Received by WCD.Sv27/2023 12:04:56 PM		Sundry Print Report
U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		01/27/2023
Well Name: RODEO UNIT	Well Location: T23N / R9W / SEC 25 / SESW / 36.191179 / -107.744868	County or Parish/State: SAN JUAN / NM
Well Number: 512H	Type of Well: OIL WELL	Allottee or Tribe Name: EASTERN NAVAJO
Lease Number: N0G13121859	Unit or CA Name:	Unit or CA Number: NMNM136328A, NMNM136328X
US Well Number: 3004535874	Well Status: Approved Application for Permit to Drill	Operator: ENDURING RESOURCES LLC

Notice of Intent

Sundry ID: 2712767

Type of Submission: Notice of Intent

Date Sundry Submitted: 01/26/2023

Date proposed operation will begin: 01/26/2023

Type of Action: APD Change Time Sundry Submitted: 03:45

Procedure Description: Enduring Resources requests to change the HSU of the Rodeo Unit 512H well per the attached updated C-102 plat. The dedicated acreage will change from 1121.69 acres to 799.96 acres. See the attached documents for details.

NOI Attachments

Procedure Description

Rodeo_Unit__512H_Detailed_As_Drilled_C_102_Plat___signed_KS_20230126154420.pdf

Enduring_Rodeo__512H_svys_dec2022_20230126105300.pdf

RODU_512H_WBD_11082022_20230126105254.pdf

RODU_512H_Drilling_Package_11082022_20230126105256.pdf

Received by OCD: 1/27/2023 12:04:56 PM Well Name: RODEO UNIT	Well Location: T23N / R9W / SEC 25 / SESW / 36.191179 / -107.744868	County or Parish/State: SAN
Well Number: 512H	Type of Well: OIL WELL	Allottee or Tribe Name: EASTERN NAVAJO
Lease Number: N0G13121859	Unit or CA Name:	Unit or CA Number: NMNM136328A, NMNM136328X
US Well Number: 3004535874	Well Status: Approved Application for Permit to Drill	Operator: ENDURING RESOURCES LLC

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: KAYLA WHITE

Signed on: JAN 26, 2023 03:44 PM

Name: ENDURING RESOURCES LLC

Title: Staff Engineer

Street Address: 9446 CLERMONT ST

City: THORNTON

State: CO

State:

Phone: (720) 768-3575

Email address: KWHITE@CDHCONSULT.COM

Field

Representative Name: Street Address: City: Phone: Email address:

Zip:

М-9-М R-8-W

LOT 6

LAT: 36.172788 °N

Released to Imaging: 1777(2023 1333:13 PM

LAT: 36.172638 °N LONG: 107.723110 °W DATUM: NAD1983

DWARDS 15269

6

Released to Imaging: 1777(2023 1333:13 PM

6

Released to Imaging: 127(2025) 13 PM

(A) 2642' FNL 1447' FEL SEC 36, T23N, R9W LAT: 36.183372 °N LONG: 107.735788 °W DATUM: NAD1927

LAT: 36.183385 °N LONG: 107.736401 °W DATUM: NAD1983

(B) 1196' FSL 0' FEL SEC 36, T23N, R9W LAT: 36.179392 °N LONG: 107.730877 °W DATUM: NAD1927

LAT: 36.179406 °N LONG: 107.731490 °W DATUM: NAD1983 (C) 1196' FSL 0' FWL SEC 31, T23N, R8W LAT: 36.179392 °N LONG: 107.730877 °W DATUM: NAD1927

LAT: 36.179406 °N LONG: 107.731490 °W DATUM: NAD1983

(D) 0' FSL 1197' FWL SEC 31, T23N, R8W LAT: 36.176099 °N LONG: 107.726814 °W DATUM: NAD1927

LAT: 36.176113 °N LONG: 107.727427 °W DATUM: NAD1983 (E) O' FNL 1197' FWL SEC 6, T22N, R8W LAT: 36.176099 °N LONG: 107.726814 °W DATUM: NAD1927

LAT: 36.176113 °N LONG: 107.727427 °W DATUM: NAD1983

Released to Imaging: 1/27/2023 1:44:13 PM

Survey Report

Company: Project: Site: Well: Wellbore: Design:	Enduring Resourc San Juan County, Rodeo Unit 511 pa Rodeo Unit #512H Original Hole Surveys Original H	es LLC New Mexico N Id (511, 512 & I Hole	IAD83 NM W 513)	Local Co-ordi TVD Reference MD Reference North Referen Survey Calcul Database:	nate Reference: e: e: nce: lation Method:	Well Rodeo Unit #5 RKB=6798+13 @ 6 RKB=6798+13 @ 6 Grid Minimum Curvature DB_Decv0422v16	512H 5811.00ft (Ensign 145) 5811.00ft (Ensign 145)
Project	San Juan Co	unty, New Mex	ico NAD83 NM W				
Map System: Geo Datum: Map Zone:	US State Plane North Americar New Mexico W	e 1983 n Datum 1983 'estern Zone		System Date	um:	Mean Sea Level	
Site	Rodeo Unit 5	11 pad (511, 5	12 & 513)				1
Site Position: From: Position Uncertair	Lat/Long	0.00 ft	Northing: Easting: Slot Radius:	1,888,89 2,749,21 1:	98.347 usft Latitu 5.362 usft Longi 3-3/16 "	de: tude:	36.191179000 -107.744800000
Well	Rodeo Unit #	512H, Surf loc:	191 FSL 1345 FWL	Section 25-T23N-	R09W		
Well Position Position Uncertair Grid Convergence	+N/-S +E/-W nty	0.00 ft 0.00 ft 0.00 ft 0.05 °	Northing: Easting: Wellhead Ele	1 2 vation:	1,888,898.328 usft 2,749,195.297 usft ft	Latitude: Longitude: Ground Level:	36.191179000 -107.744868000 6,798.00 ft
Wellbore	Original Hole)					1
Magnetics	Model Na	ame	Sample Date	Declinat (°)	tion	Dip Angle (°)	Field Strength (nT)
	IG	RF2020	11/18/2022		8.65	62.69	49,142.14064790
Design	Surveys Origi	inal Hole					
Audit Notes:							
Version:	1.0		Phase:	ACTUAL	Tie On De	epth:	0.00
Vertical Section:		Depth	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Dire	ection (°)
			0.00	0.00	0.00		135.000
Survey Program From (ft)	To (ft)	Date 12/2 Survey (Welli	0/2022 Dore)	Тос	ol Name	Description	
412.0 2,697.0 13,793.0	2,632.00 13,728.00 13,793.00	MWD surf (Or MWD (Origina Projection (Or	iginal Hole) al Hole) iginal Hole)		/D /D /D	OWSG MWD - Sta OWSG MWD - Sta OWSG MWD - Sta	andard andard andard
Survey							

Vertical Vertical Build Measured Dogleg Turn Depth Inclination Azimuth Depth +N/-S +E/-W Section Rate Rate Rate (°/100ft) (ft) (ft) (ft) (°/100ft) (°/100ft) (ft) (ft) (°) (°) 0.00 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 412.00 0.42 208.180 412.00 -1.33 -0.71 0.44 0.10 0.10 0.00 MWD surveys 503.00 0.46 209.440 502.99 -1.94 -1.05 0.63 0.05 0.04 1.38 594.00 0.56 209.460 593.99 -2.65 0.85 0.11 0.11 0.02 -1.45 685.00 0.55 223.010 684.99 -3.36 -1.97 0.98 0.14 -0.01 14.89 776.00 0.52 775.98 -3.98 -2.54 1.02 0.04 -0.03 221.260 -1.92 866.00 0.58 229.750 865.98 -4.59 -3.15 1.01 0.11 0.07 9.43

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn	
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)	
957.00	0.61	226.260	956.97	-5.22	-3.85	0.97	0.05	0.03	-3.84	
1,051.00	0.64	231.020	1,050.97	-5.89	-4.62	0.90	0.06	0.03	5.06	
1,146.00	0.77	239.210	1,145,96	-6.56	-5.58	0.69	0.17	0.14	8.62	
1,240.00	0.82	240.770	1,239.95	-7.21	-6.71	0.35	0.06	0.05	1.66	
1,334.00	0.89	235.980	1,333.94	-7.94	-7.91	0.03	0.11	0.07	-5.10	
1,429.00	0.87	232.420	1,428.93	-8.80	-9.09	-0.21	0.06	-0.02	-3.75	
1,523.00	2.77	245.820	1,522.88	-10.16	-11.73	-1.11	2.06	2.02	14.26	
1,617.00	5.73	247.590	1,616.61	-12.88	-18.14	-3.72	3.15	3.15	1.88	
1 712 00	0.24	245 520	1 710 78	17.85	20 17	8 21	3 71	3 60	2 1 8	
1,712.00	12.68	246 380	1,710.70	-25.12	-45 79	-14.62	3.66	3.66	0.91	
1,000.00	13.66	246.830	1,000.00	-33.62	-45.75	-14.02	1.05	1.04	0.48	
1,900.00	13.00	246.030	1,094.00	-42.41	-05.45	-22.51	0.28	-0.21	0.40	
2 089 00	12.40	246.130	2,078,56	-42.41	104 00	-30.30	1 10	-0.21	-0.74	
2,005.00	12.50	243.000	2,070.50	-51.10	-104.55	-30.04	1.15	-1.10	-1.15	
2,183.00	12.35	245.500	2,170.38	-59.60	-123.25	-45.01	0.11	-0.01	0.53	
2,277.00	11.72	242.890	2,262.32	-68.12	-140.90	-51.46	0.89	-0.67	-2.78	
2,371.00	11.72	242.220	2,354.36	-76.92	-157.84	-57.22	0.14	0.00	-0.71	
2,466.00	11.46	242.490	2,447.42	-85.78	-174.75	-62.91	0.28	-0.27	0.28	
2,560.00	11.32	240.630	2,539.57	-94.62	-191.07	-68.20	0.42	-0.15	-1.98	
2,632.00	11.15	240.460	2,610.19	-101.51	-203.29	-71.96	0.24	-0.24	-0.24	
2,683.00	11.21	239.588	2,660.22	-106.46	-211.85	-74.53	0.35	0.12	-1.71	
9 5/8" Casin	g @ 2683 MD 26	60.22 TVD								
2,697.00	11.23	239.350	2,673.95	-107.84	-214.20	-75.21	0.35	0.13	-1.70	
2,791.00	10.02	234.740	2,766.34	-117.23	-228.75	-78.86	1.57	-1.29	-4.90	
2,886.00	6.61	232.470	2,860.33	-125.33	-239.84	-80.97	3.61	-3.59	-2.39	
2.981.00	3.43	234.620	2.954.95	-130.31	-246.49	-82.16	3.35	-3.35	2.26	
3.075.00	0.46	154.720	3.048.90	-132.28	-248.63	-82.27	3.60	-3.16	-85.00	
3,169.00	0.90	121,140	3.142.89	-133.00	-247.83	-81.20	0.61	0.47	-35.72	
3,263.00	0.57	111.650	3.236.88	-133.56	-246.77	-80.05	0.37	-0.35	-10.10	
3.357.00	0.65	160.050	3,330.88	-134.23	-246.15	-79.14	0.54	0.09	51.49	
3,451.00	0.58	169.810	3,424.87	-135.20	-245.88	-78.27	0.13	-0.07	10.38	
3,546.00	0.57	201.200	3,519.87	-136.11	-245.97	-77.68	0.33	-0.01	33.04	
3,640.00	0.56	214.990	3,613.86	-136.93	-246.40	-77.41	0.14	-0.01	14.67	
3,735.00	0.64	198.530	3,708.86	-137.81	-246.84	-77.09	0.20	0.08	-17.33	
3,829.00	0.68	210.290	3,802.85	-138.79	-247.29	-76.72	0.15	0.04	12.51	
3 924 00	0.58	222 580	3 897 84	-139.63	-247 89	-76 56	0.18	-0 11	12 94	
4 018 00	0.85	210 320	3 991 84	-140 58	-248 57	-76.36	0.33	0.29	-13.04	
4 049 00	0.74	210.820	4 022 83	-140.95	-248 79	-76.25	0.36	-0.35	1 61	
4,040.00	1 79	152 490	4 053 83	-141.55	-248.67	-75 74	4 96	3 39	-188 16	
4 111 00	4.81	139 150	4 084 77	-142 97	-247 59	-73.98	9.99	9 74	-43.03	
4,111.00	4.01	100.100	1,004.11	1 12.01	247.00	70.00	0.00	0.74	10.00	
4,143.00	8.25	134.470	4,116.56	-145.59	-245.08	-70.35	10.87	10.75	-14.63	
4,174.00	11.19	129.470	4,147.11	-149.06	-241.17	-65.13	9.86	9.48	-16.13	
4,205.00	14.05	126.790	4,177.36	-153.23	-235.83	-58.41	9.41	9.23	-8.65	
4,236.00	17.38	126.780	4,207.20	-158.25	-229.11	-50.10	10.74	10.74	-0.03	
4,268.00	20.24	127.610	4,237.49	-164.50	-220.89	-39.88	8.98	8.94	2.59	

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
4,299.00	22.96	128.460	4,266.31	-171.53	-211.91	-28.55	8.83	8.77	2.74
4,331.00	26.15	129.760	4,295.41	-179.92	-201.60	-15.32	10.11	9.97	4.06
4,362.00	29.23	130.840	4,322.86	-189.25	-190.62	-0.97	10.07	9.94	3.48
4,393.00	32.13	131.960	4,349.51	-199.71	-178.76	14.82	9.53	9.35	3.61
4,425.00	35.69	132.300	4,376.07	-211.68	-165.52	32.64	11.14	11.13	1.06
									- 1-
4,456.00	39.10	131.630	4,400.69	-224.27	-151.52	51.44	11.08	11.00	-2.16
4,488.00	42.34	130.870	4,424.94	-238.03	-135.83	12.27	10.24	10.13	-2.38
4,519.00	46.19	130.220	4,447.14	-252.09	-119.38	93.83	12.51	12.42	-2.10
4,551.00	49.80	129.610	4,468.55	-267.34	-101.15	117.52	11.37	11.28	-1.91
4,582.00	53.49	129.370	4,487.78	-282.79	-82.39	141./1	11.92	11.90	-0.77
4 614 00	56 45	129 200	4,506,15	-299.38	-62 11	167 78	9.26	9 25	-0.53
4 645 00	59 21	129 200	4 522 65	-315 97	-41 78	193.88	8.90	8 90	0.00
4 677 00	60.19	129 230	4 538 80	-333 43	-20.37	221.37	3.06	3.06	0.09
4,077.00	60.20	129.030	4 554 20	-350.41	0.50	248 13	0.56	0.03	-0.65
4 739 00	61 70	129.600	4 569 26	-367 58	21.46	275.09	5 10	4 84	1 84
4,705.00	01.70	123.000	4,000.20	-507.50	21.40	275.05	5.10	4.04	1.04
4,771.00	64.07	131.130	4,583.84	-386.03	43.16	303.48	8.54	7.41	4.78
4,802.00	67.10	132.720	4,596.65	-404.89	64.15	331.66	10.83	9.77	5.13
4,833.00	70.72	133.020	4,607.81	-424.56	85.35	360.56	11.71	11.68	0.97
4,845.00	71.90	133.221	4,611.65	-432.33	93.64	371.92	9.94	9.81	1.67
330 perp @	4845 MD 4611.6	5 TVD							
4,846.12	72.01	133.240	4,612.00	-433.06	94.42	372.99	9.94	9.81	1.66
FTP @ 4840	6.12 MD 4612.00	TVD							
4,865.00	73.86	133.550	4,617.54	-445.46	107.53	391.03	9.94	9.81	1.64
4,897.00	76.62	134.100	4,625.69	-466.89	129.86	421.96	8.78	8.63	1.72
4,928.00	79.62	134.710	4,632.07	-488.11	151.53	452.29	9.87	9.68	1.97
4,959.00	81.55	135.570	4,637.14	-509.79	173.10	482.87	6.80	6.23	2.77
4,991.00	83.36	135.960	4,641.35	-532.52	195.23	514.59	5.78	5.66	1.22
5,022.00	85.21	135.880	4,644.43	-554.68	216.68	545.43	5.97	5.97	-0.26
5,054.00	86.78	135.590	4,646.67	-577.54	238.96	577.35	4.99	4.91	-0.91
5,085.00	87.87	135.400	4,648.11	-599.62	260.67	608.32	3.57	3.52	-0.61
5,148.00	88.96	135.530	4,649.86	-644.51	304.84	671.29	1.74	1.73	0.21
5,243.00	91.08	136.280	4,649.82	-712.73	370.94	766.27	2.37	2.23	0.79
E 007 00	00.07	105 110	1 0 10 0 1	700 47	100.14	000.00	4 70	4 50	0.00
5,337.00	89.67	135.410	4,649.21	-780.17	436.41	860.26	1.76	-1.50	-0.93
5,431.00	90.92	135.390	4,648.72	-847.10	502.41	954.25	1.33	1.33	-0.02
5,525.00	89.75	135.610	4,648.18	-914.14	568.30	1,048.24	1.27	-1.24	0.23
5,619.00	90.99	135.300	4,647.57	-981.13	634.23	1,142.24	1.36	1.32	-0.33
5,714.00	89.34	135.780	4,647.29	-1,048.94	700.77	1,237.23	1.81	-1.74	0.51
5 808 00	91 03	135 660	4 646 99	-1 116 23	766 30	1 331 22	1.80	1 80	-0.13
5 003 00	80.03	135.000	4 646 62	-1,110.23	832.65	1 426 20	1 71	-1.60	0.24
5,903.00	88.09	136 440	4 649 67	-1,104.01	807 7/	1,420.20	1.71	-1.03	0.59
5,997.00 6.001.00	00.00	136 500	4 651 16	-1 320 22	062.14	1 614 10	0.95	0.95	0.05
6 196 00	20.00	136.990	4,001.10	-1,320.22	1 027 62	1 709 05	1.06	0.00	0.40
0,100.00	09.01	130.000	7,002.20	-1,009.04	1,027.02	1,703.00	1.00	0.50	0.40
6,280.00	90.58	137.230	4.651.93	-1.458.15	1,091.66	1.802.98	0.90	0.82	0.37
0,200,00	00.00		.,501100	.,	.,	.,	0.00	0.02	

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn	
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)	
6,374.00	89.38	135.160	4,651.96	-1,525.98	1,156.72	1,896.96	2.55	-1.28	-2.20	
6,469.00	89.56	135.280	4,652.84	-1,593.41	1,223.63	1,991.95	0.23	0.19	0.13	
6,563.00	90.00	135.350	4,653.20	-1,660.25	1,289.73	2,085.95	0.47	0.47	0.07	
6,657.00	90.09	134.900	4,653.13	-1,726.86	1,356.06	2,179.95	0.49	0.10	-0.48	
6,752.00	90.03	134.290	4,653.03	-1,793.56	1,423.70	2,274.95	0.65	-0.06	-0.64	
6,846.00	91.19	134.550	4,652.03	-1,859.34	1,490.84	2,368.94	1.26	1.23	0.28	
6,940.00	89.38	134.810	4,651.56	-1,925.44	1,557.67	2,462.93	1.95	-1.93	0.28	
7,035.00	89.49	134.620	4,652.50	-1,992.27	1,625.18	2,557.92	0.23	0.12	-0.20	
7,130.00	90.59	134.340	4,652.43	-2,058.83	1,692.96	2,652.92	1.19	1.16	-0.29	
7,224,00	92 44	134 670	4 649 94	-2 124 70	1,759,97	2,746,88	2.00	1.97	0.35	
7,318.00	90.00	134,340	4,647,94	-2,190.57	1,826,99	2,840,84	2.62	-2.60	-0.35	
7 413 00	90.50	134 320	4 647 53	-2 256 96	1 894 95	2 935 84	0.53	0.53	-0.02	
7,110.00	90.50	133 480	4 646 71	-2 322 13	1,962,67	3 029 82	0.89	0.00	-0.89	
7,602.00	91.52	133 720	4 645 03	-2 387 63	2 031 46	3 124 77	1 10	1.07	0.05	
7,002.00	51.52	100.720	4,040.00	-2,007.00	2,001.40	5,124.11	1.10	1.07	0.20	
7,696.00	90.02	134.880	4,643.77	-2,453.28	2,098.72	3,218.75	2.02	-1.60	1.23	
7,790.00	90.83	135.210	4,643.07	-2,519.79	2,165.14	3,312.75	0.93	0.86	0.35	
7,884.00	91.49	135.110	4,641.17	-2,586.43	2,231.41	3,406.73	0.71	0.70	-0.11	
7,979.00	88.90	134.510	4,640.85	-2,653.38	2,298.80	3,501.72	2.80	-2.73	-0.63	
8,073.00	89.03	133.790	4,642.55	-2,718.84	2,366.23	3,595.69	0.78	0.14	-0.77	
0.400.00	00.00	100.010	1 2 1 2 2 1	0 704 47	0.101.01	0 000 00	0.70		0.10	
8,168.00	89.69	133.610	4,643.61	-2,784.47	2,434.91	3,690.66	0.72	0.69	-0.19	
8,262.00	90.68	135.740	4,643.30	-2,850.56	2,501.75	3,784.65	2.50	1.05	2.27	
8,356.00	89.37	135.800	4,643.26	-2,917.91	2,567.32	3,878.64	1.40	-1.39	0.06	
8,450.00	89.29	135.040	4,644.36	-2,984.86	2,633.29	3,972.63	0.81	-0.09	-0.81	
8,545.00	90.22	133.780	4,044.77	-3,051.34	2,701.15	4,067.62	1.00	0.98	-1.33	
8,639.00	91.43	133.700	4,643.41	-3,116.32	2,769.06	4,161.59	1.29	1.29	-0.09	
8,733.00	88.74	134.840	4,643.27	-3,181.93	2,836.36	4,255.57	3.11	-2.86	1.21	
8,827.00	90.42	135.640	4,643.96	-3,248.67	2,902.54	4,349.56	1.98	1.79	0.85	
8,922.00	88.86	135.270	4,644.56	-3,316.37	2,969.18	4,444.56	1.69	-1.64	-0.39	
9,016.00	88.16	134.000	4,647.00	-3,382.39	3,036.04	4,538.52	1.54	-0.74	-1.35	
0 110 00	90.12	122 690	4 640 22	2 4 4 7 4 9	2 102 92	4 620 47	1.00	1.02	0.24	
9,110.00	09.13	135.060	4,049.23	-3,447.40	3,103.62	4,032.47	1.09	1.03	-0.34	
9,205.00	00.07	135.000	4,050.09	-3,514.37	3,171.23	4,727.43	2.31	-0.27	2.29	
9,299.00	09.40	135.790	4,052.24	-3,301.70	3,230.75	4,021.43	0.05	0.05	-0.07	
9,393.00	91.09	136.150	4,651.77	-3,649.36	3,302.08	4,915.41	1.76	1.71	0.38	
9,488.00	92.17	136.590	4,649.07	-3,718.10	3,367.60	5,010.35	1.23	1.14	0.46	
9,583.00	93.40	135.450	4,644.45	-3,786.37	3,433.49	5,105.22	1.76	1.29	-1.20	
9,677.00	91.21	135.080	4,640.67	-3,853.09	3,499.59	5,199.13	2.36	-2.33	-0.39	
9,772.00	89.23	133.050	4,640.31	-3,919.15	3,567.85	5,294.11	2.98	-2.08	-2.14	
9,866.00	88.83	133.450	4,641.90	-3,983.55	3,636.31	5,388.05	0.60	-0.43	0.43	
9,961.00	91.19	135.360	4,641.88	-4,050.02	3,704.17	5,483.04	3.20	2.48	2.01	
10.055.00	00.44	404.000	4 000 04	4 440 54	0 770 54	F F70 00		4.00	0.00	
10,055.00	92.44	134.800	4,038.91	-4,116.54	3,770.51	5,576.99	1.46	1.33	-0.60	
10,150.00	93.62	134.260	4,033.88	-4,183.07	3,838.13	5,6/1.85	1.37	1.24	-0.57	
10,243.00	91.46	134.960	4,029.70	-4,248.31	3,904.27	5,764.75	2.44	-2.32	0.75	
10,338.00	89.78	135.350	4,028.73	-4,315.66	3,9/1.26	5,859.74	1.82	-1.//	0.41	
10,433.00	90.50	135.820	4,028.50	-4,383.52	4,037.74	5,954.73	0.91	0.76	0.49	

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	(°/100ft)	(°/100ft)
10,527.00	90.01	136.050	4,628.08	-4,451.06	4,103.12	6,048.72	0.58	-0.52	0.24
10,622.00	90.58	135.900	4,627.60	-4,519.37	4,169.14	6,143.70	0.62	0.60	-0.16
10,716.00	89.64	134.950	4,627.41	-4,586.33	4,235.11	6,237.70	1.42	-1.00	-1.01
10,810.00	90.12	134.880	4,627.61	-4,652.70	4,301.68	6,331.70	0.52	0.51	-0.07
10,905.00	90.51	134.390	4,627.09	-4,719.44	4,369.28	6,426.69	0.66	0.41	-0.52
10,999.00	88.44	134.220	4,627.95	-4,785.09	4,436.54	6,520.68	2.21	-2.20	-0.18
11,094.00	89.03	134.210	4,630.05	-4,851.32	4,504.61	6,615.65	0.62	0.62	-0.01
11,188.00	91.66	135.660	4,629.48	-4,917.71	4,571.15	6,709.63	3.19	2.80	1.54
11,283,00	89.91	135,530	4,628,18	-4,985.57	4.637.61	6.804.62	1.85	-1.84	-0.14
11,377.00	90.72	136.730	4,627.66	-5,053.33	4,702.75	6,898.59	1.54	0.86	1.28
11.471.00	90.03	136.110	4,627.05	-5.121.42	4,767,55	6.992.56	0.99	-0.73	-0.66
11,566.00	90.94	136,410	4.626.24	-5,190.06	4.833.23	7.087.53	1.01	0.96	0.32
11 660 00	90.84	135,970	4 624 78	-5 257 88	4 898 30	7 181 50	0.48	-0.11	-0.47
11 755 00	89.32	135 790	4 624 65	-5 326 08	4 964 43	7 276 49	1.61	-1.60	-0.19
11,849.00	89.55	135.610	4,625.58	-5,393.35	5,030.08	7,370.48	0.31	0.24	-0.19
11 944 00	90.62	135 610	4 625 44	-5 461 24	5 096 53	7 465 47	1 13	1 13	0.00
12 037 00	80.52	135,680	4,025,28	-5,401.24	5 161 55	7,558.46	1.13	1.13	0.00
12,037.00	00.57	136.000	4,025.20	-5,527.75	5,101.55	7,550.40	1.12	-1.12	0.08
12,132.00	90.57	136.140	4,025.15	-5,595.96	5,227.05	7,055.45	1.15	1.04	0.46
12,220.00	09.41	135.290	4,025.17	-5,003.20	5,293.20	7,747.44	1.55	-1.23	-0.90
12,321.00	89.96	134.960	4,020.09	-5,730.58	5,300.31	7,842.44	0.68	0.58	-0.35
12,415.00	88.37	134.620	4,627.06	-5,796.79	5,427.01	7,936.42	1.73	-1.69	-0.36
12,509.00	91.16	135.820	4,627.44	-5,863.50	5,493.21	8,030.41	3.23	2.97	1.28
12,604.00	89.19	135.150	4,627.15	-5,931.24	5,559.81	8,125.40	2.19	-2.07	-0.71
12,698.00	91.08	134.670	4,626.93	-5,997.60	5,626.38	8,219.40	2.07	2.01	-0.51
12,793.00	89.68	135.290	4,626.30	-6,064.75	5,693.58	8,314.39	1.61	-1.47	0.65
12,888.00	91.30	136.280	4,625.49	-6,132.83	5,759.82	8,409.37	2.00	1.71	1.04
12,982.00	89.00	134.210	4,625.24	-6,199.58	5,825.99	8,503.36	3.29	-2.45	-2.20
13,077.00	87.45	133.120	4,628.19	-6,265.13	5,894.68	8,598.29	1.99	-1.63	-1.15
13,171.00	89.62	133.070	4,630.59	-6,329.33	5,963.29	8,692.20	2.31	2.31	-0.05
13,265.00	90.12	132.450	4,630.80	-6,393.15	6,032.31	8,786.13	0.85	0.53	-0.66
13,360.00	90.54	131.880	4,630.26	-6,456.92	6,102.72	8,881.01	0.75	0.44	-0.60
13,454.00	90.60	130.540	4,629.32	-6,518.84	6,173.43	8,974.79	1.43	0.06	-1.43
13,548.00	90.06	132.030	4,628.78	-6,580.86	6,244.06	9,068.59	1.69	-0.57	1.59
13,643.00	90.64	131.840	4,628.20	-6,644.35	6,314.73	9,163.45	0.64	0.61	-0.20
13,709.40	91.07	131.012	4,627.21	-6,688.28	6.364.51	9,229.72	1.40	0.65	-1.25
LTP @ 1370	9.40 MD 4627.21	TVD	.,	0,000120	0,001101			0.000	1110
13 713 00	91 09	130 967	4 627 14	-6 690 64	6 367 23	9 233 31	1 40	0.65	-1 25
330 perp @	13713 MD 4627 4		1,021.14	0,000.04	5,567.20	0,200.01	1.40	0.00	1.20
13,728.00	91.19	130.780	4,626.84	-6,700.45	6,378.57	9,248.27	1.40	0.65	-1.25
Survey @ 13	3728.00 MD 4626	.84 TVD							
13,793.00	91.19	130.780	4,625.49	-6,742.90	6,427.78	9,313.08	0.00	0.00	0.00
Survey Proi	to 13793.00 MD	4625.49 TVD							

Survey Report

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Design Annotations

Measured	Vertical	Local Coo	rdinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
412.00	412.00	-1.33	-0.71	MWD surveys
2,683.00	2,660.22	-106.46	-211.85	9 5/8" Casing @ 2683 MD 2660.22 TVD
4,845.00	4,611.65	-432.33	93.64	330 perp @ 4845 MD 4611.65 TVD
4,846.12	4,612.00	-433.06	94.42	FTP @ 4846.12 MD 4612.00 TVD
13,709.40	4,627.21	-6,688.28	6,364.51	LTP @ 13709.40 MD 4627.21 TVD
13,713.00	4,627.14	-6,690.64	6,367.23	330 perp @ 13713 MD 4627.14 TVD
13,728.00	4,626.84	-6,700.45	6,378.57	Survey @ 13728.00 MD 4626.84 TVD
13,793.00	4,625.49	-6,742.90	6,427.78	Survey Proj. to 13793.00 MD 4625.49 TVD

Survey Report - Geographic

Company: Project: Site: Well: Wellbore: Design:	Enduring Resource San Juan County, Rodeo Unit 511 pa Rodeo Unit #512H Original Hole Surveys Original H	es LLC New Mexico N d (511, 512 & 5 lole	AD83 NM W 513)	Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculati Database:	te Reference: : on Method:	Well Rodeo Unit #51: RKB=6798+13 @ 68 RKB=6798+13 @ 68 Grid Minimum Curvature DB_Decv0422v16	2H 11.00ft (Ensign 145) 11.00ft (Ensign 145)
Project Map System: Geo Datum: Map Zone:	US State Plane North Americar New Mexico W	unty, New Mexi e 1983 n Datum 1983 estern Zone	ICO NAD83 NM W	System Datum	:	Mean Sea Level	
Site	Rodeo Unit 5	11 pad (511, 51	2 & 513)				
Site Position: From: Position Uncertain	Lat/Long nty:	0.00 ft	Northing: Easting: Slot Radius:	1,888,898.3 2,749,215.3 13-3	347 usft Latitud 362 usft Longit /16 "Grid C	le: ude: onvergence:	36.191179000 -107.744800000 0.05 °
Well	Rodeo Unit #5	512H, Surf loc:	191 FSL 1345 FWL	. Section 25-T23N-R0	9W		
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:	1,88 2,74	38,898.328 usft 49,195.297 usft	Latitude: Longitude:	36.191179000 -107.744868000
Position Uncertain	nty	0.00 ft	Wellhead Ele	vation:	ft	Ground Level:	6,798.00 ft
Wellbore	Original Hole						
Magnetics	Model Na	ime	Sample Date	Declinatio (°)	n	Dip Angle (°)	Field Strength (nT)
	IG	RF2020	11/18/2022		8.65	62.69	49,142.14064790
Design	Surveys Origi	nal Hole					
Audit Notes:	ourreys ong	nul Holo					
Version:	1.0		Phase:	ACTUAL	Tie On De	oth:	0.00
Vertical Section:		Depth F	From (TVD) (ft)	+N/-S (ft)	+E/-W (ft)	Direc (°	tion)
			0.00	0.00	0.00		135.000
Survey Program From	То	Date 12/20)/2022				
(ft)	(ft)	Survey (Wellb	ore)	Tool N	lame	Description	

412.002,632.00 MWD surf (Original Hole)MWDOWSG MWD - Standard2,697.0013,728.00 MWD (Original Hole)MWDOWSG MWD - Standard13,793.0013,793.00 Projection (Original Hole)MWDOWSG MWD - Standard

