District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Date:

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

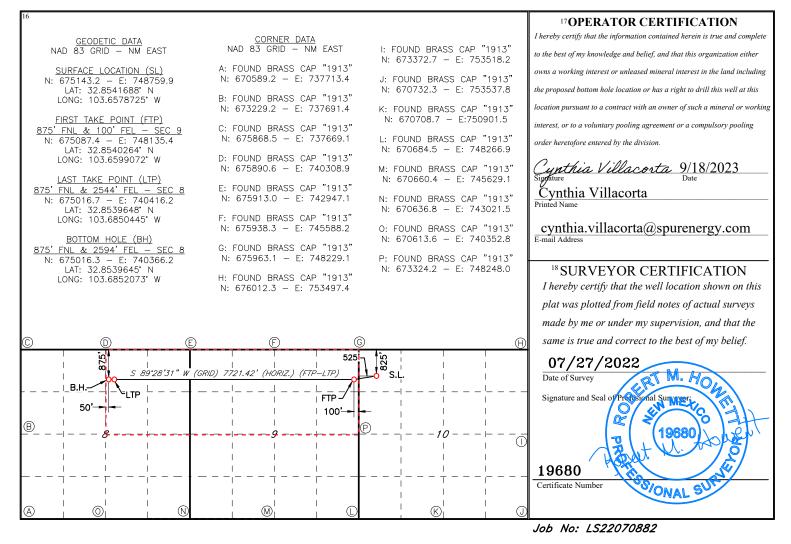
1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011 Permit 351097

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	me and Address									2. OGRID	Number 328947		
	r Energy Partners 5 Katy Freeway	LLC								3. API Nu			
	iston, TX 77024									3. API NU	30-025-52031		
4. Property Cod			5. Property	Name						6. Well No			
334753 VALHALLA 9 8 STATE										0. Wen No	060H		
													-
		- ··				e Location							
UL - Lot D	Section 10	Township 17		inge 33E	Lot Idn D	Feet From 82	E	N/S Line N	Feet From	25	E/W Line W	County Le	
D	10	17	5	33E	D	02	5	IN	5	25	vv	Le	a
					8. Proposed Bot	tom Hole Lo	cation						
UL - Lot	Section	Township	Ran			eet From	1	N/S Line	Feet From		E/W Line	County	
В	8	17S		33E	В	875		N	25	94	E	Le	а
					9. Pool Ir	nformation							
WC-025 G-03	3 S173318N;YESC)									97727		
	·				A -1-1141 1 144						1		
11. Work Type		12. Well Typ		11	Additional W 3. Cable/Rotary			se Type	15 010	und Level	Flavation		
	v Well)IL	1.	5. Cable/Rolary		14. Lea	State	15. 610	4169	Elevation		
16. Multiple 17. Proposed Depth 18. Formation						19. Con		20. Spu					
N			4556		Blinebry		1/1/2024						
Depth to Groun	nd water	•		D	stance from nearest fre	esh water well			Distance	e to neares	t surface water		
🛛 We will be u	using a closed-loo	p system in lie	u of lined	pits									
				2	1. Proposed Casing	and Cemen	t Prog	ram					
Туре	Hole Size	Casing	Size		ng Weight/ft		ng Dept		Sacks of C	ement		Estimated TOC	
Surf	17.5	13.3	75		54.5	1	1525		1487	7		0	
Int1	12.25	9.62	5		36	3	3275		827			0	
Prod	8.75	7			32	6	6900		2816	6		0	
Prod	8.75	5.5			20	1	4556		2816	6		0	
				Cae	ing/Cement Progra	m: Additions		monte					
				045	ing/cement Progra			menta					
	_				2. Proposed Blowo	ut Preventio	n Prog						
	Туре			Worki	ng Pressure			Test Press	ure			facturer	
	Double Ram				5			3000			SHA	FFER	
						1							
23. I hereby c knowledge a	ertify that the infor	mation given ab	ove is true	e and complete	to the best of my			C	DIL CONSERVA	ATION DIV	ISION		
		1 with 19 15 14		C Mand/or 1	9.15.14.9 (B) NMAC								
X, if applicat		a with 13.13.14.			5.10.14.3 (D) NIMAC								
,													
Signature:													
Printed Name:	Electronical	ly filed by Saral	n Chapma	in		Approved By	/:	Paul F Kaut	z				
Title:	Regulatory		·			Title:		Geologist					
Email Address:	0,	@spurenergy.co	om			Approved Da	ate:	9/29/2023		Expir	ation Date: 9/29	/2025	


Conditions of Approval Attached

9/28/2023

Phone: 832-930-8613

1625 Pho: Dist 811 Pho: Dist 1000 Pho: Dist 1220	istrict IState of New Mexicoistrict IState of New Mexicoistrict IIIS First St., Artesia, NM 88210hone: (575) 748-1283 Fax: (575) 748-9720OIL CONSERVATION DIVISIONistrict II1220 South St. Francis Dr.000 Rio Brazos Road, Aztec, NM 87410Santa Fe, NM 87505hone: (505) 344-6178 Fax: (505) 344-6170Santa Fe, NM 87505						Su	bmit one	Form C-10 rised August 1, 20 copy to appropria District Offi MENDED REPOR			
				WELL I	OCA	FION A	ND ACF	REAGE DEDIC	ATION PLA	Т		
	1	API Number	r		² Pool	Code			³ Pool Na	me		
	30-01	5-			44500			MAL	JAMAR; YE	SO, WE	ST	
	⁴ Property Coo	de							Well Number 60H			
	⁷ OGRID N	NO.			- F			Elevation				
	328947				SPU	R ENE	RGY PA	ARTNERS LLC	•			4169'
		•				10	Surface	Location				
	UL or lot no.	Section	Townsh	ip Range	Lot I	dn Fe	eet from the	North/South line	Feet From the	East/W	est line	County
	D	10	17S	33E			825	NORTH	525	WE	ST	LEA
				11	Botto	m Hole	Location	If Different Fr	om Surface			
	UL or lot no.	Section	Townsh	ip Range	ge Lot Idn Feet from the North/South line Feet from the					East/W	est line	County
	В	8	17S	33E			875	NORTH	2594	EAS	ST	LEA
	12 Dedicated Acres	¹³ Joint	or Infill	14 Consolidation	n Code	15 Order N	lo.				•	
	480											

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 9/29/2023 11:11:53 AM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

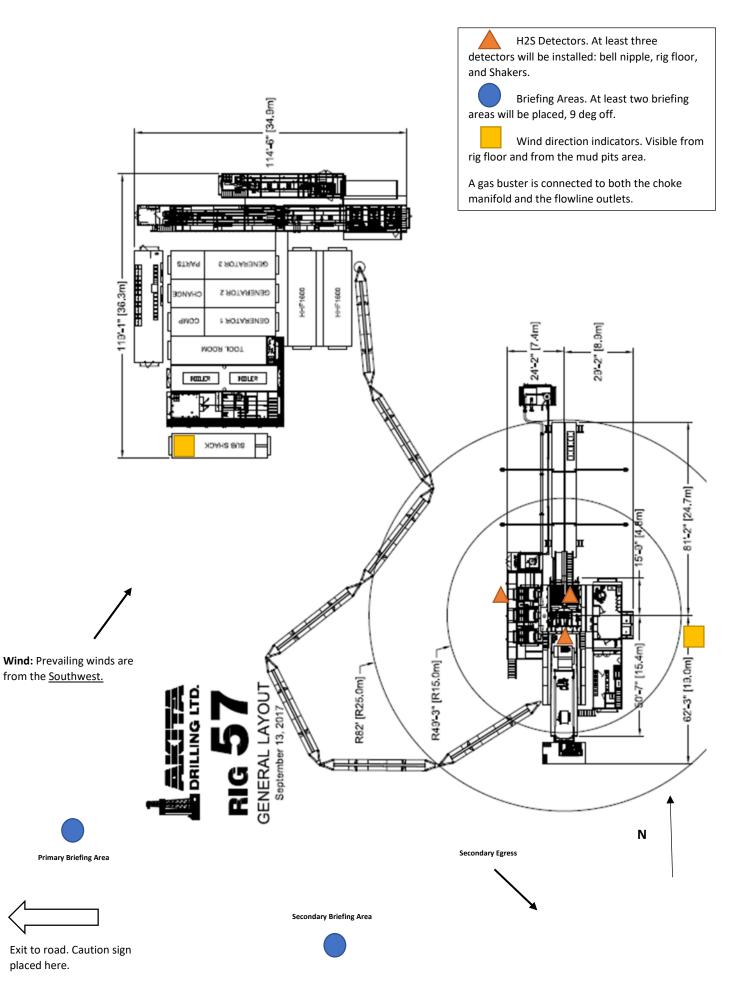
PERMIT CONDITIONS OF APPROVAL

Operator	Name and Address:	API Number:				
	Spur Energy Partners LLC [328947]	30-025-52031				
	9655 Katy Freeway	Well:				
	Houston, TX 77024	VALHALLA 9 8 STATE #060H				
OCD	Condition					
Reviewer						
pkautz	utz Notify OCD 24 hours prior to casing & cement					
pkautz	utz Will require a File As Drilled C-102 and a Directional Survey with the C-104					
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the water zone or zones and shall immediately set in cement the water protection string	e operator shall drill without interruption through the fresh				
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil o drilling fluids and solids must be contained in a steel closed loop system	r diesel. This includes synthetic oils. Oil based mud,				
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing					
pkautz	If cement does not circulate on any string, a CBL is required for that string of casing.					
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud					

Form APD Conditions

Permit 351097

Page 3 of 37


Permian Drilling

Hydrogen Sulfide Drilling Operations Plan Vahlhalla 9-8 State Development

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the even of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then secondary egress route should be taken.

Spur Energy Partners New Mexico Operations Hydrogen Sulfide Operation Plan

A. Introduction:

The Safety of all personnel at Spur Energy Partners Facilities is of utmost importance to the company, and therefor management and employees must take responsibility for their safety and for the safety of all employees and others at a facility. If you have any concerns about the safe operations of the facility, contract personnel, or vendors, please contact the Company's Safety Contact, Superintendent, or Production Foreman immediately.

The objective of this contingency plan is to provide an organized plan of action for alerting, responding to and protecting employees, other workers and the public from H2S exposure in the event of a release of a potentially hazardous volume of H2S to the atmosphere. This plan should be activated immediately if any such release occurs. The Superintendent is responsible for initiating and carrying out the plan.

B. Scope:

Prevent the uncontrolled release of H₂S into the atmosphere. Provide proper procedures and equipment to alert and respond to emergencies.

Provide immediate and adequate medical attention should an injury occur.

To provide Company employees working at actual or potential Hydrogen Sulfide (H2S) facilities with a safe procedure to comply with applicable Federal, State and Company requirements.

This document is intended to provide general policy, procedures and expectations surrounding elevated levels of H2S. The intent is to promote sound and safe operations, while seeking effective communication surrounding operational considerations working around H2S.

This procedure applies to all Company employees and contractors working at facilities that have the potential to release 100 ppm or higher concentrations of H2S.

The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H₂S).

C. Hydrogen Sulfide Gas (H2S) Characteristics:

- 1. H2S is a toxic, poisonous gas that could cause death or injury. And it is also flammable.
- 2. H2S is an irritant and extremely toxic gas that is several times deadlier than carbon monoxide (CO).
- 3. H2S is heavier than air with a specific gravity of 1.1895 @ 600 F. so it will tend to lie in lower areas. Wind movement or air currents can readily disperse H2S since wind currents can easily overcome the heavier weight. On calm days, with no wind, the H2S will tend to accumulate in dangerous concentrations; however, if the H2S is warmer than the surrounding air it may rise.
- 4. H2S is colorless.
- 5. In small concentrations, H2S has the characteristic odor of rotten eggs. It may be detected by smell at a concentration in air of about 2 ppm but may NOT be detected

at high concentrations. DO NOT DEPEND ON THE SENSE OF SMELL TO DETECT H2S! H2S will paralyze the olfactory nerve causing a loss of the sense of smell within 2 – 15 minutes of an exposure in concentrations as low as 100-150 ppm.

