U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: CORRAL BLUFF 11_14 FEDERAL COM	Well Location: T25S / R29E / SEC 2 / SWSW /	County or Parish/State:
Well Number: 311H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM15303	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001548028	Well Status: Approved Application for Permit to Drill	Operator: OXY USA INCORPORATED

Notice of Intent

Sundry ID: 2713601

Type of Submission: Notice of Intent

Date Sundry Submitted: 02/01/2023

Date proposed operation will begin: 05/01/2023

Type of Action: APD Change Time Sundry Submitted: 11:38

Procedure Description: The new drill plan and C-102 are attached. This is the defining well of the HSU. The old pool was the [96473] PIERCE CROSSING; BONE SPRING, EAST. The new pool is the [98220] PURPLE SAGE WOLFCAMP (GAS). The old BHL was 20 FSL, 1600 FWL, SECTION 14, T25S, R29E. The new BHL is 20 FSL, 1350 FWL, SECTION 14, T25S, R29E.

NOI Attachments

Procedure Description

IP8626WEL02NM_C102_CORRAL_BLUFF_11_14_FED_COM_311H_FLAT_20230201113729.pdf
CorralBluff11_14FedCom311H_TNSWedge461_5.500in_20.00_P110CY_20230201113728.pdf
CorralBluff11_14FedCom311H_TNSWedge441_5.500in_20.00_P110CY_20230201113725.pdf
CorralBluff11_14FedCom311H_FlexHoseCert_20230201113724.pdf
CorralBluff11_14FedCom311H_H2SEmerContact_20230201113723.pdf
CorralBluff11_14FedCom311H_H2S2_20230201113723.pdf
CorralBluff11_14FedCom311H_SpudRigData_20230201113723.pdf
CorralBluff11_14FedCom311H_TNSWedge425_5.500in_20.00_P110CY_20230201113723.pdf

Received by OCD: 5/11/2023 2:38:07 PM Well Name: CORRAL BLUFF 11_14 FEDERAL COM	Well Location: T25S / R29E / SEC 2 / SWSW /	County or Parish/State: Page 2 of 63
Well Number: 311H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM15303	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001548028	Well Status: Approved Application for Permit to Drill	Operator: OXY USA INCORPORATED

CorralBluff11_14FedCom311H_13inADAPT_10.75in_7.625in_10x10_20230201113715.pdf

CorralBluff11_14FedCom311H_BOP_20230201113714.pdf

CorralBluff11_14FedCom311H_DirectPlot_20230201113714.pdf

CorralBluff11_14FedCom311H_DirectPlan_20230201113714.pdf

CorralBluff11_14FedCom311H_ChkManifolds_20230201113714.pdf

CorralBluff11_14FedCom311H_CsgCriteria_20230201113714.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STEPHEN JANACEK

Name: OXY USA INCORPORATED

Title: Regulatory Engineer

Street Address: 5 Greenway Plaza, Suite 110

City: Houston State: TX

Phone: (713) 497-2417

Email address: stephen_janacek@oxy.com

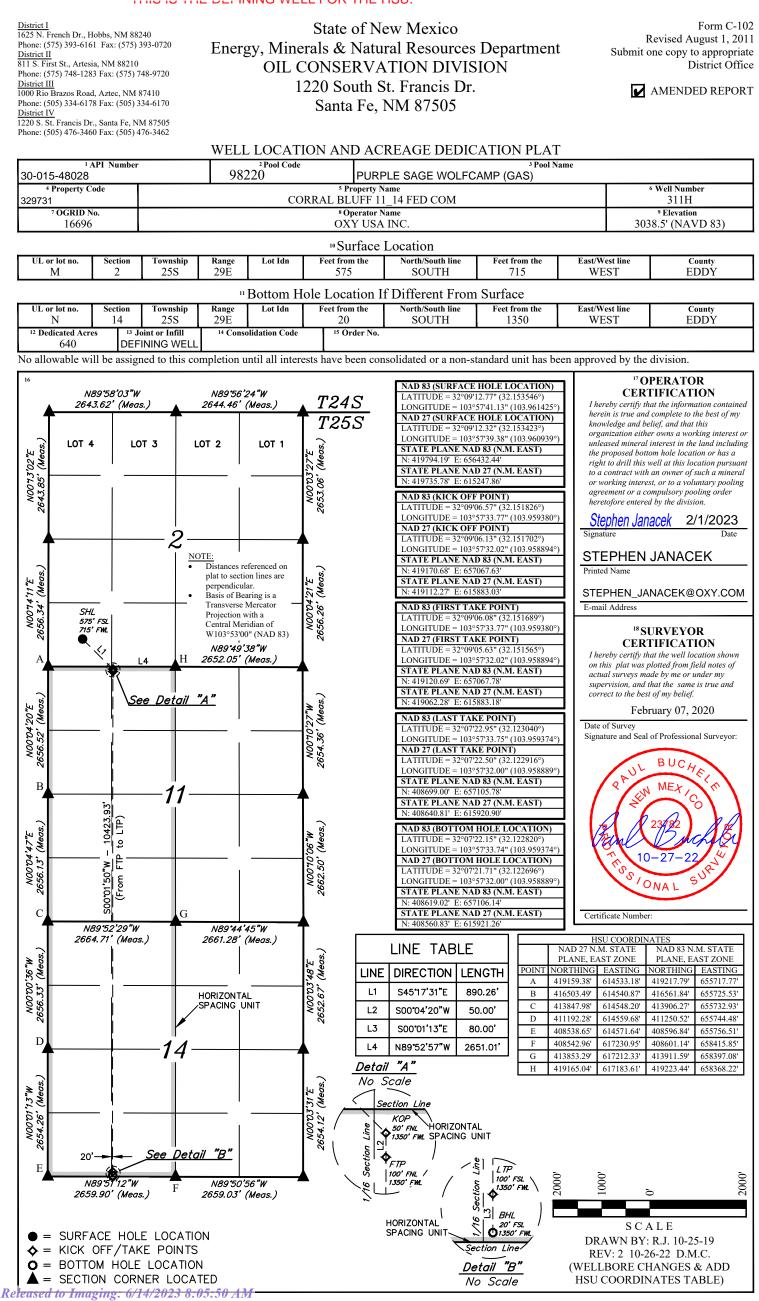
Field

Representative Name:	
Street Address:	
City:	State:
Phone:	
Email address:	

Zip:

BLM Point of Contact

BLM POC Name: KEITH P IMMATTY BLM POC Phone: 5759884722 Disposition: Approved


Signature: KEITH IMMATTY

BLM POC Title: ENGINEER

BLM POC Email Address: KIMMATTY@BLM.GOV

Disposition Date: 04/13/2023

Signed on: FEB 01, 2023 11:36 AM

Received by OCD: 5/11/2023 2:38:07 PM THIS IS THE DEFINING WELL FOR THE HSU.

Page 3 of 63

OXY

PRD NM DIRECTIONAL PLANS (NAD 1983) Corral Bluff 11_14 Corral Bluff 11_14 Fed Com 311H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

06 December, 2022

OXY Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	PRD Corra Corra Wellb	SPP INEERING DES NM DIRECTIC al Bluff 11_14 al Bluff 11_14 F pore #1 uitting Plan	NAL PLANS	,	Local Co-ordinate Reference:Well Corral Bluff 11_14 Fed Com 311HTVD Reference:RKB=26.5' @ 3065.00ftMD Reference:RKB=26.5' @ 3065.00ftNorth Reference:GridSurvey Calculation Method:Minimum Curvature					
Project	PRD N	M DIRECTION	NAL PLANS (NAD 1983)						
Map System: Geo Datum: Map Zone:	North A	te Plane 1983 merican Datum exico Eastern Z			System Da	tum:		lean Sea Level sing geodetic sc	ale factor	
Site	Corral	Bluff 11_14								
Site Position: From: Position Unce	Ма	p 1.00 1	North Easti ft Slot F	-	657,2	42.96 usft 32.81 usft 3.200 in	Latitude: Longitude:			32.152848 -103.958842
Well	Corral	Bluff 11_14 Fe	d Com 311H							
Well Position Position Unce Grid Converge	+E/-W ertainty	0.0	00 ft Ea	orthing: asting: ellhead Elev	ation:	419,794.19 656,432.44	usf Lo	titude: ngitude: ound Level:		32.15354 -103.96142 3,038.50 ft
Wellbore	Wellb	ore #1								
Magnetics	Мс	odel Name	Sampl	e Date	Declination Dip (°)			ip Angle Field Strength (°) (nT)		
		HDGM_FILE		3/12/2020	6.78 59.80			47,795	.4000000	
Design	Permit	tting Plan								
Audit Notes:										
Version:			Phas		PROTOTYPE Tie On Depth: 0.00					
Vertical Section	on:	D	epth From (T (ft) 0.00	VD)	+N/-S (ft) 0.00					
			0.00		0.00	0			0.55	
Plan Survey 1 Depth Fr (ft) 1	rom Dept (f	th To	12/6/2022 7 (Wellbore) ing Plan (Wel	lbore #1)	Tool Name B001Mb_MWI OWSG MWD		Remarks			
Plan Sections	5									
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
0.00 6,188.00 7,188.43	0.00	0.00 0.00 100.66	0.00 6,188.00 7,183.36	0.00 0.00 -16.11	0.00 0.00 85.62	0.00 0.00 1.00	0.00	0.00	0.00 0.00 100.66	
9,842.36 10,723.49	10.00 89.99	100.66 179.79	9,796.94 10,343.00	-101.36 -673.55	538.72 635.39	0.00 10.00	0.00 9.08	0.00 8 8.98	0.00 79.30 F	ΓP (Corral Bluff
21,226.05	89 99	89.99 179.79 10,343.00 -073.55 635.39 10.00 9.08 8.98 89.99 179.79 10,345.00 -11,176.04 673.75 0.00 0.00 0.00					0.00 PI	3HL (Corral Bluff		

.