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.00	0.00	0.000	0.00	0.00	0.00	1,888,898.328	2,749,195.297	36.191179000	-107.744868000
412.00	0.42	208.180	412.00	-1.33	-0.71	1,888,896.997	2,749,194.584	36.191175345	-107.744870421
MWD su	rveys								
503.00	0.46	209.440	502.99	-1.94	-1.05	1,888,896.385	2,749,194.247	36.191173664	-107.744871565
594.00	0.56	209.460	593.99	-2.65	-1.45	1,888,895.680	2,749,193.848	36.191171727	-107.744872917
685.00	0.55	223.010	684.99	-3.36	-1.97	1,888,894.973	2,749,193.332	36.191169788	-107.744874670
776.00	0.52	221.260	775.98	-3.98	-2.54	1,888,894.343	2,749,192.762	36.191168059	-107.744876605
866.00	0.58	229.750	865.98	-4.59	-3.15	1,888,893.742	2,749,192.145	36.191166409	-107.744878698
957.00	0.61	226.260	956.97	-5.22	-3.85	1,888,893.110	2,749,191.443	36.191164673	-107.744881077
1,051.00	0.64	231.020	1,050.97	-5.89	-4.62	1,888,892.433	2,749,190.673	36.191162817	-107.744883687

12/20/2022 3:05:18PM

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

the (1) <th>Measured Depth</th> <th>Inclination</th> <th>Azimuth</th> <th>Vertical Depth</th> <th>+N/-S</th> <th>+E/-W</th> <th>Map Northing</th> <th>Map Easting</th> <th></th> <th></th>	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
1,440,00 0.77 233.210 1,445.96 -65.68 1.588,491.773 2,743,193.713 351.191150105 -107,74489076 1,340,00 0.82 235,690 1,333.94 -7.24 -7.51 1.888,490.334 2,743,197.391 351.191155795 -107,74489076 1,429,00 0.77 245.820 1,522.88 -10.16 -11.73 1.888,480.180 2,743,193.570 361.19115456 -107,74490776 1,677,00 2,682.00 1,107.8 -12.88 -14.14 1.888,480.470 2,749,105.529 361.191150031 -107,74409074 1,984.00 1,366 2,462.50 1,107.8 -2.51.2 -4.67 1.888,467.12 2,749,105.329 361.191160811 -107,74609012 1,984.00 1,366 2,463.00 1,975.56 1.888,467.12 2,749,105.339 36.191162027 -107,7450916 -107,74609017 -107,74509161 -107,74609017 -107,74509161 -107,74609017 -107,74509161 -107,74509161 -107,74509165 -107,74509165 -107,74509161 -107,74509166 -107,74509166 -107,74509166 -107,74509166 -107,74509166 -107,74509166 -107,74509166 -107,745091	(π)	(°)	(°)	(π)	(ft)	(ft)	(usπ)	(usπ)	Latitude	Longitude
1,240.00 0.82 240.770 1,239.95 -7.21 -6.71 1,888.091.121 2,749.188.583 36.191152217 -107.744890718 1,429.00 0.87 232.420 1,428.93 -8.08 -9.09 1,888.808.53 2,749.185.570 36.191154857 -107.744890818 1,712.00 5.73 247.560 1,616.61 -12.88 -10.11 1,888.804.62 2,749.196.203 36.191154357 -107.744890818 1,712.00 5.73 247.560 1,616.61 -12.88 -16.14 1,888.804.76 2,749.196.523 36.191153356 -107.74469722 1,886.60 1.26 24.63.50 1,889.45 -18.88.673.21 2,749.196.523 36.191163257 -107.7451548916 1,984.00 3.46 24.63.50 2,713.86 -51.18 -10.89 1,888.437.23 2,749.190.331 36.19105274 -107.74522383 2,170.00 11.72 22.260 2,26.42.2 -2.64.52 -11.74 -10.88.82.1400 2,749.072.440 38.19096081 -107.74522383 2,171.00 11.72 24.26.90 2,64.92 -11.74 -18.88.22.1400 2,749.072.440 38	1,146.00	0.77	239.210	1,145.96	-6.56	-5.58	1,888,891.773	2,749,189.713	36.191161005	-107.744886945
1.334.00 0.89 225.890 1.333.94 -7.94 -7.91 1.888.800.349 2.749.187.301 38.101157166 -107.74489880 1.422.00 0.87 224.22 1.428.80 -10.16 -11.73 1.888.881.582 2.749.188.270 38.19115112 -107.744897810 1.617.00 5.73 247.500 1.616.65 -12.88 -12.88 -14.1 1.888.881.482 2.749.175.18 38.191150031 -107.744920511 1.900.00 1.366 246.830 1.804.68 -35.22 -68.45 1.888.864.72 2.749.196.830 36.191068616 -107.745032927 1.990.00 1.366 246.830 1.894.68 -35.62 -27.43 1.888.807.20 2.749.196.830 S6.191068616 -107.74502327 2.183.00 1.25 245.000 2.078.66 -67.18 -104.89 1.888.807.20 2.749.09.31 S6.191068616 -107.7452258280 2.171.00 1.72 242.800 2.467.32 -888.12.500 2.749.09.31 S6.190068214 -107.7452258280 2.371.00 1.12 24.802 2.457.80 -107.745578248 S8.1900640374 S8.1900680	1,240.00	0.82	240.770	1,239.95	-7.21	-6.71	1,888,891.121	2,749,188.583	36.191159217	-107.744890776
1.422.00 0.87 223.20 1.428.03 -8.80 -0.09 1.888.886.56 2.749.188.270 36.191154857 -107.744697847 1.572.00 5.72 247.500 1.616.61 -12.88 -111.6 -117.3 1.888.885.486 2.749.177.158 36.191143356 -107.744697822 1.700.0 5.73 247.500 1.616.6 -12.88 -11.61.4 1.888.867.46 2.749.148.503 36.1911103001 -107.744697822 1.900.00 1.268 246.300 1.895.66 -12.42 -45.56 1.888.867.21 2.749.148.203 36.191105270 -107.74569916 1.990.00 1.364 246.500 2.078.500 -170.38 -55.60 -123.25 1.888.837.26 2.749.072.04 36.19105574 -107.74523956 2.277.00 1.72 24.280 2.847.42 -177.454.578.60 2.749.074.40 36.190068031 -107.745459764 2.446.00 1.162 2.404.60 2.410.90 1.888.402.712 2.748.004.27 36.190068036 -107.745459746 2.446.00 1.122 2.934.36 -101.57 1.888.402.712 2.748.802.4102 36.190068036	1,334.00	0.89	235.980	1,333.94	-7.94	-7.91	1,888,890.384	2,749,187.391	36.191157196	-107.744894818
1,523.00 2,77 245.820 1,522.88 -10.16 -11.73 1,888.881.66 2,749,183.570 30,191151112 -107.744927511 1,871.20 9.24 245.520 1,710.78 -12.88 -28.47 1,888.804.47 2,749,165.829 36,191130031 -107.744927511 1,900.00 13.66 24.68 -45.45 1,888.804.47 2,749,172.88 36,191106616 -107.745023272 1,900.00 13.66 24.68 -56.65 1,888.847.146 2,749,109.633 36,191066616 -107.745023272 2,183.00 12.35 245.000 2,078.56 -51.18 -10.498 1,888.471.46 2,749.09.313 68,191066616 -107.745259880 2,277.00 11.72 242.20 2,843.40 2,749.05.140 2,749.05.40 68,19006231 -107.745598284 2,371.00 11.22 24.60.20 2,595.00 11.24 24.62 2,633.00 -107.745598284 36,19006636 -107.745598284 2,635.00 11.42 24.04.20 2,743.00 -107.745598284 36,19006736 -107.745598284 2,637.10 10.22 2,745.35 -107.764	1,429.00	0.87	232.420	1,428.93	-8.80	-9.09	1,888,889.532	2,749,186.208	36.191154857	-107.744898830
1.617.00 5.73 247.590 1.616.61 -1.2.88 -181.4 1.888.880.476 2.749.175.529 36.191140205 1.1077.44967923172 1.900.00 12.68 246.380 1.802.306 -25.12 -45.79 1.888.873.42 2.749.149.529 36.19110120 -1077.4450923272 1.900.00 13.66 246.30 1.848.55 -41.41 -85.66 1.888.854.716 2.7449.128.84 36.191082707 -1077.451518430 2.089.00 12.35 245.00 2.717.38 -96.06 -122.35 1.868.330.277 2.749.072.400 36.19103674 -1077.45235760 2.777.00 11.72 242.280 2.283.53 -76.92 -177.45 1.888.302.077 2.749.072.449 36.190960861 -1077.454516326 2.466.02 11.62 240.630 2.539.57 -94.62 -191.07 1.888.879.164 2.749.020.249 36.190960586 1.077.45561522 2.683.00 11.52 240.632 2.660.22 -105.446 -218.87 1.888.791.162 2.448.992.012 36.190990585 1.077.45565242 <td>1,523.00</td> <td>2.77</td> <td>245.820</td> <td>1,522.88</td> <td>-10.16</td> <td>-11.73</td> <td>1,888,888.166</td> <td>2,749,183.570</td> <td>36.191151112</td> <td>-107.744907774</td>	1,523.00	2.77	245.820	1,522.88	-10.16	-11.73	1,888,888.166	2,749,183.570	36.191151112	-107.744907774
1.712.00 9.24 246.520 1,710.76 -17.76 -264.77 1.888.880.72 2,744.165.803 36.19110120 1-107.744967322 1.900.00 13.66 246.30 1,894.58 -33.62 -65.65 1.888.867.213 2,744.128.803 36.191082816 -107.745089916 1.994.00 13.66 246.30 1,894.56 -18.88.865.518 2,744.108.803 36.19108270 -107.745189430 2,183.00 12.35 245.00 2,075.56 -51.18 -104.99 1.888.803.72 2,7440.072.404 36.19101574 -107.745345708 2,277.00 11.72 242.20 2,353.6 -76.92 -167.74 1.888.803.712 2,740.057.465 36.19096061 -107.7454544068 2,267.00 11.62 2,447.42 -85.76 -174.75 1.888.803.712 2,740.057.465 36.19098058 -107.74555282 2,643.00 11.21 236.80 2.673.55 -107.44 -214.20 1.888.708.14 2,748.904.493 36.19098208 -107.745552842 2,643.00 1.21 236.80 2.670.55 -474.2 -107.855744 -107.74557044 -214.20 1	1,617.00	5.73	247.590	1,616.61	-12.88	-18.14	1,888,885.446	2,749,177.158	36.191143656	-107.744929511
1,900.00 12.86 244.380 1,901.00 -65.45 1.888,867.12 2,749,149.129.84 36,19110120 -107,7450923272 1,900.00 13.46 244.30 1,985.96 -42.41 -85.66 1,888,867.12 2,749,108.33 36,191082707 -107,745194430 2,089.00 12.35 245.00 2,777.38 -99.60 -123.25 1,888,832.072 2,744,005.410 36,191018574 -107,74529580 2,277.00 11.72 242.200 2,253.67 -94.62 -117.74 1,888,832.072 2,740,002.649 36,19098036 -107,74545470 2,465.00 11.15 240.40 2,471.00 -101.64 -211.85 1,888,706.142 2,440.021.464 36,19098036 -107,745545828 2,683.00 11.23 23.93 2,573.95 -107.46 -214.20 1,888,709.142 2,449.902.012 36,190983269 -107,745594248 2,697.10 11.23 23.93 2,687.20 -107.4554448 -214.20 1,888,709.149 36,19083269 -107,745594248 2,697.00 11.23 23.93 2,688,779.167 2,748,961.691 2,748,961.699 36,19083269 <td>1,712.00</td> <td>9.24</td> <td>245.520</td> <td>1,710.78</td> <td>-17.85</td> <td>-29.47</td> <td>1,888,880.476</td> <td>2,749,165.829</td> <td>36.191130031</td> <td>-107.744967922</td>	1,712.00	9.24	245.520	1,710.78	-17.85	-29.47	1,888,880.476	2,749,165.829	36.191130031	-107.744967922
1900.00 13.66 246.830 1.894.86 35.82 -65.45 1.888.867.12 2.749.109.638 36.19106270* 107.745158430 2.098.00 12.36 245.000 2.078.56 -51.18 -104.99 1.888.837.146 2.749.109.638 36.19101557* 107.74523580 2.717.00 11.72 242.20 2.55.43 -76.52 -157.84 1.888.832.106 2.740.072.440 36.19005802:14 107.74543750 2.371.00 11.72 242.20 2.55.43 -76.58 -177.75 1.888.832.106 2.749.037.456 36.19095805:107.74561528 2.665.00 11.46 242.490 2.447.42 -85.78 -177.745 1.888.701.63 2.749.004.227 36.1909500636 -107.74551528 2.683.00 11.21 230.59 2.673.95 -107.44 -214.20 1.888.701.64 2.749.903.445 36.190857535 -107.745564248 2.697.00 10.2 234.740 2.663.4 -117.23 -228.75 1.888.701.04 2.748.985.446 36.190857535 -107.745694248 2.791.00 10.02 234.740 2.663.4 -117.23 -228.75 1.888.	1,806.00	12.68	246.380	1,803.06	-25.12	-45.79	1,888,873.213	2,749,149.503	36.191110120	-107.745023272
1.994.00 12.36 246.130 1.985.96 -42.41 -85.66 1.888.957.146 2.749.093.31 38.19103860 107.745223953 2.183.00 12.35 245.500 2.078.00 -17.245223953 2.815.91038600 107.745223953 2.183.00 11.72 242.200 2.523 -68.12 -140.901 1.888.830.207 2.749.054.400 36.190982214 107.745454578 2.747.00 11.72 242.200 2.543.36 -76.92 -17.754 1.888.812.500 2.749.020.464 36.190980204 107.74540446 2.466.00 11.42 24.040 2.447.42 -85.76 -174.75 1.888.768.614 2.749.020.549 36.190980784 -107.745612482 2.683.00 11.52 2.40.630 2.593.57 -106.46 -211.85 1.888.701.673 2.748.983.445 36.190980784 -107.74554248 2.697.00 11.23 239.580 2.673.95 -107.745 -1888.701.673 2.748.984.464 36.19088733 -107.74564248 2.791.00 10.02 2.974.70 10.02 2.974.70 -107.74564248 -107.745674242 2.791.00	1,900.00	13.66	246.830	1,894.58	-33.62	-65.45	1,888,864.712	2,749,129.846	36.191086816	-107.745089916
2.089.00 12.36 245.000 2.078.56 -51.18 -10.499 1.888.837.26 2.749.072.046 36.191015574 2.178.00 11.72 242.890 2.262.32 -68.12 -140.900 1.888.832.207 2.749.037.466 36.1909680214 -107.745425888 2.377.10 11.72 242.220 2.543.40 76.8 1.888.837.20 2.749.037.466 36.1909680214 -107.745403161 2.466.00 11.42 240.630 2.597.50 -177.475 1.888.037.162 2.749.007.449 36.190909506 -107.74555282 2.683.00 11.21 240.460 2.610.19 -101.51 -203.29 1.888.796.614 2.748.983.445 36.1909857084 -107.74555282 2.697.00 11.23 239.50 2.673.95 -107.74 -214.20 1.888.701.101 2.748.983.445 36.190885287 -107.74555424 2.791.00 11.23 239.50 2.673.35 -107.746 -214.20 1.888.704.992 -2748.986.546 36.190852267 -107.74555424 2.791.00 11.22 2.660.22 <td>1,994.00</td> <td>13.46</td> <td>246.130</td> <td>1,985.96</td> <td>-42.41</td> <td>-85.66</td> <td>1,888,855.918</td> <td>2,749,109.638</td> <td>36.191062707</td> <td>-107.745158430</td>	1,994.00	13.46	246.130	1,985.96	-42.41	-85.66	1,888,855.918	2,749,109.638	36.191062707	-107.745158430
2,183.00 12,35 245.500 2,171.038 -59.60 -122.25 1,888,393.726 2,749,054.400 36.190962074 -107.745236708 2,277.100 11,72 242.200 2,252.22 -68.17 1,888,892.746 2,749,054.400 36.190968081 -107.745403768 2,476.00 11.46 242.400 2,474.2 -86.76 -174.75 1,888,803.712 2,749,002.57 36.190969566 -107.745460368 2,653.00 11.15 240.400 2,610.9 -101.51 -203.29 1,888.704.80 2,748,992.012 36.190969056 -107.745567245 2,685.00 11.22 239.580 2,673.95 -107.84 -214.20 1,888,704.40 2,748,985.445 36.190857269 -107.745634248 2,791.00 10.02 234.740 2,766.34 -107.84 -244.20 1,888,708.101 2,748,985.445 36.19085753 -107.745634248 2,780.00 6.61 220 245.53 -238.75 1,888,778.101 2,748,985.445 36.19085753 -107.745634248 2,860.00 6.61	2,089.00	12.36	245.000	2,078.56	-51.18	-104.99	1,888,847.146	2,749,090.311	36.191038660	-107.745223953
2,277.00 11.72 242.800 2,262.32 -68.12 -140.90 1,888,80.007 2,749,037.465 36.190968061 -107.7454603161 2,466.00 11.42 242.420 2,357.00 1,888,812.550 2,749,007.456 36.190968061 -107.7454603161 2,466.00 11.32 240.630 2,539.57 -46.62 -191.07 1,888,8796.814 2,748,983.445 36.1909680796 -107.7455562621 2,683.00 11.21 239.580 2,660.22 -106.46 -211.85 1,888,796.814 2,748,983.445 36.190887084 -107.745564248 2,7697.00 11.22 239.580 2,670.39 -107.74554248 -107.745564248 -107.745564248 2,7697.00 11.22 239.350 -107.745544248 -107.745564248 -107.745645486 36.190867255 -107.745645489 2,7697.00 0.42 24.64.03 1,888,766.050 2,748,981.4671 36.190867264 -107.74576444 2,748,981.446 0.447.420 -107.74576444 -107.745764763 -107.745764763 -107.745764763 -107.745764763 <	2,183.00	12.35	245.500	2,170.38	-59.60	-123.25	1,888,838.726	2,749,072.046	36.191015574	-107.745285880
2,371.00 11.72 242.220 2,354.36 -76.92 -157.84 1,888,821.406 2,749,020.54 36.190949054 -107.745460346 2,660.00 11.32 240.630 2,539.57 -94.62 -191.07 1,888,803.712 2,749,002.57 36.190949556 -107.74557245 2,683.00 11.15 240.406 2,610.19 -101.51 -200.29 1,888,791.40 2,748,992.012 36.190987084 -107.74559245 2,697.00 11.23 239.58 2,660.22 -106.46 -211.85 1,888,791.40 2,748,981.49 36.190887267 -107.745594248 2,791.00 10.02 234.740 2,766.34 -117.23 -228.75 1,888,781.10 2,748,985.458 36.190835267 -107.745694248 2,981.00 3.43 234.620 2,964.95 -130.31 -248.63 1,888,768.019 2,748,948.041 36.19081529 -107.745694248 3,075.00 0.46 154.70 3,048.90 -132.31 -248.63 1,888,764.09 2,748,948.013 36.19016424 -107.745704200 3,367.00 0.65 1160.050 3,30.88 -132.31 -248.61	2,277.00	11.72	242.890	2,262.32	-68.12	-140.90	1,888,830.207	2,749,054.400	36.190992214	-107.745345708
2,466.00 11.46 242.490 2,447.42 -85.76 -174.75 1,888,802.500 2,749,004.227 36.190943794 -107.745515285 2,852.00 11.15 240.460 2,610.19 -101.51 -203.29 1,888,708.671 2,749,004.2217 36.190900566 -107.7455552245 2,683.00 11.21 239.588 2,660.22 -106.46 -211.85 1,888,791.673 2,748,983.445 36.190887084 -107.74554286 2,997.00 11.02 239.350 2,673.95 -107.84 -214.20 1,888,791.671 2,748,981.463 36.190887084 -107.745545428 2,997.00 10.02 234.740 2,766.34 -112.2 -223.84 1,888,766.509 2,748,954.458 36.190835299 -107.745504563 3,075.00 0.46 154.722 3,446.20 3,450 -246.651 1,888,765.572 2,748,946.671 36.190812428 -107.745703763 3,169.00 9.057 11.165 3,236.88 -133.56 -246.77 1,888,761.672 2,748,944.43 36.1900812422 -107.745703775 <td>2,371.00</td> <td>11.72</td> <td>242.220</td> <td>2,354.36</td> <td>-76.92</td> <td>-157.84</td> <td>1,888,821.406</td> <td>2,749,037.456</td> <td>36.190968081</td> <td>-107.745403161</td>	2,371.00	11.72	242.220	2,354.36	-76.92	-157.84	1,888,821.406	2,749,037.456	36.190968081	-107.745403161
2,660.00 11.32 240.630 2,539.57 -94.62 -191.07 1,888,803.712 2,748,904.0227 36.190919556 -107.745515228 2,683.00 11.12 239.588 2,660.22 -106.46 -211.85 1,888,761.673 2,748,983.445 36.190887084 -107.74555248 2,697.00 11.23 239.588 2,678.95 -107.84 -214.20 1,888,761.673 2,748,981.099 36.1908872657 -107.7445594248 2,997.00 11.23 239.470 2,660.33 -122.33 -233.480,711.01 2,748,981.099 36.190882269 -107.7445594248 2,989.00 6.61 232.470 2,660.33 -122.32 -246.69 1,888,766.050 2,748,946.643 36.190832269 -107.745703765 3,075.00 0.46 167.72 3,748.06.050 2,748,947.643 36.19082724 -107.745703705 3,375.00 0.65 160.050 3,330.88 -132.20 -246.81 1,888,761.292 2,748.948.401 36.19080266 -107.745708712 3,451.00 0.56 160.050 3,3	2,466.00	11.46	242.490	2,447.42	-85.78	-174.75	1,888,812.550	2,749,020.549	36.190943794	-107.745460486
2,832.00 11.15 240.460 2,610.19 -101.51 -203.29 1,888,796.871 2,748,992.012 36,190807084 -107.745558245 9,68° Casing @ 2683 MD 2660.22 10.06 -211.85 1,888,791.873 2,748,993.445 36,190887084 -107.74558245 2,897.00 11.23 239.50 2,673.95 -107.84 -214.20 1,888,790.489 2,748,981.099 36,190887084 -107.745584248 2,897.00 0.02 234.740 2,766.34 -117.23 -228.75 1,888,712.997 2,748,981.098 36,19083729 -107.74558458 2,896.00 6.61 232.470 2,660.33 -2248.63 1,888,766.509 2,748,946.671 36,19083729 -107.745703763 3,160.00 9.09 12.140 3,142.89 -133.20 -247.83 1,888,766.502 2,748,944.831 36,19080206 -107.745703761 3,357.00 0.65 160.50 3,338 -133.2 -245.88 1,888,764.199 2,748,944.13 36,19080206 -107.74570377 3,451.00 0.58 169.810	2,560.00	11.32	240.630	2,539.57	-94.62	-191.07	1,888,803.712	2,749,004.227	36.190919556	-107.745515828
2,883.00 11:21 239.582 2,660.22 -106.46 -211.85 1,888,791.673 2,749,983.445 36.190887287 -107.745586281 9.587 2087.00 11.23 2234,740 2,766,34 -117.23 -228.75 1,888,781.101 2,748,965.468 36.190835287 -107.745642386 2,886.00 6.61 232.470 2,860.03 -125.33 -238.44 1,888,772.997 2,748,965.468 36.19085529 -107.74560137 2,886.00 6.61 154.720 3,048.90 -122.28 -246.81 1,888,766.050 2,748,946.671 36.190812722 -107.74570470 3,619.00 0.90 121.140 3,142.89 -133.56 -247.83 1,888,764.099 2,748,944.671 36.190812722 -107.74570470 3,357.00 0.65 160.050 3,30.88 -133.51 -245.88 1,888,764.099 2,748,944.863 36.19080266 -107.745702470 3,451.00 0.57 21.200 3,613.86 -136.53 -247.89 1,888,761.403 2,748,948.865 36.190805666 -107.7457024	2,632.00	11.15	240.460	2,610.19	-101.51	-203.29	1,888,796.814	2,748,992.012	36.190900636	-107.745557245
9 Sit ^a Casing @ 2683 MD 2660.22 TVO 2.697 Oo 11.23 239.350 2.673 95 -107.64 -214.20 1.888.790.489 2.748.981.099 36.190883287 -107.745564248 2.791.00 10.02 234.740 2.660.33 -125.33 -238.84 1.888.781.101 2.748.986.46 36.190883287 -107.745641396 2.881.00 6.61 522.470 2.660.33 -125.33 -238.84 1.888.766.050 2.748.948.04 36.190815236 -107.745703755 3.075.00 0.46 154.720 3.048.90 -132.28 -248.63 1.888.766.502 2.748.948.671 36.190815236 -107.745703755 3.630.00 0.57 111.650 3.236.88 -133.56 -246.77 1.888.764.792 2.748.949.147 36.190812722 -107.74570375 3.451.00 0.56 190.65 3.330.88 -143.23 -246.77 1.888.761.492 2.748.949.413 36.19080266 -107.745701713 3.450.00 0.56 211.200 3.518.87 -246.81 1.888.751292 2.748.948.293 36.19080266 <td>2,683.00</td> <td>11.21</td> <td>239.588</td> <td>2,660.22</td> <td>-106.46</td> <td>-211.85</td> <td>1,888,791.873</td> <td>2,748,983.445</td> <td>36.190887084</td> <td>-107.745586291</td>	2,683.00	11.21	239.588	2,660.22	-106.46	-211.85	1,888,791.873	2,748,983.445	36.190887084	-107.745586291
2,697.00 11.23 239.360 2,767.35 -107.84 -214.20 1,888,790.499 361.90857535 -107.7457643596 2,886.00 6.61 232.470 2,860.33 -125.33 -229.84 1,888,776.90 2,748,946.804 361.90857535 -107.745703765 2,981.00 3.43 234.620 2,954.95 -130.31 -246.63 1,888,768.019 2,748,946.871 361.9085729 -107.745703765 3,075.00 0.46 154.720 3,048.90 -132.26 -244.63 1,888,764.772 2,748,946.571 361.9081722 -107.745703765 3,057.00 0.65 160.050 3,330.88 -132.26 -246.88 1,888,764.72 2,748,949.147 361.9081020 -107.745704700 3,357.00 0.65 160.050 3,330.88 -134.23 -246.15 1,888,760.129 2,748,949.147 361.90805066 -107.74570470 3,450.00 0.57 201.200 3,51.86 -136.89 -246.89 1,888,760.22 2,748,949.494.13 361.90805066 -107.745704370 3,735.00	9 5/8" Ca	sing @ 2683	MD 2660.22	TVD						
2,791.00 10.02 234,740 2,766.34 -117.23 -228.75 1,888,772.997 2748,956.546 361.90857535 -107.745681197 2,981.00 3.43 234.620 2,954.95 -103.31 -2248,93 1,888,772.997 2748,946.671 36.190815299 -107.7457013957 3,169.00 0.90 0.46 154.720 3,008 -133.00 -247.83 1,888,765.327 2,748,947.464 36.190816236 -107.745703752 3,263.00 0.57 111.650 3,238.88 -133.20 -247.83 1,888,764.099 2,748,944.651 36.190816226 -107.745708122 3,451.00 0.58 160.810 3,42.87 -135.20 -245.88 1,888,761.403 2,748,944.813 36.19080206 -107.745702012 3,451.00 0.55 214.990 3,613.86 -136.63 -246.84 1,888,761.403 2,748,944.813 36.19080306 -107.745702475 3,750.00 0.64 198.530 3,708.86 -137.81 -246.84 1,888,759.540 2,748,944.603 36.190793645 -107.74570347	2,697.00	11.23	239.350	2,673.95	-107.84	-214.20	1,888,790.489	2,748,981.099	36.190883287	-107.745594248
2.886.00 6.61 224.70 2.896.03 -125.33 -239.84 1.888,766.019 2.748.945.848 36.109035299 -107.745681197 2.981.00 3.43 2.246.49 1.888,766.050 2.748.945.6461 36.109816236 -107.7457036312 3.109.00 0.90 121.140 3.1428.33 -246.77 1.888,766.172 2.748.947.444 36.109014248 -107.74570170312 3.263.00 0.56 160.050 3.330.88 -134.23 -246.77 1.888,761.129 2.748.949.147 36.190805666 -107.745702612 3.451.00 0.58 169.810 3.424.87 -135.20 -245.88 1.888,761.129 2.748,949.147 36.190805666 -107.745702612 3.454.60 0.57 201.200 3.519.87 -136.11 -245.97 1.888,762.215 2.748,949.923 36.190805666 -107.745703275 3.735.00 0.64 198.530 3.708.86 -138.93 -246.84 1.888,765.020 2.748,948.4012 36.19080566 -107.745704273 3.735.00 0.64 210.200 3.	2,791.00	10.02	234.740	2,766.34	-117.23	-228.75	1,888,781.101	2,748,966.546	36.190857535	-107.745643596
2.981.00 3.43 23.4220 2.984.95 -130.31 -246.49 1,883,766.050 2.748,946.671 36.190021642 -107,745709765 3.075.00 0.46 154.720 3.048.90 -132.28 -244.63 1,883,766.050 2.748,946.671 36.19001226 -107,745709312 3.263.00 0.57 111.650 3.236.88 -133.56 -246.17 1.888,764.727 2.748,949.147 36.19001272 -107,745702472 3.357.00 0.65 169.910 3.424.87 -135.20 -246.15 1.888,761.409 2.748,949.913 36.19000206 -107,745701713 3.546.00 0.56 214.990 3.613.86 -136.93 -246.40 1.888,761.403 2.748,949.813 36.190000466 -107,74570475 3.750.00 0.64 198.530 3.708.86 -137.81 -246.84 1.888,761.403 2.748,948.400 36.190790433 -107,745704922 3.829.00 0.68 210.220 3.891.84 -138.63 -247.29 1.888,757.774 2.748,946.631 36.19079043 -107,745704922 3.829.00 0.68 210.320 3.991.84 -138.63 -2	2,886.00	6.61	232.470	2,860.33	-125.33	-239.84	1,888,772.997	2,748,955.458	36.190835299	-107.745681197
3,075.00 0.46 154.720 3,048.90 -132.28 -248.63 1,888,766.502 2,748,944.66.71 36.190816236 -107,745708312 3,263.00 0.57 111.650 3,236.88 -133.05 -247.83 1,888,765.327 2,748,944.46.51 36.190814248 -107,745708312 3,357.00 0.65 160.650 3,30.88 -134.23 -246.15 1,888,761.499 2,748,949.147 36.190801807 -107,745701713 3,454.00 0.57 201.200 3,519.87 -135.60 -246.58 1,888,761.409 2,748,949.328 36.190803466 -107,745704713 3,763.00 0.64 198.530 3,708.86 -137.81 -246.84 1,888,761.403 2,748,944.810 36.190803466 -107,745704375 3,782.00 0.68 210.290 3,802.85 -133.79 -247.29 1,888,758,700 2,748,944.810 36.190803466 -107,745704372 3,829.00 0.68 210.320 3,991.84 -140.58 -248.57 1,888,757.747 2,748,944.612 36.190798428 -107,745716452 4,049.00 0.74 210.820 4,022.83 -140.55	2,981.00	3.43	234.620	2,954.95	-130.31	-246.49	1,888,768.019	2,748,948.804	36.190821642	-107.745703765
3,169.00 0.90 121,140 3,142.89 -133.56 -246.78 1,888,764.722 2,748,944.531 36.190814272 -107,745708102 3,257.00 0.65 160.050 3,330.88 -134.23 -246.15 1,888,764.099 2,748,949.413 36.190808206 -107,74570212 3,451.00 0.58 160.050 3,330.88 -134.23 -246.15 1,888,761.292 2,748,949.413 36.190805696 -107,745702107 3,640.00 0.56 214.990 3,613.86 -136.93 -246.40 1,888,761.403 2,748,944.895 36.190805696 -107,745702077 3,640.00 0.56 214.990 3,613.86 -137.81 -246.84 1,888,755.129 2,748,948.401 36.190801404 -107,74570473 3,824.00 0.58 210.280 3,897.84 -139.63 -247.29 1,888,757.377 2,748,944.740 36.19079643 -107,745706473 3,924.00 0.74 210.820 3,991.84 -140.56 -248.77 1,888,757.377 2,748,946.73 36.19079643 -107,745716571 4,043.00 .74 10.81.9107 9.461.77 142.97 -	3,075.00	0.46	154.720	3,048.90	-132.28	-248.63	1,888,766.050	2,748,946.671	36.190816236	-107.745710997
3.263.00 0.57 111.650 3.236.88 -133.26 -246.77 1.888,764.792 2,748,949.417 36.199012722 -107.745702612 3.451.00 0.58 169.810 3,424.87 -135.20 -245.88 1,888,763.129 2,748,949.413 36.1990808206 -107.745702612 3.454.00 0.57 201.200 3,519.87 -135.11 -245.97 1,888,763.129 2,748,949.413 36.1990805696 -107.745703475 3.735.00 0.64 198.530 3,708.86 -137.81 -246.84 1,888,756.200 2,748,948.460 36.19908051 -107.745706473 3.924.00 0.68 220.290 3,802.85 -138.617 -247.29 1,888,758.702 2,748,948.402 36.19079643 -107.745706473 3.924.00 0.68 220.280 3,991.84 -140.58 -248.77 1,888,757.477 2,748,946.610 36.190799342 -107.745706473 3.924.00 0.74 210.820 4,022.83 -140.55 -248.77 1,888,757.477 2,748,946.610 36.190793428 -107.745701652 4,043.00 1.79 152.490 4,053.83 -141.55	3,169.00	0.90	121.140	3,142.89	-133.00	-247.83	1,888,765.327	2,748,947.464	36.190814248	-107.745708312
3,357.00 0.65 160.050 3,330.88 -134.23 -246.15 1,888,760.499 2,748,949.413 36.190808206 -107,745702717 3,456.00 0.57 201.200 3,519.87 -136.01 -245.88 1,888,762.215 2,748,949.433 36.1908056666 -107,745702007 3,640.00 0.56 214.990 3,613.86 -136.93 -246.40 1,888,762.215 2,748,944.8460 36.190803466 -107,745704952 3,735.00 0.64 198,530 3,708.86 -137.81 -246.24 1,888,759.540 2,748,944.8460 36.190793426 -107,745704952 3,829.00 0.68 210.290 3,802.85 -138.79 -247.29 1,888,757.870 2,748,944.860 36.190793426 -107,745704952 4,018.00 0.85 210.320 3,991.44 -140.55 -248.79 1,888,757.377 2,748,946.6510 36.190793421 -107,745710829 4,049.00 0.74 210.820 4,022.83 -140.95 -248.79 1,888,756.776 2,748,946.631 36.190793421 -107,745710829 4,049.00 0.74 210.820 4,022.83 -140.95	3,263.00	0.57	111.650	3,236.88	-133.56	-246.77	1,888,764.772	2,748,948.531	36.190812722	-107.745704700
3,541.00 0.58 169.810 3,424.87 -135.20 -245.88 1,888,763.129 2,748,949.313 36:190806266 -107.7457(1717) 3,546.00 0.57 201.200 3,519.86 -137.81 -246.40 1,888,761.203 2,748,949.328 36.190805466 -107.745703475 3,755.00 0.64 198.530 3,708.86 -137.81 -246.84 1,888,765.20 2,748,948.401 36.190805140 -107.745704952 3,829.00 0.68 210.290 3,802.85 -138.79 -247.29 1,888,757.70 2,748,944.012 36.190796043 -107.74570473 3,924.00 0.58 222.560 3,897.84 -139.63 -247.89 1,888,757.77 2,748,946.729 36.19079043 -107.745710829 4,048.00 1.79 152.490 4,028.33 -141.55 -248.79 1,888,757.377 2,748,946.721 36.190796693 -107.7456710829 4,143.00 8.25 134.470 4,105.6 -142.97 -247.59 1,888,757.33 2,748,946.73 36.190796693 -107.7456717527 4,143.00 8.25 134.470 4,105.6 -142.57 -24	3,357.00	0.65	160.050	3,330.88	-134.23	-246.15	1,888,764.099	2,748,949.147	36.190810870	-107.745702612
3,546.00 0.57 201.200 3,519.87 -136.11 -245.97 1,888,762.215 2,748,949.328 36,19080596 -107.745703475 3,640.00 0.56 214.990 3,613.86 -136.81 -246.84 1,888,760.520 2,748,948.495 36,190803466 -107.745703475 3,735.00 0.64 198.530 3,708.86 -137.81 -246.84 1,888,756.540 2,748,948.4012 36,190708351 -107.745708542 3,924.00 0.68 222.580 3,897.84 -139.85 -247.89 1,888,758.700 2,748,947.402 36,190790643 -107.745708542 4,018.00 0.85 210.320 3,991.84 -140.56 -248.77 1,888,756.774 2,748,946.721 36,190790593428 -107.745716529 4,049.00 0.74 210.820 4,022.83 -140.95 -248.67 1,888,755.763 2,748,946.631 36,190790759 -107.74571163 4,111.00 4.81 139.150 4,068.477 -142.97 -247.59 1,888,755.363 2,748,946.631 36,190790663 -107.7456707527 4,143.00 8.25 138.470 4,116.56 -145.59	3,451.00	0.58	169.810	3,424.87	-135.20	-245.88	1,888,763.129	2,748,949.413	36.190808206	-107.745701713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,546.00	0.57	201.200	3,519.87	-136.11	-245.97	1,888,762.215	2,748,949.328	36.190805696	-107.745702007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,640.00	0.56	214.990	3,613.86	-136.93	-246.40	1,888,761.403	2,748,948.895	36.190803466	-107.745703475
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,735.00	0.64	198.530	3,708.86	-137.81	-246.84	1,888,760.520	2,748,948.460	36.190801040	-107.745704952
3,924,00 0.58 222,580 3,897,84 -139,63 -247,89 1,888,757,777 2,748,947,402 36,190796443 -107,745716529 4,018.00 0.85 210,320 3,991,84 -140,58 -248,77 1,888,757,777 2,748,946,729 36,190793428 -107,745716529 4,080.00 1.79 152,490 4,053,83 -141,55 -248,67 1,888,756,776 2,748,947,705 36,190796475 -107,745711571 4,100 4.81 139,150 4,084,77 -142,97 -247,59 1,888,752,739 2,748,954,132 36,19077660 -107,745709206 4,174,00 1.19 129,470 4,147,11 -149,06 -241,17 1,888,745,101 2,748,954,132 36,19077666 -107,745667692 4,205,00 14,05 126,790 4,177,36 -153,23 -229,11 1,888,745,101 2,748,954,132 36,19074830 -107,745667692 4,268,00 20,24 127,60 4,207,20 -158,25 -229,11 1,888,718,400 2,748,964,192 36,19074830 -107,745644921 4,268,00 20,24 127,60 4,295,41 -179,92 -20	3,829.00	0.68	210.290	3,802.85	-138.79	-247.29	1,888,759.540	2,748,948.012	36.190798351	-107.745706473
4,018.00 0.85 210.320 3,991.84 -140.55 -248.57 1,888,75.747 2,748,946.510 36.190793428 -107.745711571 4,049.00 0.74 210.820 4,022.83 -140.95 -248.67 1,888,757.377 2,748,946.510 36.190792411 -107.745711571 4,080.00 1.79 152.490 4,053.83 -141.55 -248.67 1,888,755.762 2,748,946.631 36.19079660 -107.745711752 4,143.00 8.25 134.470 4,116.56 -145.59 -245.08 1,888,752.739 2,748,950.222 36.190778660 -107.74569906 4,174.00 11.19 129.470 4,147.11 -149.06 -241.17 1,888,740.268 2,748,954.132 36.190778665 -107.74567692 4,205.00 14.05 126.780 4,207.20 -158.25 -229.11 1,888,740.074 2,748,954.68 36.19078685 -107.74567492 4,268.00 20.24 127.610 4,237.49 -164.50 -220.89 1,888,73.3833 2,748,974.407 36.19078638 -107.745617101 4,299.00 22.96 128.460 4,266.31 -171.53 -	3,924.00	0.58	222.580	3,897.84	-139.63	-247.89	1,888,758.700	2,748,947.402	36.190796043	-107.745708542
4,049.00 0.74 210.820 4,022.83 -140.95 -248.67 1,888,757.377 2,748,946.631 36.190790759 -107.745711163 4,080.00 1.79 152.490 4,053.83 -141.55 -248.67 1,888,755.363 2,748,946.631 36.190790759 -107.745711163 4,111.00 4.81 139.150 4,084.77 -142.97 -247.59 1,888,755.363 2,748,947.705 36.190786875 -107.745707527 4,143.00 8.25 134.470 4,116.56 -145.59 -245.08 1,888,752.739 2,748,945.132 36.190779660 -107.745699006 4,174.00 11.19 129.470 4,147.11 -149.06 -241.17 1,888,745.01 2,748,954.132 36.190778665 -107.74566792 4,205.00 14.05 126.790 4,177.36 -153.23 -228.911 1,888,740.074 2,748,966.192 36.190748830 -107.74564921 4,268.00 20.24 127.610 4,297.49 -164.50 -220.89 1,888,738.33 2,748,964.391 36.19078818 -107.745644921 4,268.00 20.24 127.610 4,295.41 -179.92 <	4,018.00	0.85	210.320	3,991.84	-140.58	-248.57	1,888,757.747	2,748,946.729	36.190793428	-107.745710829
4,080.001.79152.4904,03.83-141.55-248.671,888,755.762,748,940.63130.190790759-107.7457111634,111.004.81139.1504,084.77-142.97-247.591,888,752.7392,748,940.63136.190786875-107.7457075274,143.008.25134.4704,116.56-145.59-245.081,888,752.7392,748,950.22236.190779660-107.7456890064,174.0011.19129.4704,147.11-149.06-241.171,888,749.2682,748,959.46836.190758656-107.7456857654,205.0014.05126.7904,177.36-153.23-235.831,888,740.0742,748,959.46836.190758656-107.745667924,236.0017.38126.7804,207.20-158.25-229.111,888,718.400.0742,748,996.19236.190744830-107.7456171014,268.0020.24127.6104,237.49-164.50-221.891,888,718.4042,748,993.39136.19078318-107.7456171014,299.0022.96128.4604,266.31-171.53-211.911,888,718.4042,748,993.39136.19078318-107.7455617564,362.0029.23130.8404,322.86-189.25-190.621,888,718.4042,748,990.3236.190659600-107.7455145754,383.0032.13131.9604,349.51-199.71-178.761,888,698.6202,749,016.54136.190563291-107.7452145754,486.0039.1013.6304,400.69-224.27-151.521,888,664.	4,049.00	0.74	210.820	4,022.83	-140.95	-248.79	1,888,757.377	2,748,946.510	36.190792411	-107.745711571
4,111.00 4.81 139.150 4,084.77 -142.97 -247.09 1,888,755.353 2,748,947.705 36.19076960 -107.745699006 4,143.00 8.25 134.470 4,116.56 -145.59 -245.08 1,888,752.739 2,748,954.132 36.190770116 -107.745685765 4,205.00 14.05 126.790 4,177.36 -153.23 -235.83 1,888,745.101 2,748,959.468 36.190770116 -107.745667692 4,236.00 17.38 126.780 4,207.20 -158.25 -220.11 1,888,738.333 2,748,954.407 36.190774655 -107.745644921 4,288.00 20.24 127.610 4,237.49 -164.50 -220.89 1,888,738.333 2,748,974.407 36.19072665 -107.745644921 4,299.00 22.96 128.460 4,266.31 -171.53 -211.91 1,888,738.333 2,748,983.391 36.190778318 -107.745586676 4,331.00 26.15 129.760 4,295.41 -179.92 -201.60 1,888,718.404 2,748,993.702 36.19068523 -107.745514557 4,362.00 29.23 130.840 4,322.86 -189.25	4,080.00	1.79	152.490	4,053.83	-141.55	-248.67	1,888,756.776	2,748,946.631	36.190790759	-107.745711163
4,143.00 6.25 134,470 4,116.56 -143.59 -243.06 1,686,752.739 2,748,950.1222 36.190779660 -107.745689006 4,174.00 11.19 129.470 4,147.11 -149.06 -241.17 1,888,749.268 2,748,954.132 36.190779660 -107.7456685765 4,205.00 14.05 126.790 4,177.36 -153.23 -235.83 1,888,745.101 2,748,959.468 36.190758656 -107.7456685765 4,236.00 17.38 126.780 4,207.20 -158.25 -229.11 1,888,740.074 2,748,966.192 36.19074830 -107.745664921 4,268.00 20.24 127.610 4,237.49 -164.50 -220.89 1,888,718.404 2,748,993.702 36.19078318 -107.74556676 4,331.00 26.15 129.760 4,295.41 -179.92 -201.60 1,888,718.404 2,748,993.702 36.190685233 -107.74558676 4,362.00 29.23 130.840 4,322.86 -189.25 -190.62 1,888,709.083 2,749,046.82 36.190630825 -107.74554755 4,393.00 32.13 131.960 4,349.51 -199.71	4,111.00	4.81	139.150	4,084.77	-142.97	-247.59	1,888,755.363	2,748,947.705	36.190786875	-107.745707527
4,174.00 11.19 129.470 4,147.11 -149.06 -241.17 1,886,749.286 2,749,954,132 36.19077016 -107.745667692 4,205.00 14.05 126.790 4,177.36 -153.23 -235.83 1,888,745.101 2,748,959.468 36.190758656 -107.745667692 4,236.00 17.38 126.780 4,207.20 -158.25 -229.11 1,888,740.074 2,748,959.468 36.190758656 -107.7456644921 4,268.00 20.24 127.610 4,237.49 -164.50 -220.89 1,888,738.33 2,748,993.91 36.190768318 -107.7455644921 4,268.00 22.96 128.460 4,266.31 -171.53 -211.91 1,888,726.799 2,748,993.702 36.190685233 -107.745551758 4,362.00 29.23 130.840 4,322.86 -189.25 -190.62 1,888,709.083 2,749,904.682 36.190659600 -107.745514575 4,393.00 32.13 131.960 4,349.51 -199.71 -178.76 1,888,698.602 2,749,016.541 36.190563291 -107.745514575 4,456.00 39.10 131.630 4,400.69 -224.27	4,143.00	8.25	134.470	4,116.56	-145.59	-245.08	1,888,752.739	2,748,950.222	36.190779660	-107.745699006
4,205.0014.05126.7904,177.36-153.23-233.631,868,745.1012,748,959.46836.190736556-107.745676924,236.0017.38126.7804,207.20-158.25-229.111,888,740.0742,748,966.19236.190744830-107.7456449214,268.0020.24127.6104,237.49-164.50-220.891,888,733.8332,748,974.40736.190727665-107.745676654,39.0022.96128.4604,266.31-171.53-211.911,888,718.4042,748,993.70236.190685233-107.7455866764,331.0026.15129.7604,295.41-179.92-201.601,888,718.4042,749,004.68236.190659600-107.7455517584,362.0029.23130.8404,322.86-189.25-190.621,888,709.0832,749,004.68236.190659600-107.7455145754,393.0032.13131.9604,349.51-199.71-178.761,888,698.6202,749,016.54136.190597894-107.7454744184,425.0035.69132.3004,376.07-211.68-165.521,888,666.4422,749,029.77736.190597894-107.745321954,488.0042.34130.8704,424.94-238.03-135.831,888,660.3022,749,043.77636.190563291-107.745273684,519.0046.19130.2204,447.14-252.09-119.381,888,660.3022,749,059.47136.190486792-107.745273684,551.0049.80129.6104,468.55-267.34-101.151,888,615.	4,174.00	11.19	129.470	4,147.11	-149.06	-241.17	1,888,749.268	2,748,954.132	36.190770116	-107.745685765
4,250.00 17.56 126.760 4,207.20 -150.25 -229.11 1,686,740.074 2,746,966,192 36.190744630 -107.745644921 4,268.00 20.24 127.610 4,237.49 -164.50 -220.89 1,888,733.833 2,748,974.407 36.190727665 -107.745617101 4,299.00 22.96 128.460 4,266.31 -171.53 -211.91 1,888,726.799 2,748,983.391 36.190708318 -107.74556676 4,331.00 26.15 129.760 4,295.41 -179.92 -201.60 1,888,718.404 2,748,993.702 36.190685233 -107.74551758 4,393.00 32.13 131.960 4,322.86 -189.25 -190.62 1,888,709.083 2,749,004.682 36.190659600 -107.745514575 4,393.00 32.13 131.960 4,349.51 -199.71 -178.76 1,888,698.620 2,749,004.682 36.190630825 -107.745474418 4,425.00 35.69 132.300 4,376.07 -211.68 -165.52 1,888,674.061 2,749,029.777 36.190597894 -107.74552158 4,456.00 39.10 131.630 4,400.69 -224.27	4,205.00	14.05	126.790	4,177.30	-103.23	-230.63	1,000,740,101	2,748,959.468	30.190736030	-107.745007092
4,288.00 20.24 127.010 4,237.49 -104.30 -220.89 1,888,726.799 2,748,983.391 36.190708318 -107.7456676 4,299.00 22.96 128.460 4,266.31 -171.53 -211.91 1,888,726.799 2,748,983.391 36.190708318 -107.74558676 4,331.00 26.15 129.760 4,295.41 -179.92 -201.60 1,888,718.404 2,748,993.702 36.190685233 -107.74558676 4,393.00 32.13 130.840 4,322.86 -189.25 -190.62 1,888,709.083 2,749,004.682 36.190659600 -107.74551755 4,393.00 32.13 131.960 4,349.51 -199.71 -178.76 1,888,686.644 2,749,004.652 36.1906597894 -107.745474418 4,425.00 35.69 132.300 4,376.07 -211.68 -165.52 1,888,666.644 2,749,016.541 36.190563291 -107.745429598 4,456.00 39.10 131.630 4,400.69 -224.27 -151.52 1,888,666.644 2,749,019.59.471 36.190563291 -107.745322195 4,458.00 42.34 130.870 4,424.94 -238.03	4,230.00	17.38	120.780	4,207.20	-108.20	-229.11	1,000,740.074	2,748,900.192	30.190744830	-107.745644921
4,29.0022.90120.4004,200.31-171.33-211.911,688,708.7992,749,939136.197708318-107.745300704,331.0026.15129.7604,295.41-179.92-201.601,888,718.4042,748,993.70236.190685233-107.745517584,362.0029.23130.8404,322.86-189.25-190.621,888,709.0832,749,004.68236.190659600-107.7455145754,393.0032.13131.9604,349.51-199.71-178.761,888,698.6022,749,016.54136.1906597894-107.7454744184,425.0035.69132.3004,376.07-211.68-165.521,888,666.6442,749,029.77736.190653291-107.7454295984,456.0039.10131.6304,400.69-224.27-151.521,888,666.03022,749,043.77636.190563291-107.7453221954,488.0042.34130.8704,424.94-238.03-135.831,888,666.3022,749,075.91336.190486792-107.7452733684,551.0049.80129.6104,468.55-267.34-101.151,888,630.9902,749,094.15036.190444847-107.7452116094,582.0053.49129.3704,487.78-282.79-82.391,888,615.5352,749,112.90836.190402342-107.7451480864,614.0056.45129.2004,562.15-299.38-62.111,888,582.3622,749,133.18836.190356720-107.7450794104,645.0059.21129.2004,522.65-315.97-41.781,888,582	4,268.00	20.24	127.010	4,237.49	-104.50	-220.89	1,000,733.033	2,748,974.407	30.190727003	-107.745017101
4,351.00 26.13 129.780 4,293.41 -179.92 -201.60 1,868,709.083 2,749,993.702 36.190685233 -107.745351756 4,362.00 29.23 130.840 4,322.86 -189.25 -190.62 1,888,709.083 2,749,004.682 36.190659600 -107.745514575 4,393.00 32.13 131.960 4,349.51 -199.71 -178.76 1,888,698.602 2,749,004.682 36.190659894 -107.745474418 4,425.00 35.69 132.300 4,376.07 -211.68 -165.52 1,888,686.644 2,749,029.777 36.1906503291 -107.745429598 4,456.00 39.10 131.630 4,400.69 -224.27 -151.52 1,888,660.302 2,749,043.776 36.190563291 -107.745382195 4,458.00 42.34 130.870 4,424.94 -238.03 -135.83 1,888,660.302 2,749,075.913 36.190486792 -107.745329044 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,664.243 2,749,075.913 36.190486792 -107.74527368 4,551.00 49.80 129.610 4,468.55 -267.34	4,299.00	22.90	128.460	4,200.31	-171.53	-211.91	1,000,720.799	2,748,983.391	30.190708318	-107.74000070
4,302.00 23.23 130.40 4,322.60 -169.23 -169.02 1,368,709.053 2,749,046.02 36.190639600 -107.745314373 4,393.00 32.13 131.960 4,349.51 -199.71 -178.76 1,888,698.620 2,749,016.541 36.190630825 -107.745474418 4,425.00 35.69 132.300 4,376.07 -211.68 -165.52 1,888,686.644 2,749,029.777 36.1906503291 -107.74547249598 4,456.00 39.10 131.630 4,400.69 -224.27 -151.52 1,888,666.644 2,749,043.776 36.190563291 -107.745382195 4,458.00 42.34 130.870 4,424.94 -238.03 -135.83 1,888,660.302 2,749,049.771 36.190466792 -107.745329044 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,664.243 2,749,075.913 36.190486792 -107.74527368 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,615.535 2,749,112.908 36.190402342 -107.745211609 4,582.00 53.49 129.370 4,487.78 -282.79	4,331.00	20.15	129.760	4,295.41	-179.92	-201.00	1,000,710.404	2,740,993.702	36.190065253	-107.745551756
4,353.00 32.13 131.800 4,343.31 -193.71 -176.70 1,368,096.020 2,749,010.341 36.190050623 -107.7434744418 4,425.00 35.69 132.300 4,376.07 -211.68 -165.52 1,888,686.644 2,749,029.777 36.190050623 -107.745424918 4,456.00 39.10 131.630 4,400.69 -224.27 -151.52 1,888,686.644 2,749,043.776 36.190563291 -107.745382195 4,488.00 42.34 130.870 4,424.94 -238.03 -135.83 1,888,660.302 2,749,059.471 36.1900563291 -107.745329044 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,664.243 2,749,075.913 36.190486792 -107.745273368 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,630.990 2,749,094.150 36.190444847 -107.745211609 4,582.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,112.908 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 <td>4,362.00</td> <td>29.23</td> <td>130.640</td> <td>4,322.00</td> <td>-109.25</td> <td>-190.02</td> <td>1,000,709.003</td> <td>2,749,004.002</td> <td>36.190039000</td> <td>-107.745514575</td>	4,362.00	29.23	130.640	4,322.00	-109.25	-190.02	1,000,709.003	2,749,004.002	36.190039000	-107.745514575
4,423.00 35.05 132.00 4,576.07 -211.06 -105.32 1,388,060.044 2,749,053.777 36.190397.054 -107.74532395 4,456.00 39.10 131.630 4,400.69 -224.27 -151.52 1,888,674.061 2,749,043.776 36.190563291 -107.745382195 4,488.00 42.34 130.870 4,424.94 -238.03 -135.83 1,888,660.302 2,749,059.471 36.1905525455 -107.745382194 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,664.243 2,749,075.913 36.190486792 -107.745273368 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,630.990 2,749,094.150 36.190444847 -107.745211609 4,582.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,112.908 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,589.462 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97	4,393.00	32.13	131.900	4,349.51	-199.71	-176.70	1,000,090.020	2,749,010.541	36.190630625	-107.745474416
4,450.00 53.10 131.030 4,400.05 -224.27 -131.52 1,500,074.001 2,749,053.770 50.13030231 -107.145302135 4,488.00 42.34 130.870 4,424.94 -238.03 -135.83 1,888,660.302 2,749,059.471 36.19030525455 -107.745329044 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,664.243 2,749,059.471 36.190466792 -107.745273368 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,630.990 2,749,094.150 36.190444847 -107.745211609 4,582.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,112.908 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,589.46 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43	4,425.00	39.10	131.630	4,370.07	-211.00	-151 52	1,888,674,061	2,749,029.777	36 100563201	-107.745429596
4,700.00 42.04 130.070 4,724.34 -230.03 -1,500.030 1,500,000.022 2,749,033.71 50.13025435 -107.745223368 4,519.00 46.19 130.220 4,447.14 -252.09 -119.38 1,888,646.243 2,749,075.913 36.190486792 -107.745273368 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,640.243 2,749,094.150 36.19044847 -107.74521609 4,582.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,112.908 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,598.946 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174.927 36.190263074 -107.744938064	4,430.00	42.34	130.870	4,400.09	-224.27	-135.83	1,888,660,302	2,749,043.770	36 19050525155	-107.745302195
4,513.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,630.990 2,749,093.513 36.190460792 -107.745273669 4,551.00 49.80 129.610 4,468.55 -267.34 -101.15 1,888,630.990 2,749,094.150 36.1904408792 -107.745213669 4,552.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,112.908 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,598.946 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174.927 36.190263074 -107.745010553	4,400.00	42.04	130.070	4,424.34 1 117 11	-250.05	-110 38	1 888 646 242	2,749,039.471	36 190/20400	-107.745525044
4,582.00 53.49 129.370 4,487.78 -282.79 -82.39 1,888,615.535 2,749,132.188 36.190402342 -107.745148086 4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,598.946 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174.927 36.190263074 -107.744938064	4 551 00	40.19	129 610	4 468 55	-267 34	-101 15	1 888 630 000	2 749 094 150	36 190444847	-107 745213500
4,614.00 56.45 129.200 4,506.15 -299.38 -62.11 1,888,598.946 2,749,133.188 36.190356720 -107.745079410 4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174.927 36.190263074 -107.744938064	4 582 00	53 49	129 370	4 487 78	-282 79	-82 39	1 888 615 535	2 749 112 908	36 190402342	-107 745148086
4,645.00 59.21 129.200 4,522.65 -315.97 -41.78 1,888,582.362 2,749,153.521 36.190311113 -107.745010553 4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174.927 36.190263074 -107.744938064	4 614 00	56 45	129.200	4 506 15	-299 38	-62 11	1 888 598 946	2 749 133 188	36 190356720	-107 745079410
4,677.00 60.19 129.230 4,538.80 -333.43 -20.37 1,888,564.895 2,749,174,927 36.190263074 -107.744938064	4,645.00	59 21	129 200	4,522,65	-315.97	-41 78	1.888.582.362	2,749,153,521	36,190311113	-107.745010553
	4,677.00	60.19	129.230	4,538.80	-333.43	-20.37	1,888,564.895	2,749,174.927	36.190263074	-107.744938064