- H2S burns with a blue flame and has an auto ignition temperature of 5000 F. H2S forms an explosive mixture in the range of 4.3% to 45% by volume with air. H2S, when ignited, produces Sulfur Dioxide (SO2). SO2 is another toxic gas but less toxic than H2S.
- 7. Physiological Effects
 - 1,000-2,000+ ppm: Loss of consciousness and possible death.
 - 100-1,000 ppm: Serious respiratory, central nervous, and cardiovascular system effects.
 - 150-200 ppm: Olfactory fatigue (sense of smell is significantly impaired).
 - 100 ppm: Immediately Dangerous to Life and Health (IDLH concentration).
 - 5-30 ppm: Moderate irritation of the eyes.
 - 5-10 ppm: Relatively minor metabolic changes in exercising individuals during short-term exposures.
 - Less than 5 ppm: Metabolic changes observed in exercising individuals, but not clinically significant.
 - 5 ppm: Increase in anxiety symptoms (single exposure).
 - 5 ppm: Start of the dose-response curve (short-term exposure).
 - 0.032-0.02 ppm: Olfactory threshold (begin to smell).

D. H₂STraining

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing work at an effected facility:

- 1. The hazards and characteristics of hydrogen sulfide (H2S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.
- 5. The procedures for operating process equipment.

In addition, supervisory personnel will be trained in the following areas:

- 1. Corrective action and shutdown procedures when a release or leak occurs.
- 2. Notification process

Annual drills will be conducted to utilize the procedures and make improvements as needed. It will also serve as refresher training on the process. Note: All H₂S safety equipment and systems will be installed, tested, and operational when operation commences.

E. Protective equipment controls:

Any facility that has the potential to emit H2S at 100 ppm or higher will be required to install and utilize the below controls:

- 1. Where applicable, area air monitors will be installed and function tested and calibrated no less than monthly and set on a quarterly basis PM schedule.
- 2. Facility operators will use self contained breathing apparatuses (SCBA's) to perform routine operations in areas where H2S may be present.
- 3. Trigger of 100 PPM or more must be communicated and work proceeding the trigger must use the buddy system.
- 4. Visible windsocks must be installed at key locations surrounding the facility.
- 5. H2S warning signs must be placed at the entrance to the facility as well as other key locations.
- 6. Personal H2S Monitor are required to be worn by all personnel on locations.
- 7. Stairs and ladders leading to the top of a tank or vessel containing 300 ppm or greater shall be chained or marked to restrict entry.

F. Emergency Procedures

1. Spill or Release of H₂S gas

If a spill or leak releases H₂S the following action must be initiated and completed:

- a. Internally Employee contacts supervisor and HSE Department and performs "d" below.
- b. Externally Someone identifies a possible H₂S emergency and reports it to Company Management, via the listed phone number on posted facility signs.
- c. The Company dispatches an employee to investigate possible H₂S emergency and will secure situation or initiate emergency call for backup.
- d. If the Radius of Exposure has been breached begin the following:
 - Establish safe command center.
 - Call for additional personnel and delegate the following:
 - i. Notifying public safety agencies (Sheriff, Fire Department, Department of Public Safety, Hwy. Department).
 - ii. Safeguarding the facility and effected area.
 - iii. Blocking roads as needed.
 - iv. Notifying/evacuating public.
 - v. Notifying regulatory agencies.
 - vi. Gathering additional information about release ie., location, flowrate, quantity, etc.
 - vii. Stopping release if safe to do so (use 2 trained persons)
 - viii. Notifying company management.
 - ix. Cleanup/repair facilities.

- e. Facility Standard Operating Procedure
 - Evacuate the area, travel crosswind then proceed upwind.
 - Gather at muster point. Ensure Primary Muster point is upwind
 - Notify managers & appropriate EMS if required.
 - Safely shut down (ESD) facility if the facility hasn't already shut in.
 - Pick up SCBA (should be a 30 minute 1 hour pack, located at Muster point.)
 - Use buddy system for man down scenario with rescuers assigned.
 - 1 person to mask up to operate facility controls as needed.
 - 1 person for rescue if needed.
 - 1 person for calling EMS and company management
 - Investigate area and isolate release of gas if safe to do and ensure closure using 4 gas monitor.
 - If venting gas can't be isolated, return to muster point, and re-evaluate path forward.
 - Give detailed description where/how gas is being released.
 - After isolation verify that area monitors return to 0 and are not in alarm.
 - Resume normal operations, once managers agree the ROOT CAUSE has been addressed and corrected.

G. Contacting Authorities

Company personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the NM Emergency Response Commission must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Spur Energy Partners response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER).

•

H. Call List

Spur Energy Partner	s Eme	rgency (Contact List		
Person	Loc	ation	Office Phon	e Cell Phone	
Drilling and Cor	npletio	ns Depa	artment		
Drilling Manager - Chris Hollis	Houston		832-930-8629	713-380-7754	
Completions Manager - Theresa Voss	Houst	on	832-930-8614	832-849-8635	
VP of Operations - Seth Ireland	Houst	on	832-930-8527	940-704-6375	
Senior VP of Operations - John Nabors	Houst	on	832-930-8526	281-904-8811	
Executive VP of Operations - Todd Mucha	Houst	on	832-930-8515	281-795-2286	
HES/Environmental a	nd Re	gulatory	Department		
EHS Manager - Braidy Moulder	Artesia	a	575-616-5400	713-264-2517	
Superintendent - Jerry Mathews	Artesia	a	575-616-5400	575-748-5234	
Asst. Superintendent - Kenny Kidd	Artesia	a	575-616-5400	575-703-5851	
Regulatory Director - Sarah Chapman	Houst	on	832-930-8613	281-642-5503	
Regulat	ory Ag	encies			
Bureau of Land Management		Carlsba	d	575-886-6544	
Bureau of Land Management		Hobbs		575-393-3612	
Bureau of Land Management		Roswell		575-622-5335	
Bureau of Land Management		Santa Fe		505-954-2000	
DOT Judicial Pipelines - Incident Reporting Public Regulation Commission	NM	Santa F	e	505-827-3549 505-490-2375	
EPA Hotline		Dallas		214-665-6444	
Federal OSHA, Area Office		Lubbock	κ	806-472-7681	
National Response Center		Washin	gton, D.C.	800-424-8803	
National Infrastructure Coordinator Center		Washin	gton, D.C.	202-282-2901	
New Mexico Air Quality Bureau		Santa Fe		505-827-1494	
New Mexico Oil Conservation Division		Artesia		575-748-1283 575-370-7545After	
New Mexico Oil Conservation Division		Hobbs		575-393-6161	
New Mexico Oil Conservation Division		Santa F	е	505-476-3770	
New Mexico OCD Environmental Bureau		Santa F		505-827-7152 505-476-3470	
New Mexico Environmental Department		Hobbs		575-827-9329	
NM State Emergency Response Center		Santa F	е	505-476-9600	

•

Medical Facilities							
Artesia General Hospital	Artesia	575-748-3333					
Covenant Medical Center	Lubbock	806-725-1011					
Covenant Medical Center Lakeside	Lubbock	806-725-6000					
Guadalupe County Hospital	Carlsbad	575-887-6633					
Lea Regional Hospital	Hobbs	575-492-5000					
Medical Center Hospital	Odessa	432-640-4000					
Midland Memorial Hospital	Midland	432-685-1111					
Nor-Lea General Hospital	Lovington	575-396-6611					
Odessa Regional Hospital	Odessa	432-334-8200					
Union County General Hospital	Clayton	575-374-2585					
University Medical Center	Lubbock	806-725-8200					
Law Enforce	ement - Sheriff						
Ector County Sheriff's Department	Odessa	432-335-3050					
Ector County Sheriff's Department	Artesia	575-746-2704					

Ector County Sheriff's Department	Carlsbad	575-887-7551
Lea County Sherrif's Department	Eunice	575-384-2020
Lea County Sherrif's Department	Hobbs	575-393-2515
Lea County Sherrif's Department	Lovington	575-396-3611
Lubbock County Sheriff's Department	Abernathy	806-296-2724
Midland County Sheriff's Department	Midland	432-688-1277
Union County Sheriff's Department	Clayton	575-374-2583
Law Enforcen	nent - Police	•
Abernathy Police Department	Abernathy	806-298-2545
Artesia City Police	Artesia	575-746-2704
Carlsbad City Police	Carlsbad	575-885-2111
Clayton City Police	Clayton	575-374-2504
Eunice City Police	Eunice	575-394-2112
Hobbs City Police	Hobbs	575-397-9265 575-393-2677
Jal City Police	Jal	575-395-2501
Lovington City Police	Lovington	575-396-2811

•

Midland City Police	Midland	432-685-7113
Odessa City Police	Odessa	432-335-3378
Lá	aw Enforcement - FBI	
FBI	Albuquerque	505-224-2000
FBI	Midland	432-570-0255
Law	Enforcement - DPS (911)	
NM State Police	Artesia	575-746-2704
NM State Police	Carlsbad	575-885-3137
NM State Police	Eunice	575-392-5588
NM State Police	Hobbs	575-392-5588
NM State Police	Clayton	575-374-2473
Firefi	ghting and Rescue (911)	
Abernathy	Abernathy	806-298-2022
Amistad/Rosebud	Amistad/Rosebud	575-633-9113
Artesia	Artesia	575-746-5751
Carlsbad	Carlsbad	575-885-3125
Clayton	Clayton	575-374-2435
Eunice	Eunice	575-394-2111
Hobbs	Hobbs	575-397-9308
Jal	Jal	575-395-2221
Lovington	Lovington	575-396-2359
Maljamar	Maljamar	575-676-4100
Midland	Midland	432-685-7346
Nara Visa	Nara Visa	575-461-3300
Odessa	Odessa	432-335-4659
Tucumcari	Tucumcari	911
West Odessa	Odessa	432-381-3033

Ambulance (911)								
Abernathy Ambulance	Abernathy	806-298-2241						
Amistad/Rosebud	Amistad/Rosebud	575-633-9113						
Artesia Ambulance	Artesia	575-746-2701						
Carlsbad Ambulance	Carlsbad	575-885-2111						
Clayton Ambulance	Clayton	575-374-2501						
Eunice Ambulance	Eunice	575-394-3258						
Hobbs Ambulance	Hobbs	575-397-9308						
Jal Ambulance	Jal	575-395-3501						
Lovington Ambulance	Lovington	575-396-2811						
Midland Ambulance	Midland	432-685-7499						
Nara Visa Ambulance	Nara Visa	575-461-3300						
Odessa Ambulance	Odessa	432-335-3378						
Tucumcari Ambulance	Tucumcari	911						
Medical Air Amb	oulance Service							
AEROCARE - Methodist Hospital	Lubbock	800-627-2376						
Southwest MediVac	Hobbs	800-242-6199						
Odessa Care Star	Odessa	888-624-3571						

