

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Report

Well Name: RED HILLS WEST 22/15 Well Location: T26S / R32E / SEC 22 / County or Parish/State:

FED COM SESW /

Well Number: 512H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM027507 Unit or CA Name: Unit or CA Number:

US Well Number: 3002550972 Well Status: Approved Application for Operator: MEWBOURNE OIL

Permit to Drill COMPANY

Notice of Intent

Sundry ID: 2717741

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 02/24/2023 Time Sundry Submitted: 10:13

Date proposed operation will begin: 11/01/2023

Procedure Description: Mewbourne Oil Company requests to make the following changes to the APD: 1.) Change well name from Red Hills West 22 B2MD Fed Com #2H to Red Hills West 22/15 Fed Com #512H. Please see attached updated C102 2.) Change BHL from 100' FNL & 1320' FWL (Sec 22, T26S, R32E) to 100' FNL & 1320' FWL (Sec 15, T26S, R32E) - New BHL lease #NMNM 118722. Please see attached updated C102 3.) Change Csg/Mud/Cement plan. Please see attached Dir Plot, Dir Plan & Sundry Drlg Program

NOI Attachments

Procedure Description

Red_Hills_West_22_15_Fed_Com_512H_Sundry_Drlg_Program_20230224101039.pdf

Red_Hills_West_22_15_Fed_Com_512H_Plat_20230224101040.pdf

Red_Hills_West_22_15_Fed_Com_512H_Dir_Plan_20230224101039.pdf

Red_Hills_West_22_15_Fed_Com_512H_Dir_Plot_20230224101039.pdf

eived by OCD: 11/1/2023 4:00:52 PM Well Name: RED HILLS WEST 22/15

FED COM

Well Location: T26S / R32E / SEC 22 / SESW /

County or Parish/State:

Page 2 of

Well Number: 512H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM027507

Unit or CA Name:

Unit or CA Number:

US Well Number: 3002550972

Well Status: Approved Application for Permit to Drill

Operator: MEWBOURNE OIL

COMPANY

Conditions of Approval

Additional

RED_HILLS_WEST_22_15_FED_COM_512H_Sundry_COA_20231026094638.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: GAGE OWEN Signed on: FEB 24, 2023 10:12 AM

Name: MEWBOURNE OIL COMPANY

Title: Title Engineer

Street Address: 4801 BUSINESS PARK BLVD.

City: HOBBS State: NM

Phone: (575) 552-6224

Email address: GOWEN@MEWBOURNE.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 10/27/2023

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 2021

5	Lease	Serial	No
J.	Luasu	Sullai	TAC

SUNDRY NOTICES AND REPORTS OF Do not use this form for proposals to drill of abandoned well. Use Form 3160-3 (APD) for	r to re-e	nter an	-	6. If Indian, Allottee or Tribe Name			
SUBMIT IN TRIPLICATE - Other instructions on	page 2			7. If Unit of CA/Agreer	nent,	Name and/or No.	
1. Type of Well							
Oil Well Gas Well Other				8. Well Name and No.			
2. Name of Operator				9. API Well No.			
3a. Address 3b. Phone	No. (includ	e area code)		10. Field and Pool or E	xplora	atory Area	
4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)				11. Country or Parish, S	State		
12. CHECK THE APPROPRIATE BOX(ES) TO	INDICATI	E NATURE OF	NOTIO	CE, REPORT OR OTH	ER D	ATA	
TYPE OF SUBMISSION		ТҮРЕ О	F ACT	TION			
Acidize I	Deepen		Produ	action (Start/Resume)		Water Shut-Off	
Notice of Intent \square	Hydraulic Fi	racturing	:	ımation		Well Integrity	
Coging Pensir	New Constri	· =		mplete		Other	
Subsequent Report	Plug and Ab		:	orarily Abandon			
	Plug Back			r Disposal			
3. Describe Proposed or Completed Operation: Clearly state all pertinent deta the proposal is to deepen directionally or recomplete horizontally, give substitute Bond under which the work will be perfonned or provide the Bond No. completion of the involved operations. If the operation results in a multiple completed. Final Abandonment Notices must be filed only after all requirer is ready for final inspection.) 4. I hereby certify that the foregoing is true and correct. Name (Printed/Typed)	surface loca on file with completion nents, inclu-	tions and measu BLM/BIA. Rec or recompletion	red and quired a n in a r	d true vertical depths of subsequent reports must new interval, a Form 310	f all pe t be fil 60-4 n	ertinent markers and zones. Attach led within 30 days following nust be filed once testing has been	
	Title						
Signature	Date						
THE SPACE FOR F	EDERAL	OR STATE	OF	ICE USE			
Approved by							
		T:41 -		75	-4-		
	+	Title		D	ate		
Conditions of approval, if any, are attached. Approval of this notice does not watertify that the applicant holds legal or equitable title to those rights in the subjective would entitle the applicant to conduct operations thereon.		Office					
Fitle 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime finy false, fictitious or fraudulent statements or representations as to any matter			d willf	fully to make to any dep	artme	ent or agency of the United States	

