Re	ceived by OCD: 50/31/2023 2:10:55 PM		Sundry Print Report
	U.S. Department of the Interior		10/20/2023
	BUREAU OF LAND MANAGEMENT		100000000000000000000000000000000000000
$\left(\right)$	Well Name: JAMES RANCH UNIT DI 7 SAWTOOTH	Well Location: T23S / R31E / SEC 6 / LOT 1 / 32.340174 / -103.809752	County or Parish/State: EDDY / NM
	Well Number: 903H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM02887A	Unit or CA Name: JAMES RANCH, JAMES RANCH UNIT	Unit or CA Number: NMNM070965Z, NMNM70965X
	US Well Number: 3001550090	Well Status: Approved Application for Permit to Drill	Operator: XTO PERMIAN OPERATING LLC
١.			

Notice of Intent

Sundry ID: 2753454

Type of Submission: Notice of Intent

Date Sundry Submitted: 09/26/2023

Date proposed operation will begin: 11/01/2023

Type of Action: APD Change Time Sundry Submitted: 02:31

Procedure Description: ** Surface hole Change, First and Last Take Point Changes, Bottomhole Location Change, Drilling Plan Change, Casing/Cement Change XTO Permian Operating, LCC. requests permission to make the following changes to the original APD: No Additional Surface Disturbance SHL: fr/210'FNL & 400'F FEL to 155'FNL & 380'FEL, NMNM02887A FTP: fr/1000'FNL & 2310'FEL to 330'FNL & 1870'FWL, NMNM0281482A PPP #1: 1319' FNL & 1869' FWL, NMNM081953 LTP: fr/2440'FNL & 2310'FEL to 2540'FNL & 1870'FWL, NMNM071988B BHL: fr/2490'FNL & 2310'FEL to 2590'FNL & 1870'FWL, Section 17-T23S-R31E NMNM071988B Additionally, XTO Permian Operating, LLC. respectfully requests permission to change from a three-string design to a four-string design. The surface, intermediate and production hole, casing, and cement based on the attached drilling program. Due to the design change in these strings, the wellhead configuration has also changed based on the attached drilling program. Casing/Cement design per the attached drilling program. Attachments: C102 Drilling Program MBS Directional Plan OLCV Spud BOP BTV Cement Variance

NOI Attachments

Procedure Description

JRU_7_Sawtooth_903H__Sundry_Attachments_20230926143100.pdf

Ŕ	eceived by OCD: 10/31/2023 2:10:55 PM Well Name: JAMES RANCH UNIT DI 7 SAWTOOTH	Well Location: T23S / R31E / SEC 6 / LOT 1 / 32.340174 / -103.809752	County or Parish/State: EDBY ? of 9
	Well Number: 903H	Type of Well: OIL WELL	Allottee or Tribe Name:
	Lease Number: NMNM02887A	Unit or CA Name: JAMES RANCH, JAMES RANCH UNIT	Unit or CA Number: NMNM070965Z, NMNM70965X
	US Well Number: 3001550090	Well Status: Approved Application for Permit to Drill	Operator: XTO PERMIAN OPERATING LLC

Conditions of Approval

Additional

Sec_06_23S_31E_NMP_Sundry_2753454_James_Ranch_Unit_DI_7_Sawtooth_903H_Eng_Worksheet_20231017103 509.pdf

Sec_06_23S_31E_NMP_Sundry_2753454_James_Ranch_Unit_DI_7_Sawtooth_903H_COAs_20231017103509.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CASSIE EVANS

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Analyst

Street Address: 6401 Holiday Hill Road, Bldg 5

City: Midland

State: TX

Phone: (432) 218-3671

Email address: CASSIE.EVANS@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City: Phone:

State:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls BLM POC Title: Petroleum Engineer

Zip:

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 10/20/2023

Signed on: OCT 19, 2023 03:08 PM

Received by OCD: 10/31/2023 2:10:55 PM

<i>Xeceiveu by OCD</i> . 10/31/202	23 2.10.33 F M					ruge 5 oj
Form 3160-5 (June 2019)	UNITED STATES DEPARTMENT OF THE INTERI	IOR			FORM OMB 1 Expires: (APPROVED No. 1004-0137 October 31, 2021
В	UREAU OF LAND MANAGEM	ENT	5. Lease Serial No. NMNM02887A			
SUNDR Do not use th abandoned we	Y NOTICES AND REPORTS (is form for proposals to drill ell. Use Form 3160-3 (APD) fo	ON WELL or to re- or such p	-S enter an roposals.	6. If Indian, Allott	ee or Trib	e Name
SUBMI	IN TRIPLICATE - Other instructions of	n nare 2	-	7. If Unit of CA/A	greement	, Name and/or No.
1. Type of Well		n page 2		JAMES RANCH	, JAMES	RANCH UNIT/NMNM070965Z,
✓ Oil Well □ C	as Well Other			8. Well Name and	^{No.} JAM	ES RANCH UNIT DI 7 SAWTOO
2. Name of Operator XTO PERM			9. API Well No. 3	0015500	90	
3a. Address 6401 HOLIDAY HIL	L ROAD BLDG 5, MIDLAND, 3b. Phor (432) 6	ne No. <i>(inclu</i> 8 3-2277	de area code)	10. Field and Pool Purple Sage/W	or Explo	ratory Area NP SOUTH
4. Location of Well <i>(Footage, Sec.</i> SEC 6/T23S/R31E/NMP	T.,R.,M., or Survey Description)			11. Country or Par EDDY/NM	ish, State	
12.	CHECK THE APPROPRIATE BOX(ES)	TO INDICA	TE NATURE C	DF NOTICE, REPORT OR	OTHER I	DATA
TYPE OF SUBMISSION			TYPE	E OF ACTION		
✓ Notice of Intent	Acidize	Deepen Hydraulic	Fracturing	Production (Start/Resur	ne)	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair	New Const	truction [Recomplete Temporarily Abandon		Other
Final Abandonment Notice	Convert to Injection	Plug Back	[Water Disposal		
the Bond under which the wor completion of the involved op- completed. Final Abandonmen is ready for final inspection.) ** Surface hole Change, F	c will be perfonned or provide the Bond N erations. If the operation results in a multip t Notices must be filed only after all requir "irst and Last Take Point Changes, Bor	to. on file wind ple completion rements, incl ttomhole Lo	th BLM/BIA. I on or recomple uding reclamat	Required subsequent reports tion in a new interval, a For tion, have been completed a ge, Drilling Plan Change,	must be a m 3160-4 nd the op Casing/C	filed within 30 days following must be filed once testing has been erator has detennined that the site Cement Change
XTO Permian Operating,	_CC. requests permission to make the	following c	hanges to the	e original APD:		
No Additional Surface Dis	turbance					
SHL: fr/210FNL & 400F F	EL to 155FNL & 380FEL, NMNM0288	7A				
FTP: fr/1000FNL & 2310F	EL to 330FNL & 1870FWL, NMNM028	81482A				
PPP #1: 1319 FNL & 1869	€ FWL, NMNM081953					
Continued on page 3 addit	ional information					
14. I hereby certify that the foregoi	ng is true and correct. Name (Printed/Type	ed)	Regulatory	Analyst		
CASSIE EVANS / Ph: (432) 21	8-3671	Title	regulatory	Analyst		
(Electronic Submission)			;	10/1	9/2023	
	THE SPACE FOR	FEDERA	L OR STA	TE OFICE USE		
Approved by						
CHRISTOPHER WALLS / Ph:	(575) 234-2234 / Approved		Title Petrole	eum Engineer	Date	10/20/2023
Conditions of approval, if any, are a certify that the applicant holds lega which would entitle the applicant to	attached. Approval of this notice does not a lor equitable title to those rights in the sub conduct operations thereon.	warrant or bject lease	Office CAR	LSBAD		

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States
any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

Released to Imaging: 11/21/2023 10:03:12 AM

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

either shown below, will be issued by or may be obtained from the local Federal office.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Additional Remarks

LTP: fr/2440FNL & 2310FEL to 2540FNL & 1870FWL, NMNM071988B

BHL: fr/2490FNL & 2310FEL to 2590FNL & 1870FWL, Section 17-T23S-R31E NMNM071988B

Additionally, XTO Permian Operating, LLC. respectfully requests permission to change from a three-string design to a four-string design. The surface, intermediate and production hole, casing, and cement based on the attached drilling program. Due to the design change in these strings, the wellhead configuration has also changed based on the attached drilling program. Casing/Cement design per the attached drilling program.

Attachments: C102 Drilling Program MBS Directional Plan OLCV Spud BOP BTV Cement Variance

Location of Well

0. SHL: LOT 1 / 210 FNL / 400 FEL / TWSP: 23S / RANGE: 31E / SECTION: 6 / LAT: 32.340174 / LONG: -103.809752 (TVD: 0 feet, MD: 0 feet) PPP: LOT 2 / 1000 FNL / 2310 FEL / TWSP: 23S / RANGE: 31E / SECTION: 6 / LAT: 32.338005 / LONG: -103.815929 (TVD: 11060 feet, MD: 11593 feet) PPP: NWNE / 330 FNL / 2310 FEL / TWSP: 23S / RANGE: 31E / SECTION: 7 / LAT: 32.3245 / LONG: -103.81467 (TVD: 11060 feet, MD: 16543 feet) PPP: NWSE / 2310 FSL / 2310 FEL / TWSP: 23S / RANGE: 31E / SECTION: 6 / LAT: 32.33284 / LONG: -103.81467 (TVD: 11060 feet, MD: 13903 feet) BHL: SWNE / 2490 FNL / 2310 FEL / TWSP: 23S / RANGE: 31E / SECTION: 18 / LAT: 32.304887 / LONG: -103.815864 (TVD: 11060 feet, MD: 23641 feet)

Page 6 of 97

James Ranch Unit DI 7 Sawtooth 903H

13 3/8	surface c	sg in a	17 1/2	inch hole.		Design I	Factors			Surfac	e	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	54.50	J	55	BTC	25.21	3.89	7.27	621	10	12.19	7.35	33,845
"B"				BTC				0				0
w/8.4#	g mud, 30min Sfc	Csg Test psig:	1,500	Tail Cmt	does not	circ to sfc.	Totals:	621				33,845
Comparison	of Proposed to	Minimum R	equired Ceme	nt Volumes								j
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	530	835	431	94	9.00	224	2M				1.56
Í												
9 5/8	casing ins	ide the	13 3/8	_		<u>Design I</u>	Factors			Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	J	55	BTC	22.89	6.85	2.21	3,891	11	4.13	11.48	155,640
"B"								0				0
w/8.4#/	/g mud, 30min Sfc	Csg Test psig:					Totals:	3,891				155,640
í	The cement vo	lume(s) are	intended to a	chieve a top of	0	ft from su	rface or a	621				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	1740	2413	1249	93	10.50	957	2M				0.81
Class 'H' tail c	mt yld > 1.20											ĺ
7 5/8	cosing ins	ide the	9 5/8			Design Fa	ctors			Int 2		
Segment	#/ft	Grade	5.0	Coupling	Joint	Collanse	Burst	l enath	B@s	a-B	a-C	Weight
"A"	29 70	RYP	110	Flush Joint	4 96	2.99	1 84	3 991	5	3.09	5 59	118 533
"B"	29.70	HCI	80	Flush Joint	∞	3.23	1.34	5.869	4	2.25	6.04	174,309
w/8.4#	g mud 30min Sfc	Csg Test nsig:	1 500			0.20	Totals	9,860			0.01	292 842
	The cement vo	lume(s) are	intended to a	chieve a top of	0	ft from su	rface or a	3891				overlap
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Rea'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cola
8 3/4	0.1005	450	821	1022	-20	9.10	3062	5M				0.56
	011000		011			0110	0001	•				
Tail cmt												· · · · · · · · · · · · · · · · · · ·
5 1/2	casing ins	ide the	7 5/8			<u>Design</u> I	Factors		-	Prod	1	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	23.00	RY P	110	Semi-Premiur	2.80	2.83	1.95	9,760	2	3.27	4.75	224,480
"B"	23.00	RY P	110	Semi-Flush	∞	2.16	2.46	14,646	2	4.13	3.62	336,858
w/8.4#/	/g mud, 30min Sfc	Csg Test psig:	2,070				Totals:	24,406	_			561,338
í	The cement vo	lume(s) are	intended to a	chieve a top of	9360	ft from su	rface or a	500				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
6 3/4	0.0835	1000	1569	1261	24	10 50						0.43
Class 'H' tail c						10.00						0.40
Class II tall c	emt yld > 1.20		Capitan Reef	est top XXXX.		10.50						0.40
	cmt yld > 1.20		Capitan Reef	est top XXXX.		10.50			_			0.40

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	XTO Permian Operating
WELL NAME & NO.:	James Ranch Unit DI 7 Sawtooth 903H
LOCATION:	Sec 06-23S-31E-NMP
COUNTY:	Eddy County, New Mexico