I. List of Facilities with the potential for 500ppm or higher H2S exposure.

ATTACHMENT 1: SPUR FACILITIES WITH ROE REVIEW

ALASKA 29 FEE TANK BATTERY **ARABIAN 6 FEE TANK BATTERY** ARCO 26 A STATE OIL BATTERY ARCO B FEDERAL COM NO. 001 **ARKANSAS STATE 23 TANK BATTERY AVALON FEDERAL #001 B&B/ROSS RANCH OIL TANK BATTERY** BC FEDERAL 10 (9-13) TNK BTY BC FEDERAL 1-8 &14 TNK BTY **BC FEDERAL 42 TNK BTY BEE FED OIL BATTERY BEECH 25 FEDERAL #9H BATTERY** BEECH FEDERAL 1 **BEECH FEDERAL 2 BATTERY BERRY A FEDERAL #005 SWB BERRY A FEDERAL PADD BATTERY BIG BOY STATE TB BLUETAIL 8 FEDERAL 2 TANK BATTERY** BONE YARD 11 FEE TANK BATTERY BOOT HILL 25 1H SWB **BOSE IKARD 4 ST COM 18H BATTERY BRANTLEY FEDERAL #001 BR-549 STATE BATTERY BRADLEY 8 FEE #3H-BATTERY BRADLEY 8 FEE BATTERY** BRAGG 10 FEE 1 BATTERY **BRIGHAM H 2 BRIGHAM H FED (NORTH) BATTERY BURCH KEELY 13C TK BTY BURCH KEELY 18A TK BATT BURCH KEELY 19A OIL BATT BURCH KEELY 23A TK BATT BURCH KEELY EAST 18B TANK BAT BURCH KEELY SEC 13A NORTH BTTY BURCH KEELY SEC 13B SOUTH BTTY** BURCH KEELY UNIT CTB BTTY **BURCH KEELY UNIT E BATTERY BURKETT 16 STATE** CADDO FEDERAL BATTERY CADILLAC ST 4 BATTERY CALIFORNIA 29 FEE 1 **CARMEN 3 FEDERAL BATTERY** CARRINGTON 12 ST 3,4,7 BATTERY

CHASER 8 STATE 2 TANK BATTERY CHEYENNE FEDERAL TNK BTY CLYDESDALE 1 FEE #1H BAT **CLYDESDALE 1 FEE 6H - BATTERY** COAL TRAIN FEDERAL COM #1 COFFIN STATE #1 COLLIER 22 STATE COM #43H COLLIER STATE OIL BATTERY CONOCO 8 STATE 4 TB CONTINENTAL A STATE TNK BTY CONTINENTAL B YESO TANK BTY CONTINENTAL STATE 15A TNK BTY CRYPT 30 STATE #1H DAGGER DRAW FED/FOSTER FED TANK BATTERY **DARNER 9 STATE 1 TANK BATTERY** DARNER 9 STATE 2 **DARTER 9 STATE 8 TANK BATTERY DARNER 9 STATE CTB** DEXTER FEDERAL PAD TNK BTY **DODD 10A OIL BATTERY** DODD 10B TK BTTY DODD FED #14C TK BATT **DODD FED 11A BATTERY** DODD FED UNIT 980H BATTERY **DODD FEDERAL 14A-TB** DODD FEDERAL UNIT 15A BTTY DODD FEDERAL UNIT NORTH BTTY DODD FEDERAL UNIT SOUTH BTTY DOGWOOD FEDERAL TNK BTY DORAMI 33 FEDERAL COM 2H.4H.9H TANK BATTERY **EBONY STATE TB** EDWARD STATE TNK BTY ELECTRA FEDERAL 33 (NORTH) BATTERY ELECTRA FEDERAL 5 (SWEET) TNK BTY ELECTRA FEDERAL SOUR TNK BTY **EMPIRE SOUTH DEEP UNIT 21** FALABELLA 31 FEE #1H TK BATT FALABELLA 31 FEE 8H TK BTY FAT TIRE 12 COM FEDERAL CTB FEDERAL BA COM NO. 001 FEDERAL BB NO. 001 FLAT HEAD FED COM 6H TANK BATTERY FLAT HEAD FED COM 27H TANK BATTERY

ATTACHMENT 1: SPUR FACILITIES WITH ROE REVIEW

FIR FEDERAL TNK BTY FIRECRACKER STATE TB FLEMMING STATE OIL BATTERY FOLK FEDERAL B TNK BTY FOLK FEDERAL TNK BTY FOLK STATE TANK BATTERY FORAN STATE OIL BATTERY GC FEDERAL 11 TNK BTY GC FEDERAL 27 TNK BTY GC FEDERAL TNK BTY GILLESPIE STATE OIL BATTERY **GISSLER FEDERAL 13H TANK BATT** GJ WEST COOP SOUTH TB GJ WEST COOP UNIT 092 BTY GJ WEST COOP UNIT 191 BTY GJ WEST COOP UNIT 210 BTY GJ WEST COOP UNIT CENTRAL GJ WEST COOP UNIT N TNK BTY GOLD STAR TNK BTY **GOODMAN 22 TANK BATTERY** GRAVE DIGGER FEDERAL COM TANK BATTERY **GRAVE DIGGER ST COM #3H TANK BATTERY GRAVE DIGGER STATE COM #8H SWB** HALBERD 27 ST 3H BATTERY HANOVER STATE #3 (YESO) HARPER STATE TNK BTY HARVARD FEDERAL TNK BTY HATFIELD B TB HEARSE 36 ST COM TANK BATTERY HOBGOBLIN 7 FED COM 4H TK BAT HOLDER CB 11 TNK BTY HOLDER CB FEDERAL 6&7 TNK BTY HOLIDAY HOUMA STATE TNK BTY HT 18 FED 01.05.04 TANK BATTERY HT 18 FEDERAL 8 HUBER 10.11.12 FEDERAL OIL TANK BATTERY HUBER 3 FEDERAL OIL TANK BATTERY HUBER 5 FEDERAL OIL TANK BATTERY HYDRUS 10 FED 03.07.08.11 TANK BATTERY HYDRUS 10 FED 04.05 TANK BATTERY HYDRUS 10 FED 06.09.10.12 TANK BATTERY IMPERIAL STATE TNK BTY

IVAR THE BONELESS FED 11H - BATTERY JC FEDERAL 13 TNK BTY JC FEDERAL 2 (SOUR) TNK BTY JC FEDERAL 27 TNK BTY JENKINS B FEDERAL TNK BTY JG STATE 16 1 TANK BATTERY JG STATE 16 7 TANK BATTERY JON BOB 1 JUNIPER STATE TNK BTY **KIOWA OIL BATTERY KOOL AID STATE** LAKEWOOD NORTH TANK BATTERY LAKEWOOD SOUTH TANK BATTERY LARA MICHELLE STATE OIL BTTY LEAKER CC STATE TB LEE 3 FEE 6H - TK BATT LIVE OAK TANK BATTERY MALCO 23 FEDERAL COM #13H MAPLE STATE MARACAS 22 STATE TANK BATTERY MARY FEDERAL OIL BATTERY MAYARO 22 STATE TANK BATTERY MC FEDERAL 14 TANK BATTERY MC FEDERAL 6 DEVONIAN MC FEDERAL PADDOCK TNK BTY MC SOUTHEAST BATTERY MC STATE OIL BATTERY MCCOY STATE TB MCINTYRE A EAST TANK BATTERY MCINTYRE B 10 MCINTYRE B 4 MCINTYRE B TNK BTY MCINTYRE DK 15 TNK BTY MCINTYRE DK FEDERAL 28H SWB **MEADOWHAWK 5 FEDERAL 3** MELROSE FEDERAL TNK BTY **MERAK 7 FEDERAL 8 TANK BATTERY** MESILLA STATE 3 & 5 TNK BTY MESILLA STATE TNK BTY MESQUITE STATE TANK BATTERY MIMOSA STATE TNK BTY MIRANDA FEDERAL B TNK BTY MIRANDA FEDERAL TB

ATTACHMENT 1: SPUR FACILITIES WITH ROE REVIEW

MOE FEDERAL OIL BATTERY MOHAWK FEDERAL TNK BTY **MONCRIEF 3 OIL BATTERY** MOORE STATE OIL BATTERY MORRIS BOYD 26 FEE COM 1H MORRIS BOYD TANK BATTERY **MORRIS E & F TANK BATTERY** MUSKEGON SOUTH STATE OIL BATTERY NAVAHO FEDERAL TNK BTY NELSON 13.23. TNK BATT **NEWCASTLE 6 FED COM - TANK BATTERY** NIRVANA TANK BATTERY NOOSE FED 10 TANK BATTERY NOOSE FED 5 TANK BATTERY **OKLAHOMA 32 TANK BATTERY** OSAGE BOYD 15 FED 09.12.13.14 TANK BATTERY OSAGE BOYD YESO TANK BATTERY PAINT 32 FEE OIL BATTERY PAN CANADIAN A2-B3 TANK BATTERY PASSION 1 FED PDK 5H TK BATT PATTON 5 FEE 2H OIL BATTERY PATTON 5 FEE 8H OIL BATTERY PAWNEE STATE TNK BTY PEACEMAKER 25 FEDERAL TANK BATTERY PERE MARQUETTE 18 FEDERAL 1 TANK BATTERY PILUM 15 FEE 2H BATTERY PINTO 36 STATE COM 1H TNK BTY PINTO 36 STATE COM 4H TNK BTY PINTO 36 STATE TB POLARIS B 5-10 TANK BTTY **POSEIDON 3 FEDERAL 4 TANK BATTERY** POSEIDON 3 FEDERAL 05.07.17.18 TANK BATTERY PUCKETT 13 FEDERAL COM 35H PUCKETT 13 FEDERAL TB **RAGNAR FED COM 25H - BATTERY RANDALL FED 3 BATTERY RED LAKE 32 TANK BATTERY** REDBUD FEDERAL TNK BTY **RINCON STATE TANK BATTERY RJ UNIT NORTH TANK BATTERY RJ UNIT SOUTH TANK BATTERY RONCO FEDERAL #1** ROSE 02.03.04.05.06 TANK BATTERY

ROSE SOUTH TANK BATTERY ROSS RANCH 09.13.14 BATTERY SAM ADAMS 12 FED 4H UBB TK BATT SANDY CROSSING 32 STATE COM 1 SCHLEY FEDERAL TNK BTY SHAWNEE FEDERAL TNK BTY SHELBY 23 BATTERY SHERMAN 4 FEE 4H BATTERY SHERMAN 4 FEE 6H BATTERY SHORTY 2 STATE COM TANK BATTERY SINCLAIR PARKE (PADDOCK) TNK BTY **SKELLY 605 BATTERY SKELLY 942 BATTERY** SKELLY 968 BATTERY **SKELLY 973 BATTERY SKELLY 989 BATTERY SKELLY UNIT 907 CTB BATTERY SKELLY UNIT 940 BATTERY** SOUTH BOYD FED COM OIL TANK BATTERY SOUTH EMPIRE STATE COM 1 SPIKETAIL 5 STATE 2 TANK BATTERY SPRUCE FEDERAL TNK BTY STATE B GAS COM NO. 001 STATE S-19 YESO (SOUR) TNK BTY STONEWALL 9 FEE #1H TBAT **STONEWALL 9 FEE 8H BATTERY** SUBMARINE 10 FED COM 2H OIL BAT TAYLOR D TANK BATTEY TENNECO STATE TNK BTY TEX MACK FED TEXACO BE TNK BTY **TEXAS 32 FEE TANK BATTERY** TEXMACK 36 STATE COM #1 TH STATE #1 THO STATE OIL BATTRY **THORNTAIL 31 FEDERAL 1** THUNDER ROAD FEDERAL OIL BTTY TUMAK FED 3 BAT **VEGA 9 FED TANK BATTERY** VT 36 STATE #1H W D MCINTYRE C 10 WAUKEE 36 STATE COME CTB WD MCINTYRE C 8-9 TNK BTY

WD MCINTYRE E TNK BTY WELCH A 28 10.20.50 CTB WESTERN FEDERAL TNK BTY WHITE OAK STATE B TB WHITE OAK STATE TNK BTY WHITE STAR FEDERAL TNK BTY WICHITA STATE TNK BTY WILLOW STATE TNK BTY YALE B OIL BATTERY YALE STATE TANK BTY YUCCA STATE TNK BTY

.