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SESW / 250 FSL / 1490 FWL / TWSP: 26S / RANGE: 32E / SECTION: 22 / LAT: 32.0215575 / LONG: -103.6665576 (TVD: 0 feet, MD: 0 feet)
PPP: SWSW / 100 FSL / 1320 FWL / TWSP: 26S / RANGE: 32E / SECTION: 22 / LAT: 32.0211451 / LONG: -103.667104 (TVD: 10091 feet, MD: 10112 feet)
PPP: SWNW / 2675 FNL / 1320 FWL / TWSP: 26S / RANGE: 32E / SECTION: 22 / LAT: 32.0282512 / LONG: -103.6671178 (TVD: 10336 feet, MD: 12789 feet)
BHL: NWNW / 100 FNL / 1320 FWL / TWSP: 26S / RANGE: 32E / SECTION: 22 / LAT: 32.035307 / LONG: -103.6671347 (TVD: 10311 feet, MD: 15356 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | MEWBOURNE OIL COMPANY

WELL NAME & NO.: RED HILLS WEST 22/15 FED COM 512H

SURFACE HOLE FOOTAGE: 205'/S & 1490'/W BOTTOM HOLE FOOTAGE 100'/N & 1320'/W

SURFACE LOCATION: | SECTION 22, T26S, R32E, NMPM

COUNTY: | Lea County, New Mexico

COA

H_2S	• Yes	O No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	C Low	• Medium	C High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	© Both
Other	□ 4 String	☐ Capitan Reef	□WIPP
Other	☐ Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Special Requirements	☐ Water Disposal	▼ COM	□ Unit

SEE THE ORIGINAL COA FOR ALL OTHER REQUIREMENTS.

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H₂S) Drilling Plan shall be activated **AT SPUD**. As a result, the Hydrogen Sulfide area must meet **43 CFR 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING DESIGN

- 1. The 13-3/8 inch surface casing shall be set at approximately 630 ft. (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 ft. above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> hours or 500 psi compressive strength, whichever is greater. (This is to

- include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set in a competent bed at approximately 4,350 ft. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - **Cement to surface.** If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to **cave/karst**.
 - ❖ In Medium <u>Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Note: Excess cement for the intermediate casing is below CFO's recommendation of 25%. More cement might be needed.

Note: Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. Operator has proposed to set 7 in. production casing at approximately 9,723 ft. The minimum required fill of cement behind the 7 in. production casing is:
 - Option 1 (Single Stage): Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.
 - Option 2 (Two-stage): Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.
- **4.** The minimum required fill of cement behind the **4-1/2 in.** production liner is:
 - Cement should tie-back **at least 100 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use **flex line** from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a **multi-bowl wellhead** assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi. Before drilling the surface casing shoe out, the BOP/BOPE and annular preventer shall be pressure-tested in accordance with title 43 CFR 3172 and API Standard 53.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in the **title** 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220.

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per title 43 CFR 3172
 - as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in the **title 43 CFR 3172** and **API STD 53 Sec. 5.3**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in the title 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000-psi chart for a 2-3M BOP/BOP, on a 10000-psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one-hour chart. A circular chart shall have a maximum 2-hour clock. If a twelve hour or twenty-four-hour chart is used, tester shall make a notation that it is run with a two-hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low-pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of

the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crewintensive operations.