Database:	HOPSPP	Local Co-ordinate Reference:	Well Corral Bluff 11_14 Fed Com 311H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=26.5' @ 3065.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=26.5' @ 3065.00ft
Site:	Corral Bluff 11_14	North Reference:	Grid
Well:	Corral Bluff 11_14 Fed Com 311H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00 3,600.00	0.00	0.00	0.00	0.00	0.00	0.00
3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
3,800.00	0.00	0.00	3,800.00	0.00	0.00	0.00	0.00	0.00	0.00
3,900.00	0.00	0.00	3,900.00	0.00	0.00	0.00	0.00	0.00	0.00
4,000.00	0.00	0.00	4,000.00	0.00	0.00	0.00	0.00	0.00	0.00
4,100.00	0.00	0.00	4,100.00	0.00	0.00	0.00	0.00	0.00	0.00
4,200.00	0.00	0.00	4,200.00 4,300.00	0.00	0.00	0.00	0.00	0.00	0.00
4,300.00 4,400.00	0.00 0.00	0.00 0.00	4,300.00 4,400.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
4,500.00	0.00	0.00	4,500.00	0.00	0.00	0.00	0.00	0.00	0.00
4,600.00	0.00	0.00	4,600.00	0.00	0.00	0.00	0.00	0.00	0.00
4,700.00	0.00	0.00	4,700.00	0.00	0.00	0.00	0.00	0.00	0.00
4,800.00	0.00	0.00	4,800.00	0.00	0.00	0.00	0.00	0.00	0.00
4,900.00	0.00	0.00	4,900.00	0.00	0.00	0.00	0.00	0.00	0.00
5,000.00	0.00	0.00	5,000.00	0.00	0.00	0.00	0.00	0.00	0.00
5,100.00	0.00	0.00	5,100.00	0.00	0.00	0.00	0.00	0.00	0.00
5,200.00	0.00	0.00	5,200.00	0.00	0.00	0.00	0.00	0.00	0.00
5,300.00	0.00	0.00	5,300.00	0.00	0.00	0.00	0.00	0.00	0.00
5,400.00	0.00	0.00	5,400.00	0.00	0.00	0.00	0.00	0.00	0.00

Database:	HOPSPP	Local Co-ordinate Reference:	Well Corral Bluff 11_14 Fed Com 311H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=26.5' @ 3065.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=26.5' @ 3065.00ft
Site:	Corral Bluff 11_14	North Reference:	Grid
Well:	Corral Bluff 11_14 Fed Com 311H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
5,500.00	0.00	0.00	5,500.00	0.00	0.00	0.00	0.00	0.00	0.00
5,600.00	0.00	0.00	5.600.00	0.00	0.00	0.00	0.00	0.00	0.00
5,700.00	0.00	0.00	5,700.00	0.00	0.00	0.00	0.00	0.00	0.00
5.800.00	0.00	0.00	5,800.00	0.00	0.00	0.00	0.00	0.00	0.00
5,900.00	0.00	0.00	5,900.00	0.00	0.00	0.00	0.00	0.00	0.00
6,000.00 6.100.00	0.00	0.00	6,000.00	0.00	0.00	0.00	0.00	0.00	0.00
.,	0.00	0.00	6,100.00	0.00	0.00	0.00	0.00	0.00	0.00
6,188.00	0.00	0.00	6,188.00	0.00	0.00	0.00	0.00	0.00	0.00
6,200.00	0.12	100.66	6,200.00	0.00	0.01	0.00	1.00	1.00	0.00
6,300.00	1.12	100.66	6,299.99	-0.20	1.08	0.27	1.00	1.00	0.00
6,400.00	2.12	100.66	6,399.95	-0.73	3.85	0.96	1.00	1.00	0.00
6,500.00	3.12	100.66	6,499.85	-1.57	8.35	2.07	1.00	1.00	0.00
6,600.00	4.12	100.66	6,599.65	-2.74	14.55	3.61	1.00	1.00	0.00
6,700.00	5.12	100.66	6,699.32	-4.23	22.47	5.57	1.00	1.00	0.00
6,800.00	6.12	100.66	6,798.84	-6.04	32.09	7.96	1.00	1.00	0.00
6,900.00	7.12	100.66	6,898.17	-8.17	43.42	10.77	1.00	1.00	0.00
7,000.00	8.12	100.66	6,997.28	-10.62	56.45	14.00	1.00	1.00	0.00
7,100.00	9.12	100.66	7,096.15	-13.39	71.18	17.65	1.00	1.00	0.00
7,188.43	10.00	100.66	7,183.36	-16.11	85.62	21.23	1.00	1.00	0.00
7,200.00	10.00	100.66	7,194.75	-16.48	87.59	21.72	0.00	0.00	0.00
7,300.00	10.00	100.66	7,293.23	-19.69	104.67	25.96	0.00	0.00	0.00
7,400.00	10.00	100.66	7,391.71	-22.90	121.74	30.19	0.00	0.00	0.00
7,500.00	10.00	100.66	7,490.19	-26.12	138.81	34.42	0.00	0.00	0.00
7,600.00	10.00	100.66	7,588.67	-29.33	155.88	38.66	0.00	0.00	0.00
7,700.00	10.00	100.66	7,687.15	-32.54	172.96	42.89	0.00	0.00	0.00
7,800.00	10.00	100.66	7,785.63	-35.75	190.03	47.12	0.00	0.00	0.00
7,900.00	10.00	100.66	7,884.10	-38.97	207.10	51.36	0.00	0.00	0.00
8,000.00	10.00	100.66	7,982.58	-42.18	224.17	55.59	0.00	0.00	0.00
8,100.00	10.00	100.66	8,081.06	-45.39	241.25	59.83	0.00	0.00	0.00
8,200.00	10.00	100.66	8,179.54	-48.60	258.32	64.06	0.00	0.00	0.00
8,300.00	10.00	100.66	8,278.02	-51.81	275.39	68.29	0.00	0.00	0.00
8,400.00	10.00	100.66	8,376.50	-55.03	292.47	72.53	0.00	0.00	0.00
8,500.00	10.00	100.66	8,474.98	-58.24	309.54	76.76	0.00	0.00	0.00
8,600.00	10.00	100.66	8,573.46	-61.45	326.61	80.99	0.00	0.00	0.00
8,700.00	10.00	100.66	8,671.94	-64.66	343.68	85.23	0.00	0.00	0.00
8,800.00	10.00	100.66	8,770.42	-67.88	360.76	89.46	0.00	0.00	0.00
8,900.00	10.00	100.66	8,868.90	-71.09	377.83	93.70	0.00	0.00	0.00
9,000.00	10.00	100.66	8,967.38	-74.30	394.90	97.93	0.00	0.00	0.00
9,100.00	10.00	100.66	9,065.86	-77.51	411.97	102.16	0.00	0.00	0.00
9,200.00	10.00	100.66	9,164.34	-80.72	429.05	106.40	0.00	0.00	0.00
9,300.00	10.00	100.66	9,262.82	-83.94	446.12	110.63	0.00	0.00	0.00
9,400.00	10.00	100.66	9,361.30	-87.15	463.19	114.86	0.00	0.00	0.00
9,500.00	10.00	100.66	9,459.78	-90.36	480.26	119.10	0.00	0.00	0.00
9,600.00	10.00	100.66	9,558.26	-93.57	497.34	123.33	0.00	0.00	0.00
9,700.00	10.00	100.66	9,656.74	-96.79	514.41	127.57	0.00	0.00	0.00
9,800.00	10.00	100.66	9,755.21	-100.00	531.48	131.80	0.00	0.00	0.00
9,842.36	10.00	100.66	9,796.94	-101.36	538.72	133.59	0.00	0.00	0.00
9,900.00	12.43	127.95	9,853.51	-106.10	548.53	138.92	10.00	4.20	47.36
10,000.00	20.12	151.56	9,949.53	-127.90	565.25	161.68	10.00	7.69	23.61
10,100.00	29.20	161.74	10,040.35	-166.28	581.12	200.95	10.00	9.09	10.17
10,200.00	38.72	167.31	10,123.22	-220.10	595.67	255.54	10.00	9.51	5.57
10,300.00	48.40	170.95	10,195.61	-287.70	608.46	323.80	10.00	9.68	3.63
10,400.00	58.17	173.62	10,255.33	-367.05	619.09	403.64	10.00	9.77	2.67
10,500.00	67.99	175.78	10,300.55	-455.72	627.25	492.64	10.00	9.81	2.16
10,600.00	77.82	177.65	10,329.91	-551.03	632.68	588.10	10.00	9.84	1.87
L									