Changes approved through engineering via **Sundry 2753454** *on* 10/17/2023. *Any previous COAs not addressed within the updated COAs still apply.*

COA

H ₂ S	C No	Yes					
Potash / WIPP	C None	C Secretary	🖸 R-111-P	□ WIPP			
Cave / Karst	C Low	Medium	C High	Critical			
Wellhead	Conventional	Multibowl	O Both	C Diverter			
Cementing	Primary Squeeze	Cont. Squeeze	EchoMeter	🗖 DV Tool			
Special Req	Break Testing	Water Disposal	COM	🗹 Unit			
Variance	Flex Hose	Casing Clearance	🗖 Pilot Hole	🗖 Capitan Reef			
Variance	✓ Four-String	Offline Cementing	□ Fluid-Filled	C Open Annulus			
	Batch APD / Sundry						

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **H2S Stream** (per BLM geologist). As a result, the Hydrogen Sulfide area must meet all requirements from 43 CFR 3176, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

1. The **13-3/8** inch surface casing shall be set at approximately 571 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Notes from the BLM geologist regarding this set point dictate:* Operator has extensive drilling experience in this area and has encountered lost circulation in BLM's preferred setpoint for the surface casing just below the Magenta Dolomite. BLM accepts the base of the Rustler Formation and Top of the Salt as surface casing setpoint. Operator must set surface casing at this depth and not deeper in the salt. If operator's proposed setpoint is deeper than top of salt, Operator will set surface casing at top of salt.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **9-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two salt protection casing strings, the cement on the 3rd casing salt string must come to surface.
- 3. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6550'
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid</u> top in the annulus OR operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification. **Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.**

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Email **or** call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, **BLM_NM_CFO_DrillingNotifications@BLM.GOV** (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43
 CFR part 3170 Subpart 3172 must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR part 3170**

Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Received by OCD: 10/31/2023 2:10:55 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio B

azos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

> OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

1 _A	PI Number	** 1		² Pool Code		LAGE DEDIC	³ Pool Nam	e I		
	30-015-			40295		LOS MEDANOS; BONE SPRING				
⁴ Property Code 333473				JRI	⁵ Property U DI 7 SAWTO	Name OTH FED COM			⁶ W	'ell Number 903H
⁷ OGRID No. 373075 XTO PER					⁸ Operator D PERMIAN OF	^{Name} PERATING, LLC			9	Elevation 3,329'
	·				¹⁰ Surface L	ocation		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/	West line	County
1	6	23 S	31 E		155	NORTH	380	EAS	ят 🛛	EDDY
			¹¹ Bott	om Hole	Location If	Different From	Surface			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/	West line	County
F	17	23 S	31 E		2,590	NORTH	1,870	WES	ST	EDDY
¹² Dedicated Acres	¹³ Joint or	Infill ¹⁴ Co	nsolidation (Code ¹⁵ Ord	ier No.	I				
399.92										

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Released to Imaging: 11/21/2023 10:03:12 AM

I

1

I

T

Instructions:

1) Enter all data into table below using the plat, geoprog, and directional plan

2) Enter GeoProg data directly into permit -- surface and intermediate casing/cement calculations are based on salt top & bot

3) If there is not a 3rd bone or Wolfcamp X/Y then hide the row from columns A - M

4) Enter Casing Specs on "Casing Design Page" for Burst, Collapse, and Tension

Field Needs an Input
Calculated Field
Pull Down Menu

Input Data					
Well Name	J	JRU DI 7 Sawtooth FED COI			
Well Formation and Lateral	3rd Bone Spring S	and	2.5 Mile L		
Date Created		9/26/2023	3		
	SHL Data		BHL Da		
Section	6		17		
Т	23	S	23		
R	31	E	31		
Northing	155	N	2590		
Easting	380	E	1870		
County		Eddy			
Formations					
Formation	Well Depth (TVD)	Water/Oil/Gas			
Rustler	324'	Water			
Top of Salt	646'	Water			
Base of Salt	3791'	Water			
Delaware	3998'	Water			
Brushy Canyon	6550'	Water/Oil/Gas			
Bone Spring	7863'	Water			
1st Bone Spring Ss	8893'	Water/Oil/Gas			
2nd Bone Spring Ss	9699'	Water/Oil/Gas			
3rd Bone Spring Sh	10306'	Water/Oil/Gas			
3rd Bone Spring Ss	10674'	Water/Oil/Gas			
Target/Land Curve	11079'	Water/Oil/Gas	Match Directional Plan wh		
BHL	11209'	Water/Oil/Gas			
Hole Sizes					
Hole Section	Hole Size	1			
Surface	17.5				

.

	40.05	1	
	0.75		
Intermediate 2	8.75		
Production Curve	0.75		
Production Lateral	6.75		
Mud Weights			
Surface	8.5		
Intermediate 1	10		
Intermediate 2	8.6	1	
Production	10		
Casing Points			
Surface	621'	25' above Top Salt	
Intermediate 1	3891'	100' below Base of	f Salt
Intermediate 2	9860'	~200' above KOP,	but ensure casing is set in
DV Tool &/or Int 2 XO	3991'	100' below previous casing shoe (if neede	
Production	24006'	Equals BHL	
Casing	News	0:	
Hole Section		Size	vveight
	13.375 54.5 J-55 BTC	13.375	54.5
	9.625 40 J-55 BTC	9.625	40
Intermediate 2	7.625 29.7 RY P-110 Flush Joint	7.625	29.7
Intermediate 2	7.625 29.7 HC L-80 Flush Joint	7.625	29.7
Production	5.5 23 RY P-110 Semi-Premium	5.5	23
Production	5.5 23 RY P-110 Semi-Flush	5.5	23
Production	5.5 23 RY P-110 Semi-Flush	5.5	23
Directional			
	MD	TVD	
КОР	10,777	10,363	
Landing Point	11,902	11,079	
TD	24,006	11,079	
OH Logs			
If Yes, Paste if no, "NO" >	No	Check 8. to see that	at it reads correctly
Max Frac Pressure		1	
12000	psi	1	

.

Temps	
Surf Temp	BHT
85	185

** Calculated off LP TVD

		Ca	asing Table
Name	OD	Weight	Grade
20 169 K-55 BTC	20	169	K-55
18.625 87.5 J-55 BTC	18 5/8	87.5	J-55
13.375 68 HC L-80 BTC	13 3/8	68	HC L-80
13.375 54.5 J-55 BTC	13 3/8	54.5	J-55
9.625 40 J-55 BTC	9 5/8	40	J-55
9.625 40 HC L-80 BTC	9 5/8	40	HC L-80
9.625 53.5 HC P-110 BTC	9 5/8	53.5	HC P-110
9.625 40 HC P-110 BTC	9 5/8	40	HC P-110
7.625 29.7 RY P-110 Flush Joint	7 5/8	29.7	RY P-110
7.625 29.7 CY P-110 Flush Joint	7 5/8	29.7	CY P-110
7.625 29.7 HC L-80 Flush Joint	7 5/8	29.7	HC L-80
6 26 P-110 Semi-Flush	6	26	P-110
5.5 23 RY P-110 Semi-Flush	5 1/2	23	RY P-110
5.5 23 RY P-110 Semi-Premium	5 1/2	23	RY P-110
5.5 20 RY P-110 Semi-Flush	5 1/2	20	RY P-110
5.5 20 RY P-110 Semi-Premium	5 1/2	20	RY P-110

.

Open hole logging will not be done on this we

appropi

.

en	appropria	te

ateral		
ata		
	<u> </u>	
	E	
	N	
	VV	

tom.

.

competent rock per geo

Well Plan LP	11,079
Geoprog LP	11,079
Well Plan KOP	10,777
New KOP	10,777

-

		Check Hole sizes on Cement Calcs
Grade	Collar	
J-55	BTC	
J-55	BTC	
RY P-110	Flush Joint	
HC L-80	Flush Joint	
RY P-110	Semi-Premium	
RY P-110	Semi-Flush	
RY P-110	Semi-Flush	

Connection	Tube ID	Collapse	Burst	Tension	
BTC	18.376	2,500	3,380	2,689,000	K-55
BTC	17.755	630	2,250	1,329,000	J-55
BTC	12.415	2,690	5,020	1,545,000	HCL-80
BTC	12.615	1,130	2,740	909,000	J-55
BTC	8.835	2,750	3,950	630,000	J-55
BTC	8.835	4,230	5,750	916,000	HCL-80
BTC	8.835	9,190	10,900	1,718,000	P110 HC
BTC	8.535	4,230	7,910	1,266,000	P110 HC
Flush Joint	6.875	5,350	9,460	558,000	P110 RY -IFJ
Flush Joint	6.875	5,350	9,460	960,000	P110 CY - IFJ
Flush Joint	6.875	5,780	6,880	406,000	HCL-80 - IFJ
Semi-Flush	5.128	13,570	14,010	838,000	P-110 - Talon HTQ
Semi-Flush	4.67	14,540	14,530	707,000	P110 RY - Talon HTQ
Semi-Premium	4.67	14,540	14,520	729,000	P110 RY - Freedom HTQ
Semi-Flush	4.778	11,100	12,640	641,000	P110 RY - Talon HTQ
Semi-Premium	4.778	11,100	12,640	641,000	P110 RY - Freedom HTQ

<u>اا</u>.

Rows hidde

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc. JRU DI 7 Sawtooth FED COM 903H Projected TD: 24005.5' MD / 11079' TVD SHL: 155' FNL & 380' FEL , Section 6, T23S, R31E BHL: 2590' FNL & 1870' FWL , Section 17, T23S, R31E Eddy County, NM

1. Geologic Name of Surface Formation Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	324'	Water
Top of Salt	646'	Water
Base of Salt	3791'	Water
Delaware	3998'	Water
Brushy Canyon	6550'	Water/Oil/Gas
Bone Spring	7863'	Water
1st Bone Spring Ss	8893'	Water/Oil/Gas
2nd Bone Spring Ss	9699'	Water/Oil/Gas
3rd Bone Spring Sh	10306'	Water/Oil/Gas
Target/Land Curve	11079'	Water/Oil/Gas

*** Hydrocarbons @ Brushy Canyon

*** Groundwater depth 40' (per NM State Engineers Office).

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 621' (25' above the salt) and circulating cement back to surface. The salt will be isolated by setting 9.625 inch casing at 3891' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 7.625 inch casing at 9860' and cementing to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 24005.5 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 9360 feet) per Potash regulations.

3. Casing Design

Hole Size	MD	TVD	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 621'	571'	13.375	54.5	J-55	BTC	New	2.35	4.12	26.86
12.25	0' – 3891'	3688'	9.625	40	J-55	BTC	New	1.76	2.32	4.05
8.75	0' – 3991'	3788'	7.625	29.7	RY P-110	Flush Joint	New	2.85	3.00	1.91
8.75	3991' – 9860'	9502'	7.625	29.7	HC L-80	Flush Joint	New	2.07	3.68	2.33
6.75	0' – 9760'	9409'	5.5	23	RY P-110	Semi-Premium	New	1.21	2.86	1.96
6.75	9760' - 24005.5'	10451'	5.5	23	RY P-110	Semi-Flush	New	1.21	2.52	4.82

Production casing meets the clearance requiremenets as tapered string crosses over before encountering the intermediate shoe, per Onshore Order 2.3.B.1

XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and

intermediate 1 casing per this Sundry

· XTO requests to not utilize centralizers in the curve and lateral · 9.625 Collapse analyzed using 50% evacuation based on regional experience.

· 7.625 Collapse analyzed using 50% evacuation based on regional experience.

· 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35

Test on 2M annular & Casing will be limited to 70% burst of the casing or 1500 psi, whichever is less XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

<u>Permanent Wellhead – Multibowl System</u> A. Starting Head: 13-5/8" 10M top flange x 13-3/8" bottom

B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange

- · Wellhead will be installed by manufacturer's representatives. · Manufacturer will monitor welding process to ensure appropriate temperature of seal.
- · Operator will test the 7-5/8" casing per BLM Onshore Order 2
- \cdot Wellhead Manufacturer representative will not be present for BOP test plug installation

Check casing size her

4. Cement Program

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 621

Lead: 230 sxs EconoCem-HLTRRC (mixed at 12.9 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 300 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water) Top of Cement: Surface Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 3891

Lead: 1610 sxs Class C (mixed at 12.9 ppg, 1.39 ft3/sx, 10.13 gal/sx water) Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water) Top of Cement: Surface Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9860

 1st Stage

 Optional Lead: 150 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

 TOC: 3691

 Tail: 300 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

 TOC: Brushy Canyon @ 6550

 Compressives:
 12-hr =

 900 psi
 24 hr = 1150 psi

2nd Stage

 Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water)

 Tail: 410 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

 Top of Cement: 0

 Compressives:
 12-hr =
 900 psi
 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6550') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling operations.