SA 10/26/2023

Mewbourne Oil Company, Red Hills West 22/15 Fed Com 512H Sec 22, T26S, R32E

SHL: 250' FSL & 1490' FWL (Sec 22) BHL: 100' FNL & 1320' FWL (Sec 15)

Casing Program

Hole Size	E	To	C C:	Weight	Grade	Conn.	SF	SF Burst	SF Jt	SF Body
Hole Size	From	10	Csg. Size	(lbs)	Grade	Conn.	Collapse	Sr Burst	Tension	SF Body Tension 17.89 3.52 17.56 3.28 2.80 2.80
17.500	0'	630'	13.375	48.0	H40	STC	2.67	6.00	10.65	17.89
12.250	0'	3453'	9.625	36.0	J55	LTC	1.13	1.96	2.83	3.52
12.250	3453'	4350'	9.625	40.0	J55	LTC	1.14	1.75	14.49	17.56
8.750	0'	9723'	7.000	26.0	P110	LTC	1.27	2.03	2.74	3.28
6.125	9523'	20705'	4.500	13.5	P110	LTC	1.98	2.30	2.24	2.80
6.125	9523'	20705'	4.500	13.5	P110	LTC	1.98	2.30	2.24	2.80
				BLM Minimum Safety		ty Footon	1.125	1.125 1.0	1.6 Dry	1.6 Dry
						ty Factor	1.123	1.0	1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h. Must have table for contingency casing

			Y or N		
Is casing new? If used, attach certification as required in	Onshore Order #1		Y		
Is casing API approved? If no, attach casing specificati	on sheet.		Y		
Is premium or uncommon casing planned? If yes attach	casing specification	n sheet.	N		
Does the above casing design meet or exceed BLM's m	inimum standards?	If not provide justification (loading assumptions, casing design criteria).	Y		
Will the pipe be kept at a minimum 1/3 fluid filled to avo	id approaching the	collapse pressure rating of the casing?	Y		
The state of the s		g	_		
Is well located within Capitan Reef?			N		
If yes, does production casing cement tie back a min	imum of 50' above	the Reef?			
Is well within the designated 4 string boundary.					
2 2 ,					
Is well located in SOPA but not in R-111-P?			N		
If yes, are the first 2 strings cemented to surface and	3 rd string cement ti	ied back 500' into previous casing?			
If yes, the the first 2 strings contented to surface that	o build comment	and countries and provided country.			
Is well located in R-111-P and SOPA?			N		
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is an open annulus used to satisfy R-111-Q? If yes, see	cement design.				
Is an engineered weak point used to satisfy R-111-Q?					
If yes, at what depth is the weak point planned?			-		
Is well located in high Cave/Karst?			Y		
If yes, are there two strings cemented to surface?			Y		
(For 2 string wells) If yes, is there a contingency casi	ng if lost circulation	n occurs?			
	<u> </u>				
Is well located in critical Cave/Karst?			N		
If yes, are there three strings cemented to surface?					
Formation	Est. Top	Formation	Est. Top		
Rustler	554'	Delaware (Lamar)	4428'		
Salt Top	932'	Bell Canyon	4453		
Salt Base	4218'	Cherry Canyon	5508'		
Yates		Manzanita Marker	5664'		
Seven Rivers		Basal Brushy Canyon	7218'		
Queen		Bone Spring	8623'		
Capitan		1st Bone Spring Sand	9533'		
Grayburg		2nd Bone Spring Sand	10263'		
San Andres		3rd Bone Spring Sand			
Glorieta		Abo			
Yeso		Wolfcamp			

Mewbourne Oil Company, Red Hills West 22/15 Fed Com 512H Sec 22, T26S, R32E

SHL: 250' FSL & 1490' FWL (Sec 22) BHL: 100' FNL & 1320' FWL (Sec 15)

