,977.59	32.0196164	-103.9537550
ЕОН			7,777			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
9,000.00	6.64	64.77	8,938.64	390.20	828.21	371,084.90	658,983.84	32.0196244	-103.9537347
9,100.00	4.64	64.77	9,038.15	394.39	837.10	371,089.09	658,992.73	32.0196358	-103.9537060
9,183.03	2.98	64.77	9,121.00	396.75	842.09	371,091.44	658,997.73	32.0196423	-103.9536899
_	Sandstone	04.77	0.407.05	007.40	0.40.05	074 004 70	050 000 10	00 0400400	400.0500074
9,200.00 9,300.00	2.64 0.64	64.77 64.77	9,137.95 9,237.90	397.10 398.32	842.85 845.44	371,091.79 371,093.02	658,998.48 659,001.07	32.0196432 32.0196466	-103.9536874 -103.9536791
9,332.10	0.04	0.00	9,237.90	398.40	845.60	371,093.02	659,001.24	32.0196468	-103.9536785
Vertical	0.00	0.00	0,2.0.00	000.10	0.0.00	0. 1,000.00	000,001.21	02.0 .00 .00	
9,400.00	0.00	0.00	9,337.90	398.40	845.60	371,093.09	659,001.24	32.0196468	-103.9536785
9,500.00	0.00	0.00	9,437.90	398.40	845.60	371,093.09	659,001.24	32.0196468	-103.9536785
9,600.00	0.00	0.00	9,537.90	398.40	845.60	371,093.09	659,001.24	32.0196468	-103.9536785
9,628.14	0.00	0.00	9,566.04	398.40	845.60	371,093.09	659,001.24	32.0196468	-103.9536785
_	628.14'MD	400.40	0.507.00	007.00	0.45 50	074 000 00	050 004 04	00.0400450	400.0500700
9,650.00 9,651.11	2.19 2.30	183.12 183.12	9,587.90 9,589.00	397.98 397.94	845.58 845.57	371,092.68 371,092.63	659,001.21 659,001.21	32.0196456 32.0196455	-103.9536786 -103.9536786
	Spring Sand		9,309.00	331.34	045.57	37 1,092.03	039,001.21	32.0190433	-103.9330760
9,700.00	7.19	183.12	9,637.71	393.91	845.35	371,088.60	659,000.99	32.0196344	-103.9536794
9,750.00	12.19	183.12	9,686.98	385.51	844.90	371,080.20	659,000.53	32.0196113	-103.9536809
9,800.00	17.19	183.12	9,735.34	372.86	844.21	371,067.55	658,999.84	32.0195766	-103.9536833
9,850.00	22.19	183.12	9,782.40	356.04	843.29	371,050.74	658,998.93	32.0195304	-103.9536865
9,900.00	27.19	183.12	9,827.81	335.20	842.15	371,029.89	658,997.79	32.0194731	-103.9536904
9,950.00	32.19	183.12	9,871.24	310.48	840.81	371,005.17 370,976.77	658,996.44	32.0194051	-103.9536950
10,000.00 10,018.64	37.19 39.05	183.12 183.12	9,912.34 9,927.00	282.08 270.59	839.26 838.63	370,976.77	658,994.89 658,994.27	32.0193271 32.0192955	-103.9537003 -103.9537025
Wolfcam		100.12	0,027.00	210.00	000.00	070,000.20	000,004.27	02.0102000	-100.0007020
10,050.00	42.19	183.12	9,950.80	250.21	837.52	370,944.90	658,993.15	32.0192395	-103.9537063
10,052.97	42.48	183.12	9,953.00	248.21	837.41	370,942.90	658,993.05	32.0192340	-103.9537067
Wolfcam	рΧ								
10,100.00	47.19	183.12	9,986.34	215.11	835.61	370,909.80	658,991.24	32.0191430	-103.9537129
10,150.00	52.19	183.12	10,018.68	177.05	833.53	370,871.75	658,989.17	32.0190384	-103.9537200
10,170.57	54.24	183.12	10,031.00	160.60	832.63	370,855.29	658,988.27	32.0189932	-103.9537231
Wolfcam 10,200.00	p Y 57.19	183.12	10,047.57	136.33	831.31	370,831.02	658,986.94	32.0189265	-103.9537276
10,200.00	37.19	103.12	10,047.37	130.33	001.01	370,031.02	000,300.34	32.0109203	-103.8037270