Production Casing: 5.5, 23 New Semi-Flush, RY P-110 casing to be set at +/- 24005.5

 Lead: 50 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement:
 9360 feet

 Tail: 950 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement:
 10776.7 feet

 Compressives:
 12-hr =
 1375 psi
 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap ser standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

DV Tool can be hidder

Bradenhead squeeze

5. Pressure Control Equipment

Once the permanent WH is installed on the 13.375 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 5M Hydril and a 13-5/8" minimum 5M Double Ram BOP. MASP should not exceed 3324 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 13.375, 5M bradenhead and flange, the BOP test will be limited to 5000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 5000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 5M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

Temporary wellhead/d

Check casing sizes he

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

	Hala Siza	Mud Tupe	MW	Viscosity	Fluid Loss
INTERVAL	Hole Size	Mud Type	(ppg)	(sec/qt)	(cc)
0' - 621'	17.5	FW/Native	8.5-9	35-40	NC
621' - 3891'	12.25	Brine	10-10.5	30-32	NC
3891' to 9860'	8.75	BDE/OBM or FW/Brine	8.6-9.1	30-32	NC
9860' to 24005.5'	6.75	OBM	10-10.5	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 13-3/8" surface casing with brine solution. A 10.0 ppg -10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 175 to 195 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 5761 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Check properties

Double che

.

	24,006 ft TD 9/26	6/2023		
13.375 54.5 J-55 BTC	621 MD/TVD	8.5 ppg mud		
	collapse = 113	0 Burst =	2740	Tension = 909000
<u>Collapse</u> (8.5)(0.052)(621) = Burst	274 psi	1130/274 =	4.12	SF for collapse
Max exp. surf pressure	1167 psi	2740/1167.3 =	2.35	SF for burst
621)(54.5)=	33844.5 lb	909/33.8 =	26.86	SF for tension
9.625 40 J-55 BTC	3891 MD/TVD	10 # mud		
2-11	Collapse = 275	60 Burst =	3950	Tension = 630000
Cullipse (10)(0.052)(3891) * = *Less internal fluid height	1184 psi	2750/1184 =	2.32	SF for collapse
Max expected surf pressure =	2240 psi	3950/2240.192 =	1.76	SF for burst
<u>"ension</u> 3891)(40)=	155640 lb	630/155.64 =	4.05	SF for tension
7.625 29.7 RY P-110 Flush Joint	0 Top MD/TV	D 8.6 #	# mud	7
7.625 29.7 RY P-110 Flush Joint	0 Top MD/TV 3991 Bottom MD/TV Collapse = 535	D 8.6 #	# mud 9460	Tension = 558000
7.625 29.7 RY P-110 Flush Joint	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi	D 8.6 #	4 mud 9460 3.00	Tension = 558000
7.625 29.7 RY P-110 Flush Joint <u>Collapse</u> 86(0.052)(3991)= <u>Jurst</u>	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi	D 8.6 #	# mud 9460 3.00	Tension = 558000 SF for collapse
7.625 29.7 RY P-110 Flush Joint <u>Collapse</u> 8.6)(0.052)(3991)= <u>Jurst</u> <u>Jax expected surf pressure =</u> Tension	0 Top MD/TV 3991 Bottom MD/TV Collapse = 533 1785 psi 3324 psi	D 8.6 # D Burst = 5350/1785= 9460/3323.7=	# mud 9460 3.00 2.85	Tension = 558000 SF for collapse SF for burst
7.625 29.7 RY P-110 Flush Joint <u>Collapse</u> 8.6)(0.052)(3991)= <u>Jurst</u> <u>Jake expected surf pressure =</u> <u>Tension</u> 3991*29.7)+(5869*29.7)=	0 Top MD/Tv 3991 Bottom MD/Tv Collapse = 538 1785 psi 3324 psi 292842 lb	D 8.6 # D Burst = 5350/1785= 9460/323.7= 558/292.842=	# mud 9460 3.00 2.85 1.91	Tension = 558000 SF for collapse SF for burst SF for tension
.625 29.7 RY P-110 Flush Joint <u>Collapse</u> 8.6)(0.052)(3991)= Turst <u>Aax expected surf pressure =</u> <u>rension</u> 3991*29.7)+(5869*29.7)= .625 29.7 HC L-80 Flush Joint	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi 3324 psi 292842 lb 3991 Top MD/TV	D 8.6 # D Burst = 5350/1785= 9460/3323.7= 558/292.842=	¥ mud 9460 3.00 2.85 1.91	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud
.625 29.7 RY P-110 Flush Joint Collapse 8.6)(0.052)(3991)= Surst Max expected surf pressure = <u>ension</u> 3991*29.7)+(5869*29.7)= .625 29.7 HC L-80 Flush Joint	0 Top MD/TV 3991 Bottom MD/TV Collapse = 533 1785 psi 3324 psi 292842 lb 3991 Top MD/TV 9660 TD MD/TV Collapse = 578	D 8.6 # D Burst = 5350/1785= 9460/3323.7= 558/292.842= D D 0 Burst =	¥ mud 9460 3.00 2.85 1.91 6880	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud Tension = 406000
7.625 29.7 RY P-110 Flush Joint Collapse 8.6)(0.052)(3991)= Surst Max expected surf pressure = Fension 3991*29.7)+(5869*29.7)= 7.625 29.7 HC L-80 Flush Joint Collapse 8.6)(0.052)(9860) *= Less internal fluid height	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi 3324 psi 292842 lb 3991 Top MD/TV 9860 TD MD/TV Collapse = 578 1572 psi	D 8.6 # D Burst = 5350/1785= 9460/3323.7= 558/292.842= D D D Burst = 5780/1572=	¥ mud 9460 3.00 2.85 1.91 6880 3.68	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud Tension = 406000 SF for collapse
.625 29.7 RY P-110 Flush Joint Collapse .60(0.052)(3991)= Surst Max expected surf pressure = remsion 3991*29.7)+(5869*29.7)= :625 29.7 HC L-80 Flush Joint Collapse 8.6)(0.052)(9860) * = Less internal fluid height Surst	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi 3324 psi 292842 lb 3991 Top MD/TV 9860 TD MD/TV Collapse = 578 1572 psi	D 8.6 # D Burst = 5350/1785= 9460/3323.7= 558/292.842= D D D Burst = 5780/1572= 6880/3252.7=	<pre># mud 9460 3.00 2.85 1.91 6880 3.68 3.07</pre>	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud Tension = 406000 SF for collapse
7.625 29.7 RY P-110 Flush Joint Collapse 8.6)(0.052)(3991)= <u>Burst</u> Max expected surf pressure = <u>Cension</u> 3991*29.7)+(5869*29.7)= 7.625 29.7 HC L-80 Flush Joint Collapse 8.6)(0.052)(9860) * = Less internal fluid height <u>Burst</u> Max expected surf pressure = <u>Cension</u> 5669)(29.7)=	0 Top MD/TV 3991 Bottom MD/TV Collapse = 538 1785 psi 3324 psi 292842 lb 3991 Top MD/TV 9860 TO MD/TV Collapse = MD/TV 9860 TO 2018pse = 578 1572 psi 3324 psi 1572 psi	D 8.6 # D Burst = 5350/1785= 9460/323.7= 558/292.842= D D D Burst = 5780/1572= 6880/3323.7= 406/174.3093=	<pre># mud 9460 3.00 2.85 1.91 6880 3.68 2.07 2.33</pre>	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud Tension = 406000 SF for collapse SF for burst SF for burst SF for tension
7.625 29.7 RY P-110 Flush Joint Collapse 8.6\0.052\(3991)= Jurst Max expected surf pressure = [ension 3991*29.7)+(5869*29.7)= 7.625 29.7 HC L-80 Flush Joint Collapse 8.6\(0.052\(9860) * = Less internal fluid height Jurst Max expected surf pressure = [ension 5869\(29.7)=	0 Top MD/TV 3991 Bottom Collapse ■ MD/TV 3324 psi 3324 psi 292842 lb 3991 Top MD/TV 9860 TD MD/TV Collapse ■ 574 1572 psi 3324 psi 1572 psi 1572 psi 1572 psi 174309.3 lb	D 8.6 # D Burst = 5350/1785= 9460/3323.7= 558/292.842= D D 00 Burst = 5780/1572= 6880/3323.7= 406/174.3093=	<pre># mud 9460 3.00 2.85 1.91 6880 3.68 2.07 2.33</pre>	Tension = 558000 SF for collapse SF for burst SF for tension 8.6 # mud Tension = 406000 SF for collapse SF for burst SF for tension

	0.35 FF			
	Collapse =	14540 Burst	= 14520	Tension= 729000
<u>Collapse</u> (10)(0.052)(9760) = Burst	5075 psi	14540/5075=	2.86 SF	for collapse
Max expected surf pressure =	12000 psi	*for frac 14520/12000=	1.21 SF	for burst
Tension #REF!	371175 lb	729/371.17469=	1.96 SF	for tension
1				
5.5 23 RY P-110 Semi-Flush	9,760 Top	24,006 TD (MD)	11,079 TV	/D (max) 10 # mud
5.5 23 RY P-110 Semi-Flush	9,760 Top 0.35 FF	24,006 TD (MD) 11,902 LP (MD)	11,079 TV 12103.8 La	/D (max) 10 # mud t Length
5.5 23 RY P-110 Semi-Flush	9,760 Top 0.35 FF Collapse=	24,006 TD (MD) 11,902 LP (MD) 14540 Burst	11,079 TV 12103.8 Lat = 14530	/D (max) 10 # mud t Length Tension= 707000
5.5 23 RY P-110 Semi-Flush <u>Collapse</u> (10)(0.052)(11079) = Puret	9,760 Top 0.35 FF Collapse= 5761 psi	24,006 TD (MD) 11,902 LP (MD) 14540 Burst 14540/5761=	11,079 TV 12103.8 Lat = 14530 2.52 SF	/D (max) 10 # mud t Length Tension= 707000 f for collapse
5.5 23 RY P-110 Semi-Flush <u>Collapse</u> (10)(0.052)(11079) = <u>Burst</u> Max expected surf pressure = Tension	9,760 Top 0.35 FF Collapse= 5761 psi 12000 psi	24,006 TD (MD) 11,902 LP (MD) 14540 Burst 14540/5761= *for frac 14530/1200=	11,079 TV 12103.8 Lat = 14530 2.52 SF 1.21 SF	/D (max) 10 # mud t Length Tension= 707000 F for collapse f for burst

Field Needs an Input	BLM Min. Burst:	1
Calculated Field	BLM Min. Collapse:	1.125
Collapse Assumptions	BLM Min. Tension (Dry):	1.6
Burst Assumptions	BLM Min. Tension (Buoyed):	1.8

Burst Assumes MASP Equation (10)(0.052)(3891) - (.22)(3891)

Collapse Assumes 1/2 evacuation & FW internal Fluid Top: 1946 MD/TVD

Burst Assumes MASP Equation (8.6)(0.052)(9860) - (.22)(9860)

Collapse Assumes full evacuation

Burst Assumes MASP Equation (10)(0.052)(11079) - (.22)(11079)

Collapse Assumes 1/3 evacuation & FW internal Fluid Top: 6573 MD/TVD

Burst Assumes MASP Equation (10)(0.052)(11079) - (.22)(11079)

Surface Cement	1st Intermediate		
Top of Cement: Casing Shoe:	0 ft, MD 621 ft, MD	Top of Cement: Casing Shoe:	0 3891
Hole Size: Casing Size:	17.5 in 13.375 in	Hole Size: Casing Size:	12.25 9.625
<u>Lead</u> % Excess, OH yield TOC for Lead	100 % 1.87 ft ³ / sack 0 ft, MD	<u>Lead</u> % Excess, OH yield TOC for Lead	100 1.39 0
<u>Tail</u> % Excess, OH yield TOC for Tail	100 % 1.35 ft ³ / sack 321 ft, MD	<u>Tail</u> % Excess, OH yield TOC for Tail	100 1.35 3,591
Lead Calcs		Lead Calcs	
Annular Volume: Cement Volume:	445.98 ft ³ (w/ excess) 238.5 sacks	Annular Volume: Cement Volume:	2249.44 1618.3
<u>Tail Calcs</u>		<u>Tail Calcs</u>	
Annular Volume: Cement Volume:	416.81 ft ³ (w/ excess) 308.7 sacks	Annular Volume: Cement Volume:	187.92 139.2

Field Needs an Input Calculated Field

2nd Intermediate, 2nd Stage			2nd Intermediate,
ft, MD	Top of Cement:	0 ft, MD	Top of Cerr
ft, MD	Bottom of Cement:	3,691 ft, MD	Casing Shc
in	Hole Size:	8.75 in	Hole Size:
in	Casing Size:	7.625 in	Casing Size
	Lead		Lead
%	% Excess, OH	100 %	% Excess,
IL / SACK	yleid		yieid TOC for Lo
	TOC IOI Lead		TOC IOF Le
	Tail		Tail
%		<mark>50</mark> %	% Excess,
ft ³ / sack	yield	1.33 ft ³ / sack	yield
ft, MD	TOC for Tail	0 ft, MD	TOC for Ta
	Lead Calcs		<u>Lead Calcs</u>
ft ³ (w/ excess)	Annular Volume:	0.00 ft ³ (w/ excess)	Annular Vo
sacks	Cement Volume:	0.0 sacks	Cement Vo
	<u>Tail Calcs</u>		<u>Tail Calcs</u>
ft ³ (w/ excess)	Annular Volume:	556.32 ft ³ (w/ excess)	Annular Vo
sacks	Cement Volume:	418.3 sacks	Cement Vo

