

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report 10/2023

Well Name: RAGIN CAJUN 12-13 FED Well Location: T26S / R34E / SEC 12 / County or Parish/State:

COM NENE /

Well Number: 18H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM100567 Unit or CA Name: Unit or CA Number:

US Well Number: 3002551555 Well Status: Approved Application for Operator: DEVON ENERGY

Permit to Drill PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2758524

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 10/27/2023 Time Sundry Submitted: 03:03

Date proposed operation will begin: 10/27/2023

Procedure Description: Devon Energy Production Company L.P. respectfully requests the following changes to the approved APD, API 30-025-51555: BHL change from 20 FSL & 1320 FEL to 20 FSL & 440 FEL, both 13-26S-34E. TVD/MD change from 11,110'/21,418' to 11,110'/21,411' Casing program change: Surface, Intermediate, & Production casing changes. Cement volume changes to accommodate casing change. Defining well designation change to Ragin Cajun 12-13 Fed Com 17H Please see attached revised C-102, and drilling & directional plans.

NOI Attachments

Procedure Description

RAGIN_CAJUN_12_13_FED_COM_18H_C_102_BHL_NOI_20231027150330.pdf

 $Ragin_Cajun_12_13_Fed_Com_18H_Directional_Plan_10_27_23_20231027150152.pdf$

Ragin_Cajun_12_13_Fed_Com_18H_Drl_Plan_20231027150152.pdf

well Name: RAGIN CAJUN 12-13 FED Well Location: T26S / R34E / SEC 12 /

COM

NENE /

County or Parish/State: Page 2 of

Well Number: 18H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM100567 Unit or CA Name: Unit or CA Number:

Permit to Drill PRODUCTION COMPANY LP

Conditions of Approval

Specialist Review

Ragin_Cajun_12_13_Fed_Com_18H_Sundry_ID_2758524_20231106131517.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: REBECCA DEAL Signed on: NOV 06, 2023 09:00 AM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Analyst

Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (303) 299-1406

Email address: REBECCA.DEAL@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Title: Petroleum Engineer

BLM POC Phone: 5759885402 **BLM POC Email Address:** LVO@BLM.GOV

Disposition: Approved **Disposition Date:** 11/06/2023

Signature: Long Vo

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 2021

5. Lease Serial 1	No
-------------------	----

SUNDRY NOTICES AND REPORTS ON Do not use this form for proposals to drill or abandoned well. Use Form 3160-3 (APD) for si	6. If Indian, Allottee or	6. If Indian, Allottee or Tribe Name					
SUBMIT IN TRIPLICATE - Other instructions on pa		7. If Unit of CA/Agreement, Name and/or No.					
1. Type of Well							
Oil Well Gas Well Other		8. Well Name and No.	8. Well Name and No.				
2. Name of Operator		9. API Well No.					
3a. Address 3b. Phone No	10. Field and Pool or Ex	10. Field and Pool or Exploratory Area					
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)	11. Country or Parish, S	State					
12. CHECK THE APPROPRIATE BOX(ES) TO I	NDICATE NATURE OF NOT	FICE, REPORT OR OTHI	ER DATA				
TYPE OF SUBMISSION	TYPE OF AC	CTION					
Alter Casing Hy	rdraulic Fracturing Rec	duction (Start/Resume) clamation complete	Water Shut-Off Well Integrity Other				
Change Plans Plu	ig and Abandon Ten	pporarily Abandon					
Final Abandonment Notice Convert to Injection Plu	ig Back Wat	ter Disposal					
completion of the involved operations. If the operation results in a multiple of completed. Final Abandonment Notices must be filed only after all requireme is ready for final inspection.)							
14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)							
	Title						
Signature	Date						
THE SPACE FOR FEI	DERAL OR STATE O	FICE USE					
Approved by							
Conditions of approval, if any, are attached. Approval of this notice does not warracertify that the applicant holds legal or equitable title to those rights in the subject which would entitle the applicant to conduct operations thereon.		D	ate				
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any false, fictitious or fraudulent statements or representations as to any matter wi		illfully to make to any dep	partment or agency of the United States				

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENE / 531 FNL / 810 FEL / TWSP: 26S / RANGE: 34E / SECTION: 12 / LAT: 32.063677 / LONG: -103.417742 (TVD: 0 feet, MD: 0 feet) PPP: NENE / 100 FNL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 12 / LAT: 32.064866 / LONG: -103.419388 (TVD: 11060 feet, MD: 11255 feet) PPP: NENE / 146 FNL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 13 / LAT: 32.0502218 / LONG: -103.419385 (TVD: 11110 feet, MD: 16300 feet) BHL: SESE / 20 FSL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 13 / LAT: 32.036155 / LONG: -103.419383 (TVD: 11110 feet, MD: 21418 feet)

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 86240 Phone: (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

State of New Mexico Energy, Minerals & Natural Resources Department CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

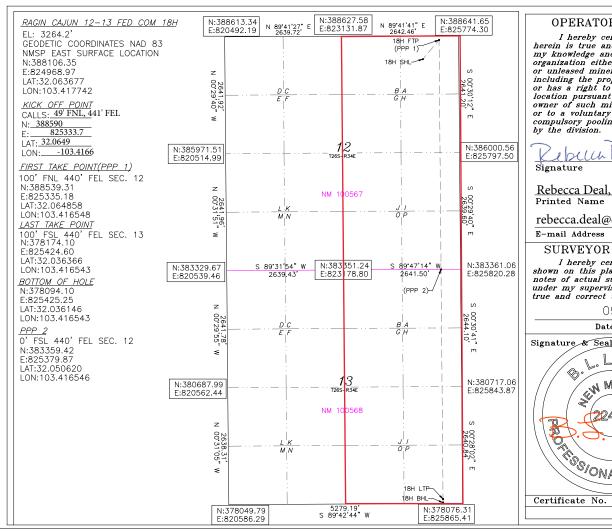
DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

M AMENDED REPORT

WELL	LOCATION	AND	ACREAGE	DEDICATION	PLAT	
	Pool Code				Pool Name	

API Number	Pool Code	Pool Name				
30-025-51555	96672	WC-025 G-08 S263412K;F	BONE SPRING			
Property Code	Pro	perty Name	Well Number			
329308	RAGIN CAJUN	12-13 FED COM	18H			
OGRID No.	Ope.	rator Name	Elevation			
6137	DEVON ENERGY PRO	DUCTION COMPANY, L.P.	3264.2'			


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A	12	26-S	34-E		531	NORTH	810	EAST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	13	26-S	34-E		20	SOUTH	440	EAST	LEA
Dedicated Acres	s Joint o	r Infill C	onsolidation (Code Or	der No.				
640									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

OPERATOR CERTIFICATION

I hereby certify that the information I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

10/27/2023 Date

Rebecca Deal, Regulatory Analyst

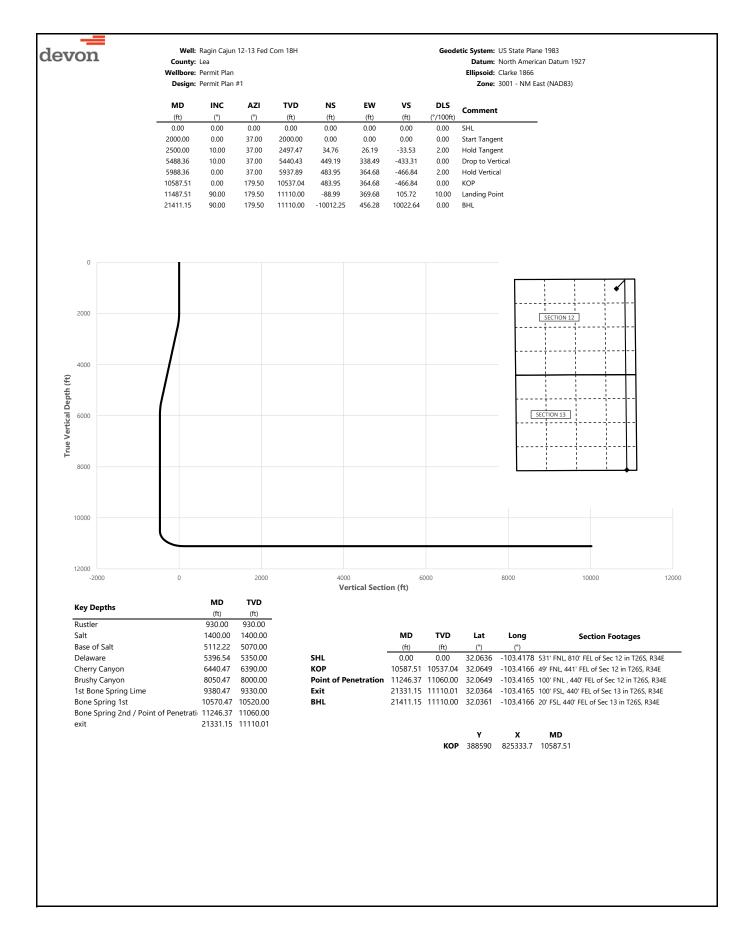
rebecca.deal@dvn.com

SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

09/2022

Date of Survey


Signature & Seal of Professional Surveyor LAMAR WH MEXICO 0 OTONAL SUPPLY REV: 10/27/23 B.L. LAMAN

Certificate No. 22404

DRAWN BY: CM

Inten	t	As Dril	led											
API#	1													
DE\	rator Nai /ON EN MPANY	IERGY F	PRODUC	I		erty N GIN C			2-13 F	ED	COM	1	Well Number 18H	
Kick (Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet		Fron	n E/W	County	
	12	26S	34E			49	FNL			441	F	EL		LEA
Latit		32.0649			Longitu	ıde		-103	3.4166				NAD	83
First ⁻	Take Poir	nt (FTP)												
A	Section 12	Township 26-S	Range 34-E	Lot	Feet 100		From N		Feet 44 (Fron	n E/W ST	County LEA	
Latit		I	<u> </u>		Longitu	ıde	654				<u> </u>	<u> </u>	NAD 83	
Last 1 UL P	Section	t (LTP) Township 26-S	Range 34-E	Lot	Feet 100		m N/S OUTH	Feet 44 (From EAS		Count LEA	:y	
132	.0363	66			Longitu 103		654	3				NAD 83		
Is this	s well an	defining v		Υ]			_	N]				
	ng Unit.	lease prov	ide API if	availab	le, Opei	rator	Name	and v	vell n	umbe	r tor I	Definir	ng well fo	r Horizontal
API#	•					T								
Ope	rator Na	me:				Prop	perty N	ame:						Well Number
DEV	ON ENE	RGY PROI	DUCTION	Co., L	.P.		Ragin	Caju	n 12-	-13 Fe	ed Co	m		17H
														V7 0C /20 /2010