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore: Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
10,221.73	59.36	183.12	10,059.00	117.88	830.30	370,812.57	658,985.94	32.0188758	-103.953
Wolfcam	Α д								
10,250.00	62.19	183.12	10,072.80	93.24	828.96	370,787.93	658,984.60	32.0188081	-103.953
10,300.00	67.19	183.12	10,094.18	48.12	826.50	370,742.82	658,982.14	32.0186841	-103.953
10,350.00	72.19	183.12	10,111.53	1.32	823.95	370,696.01	658,979.58	32.0185554	-103.953
10,400.00	77.19	183.12	10,124.73	-46.82	821.32	370,647.87	658,976.96	32.0184231	-103.953
10,401.22	77.31	183.12	10,125.00	-48.01	821.26	370,646.68	658,976.89	32.0184198	-103.953
Top Targ	et								
10,450.00	82.19	183.12	10,133.68	-95.92	818.64	370,598.77	658,974.28	32.0182882	-103.953
10,500.00	87.19	183.12	10,138.31	-145.62	815.93	370,549.07	658,971.57	32.0181516	-103.953
10,528.14	90.00	183.12	10,139.00	-173.71	814.40	370,520.99	658,970.04	32.0180744	-103.953
Landing	Point @10528								
10,600.00	90.00	183.12	10,139.00	-245.46	810.49	370,449.23	658,966.13	32.0178772	-103.953
10,700.00	90.00	183.12	10,139.00	-345.31	805.05	370,349.38	658,960.68	32.0176027	-103.953
10,800.00	90.00	183.12	10,139.00	-445.16	799.60	370,249.53	658,955.24	32.0173283	-103.953
10,900.00	90.00	183.12	10,139.00	-545.01	794.16	370,149.68	658,949.79	32.0170539	-103.953
11,000.00	90.00	183.12	10,139.00	-644.87	788.71	370,049.83	658,944.35	32.0167794	-103.953
11,100.00	90.00	183.12	10,139.00	-744.72	783.27	369,949.98	658,938.90	32.0165050	-103.953
11,200.00	90.00	183.12	10,139.00	-844.57	777.82	369,850.12	658,933.46	32.0162306	-103.953
11,300.00	90.00	183.12	10,139.00	-944.42	772.38	369,750.27	658,928.01	32.0159561	-103.953
11,400.00	90.00	183.12	10,139.00	-1,044.27	766.93	369,650.42	658,922.57	32.0156817	-103.953
11,500.00	90.00	183.12 183.12	10,139.00	-1,144.12	761.49 756.04	369,550.57	658,917.12 658,911.68	32.0154073	-103.953
11,600.00 11,700.00	90.00 90.00	183.12	10,139.00 10,139.00	-1,243.98 -1,343.83	750.60	369,450.72 369,350.87	658,906.23	32.0151328 32.0148584	-103.953 -103.954
11,700.00	90.00	183.12	10,139.00	-1,343.63 -1,443.68	745.15	369,251.01	658,900.79	32.0145840	-103.954
11,900.00	90.00	183.12	10,139.00	-1,543.53	739.71	369,151.16	658,895.34	32.0143095	-103.954
12,000.00	90.00	183.12	10,139.00	-1,643.38	734.26	369,051.31	658,889.90	32.0140351	-103.954