1st Stage		Production Cement	
nent: be: e:	3691 ft, MD 9860 ft, MD 8.75 in 7.625 in	Top of Cement: Casing Shoe: Kick Off Point: Landing Point: Hole Size 1: Hole Size 2: Casing Size 1: Casing Size 2: XO Depth:	9360 ft, MD 24,006 ft, MD 10,777 ft, MD 11,902 ft, MD 6.75 in 6.75 in 5.5 in 5.5 in 0 ft, MD
OH ad	50 % 2.77 ft ³ / sack 3,691 ft, MD	<u>Lead</u> % Excess, OH yield TOC for Lead	30 % 2.69 ft ³ / sack 9,360 ft, MD
OH	25 % 1.35 ft ³ / sack 6,550 ft, MD	<u>Tail</u> % Excess, OH yield TOC for Tail	30 % 1.51 ft ³ / sack 10,777 ft, MD
i lume: lume:	430.91 ft ³ (w/ excess) 155.6 sacks	<u>Lead Calcs</u> Annular Volume: Cement Volume: <u>Tail Calcs</u>	153.82 ft ³ (w/ excess) 57.2 sacks
lume: lume:	415.74 ft ³ (w/ excess) 308.0 sacks	Annular Volume: Cement Volume:	1436.36 ft ³ (w/ excess) 951.2 sacks

= Calculate

Formations
1st Bone Spring
1st Bone Spring Sand
2nd Bone Spring
2nd Bone Spring Shale
2nd Bone Spring Sand
3rd Bone Spring
3rd Bone Spring Shale
3rd Bone Spring Sand
Wolfcamp X
Wolfcamp Y
Wolfcamp X/Y
Wolfcamp A
Wolfcamp B
Wolfcamp B/C
Wolfcamp C
Wolfcamp D/E
Wolfcamp D
Wolfcamp E

Lateral Length
1 Mile Lateral
1.5 Mile Lateral
2 Mile Lateral
2.25 Mile Lateral
2.5 Mile Lateral
3 Mile Lateral
3.5 Mile Lateral
4 Mile Lateral

1st Bone Spring 1st Bone Spring 1st Bone Spring **1st Bone Spring** 1st Bone Spring 1st Bone Spring **1st Bone Spring** 2nd Bone Spring 3rd Bone Spring 3rd Bone Spring **3rd Bone Spring 3rd Bone Spring 3rd Bone Spring 3rd Bone Spring** 3rd Bone Spring 3rd Bone Spring Shale Wolfcamp X Wolfcamp Y Wolfcamp A Wolfcamp A Wolfcamp A Wolfcamp A Wolfcamp A Wolfcamp A

Wolfcamp A Wolfcamp B Wolfcamp D/E 1st Bone Spring Sand 2nd Bone Spring Shale 2nd Bone Spring Sand 3rd Bone Spring Sand Wolfcamp C Wolfcamp B/C Wolfcamp B/C Wolfcamp B/C Wolfcamp B/C Wolfcamp B/C

.

Wolfcamp B/C Wolfcamp B/C Wolfcamp D Wolfcamp E Wolfcamp X/Y **1st Bone Spring** 2nd Bone Spring 3rd Bone Spring 3rd Bone Spring Shale Wolfcamp X Wolfcamp Y Wolfcamp A Wolfcamp B Wolfcamp D/E 1st Bone Spring Sand 2nd Bone Spring Shale 2nd Bone Spring Sand 3rd Bone Spring Sand Wolfcamp C Wolfcamp B/C Wolfcamp D Wolfcamp E Wolfcamp X/Y

3rd Bone Spring Sand 2.5 Mile Lateral

1 Mile Lateral 2 Mile Lateral 2.5 Mile Lateral 3 Mile Lateral 4 Mile Lateral 1 Mile Lateral 2 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral 4 Mile Lateral 1 Mile Lateral 1.5 Mile Lateral 2 Mile Lateral 2.5 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral 4 Mile Lateral 1 Mile Lateral 1.5 Mile Lateral 2 Mile Lateral 2.5 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral 4 Mile Lateral 1 Mile Lateral 2 Mile Lateral 3 Mile Lateral 4 Mile Lateral 1 Mile Lateral 2 Mile Lateral 3 Mile Lateral 4 Mile Lateral 1 Mile Lateral 2 Mile Lateral 3 Mile Lateral

1st Bone Spring 1 Mile Lateral 1.5 Mile Lateral 1st Bone Spring 1.5 Mile Lateral 1st Bone Spring 2 Mile Lateral 1st Bone Spring 2.5 Mile Lateral 1st Bone Spring 3 Mile Lateral 3.5 Mile Lateral 1st Bone Spring 3.5 Mile Lateral 1st Bone Spring 4 Mile Lateral 2nd Bone Spring 1 Mile Lateral 1.5 Mile Lateral 2nd Bone Spring 1.5 Mile Lateral 2nd Bone Spring 2 Mile Lateral 2.5 Mile Lateral 2nd Bone Spring 2.5 Mile Lateral 2nd Bone Spring 3 Mile Lateral 2nd Bone Spring 3.5 Mile Lateral 2nd Bone Spring 4 Mile Lateral 3rd Bone Spring 1 Mile Lateral 3rd Bone Spring 1.5 Mile Lateral 3rd Bone Spring 2 Mile Lateral 3rd Bone Spring 2.5 Mile Lateral 3rd Bone Spring 3 Mile Lateral 3rd Bone Spring 3.5 Mile Lateral 3rd Bone Spring 4 Mile Lateral 3rd Bone Spring Shale 1 Mile Lateral 3rd Bone Spring Shale 1.5 Mile Lateral 3rd Bone Spring Shale 2 Mile Lateral 3rd Bone Spring Shale 2.5 Mile Lateral 3rd Bone Spring Shale 3 Mile Lateral 3rd Bone Spring Shale 3.5 Mile Lateral 3rd Bone Spring Shale 4 Mile Lateral Wolfcamp X 1 Mile Lateral 1.5 Mile Lateral Wolfcamp X 1.5 Mile Lateral Wolfcamp X 2 Mile Lateral 2.5 Mile Lateral Wolfcamp X 2.5 Mile Lateral Wolfcamp X 3 Mile Lateral 3.5 Mile Lateral Wolfcamp X 3.5 Mile Lateral Wolfcamp X 4 Mile Lateral Wolfcamp Y 1 Mile Lateral 1.5 Mile Lateral Wolfcamp Y 1.5 Mile Lateral Wolfcamp Y 2 Mile Lateral 2.5 Mile Lateral Wolfcamp Y 2.5 Mile Lateral Wolfcamp Y 3 Mile Lateral 3.5 Mile Lateral Wolfcamp Y 3.5 Mile Lateral Wolfcamp Y 4 Mile Lateral Wolfcamp A 1 Mile Lateral 1.5 Mile Lateral Wolfcamp A 1.5 Mile Lateral Wolfcamp A 2 Mile Lateral 2.5 Mile Lateral Wolfcamp A 2.5 Mile Lateral Wolfcamp A 3 Mile Lateral 3.5 Mile Lateral Wolfcamp A 3.5 Mile Lateral

Production 1 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush

4 Mile Lateral Wolfcamp A 4 Mile Lateral 1 Mile Lateral Wolfcamp B 1 Mile Lateral 1.5 Mile Lateral Wolfcamp B 1.5 Mile Lateral 2 Mile Lateral Wolfcamp B 2 Mile Lateral 2.5 Mile Lateral Wolfcamp B 2.5 Mile Lateral 3 Mile Lateral Wolfcamp B 3 Mile Lateral 3.5 Mile Lateral Wolfcamp B 3.5 Mile Lateral 4 Mile Lateral Wolfcamp B 4 Mile Lateral 1 Mile Lateral Wolfcamp D/E 1 Mile Lateral 1.5 Mile Lateral Wolfcamp D/E 1.5 Mile Lateral 2 Mile Lateral Wolfcamp D/E 2 Mile Lateral 2.5 Mile Lateral Wolfcamp D/E 2.5 Mile Lateral Wolfcamp D/E 3 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral Wolfcamp D/E 3.5 Mile Lateral 4 Mile Lateral Wolfcamp D/E 4 Mile Lateral 1 Mile Lateral 1st Bone Spring Sand 1 Mile Lateral 1.5 Mile Lateral 1st Bone Spring Sand 1.5 Mile Lateral 1st Bone Spring Sand 2 Mile Lateral 2 Mile Lateral 1st Bone Spring Sand 2.5 Mile Lateral 2.5 Mile Lateral 3 Mile Lateral 1st Bone Spring Sand 3 Mile Lateral 1st Bone Spring Sand 3.5 Mile Lateral 3.5 Mile Lateral 4 Mile Lateral 1st Bone Spring Sand 4 Mile Lateral 1 Mile Lateral 2nd Bone Spring Shale 1 Mile Lateral 2nd Bone Spring Shale 1.5 Mile Lateral 1.5 Mile Lateral 2 Mile Lateral 2nd Bone Spring Shale 2 Mile Lateral 2.5 Mile Lateral 2nd Bone Spring Shale 2.5 Mile Lateral 3 Mile Lateral 2nd Bone Spring Shale 3 Mile Lateral 3.5 Mile Lateral 2nd Bone Spring Shale 3.5 Mile Lateral 4 Mile Lateral 2nd Bone Spring Shale 4 Mile Lateral 1 Mile Lateral 2nd Bone Spring Sand 1 Mile Lateral 1.5 Mile Lateral 2nd Bone Spring Sand 1.5 Mile Lateral 2 Mile Lateral 2nd Bone Spring Sand 2 Mile Lateral 2.5 Mile Lateral 2nd Bone Spring Sand 2.5 Mile Lateral 3 Mile Lateral 2nd Bone Spring Sand 3 Mile Lateral 3.5 Mile Lateral 2nd Bone Spring Sand 3.5 Mile Lateral 4 Mile Lateral 2nd Bone Spring Sand 4 Mile Lateral 3rd Bone Spring Sand 1 Mile Lateral 1 Mile Lateral 3rd Bone Spring Sand 1.5 Mile Lateral 1.5 Mile Lateral 3rd Bone Spring Sand 2 Mile Lateral 2 Mile Lateral 3rd Bone Spring Sand 2.5 Mile Lateral 2.5 Mile Lateral 3 Mile Lateral 3rd Bone Spring Sand 3 Mile Lateral 3.5 Mile Lateral 3rd Bone Spring Sand 3.5 Mile Lateral 3rd Bone Spring Sand 4 Mile Lateral 4 Mile Lateral 1 Mile Lateral Wolfcamp C 1 Mile Lateral 1.5 Mile Lateral Wolfcamp C 1.5 Mile Lateral Wolfcamp C 2 Mile Lateral 2 Mile Lateral 2.5 Mile Lateral Wolfcamp C 2.5 Mile Lateral 3 Mile Lateral Wolfcamp C 3 Mile Lateral 3.5 Mile Lateral Wolfcamp C 3.5 Mile Lateral Wolfcamp C 4 Mile Lateral 4 Mile Lateral Wolfcamp B/C 1 Mile Lateral 1 Mile Lateral 1.5 Mile Lateral Wolfcamp B/C 1.5 Mile Lateral Wolfcamp B/C 2 Mile Lateral 2 Mile Lateral 2.5 Mile Lateral Wolfcamp B/C 2.5 Mile Lateral Wolfcamp B/C 3 Mile Lateral 3 Mile Lateral