KZ 06/29/2018

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD	INC	AZI	TVD	NS	EW	vs	DLS	_
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	SHL
100.00	0.00	37.00	100.00	0.00	0.00	0.00	0.00	
200.00 300.00	0.00	37.00	200.00 300.00	0.00	0.00	0.00	0.00	
400.00	0.00	37.00 37.00	400.00	0.00	0.00	0.00	0.00	
500.00	0.00	37.00	500.00	0.00	0.00	0.00	0.00	
600.00	0.00	37.00	600.00	0.00	0.00	0.00	0.00	
700.00	0.00	37.00	700.00	0.00	0.00	0.00	0.00	
800.00	0.00	37.00	800.00	0.00	0.00	0.00	0.00	
900.00 930.00	0.00	37.00 37.00	900.00 930.00	0.00	0.00	0.00	0.00	Rustler
1000.00	0.00	37.00	1000.00	0.00	0.00	0.00	0.00	Rustiei
1100.00	0.00	37.00	1100.00	0.00	0.00	0.00	0.00	
1200.00	0.00	37.00	1200.00	0.00	0.00	0.00	0.00	
1300.00	0.00	37.00	1300.00	0.00	0.00	0.00	0.00	
1400.00	0.00	37.00	1400.00	0.00	0.00	0.00	0.00	Salt,
1500.00 1600.00	0.00	37.00 37.00	1500.00 1600.00	0.00	0.00	0.00	0.00	
1700.00	0.00	37.00	1700.00	0.00	0.00	0.00	0.00	
1800.00	0.00	37.00	1800.00	0.00	0.00	0.00	0.00	
1900.00	0.00	37.00	1900.00	0.00	0.00	0.00	0.00	
2000.00	0.00	37.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent
2100.00	2.00	37.00	2099.98	1.39	1.05	-1.34	2.00	
2200.00 2300.00	4.00 6.00	37.00 37.00	2199.84 2299.45	5.57 12.53	4.20 9.44	-5.38 -12.09	2.00 2.00	
2400.00	8.00	37.00	2398.70	22.27	16.78	-21.48	2.00	
2500.00	10.00	37.00	2497.47	34.76	26.19	-33.53	2.00	Hold Tangent
2600.00	10.00	37.00	2595.95	48.63	36.64	-46.91	0.00	
2700.00	10.00	37.00	2694.43	62.49	47.09	-60.29	0.00	
2800.00 2900.00	10.00 10.00	37.00 37.00	2792.91 2891.39	76.36 90.23	57.54 67.99	-73.66 -87.04	0.00	
3000.00	10.00	37.00	2989.87	104.10	78.44	-100.42	0.00	
3100.00	10.00	37.00	3088.35	117.97	88.89	-113.80	0.00	
3200.00	10.00	37.00	3186.83	131.84	99.35	-127.18	0.00	
3300.00	10.00	37.00	3285.31	145.70	109.80	-140.55	0.00	
3400.00	10.00	37.00	3383.79	159.57	120.25	-153.93	0.00	
3500.00 3600.00	10.00 10.00	37.00 37.00	3482.27 3580.75	173.44 187.31	130.70 141.15	-167.31 -180.69	0.00	
3700.00	10.00	37.00	3679.23	201.18	151.60	-194.07	0.00	
3800.00	10.00	37.00	3777.72	215.04	162.05	-207.44	0.00	
3900.00	10.00	37.00	3876.20	228.91	172.50	-220.82	0.00	
4000.00	10.00	37.00	3974.68	242.78	182.95	-234.20	0.00	
4100.00	10.00	37.00	4073.16	256.65	193.40	-247.58	0.00	
4200.00 4300.00	10.00 10.00	37.00 37.00	4171.64 4270.12	270.52 284.39	203.85 214.30	-260.96 -274.33	0.00	
4400.00	10.00	37.00	4368.60	298.25	224.75	-287.71	0.00	
4500.00	10.00	37.00	4467.08	312.12	235.20	-301.09	0.00	
4600.00	10.00	37.00	4565.56	325.99	245.65	-314.47	0.00	
4700.00	10.00	37.00	4664.04	339.86	256.10	-327.85	0.00	
4800.00 4900.00	10.00 10.00	37.00 37.00	4762.52 4861.00	353.73 367.59	266.55 277.00	-341.22 -354.60	0.00	
5000.00	10.00	37.00	4959.48	367.59 381.46	287.45	-354.60 -367.98	0.00	
5100.00	10.00	37.00	5057.97	395.33	297.90	-381.36	0.00	
5112.22	10.00	37.00	5070.00	397.03	299.18	-382.99	0.00	Base of Salt
5200.00	10.00	37.00	5156.45	409.20	308.35	-394.74	0.00	
5300.00	10.00	37.00	5254.93	423.07	318.80	-408.11	0.00	Deleviere
5396.54 5400.00	10.00 10.00	37.00 37.00	5350.00 5353.41	436.46 436.94	328.89 329.25	-421.03 -421.49	0.00	Delaware
5488.36	10.00	37.00	5440.43	449.19	338.49	-421.49	0.00	Drop to Vertical
5500.00	9.77	37.00	5451.89	450.78	339.69	-434.85	2.00	
5600.00	7.77	37.00	5550.72	462.96	348.86	-446.59	2.00	
5700.00	5.77	37.00	5650.02	472.37	355.95	-455.67	2.00	
5800.00	3.77	37.00	5749.67	479.00	360.96	-462.07	2.00	
5900.00 5988.36	1.77 0.00	37.00 37.00	5849.54 5937.89	482.86 483.95	363.86 364.68	-465.79 -466.84	2.00 2.00	Hold Vertical
6000.00	0.00	179.50	5949.53	483.95	364.68	-466.84	0.00	Tion Foreign
6100.00	0.00	179.50	6049.53	483.95	364.68	-466.84	0.00	
6200.00	0.00	179.50	6149.53	483.95	364.68	-466.84	0.00	
6300.00	0.00	179.50	6249.53	483.95	364.68	-466.84	0.00	
6400.00	0.00	179.50	6349.53	483.95	364.68	-466.84	0.00	

County: Lea Wellbore: Permit Plan Design: Permit Plan #1 Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866 **Zone:** 3001 - NM East (NAD83)

MD (ft)	INC	AZI	TVD	NS (ft)	EW	VS (ft)	DLS (°/100ft)	Comment
(ft) 6440.47	(°)	(°)	(ft)	(ft)	(ft)	(ft)		Charny Canyon
	0.00	179.50	6390.00	483.95	364.68	-466.84 466.84	0.00	Cherry Canyon
6500.00 6600.00	0.00	179.50 179.50	6449.53 6549.53	483.95 483.95	364.68 364.68	-466.84 -466.84	0.00	
6700.00	0.00	179.50	6649.53	483.95 483.95	364.68 364.68	-466.84 -466.84	0.00	
6800.00	0.00	179.50	6749.53	483.95	364.68	-466.84	0.00	
6900.00	0.00	179.50	6849.53	483.95	364.68	-466.84	0.00	
7000.00	0.00	179.50	6949.53	483.95	364.68	-466.84	0.00	
7100.00	0.00	179.50	7049.53	483.95	364.68	-466.84	0.00	
7200.00	0.00	179.50	7149.53	483.95	364.68	-466.84	0.00	
7300.00	0.00	179.50	7249.53	483.95	364.68	-466.84	0.00	
7400.00	0.00	179.50	7349.53	483.95	364.68	-466.84	0.00	
7500.00	0.00	179.50	7449.53	483.95	364.68	-466.84	0.00	
7600.00	0.00	179.50	7549.53	483.95	364.68	-466.84	0.00	
7700.00	0.00	179.50	7649.53	483.95	364.68	-466.84	0.00	
7800.00	0.00	179.50	7749.53	483.95	364.68	-466.84	0.00	
7900.00	0.00	179.50	7849.53	483.95	364.68	-466.84	0.00	
8000.00	0.00	179.50	7949.53	483.95	364.68	-466.84	0.00	
8050.47	0.00	179.50	8000.00	483.95	364.68	-466.84	0.00	Brushy Canyon
8100.00	0.00	179.50	8049.53	483.95	364.68	-466.84	0.00	-
8200.00	0.00	179.50	8149.53	483.95	364.68	-466.84	0.00	
8300.00	0.00	179.50	8249.53	483.95	364.68	-466.84	0.00	
8400.00	0.00	179.50	8349.53	483.95	364.68	-466.84	0.00	
8500.00	0.00	179.50	8449.53	483.95	364.68	-466.84	0.00	
8600.00	0.00	179.50	8549.53	483.95	364.68	-466.84	0.00	
8700.00	0.00	179.50	8649.53	483.95	364.68	-466.84	0.00	
8800.00	0.00	179.50	8749.53	483.95	364.68	-466.84	0.00	
8900.00	0.00	179.50	8849.53	483.95	364.68	-466.84	0.00	
9000.00	0.00	179.50	8949.53	483.95	364.68	-466.84	0.00	
9100.00	0.00	179.50	9049.53	483.95	364.68	-466.84	0.00	
9200.00	0.00	179.50	9149.53	483.95	364.68	-466.84	0.00	
9300.00	0.00	179.50	9249.53	483.95	364.68	-466.84	0.00	
9380.47	0.00	179.50	9330.00	483.95	364.68	-466.84	0.00	1st Bone Spring Lime
9400.00	0.00	179.50	9349.53	483.95	364.68	-466.84	0.00	
9500.00	0.00	179.50	9449.53	483.95	364.68	-466.84	0.00	
9600.00	0.00	179.50	9549.53	483.95	364.68	-466.84	0.00	
9700.00	0.00	179.50	9649.53	483.95	364.68	-466.84	0.00	
9800.00	0.00	179.50	9749.53	483.95	364.68	-466.84	0.00	
9900.00	0.00	179.50	9849.53	483.95	364.68	-466.84	0.00	
10000.00	0.00	179.50	9949.53	483.95	364.68	-466.84	0.00	
10100.00	0.00	179.50	10049.53	483.95	364.68	-466.84	0.00	
10200.00 10300.00	0.00	179.50 179.50	10149.53	483.95	364.68	-466.84 -466.84	0.00	
10400.00	0.00	179.50	10249.53 10349.53	483.95 483.95	364.68 364.68	-466.84	0.00	
10500.00	0.00	179.50	10349.53	483.95	364.68	-466.84	0.00	
10500.00	0.00	179.50	10520.00	483.95	364.68	-466.84	0.00	Bone Spring 1st
10570.47	0.00	179.50	10520.00	483.95	364.68	-466.84	0.00	KOP
10600.00	1.25	179.50	10537.04	483.81	364.68	-466.71	10.00	
10700.00	11.25	179.50	10549.55	472.94	364.78	-455.84	10.00	
10800.00	21.25	179.50	10744.69	445.00	365.02	-427.92	10.00	
10900.00	31.25	179.50	10834.27	400.83	365.41	-383.78	10.00	
11000.00	41.25	179.50	10914.81	341.78	365.92	-324.76	10.00	
11100.00	51.25	179.50	10983.88	269.63	366.55	-252.67	10.00	
11200.00	61.25	179.50	11039.36	186.60	367.28	-169.68	10.00	
11246.37	65.89	179.50	11060.00	145.09	367.64	-128.20	10.00	Bone Spring 2nd / Point of Penetrat
11300.00	71.25	179.50	11079.59	95.19	368.07	-78.33	10.00	, 5 .,
11400.00	81.25	179.50	11103.33	-1.82	368.92	18.61	10.00	
11487.51	90.00	179.50	11110.00	-88.99	369.68	105.72	10.00	Landing Point
11500.00	90.00	179.50	11110.00	-101.48	369.79	118.21	0.00	-
11600.00	90.00	179.50	11110.00	-201.47	370.66	218.14	0.00	
11700.00	90.00	179.50	11110.00	-301.47	371.54	318.07	0.00	
11800.00	90.00	179.50	11110.00	-401.47	372.41	418.00	0.00	
11900.00	90.00	179.50	11110.00	-501.46	373.28	517.94	0.00	
12000.00	90.00	179.50	11110.00	-601.46	374.15	617.87	0.00	
12100.00	90.00	179.50	11110.00	-701.45	375.03	717.80	0.00	
12200.00	90.00	179.50	11110.00	-801.45	375.90	817.73	0.00	
12300.00	90.00	179.50	11110.00	-901.45	376.77	917.67	0.00	
12400.00	90.00	179.50	11110.00	-1001.44	377.65	1017.60	0.00	
12500.00	90.00	179.50		-1101.44	378.52	1117.53	0.00	
	00.00	179.50	11110.00	-1201.44	379.39	1217.46	0.00	
12600.00	90.00							
12600.00 12700.00	90.00	179.50	11110.00	-1301.43	380.27	1317.39	0.00	