12,100.00	90.00	183.12	10,139.00	-1,743.23	728.82	368,951.46	658,884.45	32.0137607	-103.954
12,200.00	90.00	183.12	10,139.00	-1,843.09	723.37	368,851.61	658,879.01	32.0134862	-103.954
12,300.00	90.00	183.12	10,139.00	-1,942.94	717.93	368,751.76	658,873.56	32.0132118	-103.954
12,400.00	90.00	183.12	10,139.00	-2,042.79	712.48	368,651.90	658,868.12	32.0129374	-103.954
12,500.00	90.00	183.12	10,139.00	-2,142.64	707.04	368,552.05	658,862.67	32.0126629	-103.954
12,600.00	90.00	183.12	10,139.00	-2,242.49	701.59	368,452.20	658,857.23	32.0123885	-103.954
12,700.00	90.00	183.12	10,139.00	-2,342.34	696.15	368,352.35	658,851.78	32.0121141	-103.954
12,800.00	90.00	183.12	10,139.00	-2,442.20	690.70	368,252.50	658,846.34	32.0118396	-103.954
12,900.00	90.00	183.12	10,139.00	-2,542.05	685.26	368,152.65	658,840.89	32.0115652	-103.954
13,000.00	90.00	183.12	10,139.00	-2,641.90	679.81	368,052.79	658,835.45	32.0112908	-103.954
13,100.00	90.00	183.12	10,139.00	-2,741.75	674.37	367,952.94	658,830.00	32.0110163	-103.954
13,200.00	90.00	183.12	10,139.00	-2,841.60	668.92	367,853.09	658,824.56	32.0107419	-103.954
13,300.00	90.00	183.12	10,139.00	-2,941.45	663.48	367,753.24	658,819.11	32.0104675	-103.954
13,400.00	90.00	183.12	10,139.00	-3,041.31	658.03	367,653.39	658,813.67	32.0101930	-103.954
13,500.00	90.00	183.12	10,139.00	-3,141.16	652.59	367,553.54	658,808.22	32.0099186	-103.954
13,600.00	90.00	183.12	10,139.00	-3,241.01	647.14	367,453.68	658,802.78	32.0096442	-103.954
13,700.00	90.00	183.12	10,139.00	-3,340.86	641.70	367,353.83	658,797.33	32.0093697	-103.954
13,800.00	90.00	183.12	10,139.00	-3,440.71	636.25	367,253.98	658,791.89	32.0090953	-103.954
13,900.00	90.00	183.12	10,139.00	-3,540.56	630.81	367,154.13	658,786.44	32.0088209	-103.954
14,000.00	90.00	183.12	10,139.00	-3,640.42	625.36	367,054.28	658,781.00	32.0085464	-103.954
14,100.00	90.00	183.12	10,139.00	-3,740.27	619.92	366,954.43	658,775.55	32.0082720	-103.954
14,200.00	90.00	183.12	10,139.00	-3,840.12	614.47	366,854.57	658,770.11	32.0079976	-103.954
14,300.00	90.00	183.12	10,139.00	-3,939.97	609.03	366,754.72 366,654,87	658,764.67	32.0077231	-103.954
14,400.00 14,500.00	90.00 90.00	183.12 183.12	10,139.00 10,139.00	-4,039.82 -4,139.67	603.58 598.14	366,654.87 366,555.02	658,759.22 658,753.78	32.0074487 32.0071743	-103.954 -103.954