12/20/2022 3:05:18PM

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
4,708.00	60.20	129.030	4,554.20	-350.41	0.50	1,888,547.919	2,749,195.793	36.190216388	-107.744867401
4,739.00	61.70	129.600	4,569.26	-367.58	21.46	1,888,530.749	2,749,216.758	36.190169167	-107.744796404
4,771.00	64.07	131.130	4,583.84	-386.03	43.16	1,888,512.301	2,749,238.455	36.190118434	-107.744722931
4,802.00	67.10	132.720	4,596.65	-404.89	64.15	1,888,493.440	2,749,259.451	36.190066568	-107.744651836
4,833.00	70.72	133.020	4,607.81	-424.56	85.35	1,888,473.765	2,749,280.645	36.190012465	-107.744580072
4,845.00	71.90	133.221	4,611.65	-432.33	93.64	1,888,465.995	2,749,288.942	36.189991100	-107.744551979
330 perp	@ 4845 MD 4	611.65 TVD							
4,846.12	72.01	133.240	4,612.00	-433.06	94.42	1,888,465.265	2,749,289.718	36.189989094	-107.744549350
FTP @ 4	846.12 MD 46	12.00 TVD							
4,865.00	73.86	133.550	4,617.54	-445.46	107.53	1,888,452.866	2,749,302.831	36.189954999	-107.744504947
4,897.00	76.62	134.100	4,625.69	-466.89	129.86	1,888,431.440	2,749,325.153	36.189896084	-107.744429366
4,928.00	79.62	134.710	4,632.07	-488.11	151.53	1,888,410.215	2,749,346.823	36.189837722	-107.744355996
4,959.00	81.55	135.570	4,637.14	-509.79	173.10	1,888,388.538	2,749,368.393	36.189778119	-107.744282963
4,991.00	83.36	135.960	4,641.35	-532.52	195.23	1,888,365.810	2,749,390.522	36.189715626	-107.744208040
5,022.00	85.21	135.880	4,644.43	-554.68	216.68	1,888,343.653	2,749,411.979	36.189654702	-107.744135392
5,054.00	86.78	135.590	4,646.67	-577.54	238.96	1,888,320.794	2,749,434.259	36.189591850	-107.744059957
5,085.00	87.87	135.400	4,648.11	-599.62	260.67	1,888,298.709	2,749,455.965	36.189531127	-107.743986466
5,148.00	88.96	135.530	4,649.86	-644.51	304.84	1,888,253.819	2,749,500.132	36.189407698	-107.743836927
5,243.00	91.08	136.280	4,649.82	-712.73	370.94	1,888,185.596	2,749,566.234	36.189220114	-107.743613128
5,337.00	89.67	135.410	4,649.21	-780.17	436.41	1,888,118.159	2,749,631.710	36.189034692	-107.743391445
5,431.00	90.92	135.390	4,648.72	-847.10	502.41	1,888,051.231	2,749,697.711	36.188850665	-107.743167987
5,525.00	89.75	135.610	4,648.18	-914.14	568.30	1,887,984.188	2,749,763.594	36.188666322	-107.742944928
5,619.00	90.99	135.300	4,647.57	-981.13	634.23	1,887,917.197	2,749,829.529	36.188482123	-107.742721692
5,714.00	89.34	135.780	4,647.29	-1,048.94	700.77	1,887,849.395	2,749,896.065	36.188295692	-107.742496424
5,808.00	91.03	135.660	4,646.99	-1,116.23	766.39	1,887,782.100	2,749,961.690	36.188110656	-107.742274244
5,903.00	89.42	135.890	4,646.62	-1,184.31	832.65	1,887,714.025	2,750,027.947	36.187923477	-107.742049923
5,997.00	88.08	136.440	4,648.67	-1,252.09	897.74	1,887,646.237	2,750,093.033	36.187737089	-107.741829573
6,091.00	88.88	136.500	4,651.16	-1,320.22	962.46	1,887,578.111	2,750,157.750	36.187549770	-107.741610473
6,186.00	89.81	136.880	4,652.25	-1,389.34	1,027.62	1,887,508.989	2,750,222.910	36.187359716	-107.741389880
6,280.00	90.58	137.230	4,651.93	-1,458.15	1,091.66	1,887,440.182	2,750,286.951	36.187170528	-107.741173077
6,374.00	89.38	135.160	4,651.96	-1,525.98	1,156.72	1,887,372.347	2,750,352.013	36.186984009	-107.740952811
6,469.00	89.56	135.280	4,652.84	-1,593.41	1,223.63	1,887,304.917	2,750,418.927	36.186798597	-107.740726270
6,563.00	90.00	135.350	4,653.20	-1,660.25	1,289.73	1,887,238.086	2,750,485.028	36.186614830	-107.740502484
6,657.00	90.09	134.900	4,653.13	-1,726.86	1,356.06	1,887,171.473	2,750,551.350	36.186431664	-107.740277946
6,752.00	90.03	134.290	4,653.03	-1,793.56	1,423.70	1,887,104.775	2,750,618.998	36.186248259	-107.740048919
6,846.00	91.19	134.550	4,652.03	-1,859.34	1,490.84	1,887,038.988	2,750,686.130	36.186067358	-107.739821636
6,940.00	89.38	134.810	4,651.56	-1,925.44	1,557.67	1,886,972.896	2,750,752.965	36.185885619	-107.739595365
7,035.00	89.49	134.620	4,652.50	-1,992.27	1,625.18	1,886,906.060	2,750,820.470	36.185701832	-107.739366825
7,130.00	90.59	134.340	4,652.43	-2,058.83	1,692.96	1,886,839.498	2,750,888.250	36.185518800	-107.739137351
7,224.00	92.44	134.670	4,649.94	-2,124.70	1,759.97	1,886,773.633	2,750,955.264	36.185337683	-107.738910477
7,318.00	90.00	134.340	4,647.94	-2,190.57	1,826.99	1,880,707.762	2,751,022.283	30.185150549	-107.738083582
7,413.00	90.50	134.320	4,647.53	-2,256.96	1,894.95	1,880,041.378	2,751,090.238	36.184974002	-107.738453520
7,507.00	90.50	133.460	4,040.71	-2,322.13	1,902.07	1,000,070.201	2,751,157.907	30.104794773	-107.730224223
7,602.00	91.52	133.720	4,045.03	-2,307.03	2,031.40	1,000,010.099	2,751,220.751	30.104014043	107.737991349
7,090.00	90.02	134.000	4,043.77	-2,455.20	2,096.72	1,000,445.057	2,751,294.017	36 19435137	107 727529701
7,790.00	90.83	135.210	4,043.07	-2,519.79	2,105.14	1,000,370.339	2,751,300.430	26 194067092	107 727214451
7 070 00	91.49 88 00	134 510	4,041.17	-2,000.43	2,231.41	1 886 244 054	2,751,420.090	36 183883802	-107.737314431
8 073 00	80.90	133 700	4,040.00	-2,033.30	2,230.00	1 886 170 /01	2,751,494.009	36 183703873	-107.736858013
8 168 00	80.60	133.790	4,042.00	-2,7 10.04	2,000.20	1 886 112 862	2,751,301.324	36 182522205	-107.736625510
8 262 00	09.09	135.010	4,043.01	-2,104.47	2,434.31	1 886 047 777	2,751,030.201	36 1833/1670	-107.73630023310
8 356 00	20.00 20 27	135.800	4 643 26	-2,000.00	2,501.75	1 885 980 422	2,751,037.040	36 183156/62	-107 736177282
8 450 00	80.20	135.000	4 644 36	-2,017.01	2,007.02	1 885 913 475	2,751,828,581	36 182072366	-107 735053047
8 545 00	90.23	133 780	4 644 77	-3 051 34	2 701 15	1 885 846 998	2 751 896 442	36 182789559	-107 735724218
8,639.00	91.43	133.700	4,643.41	-3,116.32	2,769.06	1,885,782.016	2,751,964.347	36.182610858	-107.735494334