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 **Ellipsoid:** Clarke 1866

	Design:	Permit Plan	#1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
12800.00	90.00	179.50	11110.00	-1401.43	381.14	1417.33	0.00	
12900.00	90.00	179.50	11110.00		382.01	1517.26	0.00	
13000.00	90.00	179.50	11110.00		382.88	1617.19	0.00	
13100.00	90.00	179.50		-1701.42	383.76 384.63	1717.12	0.00	
13200.00 13300.00	90.00 90.00	179.50 179.50	11110.00 11110.00	-1801.41 -1901.41	385.50	1817.06 1916.99	0.00	
13400.00	90.00	179.50	11110.00	-2001.40	386.38	2016.92	0.00	
13500.00	90.00	179.50	11110.00	-2101.40	387.25	2116.85	0.00	
13600.00	90.00	179.50	11110.00	-2201.40	388.12	2216.78	0.00	
13700.00	90.00	179.50	11110.00	-2301.39	388.99	2316.72	0.00	
13800.00	90.00	179.50	11110.00	-2401.39	389.87	2416.65	0.00	
13900.00	90.00	179.50	11110.00	-2501.39	390.74	2516.58	0.00	
14000.00	90.00	179.50	11110.00	-2601.38	391.61	2616.51	0.00	
14100.00 14200.00	90.00 90.00	179.50 179.50	11110.00 11110.00	-2701.38 -2801.37	392.49 393.36	2716.45 2816.38	0.00	
14300.00	90.00	179.50	11110.00	-2901.37	394.23	2916.31	0.00	
14400.00	90.00	179.50	11110.00	-3001.37	395.10	3016.24	0.00	
14500.00	90.00	179.50	11110.00	-3101.36	395.98	3116.17	0.00	
14600.00	90.00	179.50	11110.00	-3201.36	396.85	3216.11	0.00	
14700.00	90.00	179.50	11110.00	-3301.36	397.72	3316.04	0.00	
14800.00	90.00	179.50	11110.00	-3401.35	398.60	3415.97	0.00	
14900.00 15000.00	90.00 90.00	179.50 179.50	11110.00	-3501.35 -3601.34	399.47	3515.90	0.00	
15100.00	90.00	179.50	11110.00 11110.00	-3701.34	400.34 401.22	3615.84 3715.77	0.00	
15200.00	90.00	179.50	11110.00	-3801.34	402.09	3815.70	0.00	
15300.00	90.00	179.50	11110.00	-3901.33	402.96	3915.63	0.00	
15400.00	90.00	179.50	11110.00	-4001.33	403.83	4015.56	0.00	
15500.00	90.00	179.50	11110.00	-4101.32	404.71	4115.50	0.00	
15600.00	90.00	179.50	11110.00	-4201.32	405.58	4215.43	0.00	
15700.00	90.00	179.50	11110.00	-4301.32	406.45	4315.36	0.00	
15800.00 15900.00	90.00 90.00	179.50 179.50	11110.00 11110.01	-4401.31 -4501.31	407.33 408.20	4415.29 4515.23	0.00	
16000.00	90.00	179.50	11110.01	-4601.31	409.07	4615.16	0.00	
16100.00	90.00	179.50	11110.01	-4701.30	409.94	4715.09	0.00	
16200.00	90.00	179.50	11110.01	-4801.30	410.82	4815.02	0.00	
16300.00	90.00	179.50	11110.01	-4901.29	411.69	4914.95	0.00	
16400.00	90.00	179.50	11110.01	-5001.29	412.56	5014.89	0.00	
16500.00	90.00	179.50	11110.01	-5101.29	413.44	5114.82	0.00	
16600.00 16700.00	90.00 90.00	179.50 179.50	11110.01 11110.01	-5201.28 -5301.28	414.31 415.18	5214.75 5314.68	0.00	
16800.00	90.00	179.50	11110.01	-5401.28	416.05	5414.62	0.00	
16900.00	90.00	179.50	11110.01	-5501.27	416.93	5514.55	0.00	
17000.00	90.00	179.50	11110.01	-5601.27	417.80	5614.48	0.00	
17100.00	90.00	179.50	11110.01	-5701.26	418.67	5714.41	0.00	
17200.00	90.00	179.50	11110.01	-5801.26	419.55	5814.35	0.00	
17300.00	90.00	179.50	11110.01	-5901.26	420.42	5914.28	0.00	
17400.00 17500.00	90.00 90.00	179.50 179.50	11110.01 11110.01	-6001.25 -6101.25	421.29 422.17	6014.21 6114.14	0.00	
17500.00	90.00	179.50	11110.01		423.04	6214.07	0.00	
17700.00	90.00	179.50	11110.01	-6301.24	423.91	6314.01	0.00	
17800.00	90.00	179.50	11110.01	-6401.24	424.78	6413.94	0.00	
17900.00	90.00	179.50	11110.01	-6501.23	425.66	6513.87	0.00	
18000.00	90.00	179.50	11110.01	-6601.23	426.53	6613.80	0.00	
18100.00	90.00	179.50	11110.01	-6701.23	427.40	6713.74	0.00	
18200.00 18300.00	90.00 90.00	179.50 179.50	11110.01 11110.01	-6801.22 -6901.22	428.28 429.15	6813.67 6913.60	0.00	
18400.00	90.00	179.50	11110.01	-7001.21	430.02	7013.53	0.00	
18500.00	90.00	179.50		-7101.21	430.89	7113.46	0.00	
18600.00	90.00	179.50	11110.01	-7201.21	431.77	7213.40	0.00	
18700.00	90.00	179.50	11110.01	-7301.20	432.64	7313.33	0.00	
18800.00	90.00	179.50		-7401.20	433.51	7413.26	0.00	
18900.00	90.00	179.50	11110.01	-7501.20	434.39	7513.19	0.00	
19000.00 19100.00	90.00 90.00	179.50 179.50	11110.01 11110.01	-7601.19 -7701.19	435.26 436.13	7613.13 7713.06	0.00	
19100.00	90.00	179.50	11110.01	-7701.19	436.13	7713.06	0.00	
19300.00	90.00	179.50	11110.01	-7901.18	437.88	7912.92	0.00	
19400.00	90.00	179.50	11110.01	-8001.18	438.75	8012.85	0.00	
19500.00	90.00	179.50	11110.01	-8101.17	439.62	8112.79	0.00	
19600.00	90.00	179.50	11110.01	-8201.17	440.50	8212.72	0.00	
19700.00	90.00	179.50	11110.01	-8301.16	441.37	8312.65	0.00	

