Sundry Print Reports
07/31/2023

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: PURRITO 18-19 FED COM Well Location: T23S / R32E / SEC 18 / County or Parish/State:

LOT 1/

Well Number: 621H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM18848 Unit or CA Name: Unit or CA Number:

US Well Number: 3002551230 **Well Status:** Approved Application for **Operator:** DEVON ENERGY

Permit to Drill PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2740151

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 07/10/2023 Time Sundry Submitted: 03:09

Date proposed operation will begin: 07/10/2023

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to move SHL and BHL on the subject well. Please see attached revised C102, drill plan (break test variance included), and directional plan. Permitted SHL: LOT 1, 375 FNL, 560 FWL, 18-23S-32E Proposed SHL: LOT 1, 375 FNL, 605 FWL, 18-23S-32E Proposed BHL: LOT 4, 20 FSL, 990 FWL, 19-23S-32E No new leases have been added since approved APD.

NOI Attachments

Procedure Description

WA018229898_PURRITO_18_19_FED_COM_621H_WL_R3_20230710150918.pdf

break_test_variance_BOP_20230710133733.pdf

5.5_17lb_P110_BTC_20230710133732.pdf

8.625in_32lb_P110EC_SPRINT_FJ_09.16.2022_20230710133732.pdf

Purrito_18_19_Fed_Com_621H_20230710133733.pdf

Purrito_18_19_Fed_Com_621H_Directional_Plan_07_03_23_20230710133733.pdf

10.750_40.50lb_0.350_J55_USS_20230710133732.PDF

veived by OCD: 8/7/2023 9:46:36 AM COM Well Location: T23S / R32E / SEC 18 / County or Parish/State: Page 2 of Well Name: PURRITO 18-19 FED COM

LOT 1/

Well Number: 621H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM18848 Unit or CA Name: Unit or CA Number:

US Well Number: 3002551230 **Well Status:** Approved Application for **Operator:** DEVON ENERGY

Permit to Drill PRODUCTION COMPANY LP

Conditions of Approval

Additional

18 23 32 1 Sundry ID 2740151 Purrito 18 19 Fed Com 621H 20230718104321.pdf

Purrito_18_19_Fed_Com_621H_Dr_COA_Sundry_ID_2740151_20230718104321.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SHAYDA OMOUMI Signed on: JUL 10, 2023 03:09 PM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Compliance Associate 3 **Street Address:** 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (405) 235-3611

Email address: SHAYDA.OMOUMI@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 **BLM POC Email Address:** cwalls@blm.gov

Disposition: Approved **Disposition Date:** 07/28/2023

Signature: Chris Walls

<u>District I</u>
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
<u>District II</u>

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410

Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u>
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico

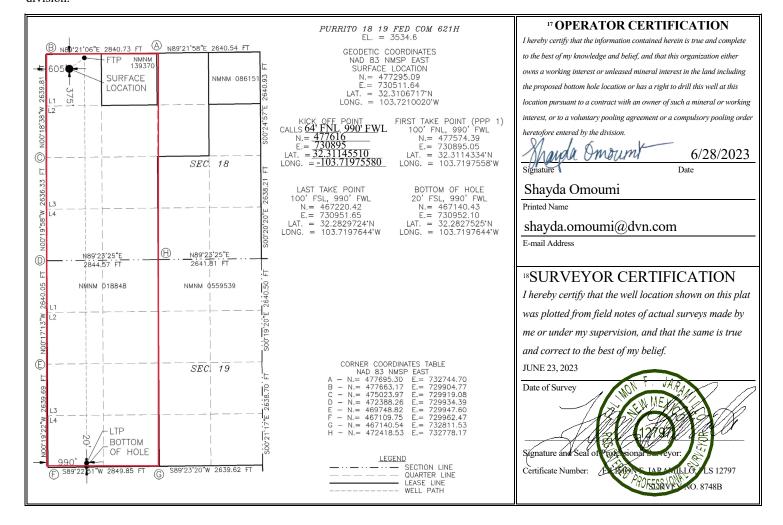
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

	¹ API Number 30-025-51230		² Pool Code 98248 WC-025 G-08 S243217P;UPR W				
⁴ Property Code 327016			roperty Name 2 18 19 FED COM	⁶ Well Number 621 H			
⁷ OGRID No.		8 O _I	⁹ Elevation				
6137		DEVON ENERGY PRODUCTION COMPANY, L.P.					


¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
1	18	23 S	32 E		375	NORTH	605	WEST	LEA
	Bottom Hole Location If Different From Surface								
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
4	19	23 S	32 E		20	SOUTH	990	WEST	LEA

12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No.

689.36

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent	t X	As Dril	led											
API#														
Operator Name: DEVON ENERGY PRODUCTION COMPANY, L.P.							erty N RRITC			ED C	COM			Well Number 621H
Kick C	Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N		Feet			ı E/W	County	
Latitu	18 ide	23S	32E	1	64 Longitu	ıde	NO	RTH	990			WEST	LEA NAD	
32.31	.145510				-103.71		0						83	
First Take Point (FTP)														
UL	Section 18	Township 23S	Range 32E	Lot 1	Feet 100		From N NOR		Feet 990		WE	n E/W ST	County LEA	
Latitu 32.3	ide 311433	4			Longitu 103.7	ude 7197558 83								
Last T	ake Poin	t (LTP)												
UL	Section 19	Township 23S	Range 32E	Lot 4	Feet 100	SOL	n N/S JTH	Feet 990		From WES		Count LEA	·y	
Latitu 32.2	^{ide} 282972	4			Longitu 103.7		644					NAD 83		
Is this	Is this well the defining well for the Horizontal Spacing Unit?													
Is this	well an	infill well?		Υ										
	l is yes p ng Unit.	lease prov	ide API if	availab	ole, Opei	rator I	Name :	and w	/ell n	umber	for I	Definir	ng well fo	r Horizontal
API#														
Ope	rator Nai	me:				Prop	erty N	ame:						Well Number
DEV L.P.	ON ENEF	RGY PRODI	JCTION C	ОМРА	NY,	P	URRIT	O 18-	19 FE	ED COI	M			832H