12/20/2022 3:05:18PM

COMPASS 5000.16 Build 96

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Depth Inclination Azimuth Depth +N/S +E/W Northing Easing B733.00 88.74 134.840 448.127 -3,161.93 2,885.36 1,885.716.407 2,722.031.849 35.1522.4000 -107.7352642453 8.827.00 90.42 135.670 444.55 -3,346.67 2,202.41 8.85.61.968 2,772.164.469 35.1522.4000 -107.73566025 9.101.00 98.16 134.000 4.467.00 3,314.37 117.127 18.85.369.892 2,772.294.54.408 36.161701911 -107.734560529 9.210.00 98.94 135.700 4.652.24 -3,581.47 3,226.75 1,885.461.8553 2,772.495.424 -107.73564065 -107.73564065 -107.73564065 -107.73564065 -107.73564065 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73526407 -107.73516467 -107.73526407 <t< th=""><th>Measured</th><th></th><th></th><th>Vertical</th><th></th><th></th><th>Мар</th><th>Мар</th><th></th><th></th></t<>	Measured			Vertical			Мар	Мар		
U (1) <th(1)< th=""> <th(1)< th=""> <th(1)< th=""></th(1)<></th(1)<></th(1)<>	Depth (ff)	Inclination	Azimuth	Depth (ft)	+N/-S	+E/-W	Northing (usft)	Easting	I attanda	1
8,73.00 88,74 134,840 4,443.27 3,161.93 2,833.36 1,855,716.407 2,722,031.448 381,182240438 -107,73564425 8,822.00 88.66 135,270 4,444.66 3,316.37 2,006.18 1,855,516.062 2,722,194.4403 331,1812000737 -107,735604245 8,016.00 88.61 133,680 4,446.23 3,342.34 3,006.14 88.65,1585 2,722,299.115 331,181700191 -107,73460029 9,205.00 88.46 135,750 4,622,24 3,351,73 3,225,75 1,885,346,555 2,722,492,141 301,10130077 -107,73300179 9,383.00 33,46 4,461,47 3,744,330 1,885,3479 2,772,429,717 301,1014444 -107,73300179 9,127,120 9,33,13 4,641,47 3,745,348 1,884,771,184 2,772,782,784 341,184,177,173 1,117,7322,117 1,117,7322,117,733,1139 1,107,7320,1395 -107,73201395 -107,73201395 -107,73201395 -107,73201395 -107,73201395 -107,73201395 -107,732014827 -107,732148274 -107,732014827 -107,732014827 <th>(11)</th> <th>()</th> <th>()</th> <th>(11)</th> <th>(π)</th> <th>(11)</th> <th>(usit)</th> <th>(usit)</th> <th>Latitude</th> <th>Longitude</th>	(11)	()	()	(11)	(π)	(11)	(usit)	(usit)	Latitude	Longitude
8.827.00 90.42 135.640 4.643.66 -3.246.77 2.902.541 1,865.648.669 2.722.097.833 38.1822.46909 -107.73804283 9.016.00 88.66 134.000 4.647.00 -3.342.33 3.030.04 1,885.615.844 2.722.213.34 38.18187188 -107.73461085 9.016.00 88.61 134.000 4.647.00 -3.342.74 3.030.04 1,885.615.844 2.722.266.544 38.18187188 -107.734480107 9.208.00 88.67 135.860 4.680.68 -3.347.47 3.117.25 1,885.343.804 2.722.666.244 38.1181607 -107.73410217 8.488.00 9.10 138.156 4.681.17 -3.645.30 3.402.68 1.885.2448.973 2.722.694.844 38.118160941 -107.735486179 9.477.00 9.12 135.000 4.640.37 -3.716.76 1.885.7144.971 3.816.80014 -107.73201343 9.666.00 88.83 13.440.44 4.414.00 -4.838.91 4.844.84 2.762.2481.595 38.160044625 -107.732013454 9.672.03 9.424.444.400.77.7	8,733.0	0 88.74	134.840	4,643.27	-3,181.93	2,836.36	1,885,716.407	2,752,031.649	36.182430438	-107.735266497
8.922.00 88.86 135.270 4.644.56 -3.342.39 3.008.04 1.865.651.694 2.722.243.134 38.182000/37 -107.734680529 9.110.00 89.13 133.880 4.642.33 -3.447.44 3.103.82 1.865.450.856 2.752.2291.115 38.187701918 -107.734680529 9.205.00 89.48 135.790 4.682.24 -3.361.78 3.230.75 1.885.416.533 2.752.432.041 38.1103.0407 -107.733819106 9.383.00 9.848.40 9.21.71 1.866.540.2497 2.752.462.681 38.11004604 -107.73346197 9.384.00 9.24.71 1.36.61.640.40 -107.73346197 3.314.37 1.865.71 1.864.797.1164 2.752.462.683 38.100640425 -107.733246153 8.677.00 9.12.1 1.366.80 4.64.067 -3.765.75 1.84.471.164 2.72.2467.81 38.10064425 -107.733246153 8.772.00 9.12.1 1.366.80 4.64.63.81 -4.1654.37 2.762.4864.30 5.11644797 -107.732164326 9.119 1.55.80 4.44.51.77 3.218.177.1118 <td>8,827.0</td> <td>0 90.42</td> <td>135.640</td> <td>4,643.96</td> <td>-3,248.67</td> <td>2,902.54</td> <td>1,885,649.666</td> <td>2,752,097.833</td> <td>36.182246909</td> <td>-107.735042453</td>	8,827.0	0 90.42	135.640	4,643.96	-3,248.67	2,902.54	1,885,649.666	2,752,097.833	36.182246909	-107.735042453
9.016.00 88 16 144.00 -4.342.38 3.036.04 1,885.015.944 2,762.241.354 36.1816/9188 -107.73480075 9.216.00 88 71 135.860 4,680.68 -3.347.43 3.171.25 1,885.383.864 2,762.266.544 36.1815.0246 -107.734132017 9.283.00 9.10 185.16 4,681.77 -3.347.48 3.302.05 1,885.246.873 2,772.266.544 36.1815.0246 -107.734132017 9.383.00 9.10 185.16 4,681.77 -3.347.69 1.885.2448.973 2,772.247.371 35.1816.266.01 -107.733480175 9.466.00 81.23 1.356.00 4.401.67 -3.357.00 3.409.59 1.185.148.247 2,772.264.843 38.180544625 -107.73201343 9.666.00 88.33 13.345.00 4.401.67 -3.357.55 5.867.11 8.404.830 2,762.281.595 38.1802.448.302 7.262.848.463 38.102.020146 -107.73201343 9.666.00 88.83 13.344.44.104.71.267 2,752.848.454 38.1089.447.773.71730772 -107.731675406 10.150.00 9.	8,922.0	0 88.86	135.270	4,644.56	-3,316.37	2,969.18	1,885,581.963	2,752,164.469	36.182060737	-107.734816883
9,100,00 89,13 13,880 4,892,30 -3,44,49 3,103,82 2,752,249,115 30,1817(01)91 -107,7348(01)4 9,280,00 89,47 135,800 4,680,269 -3,814,73 1,725 1,885,3084 2,722,432,041 30,1817,00191 -107,7334112314 9,383,00 9,010 136,150 4,851,77 3,494,30 3,202,07 1,885,516,833 2,722,462,041 30,1817,00191 -107,733416314 9,488,00 92,17 136,600 4,494,07 -3,718,101 3,307,60 1,885,180,240 2,722,462,691 30,180,0660,41 -107,7334(130) 9,481,00 92,21 135,080 4,494,07 -3,718,50 1,885,491,1193 2,722,462,781 30,180,0660,41 -107,7332(135) 9,816,00 86,81 13,340 4,416,41 -3,915,15 1,844,91,178 2,722,813,95 30,180,020,25 -107,732(286)7 10,450,00 2,44 14,832,91 4,416,41 -3,917,11 1,844,413,71 2,722,885,74 30,1196,022 -107,732(286)7 10,450,00 9,42 14,832,91 4,416,41 3,911,61 1,894,417,184 2,722,485,74 30,1196,91	9,016.0	0 88.16	134.000	4,647.00	-3,382.39	3,036.04	1,885,515.944	2,752,231.334	36.181879188	-107.734590529
32,05,00 86,86 135,860 4,660,29 -3,611,73 3,171,20 1,855,336,844 2,72,342,244 36,1171,844 -107,733411407 33,330,00 91,00 133,150 4,661,77 -3,649,36 3,302,00 1,855,248,973 2,752,427,33 36,181146043 -107,7334849906 34,880,00 93,40 133,450 4,464,45 -3,768,37 3,433,49 1,865,1119,83 2,752,628,183 36,18096642 -107,733245153 36,177,200 88,23 133,000 4,464,03 -3,913,55 1,865,149,477 2,752,628,184 36,180946256 -107,732247033 3,986,00 91,21 133,000 4,464,03 -3,913,55 1,864,917,164 2,752,763,135 36,18044256 -107,732243847 1,005,00 91,21 133,300 4,418,40 -4,000,02 3,704,17 1,844,471,705 7,752,303,442 36,179407493 -107,73242497 1,005,00 92,41 14,40 4,300,72 -4,284,313 1,844,471,705 7,753,303,442 36,17940749 -107,7314744748 100,773404157 1,444,446002 4,778,310,845,14817 2,753,304,427 2,753,304,427 36,733,304,427	9,110.0	0 89.13	133.680	4,649.23	-3,447.48	3,103.82	1,885,450.855	2,752,299.115	36.181700191	-107.734361075
9.9900 894.9 135.190 4,052.24 -3,061.76 3.280.70 1,055.34.272.2407.371 35.11346047 -107.73349480179 9.488.00 92.17 136.590 4,046.07 -3,718.10 3.387.60 1,855.489.73 2,725.262.87.81 35.10976204 -107.73349480179 9.683.00 93.40 135.40 4,464.07 -3,785.30 3,499.99 1,855.445.24 2,725.262.87.81 35.10976220 -107.732042135 9.677.00 91.21 135.000 4,464.07 -3,983.55 3,657.85 1,884.971.146 2,725.267.81 35.109048205 -107.7320249353 9.961.00 88.83 133.450 4,464.07 -3,983.55 3,658.31 1,884.497.146 2,752.851.954 36.10024064 -107.732034825 10.955.00 92.44 134.800 4,628.76 -4,248.31 3,904.27 1,884.658.074 2,753.093.424 36.17967737 -107.732148754 10,433.00 95.62 134.200 4,833.02 4,771.44 4,844.715.247 2,753.106.547 36.179947749 -107.7314744748 10,433.00 95.61 135.800 4,627.64 -4,431.04 4,347.1526	9,205.0	0 88.87	135.860	4,650.89	-3,514.37	3,171.25	1,885,383.964	2,752,366.544	36.181516246	-107.734132814
3.33.00 91.00 106.150 4,951./1 -3.718.10 3.302.00 106.248.913 2.122.481.93 36.16118304 -107.133068195 3.468.00 93.21 135.60 4,944.44 -3.768.07 3.435.49 1,865,111.83 2.722.228.91 36.161786290 -107.1733248153 3.87772.00 88.23 133.000 4,444.3 -3.663.03 3.465.49 1.7272.228.91 36.16044255 -107.7323248153 3.8161.00 91.21 135.000 4,444.80 -3.983.50 1.864.973.144 2.722.723.155 36.16044255 -107.732328867 10.055.00 92.44 14.40 4.363.88 -4.183.07 3.380.13 1.884.716.276 2.733.03.261 36.179977370 -107.731474405 10.243.00 93.65 4.282.71 4.315.66 3.971.26 1.884.450.024 2.753.233.02 36.179914773 -107.7314197440 10.243.00 93.65 4.262.67 4.333.52 4.262.67 4.333.52 1.6733248194 -107.733248174 10.433.00 93.50 4.262.60 4.431.56 3.971.26 1.884.452.674 2.753.233.022 36.179944400 -107.739159764	9,299.0	0 89.48	135.790	4,652.24	-3,581.78	3,230.75	1,885,316.553	2,752,432.041	36.181330877	-107.733911107
3,983.00 92,10 135.080 -0,085.00 1,025.102.400 2,725.268.781 30.180768205 30.180768205 107.73247133 9,075.00 91.20 135.000 4,600.77 3,433.49 1,885,111.963 2,725.268.781 30.180768205 107.73302135 9,077.00 91.21 135.000 4,601.90 3,389.15 3,667.85 1,864,479.144 2,726.283.138 30.180042625 107.733021357 9,061.00 82.3 133.340 4,614.90 3,389.15 3,863.31 1,864,471.795 2,726.299.466 30.1802022044 107.733223887 10,055.00 92.44 134.600 4,638.91 4,116.54 3,770.51 1,884,471.795 2,753.033.424 36.17997477 10,73147746 10,433.00 90.67 135.820 4,628.76 -4,315.68 4,371.61 2,753.033.32 36.179124734 107.73144748 10,433.00 90.61 135.620 4,628.761 -4,193.74 1,884,472.47 2,753.344.472 36.179124734 107.730073567 10,435.00 90.61 135.490	9,393.0	0 91.09	136.150	4,001.77	-3,049.30	3,302.08	1,000,240.973	2,752,497.371	30.101143043	-107.733009900
3.0300 30.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.7 10.7 10.4 10.7	9,400.0	0 92.17	136.590	4,049.07	-3,710.10	3,307.00	1,000,100.240	2,752,502.095	36.100930041	107 733245153
3)7730 312 103060 4,64031 3.39135 3.367.85 1,762,762,763,133 3.0104425 1.07,73270343 9,966.00 88.83 133,460 4,64130 3.398355 3.368.31 1,884,491.748 2,752,853,135 3.0104425 1.07,73256801 10,055.00 92.44 134.800 4,638.91 4,116.54 3,770,151 1,884,471.718 2,752,959,766 36,179677370 107,731675406 10,055.00 93.62 134,260 4,633.84 1418.30,774 1,884,450.247 2,753,166.547 36,17991737 107,731675406 10,338.00 90.67 135.520 4,622.50 4,333.52 4,037.74 1,884,450.247 2,753,166.547 36,17991737 1,73149748 10,433.00 90.650 135.820 4,627.06 4,103.12 1,884,472.74 2,753,308.30 36,17991737 1,773,473,734,733,783 36,178940400 1,77,731097457 10,716.00 89.64 134,990 4,627.60 4,103.12 1,753,309,303 36,178940400 1,77,73007566 10,716.00 89.64	9,565.0	0 93.40	135.080	4,044.45	-3,760.37	3,433.49	1 885 045 247	2,752,020.701	36 180584825	-107.733021305
9.866.0 88.83 133.45 4.441.90 -3.28.15 3.03.03 1.884.91.78 2.752.831.55 3.61004326 -107.732558661 9.861.00 91.19 155.300 4.441.88 -4.050.02 3.704.17 1.844.843.20 2.752.831.55 3.610043265 -107.732558661 10.055.00 92.44 144.800 4.633.88 1.814.715.267 2.753.098.561 3.6179640794 -107.731675405 10.243.00 91.46 144.960 4.628.76 -4.248.31 3.904.27 2.753.098.561 3.6179240794 -107.731457458 10.243.00 90.550 135.500 4.627.60 -4.5106 4.103.12 1.844.472.74 2.753.364.427 36.179840400 -107.730575005 10.716.00 90.544 134.850 4.627.04 4.301.33 4.184.147 2.753.364.427 36.179564303 -107.730575005 10.716.00 90.544 144.850 4.627.04 4.471.44 4.880.267 2.753.364.827 36.1772569471 -107.7325786431 10.810.00 90.51 144.800 4.627.09 4	9,077.0	0 91.21	133.050	4,040.07	-3,053.09	3,499.39	1,005,045.247	2,752,094.004	36 180403150	-107.733021393
9,981.00 91.19 135.360 4.417.88 4.050.02 3,704.17 1,884.84.322 2,752.899.463 36.18004325 107.732328867 10,055.00 92.44 134.800 4.639.91 4,116.54 3,770.51 1,884.761.79 2,752.899.463 76 36.17960322 107.732328867 10,243.00 91.46 134.900 4.629.76 4.248.31 3,904.27 1,884.650.02 2,753.905.51 36.179467949 - 107.731675405 10,243.00 91.46 134.900 4.629.76 4.248.31 3,904.27 1,884.650.02 2,753.906.547 36.179457194 - 107.731424788 10,433.00 90.50 135.820 4.628.50 4.383.52 4.037.74 1,884.451.841 7,2753.230.22 36.179126137 - 107.73142788 10,527.00 90.58 135.900 4.627.80 4.4519.37 4.169.14 1,884.4378.967 2,753.364.427 36.178752562 - 107.730551703 10,716.00 90.51 134.800 4.627.61 4.458.27 0 4.4519.37 4.169.14 1,884.4378.967 2,753.348.427 36.178752562 - 107.730551703 10,010 0.90.51 134.800 4.627.61 4.458.27 0 4.4519.37 4.169.14 1,884.4378.967 2,753.346.396 436.178752562 - 107.73030531703 10,010 0.90.51 134.800 4.627.61 4.458.27 0 4.43168 1,884.478.969 2,733.564.956 36.178205263 - 107.73030531703 10,910 0.90.51 134.800 4.627.09 4.7194 4.3369.24 1.844.17.849.62.733.564.956 36.178203263 - 107.73030531703 10,990 00 88.41 134.200 4.627.09 4.7194 4.3369.24 1.844.17.849 2,753.364.956 36.178203263 - 107.723037586 10.9990 00 88.41 134.200 4.627.05 - 4.785.09 4.435.54 1.884.173.845 2,753.364.856 36.178202363 - 107.723047868 11.994.00 89.90 31 34.210 4.630.05 - 4.851.32 4.504.61 1,884.047.013 2,753.669.899 36.177839671 - 107.7239442888 11.994.00 89.50 31.36.100 4.622.48 - 4.917.71 4.571.15 1,883.945.003 2,753.766.434 36.177639671 - 107.723942888 11.943.00 89.51 135.500 4.622.44 - 5.917.72 4.553.81 4,883.756.98.99 36.177733671 - 107.723945288 11.985.00 89.94 135.500 4.622.44 - 5.917.71 4.871.55 1,883.376.601 2,753.988.99 36.1777396711 - 107.723942888 11.944.00 89.55 135.610 4.625.58 - 5.227.58 1,883.300.603 2,753.766.434 36.177629151 - 107.72284820 11.471.00 90.03 136.110 4.627.05 - 5.933.35 5,030.08 1,883.504.88 2,754.228.383 36.1677349113 - 107.72284820 11.946.00 90.94 135.500 4.625.44 - 5.425.60 4.9484.44 5.946.52 7.442.9585 - 36.176721	9,772.0	0 88.83	133,450	4,040.31	-3 983 55	3,636,31	1 884 914 786	2,752,703.150	36 180226048	-107.732558601
10.055.00 92.44 134.800 4.838.91 -4.116.54 3.770.51 1.884.781795 2.752.885.786 36.178680322 -107.732104327 10.150.00 93.62 134.200 4.633.88 -1.8107 3.383.13 1.844.7175.267 2.753.099.561 36.179807370 -107.731675405 10.338.00 89.78 135.300 4.628.73 -4.315.66 3.971.26 1.844.692.674 2.753.099.561 36.179814794 -107.731424788 10.433.00 99.55 135.500 4.627.60 -4.519.3 4.184.37 2.753.384.27 2.61792140400 -107.7309754015 10.627.00 90.01 136.550 4.627.61 -4.652.47 4.814.312.010 2.753.364.27 36.17856430 -107.730073421 10.905.00 90.51 134.880 4.627.61 +4.652.70 4.301.68 1.884.275.65 36.17868430 -107.73007368 10.995.00 86.44 144.220 4.627.95 +4.785.09 4.436.54 1.884.178.896 2.753.564.555 36.178202363 -107.73007368 10.995.00 86.44 144.220 4.627.95 +4.771.4 1.884.77.15 1.884.3480	9 961 0	0 91 19	135,360	4 641 88	-4 050 02	3 704 17	1 884 848 320	2,752,899,456	36 180043265	-107.732328887
10,150,00 93,62 134,260 4,633,88 4,183,07 3,838,13 1,847,15,267 2,753,033,424 36,179677370 -107,731675466 10,243,00 91,46 134,860 4,629,76 4,248,31 3,040,27 1,844,650,224 2,753,166,547 36,179877370 -107,731675466 10,333,00 90,50 135,820 4,628,50 -4,383,52 4,037,74 1,844,4714 2,753,208,403 36,179122137 -107,7319765005 10,827,00 90,58 135,600 4,627,60 -4,161,37 1,184,4174 2,753,304,427 36,17852562 -107,730575005 10,716,00 90,51 134,850 4,627,61 -4,652,70 4,301,68 1,844,245,640 2,753,461,867 36,17852562 -107,730307560 10,910,00 90,12 134,880 4,627,61 -4,651,32 4,504,61 1,844,476,309 2,753,661,865 36,178202363 -107,730307566 10,994,00 90,31 134,210 4,620,05 -4,851,32 4,504,61 1,844,947,013 2,753,661,463 36,177620891 -107,72939478 11,883,00 89,91 135,560 4,622,46 -1,171	10 055 0	0 92.44	134 800	4 638 91	-4 116 54	3 770 51	1 884 781 795	2,752,055.400	36 179860322	-107 732104327
10.243.00 91.46 134.660 4.629.76 -4.248.31 3.904.27 1.884.650.024 2.753.099.651 36.17947939 -107.731424788 10.333.00 99.78 135.360 4.628.73 -4.315.66 3.971.26 1.884.582.67 2.753.298.406 38.17912137 -107.731424788 10.433.00 90.50 135.000 4.627.40 -4.519.37 4.169.14 1.884.542.67 2.753.238.420 36.178940400 -107.730797471 10.622.00 90.58 134.850 4.627.41 -4.568.33 4.235.11 1.884.454.264 2.753.498.496 36.17856430 -107.730357103 10.710.00 90.51 134.880 4.627.61 -4.501.60 4.364.540 2.753.496.465 36.17856433 -107.730357103 10.990.00 90.51 134.890 4.627.69 -4.719.44 4.369.28 1.884.178.666 2.753.564.465 36.178202817 -107.729361986 10.990.00 80.41 134.220 4.627.64 -4.917.71 4.571.45 1.883.906.302 2.753.584.665 36.17782047184 -107.72941984 -107.72941984 -107.72941984 -107.72941984 -107.72941984 -107.7294198	10,000.0	0 93.62	134 260	4 633 88	-4 183 07	3 838 13	1 884 715 267	2 753 033 424	36 179677370	-107 731875406
10,338.00 89.78 135.350 4,628.73 4,315.66 3,971.26 1,884,582.674 2,753,166.547 36,179126137 -107,731424768 0,052.00 90.01 136.620 4,628.60 4,383.52 4,037.74 1,884,514.817 2,753,238.032 36,179126137 -107,731424768 0,052.00 90.05 136.620 4,628.60 4,451.06 4,103.12 1,884,447.274 2,753,984.60 6,178940400 -107,73097441 1,0622.00 90.58 135.900 4,627.64 -4,519.37 4,169,14 1,884,378.967 2,753,364.427 36,178752622 -107,7305501703 10,810.00 90.12 134.80 4,627.61 -4,652.70 4,301.68 1,884,245.640 2,753,466.964 36,178385914 -107,730307566 10,995.00 90.51 134,390 4,627.95 -4,785.09 4,436.54 1,884,245.640 2,753,465.655 36,178021871 -107,729494888 11,094.00 89.03 134.210 4,620.05 -4,851.32 4,504.61 1,884,917.01 2,753,430.98 0,6177805617 -107,729494888 11,094.00 89.03 134.210 4,620.64 -4,651.32 4,564.61 1,884,917.01 2,753,430.89 0,61778591671 -107,729494283 11,283.00 89.91 135.560 4,627.86 -4,651.33 4,701 2,753,180.630 2,753,664 34 36,1778591671 -107,729494283 11,283.00 89.91 135.560 4,627.65 -5,5121.42 4,767.55 1,883,776.914 2,753,832.899 36,177284154 -107,72894820 11,471.00 90.03 136.110 4,627.06 -5,121.42 4,767.55 1,883,776.914 2,753,852.890 40 6,1772841650 -107,728507212 11,660.00 90.84 135.970 4,624.78 -5,257.88 4,898.30 1,883,640.56 2,754,093.582 36,176721651 -107,728948820 11,555.00 89.92 135.510 4,625.44 -5,401.06 4,433 1,883,512.22 2,754,028.517 36,176908169 -107,728507241 1,1660.00 90.84 135.970 4,624.78 -5,257.88 4,898.30 1,883,640.456 2,754,93.582 36,176721651 -107,728494820 11,556.00 4,625.44 -5,401.06 4,433 1,883,512.22 2,754,028.517 36,176908169 -107,728507241 1,1660.00 90.84 135.970 4,624.78 -5,257.88 4,898.30 1,883,640.456 2,754,93.582 36,176721651 -107,728494820 11,566 40,565 4,533.55,000 6,4353.25 1,754,555 11 36,176594131 -107,727404970 11,944.00 90.62 135.610 4,625.46 -5,530.50 6,327.65 9,882,2754,555.81 36,17659486 -107,728507212 1,1660.00 90.84 135.290 4,625.17 5,663.26 5,595.96 5,300.61 1,883,600.57 2,754,555.81 36,17659486 -107,728494820 107,72739598 1,2230.00 89,86 135.290 4,625.17 5,663.26 5,595.96 5,	10,700.0	0 91.46	134 960	4 629 76	-4 248 31	3 904 27	1 884 650 024	2 753 099 561	36 179497949	-107 731651532
10.433.00 90.50 135.820 4.628.50 -4.383.52 4.037.74 1884.514.817 2.753.233.032 36.179126137 -117.73119744 10.622.00 90.05 135.600 4.628.08 -4.451.06 4.103.12 1.884.447.274 2.753.343.427 36.17892662 -107.730755005 10.716.00 89.64 134.890 4.627.64 -4.556.33 4.235.11 1.884.312.010 2.753.464.690 36.178564840 -107.73007366 10.910.00 90.12 134.800 4.627.09 -4.719.44 4.366.27 4.301.68 1.884.478.806 2.753.644.695 36.1780201817 -107.73007366 10.990.00 88.44 134.200 4.627.99 -4.719.44 4.365.41 1.884.171.245 2.753.664.565 36.178021817 -107.729619470 11.188.00 91.66 135.660 4.627.48 -4.916.57 4.837.157 1.883.980.630 2.753.664.328 36.177691617 -107.729619470 11.88.00 91.66 135.500 4.627.65 -5.167.16 1.883.912.770 2.753.888.04 36.17769164 -107.729619470 11.870.00 90.72 136.700 4.627.65	10.338.0	0 89.78	135.350	4.628.73	-4.315.66	3.971.26	1.884.582.674	2,753,166,547	36.179312738	-107.731424788
10.527.00 90.01 136.050 4.628.08 -4.651.08 4.103.12 1.884.472.274 2.753.364.427 36.1789404000 -107.730775071 10.022.00 90.58 135.900 4.627.46 -4.566.33 4.233.11 1.884.378.967 2.753.364.427 36.178568430 -107.7303631703 10.910.00 90.12 134.890 4.627.14 -4.656.27 4.301.68 1.884.245.640 2.755.364.565 36.178202363 -107.73007566 10.995.00 88.44 134.20 4.627.95 -4.785.09 4.436.54 1.884.470.214 2.753.564.565 36.178020236 -107.73007566 10.999.00 88.44 134.20 4.627.95 -4.785.09 4.436.54 1.884.407.013 2.753.808.99 36.177803671 -107.729164270 11.88.00 91.66 135.660 4.627.65 -5.53.33 4.707.75 1.883.486.07 2.753.808.09 36.177246154 -107.728164290 11.471.00 90.03 136.110 4.627.66 -5.53.33 4.702.51 1.883.460.07 2.753.982.89 36.176724154 -107.72849820 11.460.0 90.44 135.670 4.627.46	10,433.0	0 90.50	135.820	4.628.50	-4.383.52	4.037.74	1.884.514.817	2.753.233.032	36.179126137	-107.731199746
10.622.00 90.58 135.900 4.627.00 -4.519.37 4.169.14 1.884.375.967 2.753.364.427 36.178752562 -107.730375005 10.716.00 89.64 134.950 4.627.41 -4.586.33 4.235.11 1.884.312.010 2.753.496.964 36.178356414 -107.73037303636 10.950.00 90.51 134.830 4.627.99 -4.7755.94 4.366.54 1.884.178.866 2.753.466.565 36.178236511 -107.730375063 10.995.00 88.44 134.220 4.627.95 -4.655.54 1.884.178.846 2.753.364.855 36.17839671 -107.729814988 11.984.00 89.03 134.210 4.630.05 -4.851.32 4.504.61 1.883.912.770 2.753.898.949 36.1776396711 -107.729814988 11.880.0 91.66 135.560 4.627.05 5.121.42 4.767.55 1.883.776.914 2.753.968.289 36.17765906169 -107.728728506 11.471.00 90.03 136.110 4.627.05 5.121.42 4.767.55 1.883.776.914 2.753.962.893 36.1776590695 -107.728728506 11.471.00 90.94 136.110 4.627.65 5.32	10,527.0	0 90.01	136.050	4,628.08	-4,451.06	4,103.12	1,884,447,274	2,753,298,406	36.178940400	-107.730978471
10,716.00 98.64 134.950 4.627.61 4.652.70 4.301.68 1.884.912.010 2.753.490.398 36.175656430 -107.730031703 10,810.00 90.51 134.880 4.627.01 4.719.44 4.306.28 1.884.178.866 2.753.664.565 36.178202363 -107.730077566 10.995.00 88.44 134.220 4.627.95 4.775.90 4.436.54 1.884.178.866 2.753.664.565 36.178202363 -107.730077566 11,984.00 91.66 135.660 4.629.48 4.917.71 4.571.15 1.883.900.630 2.753.766.434 36.177657113 -107.7293194263 11,880.0 91.66 135.660 4.629.48 4.917.71 4.571.15 1.883.900.630 2.753.766.434 36.177657113 -107.728163220 11,710.0 90.02 136.710 4.627.66 -5.053.33 4.702.75 1.883.769.04 2.754.908.517 36.176920160 -107.728249820 11,450.00 90.44 135.410 4.626.24 -5.121.42 4.767.55 1.883.706.922 2.754.093.512 36.170721661 -107.728049720 11,660.00 90.44 135.470 4.626.24	10,622.0	0 90.58	135.900	4,627.60	-4,519.37	4,169.14	1,884,378.967	2,753,364.427	36.178752562	-107.730755005
10.810.00 90.12 134.880 4.627.61 4.652.70 4.301.68 1,884.245.640 2.753.466.964 36.17838914 -107.730036386 10.995.00 90.51 134.290 4.627.99 4.719.44 4.369.28 1,884.178.896 2.753.564.565 36.178202363 -107.73007756 10.999.00 88.44 134.220 4.627.95 4.785.99 4.511.424 2.753.69.899 36.1778021817 -107.72994988 11.980.00 99.01 135.500 4.628.48 4.917.71 4.511.51 1.883.980.630 2.753.3766.434 6.17787113 -107.728949882 11.781.00 90.72 136.730 4.627.66 -5.053.33 4.702.75 1.883.945.070 2.753.898.040 36.177264154 -107.728729505 11.471.00 90.03 136.110 4.627.05 -5.121.42 4.767.55 1.883.769.142 2.754.083.817 36.176909169 -107.72872950721 11.660.00 90.84 135.610 4.627.65 -5.326.08 4.964.43 1.883.702.92 2.764.093.582 36.1763.94113 -107.728769074 11.944.00 90.62 135.610 4.627.46 -5.427.80	10,716.0	0 89.64	134.950	4,627.41	-4,586.33	4,235.11	1,884,312.010	2,753,430.398	36.178568430	-107.730531703
10.905.00 90.51 134.390 4.627.99 -4,719.44 4.369.28 1,884,178.246 2,753,564.565 36.1780/2363 -107.720077566 10.99.00 88.44 134.220 4.627.95 -4,765.09 4,436.54 1,884,173.245 2,753,699.399 36.177803671 -107.729019470 11,188.00 91.66 135.660 4.629.48 -4,917.71 4,571.15 1,883,902.770 2,753,823.299 36.177674798 -107.729919470 11,283.00 90.72 136.610 4.627.66 -5,053.33 4,702.75 1,883,945.007 2,753,964.34 36.177244154 -107.728944820 11,471.00 90.03 136.110 4,627.66 -5,121.42 4,767.55 1,883,769.282 2,754,028.517 36.176909169 -107.72829506 11,560.00 90.84 135.970 4,624.78 -5,257.88 4,898.30 1,883,700.822 2,754,028.517 36.176709169 -107.72826926 11,564.00 89.82 135.570 4,624.56 -5,360.88 4,964.43 1,883,450.07 2,754,291.818 36.176721651 -107.72826926 11,564.00 89.82 135.610 4,625.58	10,810.0	0 90.12	134.880	4,627.61	-4,652.70	4,301.68	1,884,245.640	2,753,496.964	36.178385914	-107.730306386
10.999.00 88.44 134.220 4,630.05 -4,851.32 4,504.61 1,884,047.013 2,753,699.899 36,1776309171 -107,729619470 11,188.00 91.66 135,660 4,629.48 -4,917.71 4,571.15 1,883,990.630 2,753,766.434 36,177657113 -107,72994283 11,283.00 89.91 135,530 4,627.66 -5,053.33 4,702.75 1,883,780.07 2,753,980.40 36,177267113 -107,728948820 11,471.00 90.03 136,110 4,627.65 -5,121.42 4,767.55 1,883,776.914 2,753,980.40 36,177094159 -107,728792506 11,471.00 90.03 136,110 4,627.65 -5,121.42 4,767.55 1,883,760.282 2,754,028.517 36,177094159 -107,728507212 11,660.00 90.44 135,970 4,624.65 -5,326.08 4,989.30 1,883,470.428 2,754,028.517 36,176534113 -107,7278405905 11,849.00 89.55 135,610 4,625.45 -5,326.08 4,984.30 1,883,470.102 2,754,291.813 36,176534113 -107,7278405905 11,849.00 89.55 135,610 4,625.45	10,905.0	0 90.51	134.390	4,627.09	-4,719.44	4,369.28	1,884,178.896	2,753,564.565	36.178202363	-107.730077566
11.094.00 89.03 134.210 4,630.05 -4,851.32 4,504.61 1,884.047.013 2,753,693.899 36,177857113 -107.729519470 11,188.00 91.66 135.600 4,622.18 -4,995.77 4,571.15 1,883,980.630 2,753,766.434 36,177467498 -107.729394263 11,283.00 90.72 136.730 4,627.66 -5,053.33 4,702.75 1,883,912.770 2,753,382.899 36,17746498 -107.728549820 11,471.00 90.03 136.110 4,627.05 -5,121.42 4,767.55 1,883,708.914 2,753,928.217 36,176908169 -107.728507212 11,660.00 90.84 135.570 4,624.78 5,257.88 4,964.43 1,883,572.259 2,754,159.716 36,176349113 -107.728670916 11,564.00 90.82 135.610 4,625.44 5,461.24 5,090.65 1,883,370.07 2,754,159.716 36,176349113 -107.727616047 11,944.00 90.62 135.610 4,625.44 5,461.24 5,090.65 1,883,307.067 2,754,291.818 36,175991919 -107.727172869814 12,320.0 90.57 136.140 4,625.17 </td <td>10,999.0</td> <td>0 88.44</td> <td>134.220</td> <td>4,627.95</td> <td>-4,785.09</td> <td>4,436.54</td> <td>1,884,113.245</td> <td>2,753,631.827</td> <td>36.178021817</td> <td>-107.729849888</td>	10,999.0	0 88.44	134.220	4,627.95	-4,785.09	4,436.54	1,884,113.245	2,753,631.827	36.178021817	-107.729849888
11,188.00 91.66 135.660 4,629.48 -4,917.71 4,571.15 1,883,906.370 2,753,766.434 36.17767113 -107.729394283 11,283.00 90.91 135.500 4,627.66 -5,053.33 4,702.75 1,883,912.770 2,753,982.899 36.177740498 -107.729494290 11,471.00 90.03 136.110 4,627.05 5,121.42 4,767.55 1,883,706.914 2,753,962.839 36.1776908169 -107.728729506 11,566.00 90.94 136.410 4,624.78 5,257.88 4,898.30 1,883,640.456 2,754,093.582 36.176520161 -107.7282085161 11,555.00 89.32 135.570 4,624.65 5,326.08 4,964.43 1,883,572.259 2,754,159.716 36.176349113 -107.728063161 11,849.00 89.55 135.610 4,625.88 -5,593.03 1,883,307.007 2,754,358.834 36.175979159 -107.727696992 11,940.00 90.62 135.610 4,625.17 -5,663.26 5,293.28 1,883,307.007 2,754,358.834 36.175979159 -107.72769598 12,226.00 89.41 135.290 4,625.17 -5,663.26<	11,094.0	0 89.03	134.210	4,630.05	-4,851.32	4,504.61	1,884,047.013	2,753,699.899	36.177839671	-107.729619470
11,283.00 89.91 135.530 4,628.18 -4,985.57 4,637.61 1,837.01 2,753,832.899 36.177470488 -107.728169299 11,377.00 90.72 136.70 4,627.66 -5,053.33 4,702.75 1,883,845.007 2,753,898.040 36.177284154 -107.72849820 11,471.00 90.03 136.110 4,627.05 -5,121.42 4,767.55 1,883,770.842 2,753,898.289 36.177090905 -107.7282607212 11,660.00 90.84 135.970 4,624.65 -5,527.86 4,898.30 1,883,570.282 2,754,093.582 36.17671651 -107.72860955 11,755.00 89.32 135.610 4,625.85 -5,393.35 5,030.08 1,883,504.988 2,754,225.83 36.176649113 -107.727610970 12,037.00 89.58 135.680 4,625.48 -5,597.59 5,227.65 1,883,302.374 2,754,421.932 36.17509959 -107.727172286 12,037.00 89.58 135.680 4,625.17 -5,595.96 5,227.65 1,883,302.374 2,754,422.932 36.17509959 -107.726720595 12,226.00 89.41 135.290 4,627.46	11,188.0	0 91.66	135.660	4,629.48	-4,917.71	4,571.15	1,883,980.630	2,753,766.434	36.177657113	-107.729394263
11,377.00 90.72 136.730 4,627.66 -5,053.33 4,702.75 1,883,876.07 2,753,989.640 36.177284154 -107.728494820 11,471.00 90.03 136.110 4,627.05 -5,121.42 4,767.55 1,883,776.914 2,753,962.839 36.177096905 -107.728507212 11,660.00 90.84 135.970 4,624.78 -5,257.88 4,898.30 1,883,702.29 2,754,199.716 36.176721651 -107.728286995 11,755.00 89.32 135.790 4,624.65 -5,326.08 4,984.43 1,883,702.29 2,754,159.716 36.1766534111 -107.72840970 11,844.00 90.62 135.610 4,625.46 -5,326.08 1,883,301.067 2,754,368.43 36.175162426 -107.727616047 12,037.00 89.58 135.660 4,625.17 -5,659.66 5,227.65 1,883,302.374 2,754,428.564 36.175697959 -107.726490704 12,226.00 89.41 135.20 4,627.17 -5,653.26 5,293.28 1,883,302.374 2,754,422.932 36.17505188 -107.726490704 12,226.00 89.41 135.680 4,627.69 -5,790.58 <td>11,283.0</td> <td>0 89.91</td> <td>135.530</td> <td>4,628.18</td> <td>-4,985.57</td> <td>4,637.61</td> <td>1,883,912.770</td> <td>2,753,832.899</td> <td>36.177470498</td> <td>-107.729169299</td>	11,283.0	0 89.91	135.530	4,628.18	-4,985.57	4,637.61	1,883,912.770	2,753,832.899	36.177470498	-107.729169299
11,471.00 90.03 136.110 4,627.05 -5,121.42 4,767.55 1,883,776.914 2,753,962.839 36,177096905 -107.728729506 11,566.00 90.94 136.410 4,626.24 -5,190.06 4,833.23 1,883,708.282 2,754,093.582 36,176908169 -107.728260721 11,660.00 90.84 135.790 4,624.78 -5,527.88 4,898.30 1,883,670.289 2,754,195.716 36,176908169 -107.728266995 11,755.00 89.32 135.610 4,625.54 -5,393.35 5,030.08 1,883,504.988 2,754,291.818 36,176399113 -107.727640970 11,944.00 90.62 135.610 4,625.28 -5,527.73 5,161.55 1,883,307.072 2,754,356.834 36,175979559 -107.727172264 12,027.00 89.58 135.680 4,625.47 -5,595.96 5,227.65 1,883,302.374 2,754,488.564 36,175066688 -107.7269050154 12,220.00 89.41 135.290 4,625.74 -5,663.50 5,427.01 1,883,307.642 2,754,488.564 36,175056158 -107.726497505 12,226.00 89.41 135.290 4,627.	11,377.0	0 90.72	136.730	4,627.66	-5,053.33	4,702.75	1,883,845.007	2,753,898.040	36.177284154	-107.728948820
11,566.00 90.94 136.410 4,622.24 -5,190.06 4,833.23 1,883,708.282 2,754,028.517 36.176908169 -107.7282607212 11,560.00 90.84 135.970 4,624.65 5,5257.88 4,898.30 1,883,640.456 2,754,093.582 36.176534111 -107.728266995 11,755.00 89.55 135.610 4,625.58 -5,393.35 5,030.08 1,883,504.988 2,754,225.363 36.176349113 -107.727840970 11,944.00 90.62 135.610 4,625.15 -5,527.73 5,161.55 1,883,370.607 2,754,291.818 36.176162426 -107.727395998 12,037.00 89.58 135.660 4,625.15 -5,596.96 5,227.65 1,883,302.374 2,754,422.332 36.175791919 -107.727172286 12,226.00 89.41 135.280 4,627.06 5,796.79 5,427.01 1,883,101.549 2,754,622.33 6.175296518 -107.726723955 12,210.0 89.96 134.960 4,627.06 5,796.79 5,427.01 1,883,101.549 2,754,622.33 6.175239630 -107.72647355 12,604.00 89.19 135.150 4,627.15	11,471.0	0 90.03	136.110	4,627.05	-5,121.42	4,767.55	1,883,776.914	2,753,962.839	36.177096905	-107.728729506
11,660.00 90.84 135.970 4,624.78 -5,257.88 4,998.30 1,883,640.456 2,754,093.582 36.176721651 -107.722866995 11,755.00 89.32 135.790 4,624.65 -5,326.08 4,964.43 1,883,572.259 2,754,159.716 36.176534111 -107.7228669161 11,944.00 90.62 135.610 4,625.54 -5,393.35 5,030.08 1,883,040.4988 2,754,225.363 36.176349113 -107.727616047 12,037.00 89.58 135.680 4,625.14 -5,595.96 5,227.65 1,883,370.607 2,754,291.818 36.1756162426 -107.727172266 12,226.00 89.41 135.290 4,625.15 -5,595.966 5,227.65 1,883,203.02374 2,754,4292.33 36.175606868 -107.726950154 12,226.00 89.41 135.290 4,627.66 -5,790.58 5,300.31 1,883,2167.764 2,754,429.23 36.175239630 -107.72693055 12,450.00 89.19 135.150 4,627.44 -5,863.50 5,493.21 1,883,014.83 2,754,482.463 36.175056158 -107.726049058 12,690.00 91.16 135.820 4,6	11,566.0	0 90.94	136.410	4,626.24	-5,190.06	4,833.23	1,883,708.282	2,754,028.517	36.176908169	-107.728507212
11,755.00 89.32 135.790 4,624.65 -5,326.08 4,964.43 1,883,572.259 2,754,159.716 36.176534111 -107.7228063161 11,849.00 89.55 135.610 4,625.58 -5,393,35 5,030.08 1,883,504.988 2,754,225.363 36.176349113 -107.727640970 11,944.00 90.62 135.610 4,625.48 -5,461.24 5,096.53 1,883,370.607 2,754,422.932 36.175791919 -107.727195998 12,132.00 90.57 136.140 4,625.15 -5,595.96 5,227.65 1,883,305.048 2,754,428.543 36.175606868 -107.727616047 12,226.00 89.41 135.290 4,625.17 -5,663.26 5,293.28 1,883,305.044 2,754,428.5591 36.175506688 -107.72673295 12,2415.00 88.37 134.620 4,627.06 -5,796.79 5,447.01 1,883,101.549 2,754,682.293 36.1750506158 -107.726273465 12,690.00 91.16 135.820 4,627.44 -5,683.50 5,493.21 1,883,004.835 2,754,682.496 36.1750506158 -107.726273465 12,698.00 91.08 134.670 4,6	11,660.0	0 90.84	135.970	4,624.78	-5,257.88	4,898.30	1,883,640.456	2,754,093.582	36.176721651	-107.728286995
11,849.00 89.55 135.610 4,625.58 -5,393.35 5,030.68 1,883,504.988 2,754,225.363 36.176349113 -107.7274840970 11,944.00 90.62 135.610 4,625.44 -5,461.24 5,096.53 1,883,470.007 2,754,291.818 36.176349113 -107.727616047 12,037.00 89.85 135.680 4,625.28 -5,597.96 5,227.65 1,883,370.007 2,754,422.932 36.1759791919 -107.727172286 12,226.00 89.41 135.290 4,625.17 -5,663.26 5,293.28 1,883,235.084 2,754,422.932 36.175509165 -107.726723495 12,245.00 89.96 134.600 4,627.06 -5,796.79 5,427.01 1,883,101.549 2,754,622.293 36.175056158 -107.726497535 12,415.00 89.19 135.150 4,627.15 -5,931.24 5,559.81 1,882,967.098 2,754,622.933 36.174687374 -107.7256273465 12,604.00 89.19 135.150 4,627.44 -5,693.55 5,795.82 1,882,967.098 2,754,821.665 36.174687374 -107.725282752 12,698.00 91.08 134.670 4,62	11,755.0	0 89.32	135.790	4,624.65	-5,326.08	4,964.43	1,883,572.259	2,754,159.716	36.176534111	-107.728063161
11,944.00 90.62 135.610 4,625.44 -5,461.24 5,096.53 1,883,437.102 2,754,291.818 36.176162426 -107.727160647 12,037.00 89.58 135.680 4,625.15 -5,597.95 1,883,370.607 2,754,422.932 36.175791919 -107.727395998 12,226.00 89.41 135.290 4,625.15 -5,595.86 5,227.65 1,883,302.374 2,754,488.564 36.175791919 -107.72673295 12,226.00 89.41 135.290 4,625.17 -5,663.26 5,293.28 1,883,0235.084 2,754,488.564 36.175421730 -107.726950154 12,321.00 89.96 134.620 4,627.06 -5,796.79 5,427.01 1,883,101.549 2,754,622.293 36.175506185 -107.726473655 12,604.00 89.19 135.150 4,627.44 -5,863.50 5,493.21 1,883,007.28 2,754,622.293 36.174608737 -107.726473655 12,604.00 89.19 135.150 4,626.93 -5,997.60 5,626.38 1,882,900.738 2,754,821.665 36.174607374 -107.72597135 12,698.00 91.08 134.270 4,625.49 -6,132.83	11,849.0	0 89.55	135.610	4,625.58	-5,393.35	5,030.08	1,883,504.988	2,754,225.363	36.176349113	-107.727840970
12,037.00 89.58 135.680 4,625.28 -5,527.73 5,161.55 1,883,370.607 2,754,356.834 36.7759/9559 -107.727395998 12,132.00 90.57 136.140 4,625.15 -5,595.96 5,227.65 1,883,302.374 2,754,422.932 36.17579/91919 -107.727172286 12,226.00 89.41 135.290 4,625.17 -5,663.26 5,293.28 1,883,302.374 2,754,438.644 36.175091919 -107.726723295 12,226.00 89.41 135.290 4,627.06 -5,796.79 5,427.01 1,883,101.549 2,754,622.293 36.175036158 -107.726723265 12,690.00 91.16 135.820 4,627.44 -5,683.50 5,493.21 1,883,048.35 2,754,628.496 36.175056158 -107.726273465 12,698.00 91.08 134.670 4,626.33 -5,997.60 5,626.38 1,882,900.738 2,754,821.665 36.17469875 -107.72659329 12,783.00 89.68 135.290 4,625.49 -6,132.83 5,759.82 1,882,900.738 2,754,821.665 36.174867374 -107.725971135 12,982.00 89.00 134.210 4,625.49	11,944.0	0 90.62	135.610	4,625.44	-5,461.24	5,096.53	1,883,437.102	2,754,291.818	36.176162426	-107.727616047
12,132.00 90.57 136.140 4,625.15 -5,595.96 5,227.65 1,883,302.374 2,754,422.932 36.175791919 -107.7267205154 12,226.00 89.41 135.290 4,625.17 -5,663.26 5,293.28 1,883,235.084 2,754,488.564 36.175606868 -107.726723295 12,415.00 88.37 134.620 4,627.06 -5,796.79 5,427.01 1,883,101.549 2,754,622.293 36.175239630 -107.726473255 12,509.00 91.16 135.820 4,627.15 -5,931.24 5,559.81 1,883,034.835 2,754,688.496 36.175056158 -107.726473655 12,604.00 89.19 135.150 4,627.15 -5,931.24 5,559.81 1,882,907.38 2,754,821.665 36.174687374 -107.725044858 12,698.00 91.08 134.670 4,626.30 -6,064.75 5,693.58 1,882,803.590 2,754,888.860 36.174502706 -107.72595329 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,693.2.06 2,754,955.103 36.174315471 -107.725973135 12,982.00 89.00 134.210 4,625.2	12,037.0	0 89.58	135.680	4,625.28	-5,527.73	5,161.55	1,883,370.607	2,754,356.834	36.175979559	-107.727395998
12,226.00 89.41 135,290 4,625.17 -5,063.26 5,293.28 1,883,235.084 2,754,488.564 36.175006868 -107.726973154 12,321.00 89.96 134.960 4,625.69 -5,730.58 5,60.31 1,883,167.764 2,754,555.591 36.175421730 -107.726472325 12,415.00 88.37 134.620 4,627.44 -5,663.50 5,493.21 1,883,048.35 2,754,688.496 36.175056158 -107.726473555 12,604.00 89.19 135.150 4,627.15 -5,931.24 5,559.81 1,882,967.098 2,754,755.096 36.174687374 -107.72642852572 12,698.00 91.08 134.670 4,626.93 -5,997.60 5,626.38 1,882,900.738 2,754,881.660 36.174502706 -107.72595329 12,698.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,698.763 2,754,955.103 36.174502706 -107.72547135 12,982.00 89.00 134.210 4,625.44 -6,199.58 5,825.99 1,882,698.763 2,755,021.278 36.174131918 -107.724914692 13,070 87.45 133.100 4,630.59 <td>12,132.0</td> <td>0 90.57</td> <td>136.140</td> <td>4,625.15</td> <td>-5,595.96</td> <td>5,227.65</td> <td>1,883,302.374</td> <td>2,754,422.932</td> <td>36.175791919</td> <td>-107.727172286</td>	12,132.0	0 90.57	136.140	4,625.15	-5,595.96	5,227.65	1,883,302.374	2,754,422.932	36.175791919	-107.727172286
12,321.00 89.96 134.960 4,625.69 -5,730.58 5,300.31 1,883,167.764 2,754,632.591 36.175421730 -107.726723295 12,415.00 88.37 134.620 4,627.06 -5,796.79 5,427.01 1,883,101.549 2,754,632.293 36.175239630 -107.72647535 12,609.00 91.16 135.820 4,627.44 -5,831.24 5,559.81 1,882,967.098 2,754,688.496 36.174689875 -107.726048058 12,604.00 89.19 135.150 4,627.44 -5,931.24 5,559.81 1,882,907.098 2,754,821.665 36.174689875 -107.72697365 12,698.00 91.08 134.670 4,626.93 -5,997.60 5,626.38 1,882,907.38 2,754,881.860 36.174687374 -107.72595329 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,698.763 2,754,955.103 36.174315471 -107.7259737135 12,982.00 89.00 134.210 4,628.19 -6,265.13 5,894.68 1,882,603.206 2,755,089.963 36.173951614 -107.724914692 13,171.00 89.62 133.070 4,630.59 </td <td>12,226.0</td> <td>0 89.41</td> <td>135.290</td> <td>4,625.17</td> <td>-5,663.26</td> <td>5,293.28</td> <td>1,883,235.084</td> <td>2,754,488.564</td> <td>36.175606868</td> <td>-107.726950154</td>	12,226.0	0 89.41	135.290	4,625.17	-5,663.26	5,293.28	1,883,235.084	2,754,488.564	36.175606868	-107.726950154
12,415.00 86.37 134.620 4,627.06 -5,786.79 5,427.01 1,863,101.549 2,754,622.293 36.175259530 -107.726947535 12,509.00 91.16 135.820 4,627.44 -5,863.50 5,493.21 1,883,034.835 2,754,688.496 36.175056158 -107.726074865 12,604.00 89.19 135.150 4,627.15 -5,931.24 5,559.81 1,882,907.098 2,754,755.096 36.174869875 -107.7260748658 12,698.00 91.08 134.670 4,626.93 -5,997.60 5,626.38 1,882,907.738 2,754,821.665 36.174502706 -107.725892752 12,793.00 89.68 135.290 4,626.49 -6,132.83 5,759.82 1,882,605.766 2,754,955.103 36.174315471 -107.725897329 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,608.763 2,755,021.278 36.174315471 -107.72591135 12,982.00 89.00 134.210 4,628.19 -6,265.13 5,894.68 1,882,603.206 2,755,021.278 36.174315471 -107.724914692 13,077.00 87.45 133.120 4,628.1	12,321.0	0 89.96	134.960	4,625.69	-5,730.58	5,360.31	1,883,167.764	2,754,555.591	36.175421730	-107.726723295
12,509.00 91.16 135.820 4,627.44 -5,663.30 5,493.21 1,633,034.835 2,754,686.496 36.173056156 -107.726213465 12,604.00 89.19 135.150 4,627.15 -5,997.60 5,626.38 1,882,967.098 2,754,755.096 36.174869875 -107.725822752 12,698.00 91.08 134.670 4,626.93 -5,997.60 5,626.38 1,882,900.738 2,754,821.665 36.174687374 -107.725822752 12,793.00 89.68 135.290 4,626.30 -6,064.75 5,693.58 1,882,833.590 2,754,858.860 36.174502706 -107.725595329 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,698.763 2,755,021.278 36.174131918 -107.72517135 12,982.00 89.00 134.210 4,628.19 -6,265.13 5,894.68 1,882,693.206 2,755,021.278 36.174131918 -107.724642453 13,077.00 87.45 133.120 4,630.59 -6,393.15 6,032.21 1,882,695.190 2,755,158.578 36.173075048 -107.724485453 13,265.00 90.12 132.450 4,630.80	12,415.0	0 88.37	134.620	4,627.06	-5,796.79	5,427.01	1,883,101.549	2,754,622.293	36.175239630	-107.726497535
12,004.00 69.19 133.130 4,027.13 -0,931.24 5,393.61 1,622,907.098 2,754,733.090 36.174609973 -107.728040305 12,698.00 91.08 134.670 4,626.93 -5,997.60 5,626.38 1,882,900.738 2,754,821.665 36.174609373 -107.725822752 12,793.00 89.68 135.290 4,626.30 -6,064.75 5,693.58 1,882,933.590 2,754,888.860 36.174502706 -107.72537135 12,982.00 89.00 134.210 4,625.24 -6,199.58 5,825.99 1,882,698.763 2,755,021.278 36.174315471 -107.725147169 13,077.00 87.45 133.120 4,628.19 -6,265.13 5,894.68 1,882,698.763 2,755,021.278 36.173951614 -107.724914692 13,077.00 87.45 133.120 4,630.59 -6,329.33 5,963.29 1,882,509.009 2,755,089.963 36.173951614 -107.724682453 13,265.00 90.12 132.450 4,630.80 -6,339.315 6,032.31 1,882,505.190 2,755,227.592 36.17399519 -107.72448858 13,360.00 90.54 131.880 4,630.26<	12,509.0	0 91.16	135.620	4,027.44	-5,003.50	5,493.21	1,003,034.033	2,754,000.490	30.173030130	-107.726273463
12,050.00 51.00 134.070 4,020.33 -0,557.00 5,020.33 1,822,007.33 2,754,821.003 30.174607374 -107.72559522 12,793.00 89.68 135.290 4,626.30 -6,064.75 5,693.58 1,882,833.590 2,754,888.860 36.174502706 -107.72559532 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,698.763 2,754,955.103 36.1744502706 -107.725371135 12,982.00 89.00 134.210 4,625.24 -6,199.58 5,825.99 1,882,698.763 2,755,021.278 36.1744315471 -107.725147169 13,077.00 87.45 133.120 4,628.19 -6,265.13 5,894.68 1,882,633.206 2,755,089.963 36.173951614 -107.724914692 13,171.00 89.62 133.070 4,630.59 -6,339.315 6,032.31 1,882,505.190 2,755,227.592 36.173599519 -107.724488258 13,360.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,414.421 2,755,368.717 36.173253789 -107.72448858 13,360.00 90.60 130.540 4,628.20	12,004.0	0 01.09	133.150	4,027.13	-5,931.24	5,559.61	1,002,907.090	2,754,755.090	30.174009073	-107.720040030
12,753.00 35.05 135.250 4,020.30 -0,041.30 5,053.55 1,852,053.550 2,754,856.000 36.174302700 -107.12353335 12,888.00 91.30 136.280 4,625.49 -6,132.83 5,759.82 1,882,655.006 2,754,955.103 36.174315471 -107.72537135 12,982.00 89.00 134.210 4,625.24 -6,199.58 5,825.99 1,882,633.206 2,755,021.278 36.174315471 -107.724914692 13,077.00 87.45 133.120 4,628.19 -6,265.13 5,894.68 1,882,633.206 2,755,089.963 36.173951614 -107.724914692 13,171.00 89.62 133.070 4,630.59 -6,329.33 5,963.29 1,882,650.190 2,755,158.578 36.17375048 -107.724682453 13,265.00 90.12 132.450 4,630.80 -6,393.15 6,032.31 1,882,505.190 2,755,227.592 36.173929519 -107.724488258 13,360.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,414.421 2,755,368.717 36.173253789 -107.72372095 13,454.00 90.60 130.540 4,628.78 <td>12,090.0</td> <td>0 91.00</td> <td>134.070</td> <td>4,020.93</td> <td>-5,997.00</td> <td>5,020.30</td> <td>1,002,900.730</td> <td>2,754,621.005</td> <td>30.174007374</td> <td>-107.725605220</td>	12,090.0	0 91.00	134.070	4,020.93	-5,997.00	5,020.30	1,002,900.730	2,754,621.005	30.174007374	-107.725605220
12,080.00 91.00 130.200 4,023.49 -0,192.03 5,09.02 1,092.000 2,75,95.01.03 30.174513471 -107.72317159 12,982.00 89.00 134.210 4,625.24 -6,199.58 5,825.99 1,882,698.763 2,755,021.278 36.174513471 -107.725147169 13,077.00 87.45 133.120 4,628.19 -6,265.13 5,894.68 1,882,698.763 2,755,089.963 36.173951614 -107.724914692 13,171.00 89.62 133.070 4,630.59 -6,329.33 5,963.29 1,882,698.009 2,755,158.578 36.17375048 -107.724682453 13,265.00 90.12 132.450 4,630.80 -6,393.15 6,032.31 1,882,505.190 2,755,227.592 36.173424121 -107.72448858 13,360.00 90.54 131.880 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,368.717 36.173424121 -107.7237217162 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.72372095 13,643.00 90.06 132.030 4,628.20	12,793.0	0 01.20	136.290	4,020.30	-0,004.75	5,053.50	1,002,055.590	2,754,000.000	36 174302700	107 725271125
13,077.00 87.45 133.120 4,628.19 -6,265.13 5,894.68 1,882,633.206 2,755,089.963 36.173951614 -107.724914692 13,171.00 89.62 133.070 4,630.59 -6,329.33 5,963.29 1,882,569.009 2,755,158.578 36.17375048 -107.724682453 13,265.00 90.12 132.450 4,630.80 -6,393.15 6,032.31 1,882,505.190 2,755,227.592 36.17359519 -107.724682453 13,360.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,441.421 2,755,289.006 36.173424121 -107.72448858 13,360.00 90.60 130.540 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,368.717 36.173253789 -107.723721052 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.72372095 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,210.064 2,755,59.798 36.172787746 -107.723324396 13,709.40 91.07 131.012 4,627.21 <td>12,000.0</td> <td>0 89.00</td> <td>134 210</td> <td>4,025.45</td> <td>-6 199 58</td> <td>5,755.02</td> <td>1 882 698 763</td> <td>2,755,021,278</td> <td>36 174131918</td> <td>-107 725147169</td>	12,000.0	0 89.00	134 210	4,025.45	-6 199 58	5,755.02	1 882 698 763	2,755,021,278	36 174131918	-107 725147169
13,171.00 89.62 133.070 4,630.59 -6,329.33 5,963.29 1,882,569.009 2,755,158.578 36.173775048 -107.724682453 13,265.00 90.12 132.450 4,630.80 -6,393.15 6,032.31 1,882,505.190 2,755,227.592 36.173775048 -107.724682453 13,265.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,441.421 2,755,227.592 36.1737424121 -107.72448858 13,360.00 90.54 131.880 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,586.717 36.173253789 -107.723971174 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,549.348 36.173083199 -107.72372095 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,210.064 2,755,559.798 36.17287746 -107.723324396 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396	13 077 0	0 87.45	133 120	4 628 19	-6 265 13	5 894 68	1 882 633 206	2,755,089,963	36 173951614	-107 724914692
13,265.00 90.12 132.450 4,630.80 -6,393.15 6,032.31 1,882,505.190 2,755,227.592 36.173599519 -107.724448858 13,360.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,441.421 2,755,298.006 36.173424121 -107.724448858 13,360.00 90.60 130.540 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,368.717 36.173253789 -107.72372071174 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.7234248286 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,210.064 2,755,559.798 36.172908577 -107.723324396 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD 50.500.70 36.172787746 -107.723324396	13 171 0	0 89.62	133 070	4 630 59	-6 329 33	5 963 29	1 882 569 009	2 755 158 578	36 173775048	-107 724682453
13,360.00 90.54 131.880 4,630.26 -6,456.92 6,102.72 1,882,441.421 2,755,298.006 36.173424121 -107.724210522 13,360.00 90.60 130.540 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,368.717 36.173253789 -107.723971174 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.723732095 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,253.993 2,755,510.017 36.172908577 -107.7233243986 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD	13 265 0	0 90.12	132 450	4,630.80	-6.393 15	6.032.31	1.882,505,190	2,755,227 592	36,173599519	-107.724448858
13,454.00 90.60 130.540 4,629.32 -6,518.84 6,173.43 1,882,379.497 2,755,368.717 36.173253789 -107.723971174 13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.723732095 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,253.993 2,755,510.017 36.17208577 -107.723492896 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD	13.360.0	0 90.54	131.880	4,630.26	-6,456.92	6,102.72	1.882.441.421	2,755,298,006	36,173424121	-107,724210522
13,548.00 90.06 132.030 4,628.78 -6,580.86 6,244.06 1,882,317.478 2,755,439.348 36.173083199 -107.723732095 13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,253.993 2,755,510.017 36.17208577 -107.72372492896 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD LTP @ 13709.40 MD 4627.21 TVD -107.723324396 -107.723324396 -107.723324396	13,454.0	0 90.60	130.540	4,629.32	-6.518.84	6,173,43	1.882.379.497	2,755,368,717	36,173253789	-107,723971174
13,643.00 90.64 131.840 4,628.20 -6,644.35 6,314.73 1,882,253.993 2,755,510.017 36.172908577 -107.723492896 13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD	13.548.0	0 90.06	132.030	4,628.78	-6,580.86	6,244.06	1.882,317.478	2,755,439.348	36.173083199	-107,723732095
13,709.40 91.07 131.012 4,627.21 -6,688.28 6,364.51 1,882,210.064 2,755,559.798 36.172787746 -107.723324396 LTP @ 13709.40 MD 4627.21 TVD	13.643.0	0 90.64	131.840	4,628.20	-6,644.35	6,314.73	1,882,253.993	2,755,510.017	36.172908577	-107.723492896
LTP @ 13709.40 MD 4627.21 TVD	13,709.4	0 91.07	131.012	4,627.21	-6,688.28	6,364.51	1,882,210.064	2,755,559.798	36.172787746	-107.723324396
	LTP @	13709.40 MD 4	627.21 TVD			24	46 HS	0.45 (ACA		