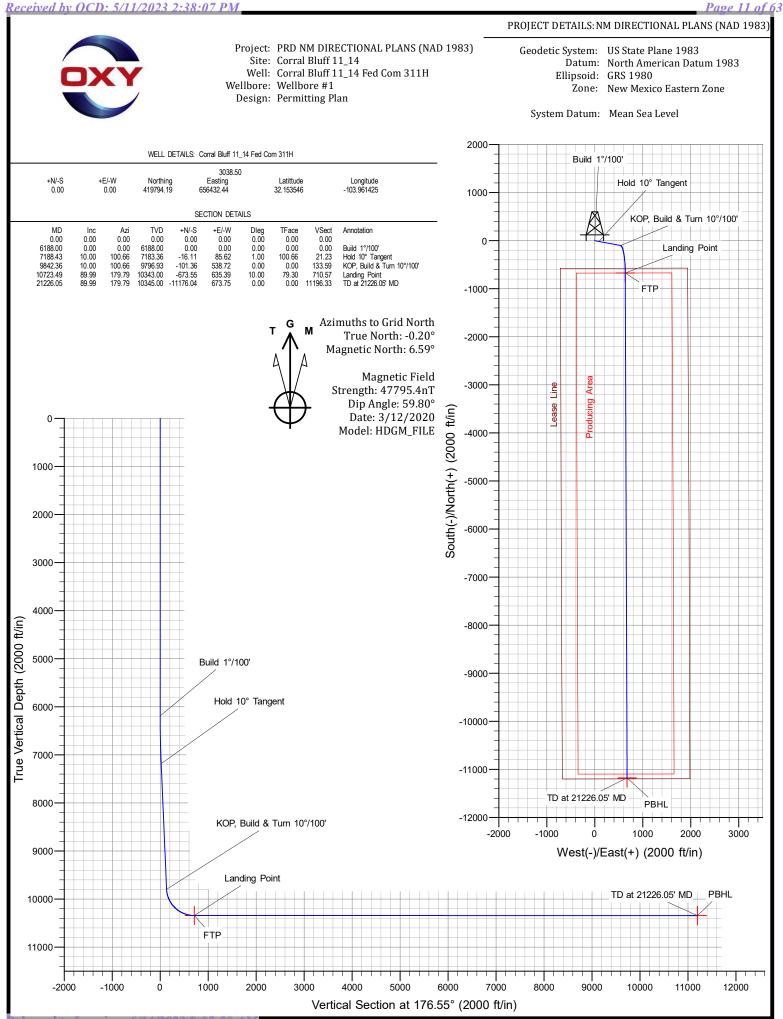
Database:	HOPSPP	Local Co-ordinate Reference:	Well Corral Bluff 11_14 Fed Com 311H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=26.5' @ 3065.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=26.5' @ 3065.00ft
Site:	Corral Bluff 11_14	North Reference:	Grid
Well:	Corral Bluff 11_14 Fed Com 311H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,700.00	87.67	179.39	10,342.52	-650.07	635.22	687.11	10.00	9.85	1.74
10,723.49	89.99	179.79	10,343.00	-673.55	635.39	710.57	10.00	9.85	1.71
10,800.00	89.99	179.79	10,343.01	-750.06	635.67	786.95	0.00	0.00	0.00
10,900.00	89.99	179.79	10,343.03	-850.06	636.03	886.79	0.00	0.00	0.00
11,000.00	89.99	179.79	10,343.05	-950.06	636.40	986.63	0.00	0.00	0.00
11,100.00	89.99	179.79	10,343.07	-1,050.06	636.76	1,086.47	0.00	0.00	0.00
11,200.00	89.99	179.79	10,343.09	-1,150.06	637.13	1,186.31	0.00	0.00	0.00
11,300.00	89.99	179.79	10,343.11	-1,250.06	637.50	1,286.15	0.00	0.00	0.00
11,400.00	89.99	179.79	10,343.13	-1,350.06	637.86	1,385.99	0.00	0.00	0.00
11,500.00	89.99	179.79	10,343.15	-1,450.06	638.23	1,485.83	0.00	0.00	0.00
11,600.00	89.99	179.79	10,343.17	-1,550.05	638.59	1,585.67	0.00	0.00	0.00
11,700.00	89.99	179.79	10,343.19	-1,650.05	638.96	1,685.51	0.00	0.00	0.00
11,800.00	89.99	179.79	10,343.21	-1,750.05	639.32	1,785.35	0.00	0.00	0.00
11,900.00	89.99	179.79	10,343.22	-1,850.05	639.69	1,885.19	0.00	0.00	0.00
12,000.00	89.99	179.79	10,343.24	-1,950.05	640.05	1,985.03	0.00	0.00	0.00
12,100.00	89.99	179.79	10,343.26	-2,050.05	640.42	2,084.87	0.00	0.00	0.00
12,200.00	89.99	179.79	10,343.28	-2,150.05	640.78	2,184.71	0.00	0.00	0.00
12,300.00	89.99	179.79	10,343.30	-2,250.05	641.15	2,284.55	0.00	0.00	0.00
12,400.00	89.99	179.79	10,343.32	-2,350.05	641.51	2,384.39	0.00	0.00	0.00
12,500.00	89.99	179.79	10,343.34	-2,450.05	641.88	2,484.23	0.00	0.00	0.00
12,600.00	89.99	179.79	10,343.36	-2,550.05	642.24	2,584.07	0.00	0.00	0.00
12,700.00	89.99	179.79	10,343.38	-2,650.05	642.61	2,683.91	0.00	0.00	0.00
12,800.00	89.99	179.79	10,343.40	-2,750.05	642.97	2,783.75	0.00	0.00	0.00
12,900.00	89.99	179.79	10,343.41	-2,850.05	643.34	2,883.59	0.00	0.00	0.00
13,000.00	89.99	179.79	10,343.43	-2,950.05	643.70	2,983.43	0.00	0.00	0.00
13,100.00	89.99	179.79	10,343.45	-3,050.04	644.07	3,083.27	0.00	0.00	0.00
13,200.00	89.99	179.79	10,343.47	-3,150.04	644.44	3,183.12	0.00	0.00	0.00
13,300.00	89.99	179.79	10,343.49	-3,250.04	644.80	3,282.96	0.00	0.00	0.00
13,400.00	89.99	179.79	10,343.51	-3,350.04	645.17	3,382.80	0.00	0.00	0.00
13,500.00	89.99	179.79	10,343.53	-3,450.04	645.53	3,482.64	0.00	0.00	0.00
13,600.00	89.99	179.79	10,343.55	-3,550.04	645.90	3,582.48	0.00	0.00	0.00
13,700.00	89.99	179.79	10,343.57	-3,650.04	646.26	3,682.32	0.00	0.00	0.00
13,800.00	89.99	179.79	10,343.59	-3,750.04	646.63	3,782.16	0.00	0.00	0.00
13,900.00	89.99	179.79	10,343.61	-3,850.04	646.99	3,882.00	0.00	0.00	0.00
14,000.00	89.99	179.79	10,343.62	-3,950.04	647.36	3,981.84	0.00	0.00	0.00
14,100.00	89.99	179.79	10,343.64	-4,050.04	647.72	4,081.68	0.00	0.00	0.00
14,200.00	89.99	179.79	10,343.66	-4,150.04	648.09	4,181.52	0.00	0.00	0.00
14,300.00	89.99	179.79	10,343.68	-4,250.04	648.45	4,281.36	0.00	0.00	0.00
14,400.00 14,500.00	89.99 89.99	179.79 179.79	10,343.70 10,343.72	-4,350.04 -4,450.04	648.82 649.18	4,381.20 4,481.04	0.00 0.00	0.00 0.00	0.00 0.00
				,					
14,600.00	89.99	179.79	10,343.74	-4,550.03	649.55	4,580.88	0.00	0.00	0.00
14,700.00	89.99	179.79	10,343.76	-4,650.03	649.91	4,680.72	0.00	0.00	0.00
14,800.00	89.99	179.79	10,343.78	-4,750.03	650.28	4,780.56	0.00	0.00	0.00
14,900.00 15,000.00	89.99 89.99	179.79 179.79	10,343.80 10,343.81	-4,850.03 -4,950.03	650.65 651.01	4,880.40 4,980.24	0.00 0.00	0.00 0.00	0.00 0.00
15,100.00 15,200.00	89.99 89.99	179.79 179.79	10,343.83 10,343.85	-5,050.03 -5,150.03	651.38 651.74	5,080.08 5,179.92	0.00 0.00	0.00 0.00	0.00 0.00
15,200.00	89.99	179.79	10,343.85	-5,250.03	652.11	5,179.92	0.00	0.00	0.00
15,400.00	89.99	179.79	10,343.89	-5,350.03	652.47	5,379.60	0.00	0.00	0.00
15,500.00	89.99	179.79	10,343.91	-5,450.03	652.84	5,479.44	0.00	0.00	0.00
15,600.00	89.99	179.79	10,343.93	-5,550.03	653.20	5,579.28	0.00	0.00	0.00
15,700.00	89.99	179.79	10,343.95	-5,650.03	653.57	5,679.12	0.00	0.00	0.00
15,800.00	89.99	179.79	10,343.97	-5,750.03	653.93	5,778.96	0.00	0.00	0.00
15,900.00	89.99	179.79	10,343.99	-5,850.03	654.30	5,878.80	0.00	0.00	0.00
16,000.00	89.99	179.79	10,344.01	-5,950.03	654.66	5,978.64	0.00	0.00	0.00
,		-							

Database:	HOPSPP	Local Co-ordinate Reference:	Well Corral Bluff 11_14 Fed Com 311H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=26.5' @ 3065.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=26.5' @ 3065.00ft
Site:	Corral Bluff 11_14	North Reference:	Grid
Well:	Corral Bluff 11_14 Fed Com 311H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
16,100.00	89.99	179.79	10,344.02	-6,050.02	655.03	6,078.48	0.00	0.00	0.00
16,200.00	89.99	179.79	10,344.04	-6,150.02	655.39	6,178.32	0.00	0.00	0.00
16,300.00	89.99	179.79	10,344.06	-6,250.02	655.76	6,278.16	0.00	0.00	0.00
16,400.00	89.99	179.79	10,344.08	-6,350.02	656.12	6,378.00	0.00	0.00	0.00
16,500.00	89.99	179.79	10,344.10	-6,450.02	656.49	6,477.84	0.00	0.00	0.00
16,600.00	89.99	179.79	10,344.12	-6,550.02	656.85	6,577.68	0.00	0.00	0.00
16,700.00	89.99	179.79	10,344.14	-6,650.02	657.22	6,677.52	0.00	0.00	0.00
16,800.00	89.99	179.79	10,344.16	-6,750.02	657.59	6,777.36	0.00	0.00	0.00
16,900.00	89.99	179.79	10,344.18	-6,850.02	657.95	6,877.20	0.00	0.00	0.00
17,000.00	89.99	179.79	10,344.20	-6,950.02	658.32	6,977.04	0.00	0.00	0.00
17,100.00	89.99	179.79	10,344.21	-7,050.02	658.68	7,076.88	0.00	0.00	0.00
17,200.00	89.99	179.79	10,344.23	-7,150.02	659.05	7,176.72	0.00	0.00	0.00
17,300.00	89.99	179.79	10,344.25	-7,250.02	659.41	7,276.56	0.00	0.00	0.00
17,400.00	89.99	179.79	10,344.27	-7,350.02	659.78	7,376.40	0.00	0.00	0.00
17,500.00	89.99	179.79	10,344.29	-7,450.02	660.14	7,476.24	0.00	0.00	0.00
17,600.00	89.99	179.79	10,344.31	-7.550.01	660.51	7,576.08	0.00	0.00	0.00
17,700.00	89.99	179.79	10,344.33	-7,650.01	660.87	7,675.92	0.00	0.00	0.00
17,800.00	89.99	179.79	10,344.35	-7,750.01	661.24	7,775.76	0.00	0.00	0.00
17,900.00	89.99	179.79	10,344.37	-7,850.01	661.60	7,875.60	0.00	0.00	0.00
18,000.00	89.99	179.79	10,344.39	-7,950.01	661.97	7,975.44	0.00	0.00	0.00
18,100.00	89.99	179.79	10,344.40	-8,050.01	662.33	8,075.28	0.00	0.00	0.00
18,200.00	89.99	179.79	10,344.42	-8,150.01	662.70	8,175.12	0.00	0.00	0.00
18,300.00	89.99	179.79	10,344.44	-8,250.01	663.06	8,274.96	0.00	0.00	0.00
18,400.00	89.99	179.79	10,344.46	-8,350.01	663.43	8,374.80	0.00	0.00	0.00
18,500.00	89.99	179.79	10,344.48	-8,450.01	663.79	8,474.64	0.00	0.00	0.00
18,600.00	89.99	179.79	10,344.50	-8,550.01	664.16	8,574.48	0.00	0.00	0.00
18,700.00	89.99	179.79	10,344.52	-8,650.01	664.53	8,674.32	0.00	0.00	0.00
18,800.00	89.99	179.79	10,344.54	-8,750.01	664.89	8,774.16	0.00	0.00	0.00
18,900.00	89.99	179.79	10,344.56	-8,850.01	665.26	8,874.00	0.00	0.00	0.00
19,000.00	89.99	179.79	10,344.58	-8,950.01	665.62	8,973.84	0.00	0.00	0.00
19,100.00	89.99	179.79	10,344.60	-9,050.00	665.99	9,073.68	0.00	0.00	0.00
19,200.00	89.99	179.79	10,344.61	-9,150.00	666.35	9,173.52	0.00	0.00	0.00
19,300.00	89.99	179.79	10,344.63	-9,250.00	666.72	9,273.36	0.00	0.00	0.00
19,400.00	89.99	179.79	10,344.65	-9,350.00	667.08	9,373.20	0.00	0.00	0.00
19,500.00	89.99	179.79	10,344.67	-9,450.00	667.45	9,473.04	0.00	0.00	0.00
19,600.00	89.99	179.79	10,344.69	-9,550.00	667.81	9,572.88	0.00	0.00	0.00
19,700.00	89.99	179.79	10,344.71	-9,650.00	668.18	9,672.72	0.00	0.00	0.00
19,800.00	89.99	179.79	10,344.73	-9,750.00	668.54	9,772.56	0.00	0.00	0.00
19,900.00	89.99	179.79	10,344.75	-9,850.00	668.91	9,872.40	0.00	0.00	0.00
20,000.00	89.99	179.79	10,344.77	-9,950.00	669.27	9,972.24	0.00	0.00	0.00
20,100.00	89.99	179.79	10,344.79	-10,050.00	669.64	10,072.08	0.00	0.00	0.00
20,200.00	89.99	179.79	10,344.80	-10,150.00	670.00	10,171.92	0.00	0.00	0.00
20,300.00 20,400.00	89.99 89.99	179.79 179.79	10,344.82 10.344.84	-10,250.00 -10,350.00	670.37 670.74	10,271.76 10,371.60	0.00 0.00	0.00 0.00	0.00 0.00
20,400.00	89.99	179.79	10,344.86	-10,350.00	670.74	10,371.60	0.00	0.00	0.00
				,					
20,600.00	89.99	179.79	10,344.88	-10,549.99	671.47	10,571.28	0.00	0.00	0.00
20,700.00	89.99	179.79	10,344.90	-10,649.99	671.83	10,671.12	0.00	0.00	0.00
20,800.00	89.99	179.79	10,344.92	-10,749.99	672.20	10,770.96	0.00	0.00	0.00
20,900.00	89.99	179.79	10,344.94	-10,849.99	672.56	10,870.80	0.00	0.00	0.00
21,000.00	89.99	179.79	10,344.96	-10,949.99	672.93	10,970.64	0.00	0.00	0.00
21,100.00	89.99	179.79	10,344.98	-11,049.99	673.29	11,070.48	0.00	0.00	0.00
21,200.00	89.99	179.79	10,345.00	-11,149.99	673.66	11,170.32	0.00	0.00	0.00
21,226.05	89.99	179.79	10,345.00	-11,176.04	673.75	11,196.33	0.00	0.00	0.00