KZ 06/29/2018

1/18/2017 9:30:29 AM

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000				psi
Maximum Yield Strength	80,000				psi
Minimum Tensile Strength	75,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750		11.750	in.
Wall Thickness	0.350				in.
Inside Diameter	10.050	10.050		10.050	in.
Standard Drift	9.894	9.894		9.894	in.
Alternate Drift					in.
Nominal Linear Weight, T&C	40.50				lbs/ft
Plain End Weight	38.91				lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580		1,580	psi
Minimum Internal Yield Pressure	3,130	3,130		3,130	psi
Minimum Pipe Body Yield Strength	629,000				lbs
		700		420	lla a
Joint Strength		700		420	lbs
Joint Strength Reference Length		11,522		6,915	ft
•					
Reference Length		11,522		6,915	
Reference Length MAKE-UP DATA	 Pipe	11,522 BTC	LTC	6,915 STC	ft

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 connections@uss.com Houston, TX 77064

1-877-893-9461 www.usstubular.com

U. S. Steel Tubular Products 5.500" 17.00lbs/ft (0.304" Wall) P110

2/21/2019 8:12:22 AM

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	110,000				psi
Maximum Yield Strength	140,000				psi
Minimum Tensile Strength	125,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	5.500	6.050	6.050		in.
Wall Thickness	0.304				in.
Inside Diameter	4.892	4.892	4.892		in.
Standard Drift	4.767	4.767	4.767		in.
Alternate Drift					in.
Nominal Linear Weight, T&C	17.00				lbs/ft
Plain End Weight	16.89				lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	7,480	7,480	7,480		psi
Minimum Internal Yield Pressure	10,640	10,640	10,640		psi
Minimum Pipe Body Yield Strength	546				1,000 lbs
Joint Strength		568	445		1,000 lbs
Reference Length		22,271	17,449		ft
MAKE-UP DATA	Pipe	втс	LTC	STC	
Make-Up Loss		4.13	3.50		in.
Minimum Make-Up Torque			3,470		ft-lbs
Maximum Make-Up Torque			5,780		ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

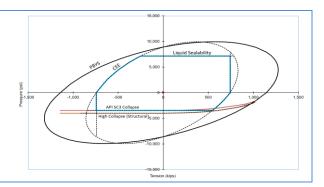
> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S connections@uss.com Spring, Texas 77380

1-877-893-9461 www.usstubular.com Issued on: 16 Sep. 2022 by Logan Van Gorp

Connection Data Sheet

HIGHER TORQUE VERSION

OD	Weight (lb/ft)	Wall Th.	Grade	Alt. Drift:	Connection
8 5/8 in.	Nominal: 32.00	0.352 in.	P110EC	7.875 in.	VAM® SPRINT-FJ
	Plain End: 31.13				


PIPE PROPERTIES									
Nominal OD	8.625	in.							
Nominal ID	7.921	in.							
Nominal Cross Section Area	9.149	sqin.							
Grade Type	Hig	ıh Yield							
Min. Yield Strength	125	ksi							
Max. Yield Strength	140	ksi							
Min. Ultimate Tensile Strength	135	ksi							

CONNECTION PROP	ERTIES	
Connection Type	Semi-Premium Int	egral Flush
Connection OD (nom):	8.665	in.
Connection ID (nom):	7.954	in.
Make-Up Loss	2.614	in.
Critical Cross Section	5.978	sqin.
Tension Efficiency	65.0	% of pipe
Compression Efficiency	65.0	% of pipe
Internal Pressure Efficiency	80.0	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES		
Tensile Yield Strength	744	klb
Compression Resistance	744	klb
Max. Internal Pressure	7,150	psi
Structural Collapse Resistance	4,000	psi
Max. Structural Bending	41	°/100ft
Max. Bending with Sealability	10	°/100ft

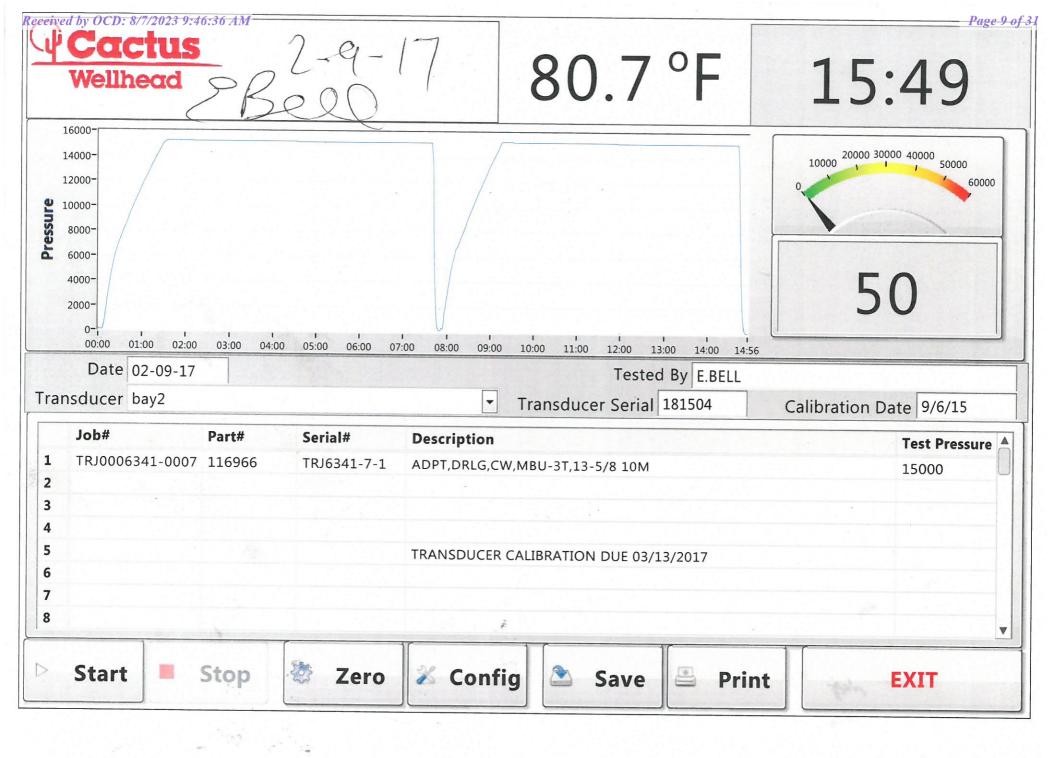
TORQUE VALUI	ES	
Min. Make-up torque	23,000	ft.lb
Opt. Make-up torque	25,500	ft.lb
Max. Make-up torque	28,000	ft.lb
Max. Torque with Sealability (MTS)	48,000	ft.lb