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19800.00	90.00	179.50	11110.01	-8401.16	442.24	8412.58	0.00	_
19900.00	90.00	179.50	11110.01	-8501.16	443.12	8512.52	0.00	
20000.00	90.00	179.50	11110.01	-8601.15	443.99	8612.45	0.00	
20100.00	90.00	179.50	11110.01	-8701.15	444.86	8712.38	0.00	
20200.00	90.00	179.50	11110.01	-8801.15	445.73	8812.31	0.00	
20300.00	90.00	179.50	11110.01	-8901.14	446.61	8912.24	0.00	
20400.00	90.00	179.50	11110.01	-9001.14	447.48	9012.18	0.00	
20500.00	90.00	179.50	11110.01	-9101.13	448.35	9112.11	0.00	
20600.00	90.00	179.50	11110.01	-9201.13	449.23	9212.04	0.00	
20700.00	90.00	179.50	11110.01	-9301.13	450.10	9311.97	0.00	
20800.00	90.00	179.50	11110.01	-9401.12	450.97	9411.91	0.00	
20900.00	90.00	179.50	11110.01	-9501.12	451.84	9511.84	0.00	
21000.00	90.00	179.50	11110.01	-9601.12	452.72	9611.77	0.00	
21100.00	90.00	179.50	11110.01	-9701.11	453.59	9711.70	0.00	
21200.00	90.00	179.50	11110.01	-9801.11	454.46	9811.64	0.00	
21300.00	90.00	179.50	11110.01	-9901.10	455.34	9911.57	0.00	
21331.15	90.00	179.50	11110.01	-9932.25	455.61	9942.70	0.00	exit
21400.00	90.00	179.50	11110.01	-10001.10	456.21	10011.50	0.00	
21411.15	90.00	179.50	11110.00	-10012.25	456.28	10022.64	0.00	BHL

1. Geologic Formations

TVD of target	11110	Pilot hole depth	N/A
MD at TD:	21411	Deepest expected fresh water	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	930		
Salt	1400		
Base of Salt	5070		
Delaware	5350		
Cherry Canyon	6390		
Brushy Canyon	8000		
1st Bone Spring Lime	9330		
Bone Spring 1st	10520		
Bone Spring 2nd	11060		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

ſ			Wt			Casing	Interval	al Casing Interval	
l	Hole Size	Csg. Size	(PPF)	Grade Conn		From (MD)	To (MD)	From (TVD)	To (TVD)
	14 3/4	10 3/4	45 1/2	J-55	BTC	0	955	0	955
	9 7/8	8 5/8	32	P110	Sprint FJ	0	10487	0	10487
	7 7/8	5 1/2	17	P110	DWC/C-IS+	0	21411	0	11110

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	577	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	390	Surf	9	3.27	Lead: Class C Cement + additives
1111.1	293	8000	13.2	1.44	Tail: Class H / C + additives
Int 1 Intermediate	507	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
	390	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	293	8000	13.2	1.44	Tail: Class H / C + additives
Production	117	8588	9	3.27	Lead: Class H /C + additives
	1432	10588	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	ype	✓	Tested to:																		
			Anı	nular	X	50% of rated working pressure																		
Int 1	13-5/8"	5M	Bline	d Ram	X																			
IIIt I	13-3/6	JIVI	Pipe	Ram		5M																		
			Doub	le Ram	X	J1V1																		
			Other*																					
	13-5/8"			Annul	ar (5M)	X	50% of rated working pressure																	
Production		5M	Blind Ram		X																			
Troduction			3101	3111	J1V1	3141	3111	3111	5141	JIVI	JIVI	3111	3111	3111	3111	3111	3111	3111	3111	3111	3111	3111	Pipe	Ram
			Doub	Double Ram		5111																		
			Other*																					
			Annul	ar (5M)																				
			Bline	d Ram																				
			Pipe Ram Double Ram																					
			Other*																					
N A variance is requested for	the use of a	use of a diverter on the surface casing. See attached for schematic.			chematic.																			
Y A variance is requested to r	run a 5 M annular on a 10M system																							

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

	07 2086118 With 1 000 Will 1 0 0 0 Will 1 0				
Logging, C	Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
X	X Completion Report and shumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additional	logs planned	Interval		
	Resistivity	Int. shoe to KOP		
	Density	Int. shoe to KOP		
X	CBL	Production casing		
X	Mud log	Intermediate shoe to TD		
	PEX			

7. Drilling Conditions

7. Dinning Conditions	
Condition	Specfiy what type and where?
BH pressure at deepest TVD	6066
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present
Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- ³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	1
X	Directional Plan
<u> </u>	Other, describe

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report 11/06/2023

Well Name: RAGIN CAJUN 12-13 FED Well Location: T26S / R34E / SEC 12 / County or Parish/State:

COM NENE /

Well Number: 18H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM100567 Unit or CA Name: Unit or CA Number:

US Well Number: Well Status: Approved Application for Operator: DEVON ENERGY

Permit to Drill PRODUCTION COMPANY LP

Notice of Intent

Sundry ID: 2758524

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 10/27/2023 Time Sundry Submitted: 03:03

Date proposed operation will begin: 10/27/2023

Procedure Description: Devon Energy Production Company L.P. respectfully requests the following changes to the approved APD, API 30-025-51555: BHL change from 20 FSL & 1320 FEL to 20 FSL & 440 FEL, both 13-26S-34E. TVD/MD change from 11,110'/21,418' to 11,110'/21,411' Casing program change: Surface, Intermediate, & Production casing changes. Cement volume changes to accommodate casing change. Defining well designation change to Ragin Cajun 12-13 Fed Com 17H Please see attached revised C-102, and drilling & directional plans.

NOI Attachments

Procedure Description

RAGIN_CAJUN_12_13_FED_COM_18H_C_102_BHL_NOI_20231027150330.pdf

Ragin_Cajun_12_13_Fed_Com_18H_Directional_Plan_10_27_23_20231027150152.pdf

Ragin_Cajun_12_13_Fed_Com_18H_Drl_Plan_20231027150152.pdf

eived by OCD: 11/10/2023 10:09:47 AM Well Name: RAGIN CAJUN 12-13 FED Well Location: T26S / R34E / SEC 12 / County or Parish/State: NENE /

COM

Well Number: 18H Type of Well: OIL WELL

Allottee or Tribe Name:

Unit or CA Number: Lease Number: NMNM100567 **Unit or CA Name:**

US Well Number: Well Status: Approved Application for **Operator:** DEVON ENERGY

Permit to Drill

PRODUCTION COMPANY LP

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: REBECCA DEAL Signed on: NOV 06, 2023 09:00 AM

Name: DEVON ENERGY PRODUCTION COMPANY LP

Title: Regulatory Analyst

Street Address: 333 W SHERIDAN AVE

City: OKLAHOMA CITY State: OK

Phone: (303) 299-1406

Email address: REBECCA.DEAL@DVN.COM

Field

Representative Name:

Street Address:

City: State: Zip:

Phone:

Email address:

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: NMNM100567

LOCATION: Section 12, T.26 S., R.34 E., NMPM

COUNTY: Lea County, New Mexico

WELL NAME & NO.: | Ragin Cajun 12-13 Fed Com 18H

SURFACE HOLE FOOTAGE: 531'/N & 810'/E BOTTOM HOLE FOOTAGE 20'/S & 440'/E

ATS/API ID: 3002551555 APD ID: 10400090781 Sundry ID: 2758524

COA

H2S	Yes		
Potash	None		
Cave/Karst Potential	Low		
Cave/Karst	☐ Critical		
Potential			
Variance	☐ None	Flex Hose	C Other
Wellhead	Conventional and Multibov	vI 🔻	
Other	□4 String	Capitan Reef	□WIPP
		None ▼	
Other	Pilot Hole	☐ Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None	Int 1	Squeeze
			None +
Special	□ Water	☑ COM	□ Unit
Requirements	Disposal/Injection		
Special	☐ Batch Sundry		
Requirements			
Special	▼ Break Testing	□ Offline	□ Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Morrow** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 1100 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 8000' (685 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 807 sxs Class C)

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch intermediate casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the 10-3/4 inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

(575) 361-2822

- Eddy County

 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

 BLM NM CFO DrillingNotifications@BLM.GOV
- Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR

part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 11/6/2023

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

_	~	a	
١.	Lease	Serial No.	
			NIMMIM10

BURI	EAU OF LAND MANAGEMENT	5. Lease Serial No.	5. Lease Serial No. NMNM100567				
Do not use this t	OTICES AND REPORTS ON Worm for proposals to drill or to Use Form 3160-3 (APD) for suc	o re-enter an	6. If Indian, Allottee	or Tribe Name			
SUBMIT IN	TRIPLICATE - Other instructions on pag	e 2	7. If Unit of CA/Agre	eement, Name and/or No.			
1. Type of Well Oil Well Gas W	/ell Other		8. Well Name and No	RAGIN CAJUN 12-13 FED COM/18			
	SY PRODUCTION COMPANY LP	9. API Well No.	TAGIN CAUGN 12-131 ED COM/101				
DEVON ENERG		(:	10. Field and Pool or	10. Field and Pool or Exploratory Area			
333 WEST SHERIDAN	AVE, OKLAHOMA CITY, 3b. Phone No. (405) 235-36			63412K/BONE SPRING			
4. Location of Well (Footage, Sec., T.,R SEC 12/T26S/R34E/NMP	.,M., or Survey Description)	11. Country or Parish LEA/NM	ı, State				
12. CHE	CK THE APPROPRIATE BOX(ES) TO INI	DICATE NATURE	OF NOTICE, REPORT OR OT	HER DATA			
TYPE OF SUBMISSION		TYP	E OF ACTION				
Notice of Intent		en raulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity Other			
Subsequent Report		and Abandon	Recomplete Temporarily Abandon	Other			
Final Abandonment Notice		Back	Water Disposal				
completed. Final Abandonment Notice is ready for final inspection.) Devon Energy Production Community Production	ace, Intermediate, & Production casing or age to Ragin Cajun 12-13 Fed Com 17H c-102, and drilling & directional plans.	owing changes to the 26S-34E. Changes. Cement visits in cluding reclamations and the control of the changes.	tion, have been completed and the approved APD, API 30-0	the operator has detennined that the site 25-51555:			
14. I hereby certify that the foregoing is REBECCA DEAL / Ph: (303) 299-1	true and correct. Name (Printed/Typed) 406	Regulatory Title	Analyst				
Signature (Electronic Submission	n)	Date	11/06/2	2023			
	THE SPACE FOR FED	ERAL OR STA	TE OFICE USE				
Approved by							
		Title		Date			
	ned. Approval of this notice does not warran equitable title to those rights in the subject led duct operations thereon.						
	3 U.S.C Section 1212, make it a crime for arents or representations as to any matter with		and willfully to make to any d	lepartment or agency of the United States			