12/20/2022 3:05:18PM

Survey Report - Geographic

Company:	Enduring Resources LLC	Local Co-ordinate Reference:	Well Rodeo Unit #512H
Project:	San Juan County, New Mexico NAD83 NM W	TVD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Site:	Rodeo Unit 511 pad (511, 512 & 513)	MD Reference:	RKB=6798+13 @ 6811.00ft (Ensign 145)
Well:	Rodeo Unit #512H	North Reference:	Grid
Wellbore:	Original Hole	Survey Calculation Method:	Minimum Curvature
Design:	Surveys Original Hole	Database:	DB_Decv0422v16

Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
13,713.00	91.09	130.967	4,627.14	-6,690.64	6,367.23	1,882,207.704	2,755,562.515	36.172781252	-107.723315199
330 per	@ 13713 MD	4627.14 TVD							
13,728.00	91.19	130.780	4,626.84	-6,700.45	6,378.57	1,882,197.890	2,755,573.855	36.172754257	-107.723276815
Survey	@ 13728.00 MI	D 4626.84 TVI	0						
13,793.00	91.19	130.780	4,625.49	-6,742.90	6,427.78	1,882 <mark>,1</mark> 55.444	2,755,623.064	36.172637500	-107.723110248
Survey	Proj. to 13793.	00 MD 4625.4	9 TVD						

Measured	Vertical	Local Coo	rdinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
412.0	00 412.00	-1.33	-0.71	MWD surveys	
2,683.0	2,660.22	-106.46	-211.85	9 5/8" Casing @ 2683 MD 2660.22 TVD	
4,845.0	4,611.65	-432.33	93.64	330 perp @ 4845 MD 4611.65 TVD	
4,846.	4,612.00	-433.06	94.42	FTP @ 4846.12 MD 4612.00 TVD	
13,709.4	4,627.21	-6,688.28	6,364.51	LTP @ 13709.40 MD 4627.21 TVD	
13,713.0	4,627.14	-6,690.64	6,367.23	330 perp @ 13713 MD 4627.14 TVD	
13,728.0	4,626.84	-6,700.45	6,378.57	Survey @ 13728.00 MD 4626.84 TVD	
13,793.0	4,625.49	-6,742.90	6,427.78	Survey Proj. to 13793.00 MD 4625.49 TVD	

Checked By:

Approved By:

Date:

WELL NAME: RODEO UNIT 512H

OBJECTIVE:	Drill, comple	te, and equip s	ingle latera	l in the Manc	os-I formatio	n
API Number:	30-045-35874					
State:	New Mexico					
County:	San Juan					
Surface Elev.:	6,798	ft ASL (GL)	6,811	ft ASL (KB)		
Surface Location:	25-23N-09W	Sec-Twn- Rng	191	ft FSL	1,345	ft FWL
BH Location:	6-22N-08W	Sec-Twn- Rng	1226	ft FNL	2398	ft FWL

Driving Directions: FROM THE INTERSECTION OF US HWY 550 & US HWY 64 IN BLOOMFIELD, NM:

South on US Hwy 550 for 37.8 miles to MM 113.4; Right (Southwest) on CR #7890 for 0.8 miles to fork; Left (South) remaining on CR #7890 for 1.3 miles to 4-way intersectionl; Left (Southeast) remaining on CR #7890 for 0.6 miles to fork; Right (Southwest) on CR #7890 for 1.5 miles to access road; Left on access road for 0.5 mile to Rodeo Unit 511H Pad (three wells planned to be drilled: 511H, 512H, 513H).