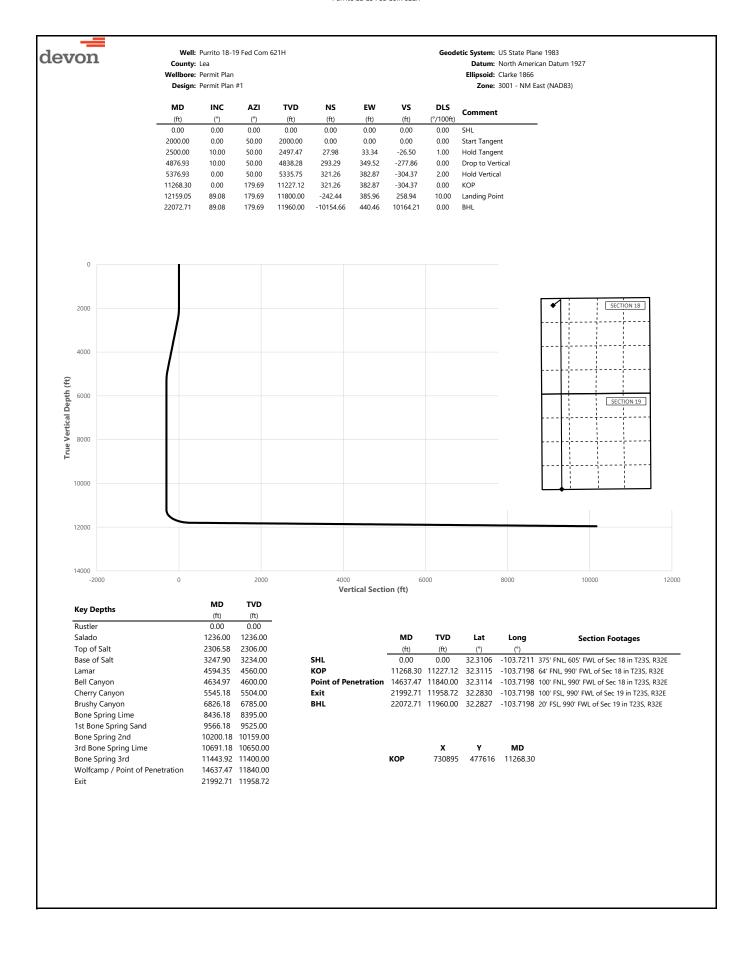
VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance


^{* 87.5%} RBW


Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow OOGO2.III.A.2.i, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed OOGO2.III.A.2.i per the following: Devon Energy will perform a full BOP test per OOGO2.III.A.2.i before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

- 1. Well Control Response:
- 1. Primary barrier remains fluid
- 2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:
 - a) Annular first
 - b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
 - c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866
Zone: 3001 - NM East (NAD83)

MD INC TVD EW vs AZI NS DLS Comment (°/100ft) (ft) (ft) (°) (°) (ft) (ft) (ft) SHL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 50.00 100.00 0.00 0.00 0.00 0.00 200.00 0.00 50.00 200.00 0.00 0.00 0.00 0.00 0.00 300.00 0.00 50.00 300.00 0.00 0.00 0.00 400.00 0.00 50.00 400.00 0.00 0.00 0.00 0.00 500.00 0.00 50.00 500.00 0.00 0.00 0.00 0.00 600.00 0.00 50.00 600.00 0.00 0.00 0.00 0.00 700.00 0.00 50.00 700.00 0.00 0.00 0.00 0.00 800.00 0.00 50.00 800.00 0.00 0.00 0.00 0.00 830.00 0.00 50.00 830.00 0.00 0.00 0.00 0.00 Rustler 900.00 0.00 50.00 900.00 0.00 0.00 0.00 0.00 1000.00 0.00 50.00 1000.00 0.00 0.00 0.00 0.00 1100.00 0.00 50.00 1100.00 0.00 0.00 0.00 0.00 1200.00 0.00 50.00 1200.00 0.00 0.00 0.00 0.00 50.00 0.00 Salado 1236.00 0.00 1236.00 0.00 0.00 0.00 1300.00 0.00 50.00 1300.00 0.00 0.00 0.00 0.00 1400.00 50.00 1400.00 0.00 0.00 0.00 0.00 0.00 1500.00 0.00 50.00 1500.00 0.00 0.00 0.00 0.00 1600.00 0.00 50.00 1600.00 0.00 0.00 0.00 0.00 1700.00 0.00 50.00 1700.00 0.00 0.00 0.00 0.00 1800.00 0.00 50.00 1800.00 0.00 0.00 0.00 0.00 1900.00 1900.00 0.00 50.00 0.00 0.00 0.00 0.00 50.00 2000 00 0.00 2000.00 0.00 0.00 0.00 0.00 Start Tangent 2100.00 2.00 50.00 2099.98 1.12 1.34 -1.06 2.00 2200.00 4.00 50.00 2199.84 4.49 5.35 -4.25 2.00 2300.00 6.00 50.00 2299.45 10.09 12.02 -9.56 2.00 2306.58 6.13 50.00 2306.00 10.53 12 55 -9 98 2.00 Top of Salt 2400.00 50.00 2398.70 17.92 -16.98 2.00 8.00 21.36 2500.00 10.00 50.00 2497.47 27.98 33.34 -26.50 1.00 Hold Tangent 2600.00 10.00 50.00 2595.95 39.14 46.64 -37.08 0.00 2700.00 10.00 50.00 2694.43 50.30 59.94 -47.65 0.00 2800.00 10.00 50.00 2792.91 73.25 -58.23 0.00 61.46 2900.00 10.00 2891.39 -68.80 0.00 50.00 72.62 86.55 3000.00 10.00 50.00 2989.87 83.79 99.85 -79.38 0.00 3100.00 10.00 50.00 3088.35 94.95 113.15 -89.95 0.00 3200.00 10.00 50.00 3186.83 106.11 126.46 -100.53 0.00 132.83 3247.90 10.00 50.00 3234.00 111.46 -105.59 0.00 Base of Salt 3300.00 10.00 50.00 3285.31 117.27 139.76 -111.10 0.00 3400.00 10.00 50.00 3383.79 128.43 153.06 -121.68 0.00 3500.00 10.00 50.00 3482.27 139.59 166.36 -132.25 0.00 3600.00 3580.75 179.66 10.00 50.00 150.76 -142.830.00 3700.00 10.00 50.00 3679.23 161.92 192.97 -153.40 0.00 3800.00 -163.98 10.00 50.00 3777.72 173.08 206.27 0.00 3900.00 3876.20 184.24 -174.55 10.00 50.00 219.57 0.00 4000.00 10.00 50.00 3974.68 195.40 232.87 -185.13 0.00 4100.00 10.00 50.00 4073.16 206.57 246.18 -195.70 0.00 4200.00 10.00 50.00 4171.64 217.73 259.48 -206.28 0.00 4300.00 10.00 50.00 4270.12 272.78 -216.85 0.00 228.89 4400.00 10.00 50.00 4368.60 240.05 286.08 -227.43 0.00 4500.00 10.00 50.00 4467.08 251.21 299.38 -238.00 0.00 4594.35 10.00 50.00 4560.00 261.75 311.94 -247.98 0.00 Lamar 4600.00 10.00 50.00 4565.56 262.38 312.69 -248.58 0.00 4634.97 10.00 50.00 4600.00 266.28 317.34 -252.28 0.00 Bell Canyon 4700.00 10.00 50.00 4664.04 273.54 325.99 -259.15 0.00 4800.00 4762.52 284.70 339.29 -269.73 10.00 50.00 0.00 4876 93 10.00 50.00 4838 28 293 29 0.00 Drop to Vertical 349 52 -277 86 4900.00 9.54 50.00 4861.02 295.80 352.52 -280.25 2.00 5000.00 4959.91 -289.29 7.54 50.00 305.35 363.90 2.00 5100.00 5.54 50.00 5059.25 312.66 372.62 -296.22 2.00 5200.00 3.54 50.00 5158.93 317.75 378.68 -301.04 2.00 5300.00 1.54 5258.83 320.60 382.07 -303.74 50.00 2.00 5376.93 0.00 50.00 5335.75 321.26 382.87 -304.37 2.00 Hold Vertical 5400.00 0.00 179 69 5358 82 -304 37 321 26 382 87 0.00 5500.00 0.00 179.69 5458.82 321.26 382.87 -304.37 0.00 5545.18 -304.37 0.00 179.69 5504.00 321.26 382.87 0.00 Cherry Canyon 5600.00 179.69 5558.82 321.26 382.87 -304.37 0.00 0.00 5700.00 0.00 179 69 5658 82 321 26 382 87 -304 37 0.00 5800.00 0.00 179.69 5758.82 321.26 382.87 -304.37 0.00 5900.00 0.00 179.69 5858.82 321.26 382.87 -304.37 0.00 0.00 5958.82 6000.00 179.69 321.26 382.87 -304.37 0.00