Cementing Program

Csg	Top MD	Bottom MD	# Sks	Yield (ft3/sk)	Density (ppg)	Vol (ft3)	% Excess	Slurry Description
Surface (Lead)	0'	440′	290	2.12	12.5	620	100	Class C, Salt, Gel, Extender, LCM
Surface (Tail)	440'	630'	200	1.34	14.8	268	100	Class C, Retarder
Intermediate (Lead Stage 1)	0′	3671'	680	2.12	12.5	1450	25	Class C, Salt, Gel, Extender, LCM
Intermediate (Tail Stage 1)	3671'	4350′	200	1.34	14.8	268	25	Class C, Retarder
Production (Lead Stage 1)	4150′	4983′	80	2.12	12.5	170	30	Class C, Salt, Gel, Extender, LCM, Defoamer
Production (Tail Stage 1)	4983′	5640′	100	1.34	14.8	134	30	Class C, Retarder
		P	roducti	ion 7" DV	Tool @ 56	40'		
Production (Lead Stage 2)	5640′	7350′	160	2.12	12.5	340	30	Class C, Salt, Gel, Extender, LCM, Defoamer
Production (Tail Stage 2)	7350′	9723′	400	1.18	15.6	472	30	Class H, Retarder, Fluid Loss, Defoamer
Liner	9523′	20705′	720	1.85	13.5	1340	25	Class H, Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti- settling Agent

Mud Program

	Depth	Type	Weight (ppg)	Viscosity	Water Loss
From	To				
0	630	FW Gel	8.6-8.8	28-34	N/C
630	4350	Saturated Brine	10.0	28-34	N/C
4350	9723	Cut Brine	8.6-9.7	28-34	N/C
9723	20705	OBM	9.0-10.0	30-40	<10cc

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Mewbourne Oil Company, Red Hills West 22/15 Fed Com 512H Sec 22, T26S, R32E

SHL: 250' FSL & 1490' FWL (Sec 22) BHL: 100' FNL & 1320' FWL (Sec 15)

Additional Information

Operator Name:	Property Name:	Well Number
Mewbourne Oil Company	Red Hills West 22/15 Fed Com	512H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
M	22	26S	32E	-	10'	FSL	1320'	FWL	Lea
		Latitude					NAD		
32.0208969					-103.667103	39			83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
M	22	26S	32E	-	100'	FSL	1320'	FWL	Lea
		Latitude				Long	itude		NAD
32.0211443	32.0211443				-103.6671037				83

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
D	15	26S	32E	-	100'	FNL	1320'	FWL	Lea
		Latitude					NAD		
32.0500071	32.0500071					24			83

Is this well the defining well for	or the Horizont	al Spacing Unit?
Is this well an infill well?	Y	

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API#			

Operator Name:	Property Name:	Well
		Number
Mewbourne Oil Company	Red Hills West 22/15 Fed Com	571H

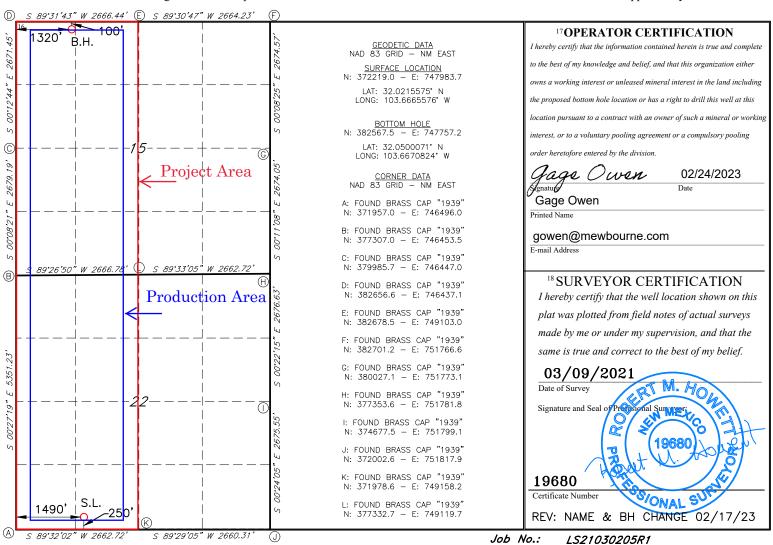
District 1 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe. NM 87505

Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT


WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Numb	 ² Pool Code 97903	Wildcat Lower Bone Spring				
⁴ Property Code 333716	RED HILLS WEST 22/15 FED COM					
7 OGRID NO. 14744	-	erator Name E OIL COMPANY	⁹ Elevation 3136			

¹⁰ Surface Location

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County
N	22	26S	32E		250	SOUTH	1490	WEST	LEA
			11]	Bottom H	lole Location	If Different Fr	om Surface		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
D	15	26S	32E		100	NORTH	1320	WEST	LEA
12 Dedicated Acres	13 Joint	or Infill 14	Consolidation	Code 15 (Order No.				
640									

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

LOCATION VERIFICATION MAP

NOT TO SCALE

SECTION 22 TWP. 26 SOUTH, RGE. 32 EAST, N. M. P. M., LEA CO., NEW MEXICO

OPERATOR: Mewbourne Oil Company LOCATION: 250' FSL & 1490' FWL LEASE: Red Hills West 22/15 Fed Com

WELL NO.: 512H

ELEVATION: 3136'

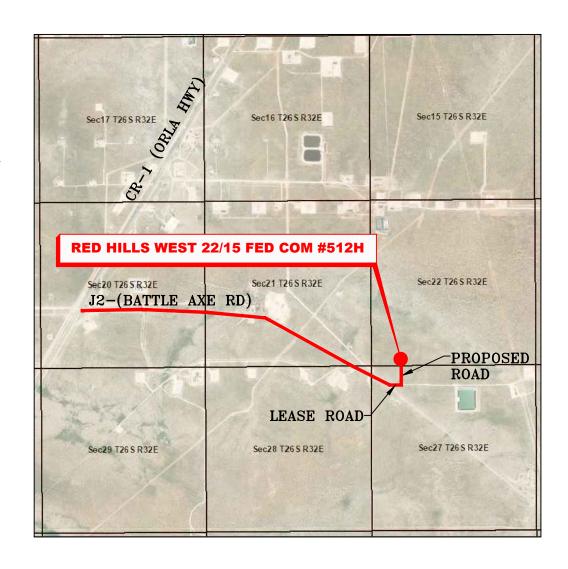
CONTOUR INTERVAL: 10'

USGS TOPO. SOURCE MAP:

Paduca Breaks West, NM (1973)

Copyright 2016 - All Rights Reserved

NAME CHANGE 2/17/23 NO. REVISION JOB NO.: LS21030205R1


DWG. NO.: 21030205R1

SCALE: N. T. S. DATE: 03/09/2021 SURVEYED BY: ML/JC DRAWN BY: RQ APPROVED BY: RMH SHEET: 1 OF 1

VICINITY MAP

NOT TO SCALE

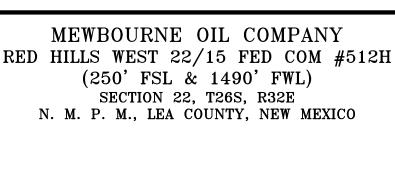
SECTION 22, TWP. 26 SOUTH, RGE. 32 EAST, N. M. P. M., LEA COUNTY, NEW MEXICO

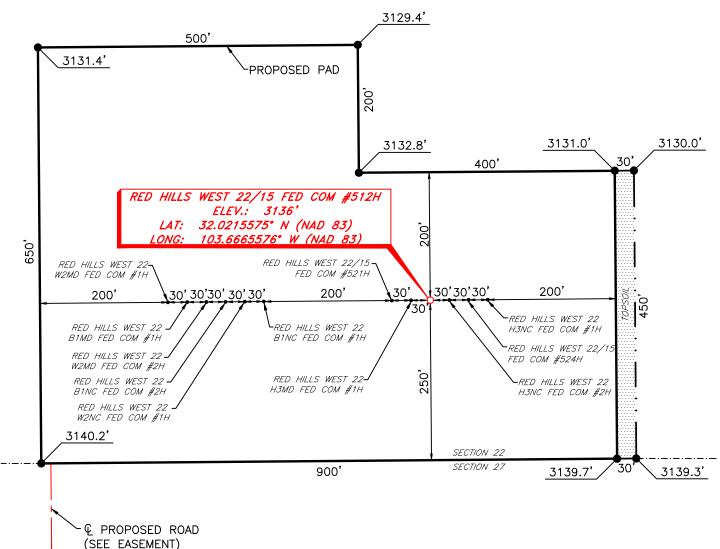
OPERATOR: Mewbourne Oil Company LOCATION: 250' FSL & 1490' FWL