SPUR ENERGY PARTNERS, LLC

LEA COUNTY, NM (NAD 83 - NME) VALHALLA 9-8 STATE 60H

Wellbore #1

Plan: PERMIT

Standard Planning Report

12 September, 2023

PUR										
N E R G Y					Planning R	leport				
Patabase: Company: Project: Site: Vell: Vellbore: Pesign:	SPUI LEA VALH 60H	R ENERGY P COUNTY, NM IALLA 9-8 ST pore #1	ngle User Db /ARTNERS, L 1 (NAD 83 - N /ATE		TVD Ref MD Refe North Re			Well 60H RKB = 20' @ 4 RKB = 20' @ 4 Grid Minimum Curva	189.00usft (A	,
Project	LEA C	OUNTY, NM	(NAD 83 - NN	1E)						
Map System: Geo Datum: Map Zone:	North A	LEA COUNTY, NM (NAD 83 - NME) JS State Plane 1983 System Datum: North American Datum 1983 New Mexico Eastern Zone					M	ean Sea Level		
Site	VALH	ALLA 9-8 STA	ΛTE							
Site Position: From: Position Unce	Ма	•	North Easti Dusft Slot F	-		908.00 usft 713.80 usft 13-3/16 "	Latitude: Longitude: Grid Conve	rgence:		32.850774 -103.658048 0.366
Nell	60H									
Well Position		1,235.2 46.1		orthing: isting:		675,143.20 748,759.90		itude: ngitude:		32.854168 -103.657872
Position Unce	ertainty	0.0		ellhead Elev	vation:	0.00		ound Level:		4,169.00 us
Vellbore	Wellb	ore #1								
Magnetics	Мо	del Name	Sampl	e Date	Declina (°)		Dip A (°		Field St (n1	-
		IGRF2020		09/06/23	.,	6.374		60.383	,	47,619
Design	PERM	лт								
		11.1								
			Phas	e: F	PLAN	Tie	e On Depth:		0.00	
Version:			Phas epth From (T (usft)		PLAN +N/-S (usft)	+E	e On Depth: :/-W sft)	Dire	ection	
Version:			epth From (T		+N/-S	+E (u	/-W	Dire (
Version: Vertical Secti	on:		epth From (T (usft)		+N/-S (usft)	+E (u	/-W sft)	Dire (ection (°)	
/ersion: /ertical Secti Plan Sections Measured	on:		epth From (T (usft)		+N/-S (usft)	+E (u	/-W sft)	Dire (26 Turn Rate	ection (°)	Target
/ersion: /ertical Sections Plan Sections Measured Depth (usft) 0.00	on: s Inclination (°) 0.00	Da Azimuth (°) 0.00	Vertical (usft) 0.00 Vertical Depth (usft) 0.00	VD) +N/-S (usft) 0.00	+N/-S (usft) 0.00 +E/-W (usft) 0.00	+E (u 0. Dogleg Rate (°/100usft) 0.00	/-W sft) 00 Build Rate (°/100usft) 0.00	Dire (26 Turn Rate (°/100usft) 0.00	ection (°) 9.48 TFO (°) 0.000	Target
/ersion: /ertical Sections Plan Sections Measured Depth (usft) 0.00 300.00	on: s Inclination (°) 0.00 0.00	Dr Azimuth (°) 0.00 0.00	Vertical Depth (usft) 0.00 Vertical Depth (usft) 0.00 300.00	VD) +N/-S (usft) 0.00 0.00	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00	+E (u 0. Dogleg Rate (°/100usft) 0.00 0.00	/-W sft) 00 Build Rate (°/100usft) 0.00 0.00	Dire (26: Turn Rate (°/100usft) 0.00 0.00	TFO (°) 0.000 0.000	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56	on: Inclination (°) 0.00 0.00 2.45	Azimuth (°) 0.00 0.00 100.85	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53	VD) +N/-S (usft) 0.00 0.00 -0.49	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57	+E (u 0. 0. 0.00 0.00 0.00 2.00	/-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00	Dire (* 26: Turn Rate (*/100usft) 0.00 0.00 0.00	TFO (°) 0.000 0.000 0.000 100.854	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56	on: Inclination (°) 0.00 0.00 2.45 2.45	Azimuth (°) 0.00 0.00 100.85 100.85	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45	+E (u 0. 0. 0.00 0.00 2.00 0.00	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00 0.00	Dire (*/100usft) 0.00 0.00 0.00 0.00 0.00	ection (°) 9.48 TFO (°) 0.000 0.000 100.854 0.000	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00	Azimuth (°) 0.00 0.00 100.85 100.85 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12	+E (u 0. 0. 0.00 (°/100usft) 0.00 0.00 2.00 0.00 6.00	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53	Dire (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	TFO (°) 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32	+E (u 0. 0. 0.00 (°/100usft) 0.00 0.00 0.00 0.00 6.00 0.00	Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53 0.00	Dire (*/100usft) 0.00 0.00 0.00 0.00 16.21 0.00	ection (°) 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00	+E (u 0. 0. 0.00 0.00 0.00 0.00 0.00 0.00	Build 800 Build 800 (*/100usft) 0.00 0.00 2.00 0.00 5.53 0.00 10.00	Dire (*/100usft) 0.00 0.00 0.00 0.00 16.21 0.00 0.00	ection (°) 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000 0.000	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85 9,658.85	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50 6,608.28	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80 -78.67	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00 -3,224.57	+E (u 0. 0.00 (°/100usft) 0.00 0.00 0.00 0.00 6.00 0.00 10.00 0.00	Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53 0.00 10.00 0.00	Dire () 26: Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 16.21 0.00 0.00 0.00 0.00 0.00	ection 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000 0.000 0.000 0.000	Target
/ersion: /ertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85 9,658.85 9,935.03	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92 90.92 90.92 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50 6,608.28 6,603.84	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80 -78.67 -67.90	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00 -3,224.57 -3,500.40	+E (u 0. 0.00 Dogleg Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 10.00 0.00 2.00	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53 0.00 10.00 0.00 0.00	Dire (*/100usft) 0.00 0.00 0.00 0.00 16.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	ection 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.973	Target
Version: Vertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85 9,658.85 9,935.03 10,995.03	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92 90.92 90.92 90.92 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50 6,608.28 6,603.84 6,586.82	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80 -78.67 -67.90 24.48	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00 -3,224.57 -3,500.40 -4,556.23	+E (u 0. 0.00 Dogleg Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0.	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53 0.00 10.00 0.00 0.00 0.00	Dire () 261 Turn Rate (°/100usft) 0.00 0.00 0.00 16.21 0.00 0.00 16.21 0.00 0.00 0.00 0.00 0.00 0.00	ection 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 89.973 0.000	Target
Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85 9,658.85 9,935.03 10,995.03 11,494.97	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92 90.92 90.92 90.92 90.92 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50 6,608.28 6,603.84 6,586.82 6,578.77	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80 -78.67 -67.90 24.48 24.48	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00 -3,224.57 -3,500.40 -4,556.23 -5,055.47	+E (u 0. 0. 0.00 0.00 0.00 0.00 0.00 0.00	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 0.00 5.53 0.00 10.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000000	Dire (*/100usft) 0.00 0.00 0.00 0.00 16.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	ection 9.48 TFO 0.000 0.000 0.000 100.854 0.000 168.885 0.000 0.000 0.000 0.000 0.000 0.000 0.000 89.973 0.000 -89.920	Target
Version: Vertical Sections Measured Depth (usft) 0.00 300.00 422.56 5,609.56 6,649.63 6,849.63 7,158.85 9,658.85 9,935.03 10,995.03	on: Inclination (°) 0.00 0.00 2.45 2.45 60.00 60.00 90.92 90.92 90.92 90.92 90.92	Azimuth (°) 0.00 0.00 100.85 100.85 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48 269.48	epth From (T (usft) 0.00 Vertical Depth (usft) 0.00 300.00 422.53 5,604.78 6,471.81 6,571.81 6,648.50 6,608.28 6,603.84 6,586.82	VD) +N/-S (usft) 0.00 0.00 -0.49 -42.27 -51.51 -53.09 -55.80 -78.67 -67.90 24.48	+N/-S (usft) 0.00 +E/-W (usft) 0.00 0.00 2.57 220.45 -256.12 -429.32 -725.00 -3,224.57 -3,500.40 -4,556.23	+E (u 0. 0.00 Dogleg Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0.	//-W sft) 00 Build Rate (°/100usft) 0.00 0.00 2.00 0.00 5.53 0.00 10.00 0.00 0.00 0.00	Dire () 261 Turn Rate (°/100usft) 0.00 0.00 0.00 16.21 0.00 0.00 16.21 0.00 0.00 0.00 0.00 0.00 0.00	ection 9.48 TFO (°) 0.000 0.000 100.854 0.000 168.885 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 89.973 0.000	Target