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	1#1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6100.00	0.00	179.69	6058.82	321.26	382.87	-304.37	0.00	
6200.00	0.00	179.69	6158.82	321.26	382.87	-304.37	0.00	
6300.00	0.00	179.69	6258.82	321.26	382.87	-304.37	0.00	
6400.00	0.00	179.69	6358.82	321.26	382.87	-304.37	0.00	
6500.00	0.00	179.69	6458.82	321.26	382.87	-304.37	0.00	
6600.00	0.00	179.69	6558.82	321.26	382.87	-304.37	0.00	
6700.00	0.00	179.69	6658.82	321.26	382.87	-304.37	0.00	
6800.00 6826.18	0.00	179.69 179.69	6758.82 6785.00	321.26 321.26	382.87 382.87	-304.37 -304.37	0.00	Brushy Canyon
6900.00	0.00	179.69	6858.82	321.26	382.87	-304.37	0.00	brasily carryon
7000.00	0.00	179.69	6958.82	321.26	382.87	-304.37	0.00	
7100.00	0.00	179.69	7058.82	321.26	382.87	-304.37	0.00	
7200.00	0.00	179.69	7158.82	321.26	382.87	-304.37	0.00	
7300.00	0.00	179.69	7258.82	321.26	382.87	-304.37	0.00	
7400.00	0.00	179.69	7358.82	321.26	382.87	-304.37	0.00	
7500.00	0.00	179.69	7458.82	321.26	382.87	-304.37	0.00	
7600.00	0.00	179.69	7558.82	321.26	382.87	-304.37	0.00	
7700.00 7800.00	0.00	179.69 179.69	7658.82 7758.82	321.26 321.26	382.87 382.87	-304.37 -304.37	0.00	
7800.00	0.00	179.69	7758.82 7858.82	321.26	382.87 382.87	-304.37 -304.37	0.00	
8000.00	0.00	179.69	7958.82	321.26	382.87	-304.37	0.00	
8100.00	0.00	179.69	8058.82	321.26	382.87	-304.37	0.00	
8200.00	0.00	179.69	8158.82	321.26	382.87	-304.37	0.00	
8300.00	0.00	179.69	8258.82	321.26	382.87	-304.37	0.00	
8400.00	0.00	179.69	8358.82	321.26	382.87	-304.37	0.00	
8436.18	0.00	179.69	8395.00	321.26	382.87	-304.37	0.00	Bone Spring Lime
8500.00	0.00	179.69	8458.82	321.26	382.87	-304.37	0.00	
8600.00	0.00	179.69 179.69	8558.82 8658.82	321.26	382.87	-304.37	0.00	
8700.00 8800.00	0.00	179.69	8758.82	321.26 321.26	382.87 382.87	-304.37 -304.37	0.00	
8900.00	0.00	179.69	8858.82	321.26	382.87	-304.37	0.00	
9000.00	0.00	179.69	8958.82	321.26	382.87	-304.37	0.00	
9100.00	0.00	179.69	9058.82	321.26	382.87	-304.37	0.00	
9200.00	0.00	179.69	9158.82	321.26	382.87	-304.37	0.00	
9300.00	0.00	179.69	9258.82	321.26	382.87	-304.37	0.00	
9400.00	0.00	179.69	9358.82	321.26	382.87	-304.37	0.00	
9500.00	0.00	179.69	9458.82	321.26	382.87	-304.37	0.00	Aut Bassa Cardan Canada
9566.18	0.00	179.69	9525.00	321.26	382.87	-304.37	0.00	1st Bone Spring Sand
9600.00 9700.00	0.00	179.69 179.69	9558.82 9658.82	321.26 321.26	382.87 382.87	-304.37 -304.37	0.00	
9800.00	0.00	179.69	9758.82	321.26	382.87	-304.37	0.00	
9900.00	0.00	179.69	9858.82	321.26	382.87	-304.37	0.00	
10000.00	0.00	179.69	9958.82	321.26	382.87	-304.37	0.00	
10100.00	0.00	179.69	10058.82	321.26	382.87	-304.37	0.00	
10200.00	0.00	179.69	10158.82	321.26	382.87	-304.37	0.00	
10200.18	0.00	179.69	10159.00	321.26	382.87	-304.37	0.00	Bone Spring 2nd
10300.00	0.00	179.69	10258.82	321.26	382.87	-304.37	0.00	
10400.00	0.00	179.69	10358.82	321.26	382.87	-304.37	0.00	
10500.00 10600.00	0.00	179.69 179.69	10458.82 10558.82	321.26 321.26	382.87 382.87	-304.37 -304.37	0.00	
10600.00	0.00	179.69	10650.00	321.26	382.87	-304.37	0.00	3rd Bone Spring Lime
10700.00	0.00	179.69	10658.82	321.26	382.87	-304.37	0.00	opg
10800.00	0.00	179.69	10758.82	321.26	382.87	-304.37	0.00	
10900.00	0.00	179.69	10858.82	321.26	382.87	-304.37	0.00	
11000.00	0.00	179.69	10958.82	321.26	382.87	-304.37	0.00	
11100.00	0.00	179.69	11058.82	321.26	382.87	-304.37	0.00	
11200.00	0.00	179.69	11158.82	321.26	382.87	-304.37	0.00	VOD.
11268.30	0.00	179.69	11227.12	321.26	382.87	-304.37	0.00	KOP
11300.00 11400.00	3.17	179.69	11258.80	320.39	382.87	-303.49	10.00	
11400.00	13.17 17.56	179.69 179.69	11357.66 11400.00	306.19 294.56	382.95 383.01	-289.31 -277.68	10.00 10.00	Bone Spring 3rd
11500.00	23.17	179.69	11452.56	275.05	383.12	-277.68	10.00	some spring sid
11600.00	33.17	179.69	11540.60	227.90	383.38	-211.07	10.00	
11700.00	43.17	179.69	11619.12	166.18	383.72	-149.39	10.00	
11800.00	53.17	179.69	11685.72	91.76	384.13	-75.03	10.00	
11900.00	63.17	179.69	11738.40	6.91	384.59	9.77	10.00	
12000.00	73.17	179.69	11775.53	-85.80	385.10	102.41	10.00	
12100.00	83.17	179.69	11796.01	-183.55	385.64	200.09	10.00	
12159.05	89.08	179.69	11800.00	-242.44	385.96	258.94	10.00	Landing Point
12200.00	89.08	179.69	11800.66	-283.39	386.19	299.86	0.00	