OXY Planning Report


Database: Company: Project: Site: Well: Wellbore: Design:	HOPSPP ENGINEERING DESIGNS PRD NM DIRECTIONAL PLANS (NAD 1983) Corral Bluff 11_14 Corral Bluff 11_14 Fed Com 311H Wellbore #1 Permitting Plan			TVD Refer MD Refere North Refe	ence:	RKB=26. RKB=26. Grid	Well Corral Bluff 11_14 Fed Com 311H RKB=26.5' @ 3065.00ft RKB=26.5' @ 3065.00ft Grid Minimum Curvature		
Design Targets									
Target Name - hit/miss target - Shape	Dip Angl (°)	e Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP (Corral Bluff - plan hits target c - Point	0.0 enter	0.00	10,343.00	-673.55	635.39	419,120.69	657,067.78	32.151689	-103.959380
PBHL (Corral Bluff - plan hits target c	0.0 enter	0.00	10,345.00	-11,176.04	673.75	408,619.02	657,106.14	32.122821	-103.959374

- Point

Formations						
	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	330.00	330.00	RUSTLER			
	753.00	753.00	SALADO			
	1,632.00	1,632.00	CASTILE			
	3,177.00	3,177.00	DELAWARE			
	3,207.00	3,207.00	BELL CANYON			
	4,065.00	4,065.00	CHERRY CANYON			
	5,576.00	5,576.00	BRUSHY CANYON			
	6,949.24	6,947.00	BONE SPRING			
	7,860.29	7,845.00	BONE SPRING 1ST			
	8,730.52	8,702.00	BONE SPRING 2ND			
	9,892.32	9,846.00	BONE SPRING 3RD			
	10,210.04	10,131.00	WOLFCAMP			
	10,441.62	10,276.00	WOLFCAMP A			

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
6,188.00	6,188.00	0.00	0.00	Build 1°/100'
7,188.43	7,183.35	-16.11	85.62	Hold 10° Tangent
9,842.36	9,796.93	-101.36	538.71	KOP, Build & Turn 10°/100'
10,723.49	10,343.00	-673.55	635.39	Landing Point
21,226.05	10,345.00	-11,176.04	673.75	TD at 21226.05' MD

Released to Imaging: 6/14/2023 8:05:50 AM

Oxy USA Inc. - Corral Bluff 11_14 Fed Com 311H Drill Plan

1. Geologic Formations

TVD of Target (ft):	10345	Pilot Hole Depth (ft):	
Total Measured Depth (ft):	21226	Deepest Expected Fresh Water (ft):	330

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	330	330	
Salado	753	753	Salt
Castile	1632	1632	Salt
Delaware	3177	3177	Oil/Gas/Brine
Bell Canyon	3207	3207	Oil/Gas/Brine
Cherry Canyon	4065	4065	Oil/Gas/Brine
Brushy Canyon	5576	5576	Losses
Bone Spring	6949	6947	Oil/Gas
Bone Spring 1st	7860	7845	Oil/Gas
Bone Spring 2nd	8731	8702	Oil/Gas
Bone Spring 3rd	9892	9846	Oil/Gas
Wolfcamp	10210	10131	Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		MD		TVD					
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	14.75	0	693	0	693	10.75	45.5	J-55	BTC
Intermediate	9.875	0	9742	0	9697	7.625	26.4	L-80 HC	BTC
Production	6.75	0	21226	0	10345	5.5	20	P-110	Wedge 461

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

*Oxy requests the option to run production casing with DQX, TORQ DQW, Wedge 425, Wedge 461, and/or Wedge 441 connections to accommodate hole conditions or drilling operations.

All Casing SF Values will meet or exceed							
those below							
SF	SF SF Body SF Joint SF						
Collapse	Burst	Tension	Tension				

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement from Onshore Order #2 under the following conditions:

- 1. Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casings.
- 2. Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	I
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	I
Is well located within Capitan Reef?	Ν
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	Ν
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Ν
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	Ν
If yes, are there three strings cemented to surface?	

3. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (Ib/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	580	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	535	1.65	13.2	5%	5,826	Circulate	Class H+Accel., Disper., Salt
Int.	2	Intermediate 2S - Tail BH	901	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	905	1.38	13.2	25%	9,242	Circulate	Class H+Ret., Disper., Salt

Offline Cementing

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe).

Land casing.

Fill pipe with kill weight fluid, and confirm well is static.

If well Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365.

The summarized operational sequence will be as follows:

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe).
- 2. Land casing.
- 3. Fill pipe with kill weight fluid, and confirm well is static.
 - a. If well is not static notify BLM and kill well.
 - b. Once well is static notify BLM with intent to proceed with nipple down and offline cementing.
- 4. Set and pressure test annular packoff.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed.
- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange.
- 8. If well is not static notify BLM and kill well prior to cementing or nippling up for further remediation.
- 9. Install offline cement tool.
- 10. Rig up cement equipment.

a. Notify BLM prior to cement job.

- 11. Perform cement job.
- 12. Confirm well is static and floats are holding after cement job.
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

Three string wells:

- CBL will be required on one well per pad
- If the pumped volume of cement is less than permitted in the APD, BLM will be notified and a CBL may be run
- Echometer will be used after bradenhead cement job to determine TOC before pumping top-out cement

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	~	Tested to:	Deepest TVD Depth (ft) per Section:
		3M		Annular	\checkmark	70% of working pressure	
				Blind Ram	\checkmark		
9.875" Hole	13-5/8"	ЗМ		Pipe Ram		250 psi / 3000 psi	9697
				Double Ram	\checkmark	250 psi / 5000 psi	
			Other*				
		5M		Annular	\checkmark	70% of working pressure	
			Blind Ram		\checkmark		
6.75" Hole	13-5/8"	5M		Pipe Ram		250 poi / 5000 poi	10345
		SIVI		Double Ram	√	250 psi / 5000 psi	
			Other*				

*Specify if additional ram is utilized

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019.

BOP break test under the following conditions:

- After a full BOP test is conducted
- When skidding to drill an intermediate section where ICP is set into the third Bone Spring or shallower.

If the kill line is broken prior to skid, two tests will be performed.

- 1) Wellhead flange, co-flex hose, kill line connections and upper pipe rams
- 2) Wellhead flange, HCR valve, check valve, upper pipe rams

If the kill line is not broken prior to skid, only one test will be performed.

1)Wellhead flange, co-flex hose, check valve, upper pipe rams

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program

	••••							
Section	Depth -	- MD	Depth -	TVD	Tumo	Weight	Weight Viscosity	
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	viscosity	Loss
Surface	0	693	0	693	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	693	9742	693	9697	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	9742	21226	9697	10345	Water-Based or Oil- Based Mud	9.5 - 12.5	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

What will be used to monitor the	PVT/MD Totco/Visual Monitoring
loss or gain of fluid?	

6. Logging and Testing Procedures

Loggi	ng, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole).
res	Stated logs run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addit	ional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	6725 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	163°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal

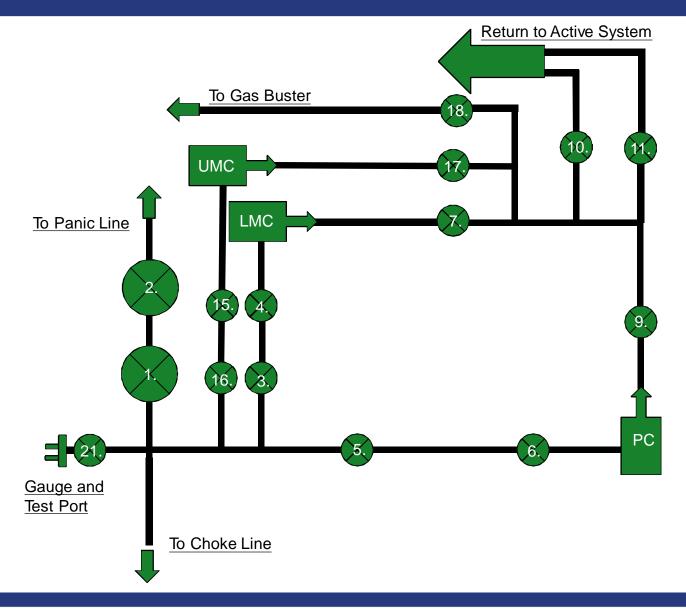
Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

Ν	H2S is present
Y	H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.We plan to drill the 3 well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.	Yes
Will more than one drilling rig be used for drilling operations? If yes, describe.Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that Oxy would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the attached document for information on the spudder rig.	Yes