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENE / 531 FNL / 810 FEL / TWSP: 26S / RANGE: 34E / SECTION: 12 / LAT: 32.063677 / LONG: -103.417742 (TVD: 0 feet, MD: 0 feet) PPP: NENE / 100 FNL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 12 / LAT: 32.064866 / LONG: -103.419388 (TVD: 11060 feet, MD: 11255 feet) PPP: NENE / 146 FNL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 13 / LAT: 32.0502218 / LONG: -103.419385 (TVD: 11110 feet, MD: 16300 feet) BHL: SESE / 20 FSL / 1320 FEL / TWSP: 26S / RANGE: 34E / SECTION: 13 / LAT: 32.036155 / LONG: -103.419383 (TVD: 11110 feet, MD: 21418 feet)

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

State of New Mexico Energy, Minerals & Natural Resources Department CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

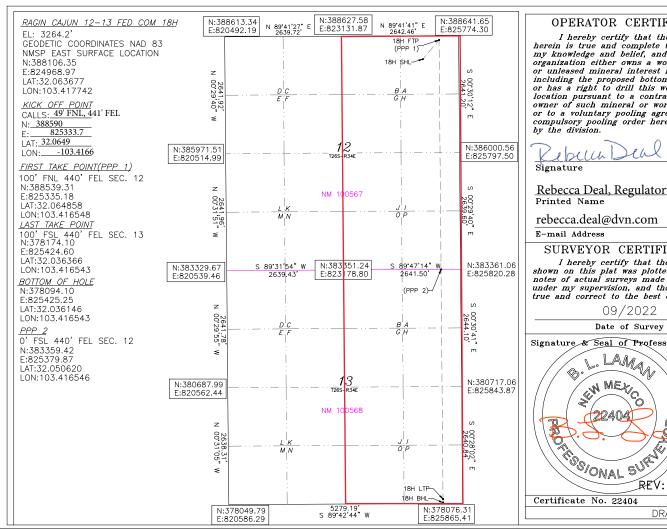
Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

M AMENDED REPORT

	WELL LOCATION AND	ACREAGE DEDICATION PLAT					
API Number	Pool Code	Pool Name					
30-025-51555	96672	WC-025 G-08 S263412K;F	ONE SPRING				
Property Code	Prop	Property Name					
329308	RAGIN CAJUN	12-13 FED COM	18H				
OGRID No.	Oper	Operator Name					
61.37	DEVON ENERGY PRO	DUCTION COMPANY, L.P.	3264.2'				


Surface Location

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Α	12	26-S	34-E		531	NORTH	810	EAST	LEA

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	13	26-S	34-E		20	SOUTH	440	EAST	LEA
Dedicated Acres	s Joint o	r Infill C	onsolidation	Code Or	der No.				
640									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

OPERATOR CERTIFICATION

I hereby certify that the information I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

10/27/2023 Date

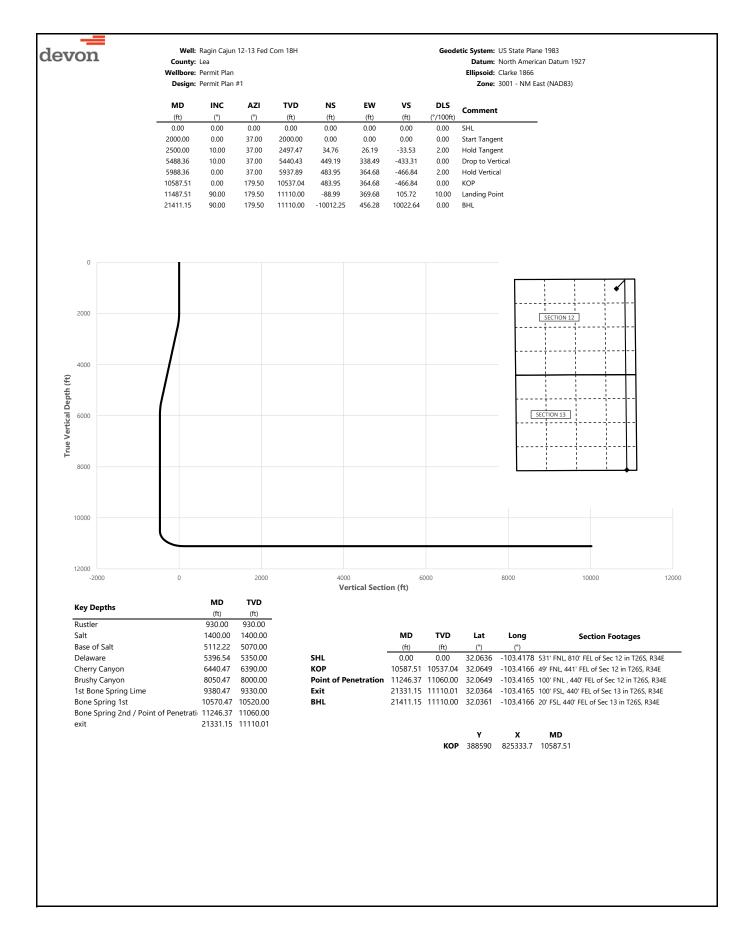
Rebecca Deal, Regulatory Analyst

rebecca.deal@dvn.com

SURVEYOR CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

Signature & Seal of Professional Surveyor LAMAR MEXICO


Q

REV: 10/27/23 B.L. LAMAN

DRAWN BY: CM

Inten	t	As Dril	led											
API#														
DE\	rator Nai /ON EN MPANY	I		perty N			-13 F	ED	COM	1	Well Number 18H			
Kick (Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	/S	Feet		Fron	n E/W	County	
Latitu	12 Ide	26S	34E		Longitu	49 Ide	FNL			441	F	EL	NAD	LEA
Latite	iuc	32.0649			Longitu	uc		-103	3.4166				IVAD	83
	Γake Poir				Facility		N	lc.	F		5	- F/M		
A	Section 12	Township 26-S	Range 34-E	Lot	Feet 100		From N.		Feet 440		EA	ST	County LEA	
							ongitude NAD 83							
Last T	āke Poin	t (LTP)												
P UL	Section 13	Township 26-S	Range 34-E	Lot	Feet 100	SC	om N/S DUTH	Feet 44(From I		Count LEA	y	
132.	.0363	66			Longitu 103		6543	3				NAD 83		
		defining v	vell for th	e Horiz Y	ontal Sp	oacin	ng Unit?		N					
	ng Unit.	lease prov	ide API if a	availab	le, Opei	ator	· Name a	ınd v	vell nu	ımber	for I	Definir	ng well fo	r Horizontal
/311#														,
Ope	rator Nai	me:				Pro	perty N	ame:						Well Number
DEV	ON ENE	RGY PROI	DUCTION	Co., L	.P.	Ragin Cajun 12-13 Fed Com					17H			
														V7 0C/20/2010

KZ 06/29/2018

Well: Ragin Cajun 12-13 Fed Com 18H Geodetic System: US State Plane 1983 devon County: Lea Datum: North American Datum 1927 Wellbore: Permit Plan Ellipsoid: Clarke 1866 Design: Permit Plan #1 Zone: 3001 - NM East (NAD83) MD TVD vs INC AZI NS EW DLS Comment (°/100ft) (ft) (ft) (°) (°) (ft) (ft) (ft) SHL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 37.00 100.00 0.00 0.00 0.00 0.00 200.00 0.00 37.00 200.00 0.00 0.00 0.00 0.00 300.00 0.00 37.00 300.00 0.00 0.00 0.00 0.00 400.00 0.00 37.00 400.00 0.00 0.00 0.00 0.00 500.00 0.00 37.00 500.00 0.00 0.00 0.00 0.00 600.00 0.00 37.00 600.00 0.00 0.00 0.00 0.00 700.00 0.00 37.00 700.00 0.00 0.00 0.00 0.00 800.00 0.00 37.00 800.00 0.00 0.00 0.00 0.00 900.00 0.00 37.00 900.00 0.00 0.00 0.00 0.00 930.00 0.00 37.00 930.00 0.00 0.00 0.00 0.00 Rustle 1000.00 0.00 37.00 1000.00 0.00 0.00 0.00 0.00 1100.00 0.00 37.00 1100.00 0.00 0.00 0.00 0.00 1200.00 0.00 37.00 1200.00 0.00 0.00 0.00 1300.00 0.00 37.00 1300.00 0.00 0.00 0.00 0.00 1400.00 0.00 37.00 1400.00 0.00 0.00 0.00 0.00 Salt 1500.00 37.00 1500.00 0.00 0.00 0.00 0.00 0.00 1600.00 0.00 37.00 1600.00 0.00 0.00 0.00 0.00 1700.00 0.00 37.00 1700.00 0.00 0.00 0.00 0.00 1800.00 0.00 37.00 1800.00 0.00 0.00 0.00 0.00 1900.00 0.00 37.00 1900.00 0.00 0.00 0.00 0.00 2000.00 0.00 37.00 2000.00 0.00 0.00 0.00 0.00 Start Tangent 2100.00 2.00 37.00 2099 98 139 1.05 -134 2.00 2200.00 4.00 37.00 2199.84 5.57 4.20 -5.38 2.00 2300.00 6.00 37.00 2299.45 12.53 9.44 -12.09 2.00 2400.00 8.00 37.00 2398.70 22.27 16.78 -21.48 2.00 2500.00 10.00 37.00 2497 47 34 76 26.19 -33.53 2.00 Hold Tangent 2600.00 10.00 2595.95 48.63 -46.91 0.00 37.00 36.64 2700.00 10.00 37.00 2694.43 62.49 47.09 -60.29 0.00 2800.00 10.00 37.00 2792.91 76.36 57.54 -73.66 0.00 2900.00 10.00 37.00 2891.39 90.23 67.99 -87.04 0.00 3000.00 10.00 37.00 104.10 78.44 -100.42 0.00 2989.87 3100.00 37.00 3088.35 117.97 88.89 10.00 -113.80 0.00 3200.00 10.00 37.00 3186.83 131.84 99.35 -127.180.00 3300.00 10.00 37.00 3285.31 145.70 109.80 -140 55 0.00 3400.00 10.00 37.00 3383.79 159.57 120.25 -153.93 0.00 3500.00 10.00 37.00 3482.27 173.44 130.70 -167.31 0.00 3600.00 10.00 37.00 3580.75 187.31 141.15 -180.69 0.00 3700.00 10.00 37.00 3679.23 201.18 151.60 -194.07 3800.00 10.00 37.00 162.05 -207.44 0.00 3777.72 215.04 3876.20 3900.00 10.00 37.00 228.91 172.50 -220.82 0.00 4000.00 10.00 37.00 3974.68 242.78 182.95 -234.20 0.00 4100.00 193.40 10.00 37.00 4073.16 256.65 -247.58 0.00 4171.64 -260.96 4200.00 10.00 37.00 270.52 203.85 0.00 4300.00 10.00 37.00 4270.12 284.39 214.30 -274.330.00 4400.00 10.00 37.00 4368.60 298.25 224.75 -287.71 0.00 4500.00 10.00 37.00 4467.08 312.12 235.20 -301.09 0.00 4600.00 10.00 37.00 4565.56 245.65 325.99 -314.47 0.00 4700.00 10.00 37.00 4664.04 339.86 256.10 -327.85 0.00 4800.00 10.00 37.00 4762.52 353.73 266.55 -341.22 0.00 4900.00 10.00 37.00 4861.00 367.59 277.00 -354.60 0.00 5000.00 10.00 37.00 4959.48 381.46 287.45 -367.98 0.00 5100.00 10.00 37.00 5057.97 395.33 297.90 -381.36 0.00 5112.22 10.00 37.00 5070.00 397.03 299.18 -382.99 0.00 Base of Salt 5200.00 -394.74 10.00 37.00 5156.45 409.20 308.35 0.00 5300.00 37.00 318.80 10.00 5254 93 423.07 -408 11 0.00 5396.54 10.00 37.00 5350.00 436.46 328.89 -421.03 0.00 Delaware 5400.00 -421.49 10.00 37.00 5353.41 436.94 329.25 0.00 5488.36 10.00 37.00 5440.43 449.19 338.49 -433.31 0.00 Drop to Vertical 5500.00 9.77 37.00 5451.89 450.78 339.69 -434.85 2.00 5600.00 5550.72 462.96 348.86 -446.59 7.77 37.00 2.00 5700.00 5.77 37.00 5650.02 472.37 355.95 -455.67 2.00