County: Lea Wellbore: Permit Plan Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
12300.00	89.08	179.69	11802.27	-383.37	386.74	399.77	0.00	
12400.00	89.08	179.69	11803.89	-483.36	387.29	499.69	0.00	
12500.00	89.08	179.69	11805.50	-583.34	387.84	599.60	0.00	
12600.00	89.08	179.69	11807.12	-683.33	388.39	699.52	0.00	
12700.00	89.08	179.69	11808.73	-783.31	388.94	799.43	0.00	
12800.00	89.08	179.69	11810.35	-883.30	389.49	899.35	0.00	
12900.00 13000.00	89.08 89.08	179.69 179.69	11811.96 11813.57	-983.28 -1083.27	390.04 390.59	999.26 1099.18	0.00	
13100.00	89.08	179.69	11815.19		391.14	1199.09	0.00	
13200.00	89.08	179.69	11816.80		391.69	1299.01	0.00	
13300.00	89.08	179.69	11818.42	-1383.23	392.24	1398.92	0.00	
13400.00	89.08	179.69	11820.03		392.79	1498.84	0.00	
13500.00	89.08	179.69	11821.64		393.34	1598.75	0.00	
13600.00	89.08	179.69	11823.26		393.89	1698.67	0.00	
13700.00 13800.00	89.08 89.08	179.69 179.69	11824.87 11826.49		394.44 394.99	1798.59 1898.50	0.00	
13900.00	89.08	179.69	11828.10		395.54	1998.42	0.00	
14000.00	89.08	179.69	11829.71		396.09	2098.33	0.00	
14100.00	89.08	179.69	11831.33	-2183.11	396.64	2198.25	0.00	
14200.00	89.08	179.69	11832.94	-2283.09	397.19	2298.16	0.00	
14300.00	89.08	179.69	11834.56	-2383.08	397.74	2398.08	0.00	
14400.00	89.08	179.69	11836.17	-2483.07	398.29	2497.99	0.00	
14500.00	89.08	179.69	11837.78	-2583.05	398.84	2597.91	0.00	
14600.00	89.08	179.69		-2683.04	399.39	2697.82	0.00	Wolferma / Daint
14637.47 14700.00	89.08 89.08	179.69 179.69	11840.00 11841.01	-2720.51	399.59 399.94	2735.27 2797.74	0.00	Wolfcamp / Point
14800.00	89.08	179.69	11842.63	-2883.01	400.49	2897.65	0.00	
14900.00	89.08	179.69	11844.24	-2982.99	401.04	2997.57	0.00	
15000.00	89.08	179.69	11845.85	-3082.98	401.59	3097.49	0.00	
15100.00	89.08	179.69	11847.47	-3182.96	402.14	3197.40	0.00	
15200.00	89.08	179.69	11849.08	-3282.95	402.69	3297.32	0.00	
15300.00	89.08	179.69	11850.70		403.24	3397.23	0.00	
15400.00 15500.00	89.08 89.08	179.69 179.69	11852.31 11853.92	-3482.92	403.79 404.34	3497.15 3597.06	0.00	
15600.00	89.08	179.69	11855.54	-3682.89	404.89	3696.98	0.00	
15700.00	89.08	179.69	11857.15		405.44	3796.89	0.00	
15800.00	89.08	179.69	11858.77	-3882.86	405.99	3896.81	0.00	
15900.00	89.08	179.69	11860.38	-3982.85	406.54	3996.72	0.00	
16000.00	89.08	179.69	11862.00	-4082.83	407.09	4096.64	0.00	
16100.00	89.08	179.69	11863.61	-4182.82	407.64	4196.55	0.00	
16200.00	89.08	179.69	11865.22		408.19	4296.47	0.00	
16300.00 16400.00	89.08 89.08	179.69 179.69	11866.84 11868.45	-4382.79 -4482.77	408.74 409.29	4396.38 4496.30	0.00	
16500.00	89.08	179.69	11870.07	-4482.77	409.29	4596.22	0.00	
16600.00	89.08	179.69		-4682.75	410.39	4696.13	0.00	
16700.00	89.08	179.69	11873.29	-4782.73	410.94	4796.05	0.00	
16800.00	89.08	179.69	11874.91	-4882.72	411.49	4895.96	0.00	
16900.00	89.08	179.69	11876.52		412.04	4995.88	0.00	
17000.00	89.08	179.69	11878.14		412.59	5095.79	0.00	
17100.00 17200.00	89.08 89.08	179.69 179.69	11879.75	-5182.67 -5282.66	413.14 413.69	5195.71 5295.62	0.00	
17200.00	89.08	179.69	11881.36 11882.98	-5282.66 -5382.64	413.69 414.24	5295.62	0.00	
17400.00	89.08	179.69	11884.59		414.79	5495.45	0.00	
17500.00	89.08	179.69	11886.21	-5582.61	415.34	5595.37	0.00	
17600.00	89.08	179.69	11887.82	-5682.60	415.89	5695.28	0.00	
17700.00	89.08	179.69	11889.43	-5782.59	416.44	5795.20	0.00	
17800.00	89.08	179.69		-5882.57	416.99	5895.12	0.00	
17900.00	89.08	179.69	11892.66	-5982.56	417.54	5995.03	0.00	
18000.00 18100.00	89.08 89.08	179.69 179.69	11894.28 11895.89	-6082.54 -6182.53	418.09 418.64	6094.95 6194.86	0.00	
18200.00	89.08	179.69	11897.50	-6282.51	419.19	6294.78	0.00	
18300.00	89.08	179.69	11899.12		419.74	6394.69	0.00	
18400.00	89.08	179.69	11900.73	-6482.48	420.29	6494.61	0.00	
18500.00	89.08	179.69	11902.35	-6582.47	420.84	6594.52	0.00	
18600.00	89.08	179.69	11903.96	-6682.45	421.39	6694.44	0.00	
18700.00	89.08	179.69		-6782.44	421.94	6794.35	0.00	
18800.00	89.08	179.69	11907.19	-6882.43	422.49	6894.27	0.00	
18900.00 19000.00	89.08 89.08	179.69 179.69	11908.80 11910.42	-6982.41 -7082.40	423.04 423.59	6994.18 7094.10	0.00	
19000.00	89.08	179.69	11910.42		423.59	7094.10	0.00	