Total Estimated Cuttings Volume: 1512 bbls

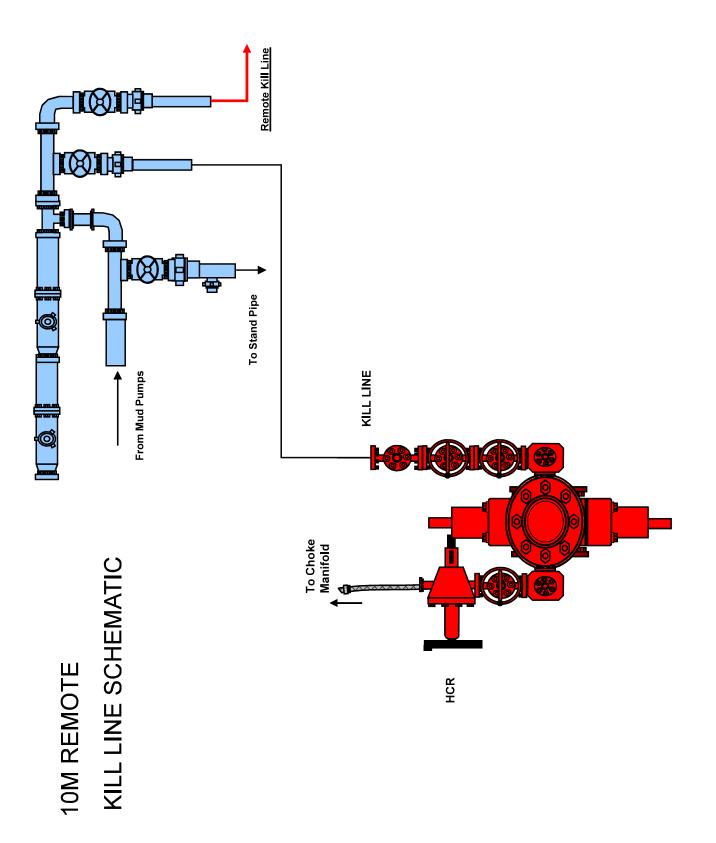

Attachments

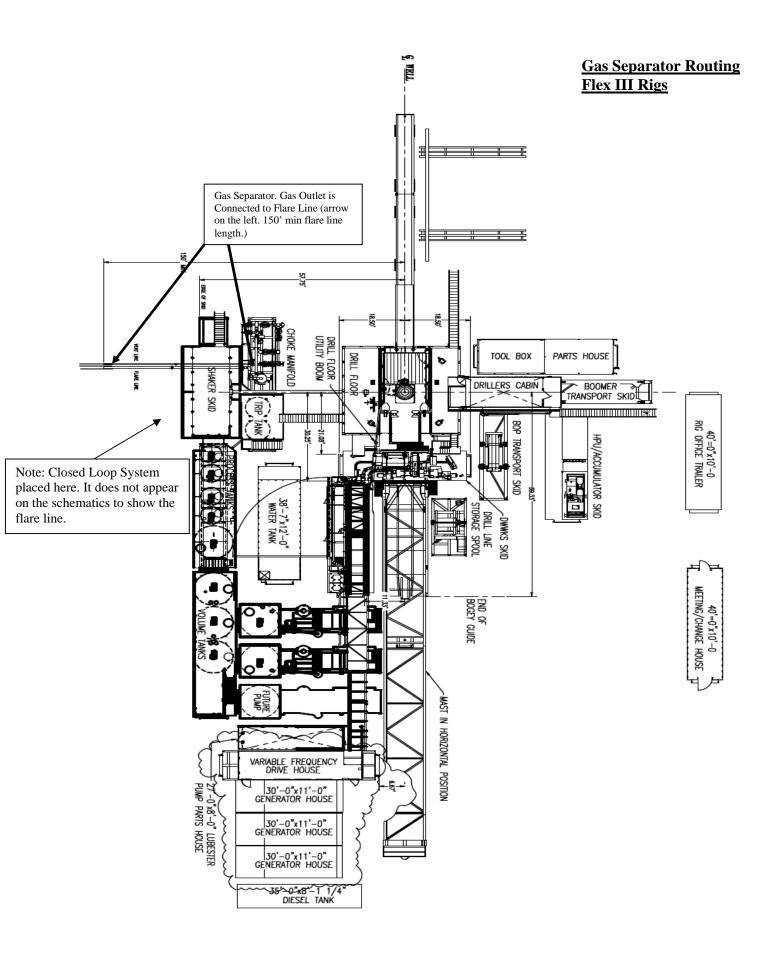
- _x__ Directional Plan
- _x__ H2S Contingency Plan
- _x__ Flex III Attachments
- _x__ Spudder Rig Attachment
- _x__ Premium Connection Specs

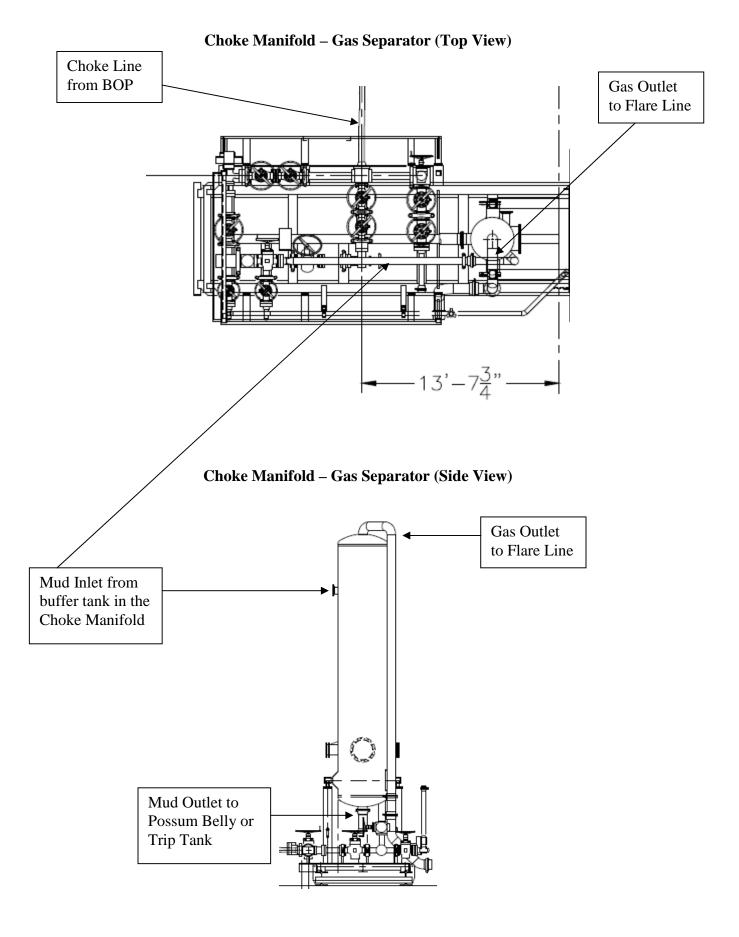
9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Garrett Granier	Drilling Engineer	713-513-6633	832-265-0581
Derek Adam	Drilling Engineer Supervisor	713-366-5170	916-802-8873
Casey Martin	Drilling Superintendent	713-497-2530	337-764-4278
Kevin Threadgill	Drilling Manager	713-366-5958	361-815-0788

10M Choke Panel


- 1. Choke Manifold Valve
- 2. Choke Manifold Valve
- 3. Choke Manifold Valve
- 4. Choke Manifold Valve
- 5. Choke Manifold Valve
- 6. Choke Manifold Valve
- 7. Choke Manifold Valve
- 8. PC Power Choke
- 9. Choke Manifold Valve
- 10. Choke Manifold Valve
- 11. Choke Manifold Valve
- 12. LMC Lower Manual Choke


13. UMC – Upper manual choke


- 15. Choke Manifold Valve
- 16. Choke Manifold Valve
- 17. Choke Manifold Valve
- 18. Choke Manifold Valve
- 21. Vertical Choke Manifold Valve

*All Valves 3" minimum

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 $_{\odot}\,$ Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier: CONTITECH RUBBER INDUSTRIAL KFT.Equipment: 6 pcs. Choke and Kill Hose with installed couplingsType:3" x 10,67 m WP: 10000 psiSupplier File Number: 412638Date of Shipment: April. 2008Customer: Phoenix Beattie Co.Customer P.o.: 002491Referenced Standards/ Codes / Specifications :API Spec 16 CSerial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager

_ontiTech Rubber Industrial Kft. Quality Control Dept. (1)

Date: 04. April. 2008

Received by OCD: 5/11/2023 2:38:07 PM

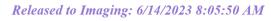
.

.

<u>Coflex Hose Certification</u>

.

Page: 1/1


.

٠

٠

.;

		0																					H	4				(
21		ចាំង ច	Trui d	0 1 0													 		***			(アゴー	eon enri	HIN	bit IfL Dep	ند _م
E C				<u> 1</u>	ļ			a												Service and						(1) (1)	101	Dep	L
20	* * *	12 12 14		1		11	1111 1111													1	The statement of the second second				~].			. ,
配出る				2		•																							
R.	1 1 1		1								h																		
	5		Ð	12.5	į			40						6	d	-			BIO						T	K			
	2] 2] 2]				Π														-		Ī				T				
	+ +		1		ł					ŀ	ŀ	ŀ												~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	نسكت				
7		1.1	••••	1.4		••••			Ì		T		Ī		ļ														
13.77	ΤĦ	Ħ	П				ļ		ļ			Ì	Ì			Ī		1											
16		1.1									Ť		İ			-					and the second se	T							
Ħ	Ħ	Ħ							Í								 	_				İ		and the second s				•	
15							The second second second second second second second second second second second second second second second se															T		÷	- Produced				

,

	1	Louis No.	Issue No																		
	Page	Drg No																			
		Rin No. 1	UNTED	W/CTV	VICIN	20	3														
cate		Test Cert No																-			
Material Identification Certificate	370-369-001	Batch No	52777/H884	002440	H665	H139															
tificatio	H	WO No			2519	Ι															
ıl İden	Clent	Oty	-																		
Materia	HELMERICH & PAYNE INT'L DRILLING COEnt Ref	Material Spec																			
ttie	MERICH & PAY	Material Desc			CARBON STEEL	CARBON STEEL															
	Client	_	3" 10K 16C C&K HOSE x 35ft CAL	LIFTING & SAFETY EQUIPMENT TO		SAFETY CLAMP 132MM 7.25T															
Hd	PA No 006330	H	5-4F1			SC725-132CS															

Coflex Hose Certification

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

05/23/08.

Received by OCD: 5/11/2023 2:38:07 PM

.

<u>Coflex Hose Certification</u>

Form No 100/12

Phoenix Beattie Corp 11535 Brittmoore Park Drive Houston, TX 77041 Tel: (032) 327-0141 Fax: (032) 327-0148 E-mail mail@phoenixbeattie.com www.phoenixbeattie.com

Delivery Note

- PHOENIX Beattie

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Addres HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119	-	Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RI 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	IG 370		-

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

ltern No	Beattie Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10,000psi Test pressure: 15,000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
-	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	0
-	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	0

Continued...

All goods remain the property of Phoenix Beattie until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

.

Fluid Technology

Quality Document

QUALI INSPECTION A	TY CONT		ATE	CERT. N	lo:	746	
PURCHASER:	Phoenix Bea	ttie Co.		P.O. Nº:	1	002491	
CONTITECH ORDER Nº:	412638	HOSE TYPE:	3" ID	Cho	oke and h	Kill Hose	
HOSE SERIAL Nº:	52777	NOMINAL / ACT	UAL LENGTH:		10,67 m	n	
W.P. 68,96 MPa 1	0000 psi	т.р. 103,4	MPa 1500	0 psi	Duration:	60 ~	min.
Pressure test with water at ambient temperature ↑ 10 mm = 10 Min.		attachment. ((1 page)			· ·	-
→ 10 mm = 25 MPa	2						
		COUPL					
Туре		Serial Nº		Quality		Heat N°	
3" coupling with	917	913	AIS	1 4130		T7998A	
4 1/16" Flange end			AIS	14130		26984	
INFOCHIP INSTALL	E HOSE HAS BE		ED IN ACCORD	ANCE WI	Te	API Spec 16 emperature ra	ate:"B"
PRESSURE TESTED AS ABOVE	WITH SATISFA	1					
Date:	Inspector		Quality Contro		m. 1. n. 12		
04. April. 2008			Hacn (Indi	Tech Rubb strial Kft Control De (1)		(

Coflex Hose Certification

Form No 100/12

PHOENIX Beattie

Phoenix Beattie Corp

Houston, TX 77041 Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail mail@phoenixbeattie.com www.phoenixbeattie.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Address HELMERICH & PAYNE INT'L I 1437 SOUTH BOULDER TULSA, OK 74119		Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - R 13609 Industrial Road Houston, TX 77015	IG 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
HO1	JJL	006330	05/23/2008

ltem No	Beattie Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
5	OOCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
6	00CERT-LOAD LOAD TEST CERTIFICATES	1	1	0
7	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1		0
	T	Pal		
	Phoenix Beattie Inspection Signature :	PANAM	While	
	Received In Good Condition : Signature		$\overline{}$	
	Print Name		<u>\</u>	
	Date			

All goods remain the property of Phoenix Beattie until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