-462 07

-465.79

-466.84

-466.84

-466 84

-466.84

-466.84

-466.84

2.00

2.00

2.00

0.00

0.00

0.00

0.00

0.00

Hold Vertical

5800.00

5900.00

5988.36

6000.00

6100.00

6200.00

6300.00

6400.00

3 77

1.77

0.00

0.00

0.00

0.00

0.00

0.00

37.00

37.00

37.00

179.50

179 50

179.50

179.50

179.50

5749 67

5849.54

5937.89

5949.53

6049 53

6149.53

6249.53

6349.53

479 00

482.86

483.95

483.95

483 95

483.95

483.95

483.95

360.96

363.86

364.68

364.68

364 68

364.68

364.68

364.68

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927 Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

		remitriai						
MD	INC	AZI	TVD	NS	EW	vs	DLS	
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
6440.47	0.00	179.50	6390.00	483.95	364.68	-466.84	0.00	Cherry Canyon
								Cherry Canyon
6500.00	0.00	179.50	6449.53	483.95	364.68	-466.84	0.00	
6600.00	0.00	179.50	6549.53	483.95	364.68	-466.84	0.00	
6700.00	0.00	179.50	6649.53	483.95	364.68	-466.84	0.00	
6800.00	0.00	179.50	6749.53	483.95	364.68	-466.84	0.00	
6900.00	0.00	179.50	6849.53	483.95	364.68	-466.84	0.00	
7000.00	0.00	179.50	6949.53	483.95	364.68	-466.84	0.00	
7100.00	0.00	179.50	7049.53	483.95	364.68	-466.84	0.00	
7200.00	0.00	179.50	7149.53	483.95	364.68	-466.84	0.00	
7300.00	0.00	179.50	7249.53	483.95	364.68	-466.84	0.00	
7400.00	0.00	179.50	7349.53	483.95	364.68	-466.84	0.00	
7500.00	0.00	179.50	7449.53	483.95	364.68	-466.84	0.00	
7600.00	0.00	179.50	7549.53	483.95	364.68	-466.84	0.00	
7700.00	0.00	179.50	7649.53	483.95	364.68	-466.84	0.00	
7800.00	0.00	179.50	7749.53	483.95	364.68	-466.84	0.00	
7900.00	0.00	179.50	7849.53	483.95	364.68	-466.84	0.00	
8000.00	0.00	179.50	7949.53	483.95	364.68	-466.84	0.00	
8050.47	0.00	179.50	8000.00	483.95	364.68	-466.84	0.00	Brushy Canyon
								Brushy Carlyon
8100.00	0.00	179.50	8049.53	483.95	364.68	-466.84	0.00	
8200.00	0.00	179.50	8149.53	483.95	364.68	-466.84	0.00	
8300.00	0.00	179.50	8249.53	483.95	364.68	-466.84	0.00	
8400.00	0.00	179.50	8349.53	483.95	364.68	-466.84	0.00	
8500.00	0.00	179.50	8449.53	483.95	364.68	-466.84	0.00	
8600.00	0.00	179.50	8549.53	483.95	364.68	-466.84	0.00	
8700.00	0.00	179.50	8649.53	483.95	364.68	-466.84	0.00	
8800.00	0.00	179.50	8749.53	483.95	364.68	-466.84	0.00	
8900.00	0.00	179.50	8849.53	483.95	364.68	-466.84	0.00	
9000.00	0.00	179.50	8949.53	483.95	364.68	-466.84	0.00	
9100.00	0.00	179.50	9049.53	483.95	364.68	-466.84	0.00	
9200.00	0.00	179.50	9149.53	483.95	364.68	-466.84	0.00	
9300.00	0.00	179.50	9249.53	483.95	364.68	-466.84	0.00	
9380.47	0.00	179.50	9330.00	483.95	364.68	-466.84	0.00	1st Bone Spring Lime
9400.00	0.00	179.50	9349.53	483.95	364.68	-466.84	0.00	
9500.00	0.00	179.50	9449.53	483.95	364.68	-466.84	0.00	
9600.00	0.00	179.50	9549.53	483.95	364.68	-466.84	0.00	
9700.00	0.00	179.50	9649.53	483.95	364.68	-466.84	0.00	
9800.00	0.00	179.50	9749.53	483.95	364.68	-466.84	0.00	
9900.00	0.00	179.50	9849.53	483.95	364.68	-466.84	0.00	
10000.00	0.00	179.50	9949.53	483.95	364.68	-466.84	0.00	
10100.00	0.00	179.50	10049.53	483.95	364.68	-466.84	0.00	
10200.00	0.00	179.50	10149.53	483.95	364.68	-466.84	0.00	
10300.00	0.00	179.50	10249.53	483.95	364.68	-466.84	0.00	
10400.00	0.00	179.50	10349.53	483.95	364.68	-466.84	0.00	
10500.00		179.50	10449.53	483.95		-466.84		
	0.00				364.68		0.00	David Carlos dat
10570.47	0.00	179.50	10520.00	483.95	364.68	-466.84	0.00	Bone Spring 1st
10587.51	0.00	179.50	10537.04	483.95	364.68	-466.84	0.00	KOP
10600.00	1.25	179.50	10549.53	483.81	364.68	-466.71	10.00	
10700.00	11.25	179.50	10648.81	472.94	364.78	-455.84	10.00	
10800.00	21.25	179.50	10744.69	445.00	365.02	-427.92	10.00	
10900.00	31.25	179.50	10834.27	400.83	365.41	-383.78	10.00	
11000.00	41.25	179.50	10914.81	341.78	365.92	-324.76	10.00	
11100.00	51.25	179.50	10983.88	269.63	366.55	-252.67	10.00	
			11039.36			-252.67		
11200.00	61.25	179.50		186.60	367.28		10.00	Deve Color 2nd (Delatof Develop)
11246.37	65.89	179.50	11060.00	145.09	367.64	-128.20	10.00	Bone Spring 2nd / Point of Penetration
11300.00	71.25	179.50	11079.59	95.19	368.07	-78.33	10.00	
11400.00	81.25	179.50	11103.33	-1.82	368.92	18.61	10.00	
11487.51	90.00	179.50	11110.00	-88.99	369.68	105.72	10.00	Landing Point
11500.00	90.00	179.50	11110.00	-101.48	369.79	118.21	0.00	
11600.00	90.00	179.50	11110.00	-201.47	370.66	218.14	0.00	
11700.00	90.00	179.50	11110.00	-301.47	371.54	318.07	0.00	
11800.00		179.50	11110.00	-401.47		418.00	0.00	
	90.00				372.41			
11900.00	90.00	179.50	11110.00	-501.46	373.28	517.94	0.00	
12000.00	90.00	179.50	11110.00	-601.46	374.15	617.87	0.00	
12100.00	90.00	179.50	11110.00	-701.45	375.03	717.80	0.00	
12200.00	90.00	179.50	11110.00	-801.45	375.90	817.73	0.00	
12300.00	90.00	179.50	11110.00	-901.45	376.77	917.67	0.00	
12400.00	90.00	179.50	11110.00	-1001.44	377.65	1017.60	0.00	
	90.00	179.50	11110.00		378.52	1117.53	0.00	
	20.00							
12500.00	00.00	170 50						
12600.00 12700.00	90.00 90.00	179.50 179.50	11110.00 11110.00		379.39 380.27	1217.46 1317.39	0.00	

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)