6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium

3.5 Mile Lateral Wolfcamp B/C 3.5 Mile Lateral Wolfcamp B/C 4 Mile Lateral 4 Mile Lateral 1 Mile Lateral Wolfcamp D 1 Mile Lateral 1.5 Mile Lateral Wolfcamp D 1.5 Mile Lateral 2 Mile Lateral Wolfcamp D 2 Mile Lateral 2.5 Mile Lateral Wolfcamp D 2.5 Mile Lateral 3 Mile Lateral Wolfcamp D 3 Mile Lateral 3.5 Mile Lateral Wolfcamp D 3.5 Mile Lateral 4 Mile Lateral Wolfcamp D 4 Mile Lateral 1 Mile Lateral Wolfcamp E 1 Mile Lateral 1.5 Mile Lateral Wolfcamp E 1.5 Mile Lateral 2 Mile Lateral Wolfcamp E 2 Mile Lateral 2.5 Mile Lateral Wolfcamp E 2.5 Mile Lateral Wolfcamp E 3 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral Wolfcamp E 3.5 Mile Lateral 4 Mile Lateral Wolfcamp E 4 Mile Lateral 1 Mile Lateral Wolfcamp X/Y 1 Mile Lateral 1.5 Mile Lateral Wolfcamp X/Y 1.5 Mile Lateral 2 Mile Lateral Wolfcamp X/Y 2 Mile Lateral 2.5 Mile Lateral Wolfcamp X/Y 2.5 Mile Lateral Wolfcamp X/Y 3 Mile Lateral 3 Mile Lateral 3.5 Mile Lateral Wolfcamp X/Y 3.5 Mile Lateral 4 Mile Lateral Wolfcamp X/Y 4 Mile Lateral 2.25 Mile Lateral 1st Bone Spring 2.25 Mile Lateral 2.25 Mile Lateral 2nd Bone Spring 2.25 Mile Lateral 2.25 Mile Lateral 3rd Bone Spring 2.25 Mile Lateral 2.25 Mile Lateral 3rd Bone Spring Shale 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp X 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp Y 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp A 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp B 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp D/E 2.25 Mile Lateral 2.25 Mile Lateral 1st Bone Spring Sand 2.25 Mile Lateral 2.25 Mile Lateral 2nd Bone Spring Shale 2.25 Mile Lateral 5.5 | 20 | RY P-110 | Semi-Premium 2.25 Mile Lateral 2nd Bone Spring Sand 2.25 Mile Lateral 2.25 Mile Lateral 3rd Bone Spring Sand 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp C 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp B/C 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp D 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp E 2.25 Mile Lateral 2.25 Mile Lateral Wolfcamp X/Y 2.25 Mile Lateral

6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 20 | RY P-110 | Semi-Premium 5.5 | 23 | RY P-110 | Semi-Premium

Production 1	Production 2
5.5 23 RY P-110 Semi-Premium	5.5 23 RY P-110 Semi-Flush

Production 2

5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush

Production 3 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush

6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush

6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush

6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush

6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 6 | 26 | P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush 5.5 | 20 | RY P-110 | Semi-Flush 5.5 | 23 | RY P-110 | Semi-Flush

Production 3	Max Frac Pressure	
5.5 23 RY P-110 Semi-Flush		12000

10000
10000
10000
10000
12000
12000
12000
12000
12000
12000
10000
10000
10000
10000
12000
12000
12000
12000
12000
10000
10000
10000
10000
10000
12000
12000
12000
12000
12000
10000
10000
10000
10000
12000
12000
12000
12000
12000
12000
10000
10000
10000
10000
12000
12000
12000
12000
12000 12000
12000 12000 10000
12000 12000 10000
12000 12000 10000 10000
12000 12000 10000 10000 10000
12000 12000 10000 10000 10000 12000
12000 12000 10000 10000 10000 12000
12000 12000 10000 10000 10000 12000 12000
12000 12000 10000 10000 10000 12000 12000 12000
12000 12000 10000 10000 12000 12000 12000 12000 12000
12000 12000 10000 10000 12000 12000 12000 12000 12000
12000 12000 10000 10000 12000 12000 12000 12000 12000
12000 12000 10000 10000 12000 12000 12000 12000 12000 12000 10000
12000 12000 10000 10000 12000 12000 12000 12000 12000 10000 10000
12000 12000 10000 10000 12000 12000 12000 12000 12000 10000 10000
12000 12000 10000 10000 12000 12000 12000 12000 12000 10000 10000 10000 12000
12000 12000 10000 10000 12000 12000 12000 12000 10000 10000 10000 12000 12000
12000 12000 10000 10000 12000 12000 12000 12000 10000 10000 12000 12000 12000 12000

N	lame
2	20 169 K-55 BTC
1	8.625 87.5 J-55 BTC
1	3.375 68 HC L-80 BT
1	3.375 54.5 J-55 BTC
9	.625 40 J-55 BTC
9	.625 40 HC L-80 BTC
9	.625 53.5 HC P110 B
9	.625 40 HC P110 BTC
7	
7	
7	.625 29.7 HCL-80 - IFJ
6	6 26 P-110 - Talon HTQ
5	5.5 23 P110 RY - Talon
5	5.5 23 P110 RY - VAM S
5	5 23 P110 RY - Freed
5	5.5 20 P110 RY - Talon
5	5 20 P110 RY - Freed

.

		C	asing Table
	OD	Weight	Grade
	20	169	K-55
	18 5/8	87.5	J-55
C	13 3/8	68	HC L-80
	13 3/8	54.5	J-55
	9 5/8	40	J-55
	9 5/8	40	HC L-80
TC	9 5/8	53.5	HC P110
	9 5/8	40	HC P110
J Flush Joint	7 5/8	29.7	P110 RY -IFJ
J Flush Joint	7 5/8	29.7	P110 CY - IFJ
Flush Joint	7 5/8	29.7	HCL-80 - IFJ
Semi-Flush	6	26	P-110 - Talon HTG
HTQ Semi-Flu	5 1/2	23	P110 RY - Talon HT
SPRINT Semi-F	5 1/2	23	P110 RY - VAM SPR
om HTQ Semi-	5 1/2	23	P110 RY - Freedom H
HTQ Semi-Flu	5 1/2	20	P110 RY - Talon HT
om HTQ Semi-	5 1/2	20	P110 RY - Freedom H

Received by OCD: 10/31/2023 2:10:55 PM

Received by OCD: 10/31/2023 2:10:55 PM

	Connection	Tube ID	Collapse	Burst	Tension
	BTC	18.376	2,500	3,380	2,689,000
	BTC	17.755	630	2,250	1,329,000
	BTC	12.415	2,690	5,020	1,545,000
	BTC	12.615	1,130	2,740	909,000
	BTC	8.835	2,750	3,950	630,000
	BTC	8.835	4,230	5,750	916,000
	BTC	8.835	9,190	10,900	1,718,000
	BTC	8.535	4,230	7,910	1,266,000
	Flush Joint	6.875	5,350	9,460	558,000
	Flush Joint	6.875	5,350	9,460	960,000
	Flush Joint	6.875	5,780	6,880	406,000
2	Semi-Flush	5.128	13,570	14,010	838,000
Q	Semi-Flush	4.67	14,540	14,530	707,000
INT	Semi-Flush	4.67	14,550	14,530	671,000
HTQ	Semi-Premium	4.67	14,540	14,520	729,000
Q	Semi-Flush	4.778	11,100	12,640	641,000
ITQ	Semi-Premium	4.778	11,100	12,640	641,000

Received by OCD: 10/31/2023 2:10:55 PM

Received by OCD: 10/31/2023 2:10:55 PM

Well			
Plan			
Report			
- 903			
H Well			
Plan			

Measured Depth:	24005.46 ft	
TVD RKB:	11079.00 ft	
Location		
Cartographic	New Mexico East -	
Reference System:	NAD 27	
Northing:	487877.80 ft	
Easting:	661878.00 ft	
RKB:	3361.00 ft	
Ground Level:	3315.00 ft	
North Reference:	Grid	
Convergence Angle:	0.28 Deg	
Site:	JRU DI7	

Plan Sections	903 H Well Plan

Measured			TVD			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft)
0	0	0.01	0	0	0	0	0	0
1200	0	0.01	1200	0	0	0	0	0
2307.99	22.16	94.12	2280.57	-15.19	211.06	2	0	2
7168.89	22.16	94.12	6782.43	-146.78	2039.82	0	0	0
8276.88	0	0.01	7863	-161.97	2250.88	-2	0	2
10776.68	0	0.01	10362.8	-161.97	2250.88	0	0	0
11901.68	90	179.63	11079	-878.15	2255.48	8	15.97	8
23955.46	90	179.63	11079	-12931.68	2332.86	0	0	0

24005.46	90	179.63	11079	-12981.68	2333.18	0	0	0

Position Uncertainty 903 H Well Plan

Measured			TVD	Highside		Lateral		Vertical
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
0	0	0.007	0	0	0	0	0	0
100	0	0	100	0.358	0	0.179	0	2.3
200	0	0	200	0.717	0	0.538	0	2.309
300	0	0	300	1.075	0	0.896	0	2.325
400	0	0	400	1.434	0	1.255	0	2.347
500	0	0	500	1.792	0	1.613	0	2.374
600	0	0	600	2.151	0	1.972	0	2.406
700	0	0	700	2.509	0	2.33	0	2.443
800	0	0	800	2.868	0	2.689	0	2.485
900	0	0	900	3.226	0	3.047	0	2.531
1000	0	0	1000	3.585	0	3.405	0	2.58
1100	0	0	1100	3.943	0	3.764	0	2.634
1200	0	0.007	1200	4.302	0	4.122	0	2.69
1300	2	94.116	1299.98	4.47	0	4.65	0	2.749
1400	4	94.116	1399.838	4.805	0	4.994	0	2.809
1500	6	94.116	1499.452	5.136	0	5.342	0	2.87
1600	8	94.116	1598.702	5.465	0	5.693	0	2.932

1700	10	94.116	1697.465	5.79	0	6.049	0	2.995
1800	12	94.116	1795.623	6.112	0	6.409	0	3.06
1900	14	94.116	1893.055	6.43	0	6.776	0	3.128
2000	16	94.116	1989.643	6.747	0	7.15	0	3.2
2100	18	94.116	2085.269	7.061	0	7.532	0	3.277
2200	20	94.116	2179.816	7.375	0	7.925	0	3.361
2307.989	22.16	94.116	2280.572	7.712	0	8.364	0	3.461
2400	22.16	94.116	2365.787	8.066	0	8.749	0	3.561
2500	22.16	94.116	2458.4	8.457	0	9.174	0	3.686
2600	22.16	94.116	2551.014	8.853	0	9.607	0	3.817
2700	22.16	94.116	2643.627	9.254	0	10.046	0	3.954
2800	22.16	94.116	2736.241	9.659	0	10.49	0	4.096
2900	22.16	94.116	2828.854	10.067	0	10.938	0	4.242
3000	22.16	94.116	2921.468	10.479	0	11.391	0	4.392
3100	22.16	94.116	3014.081	10.894	0	11.848	0	4.547
3200	22.16	94.116	3106.695	11.31	0	12.308	0	4.704
3300	22.16	94.116	3199.309	11.73	0	12.771	0	4.865
3400	22.16	94.116	3291.922	12.151	0	13.236	0	5.029
3500	22.16	94.116	3384.536	12.574	0	13.704	0	5.195
3600	22.16	94.116	3477.149	12.998	0	14.174	0	5.364
3700	22.16	94.116	3569.763	13.424	0	14.646	0	5.535

3800	22.16	94.116	3662.376	13.852	0	15.119	0	5.709
3900	22.16	94.116	3754.99	14.28	0	15.594	0	5.884
4000	22.16	94.116	3847.603	14.71	0	16.071	0	6.062
4100	22.16	94.116	3940.217	15.141	0	16.549	0	6.242
4200	22.16	94.116	4032.831	15.573	0	17.028	0	6.423
4300	22.16	94.116	4125.444	16.005	0	17.508	0	6.606
4400	22.16	94.116	4218.058	16.438	0	17.989	0	6.791
4500	22.16	94.116	4310.671	16.872	0	18.471	0	6.977
4600	22.16	94.116	4403.285	17.307	0	18.954	0	7.165
4700	22.16	94.116	4495.898	17.742	0	19.438	0	7.354
4800	22.16	94.116	4588.512	18.178	0	19.923	0	7.545
4900	22.16	94.116	4681.125	18.615	0	20.408	0	7.738
5000	22.16	94.116	4773.739	19.052	0	20.894	0	7.931
5100	22.16	94.116	4866.353	19.489	0	21.38	0	8.127
5200	22.16	94.116	4958.966	19.927	0	21.867	0	8.323
5300	22.16	94.116	5051.58	20.365	0	22.354	0	8.521
5400	22.16	94.116	5144.193	20.804	0	22.842	0	8.721
5500	22.16	94.116	5236.807	21.243	0	23.331	0	8.921
5600	22.16	94.116	5329.42	21.682	0	23.82	0	9.123
5700	22.16	94.116	5422.034	22.122	0	24.309	0	9.327
5800	22.16	94.116	5514.647	22.562	0	24.799	0	9.531

5900	22.16	94.116	5607.261	23.002	0	25.289	0	9.738
6000	22.16	94.116	5699.875	23.442	0	25.779	0	9.945
6100	22.16	94.116	5792.488	23.883	0	26.27	0	10.154
6200	22.16	94.116	5885.102	24.324	0	26.76	0	10.364
6300	22.16	94.116	5977.715	24.765	0	27.252	0	10.575
6400	22.16	94.116	6070.329	25.206	0	27.743	0	10.788
6500	22.16	94.116	6162.942	25.648	0	28.235	0	11.003
6600	22.16	94.116	6255.556	26.09	0	28.727	0	11.218
6700	22.16	94.116	6348.169	26.532	0	29.219	0	11.435
6800	22.16	94.116	6440.783	26.974	0	29.712	0	11.654
6900	22.16	94.116	6533.397	27.416	0	30.204	0	11.873
7000	22.16	94.116	6626.01	27.859	0	30.697	0	12.095
7100	22.16	94.116	6718.624	28.301	0	31.19	0	12.317
7168.893	22.16	94.116	6782.428	28.606	0	31.53	0	12.471
7200	21.538	94.116	6811.3	28.761	0	31.682	0	12.542
7300	19.538	94.116	6904.94	29.232	0	32.158	0	12.76
7400	17.538	94.116	6999.746	29.659	0	32.612	0	12.97
7500	15.538	94.116	7095.605	30.041	0	33.045	0	13.169
7600	13.538	94.116	7192.398	30.378	0	33.456	0	13.359
7700	11.538	94.116	7290.009	30.67	0	33.848	0	13.539
7800	9.538	94.116	7388.317	30.915	0	34.219	0	13.711