09/12/23 2:17:50PM

Database:	EDM 5000.1.13 Single User Db	Local Co-ordinate Reference:	Well 60H
Company:	SPUR ENERGY PARTNERS, LLC	TVD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Project:	LEA COUNTY, NM (NAD 83 - NME)	MD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Site:	VALHALLA 9-8 STATE	North Reference:	Grid
Well:	60H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	PERMIT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	9-8 STATE 60								
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	2.00	100.85	399.98	-0.33	1.71	-1.71	2.00	2.00	0.00
422.56	2.45	100.85	422.53	-0.49	2.57	-2.57	2.00	2.00	0.00
500.00	2.45	100.85	422.33	-0.49	5.83	-5.82	0.00	0.00	0.00
600.00	2.45	100.85	499.89 599.80	-1.12	10.03	-5.82	0.00	0.00	0.00
700.00	2.45	100.85	699.71	-2.73	14.23	-14.20	0.00	0.00	0.00
800.00	2.45	100.85	799.62	-2.73	14.23	-14.20	0.00	0.00	0.00
800.00	2.45	100.65	799.02		10.43	-10.40	0.00	0.00	0.00
900.00	2.45	100.85	899.53	-4.34	22.63	-22.59	0.00	0.00	0.00
1,000.00	2.45	100.85	999.43	-5.14	26.83	-26.78	0.00	0.00	0.00
1,100.00	2.45	100.85	1,099.34	-5.95	31.03	-30.97	0.00	0.00	0.00
1,200.00	2.45	100.85	1,199.25	-6.75	35.23	-35.17	0.00	0.00	0.00
1,300.00	2.45	100.85	1,299.16	-7.56	39.43	-39.36	0.00	0.00	0.00
1,400.00	2.45	100.85	-			-43.55	0.00	0.00	0.00
1,400.00		100.85	1,399.07	-8.37	43.63	-43.55 -47.75	0.00	0.00	0.00
	2.45		1,498.98	-9.17	47.83				
1,600.00	2.45	100.85	1,598.89	-9.98	52.03	-51.94	0.00	0.00	0.00
1,700.00	2.45	100.85	1,698.79	-10.78	56.23	-56.13	0.00	0.00	0.00
1,800.00	2.45	100.85	1,798.70	-11.59	60.43	-60.33	0.00	0.00	0.00
1,900.00	2.45	100.85	1,898.61	-12.39	64.63	-64.52	0.00	0.00	0.00
2,000.00	2.45	100.85	1,998.52	-13.20	68.83	-68.71	0.00	0.00	0.00
2,100.00	2.45	100.85	2,098.43	-14.00	73.03	-72.90	0.00	0.00	0.00
2,200.00	2.45	100.85	2,198.34	-14.81	77.24	-77.10	0.00	0.00	0.00
2,300.00	2.45	100.85	2,298.24	-15.61	81.44	-81.29	0.00	0.00	0.00
2,400.00	2.45	100.85	2,398.15	-16.42	85.64	-85.48	0.00	0.00	0.00
2,500.00	2.45	100.85	2,498.06	-17.22	89.84	-89.68	0.00	0.00	0.00
2,600.00	2.45	100.85	2,597.97	-18.03	94.04	-93.87	0.00	0.00	0.00
2,700.00	2.45	100.85	2,697.88	-18.84	98.24	-98.06	0.00	0.00	0.00
2,800.00	2.45	100.85	2,797.79	-19.64	102.44	-102.26	0.00	0.00	0.00
2,900.00	2.45	100.85	2,897.70	-20.45	106.64	-106.45	0.00	0.00	0.00
3,000.00	2.45	100.85	2,997.60	-21.25	110.84	-110.64	0.00	0.00	0.00
3,100.00	2.45	100.85	3,097.51	-22.06	115.04	-114.83	0.00	0.00	0.00
3,200.00	2.45	100.85	3,197.42	-22.86	119.24	-119.03	0.00	0.00	0.00
3,300.00	2.45	100.85	3,297.33	-23.67	123.44	-123.22	0.00	0.00	0.00
3,400.00	2.45	100.85	3,397.24	-24.47	127.64	-127.41	0.00	0.00	0.00
3,500.00	2.45	100.85	3,497.15	-25.28	131.84	-131.61	0.00	0.00	0.00
3,600.00	2.45	100.85	3,597.06	-26.08	136.04	-135.80	0.00	0.00	0.00
3,700.00	2.45	100.85	3,696.96	-26.89	140.24	-139.99	0.00	0.00	0.00
3,800.00	2.45	100.85	3,796.87	-27.69	144.44	-144.19	0.00	0.00	0.00
3,900.00	2.45	100.85	3,896.78	-28.50	148.64	-148.38	0.00	0.00	0.00
4,000.00	2.45	100.85	3,996.69	-29.30	152.84	-152.57	0.00	0.00	0.00
4,100.00	2.45	100.85	4,096.60	-30.11	157.04	-156.76	0.00	0.00	0.00
4,200.00	2.45	100.85	4,196.51	-30.92	161.24	-160.96	0.00	0.00	0.00
4,300.00	2.45	100.85	4,296.41	-31.72	165.44	-165.15	0.00	0.00	0.00
4,400.00	2.45	100.85	4,396.32	-32.53	169.65	-169.34	0.00	0.00	0.00
4,400.00	2.45	100.85	4,390.32	-33.33	173.85	-109.34	0.00	0.00	0.00
4,600.00	2.45	100.85	4,490.23	-33.33	178.05	-173.54	0.00	0.00	0.00
4,800.00	2.45	100.85	4,696.05	-34.14	182.25	-181.92	0.00	0.00	0.00
4,700.00	2.45	100.85	4,090.05	-34.94 -35.75	186.45	-186.11	0.00	0.00	0.00
-			-						
4,900.00	2.45	100.85	4,895.87	-36.55	190.65	-190.31	0.00	0.00	0.00
5,000.00	2.45	100.85	4,995.77	-37.36	194.85	-194.50 -198.69	0.00	0.00	0.00
5,100.00	2.45	100.85	5,095.68	-38.16	199.05		0.00	0.00	0.00

09/12/23 2:17:50PM

Page 3

COMPASS 5000.1 Build 74

.

	EDM 5000 4 40 Obraha Maran Dh		M-10011
Databas		Local Co-ordinate Reference:	Well 60H
Compai	IY: SPUR ENERGY PARTNERS, LLC	TVD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Project:	LEA COUNTY, NM (NAD 83 - NME)	MD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Site:	VALHALLA 9-8 STATE	North Reference:	Grid
Well:	60H	Survey Calculation Method:	Minimum Curvature
Wellbor	e: Wellbore #1		
Design:	PERMIT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.00	2.45	100.85	5,195.59	-38.97	203.25	-202.89	0.00	0.00	0.00
5,300.00	2.45	100.85	5,295.50	-39.77	207.45	-207.08	0.00	0.00	0.00
5,400.00	2.45	100.85	5,395.41	-40.58	211.65	-211.27	0.00	0.00	0.00
5,500.00	2.45	100.85	5,495.32	-41.38	215.85	-215.47	0.00	0.00	0.00
5,609.56	2.45	100.85	5,604.78	-42.27	220.45	-220.06	0.00	0.00	0.00
VALHALL	A 9-8 STATE 60	0H KOP: 5609							
5,650.00	0.47	182.27	5,645.20	-42.60	221.30	-220.90	6.00	-4.89	201.35
5,700.00	3.06	260.87	5,695.18	-43.01	219.97	-219.57	6.00	5.17	157.20
5,750.00	6.04	265.28	5,745.02	-43.44	216.03	-215.63	6.00	5.96	8.82
5,800.00	9.03	266.78	5,794.58	-43.88	209.49	-209.08	6.00	5.99	2.99
5,850.00	12.03	267.53	5,843.73	-44.33	200.36	-199.95	6.00	5.99	1.51
5,900.00	15.03	267.99	5,892.34	-44.78	188.68	-188.26	6.00	6.00	0.92
5,950.00	18.03	268.30	5,940.27	-45.24	174.46	-174.04	6.00	6.00	0.62
6,000.00	21.03	268.52	5,987.38	-45.70	157.76	-157.34	6.00	6.00	0.45
6,050.00	24.03	268.69	6,033.56	-46.16	138.61	-138.19	6.00	6.00	0.34
6,100.00	27.02	268.82	6,078.68	-46.63	117.07	-116.65	6.00	6.00	0.27
6,150.00	30.02	268.93	6,122.61	-47.10	93.20	-92.77	6.00	6.00	0.22
6,200.00	33.02	269.02	6,165.22	-47.56	67.07	-66.63	6.00	6.00	0.18
6,250.00	36.02	269.10	6,206.41	-48.03	38.74	-38.30	6.00	6.00	0.15
6,300.00	39.02	269.17	6,246.06	-48.49	8.29	-7.85	6.00	6.00	0.13
6,350.00	42.02	269.22	6,284.07	-48.94	-24.19	24.63	6.00	6.00	0.12
6,400.00	45.02	269.28	6,320.32	-49.39	-58.62	59.06	6.00	6.00	0.10
6,450.00	48.02	269.32	6,354.72	-49.84	-94.89	95.34	6.00	6.00	0.09
6,500.00	51.02	269.37	6,387.17	-50.27	-132.92	133.37	6.00	6.00	0.09
6,550.00	54.02	269.41	6,417.59	-50.70	-172.59	173.04	6.00	6.00	0.08
6,600.00	57.02	269.44	6,445.89	-51.11	-213.80	214.26	6.00	6.00	0.07
6,649.63	60.00	269.48	6,471.81	-51.51	-256.12	256.58	6.00	6.00	0.07
6,700.00	60.00	269.48	6,497.00	-51.91	-299.73	300.19	0.00	0.00	0.00
6,800.00 6,849.63 6,900.00 6,950.00 7,000.00	60.00 60.00 65.04 70.04 75.04	269.48 269.48 269.48 269.48 269.48 269.48	6,547.00 6,571.81 6,595.05 6,614.15 6,629.15	-52.70 -53.09 -53.50 -53.93 -54.36	-386.33 -429.32 -473.98 -520.17 -567.85	386.80 429.78 474.45 520.64 568.32	0.00 0.00 10.00 10.00 10.00	0.00 0.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00 0.00
7,050.00	80.04	269.48	6,639.93	-54.81	-616.65	617.13	10.00	10.00	0.00
7,059.10	80.95	269.48	6,641.44	-54.89	-625.63	626.10	10.00	10.00	0.00
	A 9-8 STATE 60								
7,100.00	85.04	269.48	6,646.43	-55.26	-666.21	666.69	10.00	10.00	0.00
7,150.00	90.04	269.48	6,648.57	-55.72	-716.15	716.63	10.00	10.00	0.00
7,158.85	90.92	269.48	6,648.50	-55.80	-725.00	725.48	10.00	10.00	0.00
VALHALL	A 9-8 STATE 60	DH LP: 875' FI	NL, 200' FEL						
7,200.00 7,300.00 7,400.00 7,500.00 7,600.00	90.92 90.92 90.92 90.92 90.92 90.92	269.48 269.48 269.48 269.48 269.48 269.48	6,647.84 6,646.23 6,644.62 6,643.01 6,641.40	-56.18 -57.09 -58.01 -58.92 -59.84	-766.14 -866.12 -966.11 -1,066.09 -1,166.07	766.62 866.61 966.59 1,066.58 1,166.57	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
7,700.00 7,800.00 7,900.00 8,000.00 8,100.00	90.92 90.92 90.92 90.92 90.92	269.48 269.48 269.48 269.48 269.48	6,639.80 6,638.19 6,636.58 6,634.97 6,633.36	-60.75 -61.67 -62.58 -63.50 -64.41	-1,266.06 -1,366.04 -1,466.02 -1,566.00 -1,665.99	1,266.55 1,366.54 1,466.53 1,566.52 1,666.50	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
8,200.00	90.92	269.48	6,631.75	-65.33	-1,765.97	1,766.49	0.00	0.00	0.00
8,300.00	90.92	269.48	6,630.14	-66.24	-1,865.95	1,866.48	0.00	0.00	0.00
8,400.00	90.92	269.48	6,628.53	-67.16	-1,965.94	1,966.46	0.00	0.00	0.00

09/12/23 2:17:50PM

Database: Company:	EDM 5000.1.13 Single User Db SPUR ENERGY PARTNERS, LLC	Local Co-ordinate Reference: TVD Reference:	Well 60H RKB = 20' @ 4189.00usft (AKITA 57)
Project:	LEA COUNTY, NM (NAD 83 - NME)	MD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Site:	VALHALLA 9-8 STATE	North Reference:	Grid
Well:	60H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	PERMIT		