•

Discussion

Implementation:	This plan with all details is to be fully implemented before drilling to <u>commence</u> .
Emergency response Procedure:	This section outlines the conditions and denotes steps to be taken in the event of an emergency.
Emergency equipment Procedure:	This section outlines the safety and emergency equipment that will be required for the drilling of this well.
Training provisions:	This section outlines the training provisions that must be adhered to prior to drilling.
Drilling emergency call lists:	Included are the telephone numbers of all persons to be contacted should an emergency exist.
Briefing:	This section deals with the briefing of all people involved in the drilling operation.
Public safety:	Public safety personnel will be made aware of any potential evacuation and any additional support needed.
Check lists:	Status check lists and procedural check lists have been included to insure adherence to the plan.
General information:	A general information section has been included to supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. <u>Well control equipment</u>

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

Wind sock – wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

- 9. <u>Designated area</u>
 - A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
 - B. There will be a designated smoking area.
 - C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:
 - 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:	1.	On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
	2.	Check status of personnel (buddy system).
	3.	Secure breathing equipment.
	4.	Await orders from supervisor.
Drill site manager:	1.	Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
	3.	Determine H2S concentrations.
	4.	Assess situation and take control measures.
Tool pusher:	1.	Don escape unit Report to up nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
	3.	Determine H2S concentration.
	4.	Assess situation and take control measures.
Driller:	1.	Don escape unit, shut down pumps, continue

		rotating DP.
	2.	Check monitor for point of release.
	3.	Report to nearest upwind designated safe briefing / muster area.
	4.	Check status of personnel (in an attempt to rescue, use the buddy system).
	5.	Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
	6.	Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.
Derrick man Floor man #1 Floor man #2	1.	Will remain in briefing / muster area until instructed by supervisor.
Mud engineer:	1.	Report to nearest upwind designated safe briefing / muster area.
	2.	When instructed, begin check of mud for ph and H2S level. (Garett gas train.)
Safety personnel:	1.	Mask up and check status of all personnel and secure operations as instructed by drill site manager.

<u>Taking a kick</u>

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is ignited.</u>**

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1 100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by:	Date:
-------------	-------

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Common name	Chemical formula	Specific gravity	Threshold limit	Hazardous limit	Lethal concentration (3)
name	Tormula	(sc=1)	(1)	(2)	(3)
Hydrogen Cyanide	Hcn	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustibl	e above 5% in air

Table i <u>Toxicity of various gases</u>

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	
		100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in 3 – 15 minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

*at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

<u>Rescue</u> First aid for H2S poisoning

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

OXY Permian Crisis Team Hotline Notification				
Person	Location	Office Phone	Cell/Mobile Phone	
	-			
Drilling & Completions Department				
Drilling & Completions Manager: John Willis	Houston	(713) 366-5556	(713) 259-1417	
Drilling Superintendent: Simon Benavides	Houston	(713) 215-7403	(832) 528-3547	
Completions Superintendent: Chris Winter	Houston	(713) 366-5212	(806) 239-8774	
Drilling Eng. Supervisor: Diego Tellez	Houston	(713) 350-4602	(713) 303-4932	
Drilling Eng. Supervisor: Randy Neel	Houston	(713) 215-7987	(713) 517-5544	
Completions Eng. Supervisor: Evan Hinkel	Houston	(713) 366-5436	(281) 236-6153	
Drilling & Completions HES Lead. Ryan Green	Houston	713-336-5753	281-520-5216	
Drilling & Completions HES Advisor:Kenny Williams	Carlsbad	(432) 686-1434	(337) 208-0911	
Drilling & Completions HES Advisor:Kyle Holden	Carlsbad	(432) 686-1435	(661) 369-5328	
Drilling & Completions HES Advisor Sr:Dave Schmidt	Carlsbad		(559) 310-8572	
Drilling & Completions HES Advisor. :Seth Doyle	Carlsbad		(337) 499-0756	
HES / Enviromental & Regulatory Department	Location	Office	Cell Phone	
Jon Hamil-HES Manager	Houston	(713) 497-2494	(832) 537-9885	
Mark Birk-HES Manager	Houston	(713) 350-4615	(949) 413-3127	
Austin Tramell	Midland	(432) 699-4208	(575) 499-4919	
Rico Munoz	Midland	(432) 699-8366	(432) 803-4116	
Amber DuckWorth	Midland		(832) 966-1879	
Kelley Montgomery- Regulatory Manager	Houston	(713) 366-5716	(832) 454-8137	
Sandra Musallam -Regulatory Lead	Houston	+1 (713) 366-5106	+1 (713) 504-8577	
Bishop, Steve-DOT Pipeline Coordinator	Midland	432-685-5614		
Wilson, Dusty-Safety Advisor	Midland	432-685-5771	(432) 254-2336	
John W Dittrich Eniromental Advisor	Midland		(575) 390-2828	
William (Jack) Calhoun-Environmental Lead	Houston	+713 (350) 4906	(281) 917-8571	
Robert Barrow-Risk Engineer Manager	Houston	(713) 366-5611	(832) 867-5336	
Sarah Holmes-HSE Cordinator	Midland	432-685-5758		
Administrative	Location	Office		
Sarah Holmes	Midland	432-685-5830		
Robertson, Debbie	Midland	432-685-5812		
Laci Hollaway	Midland	(432) 685-5716	(432) 631-6341	
Administrative	Location	Office		
Rosalinda Escajeda	Midland	432-685-5831		
Moreno, Leslie (contract)	Hobbs	575-397-8247		

OXY Permian Delaware NM Basin Drilling & Completions Incident Reporting

Sehon, Angela (contractor)	Levelland	806-894-8347	
Vasquez, Claudia (contractor)	North Cowden	432-385-3120	
XstremeMD	Location	Office	
Medical Case Management	Orla, TX	(337) 205-9314	
Axiom Medical Consulting	Location	Office	
Medical Case Management		(877) 502-9466	
Regulatory Agencies			
Bureau of Land Management	Carlsbad, NM	(505) 887-6544	
Bureau of Land Management	Hobbs, NM	(505) 393-3612	
Bureau of Land Management	Roswell, NM	(505) 393-3612	
Bureau of Land Management	Santa Fe, NM	(505) 988-6030	
DOT Juisdictional Pipelines-Incident Reporting New Mexico Public Regulaion Commission	Santa Fe, NM	(505) 827-3549 (505) 490-2375	
DOT Juisdictional Pipelines-Incident Reporting Texas Railroad Commission	Austin, TX	(512) 463-6788	
EPA Hot Line	Dallas, Texas	(214) 665-6444	
Federal OSHA, Area Office	Lubbock, Texas	(806) 472-7681	
National Response Center	Washington, D. C.	(800) 424-8802	
National Infrastructure Coordinator Center		(202) 282-9201	
New Mexico Air Quality Bureau	Santa Fe, NM	(505) 827-1494	
New Mexico Oil Conservation Division	Artesia, NM	(505) 748-1283	After Hours (505) 370- 7545
New Mexico Oil Conservation Division	Hobbs, NM	(505) 393-6161	
New Mexico Oil Conservation Division	Santa Fe, NM	(505) 471-1068	
New Mexico OCD Environmental Bureau	Santa Fe, NM	(505) 476-3470	
New Mexico Environmental Department	Hobbs, NM	(505) 827-9329	
NM State Emergency Response Center	Santa Fe, NM	(505) 827-9222	
Railroad Commission of TX	District 1 San Antonio, TX	(210) 227-1313	
Railroad Commission of TX	District 7C San Angelo, TX	(325) 657-7450	
Railroad Commission of TX	District 8, 8A Midland, TX	(432) 684-5581	
Texas Emergency Response Center	Austin, TX	(512) 463-7727	
TCEQ Air	Region 2 Lubbock, TX	(806) 796-3494	
TCEQ Water/Waste/Air	Region 3 Abilene, TX	(325) 698-9674	
TCEQ Water/Waste/Air	Region 7 Midland, TX	(432) 570-1359	
TCEQ Water/Waste/Air	Region 9 San Antonio, TX	(512) 734-7981	
TCEQ Water/Waste/Air	Region 8 San Angelo	(325) 655-9479	
Medical Facilities			
Abernathy Medical Clinic	Abernathy, TX	(806) 298-2524	
Alliance Hospital	Odessa, TX	(432) 550-1000	
Artesia General Hospital	Artesia, NM	(505) 748-3333	
Brownfield Regional Medical Center	Brownfield, TX	(806) 637-3551	
Cogdell Memorial Hospital	Snyder, TX	(325) 573-6374	
Covenant Hospital Levelland	Levelland, TX	(806) 894-4963	

Covenant Medical Center	Lubbock, TX	(806) 725-1011
Covenant Medical Center Lakeside	Lubbock, TX	(806) 725-6000
Covenant Family Health	Synder, TX	(325) 573-1300
Crockett County Hospital	Ozona, TX	(325) 392-2671
Guadalupe Medical Center	Carlsbad, NM	(505) 887-6633
Lea Regional Hospital	Hobbs, NM	(505) 492-5000
McCamey Hospital	McCamey, TX	(432) 652-8626
Medical Arts Hospital	Lamesa, TX	(806) 872-2183
Medical Center Hospital	Odessa, TX	(432) 640-4000
Medi Center Hospital	San Angelo, TX	(325) 653-6741
Memorial Hospital	Ft. Stockton	(432) 336-2241
Memorial Hospital	Seminole, TX	(432) 758-5811
Midland Memorial Hospital	Midland, TX	(432) 685-1111
Nor-Lea General Hospital	Lovington, NM	(505) 396-6611
Odessa Regional Hospital	Odessa, TX	(432) 334-8200
Permian General Hospital	Andrews, TX	(432) 523-2200
Reagan County Hospital	Big Lake, TX	(325) 884-2561
Reeves County Hospital	Pecos, TX	(432) 447-3551
Shannon Medical Center	San Angelo, TX	(325) 653-6741
Union County General Hospital	Clayton, NM	(505) 374-2585
		(806) 725-8200
University Medical Center	Lubbock, TX	
Val Verde Regional Medical Center	Del Rio, TX	(830) 775-8566
Ward Memorial Hospital	Monahans, TX	(432) 943-2511
Yoakum County Hospital	Denver City, TX	(806) 592-5484
Law Enforcement - Sheriff		
Andrews Cty Sheriff's Department	Andrews County(Andrews)	(432) 523-5545
Crane Cty Sheriff's Department	Crane, County (Crane)	(432) 558-3571
Crockett Cty Sheriff's Department	Crockett County (Ozona)	(325) 392-2661
Dawson Cty Sheriff's Department	Dawson County (Lamesa)	(806) 872-7560
Ector Cty Sheriff's Department	Ector County (Odessa)	(432) 335-3050
Eddy Cty Sheriff's Department	Eddy County (Artesia)	(505) 746-2704
Eddy Cty Sheriff's Department	Eddy County (Carlsbad)	(505) 887-7551
Gaines Cty Sheriff's Department	Gaines County (Seminole)	(432) 758-9871
Hockley Cty Sheriff's Department	Hockley County(Levelland)	(806) 894-3126
Kent Cty (Jayton City Sheriff's Dept.)	Kent County(Jayton)	(806) 237-3801
Lea Cty Sheriff's Department	Lea County (Eunice)	(505) 384-2020
Lea Cty Sheriff's Department	Lea County (Hobbs)	(505) 393-2515
Lea Cty Sheriff's Department	Lea County (Lovington)	(505) 396-3611
Lubbock Cty Sheriff's Department	Lubbock Cty (Abernathy)	(806) 296-2724
Midland Cty Sheriff's Department	Midland County (Midland)	(432) 688-1277
	(initiality)	(
IPecos Cty Sheriff's Department	Pecos County (Iraan)	(432) 639-2251
Pecos Cty Sheriff's Department Reeves Cty Sheriff's Department	Pecos County (Iraan) Reeves County (Pecos)	(432) 639-2251 (432) 445-4901