7900	7.538	94.116	7487.204	31.113	0	34.572	0	13.875
8000	5.538	94.116	7586.549	31.264	0	34.906	0	14.033
8100	3.538	94.116	7686.23	31.368	0	35.223	0	14.184
8200	1.538	94.116	7786.127	31.425	0	35.524	0	14.33
8276.882	0	0.007	7863	35.659	0	31.529	0	14.439
8300	0	0	7886.118	35.724	0	31.596	0	14.471
8400	0	0	7986.118	36.005	0	31.886	0	14.614
8500	0	0	8086.118	36.289	0	32.177	0	14.76
8600	0	0	8186.118	36.573	0	32.47	0	14.909
8700	0	0	8286.118	36.859	0	32.763	0	15.061
8800	0	0	8386.118	37.146	0	33.058	0	15.217
8900	0	0	8486.118	37.435	0	33.355	0	15.376
9000	0	0	8586.118	37.724	0	33.652	0	15.539
9100	0	0	8686.118	38.015	0	33.951	0	15.705
9200	0	0	8786.118	38.307	0	34.25	0	15.875
9300	0	0	8886.118	38.6	0	34.551	0	16.048
9400	0	0	8986.118	38.894	0	34.853	0	16.224
9500	0	0	9086.118	39.189	0	35.156	0	16.404
9600	0	0	9186.118	39.485	0	35.46	0	16.588
9700	0	0	9286.118	39.782	0	35.766	0	16.775
9800	0	0	9386.118	40.081	0	36.072	0	16.965

9900	0	0	9486.118	40.38	0	36.379	0	17.159
10000	0	0	9586.118	40.68	0	36.687	0	17.357
10100	0	0	9686.118	40.981	0	36.995	0	17.558
10200	0	0	9786.118	41.283	0	37.305	0	17.763
10300	0	0	9886.118	41.586	0	37.616	0	17.971
10400	0	0	9986.118	41.89	0	37.927	0	18.183
10500	0	0	10086.118	42.195	0	38.24	0	18.399
10600	0	0	10186.118	42.5	0	38.553	0	18.618
10700	0	0	10286.118	42.806	0	38.867	0	18.841
10776.682	0	0.007	10362.8	43.042	0	39.108	0	19.014
10800	1.865	179.632	10386.114	43.09	0	39.189	0	19.067
10900	9.865	179.632	10485.509	42.902	0	39.492	0	19.298
11000	17.865	179.632	10582.517	42.058	0	39.791	0	19.535
11100	25.865	179.632	10675.247	40.593	0	40.082	0	19.781
11200	33.865	179.632	10761.897	38.569	0	40.362	0	20.038
11300	41.865	179.632	10840.778	36.078	0	40.629	0	20.308
11400	49.865	179.632	10910.356	33.245	0	40.881	0	20.595
11500	57.865	179.632	10969.277	30.246	0	41.118	0	20.901
11600	65.865	179.632	11016.393	27.315	0	41.338	0	21.226
11700	73.865	179.632	11050.788	24.767	0	41.539	0	21.571
11800	81.865	179.632	11071.792	22.979	0	41.72	0	21.932

11901.682	90	179.632	11078.997	22.311	0	41.882	0	22.311
12000	90	179.632	11078.997	22.69	0	42.035	0	22.69
12100	90	179.632	11078.997	23.096	0	42.208	0	23.096
12200	90	179.632	11078.997	23.522	0	42.399	0	23.522
12300	90	179.632	11078.997	23.965	0	42.608	0	23.965
12400	90	179.632	11078.997	24.426	0	42.833	0	24.426
12500	90	179.632	11078.997	24.903	0	43.075	0	24.903
12600	90	179.632	11078.997	25.395	0	43.334	0	25.395
12700	90	179.632	11078.997	25.902	0	43.609	0	25.902
12800	90	179.632	11078.997	26.422	0	43.9	0	26.422
12900	90	179.632	11078.997	26.955	0	44.207	0	26.955
13000	90	179.632	11078.997	27.5	0	44.529	0	27.5
13100	90	179.632	11078.998	28.057	0	44.866	0	28.057
13200	90	179.632	11078.998	28.624	0	45.217	0	28.624
13300	90	179.632	11078.998	29.201	0	45.583	0	29.201
13400	90	179.632	11078.998	29.788	0	45.963	0	29.788
13500	90	179.632	11078.998	30.384	0	46.356	0	30.384
13600	90	179.632	11078.998	30.988	0	46.763	0	30.988
13700	90	179.632	11078.998	31.6	0	47.183	0	31.6
13800	90	179.632	11078.998	32.219	0	47.615	0	32.219
13900	90	179.632	11078.998	32.846	0	48.059	0	32.846

14000	90	179.632	11078.998	33.479	0	48.516	0	33.479
14100	90	179.632	11078.998	34.119	0	48.984	0	34.119
14200	90	179.632	11078.998	34.764	0	49.463	0	34.764
14300	90	179.632	11078.998	35.416	0	49.953	0	35.416
14400	90	179.632	11078.998	36.072	0	50.454	0	36.072
14500	90	179.632	11078.998	36.734	0	50.965	0	36.734
14600	90	179.632	11078.998	37.4	0	51.486	0	37.4
14700	90	179.632	11078.998	38.071	0	52.017	0	38.071
14800	90	179.632	11078.998	38.746	0	52.557	0	38.746
14900	90	179.632	11078.998	39.425	0	53.106	0	39.425
15000	90	179.632	11078.998	40.108	0	53.664	0	40.108
15100	90	179.632	11078.998	40.795	0	54.231	0	40.795
15200	90	179.632	11078.998	41.485	0	54.806	0	41.485
15300	90	179.632	11078.998	42.178	0	55.389	0	42.178
15400	90	179.632	11078.998	42.875	0	55.98	0	42.875
15500	90	179.632	11078.998	43.574	0	56.578	0	43.574
15600	90	179.632	11078.998	44.277	0	57.183	0	44.277
15700	90	179.632	11078.998	44.982	0	57.796	0	44.982
15800	90	179.632	11078.998	45.69	0	58.416	0	45.69
15900	90	179.632	11078.998	46.4	0	59.042	0	46.4
16000	90	179.632	11078.998	47.113	0	59.674	0	47.113

16100	90	179.632	11078.998	47.828	0	60.313	0	47.828
16200	90	179.632	11078.998	48.545	0	60.958	0	48.545
16300	90	179.632	11078.998	49.264	0	61.609	0	49.264
16400	90	179.632	11078.998	49.985	0	62.265	0	49.985
16500	90	179.632	11078.998	50.708	0	62.927	0	50.708
16600	90	179.632	11078.998	51.432	0	63.594	0	51.432
16700	90	179.632	11078.998	52.159	0	64.266	0	52.159
16800	90	179.632	11078.998	52.887	0	64.943	0	52.887
16900	90	179.632	11078.998	53.617	0	65.626	0	53.617
17000	90	179.632	11078.998	54.348	0	66.312	0	54.348
17100	90	179.632	11078.998	55.081	0	67.004	0	55.081
17200	90	179.632	11078.998	55.815	0	67.699	0	55.815
17300	90	179.632	11078.998	56.551	0	68.399	0	56.551
17400	90	179.632	11078.999	57.288	0	69.103	0	57.288
17500	90	179.632	11078.999	58.026	0	69.811	0	58.026
17600	90	179.632	11078.999	58.765	0	70.523	0	58.765
17700	90	179.632	11078.999	59.506	0	71.239	0	59.506
17800	90	179.632	11078.999	60.247	0	71.958	0	60.247
17900	90	179.632	11078.999	60.99	0	72.681	0	60.99
18000	90	179.632	11078.999	61.734	0	73.408	0	61.734
18100	90	179.632	11078.999	62.478	0	74.138	0	62.478

18200	90	179.632	11078.999	63.224	0	74.871	0	63.224
18300	90	179.632	11078.999	63.971	0	75.607	0	63.971
18400	90	179.632	11078.999	64.718	0	76.346	0	64.718
18500	90	179.632	11078.999	65.467	0	77.088	0	65.467
18600	90	179.632	11078.999	66.216	0	77.833	0	66.216
18700	90	179.632	11078.999	66.966	0	78.581	0	66.966
18800	90	179.632	11078.999	67.717	0	79.332	0	67.717
18900	90	179.632	11078.999	68.469	0	80.085	0	68.469
19000	90	179.632	11078.999	69.221	0	80.841	0	69.221
19100	90	179.632	11078.999	69.974	0	81.599	0	69.974
19200	90	179.632	11078.999	70.728	0	82.36	0	70.728
19300	90	179.632	11078.999	71.482	0	83.123	0	71.482
19400	90	179.632	11078.999	72.237	0	83.888	0	72.237
19500	90	179.632	11078.999	72.993	0	84.656	0	72.993
19600	90	179.632	11078.999	73.749	0	85.426	0	73.749
19700	90	179.632	11078.999	74.506	0	86.198	0	74.506
19800	90	179.632	11078.999	75.264	0	86.972	0	75.264
19900	90	179.632	11078.999	76.022	0	87.748	0	76.022
20000	90	179.632	11078.999	76.78	0	88.526	0	76.78
20100	90	179.632	11078.999	77.539	0	89.306	0	77.539
20200	90	179.632	11078.999	78.299	0	90.087	0	78.299

20300	90	179.632	11078.999	79.059	0	90.871	0	79.059
20400	90	179.632	11078.999	79.82	0	91.656	0	79.82
20500	90	179.632	11078.999	80.581	0	92.443	0	80.581
20600	90	179.632	11078.999	81.342	0	93.232	0	81.342
20700	90	179.632	11078.999	82.104	0	94.023	0	82.104
20800	90	179.632	11078.999	82.866	0	94.814	0	82.866
20900	90	179.632	11078.999	83.629	0	95.608	0	83.629
21000	90	179.632	11078.999	84.392	0	96.403	0	84.392
21100	90	179.632	11078.999	85.156	0	97.199	0	85.156
21200	90	179.632	11078.999	85.92	0	97.997	0	85.92
21300	90	179.632	11078.999	86.684	0	98.797	0	86.684
21400	90	179.632	11078.999	87.449	0	99.597	0	87.449
21500	90	179.632	11078.999	88.214	0	100.399	0	88.214
21600	90	179.632	11078.999	88.979	0	101.203	0	88.979
21700	90	179.632	11078.999	89.745	0	102.007	0	89.745
21800	90	179.632	11079	90.511	0	102.813	0	90.511
21900	90	179.632	11079	91.277	0	103.62	0	91.277
22000	90	179.632	11079	92.044	0	104.429	0	92.044
22100	90	179.632	11079	92.811	0	105.238	0	92.811
22200	90	179.632	11079	93.578	0	106.049	0	93.578
22300	90	179.632	11079	94.346	0	106.86	0	94.346

22400	90	179.632	11079	95.113	0	107.673	0	95.113
22500	90	179.632	11079	95.882	0	108.487	0	95.882
22600	90	179.632	11079	96.65	0	109.302	0	96.65
22700	90	179.632	11079	97.419	0	110.118	0	97.419
22800	90	179.632	11079	98.187	0	110.935	0	98.187
22900	90	179.632	11079	98.957	0	111.752	0	98.957
23000	90	179.632	11079	99.726	0	112.571	0	99.726
23100	90	179.632	11079	100.496	0	113.391	0	100.496
23200	90	179.632	11079	101.265	0	114.212	0	101.265
23300	90	179.632	11079	102.036	0	115.033	0	102.036
23400	90	179.632	11079	102.806	0	115.855	0	102.806
23500	90	179.632	11079	103.576	0	116.679	0	103.576
23600	90	179.632	11079	104.347	0	117.503	0	104.347
23700	90	179.632	11079	105.118	0	118.328	0	105.118
23800	90	179.632	11079	105.889	0	119.153	0	105.889
23900	90	179.632	11079	106.661	0	119.98	0	106.661
23955.458	90	179.632	11079	107.088	0	120.438	0	107.088
24005.458	90	179.632	11079	107.474	0	120.851	0	107.474
raots								

Measured Depth

Grid Northing

Grid Easting

TVD MSL Target Shape

Plan Targe

Received by OCD: 10/31/2023 2:10:55 PM

Target Name	(ft)	(ft)	(ft)	(ft)
903H_JRU LTP	23955.21	474946.4	664212.4	7718 LOCATION
903H_JRU BHL	24005.21	474896.4	664212.6	7718 LOCATION
903H_JRU PPP	12173.64	486727.7	664135.3	7718 LOCATION
903H_JRU FTP	11600.46	487716.1	664128.9	7718 LOCATION
903H_JRU SHL	0	487877.8	661878	-3361 RECTANGLE

Received by OCD: 10/31/2023 2:10:55 PM

•

Target

903H_JRU LTP
.