	Design:	Permit Plan	ı #1					Zone: 3001 - NM East (NAD83)
MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
12800.00	90.00	179.50	11110.00	-1401.43	381.14	1417.33	0.00	
12900.00	90.00	179.50	11110.00	-1501.42	382.01	1517.26	0.00	
13000.00	90.00	179.50		-1601.42	382.88	1617.19	0.00	
13100.00	90.00	179.50		-1701.42	383.76	1717.12	0.00	
13200.00	90.00	179.50		-1801.41	384.63	1817.06	0.00	
13300.00	90.00	179.50	11110.00		385.50	1916.99	0.00	
13400.00	90.00	179.50	11110.00	-2001.40	386.38	2016.92	0.00	
13500.00	90.00	179.50	11110.00	-2101.40	387.25	2116.85	0.00	
13600.00	90.00	179.50	11110.00	-2201.40	388.12	2216.78	0.00	
13700.00	90.00	179.50	11110.00	-2301.39	388.99	2316.72	0.00	
13800.00	90.00	179.50	11110.00	-2401.39	389.87	2416.65	0.00	
13900.00 14000.00	90.00 90.00	179.50 179.50	11110.00 11110.00	-2501.39 -2601.38	390.74	2516.58	0.00	
14100.00	90.00	179.50	11110.00	-2701.38	391.61 392.49	2616.51 2716.45	0.00	
14200.00	90.00	179.50	11110.00	-2801.37	393.36	2816.38	0.00	
14300.00	90.00	179.50	11110.00	-2901.37	394.23	2916.31	0.00	
14400.00	90.00	179.50	11110.00	-3001.37	395.10	3016.24	0.00	
14500.00	90.00	179.50	11110.00	-3101.36	395.98	3116.17	0.00	
14600.00	90.00	179.50	11110.00	-3201.36	396.85	3216.11	0.00	
14700.00	90.00	179.50	11110.00	-3301.36	397.72	3316.04	0.00	
14800.00	90.00	179.50	11110.00	-3401.35	398.60	3415.97	0.00	
14900.00	90.00	179.50	11110.00	-3501.35	399.47	3515.90	0.00	
15000.00	90.00	179.50	11110.00	-3601.34	400.34	3615.84	0.00	
15100.00	90.00	179.50	11110.00	-3701.34	401.22	3715.77	0.00	
15200.00	90.00	179.50	11110.00	-3801.34	402.09	3815.70	0.00	
15300.00	90.00	179.50	11110.00	-3901.33	402.96	3915.63	0.00	
15400.00	90.00	179.50	11110.00	-4001.33	403.83	4015.56	0.00	
15500.00	90.00	179.50	11110.00	-4101.32	404.71	4115.50	0.00	
15600.00	90.00	179.50	11110.00	-4201.32	405.58	4215.43	0.00	
15700.00	90.00	179.50	11110.00	-4301.32	406.45	4315.36	0.00	
15800.00	90.00	179.50	11110.00	-4401.31	407.33	4415.29	0.00	
15900.00	90.00	179.50	11110.01	-4501.31	408.20	4515.23	0.00	
16000.00	90.00	179.50	11110.01	-4601.31	409.07	4615.16	0.00	
16100.00	90.00	179.50	11110.01	-4701.30	409.94	4715.09	0.00	
16200.00	90.00	179.50	11110.01	-4801.30	410.82	4815.02	0.00	
16300.00	90.00	179.50	11110.01	-4901.29	411.69	4914.95	0.00	
16400.00	90.00	179.50	11110.01	-5001.29	412.56	5014.89	0.00	
16500.00	90.00	179.50	11110.01	-5101.29	413.44	5114.82	0.00	
16600.00	90.00	179.50	11110.01	-5201.28	414.31	5214.75	0.00	
16700.00	90.00	179.50	11110.01		415.18	5314.68	0.00	
16800.00	90.00	179.50	11110.01	-5401.28	416.05	5414.62	0.00	
16900.00	90.00	179.50	11110.01	-5501.27	416.93	5514.55	0.00	
17000.00	90.00	179.50	11110.01	-5601.27	417.80	5614.48	0.00	
17100.00	90.00	179.50	11110.01		418.67	5714.41	0.00	
17200.00	90.00	179.50	11110.01	-5801.26 -5901.26	419.55 420.42	5814.35 5914.28	0.00	
17300.00 17400.00	90.00 90.00	179.50 179.50	11110.01 11110.01	-6001.25	420.42	6014.21	0.00	
17500.00	90.00	179.50	11110.01	-6101.25	422.17	6114.14	0.00	
17600.00	90.00	179.50	11110.01		423.04	6214.07	0.00	
17700.00	90.00	179.50	11110.01		423.91	6314.01	0.00	
17800.00	90.00	179.50	11110.01	-6401.24	424.78	6413.94	0.00	
17900.00	90.00	179.50	11110.01	-6501.23	425.66	6513.87	0.00	
18000.00	90.00	179.50	11110.01	-6601.23	426.53	6613.80	0.00	
18100.00	90.00	179.50	11110.01	-6701.23	427.40	6713.74	0.00	
18200.00	90.00	179.50	11110.01	-6801.22	428.28	6813.67	0.00	
18300.00	90.00	179.50	11110.01	-6901.22	429.15	6913.60	0.00	
18400.00	90.00	179.50	11110.01	-7001.21	430.02	7013.53	0.00	
18500.00	90.00	179.50	11110.01	-7101.21	430.89	7113.46	0.00	
18600.00	90.00	179.50	11110.01	-7201.21	431.77	7213.40	0.00	
18700.00	90.00	179.50	11110.01	-7301.20	432.64	7313.33	0.00	
18800.00	90.00	179.50	11110.01		433.51	7413.26	0.00	
18900.00	90.00	179.50	11110.01	-7501.20	434.39	7513.19	0.00	
19000.00	90.00	179.50	11110.01	-7601.19	435.26	7613.13	0.00	
19100.00	90.00	179.50	11110.01	-7701.19	436.13	7713.06	0.00	
19200.00	90.00	179.50	11110.01	-7801.18	437.00	7812.99	0.00	
19300.00	90.00	179.50	11110.01	-7901.18	437.88	7912.92	0.00	
19400.00	90.00	179.50	11110.01	-8001.18	438.75	8012.85	0.00	
19500.00	90.00	179.50	11110.01	-8101.17	439.62	8112.79	0.00	
19600.00	90.00	179.50	11110.01	-8201.17	440.50	8212.72	0.00	
19700.00	90.00	179.50	11110.01	-8301.16	441.37	8312.65	0.00	

County: Lea
Wellbore: Permit Plan
Design: Permit Plan #1

Geodetic System: US State Plane 1983

Datum: North American Datum 1927

Ellipsoid: Clarke 1866

Zone: 3001 - NM East (NAD83)

MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
19800.00	90.00	179.50	11110.01	-8401.16	442.24	8412.58	0.00	
19900.00	90.00	179.50	11110.01	-8501.16	443.12	8512.52	0.00	
20000.00	90.00	179.50	11110.01	-8601.15	443.99	8612.45	0.00	
20100.00	90.00	179.50	11110.01	-8701.15	444.86	8712.38	0.00	
20200.00	90.00	179.50	11110.01	-8801.15	445.73	8812.31	0.00	
20300.00	90.00	179.50	11110.01	-8901.14	446.61	8912.24	0.00	
20400.00	90.00	179.50	11110.01	-9001.14	447.48	9012.18	0.00	
20500.00	90.00	179.50	11110.01	-9101.13	448.35	9112.11	0.00	
20600.00	90.00	179.50	11110.01	-9201.13	449.23	9212.04	0.00	
20700.00	90.00	179.50	11110.01	-9301.13	450.10	9311.97	0.00	
20800.00	90.00	179.50	11110.01	-9401.12	450.97	9411.91	0.00	
20900.00	90.00	179.50	11110.01	-9501.12	451.84	9511.84	0.00	
21000.00	90.00	179.50	11110.01	-9601.12	452.72	9611.77	0.00	
21100.00	90.00	179.50	11110.01	-9701.11	453.59	9711.70	0.00	
21200.00	90.00	179.50	11110.01	-9801.11	454.46	9811.64	0.00	
21300.00	90.00	179.50	11110.01	-9901.10	455.34	9911.57	0.00	
21331.15	90.00	179.50	11110.01	-9932.25	455.61	9942.70	0.00	exit
21400.00	90.00	179.50	11110.01	-10001.10	456.21	10011.50	0.00	
21411.15	90.00	179.50	11110.00	-10012.25	456.28	10022.64	0.00	BHL

1. Geologic Formations

TVD of target	11110	Pilot hole depth	N/A
MD at TD:	21411	Deepest expected fresh water	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	930		
Salt	1400		
Base of Salt	5070		
Delaware	5350		
Cherry Canyon	6390		
Brushy Canyon	8000		
1st Bone Spring Lime	9330		
Bone Spring 1st	10520		
Bone Spring 2nd	11060		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	ВТС	0	955	0	955
9 7/8	8 5/8	32	P110	Sprint FJ	0	10487	0	10487
7 7/8	5 1/2	17	P110	DWC/C-IS+	0	21411	0	11110

[•] All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for contingency casing.

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	577	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	390	390 Surf		3.27	Lead: Class C Cement + additives
1111.1	293	8000	13.2	1.44	Tail: Class H / C + additives
Int 1	507	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	390	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	293	8000	13.2	1.44	Tail: Class H / C + additives
Production	117	8588	9	3.27	Lead: Class H /C + additives
Froduction	1432	10588	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	ype	√	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Blind	d Ram	X	
IIIt I	13-3/6	J1V1	Pipe	Ram		5M
			Doub	le Ram	X	3101
			Other*			
			Annul	ar (5M)	X	50% of rated working pressure
Production	13-5/8"	5M	Bline	d Ram	X	
Production	13-3/8	SIVI	Pipe	Ram		5M
			Double Ram		X	JIVI
			Other*			
			Annul	ar (5M)		
			Blind	d Ram		
			Pipe	Ram		
			Doub	le Ram		
			Other*			
N A variance is requested for	the use of a	diverter or	the surface	casing. See	attached for s	chematic.
Y A variance is requested to	run a 5 M a	nnular on a	10M system	1	•	

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

	and resume recorded
Logging, C	oring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and shumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

7. Dinning Conditions	
Condition	Specfiy what type and where?
BH pressure at deepest TVD	6066
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

N H2S is present
Y H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- ³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	}
X	Directional Plan
	Other, describe

12-26-34-A Sundry ID 2758524 Rajun Cajun 12-13 Fed Com 18H Lea NM100567 DEVON ENERGY PRODUCTION COMPANY LP 13-22fa 11-6-2023 LV.xlsm