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Wellbore:

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit

GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
14,600.00	90.00	183.12	10,139.00	-4,239.53	592.69	366,455.17	658,748.33	32.0068998	-103.9545470
14,700.00	90.00	183.12	10,139.00	-4,339.38	587.25	366,355.32	658,742.89	32.0066254	-103.9545657
14,800.00	90.00	183.12	10,139.00	-4,439.23	581.81	366,255.46	658,737.44	32.0063510	-103.9545844
14,900.00	90.00	183.12	10,139.00	-4,539.08	576.36	366,155.61	658,732.00	32.0060765	-103.9546031
15,000.00	90.00	183.12	10,139.00	-4,638.93	570.92	366,055.76	658,726.55	32.0058021	-103.9546218
15,100.00	90.00	183.12	10,139.00	-4,738.78	565.47	365,955.91	658,721.11	32.0055277	-103.9546405
15,200.00	90.00	183.12	10,139.00	-4,838.64	560.03	365,856.06	658,715.66	32.0052532	-103.9546592
15,300.00	90.00	183.12	10,139.00	-4,938.49	554.58	365,756.21	658,710.22	32.0049788	-103.9546778
15,400.00	90.00	183.12	10,139.00	-5,038.34	549.14	365,656.35	658,704.77	32.0047044	-103.9546965
15,500.00	90.00	183.12	10,139.00	-5,138.19	543.69	365,556.50	658,699.33	32.0044299	-103.9547152
15,600.00	90.00	183.12	10,139.00	-5,238.04	538.25	365,456.65	658,693.88	32.0041555	-103.9547339
15,700.00	90.00	183.12	10,139.00	-5,337.89	532.80	365,356.80	658,688.44	32.0038811	-103.9547526
15,800.00	90.00	183.12	10,139.00	-5,437.75	527.36	365,256.95	658,682.99	32.0036066	-103.9547713
15,900.00	90.00	183.12	10,139.00	-5,537.60	521.91	365,157.10	658,677.55	32.0033322	-103.9547900
16,000.00	90.00	183.12	10,139.00	-5,637.45	516.47	365,057.24	658,672.10	32.0030578	-103.9548087
16,100.00	90.00	183.12	10,139.00	-5,737.30	511.02	364,957.39	658,666.66	32.0027833	-103.9548274
16,200.00	90.00	183.12	10,139.00	-5,837.15	505.58	364,857.54	658,661.21	32.0025089	-103.9548461
16,300.00	90.00	183.12	10,139.00	-5,937.00	500.13	364,757.69	658,655.77	32.0022345	-103.9548648
16,400.00	90.00	183.12	10,139.00	-6,036.85	494.69	364,657.84	658,650.32	32.0019600	-103.9548835
16,500.00	90.00	183.12	10,139.00	-6,136.71	489.24	364,557.99	658,644.88	32.0016856	-103.9549022
16,600.00	90.00	183.12	10,139.00	-6,236.56	483.80	364,458.13	658,639.43	32.0014112	-103.9549209
16,700.00	90.00	183.12	10,139.00	-6,336.41	478.35	364,358.28	658,633.99	32.0011367	-103.9549395
16,800.00	90.00	183.12	10,139.00	-6,436.26	472.91	364,258.43	658,628.54	32.0008623	-103.9549582
16,900.00	90.00	183.12	10,139.00	-6,536.11	467.46	364,158.58	658,623.10	32.0005879	-103.9549769
17,000.00	90.00	183.12	10,139.00	-6,635.96	462.02	364,058.73	658,617.65	32.0003134	-103.9549956
17,026.01	90.00	183.12	10,139.00	-6,661.94	460.60	364,032.75	658,616.24	32.0002420	-103.9550005
TD at 170	026.01								

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
POP 2 (413H) 50'FNL, 2 - plan misses targe - Point		0.00 .66usft at 0.0	0.00 00usft MD (0	398.35 .00 TVD, 0.00	845.52 N, 0.00 E)	371,093.04	659,001.16	32.0196466	-103.9536788
FTP 2 (413H) 100'FNL - plan misses targe - Point		0.00 .94usft at 0.0	0.00 00usft MD (0	348.36 .00 TVD, 0.00	842.78 N, 0.00 E)	371,043.05	658,998.42	32.0195092	-103.9536882
BHL 2 (413H) 50'FSL, 2 - plan hits target ce - Point		0.01	10,139.00	-6,661.94	460.60	364,032.75	658,616.24	32.0002420	-103.9550005
LTP 2 (413H) 100'FSL, - plan misses targe - Point			10,139.00 5.81usft MD	-6,611.91 (10139.00 TV	465.11 'D, -6611.81 N	364,082.79 , 463.33 E)	658,620.74	32.0003795	-103.9549854