903H_JRU BHL

	Magnitude	Semi-major	Semi-minor	Semi-minor	Tool
Bias	of Bias	Error	Error	Azimuth	Used
(ft)	(ft)	(ft)	(ft)	(°)	
0	0	0	0	0	XOM_R2OWSG MWD+IFR1+MS
0	0	0.358	0.179	90	XOM_R2OWSG MWD+IFR1+MS
0	0	0.717	0.538	90	XOM_R2OWSG MWD+IFR1+MS
0	0	1.075	0.896	90	XOM_R2OWSG MWD+IFR1+MS
0	0	1.434	1.255	90	XOM_R2OWSG MWD+IFR1+MS
0	0	1.792	1.613	90	XOM_R2OWSG MWD+IFR1+MS
0	0	2.151	1.972	90	XOM_R2OWSG MWD+IFR1+MS
0	0	2.509	2.33	90	XOM_R2OWSG MWD+IFR1+MS
0	0	2.868	2.689	90	XOM_R2OWSG MWD+IFR1+MS
0	0	3.226	3.047	90	XOM_R2OWSG MWD+IFR1+MS
0	0	3.585	3.405	90	XOM_R2OWSG MWD+IFR1+MS
0	0	3.943	3.764	90	XOM_R2OWSG MWD+IFR1+MS
0	0	4.302	4.122	90	XOM_R2OWSG MWD+IFR1+MS
0	0	4.651	4.472	90.054	XOM_R2OWSG MWD+IFR1+MS
0	0	4.995	4.814	90.171	XOM_R2OWSG MWD+IFR1+MS
0	0	5.342	5.159	90.363	XOM_R2OWSG MWD+IFR1+MS
0	0	5.694	5.507	90.679	XOM_R2OWSG MWD+IFR1+MS

0	0	6.049	5.855	91.146	XOM_R2OWSG MWD+IFR1+MS
0	0	6.409	6.206	91.767	XOM_R2OWSG MWD+IFR1+MS
0	0	6.776	6.557	92.519	XOM_R2OWSG MWD+IFR1+MS
0	0	7.15	6.911	93.354	XOM_R2OWSG MWD+IFR1+MS
0	0	7.532	7.266	94.21	XOM_R2OWSG MWD+IFR1+MS
0	0	7.926	7.622	95.024	XOM_R2OWSG MWD+IFR1+MS
0	0	8.365	8.009	95.792	XOM_R2OWSG MWD+IFR1+MS
0	0	8.749	8.339	96.32	XOM_R2OWSG MWD+IFR1+MS
0	0	9.175	8.698	96.761	XOM_R2OWSG MWD+IFR1+MS
0	0	9.608	9.061	97.119	XOM_R2OWSG MWD+IFR1+MS
0	0	10.047	9.429	97.415	XOM_R2OWSG MWD+IFR1+MS
0	0	10.492	9.801	97.663	XOM_R2OWSG MWD+IFR1+MS
0	0	10.942	10.177	97.874	XOM_R2OWSG MWD+IFR1+MS
0	0	11.395	10.555	98.055	XOM_R2OWSG MWD+IFR1+MS
0	0	11.853	10.936	98.213	XOM_R2OWSG MWD+IFR1+MS
0	0	12.313	11.319	98.351	XOM_R2OWSG MWD+IFR1+MS
0	0	12.777	11.704	98.473	XOM_R2OWSG MWD+IFR1+MS
0	0	13.243	12.092	98.582	XOM_R2OWSG MWD+IFR1+MS
0	0	13.712	12.481	98.679	XOM_R2OWSG MWD+IFR1+MS
0	0	14.182	12.872	98.767	XOM_R2OWSG MWD+IFR1+MS
0	0	14.655	13.265	98.846	XOM_R2OWSG MWD+IFR1+MS

0	0	15.129	13.659	98.918 XOM_R2OWSG MWD+IFR1+MS
0	0	15.605	14.054	98.984 XOM_R2OWSG MWD+IFR1+MS
0	0	16.082	14.45	99.045 XOM_R2OWSG MWD+IFR1+MS
0	0	16.561	14.848	99.1 XOM_R2OWSG MWD+IFR1+MS
0	0	17.041	15.246	99.152 XOM_R2OWSG MWD+IFR1+MS
0	0	17.522	15.646	99.2 XOM_R2OWSG MWD+IFR1+MS
0	0	18.004	16.046	99.244 XOM_R2OWSG MWD+IFR1+MS
0	0	18.487	16.447	99.286 XOM_R2OWSG MWD+IFR1+MS
0	0	18.971	16.849	99.325 XOM_R2OWSG MWD+IFR1+MS
0	0	19.455	17.251	99.361 XOM_R2OWSG MWD+IFR1+MS
0	0	19.941	17.655	99.395 MWD+IFR1+MS
0	0	20.427	18.058	99.428 XOM_R2OWSG MWD+IFR1+MS
0	0	20.914	18.463	99.458 XOM_R2OWSG MWD+IFR1+MS
0	0	21.401	18.868	99.487 XOM_R2OWSG MWD+IFR1+MS
0	0	21.889	19.273	99.514 XOM_R2OWSG MWD+IFR1+MS
0	0	22.377	19.68	99.54 XOM_R2OWSG MWD+IFR1+MS
0	0	22.866	20.086	99.565 XOM_R2OWSG MWD+IFR1+MS
0	0	23.355	20.493	99.588 MWD+IFR1+MS
0	0	23.845	20.9	99.611 XOM_R2OWSG MWD+IFR1+MS
0	0	24.335	21.308	99.632 XOM_R2OWSG MWD+IFR1+MS
0	0	24.826	21.717	99.653 MWD+IFR1+MS

0	0	25.317	22.125	99.672 XOM_R2OWSG MWD+IFR1+MS
0	0	25.808	22.534	99.691 XOM_R2OWSG MWD+IFR1+MS
0	0	26.299	22.943	99.709 XOM_R2OWSG MWD+IFR1+MS
0	0	26.791	23.353	99.727 XOM_R2OWSG MWD+IFR1+MS
0	0	27.283	23.763	99.744 XOM_R2OWSG MWD+IFR1+MS
0	0	27.776	24.174	99.76 XOM_R2OWSG MWD+IFR1+MS
0	0	28.268	24.584	99.776 XOM_R2OWSG MWD+IFR1+MS
0	0	28.761	24.995	99.791 XOM_R2OWSG MWD+IFR1+MS
0	0	29.255	25.406	99.806 XOM_R2OWSG MWD+IFR1+MS
0	0	29.748	25.818	99.82 XOM_R2OWSG MWD+IFR1+MS
0	0	30.241	26.23	99.834 XOM_R2OWSG MWD+IFR1+MS
0	0	30.735	26.642	99.848 XOM_R2OWSG MWD+IFR1+MS
0	0	31.229	27.054	99.861 XOM_R2OWSG MWD+IFR1+MS
0	0	31.569	27.338	99.87 XOM_R2OWSG MWD+IFR1+MS
0	0	31.722	27.466	99.874 XOM_R2OWSG MWD+IFR1+MS
0	0	32.199	27.874	99.896 XOM_R2OWSG MWD+IFR1+MS
0	0	32.654	28.275	99.929 XOM_R2OWSG MWD+IFR1+MS
0	0	33.088	28.669	99.971 XOM_R2OWSG MWD+IFR1+MS
0	0	33.5	29.055	100.021 XOM_R2OWSG MWD+IFR1+MS
0	0	33.893	29.432	100.076 XOM_R2OWSG MWD+IFR1+MS
0	0	34.265	29.798	100.134 XOM_R2OWSG MWD+IFR1+MS

0	0	34.619	30.154	100.194 XOM_R2OWSG MWD+IFR1+MS
0	0	34.954	30.497	100.254 XOM_R2OWSG MWD+IFR1+MS
0	0	35.271	30.828	100.312 XOM_R2OWSG MWD+IFR1+MS
0	0	35.573	31.146	100.366 XOM_R2OWSG MWD+IFR1+MS
0	0	35.793	31.377	100.363 XOM_R2OWSG MWD+IFR1+MS
0	0	35.857	31.444	100.35 XOM_R2OWSG MWD+IFR1+MS
0	0	36.138	31.736	100.293 XOM_R2OWSG MWD+IFR1+MS
0	0	36.419	32.029	100.236 XOM_R2OWSG MWD+IFR1+MS
0	0	36.702	32.324	100.18 XOM_R2OWSG MWD+IFR1+MS
0	0	36.986	32.62	100.125 XOM_R2OWSG MWD+IFR1+MS
0	0	37.272	32.917	100.07 XOM_R2OWSG MWD+IFR1+MS
0	0	37.559	33.215	100.016 XOM_R2OWSG MWD+IFR1+MS
0	0	37.847	33.514	99.963 XOM_R2OWSG MWD+IFR1+MS
0	0	38.136	33.815	99.91 XOM_R2OWSG MWD+IFR1+MS
0	0	38.426	34.116	99.857 XOM_R2OWSG MWD+IFR1+MS
0	0	38.718	34.419	99.806 XOM_R2OWSG MWD+IFR1+MS
0	0	39.01	34.723	99.755 XOM_R2OWSG MWD+IFR1+MS
0	0	39.304	35.028	99.704 XOM_R2OWSG MWD+IFR1+MS
0	0	39.599	35.333	99.654 XOM_R2OWSG MWD+IFR1+MS
0	0	39.895	35.64	99.605 XOM_R2OWSG MWD+IFR1+MS
0	0	40.192	35.948	99.556 MWD+IFR1+MS

0	0	40.49	36.257	99.507	XOM_R2OWSG MWD+IFR1+MS
0	0	40.788	36.566	99.46	XOM_R2OWSG MWD+IFR1+MS
0	0	41.088	36.877	99.412	XOM_R2OWSG MWD+IFR1+MS
0	0	41.389	37.188	99.365	XOM_R2OWSG MWD+IFR1+MS
0	0	41.691	37.5	99.319	XOM_R2OWSG MWD+IFR1+MS
0	0	41.993	37.813	99.273	XOM_R2OWSG MWD+IFR1+MS
0	0	42.297	38.127	99.228	XOM_R2OWSG MWD+IFR1+MS
0	0	42.601	38.441	99.183	XOM_R2OWSG MWD+IFR1+MS
0	0	42.906	38.756	99.138	XOM_R2OWSG MWD+IFR1+MS
0	0	43.141	38.999	99.105	XOM_R2OWSG MWD+IFR1+MS
0	0	43.209	39.071	99.1	XOM_R2OWSG MWD+IFR1+MS
0	0	43.487	39.375	99.087	XOM_R2OWSG MWD+IFR1+MS
0	0	43.757	39.676	99.062	XOM_R2OWSG MWD+IFR1+MS
0	0	44.012	39.968	99.066	XOM_R2OWSG MWD+IFR1+MS
0	0	44.245	40.247	99.156	XOM_R2OWSG MWD+IFR1+MS
0	0	44.452	40.51	99.399	XOM_R2OWSG MWD+IFR1+MS
0	0	44.631	40.753	99.866	XOM_R2OWSG MWD+IFR1+MS
0	0	44.781	40.973	100.63	XOM_R2OWSG MWD+IFR1+MS
0	0	44.906	41.165	101.753	XOM_R2OWSG MWD+IFR1+MS
0	0	45.012	41.325	103.274	XOM_R2OWSG MWD+IFR1+MS
0	0	45.106	41.447	105.181	XOM_R2OWSG MWD+IFR1+MS

0	0	45.2	41.525	107.433 XOM_R2OWSG MWD+IFR1+MS
0	0	45.3	41.578	109.733 XOM_R2OWSG MWD+IFR1+MS
0	0	45.416	41.636	112.086 XOM_R2OWSG MWD+IFR1+MS
0	0	45.546	41.696	114.441 XOM_R2OWSG MWD+IFR1+MS
0	0	45.692	41.758	XOM_R2OWSG 116.789 MWD+IFR1+MS
0	0	45.854	41.821	XOM_R2OWSG 119.118 MWD+IFR1+MS
0	0	46.033	41.884	XOM_R2OWSG 121.416 MWD+IFR1+MS
0	0	46.228	41.947	XOM_R2OWSG 123.67 MWD+IFR1+MS
0	0	46.441	42.01	125.87 XOM_R2OWSG MWD+IFR1+MS
0	0	46.67	42.071	128.004 XOM_R2OWSG MWD+IFR1+MS
0	0	46.917	42.13	130.064 XOM_R2OWSG MWD+IFR1+MS
0	0	47.181	42.188	132.044 XOM_R2OWSG MWD+IFR1+MS
0	0	47.462	42.244	133.937 XOM_R2OWSG MWD+IFR1+MS
0	0	47.76	42.297	-44.258 XOM_R2OWSG MWD+IFR1+MS
0	0	48.075	42.35	-42.543 XOM_R2OWSG MWD+IFR1+MS
0	0	48.405	42.4	-40.918 XOM_R2OWSG MWD+IFR1+MS
0	0	48.751	42.448	-39.38 XOM_R2OWSG MWD+IFR1+MS
0	0	49.113	42.495	-37.927 XOM_R2OWSG MWD+IFR1+MS
0	0	49.489	42.54	-36.557 XOM_R2OWSG MWD+IFR1+MS
0	0	49.879	42.584	-35.265 XOM_R2OWSG MWD+IFR1+MS
0	0	50.284	42.627	-34.047 XOM_R2OWSG MWD+IFR1+MS