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19200.00	89.08	179.69	11913.65	-7282.37	424.69	7293.93	0.00	
19300.00	89.08	179.69	11915.26	-7382.35	425.24	7393.85	0.00	
19400.00	89.08	179.69	11916.87	-7482.34	425.79	7493.76	0.00	
19500.00	89.08	179.69	11918.49	-7582.32	426.34	7593.68	0.00	
19600.00	89.08	179.69	11920.10	-7682.31	426.89	7693.59	0.00	
19700.00	89.08	179.69	11921.72	-7782.29	427.44	7793.51	0.00	
19800.00	89.08	179.69	11923.33	-7882.28	427.99	7893.42	0.00	
19900.00	89.08	179.69	11924.94	-7982.27	428.54	7993.34	0.00	
20000.00	89.08	179.69	11926.56	-8082.25	429.09	8093.25	0.00	
20100.00	89.08	179.69	11928.17	-8182.24	429.64	8193.17	0.00	
20200.00	89.08	179.69	11929.79	-8282.22	430.19	8293.08	0.00	
20300.00	89.08	179.69	11931.40	-8382.21	430.74	8393.00	0.00	
20400.00	89.08	179.69	11933.01	-8482.19	431.29	8492.91	0.00	
20500.00	89.08	179.69	11934.63	-8582.18	431.84	8592.83	0.00	
20600.00	89.08	179.69	11936.24	-8682.16	432.39	8692.75	0.00	
20700.00	89.08	179.69	11937.86	-8782.15	432.94	8792.66	0.00	
20800.00	89.08	179.69	11939.47	-8882.14	433.49	8892.58	0.00	
20900.00	89.08	179.69	11941.08	-8982.12	434.04	8992.49	0.00	
21000.00	89.08	179.69	11942.70	-9082.11	434.59	9092.41	0.00	
21100.00	89.08	179.69	11944.31	-9182.09	435.14	9192.32	0.00	
21200.00	89.08	179.69	11945.93	-9282.08	435.69	9292.24	0.00	
21300.00	89.08	179.69	11947.54	-9382.06	436.24	9392.15	0.00	
21400.00	89.08	179.69	11949.15	-9482.05	436.79	9492.07	0.00	
21500.00	89.08	179.69	11950.77	-9582.03	437.34	9591.98	0.00	
21600.00	89.08	179.69	11952.38	-9682.02	437.89	9691.90	0.00	
21700.00	89.08	179.69	11954.00	-9782.00	438.44	9791.81	0.00	
21800.00	89.08	179.69	11955.61	-9881.99	438.99	9891.73	0.00	
21900.00	89.08	179.69	11957.23	-9981.98	439.54	9991.65	0.00	
21992.71	89.08	179.69	11958.72	-10074.67	440.05	10084.28	0.00	Exit
22000.00	89.08	179.69	11958.84	-10081.96	440.09	10091.56	0.00	
22072.71	89.08	179.69	11960.00	-10154.66	440.46	10164.21	0.00	BHL

1. Geologic Formations

TVD of target	11959	Pilot hole depth	N/A
MD at TD:	22073	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	830		
Salado	1236		
Top of Salt	2306		
Base of Salt	3234		
Lamar	4560		
Bell Canyon	4600		
Cherry Canyon	5504		
Brushy Canyon	6785		
Bone Spring Lime	8395		
1st Bone Spring Sand	9525		
Bone Spring 2nd	10159		
3rd Bone Spring Lime	10650		
Bone Spring 3rd	11400		
Wolfcamp	11840		
-			

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing Interval	
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	40 1/2	J-55	BTC	0	855	0	855
9 7/8	8 5/8	32	P110	Sprint FJ	0	11400	0	11400
7 7/8	5 1/2	17	P110	ВТС	0	22073	0	11959