	QUIC	CK REFERENCI	E
	Sur TD (MD)	360	ft
	Int TD (MD)	2,693	ft
	KOP (MD)	4,092	ft
	KOP (TVD)	4,084	ft
	Target (TVD)	4,626	ft
	Curve BUR	10	°/100 ft
	POE (MD)	4,823	ft
to	TD (MD)	13,793	ft
	Lat Len (ft)	8,761	ft

WELL CONSTRUCTION SUMMARY:

	Hole (in)	TD MD (ft)	Csg (in)	Csg (lb/ft)	Csg (grade)	Csg (conn)	Csg Top (ft)	Csg Bot (ft)
Surface	17.500	360	13.375	54.5	J-55	BTC	0	360
Intermediate	12.250	2,693	9.625	36.0	J-55	LTC	0	2,693
Production	8.500	13.793	5.500	17.0	P-110	LTC	0	13.793

CEMENT PROPERTIES SUMMARY:

					Hole Cap.		TOC	
	Туре	Wt (ppg)	Yd (cuft/sk)	Wtr (gal/sk)	(cuft/ft)	% Excess	(ft MD)	Total (sx)
Surface	TYPE III	14.6	1.39	6.686	0.6946	100%	0	350
Inter. (Lead)	III:POZ Blend	12.5	2.14	12.05	0.3627	70%	0	502
Inter. (Tail)	Type III	14.6	1.37	6.63	0.3132	20%	2,130	137
Prod. (Lead)	Type I / II	12.4	2.360	13.40	0.2691	65%	0	575
Prod. (Tail)	G:POZ blend	13.3	1.560	7.70	0.2291	10%	3,587	1,615

COMPLETION / PRODUCTION SUMMARY:

Frac: 40 plug-and-perf stages with 360,000 bbls slickwater fluid and 15,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

Tops	TVD (ft KB)	MD (ft KB)
Ojo Alamo	356	356
Kirtland	441	441
Fruitland	671	671
Pictured Cliffs	1,021	1,021
Lewis	1,146	1,146
Chacra	1,406	1,406
Cliff House	2,431	2,434
Menefee	2,466	2,470
Point Lookout	3,431	3,437
Mancos	3,581	3,587
Gallup (MNCS_A)	3,916	3,921
MNCS_B	4,021	4,027
MNCS_C	4,106	4,112
MNCS_Cms	4,146	4,152
MNCS_D	4,271	4,282
MNCS_E	4,421	4,457
MNCS_F	4,476	4,532
MNCS_G	4,546	4,648
MNCS_H	4,593	4,742
MNCS_I	4,649	4,909
FTP (LP) TARGET	4,626	4,823
LTP (TD) TARGET	4,586	13,584

ENDURING RESOURCES IV, LLC 6300 S SYRACUSE WAY, SUITE 525 **CENTENNIAL, COLORADO 80211**

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-I formation

WELL INFORMATION:				
Name:	RODEO UNIT 512H			
API Number:	30-045-35874			
AFE Number:	DV03088			
ER Well Number:	NM08212.01			
State:	New Mexico			
County:	San Juan			
Surface Elevation:	6,798 ft ASL (GL)	6,811 ft ASL (KB)		
Surface Location:	25-23N-09W Sec-Twn-Rng	191 ft FSL	1,345 ft FWL	
	36.191179 ° N latitude	107.744868 ° W longitude	(NAD 83)	
BH Location (LTP):	6-22N-08W Sec-Twn-Rng	1,226 ft FNL	2,398 ft FWL	
	36.172739 $^{\circ}$ N latitude	107.723377 ° W longitude	(NAD 83)	
Driving Directions:	FROM THE INTERSECTION O	F US HWY 550 & US HWY 64 IN B	BLOOMFIELD, NM:	
	South on US Hwy 550 for 37.	8 miles to MM 113.4; Right (Sout	hwest) on CR #7890 for 0.8 mile	es to fork; Left (South)
	remaining on CR #7890 for 1	3 miles to 4-way intersectionl; Le	eft (Southeast) remaining on CR	#7890 for 0.6 miles to
			1.1.0	

CR #7890 for 0.6 miles to fork; Right (Southwest) on CR #7890 for 1.5 miles to access road; Left on access road for 0.5 mile to Rodeo Unit 511H Pad (three wells planned to be drilled: 511H, 512H, 513H).

GEOLOGIC AND RESERVOIR INFORMATION:

Prognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	0/G/W	Pressure
	Ojo Alamo	6,455	356	356	W	normal
	Kirtland	6,370	441	441	W	normal
	Fruitland	6,140	671	671	G, W	sub
	Pictured Cliffs	5,790	1,021	1,021	G, W	sub
	Lewis	5,665	1,146	1,146	G, W	normal
	Chacra	5,405	1,406	1,406	G, W	normal
	Cliff House	4,380	2,431	2,434	G, W	sub
	Menefee	4,345	2,466	2,470	G, W	normal
	Point Lookout	3,380	3,431	3,437	G, W	normal
	Mancos	3,230	3,581	3,587	0,G	sub (~0.38)
	Gallup (MNCS_A)	2,895	3,916	3,921	0,G	sub (~0.38)
	MNCS_B	2,790	4,021	4,027	0,G	sub (~0.38)
	MNCS_C	2,705	4,106	4,112	0,G	sub (~0.38)
	MNCS_Cms	2,665	4,146	4,152	0,G	sub (~0.38)
	MNCS_D	2,540	4,271	4,282	0,G	sub (~0.38)
	MNCS_E	2,390	4,421	4,457	0,G	sub (~0.38)
	MNCS_F	2,335	4,476	4,532	0,G	sub (~0.38)
	MNCS_G	2,265	4,546	4,648	0,G	sub (~0.38)
	MNCS_H	2,218	4,593	4,742	0,G	sub (~0.38)
	MNCS_I	2,162	4,649	4,909	0,G	sub (~0.38)
	FTP (LP) TARGET	2,185	4,626	4,823	0,G	sub (~0.38)
	LTP (TD) TARGET	2,225	4,586	13,584	O,G	sub (~0.38)

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure:	Normal (0.43 psi/ft) or sub-no	rmal pressu	ire gradients	anticipated in all formations			
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft	
	Maximum anticipated BH pre	ssure, assu	ming maxim	um pressure gradient:	1,990	psi	
	Maximum anticipated surface	980	psi				
emnerature.	Maximum anticipated BHT is	125° E or le	ec.				

Temperature: Maximum anticipated BHT is 125° F or less

H₂S INFORMATION:

H₂S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; gas detection from drill out of 13-3/8" casing to TD; remote geo-steering from drill out of 9-5/8" casing to TD.

MWD / LWD: MWD surveys with inclination and azimuth in 100' stations (minimum) from drill out of 13-3/8" casing to TD; Gamma Ray from drill out of 9-5/8" casing to TD; Gamma Ray optional in 12-1/4" intermediate hole Open Hole Logs: None planned

Testing: None planned

Coring: None planned

Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor:	Ensign
Rig No.:	145
Draw Works:	Lewco LDS 1500K (1,000 hp)
Mast:	ADR 1000 Cantilever Triple (134 ft, 500,000 lbs)
Top Drive:	Tesco 350-EXI-600 (250 ton)
Prime Movers:	2 - CAT 3512 (1,350 hp), 1 -CAT C32 (1,100 hp)
Pumps:	2 - Mudder MD11 (5,000 psi)
BOPE 1:	T3 Annular & Shaffer double gate ram (13-5/8", 5,000 psi)
Int Hole BOPE 2:	T3 annular(13-5/8", 5,000 psi)
Prod Hole BOPE 2:	T3 annular/ Townsend Double gate(11", 5,000 psi)
Choke	3", 5,000 psi
KB-GL (ft):	13
Note:	Actual drilling rig may vary depending on availability at time the well is scheduled to be drilled.
Note:	BOPE 2 are alternate stacks to be used only if problems with rig height and BOP 1 height are encountered.
	Intermediate hole BOPE 2 is designed for 2,000 psi permit requirements.
BOPE REQUIREMENT	S:
	See attached diagram for details regarding BOPE specifications and configuration.
1)	Rig will be equipped with upper and lower kelly cocks with handles available.
2)	Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the

- well.
- 3) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 4) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 5) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's 6) closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded
	daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the
	readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts
	will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).

- Closed-Loop System: A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads, All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal.
 - Fluid Disposal : Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
 - Solids Disposal : Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech. Inc.).
 - Fluid Program: See "Detailed Drilling Plan" section for specifics and fluid program from Newpark. Sufficient weighting agent will be on location to weight up mud system to balance the maximum expected pressure gradient.

DETAILED DRILLING PLAN:

SURFACE:	Drill verticall	y to casin	g setting	depth	(plus necessar	y rathole), r	un casing	, cement casing	g to surf	face.
----------	-----------------	------------	-----------	-------	----------------	---------------	-----------	-----------------	-----------	-------

0 ft (MD)	to	350 ft (MD)	Hole Section Length:	350 ft
0 ft (TVD)	to	350 ft (TVD)	Casing Required:	350 ft
Note: Surface hole may be dri	illed cased a	nd cemented with a smaller r	in in advance of the drilling rig	

Note: Surface hole may be drilled, cased, and cemented with a smaller rig in advance of the drilling rig.

First Type WW (pg) (Mu/30 min) PV (c) (b/100 sqt) pti Comments Bit Mater Min				FL		YP				
Irred. Water8.4N/C2 - 129.0Spud mudNote Size:7.12/2"BI / Motor:Mill Tooth or PDC, no motorW/D / Survey:NoWD, deviation survey:Logging:NoneProcedure:PDI to JU. DE 12/4" bit and open to 17-3/2" if unable to drill with 17-1/2" bit. Run inclination survey in 100 stations from 10 to surface. Condition hole and fluid for casing running as required. TOOH. Run casing. Pump cement as detailed below. Monitor returns during cement job and note cement volume to surface. Install cellar a wellhead.Casing Specie13.37554.5J-5597C1.3302.730953.000999.000Janding13.37554.5J-5597C1.3302.731115.654JandingInternational to the surface install with 8.4 ppg fluid with 10.000 fbx our-pult7.337.311.731JandingInternational to the surface install with 8.4 ppg fluid with 10.000 fbx our-pult7.337.311.731JandingInternational to be off 8.4 ppg fluid with 10.000 fbx our-pultTernation: bacyet weight in 8.4 ppg fluid with 10.000 fbx our-pultTernation: bacyet weight in 8.4 ppg fluid with 10.000 fbx our-pultJange EfftilsInternational to burdleValid (walid)WalerNearingN/AMole-up as per API Buttress Connection running procedure.N/AN/AMole-up as per API Buttress Connection running procedure.N/AN/AMole-up as per API Buttress Connection running procedure.N/AN/AMole-up as per Jistop-banded 10 from each cellar an bottom 3Jrb.1 centralizer per Jist	Fluid:	Туре	MW (ppg)	(mL/30 min)	PV (cp)	(lb/100 sqft)	рН	Comn	nents	
Index set: 17-1/2* Bif / Mater: Mill Cohl or PDC, no mator WD / Survey: No MWD, deviation survey: Logging: None Procedure: Drill to TD. Use 12/4* bit and open to 17-1/2* if in nable to drill with 17-1/2* bit. Run inclination survey: Logging: None Procedure: Drill to TD. Use 12/4* bit and open to 17-1/2* if in nable to drill with 17-1/2* bit. Run inclination survey: cering Spece: Drive: Control Collapse (pii) Purst (pii) Spece: 13.3 5/1 116.64 Min. S.F. Assumptions: Collapse (pii) Purst (pii) Purst (pii) Minum: N/A Spece 13.3 5/1 116.64 Mode op as per API Butters: Collapse (pii) Purst (pii)		Fresh Water	8.4	N/C	2 - 8	2 - 12	9.0	Spud	mud	
 b) / more in the Number Dec, itel interface in the second seco	Hole Size:	17-1/2" Mill Teeth or I	DDC no motor							
Logging: None: Proceed: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 17-1/2" bit. Bun inclination survey in 100 Sector: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 17-1/2" bit. Bun inclination survey in 100 Casing Spect: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 17-1/2" bit. Bun inclination survey in 100 Casing Spect: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 17-1/2" bit. Bun inclination survey in 100 Casing Spect: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 12-1/2" bit. Bun inclination survey in 100 Spect: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 12-1/2" bit. Bun inclination survey in 100 Casing Spect: Fill to To. Use 12 /4" bit and open to 17-3/2" if unable to drill with 12-1/2" bit. Bun inclination survey in 100 Min S.T. Spect Site 100 Fill to To. Use 12 /4" bit and 0.5/5" bit 100 Proceeding: Conn. Collapse (public bit and 0.5/5" bit 1000 Proceeding: Connation: N/A Moster public bit 10000 bit to ever public and 1000 bit to ever public and 1000 bit to ever public and 1000 bit to eveces and ed in table	MWD / Survey	No MWD dev	viation survey							
Procedure: Drill to TD. Use 12-/4° bit and open to 17-12° if unable to drill with 12-12° bit. But inclination survey in 100° stations from TD to surface. Condition hole and fluid for casing running are required. TOOH. Hum casing. Pump centent as detailed below. Monitor returns during cement job and note cement volume to surface. Install cellar is wellhead. Casing Spects 13.375 54.5 j>5 ntr 1.130 2.730 853.000 909.000 Loading Mith. S.F. Area 7.31 7.79 Assumptions: Collapse: fully evacuated casing with 8.4 pag equivalent external pressure gradent Burst: maximum anticipated surface pressure with 9.5 png fluid inside casing while drilling intermediate hole and 8.4 pag equivalent external pressure gradent Tension: buoyed weight in 8.4 ppg fluid with 100.000 bits over pull Maximum: N/A Order Tension: buoyed weight in 8.4 ppg fluid with 100.000 bits over pull maximum: N/A Minurum: N/A Optime to Surface to Total Cn Control Inc Total Cn Centrolizers: 2 centralizers per if stop banded 10° from each collor on battom 3 jls, 1 centralizer per 2 jls to surface Control Centrolizers: 2 centralizers per if stop banded 10° from each collor on battom 3 jls, 1 centralizer per 2 jls to surface Controlizers Centrolizers: 2 centralizers per if stop banded 10° from each collor	Logaina:	None	lation survey							
stations from TD to surface. Condition hole and fluid for casing running as required. TOOH. Run casing. Pump content as detailed below. Monitor returns during cement job and note cement volume to surface. Install cells revellbead.	Procedure:	Drill to TD. Us	se 12-/4" bit an	d open to 17-1	/2" if unable t	o drill with 17-1	/2" bit. Run in	clination survey	y in 100'	
centrent as detailed below. Monitor returns during cement job and note cement volume to surface. Install cellar : wellkead. casing Specs Specs Specs 13.375 54.5 15.0 Collapse (pi)) Burst (pi) Burst (mi) (hb) Specs 13.375 54.5 15.0 Collapse (pi)) Burst (pi) Monitor (hb) Specs Colspan="2">Colspan="2">Collapse: fully evacuated casing with 8.4 pp quivalent external pressure gradient Burst: maximum anticipated surface perssure with 9.5 pp fluid inside casing while drilling intermediate hole and 8.4 pp quivalent external pressure gradient Data dott colspan="2">Monitor mumiting procedure. Special Special Monitor mumiting procedure. Special Monitor mumiting procedure. Special Special Monitor mumiting procedure. Special Special Special Specindia <td colsp<="" td=""><td></td><td>stations from</td><td>TD to surface.</td><td>Condition hole</td><td>and fluid for o</td><td>asing running a</td><td>s required. TO</td><td>OH. Run casing</td><td>. Pump</td></td>	<td></td> <td>stations from</td> <td>TD to surface.</td> <td>Condition hole</td> <td>and fluid for o</td> <td>asing running a</td> <td>s required. TO</td> <td>OH. Run casing</td> <td>. Pump</td>		stations from	TD to surface.	Condition hole	and fluid for o	asing running a	s required. TO	OH. Run casing	. Pump
weilhead. Cosing Specs: Specs 13.375 54.5 J-55 BTC 11.30 27.70 853,000 909,000 Mint. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Busine maximum anticipated surface pressure gradient Decimation of the second surface pressure gradient Termination on the second surface pressure gradient Termination on the second surface Contrainers of the second surface Centrainers oper Listop-banded 10 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface Centrainers oper Listop-banded 20 from each cols on bottom 3 [ts, 1 centrainer per 2 [ts to surface		cement as det	ailed below. M	lonitor returns	during cemen	it job and note c	ement volum	e to surface. Ins	stall cellar an	
Caring Spects with (lb/th) Grade Conn. Collapse (ps) Burst (ps) Tens. Body Tens. Collapse Spects 13.375 54.5 J-55 BTC 1.130 2.730 83.000 9000 Lodding 1.733 571 116,634 116,654 116,654 Sumptions: Collapse: fully evacuated cosing with 8.4 ppg equivalent external pressure gradient Burst maximum anticipated surface texternal pressure gradient Burst maximum anticipated surface Tension: buoged weight in 8.4 ppg fuld with 100.000 its over-pull orque (ft lbs): Minumum: N/A Maximum: N/A Make-up as per API Buttress Connection running procedure. Bits 1: centralizers per 1; is to surface Centralizers Centralizers 2 centralizers per 1; is top-banded 10' from each collar on botton 3 its, 1 centralizer per 2; its to surface Centralizers Centralizers 2 centralizers of activated cernent volumes assume grauge hole and the excess noted in table Cation Collarizer Tail Breed Acceleration 6.686 0.6964 1.0000 Tail Breed Acceleration 2.625 ft (MDO) Collarizer <		wellhead.	T	r		· · · · ·		-		
Casing Specs Vert (b)/h Grade Conn. Collapse (psi) Burst (psi) Lefts. 500 y Lefts. 500 y <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Caning Jeets: IV (Un) 1 Under Contr. Contrent.	Casina Spore		\A/+ (Ib /f+)	Grada	Conn	Collance (nci)	Burct (pci)	lens. Body	Tens. Conr	
Loding	Snecs	13,375	54.5	1-55	BTC	1,130	2,730	853.000	909.000	
Min. S.F. 7.39 4.78 7.31 7.79 Assumptions: Collapse: fully executed casing with 8.4 pg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 pg fluid inside casing while drilling intermediate hole and 8.4 pg equivalent external pressure gradient Tension: burged weight in 8.4 pg fluid with 10.00.0016 sover-pull orque [ft ibs]: Minumum: N/A Optimum: N/A Make-up as per APB attress Connection running procedure. Statistic control for from each collar on bottom 315, 1 centralizer per 2 jts to surface Centralizers 2 centralizers per it stop-banded 10 from each collar on bottom 315, 1 centralizer per 2 jts to surface Centralizers Type Weight (pg) (cut/sk) (gal/sk) (cut/sk) (gal/sk) TYPE III 1.6.6 1.3.9 6.6.60 0.6944 1000 (sx) (sx) Total Contention Contention for 2.3 WotC Diperevent/retime Total Contention Contention for 2.3 WotC Notify NNOCD & BLM If cement is not circulated to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. Sot f (ND) L2.80 (KI) L2.80 (KI) Sot f (ND) to 2.626 ff (ND) Hole Section Length: 2.28 (Sot ff (ND) L3.90 (Sot ff (ND) Contente: 1.2.28	Loading	101070	0 110		510	153	571	116,634	116,634	
Assumptions: Collapse: fully evocuted cosing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated suffice pressure with 9.5 ppg full and with 20,000 Bis over-pull pressure gradient Tension: buryed weight in 8.4 ppg full and 100,000 Bis over-pull orque (ft lbs): Make-up as per API Buttress Connection running procedure. Basing Details: Floatshoe. 1 It cosing, float collar, cosing to sufface Centralizers: 2 centralizers per it stop-banded 10 ^r from each collar on bottom 3 [ts, 1 centralizer per 2]ts to sufface Cernent: Type Weight (ppg) (cutf/sk) (gal/sk) (cutf/ft) x Excess Planned TOC Total Cn Drake Energy Service: Calculated center thoulones assume gauge hole and the excess noted in table 0 350 Drake Energy Service: Calculated center thourses assume gauge hole and the excess noted in table calculate	Min. S.F.					7.39	4.78	7.31	7.79	
Burst: maximum anticipated surface pressure with 9.5 ppg fluid unkide casing while drilling intermediate hole and 8.4 ppg quivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull arque (ft lbs): Minumum:: N/A Optimum:: N/A Maximum: N/A Make-up as per AP Buttress Connection running procedure. Saing Details: Float shoe. 1 jt casing, float collar, casing to surface Centralizers: 2 centralizers per Jt stop-banded 10 from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers: 2 centralizers per Jt stop-banded 10 from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers: 2 centralizers per Jt stop-banded 10 from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Centralizers: 2 calculated centent volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Calculated Centement volumes assume gauge hole and the excess noted in table Centement for the second plan to casing setting depth, run casing, centent casing to surface. TarReGET CGS SHOE DEPTH is 150' TVD BELOW MENEFEE TOP Full to TP of CHC (b) to 2,2626 ft (TVD) Casing Required: 2,630 *TARGET CGS SHOE DEPTH is 150' TVD BELOW MENEFEE TOP Full to TD following directional plan cutters, target TFA 0.65 + 10 max); 6 - 14s = 0.902 sq-in TFA WO / Survey: MVD surveys with inclination and azimuth in 100' stations (minimum), GR optional Lognin		Assumptions:	Collapse: fully	evacuated cas	ing with 8.4 p	og equivalent ex	ternal pressur	e gradient		
Intermediate hole and 8.4 ppg equivalent external pressure gradient Tensio: buoyed weight in 8.4 ppg full with 10.0000 lbs over-pull orque (ft lbs): Minumum: N/A Optimum: N/A Maximum: N/A Maximum: N/A Optimum: N/A Maximum: N/A Maximum: N/A Optimum: N/A Maximum: N/A Maximum: N/A Optimum: N/A Maximum: N/A Maximum mit N/A Maximum: N/A Maximum: N/A Maximum mit N/A Maximum Maximum: N/A Maximum mit N/A Maximum mit N/A Maximum Maximum mit N/A Maximum mit N/A Maximum maximum mit N/A Maximum man			Burst: maximu	im anticipated	surface pressu	ire with 9.5 ppg	fluid inside ca	sing while drilli	ng	
Tensori: Dubyee weight in 8.4 ppg fluid with 100,000 its over-puil orque (ft lbs): Mike-up as per API Buttress Connection running procedure. asing Detoits: Nota shoe, 11, casing, float collar, casing to surface. Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 [ts, 1 centralizer per 2 jts to surface. Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 [ts, 1 centralizer per 2 jts to surface. Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 [ts, 1 centralizer per 2 jts to surface. Centralizers: Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calculated centent volumes assume gauge hole and the excess noted in table Calcul			intermediate l	hole and 8.4 pp	g equivalent e	external pressure	e gradient			
Mode-up os per API Buttress Connection running procedure. Modifium. 19/A sing Details: Float shee, 1 jt casing, float collar, casing to surface Centralizers: 2 centralizers per jt stop-banded DI from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Cernent: Type Weight (ppg) (cuft/sk) (gal/sk) (cuft/sk) 50 stop Drake Energy Services: Colculated cement volumes assume gauge hole and the excess noted in table Calumchonic b CO2 3% BWOC ASTM Type III 14.6 1.33 6.666 0.590 ATM Type III 14.6 0.23 XB BWOC Deparamit/riction Tail Blend Accelerator reduer Notify NMCOB & BLMI f cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 330 ft (MD) to 2,626 ft (YD) Casing Required: 2,63 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Type WW (ppg) mud.190' stations (minimum), GR optional LIND (KCU & 88-9.5 20 8-14 8-14 9.0-9.5 No OBM Hole Size: 12-1/4'' Bit / Motor: MOTOR: NOV 087400 - 7/8, 4.0, stage, 0.16 re	Torave (ft lbc).	Minumum	τεπειοή: buoy N/Δ	eu weight in 8.4 Ontimum:	+ ppg זועומ wit או/א	.11 100,000 IDS ON Maximum	ver-puli N/Δ			
sing Details: Float shoe, 1] casing, float collar, casing to surface Centralizers: 2 centralizers per 1 is top-banded 10 from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Type Weight (ppg) (cutfysk) (gal/sk) (cutfytk) (sc) (sc) (ft MD) (ss) TyPE III 14.6 1.39 6.686 0.6946 100% 0 350 Droke Energy Services: Colculated centent volumes assume gauge hole and the excess noted in table Calum Chiefer DC0.2 as BWCC Services: Colculated centent volumes assume gauge hole and the excess noted in table Calum Chiefer DC0.2 as BWCC ASTM Type III 58 BWCC Dogenary firstion AstM Type III 58 BWC Dogenary firstion AstM Type III 58 BWC Dogenary firstion Calum Chiefer DC0.2 as BWCC AstM Type III 58 BWC Dogenary firstion AstM Type III 58 BWC Dogenary firstion FIL 58 BWC DOGEN BWC PH IS 150' TVD BELOW MENETER TOP File III 58 Firstion SWC DASTM PH IS 150' TVD BELOW MENETER TOP Hole Ster: 12-1/4" Bit / Motor: POC W/mud motor tor (Petal) MWC (ppg) (mL/30 min 19 PV (cp) (bl/100 sqft) pH Comments Bit Seor 6-BLADE PDC W/16 mm or 19 mm cutters, target TFA 0.65 -1.0 max), 6-1.45 = 0.902 sq-in TFA BWD / Survey: MWD Surveys with inclination and azimuth in 100' stations (minimu), 6 ptional Loggin; None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedue: Drill to To folowing directional plan (20' ratholes (asing	, orque (jt ibs).	Make-up as n	er API Buttress	Connection rur	ning procedu	re.	11/1			
Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Calum Chande Centralizer based Centralizers per it stop-banded 10' from each collar on bottom 3 its, 1 centralizer per 2 its to surface Calum Chande DCD 22 X BWOC Centralizer per it stop to to 2 centralizer per 2 its to surface Toll Base per directional plan to casing setting depth, run casing, cement casing to surface Stop from to to asing setting depth, run casing, cement casing to surface Stop from to to 2 ce30 ft (MDD) Casing Required: 2,63 TAGET CSC SHOE DEPTH IS 150' TVD BLOW MENERER TOP Fluid: Type MW (ppg)	Casing Details:	Float shoe, 1 i	t casing, float c	collar, casing to	surface					
Cement: Type Weight (ppg) (cuft/sk) (gal/sk) (cuft/ft) % Excess (ft MD) Planned TOC (st) Drake Energy Services: Calciunted cement volumes assume gauge hole and the excess noted in table 100% 350 Drake Energy Services: Calciunted cement volumes assume gauge hole and the excess noted in table 100% 350 AstM Type III Accelerator reducer 100% 0 350 Tail Bend Accelerator reducer 100% 0 350 Notify MMCDD & BLMI f cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. 350 ft (MD) 10 2,630 ft (MD) Hole Scain 1,820 ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 2,63 350 ft (TVD) 2,620 ft (TVD) Casing Required: 2,63 *TARGET CGS SHOE DEPTH IS 150' TVD BELOW MENERE TOP FL Yppe MW (ppg) FL Yppe Comments LSND (KCI) 8.8-9.5 20 8-14 8-14 9.0-9.5 No OBM Hole Size: 12:1/4" Bit / Motor: <	Centralizers:	2 centralizers	per jt stop-ban	ded 10' from e	ach collar on l	pottom <u>3 jts, 1</u> c	entralizer per	2 jts to surface		
Cement: Type Weight (ppg) (cuft/sk) (gal/sk) (cuft/sk) % Excess (ft MD) (sx) Drake Energy Services: Calculated cement volumes assume gauge hole and the excess noted in table 0 350 Drake Energy Services: Calcum Characte D-CDJ 28 NVOC 0 350 ASTM Type III Calcum Characte D-CDJ 28 NVOC 0 350 Services: Calcum Characte D-CDJ 28 NVOC 0 350 ASTM Type III Calcum Characte D-CDJ 28 NVOC 0 350 MINOCD & BLM If cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 2,63 350 ft (ND) to 2,630 ft (ND) Casing Required: 2,63 *TARGET CSG SHOE DEPTH IS 150' TVD BLOW MENFEE TOP * * No OBM Fluid: Type MW (ppg) (mL/30 min) PV (cp) (b/100 sqft) pH Comments LSND (KCI) 8.8-9.5 20 8-14 8-14 9.0-9.5 No OBM <td></td> <td></td> <td></td> <td>Yield</td> <td>Water</td> <td>Hole Cap.</td> <td></td> <td>Planned TOC</td> <td>Total Cmt</td>				Yield	Water	Hole Cap.		Planned TOC	Total Cmt	
ITTPL III 14.b 1.39 6.68b 0.6946 100% 0 350 Drake Energy Services: Calcun Chlonde D-C2 2K BWCC Stark Typell SK BWCC Disperant/Friction ASTM Typell SK BWCC Disperant/Friction SK BWCC Disperant/Friction Bind Accelerator reducer Notify NMOCD & BLM if cement is not circulated to surface. Cement casing to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 2,630 ft (ND) Hole Section Length: 2,283 350 ft (TVD) to 2,630 ft (ND) Casing Required: 2,633 7 Fluid: Type MW (ppg) FL YP YP Comments LSND (KCI) 8.8 - 9.5 20 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor: POC (w/md motor 100 (Stations (Inimum), GR optional Loggins; Vor (Detail): NOTOR: NOV 08740 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5 - or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / S	Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	(cuft/ft)	% Excess	(ft MD)	(sx)	
Drake Energy Services: Calculan Chloride D-CD2 2H BWOC ASTM Type III SM BWOC Dispersant/Priction Tail Biend Accelerator reducer Notify NNOCD BLDM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 350 ft (MD) to 2,630 ft (MD) Hole Section Length: 2,280 ft (MD) *TARGET CGS SHOE DEPTH IS 150° TVD BELOW MENEFEE TOP ** ** Type in Ying (mL/30 min) PV (cp) (ib/100 sqft) pH Comments Ising Naccurrent Ising Naccurrent FL YP VP Comments Hole Size: 12:1/4* Bit / Motor Bit / Motor POC (ph 13) Bit / So or 6-BLADE POC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 148 = 0.902 sq-in TFA WD / Survey: WD Surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well notain mota as needing to maxing carcuired. Logging: None A deg/100' and keep side length + 10', when p		TYPE III	14.6	1.39	6.686	0.6946	100%	0	350	
Calcume Choice No. CO2.22:89 WOCC Toil Bend Accelerator reducer Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. File 350 ft (WD) to 2,630 ft (WD) Casing Required: 2,630 File File <td>Drake Er</td> <td>ergy Services:</td> <td>Calculated cer</td> <td>nent volumes a</td> <td>issume gauge</td> <td>hole and the exc</td> <td>cess noted in t</td> <td>able</td> <td></td>	Drake Er	ergy Services:	Calculated cer	nent volumes a	issume gauge	hole and the exc	cess noted in t	able		
ADM type III SNE WICC Dependent Produce Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. Image: Compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 350 ft (MD) to 2,630 ft (MD) Hole Section Length: 2,228 350 ft (TVD) to 2,636 ft (TVD) Casing Required: 2,635 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Type MW (ppg) FL YP PH Comments ISND (KCI) 88.9.9.5 20 8-14 8-14 9.0-9.5 No OBM Hole Size: 12-1/4" Bit / Motor: POC w/mud motor Notor: NO OR840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu			Calcium Chloride	D-CD2 .2% BWOC						
Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 350 ft (MD) to 2,630 ft (MD) Hole Section Length: 2,28 350 ft (TVD) to 2,626 ft (TVD) Casing Required: 2,63 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Fluid: Type MW (ppg) mL/30 min PV (cp) Ibi/ Motor: POC w/mud motor Start 12-1/4" Bit / Motor: BIT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA AG5 - 1.0 max); 6 - 14s = 0.902 sq-in TFA W// Survey: W/ DSEPT and test (as noted above); pressure test 13-3/8" casing setting depth). Steer as needed to keep well on plan. Keep DES < 3 deg/100' and keep Side length < 10', when possible. Take surveys every stand, at a minimum Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At 1 condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE: Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	Tail	ASTM Type III Blend	.5% BWOC Accelerator	Dispersant/Friction reducer						
before drilling out. ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. State of the problem of the proble		Notify NMOC	D & BLM if cem	nent is not circ	ulated to surfa	ace. Cement mu	st achieve 50	0 psi compressi	ve strength	
ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 350 ft (MD) to 2,630 ft (MD) Hole Section Length: 2,28 350 ft (TVD) to 2,630 ft (MD) Casing Required: 2,63 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Fluid: Type MW (ppg) (ml/30 min) PV (cp) (lb/100 sqft) pH Comments LSND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor totor (Detail): MOD RN: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Procedure: Prill to Tb following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). M		before drilling	g out.							
ERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface. 350 ft (MD) to 2,630 ft (MD) Casing Required: 2,28 350 ft (TVD) to 2,626 ft (TVD) Casing Required: 2,63 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Fluid: Type MW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Comments LISND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor POC w/mud motor totr (DER: NOV 0878400 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 145 e 0.902 sq-in TFA WD / Survey: With inclination and azimuth in 100' stations (minimum), GR optional Logging: None Ters: Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DIS < 3 deg/100' and keep silde length < 10', when possible. Take surveys every stand, at a minimu										
350 ft (MD) to 2,630 ft (MD) Hole Section Length: 2,28 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP YP Casing Required: 2,63 *Iuid: Type MW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Comments LSND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor otor (Detail): MOTOR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: S - or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MVD Surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None None Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS - 3 deg/100' and keep sild ength < 10', when possible: Take surveys every stand, at a minimum Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At 1 condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.										
350 It (1/V0) Casing Required: 2,65 *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP *TARGET CSG SHOE DEPTH IS 150' TVD BELOW MENEFEE TOP Fluid: Type MW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Fluid: Type MW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Comments LSND (XCI) 8.8 - 9.5 20 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor tor OFBLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: WWD survey: WHO Survey: WHO Survey: WWD survey: Multiculation and azimuth in 100' stations (minimum), GR optional Logging: Procedure: Dill to D following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep wel on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu <t< td=""><td>ITERMEDIATE:</td><td>Drill as per di</td><td>rectional plan t</td><td>to casing settin</td><td>ng depth, run</td><td>casing, cement</td><td>casing to surfe</td><td>ace.</td><td></td></t<>	ITERMEDIATE:	Drill as per di	rectional plan t	to casing settin	ng depth, run	casing, cement	casing to surfe	ace.		
Fluid: Type NWW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Comments Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor No OBM No OBM Iotor (Detail): MOTOR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG Bit / Motor: PDC w/mud motor Iotor (Detail): MOTOR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG Bit : 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD survey: MWD burveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	ITERMEDIATE:	Drill as per di 350	rectional plan t ft (MD)	to casing settin to	ng depth, run 2,630	casing, cement () ft (MD)	casing to surfe Hole S	ace. Section Length:	2,280	
Fluid: Type MW (ppg) FL YP PV (cp) (lb/100 sqft) pH Comments LSDD (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" 8 8 - 14 9.0 - 9.5 No OBM Bit / Motor: PDC w/mud motor	ITERMEDIATE:	Drill as per di 350 350	rectional plan t ft (MD) ft (TVD)	to casing settin to to S 150' TVD BEL	ng depth, run 2,630 2,626 OW MENEEE	casing, cement o ft (MD) ft (TVD) TOP	<i>casing to surfe</i> Hole S Ca	ace. Section Length: sing Required:	2,280 2,630	
Fluid: Type MW (ppg) (mL/30 min) PV (cp) (lb/100 sqft) pH Comments LSND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor Identify Identify No OBM No OBM Bit / Motor: PDC w/mud motor Identify IdentifyIdentifyIdentify	NTERMEDIATE:	Drill as per dia 350 350 *TARGET CSG	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I.	to casing settin to to S 150' TVD BEL	ng depth, run 2,630 2,620 OW MENEFEE	casing, cement () ft (MD) 5 ft (TVD) 5 TOP	casing to surfe Hole S Ca	ace. Section Length: sing Required:	2,280 2,630	
LSND (KCI) 8.8 - 9.5 20 8 - 14 8 - 14 9.0 - 9.5 No OBM Hole Size: 12-1/4" Bit / Motor PDC w/mud motor No OBTR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5 or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep side length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	NTERMEDIATE:	Drill as per dia 350 350 *TARGET CSG	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I.	to casing settin to to S 150' TVD BEL FL	ng depth, run 2,630 2,626 OW MENEFEE	casing, cement of t (MD) t (TVD) TOP YP	casing to surfo Hole S Ca	ace. Section Length: sing Required:	2,280 2,630	
Hole Size: 12-1/4" Bit / Motor: PDC w/mud motor Iotor (Detail): MOTOR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG Bit : 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Preseure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface. Casing Specs: 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling 	<u>NTERMEDIATE:</u> Fluid:	Drill as per di. 350 350 *TARGET CSG Type	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg)	to casing settin to 5 150' TVD BEL FL (mL/30 min)	ng depth, run 2,630 2,626 OW MENEFEE PV (cp)	casing, cement of t (MD) t (TVD) TOP YP (lb/100 sqft)	casing to surfo Hole S Ca pH	ace. Sing Required:	2,280 2,630 nents	
Bit / Motor: PDC w/mud motor Iotor (Detail): MOTOR:: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BIT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing solution (Deving directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detailed below. Monitor returns during cement job and note cement volume to surface.	NTERMEDIATE: Fluid:	Drill as per di. 350 *TARGET CSG Type LSND (KCI)	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5	to casing settin to S 150' TVD BEL FL (mL/30 min) 20	ng depth, run 2,630 2,626 OW MENEFEE PV (cp) 8 - 14	casing, cement of t (MD) t (TVD) TOP YP (lb/100 sqft) 8 - 14	pH 9.0 - 9.5	cee. sing Required: Comn	2,280 2,630 nents DBM	
lotor (Detail): MOTOR: NOV 087840 - 7/8, 4.0, stage, 0.16 rev/gal, 1.83 DEG, 900 GPM, 950 DIFF PSIG BT: 5- or 6-BLADE PDC w/16 mm or 19 mm cutters, target TFA 0.65 - 1.0 max); 6 - 14s = 0.902 sq-in TFA WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep wel on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	I <u>TERMEDIATE:</u> Fluid: Hole Size:	Drill as per dii 350 *TARGET CSG Type LSND (KCI) 12-1/4"	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20	ng depth, run 2,630 2,626 OW MENEFEE PV (cp) 8 - 14	casing, cement of t (MD) t (TVD) TOP YP (lb/100 sqft) 8 - 14	casing to surfu Hole S Ca pH 9.0 - 9.5	ection Length: sing Required: Comn No C	2,280 2,630 nents DBM	
WD / Survey: MWD surveys with inclination and azimuth in 100' stations (minimum), GR optional Logging: None Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep wel on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	Fluid: Hole Size: Bit / Motor:	Drill as per dii 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud n	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20	ng depth, run 2,630 2,620 OW MENEFEE PV (cp) 8 - 14	casing, cement (b ft (MD) c ft (TVD) C TOP YP (lb/100 sqft) 8 - 14	pH 9.0 - 9.5	ace. sing Required: Comn No C	2,280 2,630 nents DBM	
Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) (lbs) Casing Specs: Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg fluid with 100,000 lbs over-pull orgue (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 production hole and 1.4 casing, float collar, casing to surface Spece 9.625 1.76 3.11 3.09 2.48	I <u>TERMEDIATE:</u> Fluid: Hole Size: Bit / Motor: Motor (Detail):	Drill as per dii 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/15	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20	ng depth, run (2,630 2,626 OW MENEFEE PV (cp) 8 - 14	Casing, cement () ft (MD) 5 ft (TVD) TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM,	pH 9.0 - 9.5	ace. sing Required: Comn No C	2,280 2,630 nents DBM	
Pressure Test: NU BOPE and test (as noted above); pressure test 13-3/8" casing to 1,500 psi for 30 minutes. Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At 1 condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Sumary	Drill as per dii 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BI	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm	ng depth, run (2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe	casing, cement (0 ft (MD) 5 ft (TVD) 7 TOP YP (lb/100 sqft) 8 - 14	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = 8 optional	ace. sing Required: Comn No C 0.902 sq-in TF/	2,280 2,630 nents DBM	
Procedure: Drill to TD following directional plan (20' rat-hole (MAX) past casing setting depth). Steer as needed to keep well on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At 1 condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	ITERMEDIATE: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging:	Drill as per dii 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth	ng depth, run (2,630 2,626 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station	casing, cement (0 ft (MD) 5 ft (TVD) 7 TOP YP (lb/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 is (minimum), G	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional	ace. sing Required: Comn No C 0.902 sq-in TF/	2,280 2,630 nents DBM	
on plan. Keep DLS < 3 deg/100' and keep slide length < 10', when possible. Take surveys every stand, at a minimu Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At T condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface.	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 0007 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted i	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressui	ng depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8'	Casing, cement (0 ft (MD) 5 ft (TVD) 7 TOP YP (lb/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 is (minimum), G ' casing to	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500	ace. sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu	2,280 2,630 ments DBM	
Target flow-rates of 750 GPM (higher if able to control return rates). Minimum desired flow-rate is 650 GPM. At 1 condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface. Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) (lbs) Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull orque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface 5,200 Maximum: 6,500 Maximum: 6,500	TERMEDIATE: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 00507 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction	to casing settin to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX)	casing, cement () ft (MD) i ft (TVD) TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 Is (minimum), G ' casing to past casing setti	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste	ace. sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu- psi for 30 minu-	2,280 2,630 ments DBM A A utes. o keep well	
condition hole and fluid for casing running. TOOH. Run casing using a CRT and washing / circulating as required. Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detaile below. Monitor returns during cement job and note cement volume to surface. Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) (lbs) Specs: 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading Min. S.F. 1,147 1,130 182,566 182,566 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull orque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 it casing, float collar, casing to surface S200 Maximum: 6,500	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Motor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli	pg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10	casing, cement () ft (MD) i ft (TVD) TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 is (minimum), G ' casing to past casing setti)', when possible	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey	ace. sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu- ser as needed to s every stand, a	2,280 2,630 nents DBM A utes. o keep well t a minimun	
Land casing. ND BOPE. Walk rig to next well and perform off-line cement job, if possible. Pump cement as detailed below. Monitor returns during cement job and note cement volume to surface. Casing Specs: Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading 1,147 1,130 182,566 182,566 182,566 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull preque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 gummary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 MOTOR 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able	PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re	Casing, cement of t (MD) t (TVD) TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 is (minimum), G ' casing to past casing setti y, when possible turn rates). Mini	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste e. Take survey mum desired	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 650	2,280 2,630 nents DBM A utes. o keep well it a minimum D GPM. At TE	
Delow. Monitor returns during cement job and note cement volume to surface. Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) (lbs) (lbs) Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading 1,147 1,130 182,566 182,566 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 tes of 750 GPM and fluid for c	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running.	PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca	Casing, cement of t (MD) is ft (TVD) TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 is (minimum), G ' casing to past casing setting ', when possible turn rates). Mini- ising using a CRT	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Stee c. Take survey mum desired and washing	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as	2,280 2,630 nents DBM A utes. o keep well t a minimum) GPM. At TE required.	
Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) Tens. Body (lbs) Tens. Collapse Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading Min. S.F. 1,147 1,130 182,566 182,566 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull orque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface Surface Surface Surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): /WD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 tes of 750 GPM and fluid for c ID BOPE. Walk	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running. rig to next well	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform	casing, cement of 0 ft (MD) is ft (TVD) : TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, 14 TFA 0.65 - 1.0 ns (minimum), G ' casing to past casing setting ', when possible turn rates). Mini- ising using a CRT off-line cement	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste e. Take survey mum desired and washing job, if possible	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cemen	2,280 2,630 nents DBM A utes. o keep well t a minimum) GPM. At TE required. t as detailed	
Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) Tens. Body (lbs) Tens. Con (lbs) Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading Min. S.F. 1,147 1,130 182,566 182,566 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull Source pressure gradient (ft lbs): Optimum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface Maximum: 6,500	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): VWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monit	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 tes of 750 GPM and fluid for c ID BOPE. Walk or returns durin	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running. rig to next well ng cement job a	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, target in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu	casing, cement of 0 ft (MD) is ft (TVD) : TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, 14 TFA 0.65 - 1.0 ns (minimum), G ' casing to past casing setti b', when possible turn rates). Mini using using a CRT off-line cement ent volume to su	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible urface.	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cemen	2,280 2,630 nents DBM A utes. o keep well t a minimun) GPM. At TE required. t as detailed	
Casing Specs: Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) Itens. Goly Itens. Col Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading Min. S.F. 1,147 1,130 182,566 182,566 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull Value orque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface Surface Surface Surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk pr returns durin	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running, rig to next well ng cement job a	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, target in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note ceme	casing, cement of 0 ft (MD) is ft (TVD) : TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, 14 TFA 0.65 - 1.0 ns (minimum), G ' casing to past casing setti ', when possible turn rates). Mini using using a CRT off-line cement ent volume to su	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible urface.	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cement	2,280 2,630 nents DBM A utes. o keep well t a minimum) GPM. At TE required. t as detailed	
Specs 9.625 36.0 J-55 LTC 2,020 3,520 564,000 453,000 Loading Min. S.F. 1,147 1,130 182,566 182,566 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull orque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface Surface Surface Surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monity	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk prireturns durin	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 1 (higher if able asing running. rig to next well ng cement job a	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note ceme	casing, cement of 0 ft (MD) is ft (TVD) : TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, 18 - 14 DEG, 900 GPM, 16 TFA 0.65 - 1.0 10 s (minimum), G ' casing to past casing setti 0', when possible turn rates). Mini- using using a CRT off-line cement ent volume to success	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible urface.	cection Length: sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cement	2,280 2,630 nents DBM A utes. o keep well t a minimum D GPM. At TE required. t as detailed	
Loading Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monite	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk prireturns durin	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running, rig to next well 19 cement job a	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note ceme	casing, cement of 0 ft (MD) is ft (TVD) : TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, 18 - 14 DEG, 900 GPM, 18 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste and washing job, if possible inface.	cection Length: sing Required: Comm No C comm 0.902 sq-in TF/ psi for 30 minu eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cement	2,280 2,630 nents DBM A utes. o keep well t a minimum D GPM. At TE required. t as detailed Tens. Conr	
Min. S.F. 1,200 102,500 Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface Float shoe, 1 jt casing, float collar, casing to surface Surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Procedure:	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk pr returns durin Wt (lb/ft) 36.0	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running, rig to next well ng cement job a Grade	PV (cp) 8 - 14 PV (cp) 8 - 14 Frev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note ceme	casing, cement of t (MD) is ft (TVD) TOP YP (lb/100 sqft) 8 - 14 DEG, 900 GPM, tt TFA 0.65 - 1.0 is (minimum), G ' casing to past casing setti y, when possible turn rates). Mini tising using a CRT off-line cement ent volume to su Collapse (psi) 2 020	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste and washing job, if possible rrface. Burst (psi) 3,520	ce. sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu- eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cement Tens. Body (lbs) 564 000	2,280 2,630 nents DBM A utes. o keep well t a minimun D GPM. At TC required. t as detailed Tens. Conr (lbs)	
Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Procedure: Specs Logding	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monite	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk pr returns durin Wt (Ib/ft) 36.0	to casing settin to to to S 150' TVD BEL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 1 (higher if able asing running. rig to next well ng cement job a Grade J-55	Py depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note ceme Conn. LTC	casing, cement of t (MD) if t (TVD) TOP YP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, It TFA 0.65 - 1.0 is (minimum), G ' casing to past casing setti y, when possible turn rates). Mini asing using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1.147	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste c. Take survey mum desired and washing job, if possible rrface. Burst (psi) 3,520 1.130	ce. sing Required: Comm No C 0.902 sq-in TF/ psi for 30 minu- eer as needed to s every stand, a flow-rate is 65C / circulating as e. Pump cement Tens. Body (lbs) 564,000 182.556	2,280 2,630 nents DBM A utes. o keep well t a minimun D GPM. At TC required. t as detailed Tens. Conr (lbs) 453,000 182,566	
Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Procedure: Specs Loading Min. S. F	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud n MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk pr returns durin Wt (lb/ft) 36.0	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra 00' and keep sli 4 (higher if able asing running, rig to next well second running, rig to next well	PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu	casing, cement of t (MD) t (MD) TOP YP (lb/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 as (minimum), G ' casing to past casing setti y, when possible turn rates). Mini using using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1,147 1,76	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible riface. Burst (psi) 3,520 1,130 3,11	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm Comm No C comm Comm No C comm Comm Comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TC required. t as detailed Tens. Conr (lbs) 453,000 182,566 2.48	
production hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull prque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Specs Loading Min. S.F.	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk por returns durin Wt (lb/ft) 36.0 Collapse: fully	to casing settin to to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra b)' and keep sli 1 (higher if able asing running, rig to next well bg cement job a Grade J-55 evacuated cass	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu Conn. LTC	casing, cement of t (MD) t (MD) TOP YP (lb/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 as (minimum), G ' casing to past casing setti y, when possible turn rates). Mini using using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1,147 1.76 cog equivalent ex	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible riface. Burst (psi) 3,520 1,130 3.11 ternal pressur	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm Comm No C comm Comm No C comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TC required. t as detailed Tens. Conr (lbs) 453,000 182,566 2.48	
Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull p rque (ft lbs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Specs Loading Min. S.F.	Drill as per dia 350 350 *TARGET CSG LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk or returns durin Wt (Ib/ft) 36.0 Callapse: fully Burst: maximu	to casing settin to to to S 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressur nal plan (20' ra b)' and keep sli 1 (higher if able asing running, rig to next well ng cement job a Grade J-55 evacuated casur m anticipated	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu Conn. LTC	casing, cement of t (MD) t (MD) t (TVD) TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 as (minimum), G ' casing to past casing setti b', when possible turn rates). Mini using using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1,147 1.76 og equivalent ex ure with 9.5 ppg	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible irface. Burst (psi) 3,520 1,130 3.11 ternal pressur fluid inside ca	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm Comm No C comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TC required. t as detailed Tens. Conr (lbs) 453,000 182,566 2.48 ng	
orque (ft Ibs): Minumum: 3,900 Optimum: 5,200 Maximum: 6,500 ng Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Hole Size: Bit / Motor: Motor (Detail): MWD / Survey: Logging: Pressure Test: Procedure: Specs Loading Min. S.F.	Drill as per dia 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPM and fluid for c ID BOPE. Walk or returns durin Wt (Ib/ft) 36.0 Callapse: fully Burst: maximu production ho	to casing settin to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra bo' and keep sli 1 (higher if able asing running, rig to next well bg cement job a Grade J-55 evacuated cass im anticipated le and 8.4 ppg	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu Conn. LTC ing with 8.4 pp surface presso	casing, cement of t (MD) t (MD) t (TVD) TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 as (minimum), G ' casing to past casing setti b', when possible turn rates). Mini using using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1,147 1.76 og equivalent ex ure with 9.5 ppg ternal pressure g	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible rface. Burst (psi) 3,520 1,130 3.11 ternal pressur fluid inside ca rradient	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm Comm No C comm Comm Comm Comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TE required. t as detailed Tens. Com (lbs) 453,000 182,566 2.48 ng	
ing Summary: Float shoe, 1 jt casing, float collar, casing to surface	Fluid: Hole Size: Bit / Motor: Motor (Detail): WWD / Survey: Logging: Pressure Test: Procedure: Specs Loading Min. S.F.	Drill as per dia 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPW e and fluid for c ID BOPE. Walk or returns durin Wt (Ib/ft) 36.0 Collapse: fully Burst: maximu production ho Tension: buoyo	to casing settin to to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra b)' and keep sli 1 (higher if able asing running, rig to next well hg cement job a Grade J-55 evacuated cass im anticipated le and 8.4 ppg ed weight in 8	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu Conn. LTC ing with 8.4 pj surface pressi equivalent ext	Collapse (psi) 2,020 2,020 2,020 2,020 2,020 2,020 2,020 2,020 2,020 2,020 1,147 1.76 2,020 2,020 1,147 1.76 2,020 2,020 2,020 1,147 1.76 2,020	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible irface. Burst (psi) 3,520 1,130 3.11 ternal pressur fluid inside ca uradient ver-pull	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm Comm No C comm Comm No C comm Comm Comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TE required. t as detailed Tens. Coni (lbs) 453,000 182,566 2.48 ng	
	Fluid: Fluid: Hole Size: Bit / Motor: MVD / Survey: Logging: Pressure Test: Procedure: Specs Loading Min. S.F.	Drill as per dia 350 350 *TARGET CSG Type LSND (KCl) 12-1/4" PDC w/mud m MOTOR: NOV BIT: 5- or 6-BL MWD surveys None NU BOPE and Drill to TD foll on plan. Keep Target flow-ra condition hole Land casing. N below. Monitu 9.625 Assumptions: Minumum:	rectional plan t ft (MD) ft (TVD) SHOE DEPTH I. MW (ppg) 8.8 - 9.5 Notor 087840 - 7/8, ADE PDC w/16 with inclinatio test (as noted a owing direction DLS < 3 deg/10 test of 750 GPW and fluid for c ID BOPE. Walk or returns durin Wt (Ib/ft) 36.0 Collapse: fully Burst: maximu production ho Tension: buoyo 3,900	to casing settin to to to 5 150' TVD BEL FL (mL/30 min) 20 4.0, stage, 0.16 mm or 19 mm n and azimuth above); pressu nal plan (20' ra b)' and keep sli 1 (higher if able asing running, rig to next well hg cement job a Grade J-55 evacuated cass im anticipated le and 8.4 ppg ed weight in 8 Optimum:	eg depth, run 4 2,630 2,620 OW MENEFEE PV (cp) 8 - 14 5 rev/gal, 1.83 cutters, targe in 100' station re test 13-3/8' t-hole (MAX) de length < 10 e to control re TOOH. Run ca and perform and note cemu Conn. LTC ing with 8.4 pj surface press equivalent ext 4 ppg fluid wit 5,200	casing, cement of t (MD) t (MD) t (TVD) TOP (Ib/100 sqft) 8 - 14 DEG, 900 GPM, t TFA 0.65 - 1.0 as (minimum), G casing to past casing setti b', when possible turn rates). Mini asing using a CRT off-line cement ent volume to su Collapse (psi) 2,020 1,147 1.76 cog equivalent ex turn are with 9.5 ppg ternal pressure g th 100,000 lbs ou Maximum:	pH 9.0 - 9.5 950 DIFF PSIG max); 6 - 14s = R optional 1,500 ng depth). Ste 2. Take survey mum desired and washing job, if possible irface. Burst (psi) 3,520 1,130 3.11 ternal pressur fluid inside ca irradient rer-pull 6,500	ce. cection Length: sing Required: Comm No C comm No C comm Comm No C comm No C comm Comm No C comm Comm Comm No C comm Comm Comm Comm No C comm Com	2,280 2,630 DBM A utes. o keep well t a minimun D GPM. At TE required. t as detailed Tens. Conr (lbs) 453,000 182,566 2.48 ng	