Planned Survey

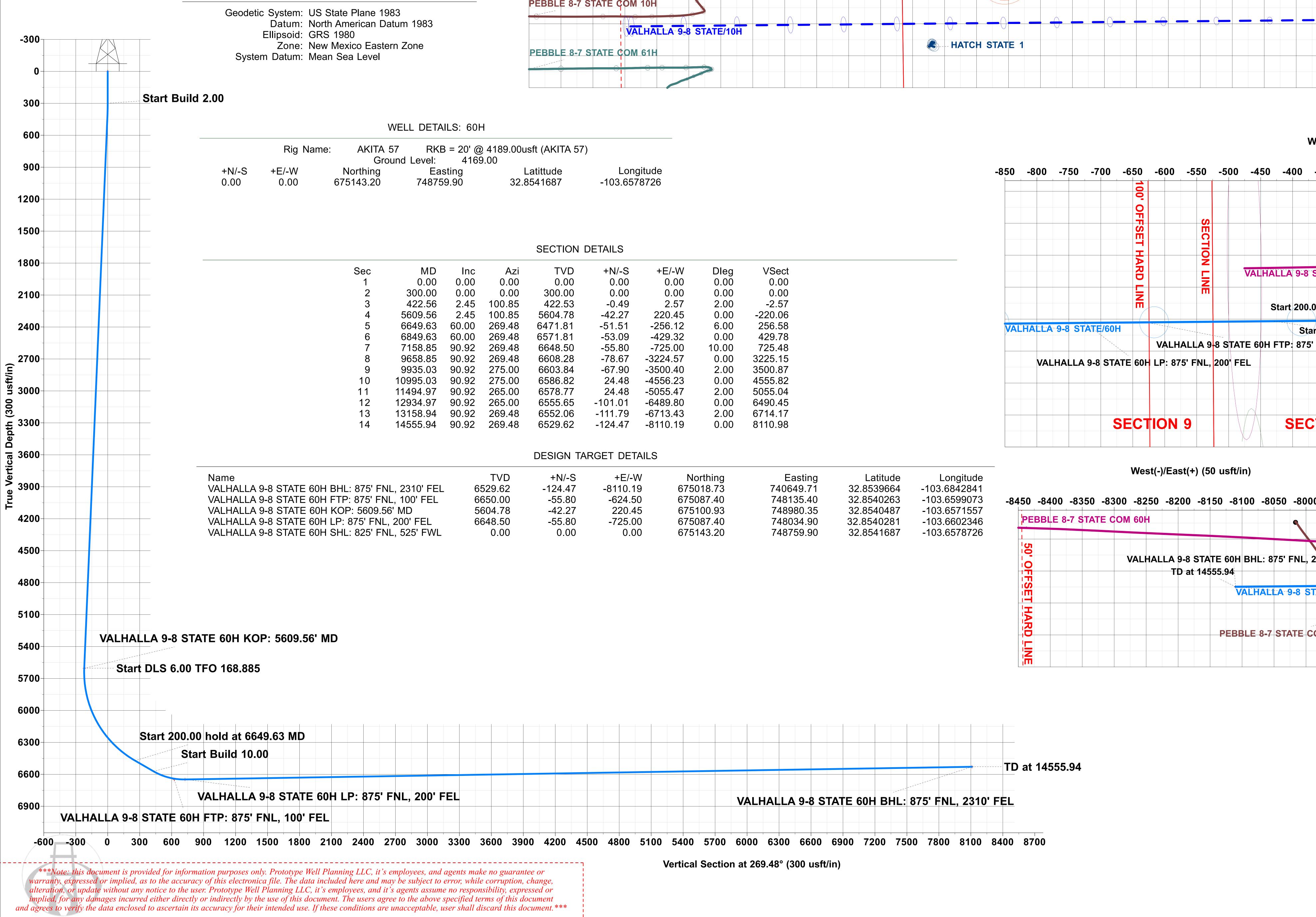
Measured Depth Inclination (usft) (°)	Vertical Azimuth Depth (°) (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,500.00 90.92 8,600.00 90.92	269.48 6,626.93 269.48 6,625.32	-68.07 -68.99	-2,065.92 -2,165.90	2,066.45 2,166.44	0.00 0.00	0.00 0.00	0.00 0.00
8,700.0090.928,800.0090.928,900.0090.929,000.0090.929,100.0090.92	269.48 6,623.71 269.48 6,622.10 269.48 6,620.49 269.48 6,618.88 269.48 6,617.27	-69.90 -70.82 -71.73 -72.65 -73.56	-2,265.88 -2,365.87 -2,465.85 -2,565.83 -2,665.82	2,266.43 2,366.41 2,466.40 2,566.39 2,666.37	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
9,200.0090.929,300.0090.929,400.0090.929,500.0090.929,600.0090.92	269.48 6,615.67 269.48 6,614.06 269.48 6,612.45 269.48 6,610.84 269.48 6,609.23	-74.48 -75.39 -76.31 -77.22 -78.14	-2,765.80 -2,865.78 -2,965.76 -3,065.75 -3,165.73	2,766.36 2,866.35 2,966.33 3,066.32 3,166.31	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
9,658.8590.929,700.0090.929,800.0090.929,900.0090.929,935.0390.92	269.486,608.28270.306,607.62272.306,606.01274.306,604.40275.006,603.84	-78.67 -78.76 -76.49 -70.74 -67.90	-3,224.57 -3,265.71 -3,365.67 -3,465.49 -3,500.40	3,225.15 3,266.29 3,366.23 3,465.99 3,500.87	0.00 2.00 2.00 2.00 2.00	0.00 0.00 0.00 0.00 0.00	0.00 2.00 2.00 2.00 2.00
10,000.0090.9210,100.0090.9210,200.0090.9210,300.0090.9210,400.0090.92	275.006,602.80275.006,601.19275.006,599.59275.006,597.98275.006,596.38	-62.23 -53.52 -44.81 -36.09 -27.38	-3,565.11 -3,664.72 -3,764.32 -3,863.93 -3,963.54	3,565.53 3,665.05 3,764.58 3,864.10 3,963.62	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
10,500.0090.9210,600.0090.9210,700.0090.9210,800.0090.9210,900.0090.92	275.006,594.77275.006,593.17275.006,591.56275.006,589.95275.006,588.35	-18.66 -9.95 -1.23 7.48 16.20	-4,063.14 -4,162.75 -4,262.36 -4,361.96 -4,461.57	4,063.15 4,162.67 4,262.19 4,361.72 4,461.24	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
10,995.0390.9211,000.0090.9211,100.0090.9211,200.0090.9211,300.0090.92	275.006,586.82274.906,586.74272.906,585.13270.906,583.52268.906,581.91	24.48 24.91 31.71 35.02 34.85	-4,556.23 -4,561.18 -4,660.93 -4,760.86 -4,860.84	4,555.82 4,560.76 4,660.45 4,760.34 4,860.32	0.00 2.00 2.00 2.00 2.00	0.00 0.00 0.00 0.00 0.00	0.00 -2.00 -2.00 -2.00 -2.00
11,400.0090.9211,494.9790.9211,500.0090.9211,600.0090.9211,700.0090.92	266.90 6,580.30 265.00 6,578.77 265.00 6,578.69 265.00 6,577.09 265.00 6,575.48	31.18 24.48 24.04 15.32 6.61	-4,960.75 -5,055.47 -5,060.48 -5,160.09 -5,259.69	4,960.26 5,055.04 5,060.05 5,159.73 5,259.42	2.00 2.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	-2.00 -2.00 0.00 0.00 0.00
11,800.0090.9211,900.0090.9212,000.0090.9212,100.0090.9212,200.0090.92	265.00 6,573.88 265.00 6,572.27 265.00 6,570.67 265.00 6,569.06 265.00 6,567.45	-2.10 -10.82 -19.53 -28.25 -36.96	-5,359.30 -5,458.90 -5,558.51 -5,658.12 -5,757.72	5,359.10 5,458.78 5,558.46 5,658.14 5,757.82	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
12,300.0090.9212,400.0090.9212,500.0090.9212,600.0090.9212,700.0090.92	265.00 6,565.85 265.00 6,564.24 265.00 6,562.64 265.00 6,561.03 265.00 6,559.43	-45.68 -54.39 -63.11 -71.82 -80.53	-5,857.33 -5,956.94 -6,056.54 -6,156.15 -6,255.76	5,857.50 5,957.19 6,056.87 6,156.55 6,256.23	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
12,800.0090.9212,900.0090.9212,934.9790.9213,000.0090.9213,100.0090.92	265.006,557.82265.006,556.22265.006,555.65266.306,554.61268.306,553.00	-89.25 -97.96 -101.01 -105.94 -110.65	-6,355.36 -6,454.97 -6,489.80 -6,554.64 -6,654.51	6,355.91 6,455.59 6,490.45 6,555.33 6,655.24	0.00 0.00 0.00 2.00 2.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 2.00 2.00
13,158.9490.9213,200.0090.92	269.486,552.06269.486,551.40	-111.79 -112.16	-6,713.43 -6,754.48	6,714.17 6,755.22	2.00 0.00	0.00 0.00	2.00 0.00

09/12/23 2:17:50PM

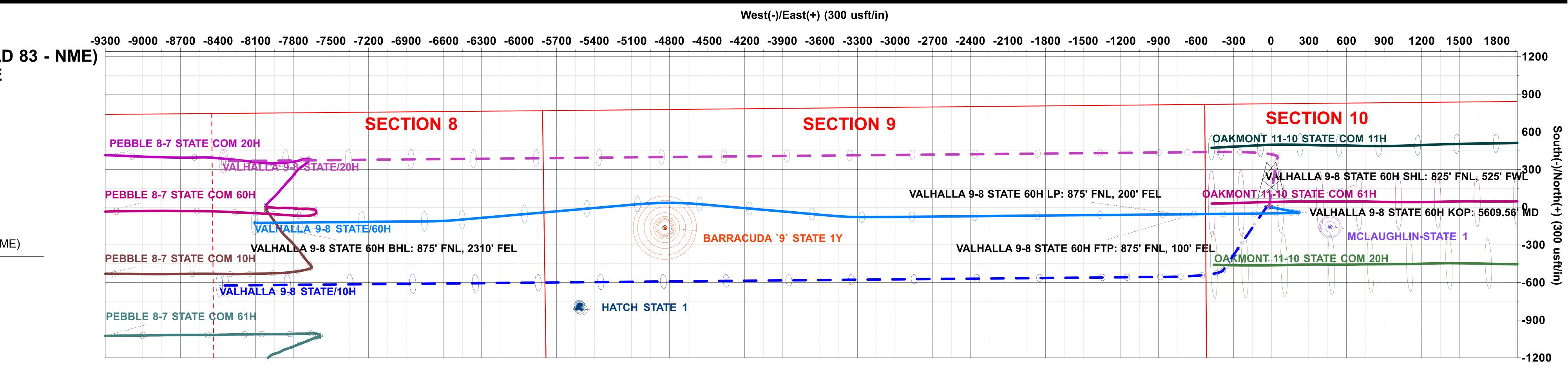
Page 5

.

Database: Company:	EDM 5000.1.13 Single User Db SPUR ENERGY PARTNERS, LLC	Local Co-ordinate Reference: TVD Reference:	Well 60H RKB = 20' @ 4189.00usft (AKITA 57)
Project:	LEA COUNTY, NM (NAD 83 - NME)	MD Reference:	RKB = 20' @ 4189.00usft (AKITA 57)
Site:	VALHALLA 9-8 STATE	North Reference:	Grid
Well:	60H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	PERMIT		