Planning Report - Geographic

Database: EDM r5000.16_Prod US

Company: WPX Energy Permian, LLC

Project: Eddy NM
Site: Steel Guitar East

Wellbore:

Well: Steel Guitar 35-26-29 Fed Com 413H

Permit Wellbore #1

Design: Plan 1 (2480'FEL) WC A Upper

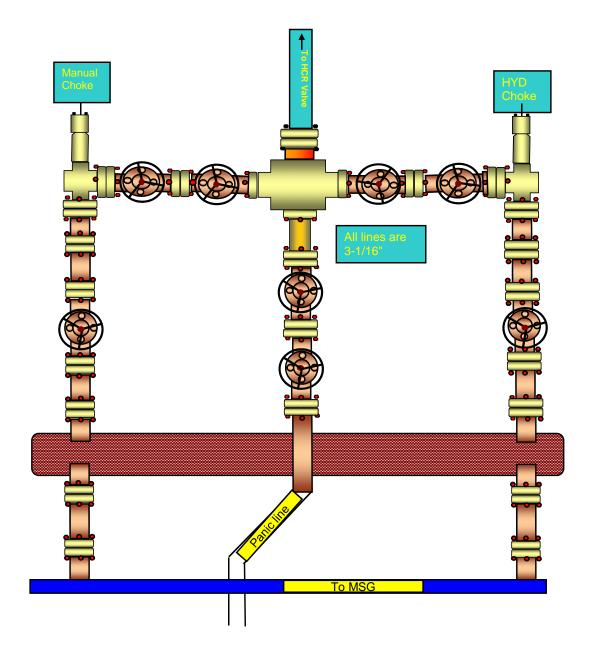
Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

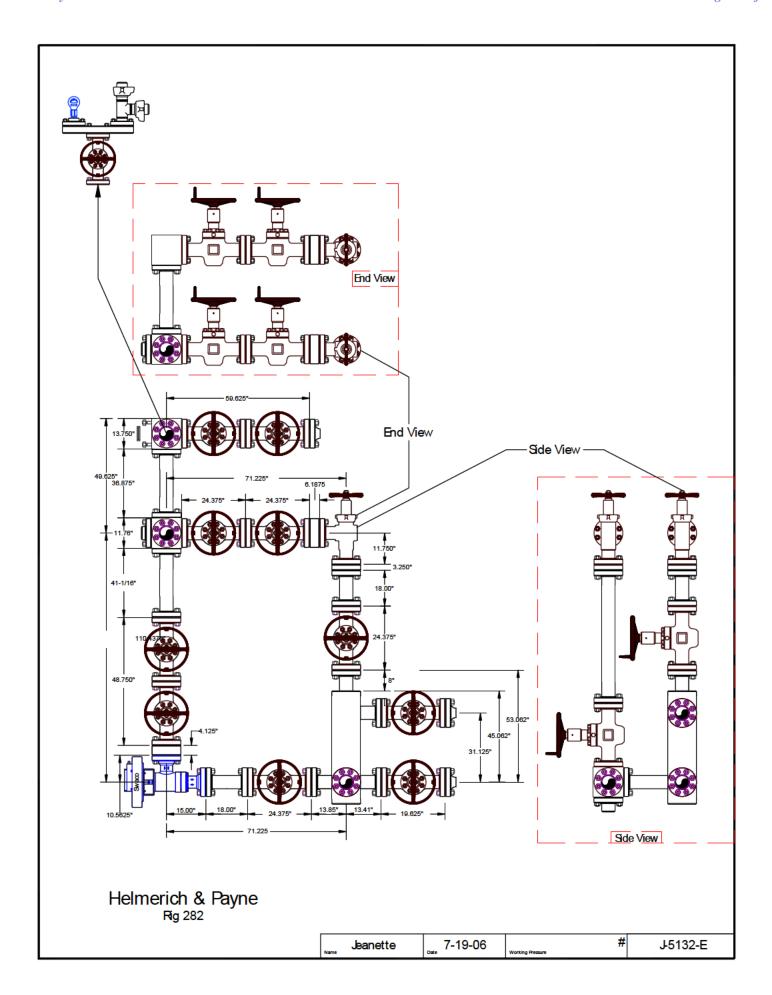
Survey Calculation Method:

Well Steel Guitar 35-26-29 Fed Com

413H Permit


GL:2892+27ft @ 2919.00usft (H&P 314) GL:2892+27ft @ 2919.00usft (H&P 314)

Grid


nations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	448.00	448.00	Rustler			
	880.00	880.00	Salado			
	1,323.00	1,323.00	Castile (Top of Salt) (Est.)			
	3,036.01	3,029.00	Bell Canyon (Base of Salt)			
	4,085.58	4,069.00	Cherry Canyon			
	5,184.61	5,158.00	Brushy Canyon			
	6,804.39	6,763.00	Bone Spring			
	6,901.28	6,859.00	Avalon Upper			
	7,395.79	7,349.00	Avalon Lower			
	7,738.92	7,689.00	1st Bone Spring Sand			
	8,047.74	7,995.00	2nd Bone Spring Lime			
	8,367.66	8,312.00	2nd Bone Spring Sand			
	8,834.92	8,775.00	3rd Bone Spring Lime			
	9,183.03	9,121.00	Harkey Sandstone			
	9,651.11	9,589.00	3rd Bone Spring Sand			
	10,018.64	9,927.00	Wolfcamp Top			
	10,052.97	9,953.00	Wolfcamp X			
	10,170.57	10,031.00	Wolfcamp Y			
	10,221.73	10,059.00	Wolfcamp A			
	10,401.22	10,125.00	Top Target			
	10,528.14	10,139.00	Landing Point			

Plan Annotations				
Measured	Vertical	Local Coord	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
2,010.00	2,010.00	0.00	0.00	Start Build 2.00
2,397.29	2,396.12	11.14	23.65	Hold
8,944.81	8,883.88	387.26	821.95	EOH
9,332.10	9,270.00	398.40	845.60	Vertical
9,628.14	9,566.04	398.40	845.60	KOP @ 9628.14'MD
10,528.14	10,139.00	-173.71	814.40	Landing Point @10528.14'MD
17,026.01	10,139.00	-6,661.94	460.60	TD at 17026.01

5M Choke Manifold

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: WPX Energy Permian LLC

LEASE NO.: | NMNM19609

WELL NAME & NO.: | Steel Guitar 35-26-29 Federal Com 413H

SURFACE HOLE FOOTAGE: 455'/N & 2096'/W **BOTTOM HOLE FOOTAGE** 50'/S & 2410'/E

LOCATION: | Section 26, T.26 S., R.29 E., NMPM

COUNTY: Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	C Low	• Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	© Flex Hose	Other Other
Wellhead	Conventional	• Multibowl	© Both
Other	☐ 4 String Area	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	▼ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** Formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 501 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

Page 1 of 8
STEEL GUITAR 35-26-29 FEDERAL COM #413H

Released to Imaging: 8/19/2022 1:25:54 PM Approval Date: 08/06/2021

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **9-5/8 inch** intermediate 1 casing and shall be set at approximately **3,225 feet** is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the **7 inch** intermediate 2 casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 4. The minimum required fill of cement behind the **4-1/2 inch** production liner with a tie back into the previous casing at approximately **9,724 feet** is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

THE PRODUCTION LINER HAS AN EXCESS OF 20%. ADDITIONAL CEMENT MAY BE NEEDED.