Terry Cty Sheriff's Department	Terry County (Brownfield)	(806) 637-2212	
Union Cty Sheriff's Department	Union County (Clayton)	(505) 374-2583	
Upton Cty Sheriff's Department	Upton County (Rankin)	(432) 693-2422	
Ward Cty Sheriff's Department	Ward County (Monahans)	(432) 943-3254	
Yoakum City Sheriff's Department	Yoakum Co. (Denever City)	(806) 456-2377	
Law Enforcement - Police			
Abernathy City Police	Abernathy, TX	(806) 298-2545	
Andrews City Police	Andrews, TX	(432) 523-5675	
Artesia City Police	Artesia, NM	(505) 746-2704	
Brownfield City Police	Brownfield, TX	(806) 637-2544	
Carlsbad City Police	Carlsbad, NM	(505) 885-2111	
Clayton City Police	Clayton, NM	(505) 374-2504	
Denver City Police	Denver City, TX	(806) 592-3516	
Eunice City Police	Eunice, NM	(505) 394-2112	
Hobbs City Police	Hobbs, NM	(505) 397-9265 (505) 393-2677	
Jal City Police	Jal, NM	(505) 395-2501	
Jayton City Police	Jayton, TX	(806) 237-3801	
Lamesa City Police	Lamesa, TX	(806) 872-2121	
Levelland City Police	Levelland, TX	(806) 894-6164	
Lovington City Police	Lovington, NM	(505) 396-2811	
Midland City Police	Midland, TX	(432) 685-7113	
Monahans City Police	Monahans, TX	(432) 943-3254	
Odessa City Police	Odessa, TX	(432) 335-3378	
Seminole City Police	Seminole, TX	(432) 758-9871	
Snyder City Police	Snyder, TX	(325) 573-2611	
Sundown City Police	Sundown, TX	(806) 229-8241	
`			
Law Enforcement - FBI			
FBI	Alburqueque, NM	(505) 224-2000	
FBI	Midland, TX	(432) 570-0255	
Law Enforcement - DPS			
NM State Police	Artesia, NM	(505) 746-2704	
NM State Police	Carlsbad, NM	(505) 885-3137	
NM State Police	Eunice, NM	(505) 392-5588	
NM State Police	Hobbs, NM	(505) 392-5588	
NM State Police	Clayton, NM	(505) 374-2473; 911	
TX Dept of Public Safety	Andrews, TX	(432) 524-1443	
TX Dept of Public Safety	Big Lake, TX	(325) 884-2301	
TX Dept of Public Safety	Brownfield, TX	(806) 637-2312	
TX Dept of Public Safety	Iraan, TX	(432) 639-3232	
TX Dept of Public Safety	Lamesa, TX	(806) 872-8675	
TX Dept of Public Safety	Levelland, TX	(806) 894-4385	

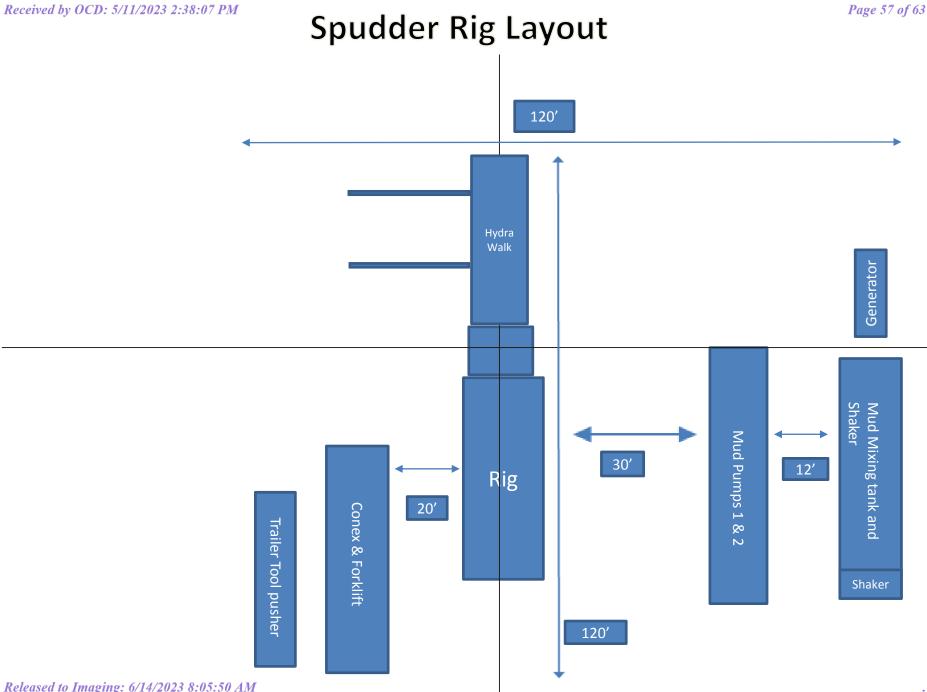
TX Dept of Public Safety	Lubbock, TX	(806) 747-4491
TX Dept of Public Safety	Midland, TX	(432) 697-2211
TX Dept of Public Safety	Monahans, TX	(432) 943-5857
TX Dept of Public Safety	Odessa, TX	(432) 332-6100
TX Dept of Public Safety	Ozona, TX	(325) 392-2621
TX Dept of Public Safety	Pecos, TX	(432) 447-3533
TX Dept of Public Safety	Seminole, TX	(432) 758-4041
TX Dept of Public Safety	Snyder, TX	(325) 573-0113
TX Dept of Public Safety	Terry County TX	(806) 637-8913
TX Dept of Public Safety	Yoakum County TX	(806) 456-2377
Firefighting & Rescue		
Abernathy	Abernathy, TX	(806) 298-2022
Amistad/Rosebud	Amistad/Rosebud, NM	(505) 633-9113
		(432) 523-4820; (432)
Andrews	Andrews, TX	523-3111
Artesia	Artesia, NM	(505) 746-5051
Big Lake	Big Lake, TX	(325) 884-3650
Brownfield-Administrative & other calls	Brownfield, TX	(816) 637-4547
Brownfield emergency only	Brownfield, TX	-911
Carlsbad	Carlsbad, NM	(505) 885-3125
Clayton	Clayton, NM	(505) 374-2435
Cotton Center	Cotton Center, TX	(806) 879-2157
Crane	Crane, TX	(432) 558-2361
Del Rio	Del Rio, TX	(830) 774-8650
Denver City	Denver City, TX	(806) 592-3516
Eldorado	Eldorado, TX	(325) 853-2691
Eunice	Eunice, NM	(505) 394-2111
Garden City	Garden City, TX	(432) 354-2404
Goldsmith	Goldsmith, TX	(432) 827-3445
Hale Center	Hale Center, TX	(806) 839-2411
Halfway	Halfway, TX	
Hobbs	Hobbs, NM	(505) 397-9308
Jal	Jal, NM	(505) 395-2221
Jayton	Jayton, TX	(806) 237-3801
Kermit	Kermit, TX	(432) 586-3468
Lamesa	Lamesa, TX	(806) 872-4352
Levelland	Levelland, TX	(806) 894-3154
Lovington	Lovington, NM	(505) 396-2359
Maljamar	Maljamar, NM	(505) 676-4100
McCamey	McCamey, TX	(432) 652-8232
Midland	Midland, TX	(432) 685-7346
Monahans	Monahans, TX	(432) 943-4343
Nara Visa	Nara Visa, NM	(505) 461-3300
Notrees	Notress, TX	(432) 827-3445

Odessa	Odessa, TX	(432) 335-4659	
Ozona	Ozona, TX	(325) 392-2626	
Pecos	Pecos, TX	(432) 445-2421	
Petersburg	Petersburg, TX	(806) 667-3461	
Plains	Plains, TX	(806) 456-8067	
Plainview	Plainview, TX	(806) 296-1170	
Rankin	Rankin, TX	(432) 693-2252	
		(325) 657-4355	
San Angelo Sanderson	San Angelo, TX		
Sanderson	Sanderson, TX	(432) 345-2525 (432) 758-3676	
Seminole	Seminole, TX	(432) 758-9871	
Smyer	Smyer, TX	(806) 234-3861	
Snyder	Snyder, TX	(325) 573-6215	
Sundown	Sundown, TX	911	
Tucumcari	Tucumcari, NM	911	
West Odessa	Odessa, TX	(432) 381-3033	
	,		
Ambulance			
Abernathy Ambulance	Abernathy, TX	(806) 298-2241	
Amistad/Rosebud	Amistad/Rosebud, NM	(505) 633-9113	
Andrews Ambulance	Andrews, TX	(432) 523-5675	
Artesia Ambulance	Artesia, NM	(505) 746-2701	
Big Lake Ambulance	Big Lake, TX	(325) 884-2423	
Big Spring Ambulance	Big Spring, TX	(432) 264-2550	
Brownfield Ambulance	Brownfield, TX	(806) 637-2511	
Carlsbad Ambulance	Carlsbad, NM	(505) 885-2111; 911	
Clayton, NM	Clayton, NM	(505) 374-2501	
Denver City Ambulance	Denver City, TX	(806) 592-3516	
Eldorado Ambulance	Eldorado, TX	(325) 853-3456	
Eunice Ambulance	Eunice, NM	(505) 394-3258	
Goldsmith Ambulance	Goldsmith, TX	(432) 827-3445	
Hobbs, NM	Hobbs, NM	(505) 397-9308	
Jal, NM	Jal, NM	(505) 395-2501	
Jayton Ambulance	Jayton, TX	(806) 237-3801	
Lamesa Ambulance	Lamesa, TX	(806) 872-3464	
Levelland Ambulance	Levelland, TX	(806) 894-8855	
Lovington Ambulance	Lovington, NM	(505) 396-2811	
McCamey Hospital	McCamey, TX	(432) 652-8626	
Midland Ambulance	Midland, TX	(432) 685-7499	
		(432) 943-3385 or	
Monahans Ambulance	Monahans, TX	3731	
Nara Visa, NM	Nara Visa, NM	(505) 461-3300	
Odessa Ambulance	Odessa, TX	(432) 335-3378	
Ozona Ambulance	Ozona, TX	(325) 392-2671	
Pecos Ambulance	Pecos, TX	(432) 445-4444	

Rankin Ambulance	Rankin, TX	(432) 693-2443	
San Angelo Ambulance	San Angelo, TX	(325) 657-4357	
Seminole Ambulance	Seminole, TX	(432) 758-8816 (432) 758-9871	
Snyder Ambulance	Snyder, TX	(325) 573-1911	
Stanton Ambulance	Stanton, TX	(432) 756-2211	
Sundown Ambulance	Sundown, TX	911	
Tucumcari, NM	Tucumcari, NM	911	
Medical Air Ambulance Service			
AEROCARE - Methodist Hospital	Lubbock, TX	(800) 627-2376	
San Angelo Med-Vac Air Ambulance	San Angelo, TX	(800) 277-4354	
Southwest Air Ambulance Service	Stanford, TX	(800) 242-6199	
Southwest MediVac	Snyder, TX	(800) 242-6199	
Southwest MediVac	Hobbs, NM	(800) 242-6199	
Odessa Care Star	Odessa, TX	(888) 624-3571	
NWTH Medivac	Amarillo, TX	(800) 692-1331	