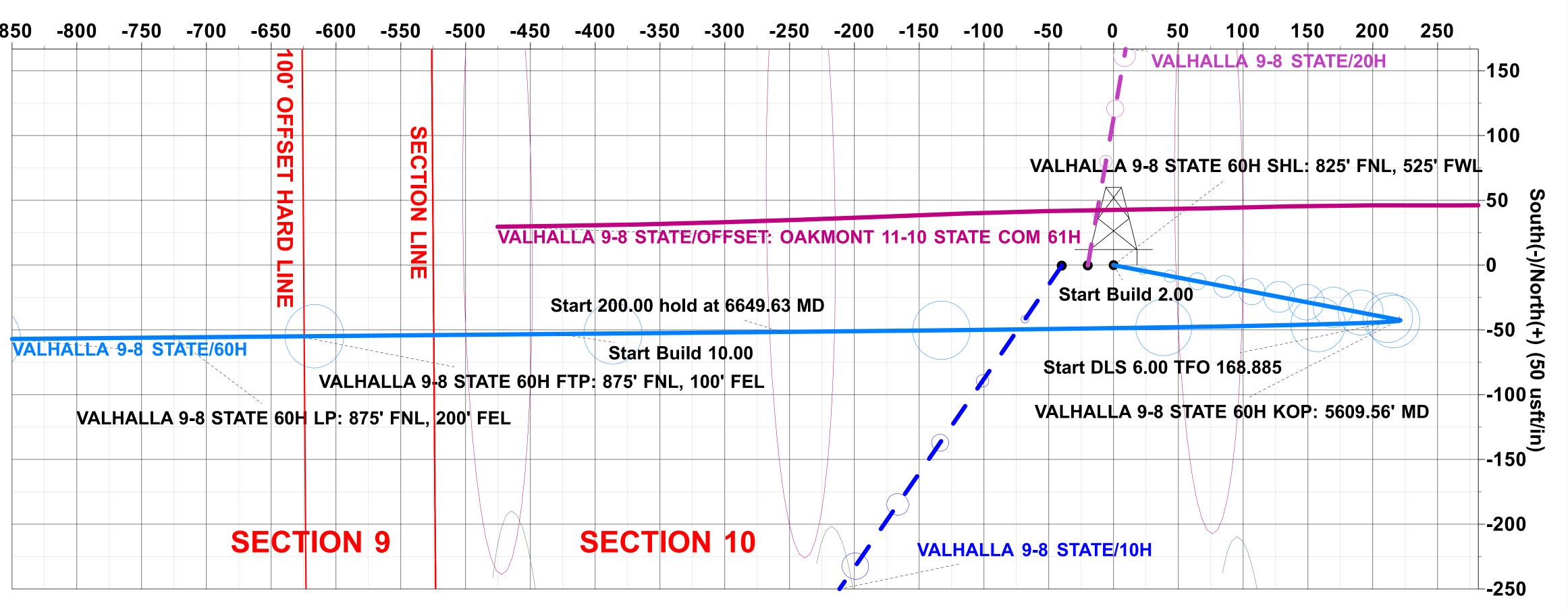

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,300.00 13,400.00 13,500.00	90.92 90.92 90.92	269.48 269.48 269.48	6,549.79 6,548.19 6,546.58	-113.07 -113.98 -114.89	-6,854.46 -6,954.45 -7,054.43	6,855.21 6,955.20 7,055.18	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
13,600.00 13,700.00 13,800.00 13,900.00 14,000.00	90.92 90.92 90.92 90.92 90.92 90.92	269.48 269.48 269.48 269.48 269.48 269.48	6,544.97 6,543.37 6,541.76 6,540.16 6,538.55	-115.79 -116.70 -117.61 -118.52 -119.42	-7,154.41 -7,254.40 -7,354.38 -7,454.36 -7,554.34	7,155.17 7,255.16 7,355.14 7,455.13 7,555.12	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,100.00 14,200.00 14,300.00 14,400.00 14,500.00	90.92 90.92 90.92 90.92 90.92 90.92	269.48 269.48 269.48 269.48 269.48 269.48	6,536.95 6,535.34 6,533.73 6,532.13 6,530.52	-120.33 -121.24 -122.15 -123.05 -123.96	-7,654.33 -7,754.31 -7,854.29 -7,954.28 -8,054.26	7,655.10 7,755.09 7,855.08 7,955.07 8,055.05	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
14,555.94 VALHALL	90.92 A 9-8 STATE 60	269.48)H BHL: 875'	6,529.62 FNL, 2310' FE	-124.47 L	-8,110.19	8,110.99	0.00	0.00	0.00


Design Targets

Target Name - hit/miss target [- Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
VALHALLA 9-8 STATE - plan hits target cer - Point	0.00 nter	0.00	0.00	0.00	0.00	675,143.20	748,759.90	32.8541688	-103.6578726
VALHALLA 9-8 STATE - plan hits target cer - Point	0.00 nter	0.00	5,604.78	-42.27	220.45	675,100.93	748,980.35	32.8540487	-103.6571556
VALHALLA 9-8 STATE - plan hits target cer - Point	0.00 nter	0.00	6,529.62	-124.47	-8,110.19	675,018.73	740,649.71	32.8539664	-103.6842840
VALHALLA 9-8 STATE - plan hits target cer - Point	0.00 nter	0.00	6,648.50	-55.80	-725.00	675,087.40	748,034.90	32.8540281	-103.6602346
VALHALLA 9-8 STATE - plan misses target - Point	0.00 center by	0.00 8.69usft at	6,650.00 7059.10usf	-55.80 t MD (6641.4	-624.50 44 TVD, -54.	675,087.40 89 N, -625.63 E)	748,135.40	32.8540264	-103.6599073

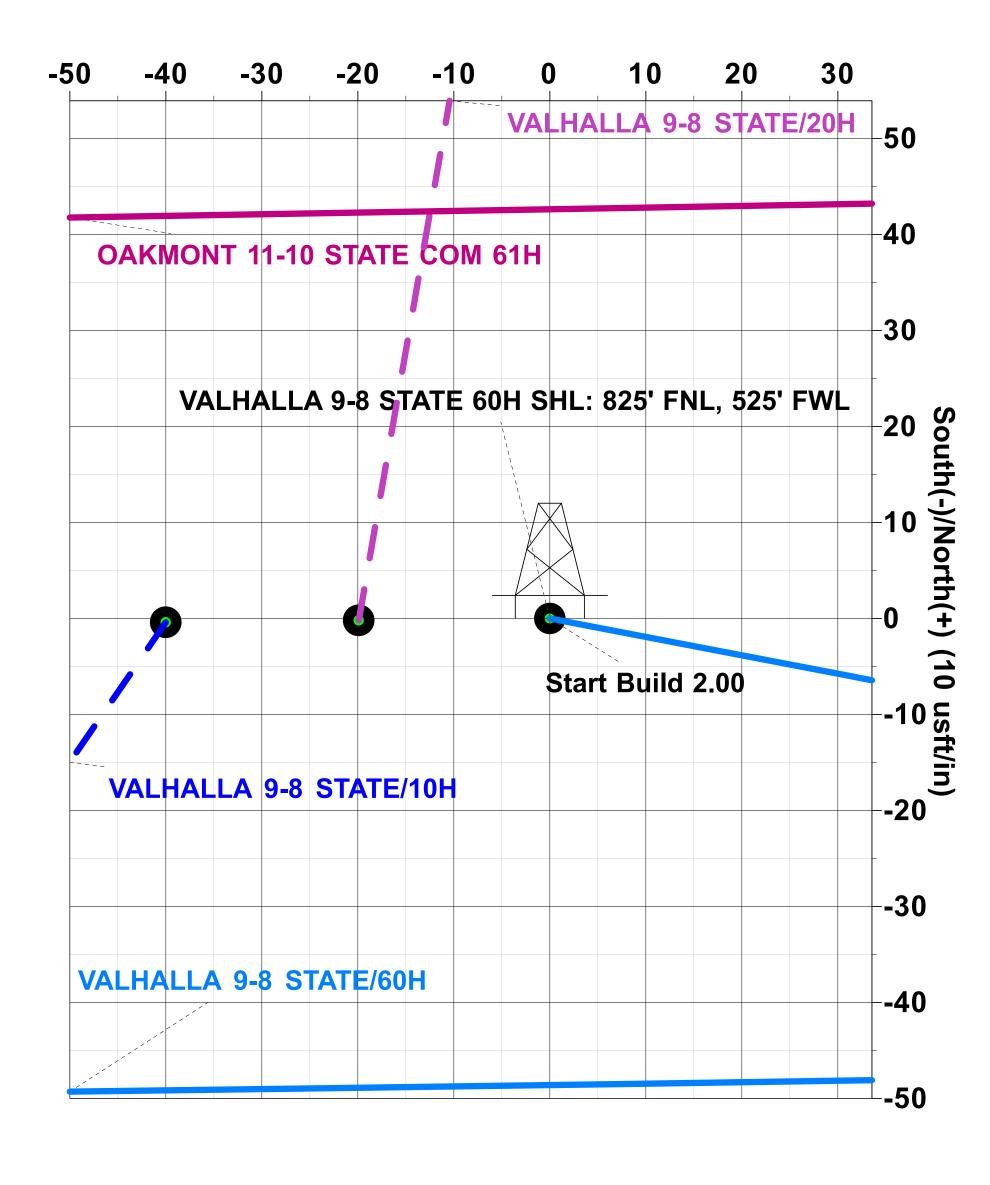
PROJECT DETAILS: LEA COUNTY, NM (NAD 83 - NME)

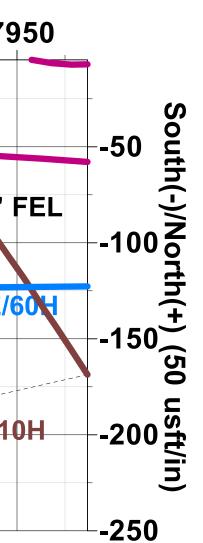


(P - 20' @	1100 0000 ft (AVITA E7)	
U	4189.00usft (AKITA 57)	
4169.	00	
asting	Latittude	Longitude
759.90	32.8541687	-103.6578726

D	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	VSect	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0	0.00	0.00	300.00	0.00	0.00	0.00	0.00	
6	2.45	100.85	422.53	-0.49	2.57	2.00	-2.57	
6	2.45	100.85	5604.78	-42.27	220.45	0.00	-220.06	
3	60.00	269.48	6471.81	-51.51	-256.12	6.00	256.58	
3	60.00	269.48	6571.81	-53.09	-429.32	0.00	429.78	
5	90.92	269.48	6648.50	-55.80	-725.00	10.00	725.48	
5	90.92	269.48	6608.28	-78.67	-3224.57	0.00	3225.15	
3	90.92	275.00	6603.84	-67.90	-3500.40	2.00	3500.87	
3	90.92	275.00	6586.82	24.48	-4556.23	0.00	4555.82	
7	90.92	265.00	6578.77	24.48	-5055.47	2.00	5055.04	
7	90.92	265.00	6555.65	-101.01	-6489.80	0.00	6490.45	
4	90.92	269.48	6552.06	-111.79	-6713.43	2.00	6714.17	
4	90.92	269.48	6529.62	-124.47	-8110.19	0.00	8110.98	

	TVD	+N/-S	+E/-W	Northing	Easting	Latituc
EL	6529.62	-124.47	-8110.19	675018.73	740649.71	32.853966
-	6650.00	-55.80	-624.50	675087.40	748135.40	32.854026
	5604.78	-42.27	220.45	675100.93	748980.35	32.854048
	6648.50	-55.80	-725.00	675087.40	748034.90	32.854028
L	0.00	0.00	0.00	675143.20	748759.90	32.854168


West(-)/East(+) (50 usft/in)



West(-)/East(+) (50 usft/in)

-84	50	-84	100	-8	350	-8	300	-82	250	-82	200	-81	50	-81	100	-80)50	-80	00	-79
	PE	BBI	-E 8	8-7	STA	ΓΕΟ	OM	60	H											
	50																			
								VAL	HAL			STA 145			BH	L: 8	575'	FNL	, 23	10'
	FSE															171	^	0_8	STA	TE/
	HARD															0 7	ет	ATE	C O	
														EDI	PLE	0=/	31/		UU	

West(-)/East(+) (10 usft/in)

Plan: PERMIT (60H/Wellbore #1) Created By: PROTOTYPE WELL PLANNING / Date: 14:27, September 12 2023

Re	ceived	bv	OCD:	9/28/2023	1:46:17 PM
----	--------	----	------	-----------	------------