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

3. Cementing Program (Primary Design)								
Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description			
Surface	519	Surf	13.2	1.44	Lead: Class C Cement + additives			
Int 1	332	Surf	9	3.27	Lead: Class C Cement + additives			
IIIt 1	535	6785	13.2	1.44	Tail: Class H / C + additives			
Int 1	471	Surf	13.2	1.44	2nd State: Bradenhead Squeeze - Lead:Class C Cement + additives			
Bradenhead	332	Surf	9	3.27	Lead: Class C Cement + additives			
Squeeze	535	6785	13.2	1.44	Tail: Class H / C + additives			
Production	117	9268	9	3.27	Lead: Class H /C + additives			
Froduction	1430	11268	13.2	1.44	Tail: Class H / C + additives			

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	ype	✓	Tested to:
			Anı	Annular		50% of rated working pressure
Int 1	13-58"	5M	Blind	d Ram	X	
liit I	13-36	JIVI	Pipe	Ram		5M
			Doub	le Ram	X	JIVI
			Other*			
	13-5/8"	5M	Annular (5M)		X	50% of rated working pressure
Production			Blind Ram		X	- 5M
Production			Pipe Ram			
			Double Ram		X	SIVI
			Other*			
			Annul	ar (5M)		
			Blind Ram Pipe Ram			
						1
			Double Ram]
			Other*			
N A variance is requested for	the use of	a diverter o	n the surface	e casing. See	attached for	schematic.
Y A variance is requested to	A variance is requested to run a 5 M annular on a 10M system					

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, (Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
X	Completion Report and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6529
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

Cheountere	cheountered measured values and formations will be provided to the BEW.				
N	H2S is present				
Y	H2S plan attached.				

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	3
X	Directional Plan
	Other, describe