Page 2 of 8
STEEL GUITAR 35-26-29 FEDERAL COM #413H

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Page 3 of 8 **STEEL GUITAR 35-26-29 FEDERAL COM #413H**

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575)
 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)
 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 4 of 8
STEEL GUITAR 35-26-29 FEDERAL COM #413H

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

Page 5 of 8 STEEL GUITAR 35-26-29 FEDERAL COM #413H

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

Page 6 of 8
STEEL GUITAR 35-26-29 FEDERAL COM #413H

- lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 7 of 8
STEEL GUITAR 35-26-29 FEDERAL COM #413H

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

YJ (07/30/2021)

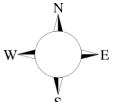
Approval Date: 08/06/2021

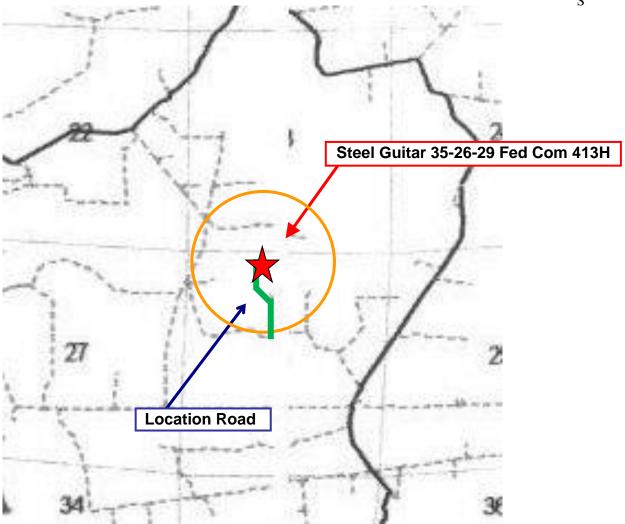
WPX Energy Permian, LLC

3500 One Williams Center Tulsa, Oklahoma 74172

Hydrogen Sulfide (H₂S) Contingency Plan

For


Steel Guitar 35-26-29 Fed Com 413H


Sec-26 T-26S R-29E 455' FNL & 2096' FWL LAT. = 32.0185597' N (NAD83) LONG = 103.9564114' W

Eddy County NM

Steel Guitar 35-26-29 Fed Com 413H

This is an open drilling site. H_2S monitoring equipment and emergency response equipment will be used within 500' of zones known to contain H_2S , including warning signs, wind indicators and H_2S monitor.

Assumed 100 ppm ROE = 3000' (Radius of Exposure)
100 ppm H2S concentration shall trigger activation of this plan.

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. There are no homes or buildings in or near the ROE.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- · Have received training in the
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Characteristics of H₂S and SO₂

7.10.10.10.10.10.10.10.10.10.10.10.10.10.					
Common	Chemical	Specific	Threshold	Hazardous	Lethal
Name	Formula	Gravity	Limit	Limit	Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm

Contacting Authorities

WPX Energy Permian personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. WPX Energy Permian Company response must be in coordination with

the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H₂S zone (within 3 days or 500 feet) and weekly H₂S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H₂S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H₂S.

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
- Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

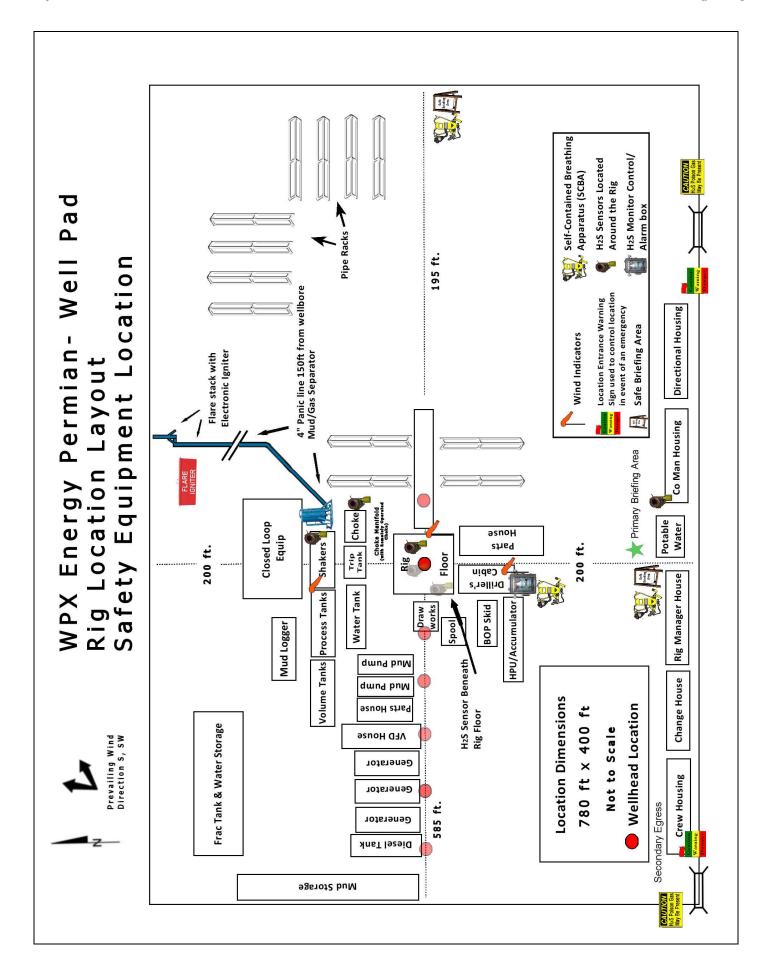
5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:


- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

WPX Ener	gy Permian. Company Call List		
Drilling Su	pervisor – Keith Jordan	601-431-3739	
	lan Ensell		
EHS Profe	719-761-2440 405-439-8129		
Agency	Call List		
<u>Lea</u>	Hobbs		
County	Lea County Communication Authority	393-3981	
<u>(575)</u>	State Police	392-5588	
	City Police	397-9265	
	Sheriff's Office	393-2515	
	Ambulance	911	
	Fire Department	397-9308	
	LEPC (Local Emergency Planning Committee)	393-2870	
	NMOCD	393-6161	
	US Bureau of Land Management	393-3612	
Eddy	Carlsbad		
County	State Police	885-3137	
(575)	City Police	885-2111	
	Sheriff's Office	887-7551	
	Ambulance	911	
	Fire Department	885-3125	
	LEPC (Local Emergency Planning Committee)	887-3798	
	US Bureau of Land Management	887-6544	
	NM Emergency Response Commission (Santa Fe)	(505) 476-9600	
	24 HR	(505) 827-9126	
	National Emergency Response Center	(800) 424-8802	
	National Pollution Control Center: Direct	(703) 872-6000	
	For Oil Spills	(800) 280-7118	
	Emergency Services	(,	
	Wild Well Control	(281) 784-4700	
	Cudd Pressure Control (915) 699-0139	(915) 563-3356	
	Halliburton	(575) 746-2757	
	B. J. Services	(575) 746-3569	
Give	Native Air – Emergency Helicopter – Hobbs (TX & NM)	(800) 642-7828	
GPS	Flight For Life - Lubbock, TX	(806) 743-9911	
position:	Aerocare - Lubbock, TX	(806) 747-8923	
	Med Flight Air Amb - Albuquerque, NM	(575) 842-4433	
	Lifeguard Air Med Svc. Albuquerque, NM	(800) 222-1222	
	Poison Control (24/7)	(575) 272-3115	
	Oil & Gas Pipeline 24 Hour Service	(800) 364-4366	
	NOAA – Website - www.nhc.noaa.gov	(222) 201 .000	

Prepared in conjunction with

Dave Small

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 135241

COMMENTS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	135241
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

COMMENTS

Created By		Comment Date
kpickford	Defining well	8/19/2022

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 135241

CONDITIONS

Operator:	OGRID:
WPX Energy Permian, LLC	246289
Devon Energy - Regulatory	Action Number:
Oklahoma City, OK 73102	135241
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
kpickford	Notify OCD 24 hours prior to casing & cement	8/19/2022
kpickford	Will require a File As Drilled C-102 and a Directional Survey with the C-104	8/19/2022
kpickford	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	8/19/2022
kpickford	Cement is required to circulate on both surface and intermediate1 strings of casing	8/19/2022
kpickford	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	8/19/2022