.

Centralizers: 1 centralizers jt stop-banded 10' from float shoe on bottom 1 jt & 1 centralizer floating on bottom joint, 1 centralizer per 3 jts to surface

			Yield	Water		Planned TOC	Total Cmt
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	% Excess	(ft MD)	(sx)
Lead	III:POZ Blend	12.5	2.140	12.05	70%	0	502
Tail	Type III	14.6	1.370	137			
Annular Capacity	0.3627	cuft/ft	9-5/8" casing x 13-3/8" casing annulus				
	0.3132	cuft/ft	9-5/8" casing x 12-1/4" hole annulus				

0.3132

Drake Energy Services: Calculated cement volumes assume gauge hole and the excess noted in table

Spacer	D-Mud Breaker	SAPP	D MDA 1 49/					
		D-CSE 1 5.0%	BWOC Fluid Loss &					
	ASTM Type III	BWOC Strength	Gas Migration	D-SA 1 1.4% BWOC	D-CD 2 .4% BWOC	Cello Flace LCM .25	D-FP 1 .5% BWOC	
Leaa	90/10 Poz	Ennancer	D-MPA-1 .4%	Na Metasilicate	Dispersant	ID/SX	Defoamer	D-R1 .5% Retarder
			BWOC Fluid Loss &					
Tail	ASTM Type III Blend		Gas Migration Control	Cello Flace LCM .25 lb/sx				
	Drake Interme	diate Cementi	na Proaram					
	Notify NMOC	0 & BLM if cen	nent is not circ	ulated to surfa	ce. Cement m	ust achieve 500) psi compressi	ive strength
	before drilling	out.						
PRODUCTION:	Drill to TD foll	owing direction	onal plan, run d	casing, cement	casing to surf	ace.		
	2,630	ft (MD)	to	13,584	ft (MD)	Hole S	ection Length:	10,954 ft
	2,626	ft (TVD)	to	4,586	ft (TVD)	Cas	sing Required:	13,584 ft
		F	timated KOP	4 092	ft (MD)	4 084		1
	Fst	imated Landin	a Point (FTP):	4,032	ft (MD)	4,626	ft (TVD)	-
		Estimated L	ateral Lenath:	8.761	ft (MD)	.,020		1
	J		j					
					YP			
Fluid:	Туре	MW (ppg)	FL (mL/30')	PV (cp)	(lb/100 sqft)	ES	OWR	
	OBM	8.7 - 9.0	10 - 15	10 - 20	6 - 10	500+	80:20	
Fluids / Solids Notes:	Newpark Optil	Drill OBM syste	em. Ensure tha	t drying shaker	s are rigged up	after the rig (2	Ind set) of shal	kers. Solids
	control WII bu	in program on	cuttings sample	es one per tour	to check % RU	C. Add diesel a	nd products as	required to
	to be added to	the OBM syst	ecs. Reference	ges to the muc	l systems are t	o he discussed	with engineer	ing prior to
	application.		,	0	,			
Hole Size:	8-1/2"							
Bit / Motor:	PDC w/mud m	otor						
Bit / Motor (Detail):	MOTOR: NOV	077857 - 7/8,	5.7, stage, 0.2	3 rev/gal, 1.83	- 2.12 DEG, 750) GPM, 1,580 D	IFF PSIG (or sin	nilar); on
	demand frictio	on breaking de	vice(s) as requ	ired, bottom to	ol spaced ~3,0	00' behind the	bit.	
	BIT: 5-BLADE F	PDC w/16 mm	- 19 mm cutter	s, matrix body,	target TFA = 1	0 - 1.5 sq-in		
MWD / Survey:	MWD surveys	with inclinatio	n and azimuth	in 100' station	s (minimum) b	efore KOP, eve	ry joint from K	OP to POE,
	every 100' (mi	nimum) from I	POE to TD; Gan	nma Ray from o	drill out of 9-5/	8" shoe to TD		
Logging:	MWD Gamma	Ray for entire	section, no mi	ud-log or cuttin	gs sampling, n	o OH WL logs		1
Pressure Test:	NU BOPE and	test (as noted	above); pressu	re test 9-5/8" c	asing to	1,500	psi for 30 min	utes.
Flocedule.	1 000 nsig Tar	get ROP 500 -	600 ft/hr Stee	r as needed to	keen well on r	lan Keen DIS	c 3 deg/100' ar	e is 700 - nd keen slide
	length $< 10'$ ur	ntil KOP, when	feasible. Take	surveys every s	stand, at a min	imum. Confirm	landing target	, planned BUR
	for curve, and	KOP with Geo	logy and Engin	eering. Drill cu	ve following d	irectional plan	and updated la	anding target.
	Take survey ev	very joint durir	ng curve. Land	curve. Continue	e drilling in late	eral section, ste	ering as neede	d to keep
	well on plan a	nd in the targe	et window. Kee	p DLS < 2 deg/	100' and keep s	slide length < 2	0', when feasib	ole. Take
	surveys every	stand, at a mir	nimum. Target	rotating paran	neters / perfor	mance: flow-ra	te is 650 - 700	GPM,
	differential is	pressure is 70	0 - 1,000 psig,	ROP 500 - 600	ft/hr, torque 3	8K ft-lbs (MAX	drill pipe MUT	F). After
	reaching ID, p	erform clean-i	up cycle to con	dition hole for	casing running	. Spot lube as r	equired and 10	JOH (ROOH, If
	only if necessa	ing NOT be req	T he required a	with OBM) Mor	ify make up to	rque when run	ning casing So	
	getting the top	e sleeve as clos	se to LTP as no	ssible. Land cas	ing and test na	ick-off. Onen fl	ning casing. Sp patation sub_fi	ill casing and
	circulate as rec	quired. Nipple	down BOPE. w	alk rig to next	well, and perfo	orm off-line cen	nent job (unles	s on final well
	on the pad). P	ump cement a	s detailed belo	w. Note cemer	nt volume circu	lated to surfac	e.	
							TP . !	Turn

							Tens. Body	Tens. Conn
Casing Specs:	Size (in)	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs	5.500	20.0	HCP-110	TCBC-HT	12,200	12,360	641,000	667,000
Loading					2,265	8,929	384,435	384,435
Min. S.F.					5.39	1.38	1.67	1.74

Assumptions: Collapse: fully evacuated casing with 9.5 ppg fluid in the annulus (floating casing during running)

Burst: 8,500 psi maximum surface treating pressure with 10.2 ppg equivalent mud weight sand laden fluid with 8.4 ppg equivalent external pressure gradient

Tension: buoyed weight in 9.0 ppg fluid with 150,000 lbs over-pull MU Toraue (ft lbs): 10.000 Optimum: 13.500 18.500 Minumum: Maximum: Casing Summary: Float shoe, 1 float collar, 1 jt casing, float collar, 20' marker joint, toe-intitiation sleeve , casing to KOP with 20' marker joints spaced evenly in lateral every ~2,000', floatation sub at KOP (+/-), casing to surface. The toe-initiation sleeve shall be placed no closer to the unit boundary than 100' measured along the azimuth of the well or 330' measured perpendicular to the the azimuth of the well. Note: the LTP is the maximum depth of the toe sleeve and is noted on the Well Plan. Drill past the LTP as required for necessary rat-hole and shoe-track length to place the toe sleeve as close to (but not past) the planned LTP as possible. Centralizers: Centralizer count and placement may be adjusted based on well conditions and as-drilled surveys (ARSENAL Lateral and Curve: 1 centralizer per 3 joints Top of curve to 9-5/8" shoe: 1 centralizer per 5 joints 9-5/8" shoe to surface: 1 centralizer per 5 joints Planned TOC Total Cmt Yield Water Cement: Weight (ppg) (cuft/sk) (gal/sk) % Excess (ft MD) (sx) Туре IntegraGuard 30.7 gpb 60 bbls Spacer EZ II LCM 11 Lead Type I / II 12.4 2.360 13.40 65% 0 575 Tail G:POZ blend 13.3 1.560 7.70 10% 3,587 1,615 Annular Capacity 0.2691 cuft/ft 5-1/2" casing x 9-5/8" casing annulus cuft/ft 5-1/2" casing x 8-1/2" hole annulus 0.2291 Calculated cement volumes assume gauge hole and the excess noted in table IntegraGuard Star Avis 616 viscosifier FP24 Defoamer .5 Plus 3K LCM 15 SS201 Surfactant 1 Cmt. Flv Ash Spacer 170.903 lbs/bbl 11.6 lb/bbl lb/bbl lb/bbl gal/bb

			Bentonite		IntegraGuard			FP24 Defoamer
		BA90 Bonding	Viscosifier 8%	FL24 Fluid Loss .5%	GW86 Viscosifier	IntegraSeal Poli	R7C Retarder .2%	0.3% BWOB, Anti-
Lea	d ASTM Type I/II	Agent 5.0 lb/sx	BWOB	BWOB	.1% BWOB	LCM .25 lb/sx	BWOB	Static .01 lb/sx
								R3 Retarder .5%
				Bentonite		IntegraGuard		BWOB FP24
		Pozzolan Fly Ash	BA90 Bonding	Viscosifier 4%	FL24 Fluid Loss .4%	GW86 Viscosifier	IntegraSeal Poli	Defoamer .3%
Τα	il Type G 50%	Extender 50%	Agent 3.0 lb/sx	BWOB	BWOB	.1% BWOB	LCM .25 lb/sx	BWOB

American Cementing Liner & Production Blend

Notify NMOCD & BLM if cement is not circulated to surface.

Note: This well will not be considered an unorthodox well location as definted by NMAC19.15.16.15.C.5. As defined in NMAC 19.15.16.15.C.1.a and 19.15.16.15.C.1.b, no point in the completed interval shall be closer to the unit boundary than 100' measured along the azimuth of the well or 330' measured perpendicular to the azimuth well. The boundaries of the completed interval, as defined by NMAC 19.15.16.7.B, are the last take point and first take point, as defined by NMAC 19.15.16.7.E and NMAC 19.15.16.7.J, respectively. In the case of this well, the last take point will be the bottom toe-initiation sleeve, and the first take point will be the top perforation. Neither the toe-initiation sleeve nor the top perforation shall be closer to the unit boundary than 100' measured along the azimuth of the well or 330' measured perpendicular to the azimuth of the well.

FINISH WELL: ND BOP. RDMO Drilling Rig.

Procedure: ND BOP. Walk rig to next well. Cement off-line. Cap well.

COMPLETION AND PRODUCTION PLAN:

Frac: 40 plug-and-perf stages with 360,000 bbls slickwater fluid and 15,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

ESTIMATED START DATES:

Prepared by:

Updated by:

5/2022
9/2022

 Alec Bridge
 2/7/2020

 Alec Bridge
 3/31/2022
 - updated drilling prog & directional plans for new development plan & current program

 Greg Olson
 10/17/2022
 - updated drilling prog & directional plans for new development plan & current program

WELL NAME: RODEO UNIT 512H

OBJECTIVE:	Drill, comple	Fill, complete, and equip single lateral in the Mancos-I formation						
API Number:	30-045-35874	0-045-35874						
State:	New Mexico	lew Mexico						
County:	San Juan							
Surface Elev.:	6,798	ft ASL (GL)	6,811	ft ASL (KB)				
Surface Location:	25-23N-09W	Sec-Twn- Rng	191	ft FSL	1,345	ft FWL		
BH Location:	6-22N-08W	Sec-Twn- Rng	1226	ft FNL	2398	ft FWL		

Driving Directions: FROM THE INTERSECTION OF US HWY 550 & US HWY 64 IN BLOOMFIELD, NM:

South on US Hwy 550 for 37.8 miles to MM 113.4; Right (Southwest) on CR #7890 for 0.8 miles to fork; Left (South) remaining on CR #7890 for 1.3 miles to 4-way intersection); Left (Southeast) remaining on CR #7890 for 0.6 miles to fork; Right (Southwest) on CR #7890 for 1.5 miles to access road; Left on access road for 0.5 mile to Rodeo Unit 511H Pad (three wells planned to be drilled: 511H, 512H, 513H).