0	0	50.702	42.668	-32.899 XOM_R2OWSG MWD+IFR1+MS
0	0	51.133	42.709	-31.816 XOM_R2OWSG MWD+IFR1+MS
0	0	51.577	42.748	-30.795 XOM_R2OWSG MWD+IFR1+MS
0	0	52.033	42.787	-29.832 XOM_R2OWSG MWD+IFR1+MS
0	0	52.501	42.825	-28.922 XOM_R2OWSG MWD+IFR1+MS
0	0	52.98	42.863	-28.063 XOM_R2OWSG MWD+IFR1+MS
0	0	53.47	42.9	-27.25 XOM_R2OWSG MWD+IFR1+MS
0	0	53.971	42.937	-26.48 XOM_R2OWSG MWD+IFR1+MS
0	0	54.482	42.974	-25.751 XOM_R2OWSG MWD+IFR1+MS
0	0	55.004	43.01	-25.059 XOM_R2OWSG MWD+IFR1+MS
0	0	55.534	43.046	-24.403 XOM_R2OWSG MWD+IFR1+MS
0	0	56.075	43.082	-23.779 XOM_R2OWSG MWD+IFR1+MS
0	0	56.624	43.118	-23.186 XOM_R2OWSG MWD+IFR1+MS
0	0	57.182	43.154	-22.621 XOM_R2OWSG MWD+IFR1+MS
0	0	57.748	43.19	-22.082 XOM_R2OWSG MWD+IFR1+MS
0	0	58.323	43.226	-21.569 XOM_R2OWSG MWD+IFR1+MS
0	0	58.905	43.263	-21.078 XOM_R2OWSG MWD+IFR1+MS
0	0	59.495	43.299	-20.61 XOM_R2OWSG MWD+IFR1+MS
0	0	60.093	43.336	-20.162 XOM_R2OWSG MWD+IFR1+MS
0	0	60.697	43.373	-19.733 XOM_R2OWSG MWD+IFR1+MS
0	0	61.309	43.41	-19.322 XOM_R2OWSG MWD+IFR1+MS

0	0	61.927	43.447	-18.928 XOM_R2OWSG MWD+IFR1+MS
0	0	62.552	43.485	-18.55 XOM_R2OWSG MWD+IFR1+MS
0	0	63.183	43.523	-18.187 XOM_R2OWSG MWD+IFR1+MS
0	0	63.82	43.561	-17.838 XOM_R2OWSG MWD+IFR1+MS
0	0	64.463	43.6	-17.502 XOM_R2OWSG MWD+IFR1+MS
0	0	65.112	43.639	-17.179 XOM_R2OWSG MWD+IFR1+MS
0	0	65.766	43.678	-16.868 XOM_R2OWSG MWD+IFR1+MS
0	0	66.425	43.718	-16.568 XOM_R2OWSG MWD+IFR1+MS
0	0	67.09	43.758	-16.279 XOM_R2OWSG MWD+IFR1+MS
0	0	67.76	43.798	-16 XOM_R2OWSG MWD+IFR1+MS
0	0	68.435	43.839	-15.731 XOM_R2OWSG MWD+IFR1+MS
0	0	69.114	43.881	-15.471 XOM_R2OWSG MWD+IFR1+MS
0	0	69.798	43.922	-15.219 XOM_R2OWSG MWD+IFR1+MS
0	0	70.486	43.965	-14.976 XOM_R2OWSG MWD+IFR1+MS
0	0	71.179	44.007	-14.741 XOM_R2OWSG MWD+IFR1+MS
0	0	71.876	44.05	-14.513 XOM_R2OWSG MWD+IFR1+MS
0	0	72.577	44.094	-14.292 XOM_R2OWSG MWD+IFR1+MS
0	0	73.282	44.138	-14.078 XOM_R2OWSG MWD+IFR1+MS
0	0	73.991	44.182	-13.87 XOM_R2OWSG MWD+IFR1+MS
0	0	74.703	44.227	-13.669 XOM_R2OWSG MWD+IFR1+MS
0	0	75.419	44.273	-13.474 XOM_R2OWSG MWD+IFR1+MS

0	0	76.139	44.319	-13.284 XOM_R2OWSG MWD+IFR1+MS
0	0	76.862	44.365	-13.1 XOM_R2OWSG MWD+IFR1+MS
0	0	77.588	44.412	-12.921 XOM_R2OWSG MWD+IFR1+MS
0	0	78.317	44.459	-12.747 XOM_R2OWSG MWD+IFR1+MS
0	0	79.05	44.507	-12.578 XOM_R2OWSG MWD+IFR1+MS
0	0	79.786	44.555	-12.413 XOM_R2OWSG MWD+IFR1+MS
0	0	80.524	44.604	-12.253 XOM_R2OWSG MWD+IFR1+MS
0	0	81.266	44.653	-12.097 XOM_R2OWSG MWD+IFR1+MS
0	0	82.01	44.703	-11.945 XOM_R2OWSG MWD+IFR1+MS
0	0	82.757	44.753	-11.797 XOM_R2OWSG MWD+IFR1+MS
0	0	83.506	44.803	-11.653 XOM_R2OWSG MWD+IFR1+MS
0	0	84.258	44.855	-11.512 XOM_R2OWSG MWD+IFR1+MS
0	0	85.013	44.906	-11.375 XOM_R2OWSG MWD+IFR1+MS
0	0	85.77	44.958	-11.241 XOM_R2OWSG MWD+IFR1+MS
0	0	86.529	45.011	-11.11 XOM_R2OWSG MWD+IFR1+MS
0	0	87.291	45.064	-10.983 XOM_R2OWSG MWD+IFR1+MS
0	0	88.055	45.118	-10.858 XOM_R2OWSG MWD+IFR1+MS
0	0	88.821	45.172	-10.737 XOM_R2OWSG MWD+IFR1+MS
0	0	89.589	45.226	-10.618 XOM_R2OWSG MWD+IFR1+MS
0	0	90.359	45.281	-10.502 XOM_R2OWSG MWD+IFR1+MS
0	0	91.132	45.337	-10.388 XOM_R2OWSG MWD+IFR1+MS

0	0	91.906	45.393	-10.277 XOM_R2OWSG MWD+IFR1+MS
0	0	92.682	45.449	-10.169 XOM_R2OWSG MWD+IFR1+MS
0	0	93.46	45.506	-10.063 XOM_R2OWSG MWD+IFR1+MS
0	0	94.24	45.564	-9.959 XOM_R2OWSG MWD+IFR1+MS
0	0	95.021	45.622	-9.857 XOM_R2OWSG MWD+IFR1+MS
0	0	95.805	45.68	-9.758 XOM_R2OWSG MWD+IFR1+MS
0	0	96.59	45.739	-9.66 XOM_R2OWSG MWD+IFR1+MS
0	0	97.376	45.798	-9.565 XOM_R2OWSG MWD+IFR1+MS
0	0	98.165	45.858	-9.471 XOM_R2OWSG MWD+IFR1+MS
0	0	98.955	45.919	-9.38 XOM_R2OWSG MWD+IFR1+MS
0	0	99.746	45.979	-9.29 XOM_R2OWSG MWD+IFR1+MS
0	0	100.539	46.041	-9.202 XOM_R2OWSG MWD+IFR1+MS
0	0	101.333	46.102	-9.116 XOM_R2OWSG MWD+IFR1+MS
0	0	102.129	46.165	-9.031 XOM_R2OWSG MWD+IFR1+MS
0	0	102.926	46.227	-8.948 XOM_R2OWSG MWD+IFR1+MS
0	0	103.725	46.29	-8.867 XOM_R2OWSG MWD+IFR1+MS
0	0	104.524	46.354	-8.787 XOM_R2OWSG MWD+IFR1+MS
0	0	105.325	46.418	-8.709 XOM_R2OWSG MWD+IFR1+MS
0	0	106.128	46.483	-8.632 XOM_R2OWSG MWD+IFR1+MS
0	0	106.931	46.548	-8.556 XOM_R2OWSG MWD+IFR1+MS
0	0	107.736	46.613	-8.482 XOM_R2OWSG MWD+IFR1+MS

0	0	108.542	46.679	-8.41 XOM_R2OWSG MWD+IFR1+MS
0	0	109.349	46.746	-8.338 XOM_R2OWSG MWD+IFR1+MS
0	0	110.158	46.813	-8.268 XOM_R2OWSG MWD+IFR1+MS
0	0	110.967	46.88	-8.199 XOM_R2OWSG MWD+IFR1+MS
0	0	111.778	46.948	-8.131 XOM_R2OWSG MWD+IFR1+MS
0	0	112.589	47.016	-8.065 XOM_R2OWSG MWD+IFR1+MS
0	0	113.402	47.085	-7.999 XOM_R2OWSG MWD+IFR1+MS
0	0	114.215	47.154	-7.935 XOM_R2OWSG MWD+IFR1+MS
0	0	115.03	47.223	-7.871 XOM_R2OWSG MWD+IFR1+MS
0	0	115.846	47.293	-7.809 XOM_R2OWSG MWD+IFR1+MS
0	0	116.662	47.364	-7.748 XOM_R2OWSG MWD+IFR1+MS
0	0	117.479	47.435	-7.688 XOM_R2OWSG MWD+IFR1+MS
0	0	118.298	47.506	-7.629 XOM_R2OWSG MWD+IFR1+MS
0	0	119.117	47.578	-7.57 XOM_R2OWSG MWD+IFR1+MS
0	0	119.937	47.65	-7.513 XOM_R2OWSG MWD+IFR1+MS
0	0	120.758	47.723	-7.457 XOM_R2OWSG MWD+IFR1+MS
0	0	121.213	47.763	-7.426 XOM_R2OWSG MWD+IFR1+MS
0	0	121.624	47.8	-7.398 XOM_R2OWSG MWD+IFR1+MS

Received by OCD: 10/31/2023 2:10:55 PM

And Drilling & Skid Configurations

Cement Variance Request

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (6452') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface on the first stage. If cement is brought to surface, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

In the event cement is not circulated to surface on the first stage, whether intentionally or unintentionally, XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per GE procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order (OOGO) No. 2, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. OOGO No. 2, Section I.D.2 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per OOGO No. 2, Section IV., XTO Energy submits this request for the variance.

Supporting Documentation

OOGO No. 2 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since OOGO No. 2 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. OOGO No. 2 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

62 API STANDARD 53 Table C.4—Initial Pressure Testing, Surface BOP Stacks				
Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket			
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.	
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP	
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP	
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP	
Choke manifold—downstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or MASP for the well program, whichever is lower		
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program		
^a Pressure test evaluation periods a No visible leaks. The pressure shall remain stable ^b Annular(s) and VBR(s) shall be pre- stable pre- b Annular(s) and VBR(s) shall be pre- b Annular(s) and VBR(s) shall be pre- served and the pre- serve	shall be a minimum of five minutes. e during the evaluation period. The p essure tested on the largest and sm	toressure shall not decrease below the allest OD drill pipe to be used in well	e intended test pressure. program.	
^c For pad drilling operations, moving pressure-controlling connections	from one wellhead to another within when the integrity of a pressure se	n the 21 days, pressure testing is req al is broken.	uired for pressure-containing an	
^e For surface offshore operations, the vented during the initial test. For locking pressure vented at communication.	he ram BOPs shall be pressure tes land operations, the ram BOPs sha hissioning and annually.	ted with the ram locks engaged and all be pressure tested with the ram lo	the closing and locking pressur cks engaged and the closing an	
e Adjustable chokes are not required	to be full sealing devices. Pressure	e testing against a closed choke is no	t required.	

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of OOGO No. 2 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of OOGO No. 2 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the OOGO No.2.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

1. After a full BOP test is conducted on the first well on the pad.

2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.

3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

4. Full BOP test will be required prior to drilling the production hole.

XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure

The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 180 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	281516
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS Created By Condition Condition Date ward.rikala 11/21/2023 All original COA's still apply. Additionally, if cement does not circulate during cementing a string, then a CBL is required for that string.

Page 97 of 97

Action 281516