Rajun Cajun 12-13 Fed Com 18H

10 3/4		surface csg in a	14 3/4 i	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	45.50		j 55	btc	14.29	4.06	0.63	1,100	7	1.05	7.68	50,05
"B"				btc				0				0
	v	/8.4#/g mud, 30min Sfc Csg Tes	t psig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	1,100				50,05
omparison o	f Proposed	to Minimum Required Cem	nent Volumes									
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
14 3/4	0.5563	577	831	612	36	9.00	3413	5M				1.50
urst Frac Grac	dient(s) for S	egment(s) A, B = , b All > 0	1.70, OK.									
0.5./0			40.274			Danima	F1			lmt 1		
8 5/8		casing inside the	10 3/4	Courting	lo!=t	Design		Longeth	D@-	Int 1	۰.۰	VA/-11
Segment	#/ft	Grade	m 110	Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	32.00		p 110	vam sprint fj	2.22	0.7	1.18	10,487	1	1.98	1.17	
"B"							_ , .	0				0
	v	/8.4#/g mud, 30min Sfc Csg Tes					Totals:	10,487				335,58
				led to achieve a top of	0	ft from su		1100				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Di
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
9 7/8	0.1261	685	1700	1332	28	10.50	3616	5M				0.61
			8000				cum of cv	Σ CuFt				Σ%exce
D V Tool(s):			8000				sum of sx					
D V Tool(s): by stage %: class 'H' tail cm	nt yld > 1.20	442	14				1492	2862				115
by stage % : lass 'H' tail cm			14			Design Fa	1492			Prod 1		
oy stage % : class 'H' tail cm Tail cmt 5 1/2		casing inside the		Counling	loint	Design Fa	1492 ctors	2862	B@s	Prod 1	a-C	115
Tail cmt 5 1/2 Segment	#/ft		8 5/8	Coupling	Joint 2 89	Collapse	1492 ctors Burst	2862	B@s	а-В	a-C 2.07	115 Weigl
Tail cmt 5 1/2 Segment "A"		casing inside the	14	Coupling dwc/c is+	Joint 2.89		1492 ctors	2862 Length 21,411	B@s 2		a-C 2.07	Weigl 363,98
y stage %: lass 'H' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft	casing inside the	8 5/8			Collapse	1492 ctors Burst	2862 Length 21,411 0		а-В	-	Weigl 363,98
Tail cmt 5 1/2 Segment "A" "B" "C"	#/ft	casing inside the	8 5/8	dwc/c is+		Collapse	1492 ctors Burst	2862 Length 21,411 0		а-В	-	Weigl 363,98 0
y stage %: lass 'H' tail cm Tail cmt 5 1/2 Segment "A" "B"	#/ft 17.00	casing inside the Grade	8 5/8 p 110			Collapse	ctors Burst 1.76	2862 Length 21,411 0 0		а-В	-	Weigl 363,98 0 0
Tail cmt 51/2 Segment "A" "B" "C"	#/ft 17.00	casing inside the Grade	85/8 p 110	dwc/c is+	2.89	Collapse 1.23	ctors Burst 1.76 Totals:	2862 Length 21,411 0 0 21,411		а-В	2.07	Weigl 363,98 0 0 0 363,98
Tail cmt 51/2 Segment "A" "B" "C" "D"	#/ft 17.00	casing inside the Grade 1/8.4#/g mud, 30min Sfc Csg Tes The cement	85/8 p 110 tt psig: 2,444 volume(s) are intend	dwc/c is+ 0 led to achieve a top of	2.89	Collapse 1.23	ctors Burst 1.76 Totals:	2862 Length 21,411 0 0 21,411 200		а-В	2.07	Weigl 363,98 0 0 0 363,98 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D"	#/ft 17.00 v	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	8 5/8 p 110 at psig: 2,444 volume(s) are intend 1 Stage	dwc/c is+ 0 led to achieve a top of Min	2.89 10287 1 Stage	ft from su Drilling	ctors Burst 1.76 Totals: urface or a Calc	Length 21,411 0 0 21,411 200 Req'd		а-В	2.07	Weigh 363,98 0 0 363,98 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	#/ft 17.00	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 tt psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt	dwc/c is+ 0 led to achieve a top of Min Cu Ft	2.89 10287 1 Stage % Excess	ft from su Drilling Mud Wt	ctors Burst 1.76 Totals:	2862 Length 21,411 0 0 21,411 200		а-В	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di:
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	#/ft 17.00 v Annular Volume 0.1733	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	8 5/8 p 110 at psig: 2,444 volume(s) are intend 1 Stage	dwc/c is+ 0 led to achieve a top of Min	2.89 10287 1 Stage	ft from su Drilling	ctors Burst 1.76 Totals: urface or a Calc	Length 21,411 0 0 21,411 200 Req'd		а-В	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size	#/ft 17.00 v Annular Volume 0.1733	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 tt psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt	dwc/c is+ 0 led to achieve a top of Min Cu Ft	2.89 10287 1 Stage % Excess	ft from su Drilling Mud Wt	ctors Burst 1.76 Totals: urface or a Calc	Length 21,411 0 0 21,411 200 Req'd		а-В	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7/78 Class 'C' tail cm	#/ft 17.00 v Annular Volume 0.1733	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445	dwc/c is+ 0 led to achieve a top of Min Cu Ft	2.89 10287 1 Stage % Excess	ft from su Drilling Mud Wt 10.50	Cotors Burst 1.76 Totals: urface or a Calc MASP	Length 21,411 0 0 21,411 200 Req'd	2	a-B 2.94	2.07	Weigl 363,98 0 0 363,98 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 llass 'C' tail cm	#/ft 17.00 Annular Volume 0.1733 it yld > 1.35	casing inside the Grade 1/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549	8 5/8 p 110 tt psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928	2.89 10287 1 Stage % Excess 27	ft from su Drilling Mud Wt 10.50	ctors Burst 1.76 Totals: urface or a Calc MASP	2862 Length 21,411 0 0 21,411 200 Req'd BOPE	2	a-B 2.94	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di Hole-C ₁ 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 alass 'C' tail cm #N/A 0 Segment	#/ft 17.00 v Annular Volume 0.1733	casing inside the Grade v/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928	2.89 10287 1 Stage % Excess	ft from su Drilling Mud Wt 10.50	Cotors Burst 1.76 Totals: urface or a Calc MASP	Length 21,411 0 0 21,411 200 Req'd BOPE	2	a-B 2.94	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di Hole-C ₁ 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm	#/ft 17.00 Annular Volume 0.1733 it yld > 1.35	casing inside the Grade 1/8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928 Coupling 0.00	2.89 10287 1 Stage % Excess 27	ft from su Drilling Mud Wt 10.50	ctors Burst 1.76 Totals: urface or a Calc MASP	Length 21,411 0 0 21,411 200 Req'd BOPE	2	a-B 2.94	2.07	Weigi 363,94 0 0 363,94 overlap. Min Di Hole-C 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment	#/ft 17.00 Annular Volume 0.1733 at yld > 1.35	casing inside the Grade //8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549 Grade	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928	2.89 10287 1 Stage % Excess 27	ft from su Drilling Mud Wt 10.50	Totals: urface or a Calc MASP Factors Burst	Length 21,411 0 0 21,411 200 Req'd BOPE	2	a-B 2.94	2.07	Weigi 363,98 0 0 363,98 overlap. Min Di Hole-C 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm	#/ft 17.00 Annular Volume 0.1733 at yld > 1.35	casing inside the Grade //8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549 Grade	85/8 p 110 tt psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445 5 1/2	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928 Coupling 0.00 0.00	2.89 10287 1 Stage % Excess 27 #N/A	ft from su Drilling Mud Wt 10.50	Totals: Totals: MASP Factors Burst Totals:	Length 21,411 0 0 0 21,411 200 Req'd BOPE Length 0 0 0	2	a-B 2.94	2.07	Weigi 363,90 0 0 363,90 overlap. Min Di Hole-Ci 0.91
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B" """ "B" """ "B" """ "B" """ "" "B" """ "B" "" """ "" "	#/ft 17.00 Annular Volume 0.1733 htyld>1.35	casing inside the Grade //8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549 Grade //8.4#/g mud, 30min Sfc Csg Tes Cmt vol c	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445 5 1/2	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928 Coupling 0.00 0.00 his csg, TOC intended	2.89 10287 1 Stage % Excess 27 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: urface or a Calc MASP Factors Burst Totals:	Length 21,411 0 0 0 21,411 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.94	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di Hole-C 0.91 Weigl 0 0 overlap.
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B" #N/A Hole	#/ft 17.00 Annular Volume 0.1733 attyld>1.35 #/ft	casing inside the Grade //8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549 Grade //8.4#/g mud, 30min Sfc Csg Tes Cmt vol c 1 Stage	8 5/8 p 110 at psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445 5 1/2 at psig: alc below includes the stage in th	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928 Coupling 0.00 0.00 his csg, TOC intended Min	10287 1 Stage % Excess 27 #N/A	ft from su Drilling Mud Wt 10.50	Totals: Irface or a Calc MASP Totals: Irface or a Calc MASP	Length 21,411 0 0 21,411 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.94	2.07	Weigl 363,96 0 0 363,96 overlap. Min Di Hole-Ci 0.91 Weigl 0 0 overlap. Min Di
Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 class 'C' tail cm #N/A 0 Segment "A" "B" """ """ """ """ """ """ """ """	#/ft 17.00 Annular Volume 0.1733 htyld>1.35	casing inside the Grade //8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1549 Grade //8.4#/g mud, 30min Sfc Csg Tes Cmt vol c	8 5/8 p 110 It psig: 2,444 volume(s) are intend 1 Stage CuFt Cmt 2445 5 1/2	dwc/c is+ 0 led to achieve a top of Min Cu Ft 1928 Coupling 0.00 0.00 his csg, TOC intended	2.89 10287 1 Stage % Excess 27 #N/A	ft from su Drilling Mud Wt 10.50 Design Collapse	Totals: urface or a Calc MASP Factors Burst Totals:	Length 21,411 0 0 0 21,411 200 Req'd BOPE Length 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	a-B 2.94	2.07	Weigl 363,98 0 0 363,98 overlap. Min Di Hole-Cl 0.91

Carlsbad Field Office 11/6/2023

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 284580

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	284580
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
pkautz	None	12/6/2023