	QUICK REFERENCE							
	Sur TD (MD)	350	ft					
	Int TD (MD)	2,630	ft					
	KOP (MD)	4,092	ft					
	KOP (TVD)	4,084	ft					
	Target (TVD)	4,626	ft					
	Curve BUR	10	°/100 ft					
	POE (MD)	4,823	ft					
to	TD (MD)	13,584	ft					
	Lat Len (ft)	8,761	ft					

WELL CONSTRUCTION SUMMARY:

	Hole (in)	TD MD (ft)	Csg (in)	Csg (lb/ft)	Csg (grade)	Csg (conn)	Csg Top (ft)	Csg Bot (ft)
Surface	17.500	350	13.375	54.5	J-55	BTC	0	350
Intermediate	12.250	2,630	9.625	36.0	J-55	LTC	0	2,630
Production	8.500	13.584	5.500	20.0	HCP-110	TCBC-HT	0	13.584

CEMENT PROPERTIES SUMMARY:

					Hole Cap.		TOC	
	Туре	Wt (ppg)	Yd (cuft/sk)	Wtr (gal/sk)	(cuft/ft)	% Excess	(ft MD)	Total (sx)
Surface	TYPE III	14.6	1.39	6.686	0.6946	100%	0	350
Inter. (Lead)	III:POZ Blend	12.5	2.14	12.05	0.3627	70%	0	502
Inter. (Tail)	Type III	14.6	1.37	6.63	0.3132	20%	2,130	137
Prod. (Lead)	Type I / II	12.4	2.360	13.40	0.2691	65%	0	575
Prod. (Tail)	G:POZ blend	13.3	1.560	7.70	0.2291	10%	3,587	1,615

COMPLETION / PRODUCTION SUMMARY:

Frac: 40 plug-and-perf stages with 360,000 bbls slickwater fluid and 15,000,000 lbs of proppant (estimated)Flowback: Flow back through production tubing as pressures allow (ESP may be used for load recovery assitance)Production: Produce through production tubing via gas-lift into permanent production and storage facilities

	_		
	lops	IVD (ft KB)	MD (ft KB)
	Uju Alamo	300	300
	Kirtiand	441	441
	Fruitiand	6/1	6/1
	Pictured Cliffs	1,021	1,021
	Lewis	1,146	1,146
	Chacra	1,406	1,406
	Cliff House	2,431	2,434
	Menefee	2,466	2,470
	Point Lookout	3,431	3,437
	Mancos	3,581	3,587
	Gallup (MNCS_A)	3,916	3,921
	MNCS_B	4,021	4,027
	MNCS_C	4,106	4,112
	MNCS_Cms	4,146	4,152
	MNCS_D	4,271	4,282
	MNCS_E	4,421	4,457
	MNCS_F	4,476	4,532
	MNCS_G	4,546	4,648
	MNCS_H	4,593	4,742
	MNCS_I	4,649	4,909
)	FTP (LP) TARGET	4,626	4,823
	LTP (TD) TARGET	4,586	13,584

BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM.

ALTERNATE, INTERMEDIATE HOLE ONLY, BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 2,000 PSI MINIMUM. THIS BOPE SETUP IS AN ALTERNATE ONLY, DESIGNED FOR ANY POSSIBLE FUTURE DRILLING RIG WITH SUBSTRUCTURE HEIGHT THAT IS TOO SHORT TO ACCOMADATE A FULL 13-5/8" 3,000 PSI BOP STACK

BOPE

CHOKE MANIFOLD

ALTERNATE, PRODUCTION HOLE ONLY, BOPE & CHOKE MANIFOLD DIAGRAMS

NOTE: EXACT BOPE AND CHOKE CONFIRGURATION AND COMPONENTS MAY DIFFER FROM WHAT IS DEPICTED IN THE DIGRAMS BELOW DEPENDING ON THE RIG AND ITS ASSOCIATED EQUIPMENT. RAM PREVENTERS, ANNULAR PREVENTERS, AND CHOKE MANIFOLD AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM. THIS BOPE SETUP IS AN ALTERNATE ONLY, DESIGNED FOR ANY POSSIBLE FUTURE DRILLING RIG WITH SUBSTRUCTURE HEIGHT THAT IS TOO SHORT TO ACCOMADATE A FULL 13-5/8" 3,000 PSI MON PSI AND COMPONENTS WILL BE RATED TO 3,000 PSI MINIMUM. THIS BOPE SETUP IS AN ALTERNATE ONLY, DESIGNED FOR ANY POSSIBLE FUTURE DRILLING RIG WITH SUBSTRUCTURE HEIGHT THAT IS TOO SHORT TO ACCOMADATE A FULL 13-5/8" 3,000 PSI BOP STACK

CHOKE MANIFOLD

•

WELL NAME:	RODEO UNIT 512H
API NUMBER:	30-045-35874
AFE NUMBER:	DV03088
ER WELL NUMBER:	NM08212.01
WELL LOCATION:	191 ft FSL & 1345 ft FWL 25-23N-09W
AFE SUMMARY:	Drill, complete, and equip single lateral in the Mancos-I formation
TD (FT MD):	13,584
LAT LEN (FT MD):	8,761

			Sec.	Cum. Drlg.	Ttl. Dep.	Sec. Ftg.	Avg. ROP
	DRILLING SUMMARY		Days	Days	(ft MD)	(ft MD)	(ft/day)
	Drill Surface: <i>Mo-Te will pre-drill surface hole</i>	Drill Surface:	0.50	0.50	350	350	700
	Prep hole for casing, run 13-3/8" casing, cement casing: Mo-Te will pre-set surface casing	Surface Casing:	0.50	1.00	350	N/A	N/A
	MIRU Drilling Rig to pad (mob rate)	MIRU:	0.00	0.00	300	N/A	N/A
	Walk Rig, NU BOPE, TIH w/BHA (operating rate)	Test & PU BHA:	0.75	0.00	350	N/A	N/A
	Drill Intmerediate to casing point (into Menefee)	Drill Intermediate:	0.75	0.75	2,630	2280	3040
	Prep hole for casing, run 9-5/8" casing, cement casing, walk rig for production section, NU BOPE, PU BHA & TIH	Inter. Casing:	1.50	2.25	2,630	N/A	N/A
	Drill to KOP	Drill Veritcal:	0.50	2.75	4,092	1462	2924
	Drill Curve to landing point	Drill Curve:	0.75	3.50	4,823	731	975
	Drill lateral to TD	Drill Lateral:	1.75	5.25	13,584	8761	5006
	Prep hole for casing, run 5-1/2" casing, cement casing	Prod Casing:	1.50	6.75	13,584	N/A	N/A
		DO SURF TO RR:		6.75			
WELLS:	5	TOTAL BIG RIG DAYS:		7.50	(Total Operation	ating Rate Da	ays)
WELLS:	0	TOTAL BIG RIG DAYS:		7.50	(Total Days	Operating +	Mobilization)

NEW WELLS: 5 EXISTING WELLS: 0 STAGE LENGTH: 235

	STAGES	38	795H is fir	st well on pa	d					
CODF 1	CODF 2		Pate	R	ATE & QUA	NTITY DETA	ILS Count	desc		CODE
830	10	IDC - PERMITS & SURVEYS	nute	units	count	4636.	count		JUDIUIAL	\$58,500
		Permits w/BLM & NMOCD	\$10,000	\$/ea	1	еа			\$10,000	
		Air Quality Management Services	\$4,000	\$/ea	1	еа			\$4,000	
		NEPA Services	\$3,000	\$/ea	1	еа			\$3,000	
		Archaelogy Survey & Mapping	\$1,500	\$/ea \$/ea	1	ea			\$1,500	
		ROW & SUA	\$20,000	\$/ea	1	ea			\$20,000	
830	15	IDC - CONDUCTOR/RAT/MOUSE HOLE	+==,===	<i>+)</i> ==					120,000	\$9,000
		install cellar w/Adobe (8' diameter x 8' deep & backfilled to no more than 6' deep after WH is installed)	\$5,000	\$/ea	1	еа			\$5,000	
		Drill Mousehole w/MOTE	\$4,000	\$/ea	1	еа			\$4,000	
830	20	IDC - DRILLING TITLE OPINION	_							\$0
920	20		_						ŞU	\$45,000
050	50	Build pad & access road (\$150.000 pad total, split evenly between CTB & D&C AFEs)	\$75.000	\$/pad	3	wells			\$25.000	43 ,000
		Interim reclamation	\$60,000	\$/pad	3	wells			\$20,000	
830	50	IDC - RIG MOBILIZATION								\$98,400
		mobilize rig from W Lybrook Unit 726H Pad	\$200,000	\$/mob	1	mob	3	wells	\$66,667	
000	60	mobilize other rig equipment (camps, solids control, drill pipe, etc.)	\$95,000	\$/mob	1	mob	3	wells	\$31,667	6220 600
830	60	IDC - DAYRATE DRILLING Ensign 145 (mobilization rate - 95% on rate)	\$17,850	¢/day	2.0	days			\$25 700	\$228,600
		Ensign 145 (notifization rate - 65% op rate) Ensign 145 (operating - \$18.600/day + \$2400/day 6th man)	\$21,000	\$/day	7.50	days			\$157,500	
		Ensign 145 (crew per diem - \$35/day + tax)	\$35	\$/day/man	7.50	days	13	men	\$3,413	
		Ensign Edge drilling software (\$600/day - used + tax)	\$600	\$/day	7.50	days			\$4,500	
		Forklift + Manlift (\$380/day + tax)	\$380	\$/day	7.50	days			\$2,850	
		Ensign 145 (OBM pay) = \$400/day + \$35/day/man, 8.5 section only	\$35	\$/day/man	4.50	days	13	men	\$4,005	
		drill pipe credit	\$0	\$/day	7.50	days			\$0	
020	65	Boiler (winter only)	\$750	Ş/day	7.50	days			\$5,625	ćo.
830	65								Śŋ	\$0
830	70	IDC - FOOTAGE DRILLING							γŪ	\$28,000
		Mo-Te to drill surface hole & set surface casing	\$28,000	\$/ea	1	еа			\$28,000	
830	75	IDC - DIRECTIONAL SERVICES								\$122,500
		MWD & DD operating charges: including motor rentals	\$11,000	\$/day	7.50	days			\$82,500	
		MWD & DD operating charges: standby	\$5,000	\$/day	1.0	day			\$5,000	
020	00	Other charges: trucking, inspections, battery disposal, motor inspections / relines, well planning, etc	\$35,000	Ş/ea	1	еа			\$35,000	¢35.000
830	90	12-1//" hit rental	\$12 500	\$/ea	1	ea			\$12 500	\$25,000
		8-1/2" bit rental	\$12,500	\$/ea	1	ea			\$12,500	
830	92	IDC - MOTORS/AGITATORS	<i><i>Q</i>12,500</i>	φ/ cu	-	cu			<i>Q</i> 12,000	\$20,000
		third party motor rentals	\$15,000	\$/run	0	runs			\$0	
		motor re-lines & inspections	\$6,000	\$/ea	0	еа			\$0	
		agitator rentals & inspection	\$20,000	\$/ea	1	еа			\$20,000	
830	95	IDC - BRINE MUD, CHEM & TRUCK	¢ 40.00	ć /h.h.l	250	hhla			¢14.000	\$14,000
830	100	20% KCI base fluid + trucking	Ş4U.UU	ş/ddi	350	DDIS			\$14,000	\$28 200
050	100	engineer	\$5.000	\$/dav	3.00	davs			\$15,000	<i>728,200</i>
		mud products	\$5	\$/ft	2630	days			\$13,150	
830	105	IDC - OILBASE MUD, CHEM & TRUCKING								\$129,100
		mud products (not including lubricant) & mud engineer	\$8,000	\$/day	4.25	days			\$34,000	
		add'l chem usage	\$6.00	\$/ft	3,792	ft			\$22,752	
000	400	diesel make up for OBM	1.50	gal/ lat ft	8761	ft	\$5.50	gal	\$72,278	¢45,400
830	106	IDC - MOD HANDLING EQUIP RENTAL	\$4 200	¢/day	7 50	days			\$21 500	\$45,400
		mud storane tanks & cuttinas hins	\$4,200	\$/day	7.50	davs			\$11,250	
		solids control loader	\$350	\$/day	7.50	days			\$2,625	
830	110	IDC - FUEL & POWER								\$165,000
		Rig Diesel (operating)	\$5.50	\$/gal	3,500	gal/day	7.50	days	\$144,375	
		Boiler diesel	\$5.50	Ş/day \$/aal	500	gal/day	7.50	days	\$20,625	
830	120	IDC - RIG WATER	\$5.50	ş/yui	1,000	gai	0.0	uays	30	\$34,000
000		Water for cement jobs & rig (including trucking)	\$5.00	\$/bbl	0.50	bbls/ft	13584.0	ft	\$33,960	ço ijece
830	121	IDC - WATER FOR DRILLING FLUIDS								\$0
		all charged to 830.120							\$0	
830	130	IDC - CEMENT & CEMENT SERVICES	44	A. 0					444.000	\$207,600
		13-3/8" casing cement job	\$36,000	\$/job					\$36,000	
		ש-שואס בעוויות בפוויות ושט 5-1/2" casing cement iob	\$50,000 \$40.000	\$/JOD \$/ioh	\$6.00	\$/f+	13 584	ft	\$50,000 \$121 504	
830	135	IDC - CASING CREW/SERVICES	Ş40,000	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	-90.00	<i>√/</i>]t	13,304		¥121,304	\$56.800
		Run 13-3/8" casing	\$4,500	\$/job	1	job			\$4,500	,,
		Rack, clean, drift 9-5/8" casing	\$1.50	\$/ft	2,630	ft			\$3,945	
		Run 9-5/8" casing + CRT rental	\$2.50	\$/ft	2,630	ft			\$6,575	
		9-5/8" CRT	\$6,000	\$/job	1	job			\$6,000	
		Kack, clean, drift 5-1/2" casing	\$0.50	\$/ft	13,584	ft			\$6,792	
		кип 5-1/2 сизинд 5-1/2" СВТ & Тогане Тига	\$1.25	\$/jt ¢/ich	13,584 1	jt iob			\$16,980	
830	140	IDC - OPEN HOLE LOGS	\$12,000	مان رې	1	,00			\$12,000	\$0
	2.0	N/A							\$0	ŶŬ
830	160	IDC - CORING								\$0
		N/A							\$0	
830	165	IDC - WELDING								\$0
030	100								\$0	600 F00
830	180	miss surface rentals (nine racks, light towers, flore stack, etc.)	¢1 E00	¢ /davi	7 50	dave			¢11 350	\$28,500
		inise surjuce remais (pipe rucks, nym ruwers, jiure stack, etc.) Loader	\$1,500 \$1,500	ş∕uay \$/dav	7.50	davs			\$11,250	
		воре	\$900	\$/dav	7.50	davs			\$6.750	
		Pason PVT equipment	\$1,100	\$/day	7.50	days			\$8,250	
830	181	IDC - DRILL STRING RENTAL								\$31,100
		5" HWDP Drill-pipe (intermediate section only)	\$350	\$/day	3.0	days			\$1,050	
		5" Drill-Pipe rental	\$2,000	\$/day	7 50	davs			\$15,000	

•

		Inspection / repair /recut (DP rental included in rig's day rate)	\$15,000	\$/well	1	well			\$15,000	
830	183	IDC - BOPE RENTALS								\$3,800
		Rotating Head Rental + rubbers	\$150	\$/day	7.50	days	\$1,500	\$/well	\$2,625	
		Choke & flare	\$150	\$/day	7.50	days			\$1,125	
830	190	IDC - TRANSPORTATION								\$10,000
		misc. transporation & hot shot							\$5,000	
		transport rig camp, drill pipe, mud handling equipment							\$5,000	
830	200	IDC - COMMUNICATIONS								\$2,400
		internet for rig	\$150	\$/day	7.5	days			\$1,125	
		hand-held radios, phones, printer/scanner/fax	\$170	\$/day	7.5	days			\$1,275	
830	210	IDC - CONTRACT LABOR								\$41,700
		drilling consultant	\$1,850	\$/ea/day	7.50	days	2	ea.	\$27,750	
		drilling superintendent	\$1,850	\$/ea/day	7.50	days	1	ea.	\$13,875	
830	215	IDC - CREW QUARTERS								\$9,400
		trailer houses (includes servicing) for on-site personnel	\$1,250	\$/day/ea	7.50	days			\$9,375	
830	220	IDC - CONSULTING ENGINEER								\$0
		Moblize Drilling Analytics	\$0	\$/day/ea	7.50	days			\$0	
830	230	IDC - CONSULTING GEOLOGIST								\$1,800
		TD Geo Steering	\$600	\$/day/ea	3.00	days			\$1,800	
830	260	IDC - MISCELLANEOUS								\$20,000
		pit cleaning, other misc services							\$20,000	
830	270	IDC - PLUGGING & ABANDOMENT								\$0
		N/A							\$0	
830	280	IDC - SURFACE DAMAGES								\$0
		N/A							\$0	
830	310	IDC - LAYDOWN MACHINE								\$0
		N/A							\$0	
830	320	IDC - NU/ND/BOP TEST/WH SERV.								\$20,000
		BOP test	\$5,000	\$/test	2	tests			\$10,000	
		Service tech to land 9-5/8" and 5-1/2" casings	\$5,000	\$/job	2	jobs			\$10,000	
830	330	IDC - GYRO								\$0

•

								_		
830	480	N/A IDC - CUTTINGS DISPOSAL	_	_			_		ŞO	\$68.100
		dispose of cuttings (including dillution of high chlorides & OBM Charges)	\$20.00	\$/yd	650	yds			\$13,009	,
820	AQ1	trucking & truck clean outs	\$1,250	\$/load	44	loads			\$55,000	\$16 300
030	401	dispose of fluids (including dillution of high chlorides)	\$20.00	\$/bbl	500	bbls			\$10,000	\$10,500
		trucking & truck clean outs	\$1,250	\$/load	5	loads			\$6,250	
830	482	IDC - OTHER DISPOSAL dispose of cement returns	\$14.00	\$/hhl	250	hhls			\$3.500	\$12,300
		uspose of cement returns	\$1,250	\$/load	3	loads			\$3,750	
		Other misc disposal (trash, etc.)							\$5,000	
830	290	IDC - CONTINGENCIES							\$0	Ş0
		***			8	30 INTANO	SIBLE DI		STS TOTAL	\$1,580,500
850	10	TDC - CONDUCTOR PIPE							ŚO	\$0
850	20	TDC - SURFACE CASING							ŲÇ	\$30,900
		13-3/8", 54.5#, J55, STC casing	\$82.00	\$/ft	350	ft			\$28,700	A
850	25	9-5/8", 36.0#, J-55. LTC casina	\$53.00	\$/ft	2.630	ft			\$139.390	\$149,900
850	30	TDC - LINERS			,					\$0
		N/A							\$0	
850	40	TDC - PRODUCTION CASING	\$43.00	¢/ft	13 584	ft			\$584 112	\$633,500
		marker jts	\$780.00	\$/ea	6.0	ea			\$5,101	
850	50	TDC - CASING HEADS & SPOOLS	400.000	41						\$65,000
850	60	13-3/8" x 9-5/8" x 5-1/2" (Antelope Uni-Head assembly) TDC - LINERS & HANGERS	\$65,000	\$/ea	1	еа	_		\$65,000	\$0
		N/A							\$0	
850	90	TDC - MISCELLANEOUS EQUIPMENT	_						ćo	\$0
850	100	N/A TDC - FLOAT EQUIPMENT	_		_	_			ŞU	\$50,700
		13-3/8" float equipment	\$3,000	\$/ea	1	еа			\$3,000	
		13-3/8" centralizers (average 1 per jt)	\$65 \$1.500	\$/ea	8	ea			\$520	
		9-5/8 Juai equipment 9-5/8" centralizers (average 1 per jt)	\$1,500 \$50	\$/ea	60	ea ea			\$1,500 \$3,000	
		5-1/2" centralizers (average 1 per jt)	\$40	\$/ea	310	еа			\$12,400	
		5-1/2" toe-initiation sleeve	\$10,000	\$/ea	1	ea			\$10,000 \$5,200	
		5-1/2" casing floatation sub	\$10,000	\$/ea	1	ea			\$10,000	
		service tech for toe sleeves & floatation sub	\$5,000	\$/ea	1	еа			\$5,000	
850	13	TDC - CONTINGENCIES							\$0	Ş0
						850 TANO	SIBLE DI		STS TOTAL	\$930,000
840	30	ICC - LOCATION & ROADS Traffic control duirag frag operations + 3 days	\$1.000	\$/day	7	days			\$7,000	\$7,000
840	50	ICC - RIG MOBILIZATION	\$1,000	Ş∕ uuy	,	uuys			\$7,000	\$16,000
		mob running production	\$4,000	\$/mob	1	mob			\$4,000	
840	55	AD 980 mobilization	\$60,000	Ş/day	1	mob	5	wells	\$12,000	\$133,500
0.10		Run production (well Service Rig)	\$4,500	\$/day	1	days			\$4,500	<i>\</i> 100,000
		Drill out plugs (AD 980) 15 plugs / day + 2 days (\$14K/day + ancillary charges)	\$18,000	\$/day	5	days			\$90,000	
840	70	Drill out (AD 980), mob time (3 days first/last well, 1 day middle wells)	\$13,000	\$/day	3	days	_		\$39,000	ŚŊ
0.0		none							\$0	ψ.
840	90	ICC - TANK RENTAL			_				4	\$31,900
1 1		mob and de-mob frac tanks AST truckina, install, rental (rental per tank per pad)	\$25,000 \$60,000	\$/pad \$/tank	5	wells tanks	5	wells	\$5,000 \$24.000	
0.5		tank rental during pre frac, frac, drill-out (7 days between frac & drill-out)	\$500	\$/day	29.0	days	5	wells	\$2,900	
840	100	ICC - WIRELINE SERVICES	41.000	41.						\$159,600
1 840	110	ICC - FUEL & POWER	\$4,200	\$/stage	38	stages	_		\$159,600	\$239.200
		Diesel fuel for AD 980	\$3.50	\$/gal	2,000	gal/day	8	days	\$56,000	
1		Diesel fuel for frac spread (8,000 gal/day)	\$3.50	\$/gal \$/aal	8,000	gal/day	4	days	\$112,000	
1		frac shack fuel distribution	\$3.50	\$/gai \$/day	300	days	52	uays	\$54,600 \$16,600	
840	120	ICC - WATER/HAULING								\$1,044,000
1		Water for frac (frac pond) Water transfer nre-frac (equipment, numps, line)	\$2.52 \$15.000	\$/bbl \$/day	9,000 10	bbl/stage days/pad	38	stages wells/pad	\$861,840 \$30,000	
1		Vac truck rental on pad (during frac)	\$2,650	\$/day	4	days/pad days/pad	5	wens/pau	\$10,600	
1		Water transfer during frac (equipment, pumps, line)	\$23,000	\$/day	10	stg/day	4	days*	\$92,000	
1		Water transfer during flowback (equipment, pumps, line)	\$15,000	\$/day ¢/bbl	14	days	5	wells/pad	\$42,000	
1		Fresh water for testing lay-flat (includes trucking)	\$5.00	\$/bbl	5,000	bbls	5	wells/pad	\$2,520 \$5,000	
840	150	ICC - DIRT WORK								\$0
840	160		_	_			_		ŞO	ŚŊ
040	100	none							\$0	ŲÇ
840	170	ICC - FIELD SUPERVISOR	A	A.1.	-	_	-		A	\$87,000
1		wen site supervisor (pre-jrac) well site supervisor (frac)	\$1,850 \$1,850	\$/day \$/day	2 4	ea.	3 4	days days	\$11,100 \$29.600	
-		well-site supervisor consultant & superintendent (drill-out)	\$1,850	\$/day	3	ea.	8	days	\$44,400	
		well-site supervisor (run production)	\$1,850	\$/day	1	ea.	1	days	\$1,850	
840	180	ICC - RENTAL EQUIPMENT Motors hits tools personnel for cleanout BHA (daily rental)	\$2.500	\$/day	5	days			\$12 500	\$161,400
		Motors, bits, tools, personnel for cleanout BHA (repair, redress, mileage, other one-time charges)	\$15,000	\$/well	1	well			\$15,000	
		Agitator Rental	\$18,000	\$/ea	0	ea			\$0	
		HZT pipe rental solids control equipment, tanks, & transfer numos durina drillout	\$3,500 \$3,000	\$/day \$/day	5	days days			\$17,500 \$24.000	
		Other misc rentals for drill-out ops (light plants, BOPE, containment, loader, Pason EDR, valves, etc.)	\$5,500	\$/day	8	days			\$44,000	
1	101	Other rentals for frac, water transfer, flowback ops (light towers, forklift, porta-potty, etc.)	\$5,500	\$/day	44	days	5	wells/pad	\$48,400	604 000
1	181	Frac head, valve, zipper manifold, greasing (frac + 3 days)	\$16,500	\$/day	4	days			\$66,000	\$81,000
1		Frac head, valve, zipper manifold - Repairs & damages	\$15,000	\$/well	1	well			\$15,000	
840	191	ICC - FOAM/NITROGEN UNITS	_						ćn	\$0
	104	None							ŞΟ	ŚŊ
840	184	None ICC - RENTAL PUMP EQUIPMENT	_							20
840	185	None ICC - RENTAL PUMP EQUIPMENT None							\$0	ŲŲ
840 840	184 185 190	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420							\$0 ¢n	\$0
840 840 840	184 185 190 200	None ICC- RENTAL PUMP EQUIPMENT None ICC- TRANSPORTATION None - use 840.420 ICC - COMMUNICATION							\$0 \$0	\$0 \$0 \$2,100
840 840 840 0.33	184 185 190 200	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications Internet and communications	\$200	\$/day	52	days	5	wells/pad	\$0 \$0 \$2,080	\$0 \$0 \$2,100
840 840 0.33 840 1	184 185 190 200 210	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor I av-Elat (nre-frag & frag & nost frag)	\$200	\$/day	52	days days	5	wells/pad	\$0 \$0 \$2,080	\$0 \$2,100 \$26,300
840 840 0.33 840 1	184 185 190 200 210	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor Lay-Flat (pre-frac & frac & post frac) WH Techs for landing tbg hangers	\$200 \$2,000 \$1,200	\$/day \$/day \$/day \$/job	52 44 1	days days job	5	wells/pad	\$0 \$0 \$2,080 \$17,600 \$1,200	\$0 \$2,100 \$26,300
840 840 0.33 840 1	184 185 190 200 210	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor Lay-Flat (pre-frac & frac & post frac) WH Techs for landing tbg hangers Misc. labor for wellhead hook-ups, etc ICC - COMPAREMENT	\$200 \$2,000 \$1,200 \$7,500	\$/day \$/day \$/job \$/job	52 44 1 1	days days job job	5	wells/pad wells/pad	\$0 \$0 \$2,080 \$17,600 \$1,200 \$7,500	\$0 \$2,100 \$26,300
840 840 0.33 840 1 840 0.33	185 185 190 200 210 215	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor Lay-Flat (pre-frac & frac & post frac) WH Techs for landing tbg hangers Misc. labor for wellhead hook-ups, etc ICC - CREW QUARTERS Housing & Offices	\$200 \$2,000 \$1,200 \$7,500	\$/day \$/day \$/job \$/job	52 44 1 1 52	days days job job	5	wells/pad wells/pad	\$0 \$0 \$2,080 \$17,600 \$1,200 \$7,500 \$7,800	\$0 \$0 \$2,100 \$26,300 \$7,800
840 840 0.33 840 1 1 840 0.33 840	184 185 190 200 210 210 215 260	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor Lay-Flat (pre-frac & frac & post frac) WH Techs for landing tbg hangers Misc. labor for wellhead hook-ups, etc ICC - CREW QUARTERS Housing & Offices ICC - MISCELLANEOUS	\$200 \$2,000 \$1,200 \$7,500 \$750	\$/day \$/day \$/job \$/job \$/job	52 44 1 1 52	days job job days	5	wells/pad wells/pad	\$0 \$0 \$2,080 \$17,600 \$1,200 \$7,500 \$7,800	\$0 \$0 \$2,100 \$26,300 \$7,800 \$0
840 840 0.33 840 1 840 0.33 840	185 185 190 200 210 210 215 260	None ICC - RENTAL PUMP EQUIPMENT None ICC - TRANSPORTATION None - use 840.420 ICC - COMMUNICATION Internet and communications ICC - CONTRACT LABOR Operate Transfer Pumps & Monitor Lay-Flat (pre-frac & frac & post frac) WH Techs for landing tbg hangers Misc. labor for wellhead hook-ups, etc ICC - CREW QUARTERS Housing & Offices ICC - MISCELLANEOUS None	\$200 \$2,000 \$1,200 \$7,500 \$750	\$/day \$/day \$/job \$/job \$/day	52 44 1 1 52	days job job days	5	wells/pad wells/pad wells/pad	\$0 \$0 \$2,080 \$17,600 \$1,200 \$7,500 \$7,800 \$7,800 \$0	\$0 \$0 \$2,100 \$26,300 \$7,800 \$0

840 320 ICC - CASING CREWS & SERVICES None \$0

•

\$0

840	330	ICC - PERFORATING							\$0
040	550							\$0	ŶŬ
840	340							ŶŬ	\$0
040	340	none						\$0	ŶŬ
840	345	ICC - CHEMICAL TREATING						ţ.	\$80,000
0.0	0.0	Horizon Anhron system drill-out (including all treatment chemicals)	\$15,000	\$/day	5	davs		\$75,000	<i>\$00,000</i>
		H2S scavenger (production)	\$5,000	\$/well	1	lat ft		\$5,000	
840	350	ICC - ERACTURING	\$5,000	<i>y</i> /wen		iut jt		<i>Ş</i> 3,000	\$1 539 000
1	550	slickwater	\$40 500	\$/staae	38	staaes		\$1,539,000	<i>41,333,000</i>
840	360		\$ 10,500	<i>y</i> /stuge	50	stages		<i>\$1,565,666</i>	\$0
0.0		none						\$0	**
840	370	ICC - TUBULAR INSPECTION						ţ.	\$13,600
0.0	0.0	H7T inspection & renairs	\$1.00	\$/ft	13 584	ft		\$13,584	<i>\</i> 20,000
840	380	ICC - PRODUCTION TESTING	\$1.00	Ψ	10,001	<u>j</u> e		<i></i>	\$73,000
1		flowback: eaunment & personnel	\$10,000	\$/day	14	davs	5 wells	\$28,000	<i></i>
-		flowback: equipment & personnel (during drill-out operations)	\$5,000	\$/day	8	davs	5 1101	\$40,000	
		flowback icon replacement (from drill-out ons)	\$5,000	\$/well	1	well		\$5,000	
840	400		\$5,000	<i>y</i> /wen		wen		<i>Ş</i> 3,000	\$2 500
0.5	400	misc services						\$2,500	<i>\$2,300</i>
840	410							<i></i>	\$6,500
1	120	Pump down services during toe pren	\$6.500	\$/day	1	davs		\$6,500	<i></i>
840	420	ICC - TRUCKING	\$0,500	<i>Şı</i> uuy		uuys		<i>\$0,500</i>	\$34,000
1	420	trucking for rental law flat	\$40.000	\$/nad	5	wells		\$8,000	<i>\$</i> 34,000
0.5		misc hat shat services	Ş40,000	ο, μαα	5	wens		\$15,000	
0.5		trucking for flowback equipment	\$15,000	\$/nad	5	wells		\$3,000	
0.5		trucking for housing & other equipment	\$15,000	\$/pad	5	wells		\$3,000	
1		trucking for housing & other equipment	\$15,000	\$/puu \$/pad	5	welle		\$5,000	
940	120	ICC - TANK PENTAL & TRANSPORT	\$25,000	γ) puu	5	wens		<i>Ş</i> 3,000	ŚŊ
040	430	None - use 840 090						ŚO	ŲÇ
840	470							ŶŬ	\$6,800
040	470	CPL on 5-1/2"						\$6.900	<i>Q</i> 0,000
940	190							Ş0,800	\$18 200
040	400	solide disposal (0.7 lateral casing volume)	\$10.50	¢hid	20	vd		\$211	\$10,200
		solids disposal (trucking 14 vds/logd)	\$10.50	\$/load	2	loads		\$2.550	
		liquids trucking & disposal (0.5 bbls/lateral ft to disposal, process rest 1.0 bbl/ft through CTP)	\$2.50	\$/1000 \$/hhl	/ 291	bblc		\$2,550	
940	100		Ş3.30	וטטיק	4,301	DDIS		31 3,3 32	\$21 700
1	450	fras nivas (composite)	\$800	¢/aa	29	00		\$20,400	Ş31,700
1		kill alua	\$1 250	\$/ea	1	60		\$1 250	
840	500		Ş1,2J0	şγεu	1	EU		Ş1,230	ŚO
0.0	500							\$0	**
840	510	ICC - SUCKER ROD REPAIR						ţ.	\$0
040	510							ŚO	ŶŬ
840	520	ICC - ROD PLIMP & REPAIR						ŶŬ	\$0
040	520							Śn	ŶŬ
840	13	ICC - CONTINGENCIES						÷u	ŚŊ
0.0		0%						0	ψŪ
		•••			840 1	TANGIR		STS TOTAL	\$3,802,100
					040 11	ANGID		SISTOTAL	9 3,002,100
960	25								ćn
1	23	TCC+ ELECTRICAL DIST, STSTEWS						én	ŞU
960	70							ΰĘ	É4 500
000	70	TCC - OTHER WELLHEAD EQUIPMENT							Ş4,500

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: (OGRID:
ENDURING RESOURCES, LLC	372286
6300 S Syracuse Way, Suite 525	Action Number:
Centennial, CO 80111	180355
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

	Created By	Condition	Condition Date						
	kpickford	Adhere to previous NMOCD Conditions of Approval	1/27/2023						

CONDITIONS

Action 180355

Page 34 of 34