Purrito 18-19 Fed Com 621H

10 3/4		surface csg in a	14 3/4 i	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	40.50		j 55	btc	15.98	3.48	0.5	972	7	0.84	6.57	39,36
"B"			,	btc				0				0
	w	/8.4#/g mud, 30min Sfc Csg Tes	st psig: 1.500	Tail Cmt	does not	circ to sfc.	Totals:	972				39,36
omparison o		to Minimum Required Cem										
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cr
14 3/4	0.5563	519	747	541	38	9.00	3710	5M				1.50
urst Frac Grac	lient(s) for Se	egment(s) A, B = , b All > 0).70, OK.									
8 5/8		casing inside the	10 3/4	Ca.ur.":	la!t	<u>Design</u>		1 au 41	DO:	Int 1	- 0	\A/-!
Segment	#/ft	Grade	110	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A" "B"	32.00		p 110	vam sprint fj	2.04	0.64	1.1	11,400 0	1	1.84	1.08	364,80 0
	w/	/8.4#/g mud, 30min Sfc Csg Tes	st psig: 30				Totals:	11,400				364,80
		-		led to achieve a top of	0	ft from su		972				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cı
9 7/8	0.1261	867	1856	1456	27	10.50	3892	5M				0.61
	020.	33.	6785			10.00	sum of sx	Σ CuFt				Σ%exce
D V Tool(s).												
y stage % :	t yld > 1.35	219	15				1567	2864				97
oy stage % : lass 'C' tail cm Tail cmt			15			Design Fo	1567			Drod 1		
Dy stage % : Class 'C' tail cm Tail cmt 5 1/2		casing inside the		Coupling	Podu	Design Fac	1567	2864	P@o	Prod 1		97
Tail cmt 5 1/2 Segment	#/ft		8 5/8	Coupling	Body	Collapse	1567 ctors Burst	2864	B@s	а-В	a-C	97 Weigl
Tail cmt 5 1/2 Segment "A"		casing inside the	15	Coupling btc	Body 2.68		1567	2864 Length 22,073	B@s 2			97 Weigl 375,24
y stage %: lass 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft	casing inside the	8 5/8		-	Collapse	1567 ctors Burst	2864 Length 22,073 0	_	а-В		97 Weigl 375,24
Tail cmt 5 1/2 Segment "A" "C"	#/ft	casing inside the	8 5/8	btc	-	Collapse	1567 ctors Burst	2864 Length 22,073 0	_	а-В		97 Weigl 375,24 0 0
y stage %: lass 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft 17.00	casing inside the Grade	8 5/8 p 110		-	Collapse	ctors Burst 1.63	2864 Length 22,073 0 0	_	а-В		97 Weigl 375,24 0 0
Tail cmt 51/2 Segment "A" "B" "C"	#/ft 17.00	casing inside the Grade	8 5/8 p 110 st psig: 2,631	btc 0	2.68	Collapse 1.15	1567 Ctors Burst 1.63 Totals:	2864 Length 22,073 0 0 22,073	_	а-В	1.92	97 Weigl 375,24 0 0 375,24
Tail cmt 51/2 Segment "A" "B" "C" "D"	#/ft 17.00	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement	85/8 p 110 st psig: 2,631 volume(s) are intend	btc 0 led to achieve a top of	2.68	Collapse 1.15	tors Burst 1.63 Totals: rface or a	2864 Length 22,073 0 0 22,073 200	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap.
Tail cmt 5 1/2 Segment "A" "C" "D"	#/ft 17.00 w/	casing inside the Grade Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage	0 ded to achieve a top of Min	2.68 11200 1 Stage	1.15 ft from su Drilling	Totals:	Length 22,073 0 0 22,073 200 Req'd	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Dia
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	#/ft 17.00 w/ Annular Volume	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt	0 led to achieve a top of Min Cu Ft	2.68 11200 1 Stage % Excess	ft from su Drilling Mud Wt	tors Burst 1.63 Totals: rface or a	2864 Length 22,073 0 0 22,073 200	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di: Hole-C;
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	#/ft 17.00 w/ Annular Volume 0.1733	casing inside the Grade Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage	0 ded to achieve a top of Min	2.68 11200 1 Stage	1.15 ft from su Drilling	Totals:	Length 22,073 0 0 22,073 200 Req'd	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di Hole-C
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	#/ft 17.00 w/ Annular Volume 0.1733	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt	0 led to achieve a top of Min Cu Ft	2.68 11200 1 Stage % Excess	ft from su Drilling Mud Wt	Totals:	Length 22,073 0 0 22,073 200 Req'd	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di Hole-C
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	#/ft 17.00 w/ Annular Volume 0.1733	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt	0 led to achieve a top of Min Cu Ft	2.68 11200 1 Stage % Excess	ft from su Drilling Mud Wt	Totals:	Length 22,073 0 0 22,073 200 Req'd	_	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm	#/ft 17.00 w/ Annular Volume 0.1733	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt	0 led to achieve a top of Min Cu Ft	2.68 11200 1 Stage % Excess	ft from su Drilling Mud Wt	Totals: Totals: MASP	Length 22,073 0 0 22,073 200 Req'd	2	а-В	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di: Hole-C;
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 llass 'C' tail cm	#/ft 17.00 w/ Annular Volume 0.1733	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442	0 ded to achieve a top of Min Cu Ft 1885	2.68 11200 1 Stage % Excess	ft from su Drilling Mud Wt 10.50	Totals: Totals: MASP	Length 22,073 0 0 22,073 200 Req'd BOPE	2	a-B 2.73	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di Hole-C 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm	#/ft 17.00 W/ Annular Volume 0.1733 ttyld > 1.35	78.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442	led to achieve a top of Min Cu Ft 1885 Coupling 0.00	2.68 11200 1 Stage % Excess 30	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 22,073 0 0 22,073 200 Req'd BOPE	2	a-B 2.73	1.92	97 Weigl 375,24 0 0 375,24 overlap. Min Di Hole-C 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 llass 'C' tail cm	#/ft 17.00 W/ Annular Volume 0.1733 tyld > 1.35	Casing inside the Grade (8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547 Grade	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442	0 ded to achieve a top of Min Cu Ft 1885	2.68 11200 1 Stage % Excess 30	ft from su Drilling Mud Wt 10.50	Totals: rface or a Calc MASP	Length 22,073 0 0 22,073 200 Req'd BOPE	2	a-B 2.73	1.92	97 Weigi 375,24 0 0 375,24 overlap. Min Di Hole-Ci 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 #N/A 0 Segment "A"	#/ft 17.00 W/ Annular Volume 0.1733 tyld > 1.35	casing inside the Grade /8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547 Grade	85/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442 51/2	o led to achieve a top of Min Cu Ft 1885 Coupling 0.00 0.00	2.68 11200 1 Stage % Excess 30 #N/A	ft from su Drilling Mud Wt 10.50	Totals: Totals: MASP Factors Burst Totals:	Length 22,073 0 0 22,073 200 Req'd BOPE	2	a-B 2.73	1.92 ing> a-C	97 Weigi 375,2-0 0 375,2-0 overlap. Min Di Hole-Ci 0.91 Weigi 0 0
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A" "B" """ """ """ """ """ """ """ """	#/ft 17.00 w/ Annular Volume 0.1733 tyld > 1.35	Casing inside the Grade (8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547 Grade (8.4#/g mud, 30min Sfc Csg Tes Cmt vol comt	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442 5 1/2 st psig: each below includes the	ded to achieve a top of Min Cu Ft 1885 Coupling 0.00 0.00 his csg, TOC intended	2.68 11200 1 Stage % Excess 30 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: Totals: MASP Factors Burst Totals:	Length 22,073 0 0 22,073 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.73	1.92 ing> a-C	97 Weigl 375,2-0 0 375,2-0 overlap. Min Di Hole-C 0.91 Weigl 0 0 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size #N/A 0 Segment "A" "B" "C" "B" "B" "C" "B" "B" "B" "B" "B	#/ft 17.00 Annular Volume 0.1733 tyld > 1.35 #/ft Annular	Casing inside the Grade (8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547 Grade (8.4#/g mud, 30min Sfc Csg Tes Cmt vol c 1 Stage	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442 5 1/2 st psig: alc below includes the stage of th	ded to achieve a top of Min Cu Ft 1885 Coupling 0.00 0.00 his csg, TOC intended Min	2.68 11200 1 Stage % Excess 30 #N/A #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse ft from su Drilling	Totals: rface or a Calc MASP Totals: rfactors Burst Totals: rfactors Calc Calc Calc	Length 22,073 0 0 22,073 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.73	1.92 ing> a-C	97 Weigl 375,2-0 0 375,2-0 verlap. Min Di Hole-C 0.91 Weigl 0 0 overlap. Min Di
5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A" "B"	#/ft 17.00 w/ Annular Volume 0.1733 tyld > 1.35	Casing inside the Grade (8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1547 Grade (8.4#/g mud, 30min Sfc Csg Tes Cmt vol comt	8 5/8 p 110 st psig: 2,631 volume(s) are intend 1 Stage CuFt Cmt 2442 5 1/2 st psig: each below includes the	ded to achieve a top of Min Cu Ft 1885 Coupling 0.00 0.00 his csg, TOC intended	2.68 11200 1 Stage % Excess 30 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: Totals: MASP Factors Burst Totals:	Length 22,073 0 0 22,073 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.73	1.92 ing> a-C	97 Weigl 375,24 0 0 375,24 overlap. Min Di Hole-C 0.91 Weigl 0 0

Carlsbad Field Office 7/18/2023

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMNM18848

LOCATION: | Section 18, T.23 S., R.32 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Purrito 18-19 Fed Com 621H

SURFACE HOLE FOOTAGE: 375'/N & 605'/W **BOTTOM HOLE FOOTAGE** 20'/S & 990'/W

ATS/API ID: 3002551230 APD ID: 10400069204

Sundry ID: N/a

COA

H2S	Yes ▼		
Potash	None		
Cave/Karst Potential	Low		
Cave/Karst Potential	☐ Critical		
Variance	■ None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔽	
Other	□4 String	Capitan Reef	□WIPP
		None ▼	
Other	Pilot Hole	☐ Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None	Int 1 ▼	Squeeze
			None -
Special	□ Water	☑ COM	□ Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	✓ Break Testing	□ Offline	☐ Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Sand Dunes/Triste Draw**, **Wildcat**, **and Bone Springs** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 972 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6785' (867 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 700 sxs Class C)

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 5000 (5M) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 14-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

(575) 361-2822

- Eddy County

 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

 BLM_NM_CFO_DrillingNotifications@BLM.GOV
- Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 7/18/2023

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 248810

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	248810
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	WHEN DETERMINING TOP OF CEMENT MUST NOT RUN Echo-meter. CEMENT TOP MUST BE DETERMINED BY CBL.	8/7/2023
pkautz	IF ON ANY STRING CEMENT DOES NOT CIRCULATE, A CBL MUST BE RUN ON THAT STRING OF CASING.	8/7/2023