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: OXY USA Inc


1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- **3.** A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- **8.** Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

Released to Imaging: 6/14/2023 8:05:50 AM

Received by OCD: 5/11/2023 2:38:07 PM

Tenaris

TenarisHydril \ 425[®]

Wedg	e	Body: N	nd: Grey Ind: -	Grade: P110-CY 1st Band: White 2nd Band: Grey 3rd Band: - 4th Band: - 5th Band: - 6th Band: -	
5.500 in.	Wall Thickness	0.361 in.	Grade		P110-CY
87.50 %	Pipe Body Drift	API Standard	Туре		Casing

Coupling

Pipe Body Data

Outside Diameter

Min. Wall Thickness

Connection OD Option

Geometry				P
Nominal OD	5.500 in.	Wall Thickness	0.361 in.	Boo
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft	Min
Drift	4.653 in.	OD Tolerance	API	SM
Nominal ID	4.778 in.			Col

REGULAR

Performance

Body Yield Strength	641 x1000 lb
Min. Internal Yield Pressure	12,640 psi
SMYS	110,000 psi
Collapse Pressure	11,100 psi

Pipe Body

Connection Data

Geometry	
Connection OD	5.777 in.
Connection ID	4.734 in.
Make-up Loss	5.823 in.
Threads per inch	3.77
Connection OD Option	Regular

Performance	
Tension Efficiency	90 %
Joint Yield Strength	577 x1000 lb
Internal Pressure Capacity	12,640 psi
Compression Efficiency	90 %
Compression Strength	577 x1000 lb
Max. Allowable Bending	82 °/100 ft
External Pressure Capacity	11,100 psi

Make-Up Torques	
Minimum	15,700 ft-lb
Optimum	19,600 ft-Ib
Maximum	21,600 ft-lb
Operation Limit Torques	
Operating Torque	29,000 ft-Ib
Yield Torque	36,000 ft-Ib

Notes

This connection is fully interchangeable with: TORQ® SFW $^{-}$ 5.5 in. - 0.361 in. Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version

For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any loss, damage or injury resulting from, or in connection with any Information contained hereunder on the subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021.All rights reserved.

Received by OCD: 5/11/2023 2:38:07 PM

Tenaris

TenarisHydril Wedge 441[®]

Grade: P110-CY	Grade: P110-CY
Body: White 1st Band: Grey	1st Band: White 2nd Band: Grey
2nd Band: -	3rd Band: -
3rd Band: -	4th Band: -
	5th Band: -
	6th Band: -

Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-CY
Min. Wall Thickness	87.50 %	Drift	API Standard	Туре	Casing
Connection OD Option	REGULAR				

Pipe Body Data

Geometry			
Nominal OD	5.500 in.	Wall Thickness	0.361 in.
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft
Drift	4.653 in.	OD Tolerance	API
Nominal ID	4.778 in.		

Destau

Performance

Body Yield Strength	641 x1000 lb
Min. Internal Yield Pressure	12,640 psi
SMYS	110,000 psi
Collapse Pressure	11,100 psi

Connection Data

Geometry	
Connection OD	5.852 in.
Coupling Length	8.714 in.
Connection ID	4.778 in.
Make-up Loss	3.780 in.
Threads per inch	3.40
Connection OD Option	Regular

Performance	
Tension Efficiency	81.50 %
Joint Yield Strength	522 x1000 lb
Internal Pressure Capacity	12,640 psi
Compression Efficiency	81.50 %
Compression Strength	522 x1000 lb
Max. Allowable Bending	71 °/100 ft
External Pressure Capacity	11,100 psi

Make-Up Torques	
mare op iorquoo	
Minimum	15,000 ft-lb
Optimum	16,000 ft-lb
Maximum	19,200 ft-lb
Operation Limit Torques	
Operating Torque	32,000 ft-Ib
Yield Torque	38,000 ft-lb
Buck-On	
Minimum	19,200 ft-Ib
Maximum	20,700 ft-Ib

Notes

This connection is fully interchangeable with: Wedge 441 \odot - 5.5 in. - 0.304 in. Connections with Dopeless \odot Technology are fully compatible with the same connection in its Standard version

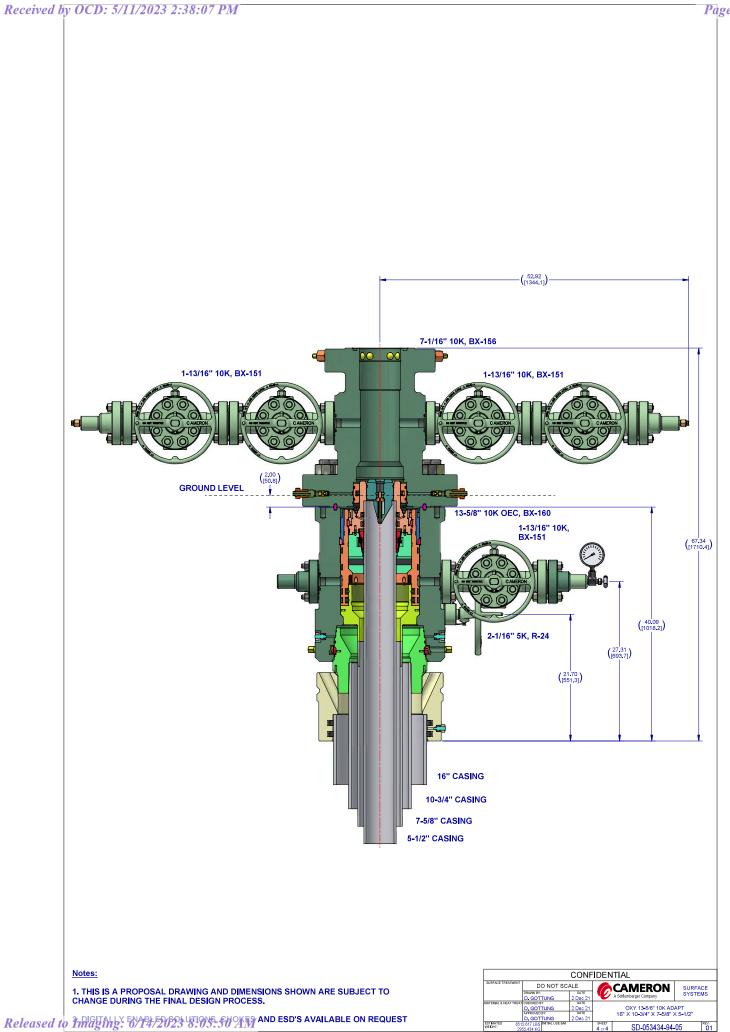
For the lastest performance data, always visit our website: www.tenaris.com

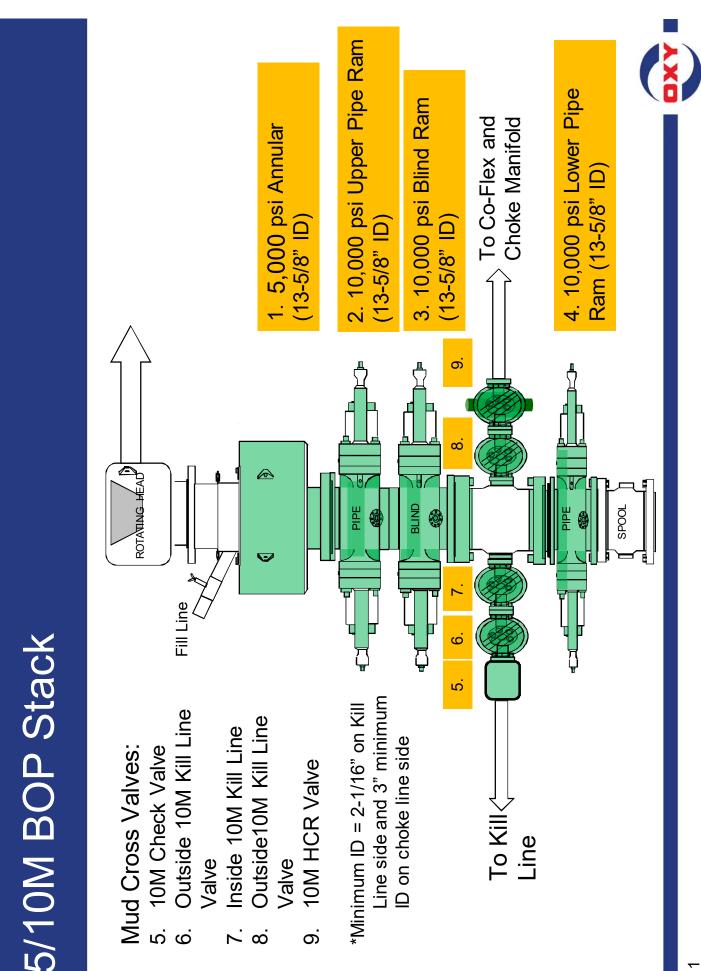
Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information –if any-provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility of liability of any liab for any loss, damage or injury resulting from, or in connection with any Information contained hereunder any use thereof. The Information is document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021.All rights reserved.

.

TenarisHydril

5.500" 20.00 lb/ft P110-CY TenarisHydril Wedge 461™ Matched Strength


	1	
1		
	1	
	l	
	Ľ	


Special Data Sheet TH DS-20.0359 12 August 2020 Rev 00

Nominal OD	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-CY
Min Wall Thickness	87.5%	Туре	CASING	Connection OD Option	MATCHED STRENGTH
Pipe Body Data					
Geometry				Performance	
Nominal OD	5.500 in.	Nominal ID	4.778 in.	Body Yield Strength	641 x 1000 lbs
Nominal Weight	20.00 lbs/ft	Wall Thickness	0.361 in.	Internal Yield	12640 psi
Standard Drift Diameter	4.653 in.	Plain End Weight	19.83 lbs/ft	SMYS	110000 psi
Special Drift Diameter	N/A	OD Tolerance	API	Collapse Pressure	11110 psi
Connection Data					
Geometry		Performance		Make-up Torques	
Matched Strength OD	6.050 in.	Tension Efficiency	100%	Minimum	17000 ft-lbs
Make-up Loss	3.775 in.	Joint Yield Strength	641 x 1000 lbs	Optimum	18000 ft-lbs
Threads per in.	3.40	Internal Yield	12640 psi	Maximum	21600 ft-lbs
Connection OD Option	MATCHED STRENGTH	Compression Efficiency	100%	Operational Limit Torques	;
Coupling Length	7.714 in.	Compression Strength	641 x 1000 lbs	Operating Torque	32000 ft-lbs
		Bending	92 °/100 ft	Yield Torque	38000 ft-lbs
		Collapse	11110 psi	Buck-On Torques	
				Minimum	21600 ft-lbs
				Maximum	23100 ft-lbs

Notes

*If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
OXY USA INC	16696
P.O. Box 4294	Action Number:
Houston, TX 772104294	216125
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
dmcclure	NSL required	6/14/2023

Page 63 of 63

Action 216125