	E	Stat nergy, Minerals a	e of New Mex nd Natural Res		nt		Submit Electronica Via E-permitting	ılly
		1220 \$	onservation Di South St. France	cis Dr.				
		San	ta Fe, NM 875	505				
	Ν	ATURAL GA	AS MANA(GEMENT PI	LAN			
This Natural Gas Manag	ement Plan m	ust be submitted wi	th each Applicat	ion for Permit to D	Drill (AF	PD) for a ne	w or recompleted	d wel
			<u>1 – Plan De</u>					
		Ef	fective May 25,	<u>2021</u>				
I. Operator:Sput	r Energy Par	tners LLC	OGRID:	326475		Date: _(<u>)9/19/2023</u>	
II. Type: 🙀 Original 🗆] Amendment	due to □ 19.15.27.	9.D(6)(a) NMAC	C 🗆 19.15.27.9.D(6)(b) N	MAC 🗆 Ot	her.	
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a since the second secon					vells pro	oposed to be	e drilled or propo	osed t
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D	Anticipated Produced Wat BBL/D	
Valhalla 9-8 State 10H	30-015	D-10-17S-33E	825' FNL 485' FWL	425 BBL/D		MCF/D	2,206 BBL/I	
Valhalla 9-8 State 20H Valhalla 9-8 State 60H	<u>30-015</u> 30-015	D-10-17S-33E D-10-17S-33E	825' FNL 505' FWL 825' FNL 525' FWL	425 BBL/D 360 BBL/D		MCF/D MCF/D	2,206 BBL/I 1,407 BBL/D	
	50 010							
IV. Central Delivery Po V. Anticipated Schedul proposed to be recomple	e: Provide the	e following informa		or recompleted w	ell or se		15.27.9(D)(1) NM proposed to be dri	
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flo Back Dat		
Valhalla 9-8 State 10H	30-015	12/14/2023	12/23/2023	3/19/2024		5/1/2024	5/3/202	24
Valhalla 9-8 State 20H	30-015	12/23/2023	1/1/2024	3/19/2024		5/1/2024		
Valhalla 9-8 State 60H	30-015	1/1/2024	1/10/2024	3/19/2024		5/1/2024	5/3/202	24
VI. Separation Equipm	ent: 🛛 Attacl	h a complete descrip	ption of how Ope	erator will size sepa	aration	equipment t	to optimize gas ca	aptur
VII. Operational Pract Subsection A through F			ription of the act	ions Operator will	l take to	o comply w	ith the requireme	ents
VIII. Best Managemen during active and planne			te description of	Operator's best m	nanagen	nent practic	es to minimize v	entir

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \square Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 $\overline{\mathbf{X}}$ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (**b**) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Cypthia Villacorta
Printed Name: Cynthia Villacorta
Title: Regulatory Consultant
E-mail Address: cynthia.villacorta@spurenergy.com
Date: 9/19/2023
Phone: 832-661-0711
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan – Attachment

VI. Separation equipment will be sized by construction engineering staff based on anticipated daily production to ensure adequate capacity.

VII. Spur Energy Partners LLC ("Spur") will take the following actions to comply with the regulations listed in 19.15.27.8:

- A. Spur will maximize the recovery of natural gas by minimizing waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. Spur will ensure that our wells will be connected to a natural gas gathering system with sufficient capacity to transport natural gas.
- B. All drilling operations will be equipped with a rig flare at least 100 feet from the nearest surface hole location. Rig flare will be utilized to combust any natural gas that is brought to surface during normal operations. In the case of emergency, flaring volumes will be reported appropriately.
- C. During completion operations any natural gas brought to surface will be flared. Immediately following completion operations, wells will flow to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. If natural gas does not meet gathering pipeline specifications, Spur will flare for 60 days or until natural gas meets the pipeline specifications. Spur will ensure flare is properly sized and is equipped with an automatic igniter or continuous pilot. Gas samples will be taken twice per week and natural gas will be routed into a gathering system as soon as the pipeline specifications are met.
- D. Natural gas will not be flared with the exception of 19.15.27.8(D)(1-4). If there is no adequate takeaway for the separator gas, wells will be shut-in until that natural gas gathering system is available with exception of emergency or malfunction situations. Volumes will be reported appropriately.
- E. Spur will comply with performance standards pursuant to 19.15.27.8(E)(1-8). All equipment will be designed and sized to handle maximum pressures to minimize waste. Storage tanks constructed after May 25, 2021 will be equipped with an automatic gauging system that reduces venting of natural gas. Flare stacks installed or replaced after May 25, 2021 will be equipped with an automatic ignitor or continuous pilot. Spur will conduct AVO inspections as described in 19.15.27.8(E)(5)(a) with frequencies specified in 19.15.27.8(E)(5)(b) and (c). All emergencies or malfunctions will be resolved as quickly and safely as possible to minimize waste.
- F. The volume of natural gas that is vented or flared as the result of an emergency or malfunction during drilling and/or completion operations will be estimated and reported accordingly. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured and reported accordingly. Spur will install equipment to measure the volume of natural gas flared from existing piping or a flowline piped from equipment such as high-pressure separators, heater treaters, or VRUs associated with a well or facility associated with a well authorized by an APD after May 25, 2021 that has an average daily production of less than 60,000 cubic feet of natural gas. If metering is not practicable due to circumstances such as low flow rate or low pressure venting or flaring, Spur will estimate the volume of flared or vented natural gas.

that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing equipment.

VIII. For maintenance activities involving production equipment and compression, venting be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production equipment, the associated producing wells will be shut-in to eliminate venting. For maintenance of VRUs, all natural gas normally routed to the VRU will be routed to flare.

SPUR ENERGY PARTNERS LLC 9655 KATY FREEWAY, SUITE 500 | HOUSTON, TX77024 | 832.930.8502 WWW.SPUREPLLC.COM

1. Geologic Formations

VALHALLA 9-8 STATE (North Pad) Formation Tops							
	DEPTH (KB						
FORMATION	TVD)	LITHOLOGY	EXPECTED FLUIDS				
QUATERNARY	0'	DOLOMITE, OTHER: CALICHE	USEABLE WATER				
			OTHER: BRACKISH				
RUSTLER	1475'	DOLOMITE, SHALE, ANHYDRITE	WATER				
TOP SALT	1585'	ANHYDRITE	OTHER: SALT				
TANSILL	2695'	SANDSTONE, DOLOMITE	NONE				
YATES	2785'	DOLOMITE, LIMESTONE, SHALE, SILTSTONE	NONE				
SEVEN RIVERS	3135'	DOLOMITE, LIMESTONE	NATURAL GAS, OIL				
QUEEN	3775'	SANDSTONE W INTERBEDDED DOLOMITE, ANHYDRITE	NATURAL GAS, OIL				
GRAYBURG	4215'	DOLOMITE W MINOR SANDSTONE, ANHYDRITE	NATURAL GAS, OIL				
SAN ANDRES	4530'	DOLOMITIC LIMESTONE	NATURAL GAS, OIL				
GLORIETA	5990'	DOLOMITE, SILTSONE	NATURAL GAS, OIL				
YESO - Paddock	6080'	DOLOMITIC LIMESTONE	NATURAL GAS, OIL				
YESO - Blinebry	6465'	DOLOMITIC LIMESTONE	NATURAL GAS, OIL				
Tubb	7295'	DOLOMITIC LIMESTONE	NATURAL GAS, OIL				
		TVD of Target 6,530'					
		MD at TD 14,556'					

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Primary Plan:

Casing	Hala Siza (in)	Casing Inter	val	Csg. Size	Weight	Crada	Com	SF	SE Dame	Body SF	Joint SF
Formation Set Interval	Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tensio n
Rustler	17.5	0	1525	13.375	54.5	J-55	BTC	1.125	1.2	1.4	1.4
Seven Rivers	12.25	0	3275	9.625	36	J-55	BTC	1.125	1.2	1.4	1.4
N/A	8.75	0	6900	7	32	P-110	BK-HT	1.125	1.2	1.4	1.4
Yeso	8.75	6900	14556	5.5	20	P-110	BK-HT	1.125	1.2	1.4	1.4
								SF	Values will me	et or Exceed	

.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Primary Plan:

Casing String	Top (ft)	Bottom (ft)	% Excess
Surface Tail	0	1525	165%
Intermediate (Lead)	0	1525	100%
Intermediate (Tail)	1525	3275	100%
Production (Lead)	0	5900	100%
Production (Tail)	5900	14556	25%

Casing String	# Sks	Wt. (lb/gal)	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (hours)	Slurry Description
Surface Tail	1487	13.2	1.87	9.92	6:59	Clas C Premium Plus Cement
Intermediate (Lead)	231	12	2.4	13.48	8:12	Clas C Premium Plus Cement
Intermediate (Tail)	596	13.2	1.87	9.92	6:59	Clas C Premium Plus Cement
Production (Lead)	1140	11.4	2.42	15.29	N/A	Clas C Premium Plus Cement
Production (Tail)	1676	13.2	1.56	9.81	N/A	Clas C Premium Plus Cement

4. Pressure Control Equipment

Spur Energy Partners LLC variance for flex hose

1. Spur requests a variance to use a flex line from the BOP to the choke manifold. Documentation will be attached in the APD and be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no bends).

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:	
		5M	Annul	ar	1	70% of working pressure	
12.25" Hala	25" Hole 13-5/8"	12.5/00		Blind R	am	✓	
12.23 Hole		5M	Pipe Ram		1	250 psi / 3000 psi	
			Double Ram				
			Other*				
		5M	Annul	ar	~	70% of working pressure	
8.75" Hole	13-5/8"		Blind R	am	✓		
8.75" Hole	13-3/8	5M	Pipe Ra	ım	✓	250: / 2000:	
		SIM	Double I	Ram		250 psi / 3000 psi	
			Other*				

Spur Energy Partners LLC will be utilizing a 5M BOP

Condition	Specify what type and where?
BH Pressure at deepest TVD	3078 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	134°F

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.
--

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.					
Y Are anchors required by manufacturer?					
BOPE after in of 30	ventional wellhead system will be employed. The wellhead and connection to the will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 installation on the surface casing which will cover testing requirements for a maximum days. tached schematics.				

5. BOP Break Testing Request

Spur Energy Partners LLC requests permission to adjust the BOP break testing requirements as follows:

BOP break test under the following conditions:

- After a full BOP test is conducted
- When skidding to drill the production section, where the surface casing point is shallower than the 3 Bone Spring or 10,000 TVD.
- When skidding to drill a production section that does not penetrate the 3rd Bone Spring or deeper.

If the kill line is broken prior to skid, four tests will be performed.

- 1) The void between the wellhead and the spool (this consists of two tests)
- 2) The spool between the kill lines and the choke manifold (this consists of two tests)

If the kill line is not broken prior to skid, two tests will be performed.

1) The void between the wellhead and the pipe rams

6. Mud Program

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Spur will use a closed mud system.

Depth		Tumo	Weight (nng)	Viceosity	Watan Lana
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	1525	Water-Based Mud	8.6-8.9	32-36	N/C
1525	3275	Brine	10.0-10.5	32-36	N/C
3275	14556	Brine	10.0-10.5	38-50	N/C

What will be used to monitor the loss or gain of fluid? PVT/PASON/Visual Monitoring

Page 36 of 37

7. Logging and Testing Procedures

Logg	Logging, Coring and Testing.						
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs						
	run will be in the Completion Report and submitted to the BLM.						
No	Logs are planned based on well control or offset log information.						
No	Drill stem test? If yes, explain						
No	Coring? If yes, explain						
Addi	tional logs planned	Interval					
No	Resistivity						
No	Density						
No	CBL						
Yes	Mud log	ICP - TD					
No	PEX						

8. Drilling Conditions

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

Total estimated cuttings volume: 1345 bbls.

9. Other facets of operation

	Yes/No
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
Spur Energy Partners LLC. requests the option to contract a Surface Rig to drill,	
set surface casing, and cement for this well. If the timing between rigs is such that	
Spur Energy Partners LLC. would not be able to preset surface, the Primary Rig	
will MIRU and drill the well in its entirety per the APD. Please see the attached	
document for information on the spudder rig.	

Attachments

- _x_ Directional Plan
- _x__H2S Contingency Plan
- _x_Akita 57 Attachments
- _x__BOP Schematics
- _x__ Transcend Spudder Rig Attachments

10. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Christopher Hollis	Drilling Manager	832-930-8629	713-380-7754
Johnny Nabors Senior Vice President Operations		832-930-8502	281-904-8811