LEASE: Red Hills West 22/15 Fed Com

WELL NO.: 512H

ELEVATION: 3136'


Copyright 2016 - All Rights Reserved


1	NAME CHANGES	2/17/23
NO.	REVISION	DATE
JOB	NO.: LS210302	05R1

DWG. NO.: 21030205R1

SCALE: N. T. S. DATE: 03/09/2021 SURVEYED BY: ML/JC DRAWN BY: RQ APPROVED BY: RMH SHEET: 1 OF 1

<u>DIRECTIONS TO LOCATION</u>

From the intersection of CR-#1 (Orla Hwy.) and CR-#2 (Battleaxe Rd.); Go Southwest on CR-#2 approx. 2.0 miles to a lease road on the left; Turn left and go East approx. 0.2 miles to a proposed road on the left; Turn left and go North approx. 0.1 miles to location on the right.

THIS IS NOT A BOUNDARY SURVEY, APPARENT PROPERTY CORNERS AND PROPERTY LINES ARE SHOWN FOR INFORMATION ONLY. BOUNDARY DATA IS SHOWN FROM A PREVIOUS SURVEY REFERENCED HEREON.

I, R. M. Howett, a N. M. Professional Surveyor, hereby certify that I prepared this unclassified survey of a well location from an actual survey made on the ground under my direct supervision, said survey and plat meet the Min. Stds. for Land Surveying in the State of N. M. and are true and correct to the best of my

BEARINGS ARE
NAD 83 GRID - NM EAST
DISTANCES ARE GROUND
Robert M. Howett
NM PS 19680

2 NAME CHANGE 02/17/23 1 PAD UPDATE 05/10/21 NO. REVISION DATE

JOB NO.: LS21030205R DWG. NO.: 21030205R-4 RRC ENERGY SERVICES, LLC.

ENERGY SERVICES, LLC.
701 S. CECIL ST., HOBBS, NM 88240 (575) 964-8200

SCALE: 1" = 150'
DATE: 03/09/2021
SURVEYED BY: ML/JC
DRAWN BY: RQ
APPROVED BY: RMH
SHEET: 1 OF 1

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Red Hills West 22/15 Fed Com #512H

Sec 22, T26S, R32E

SHL: 250' FSL & 1490' FWL (Sec 22) BHL: 100' FNL & 1320' FWL (Sec 15)

Plan: Design #1

Standard Planning Report

23 February, 2023

Database: Hobbs Company: Mewbo

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E

Wellbore: BHL: 100' FNL & 1320' FWL (Sec 15)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

358.75

Grid

Minimum Curvature

Project Lea County, New Mexico NAD 83

Map System: US State Plane 1983
Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Red Hills West 22/15 Fed Com #512H

 Site Position:
 Northing:
 372,219.00 usft
 Latitude:
 32.0215574

 From:
 Map
 Easting:
 747,983.70 usft
 Longitude:
 -103.6665576

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 22, T26S, R32E

32.0215574 **Well Position** +N/-S 0.0 usft Northing: 372,219.00 usft Latitude: +E/-W 0.0 usft Easting: 747,983.70 usft Longitude: -103.6665576 **Position Uncertainty** 0.0 usft Wellhead Elevation: 3,164.0 usft **Ground Level:** 3,136.0 usft

Grid Convergence: 0.35 °

Wellbore BHL: 100' FNL & 1320' FWL (Sec 15)

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2010
 12/31/2014
 7.18
 59.89
 48,132.27105242

Design Design #1 **Audit Notes: PROTOTYPE** Tie On Depth: 0.0 Version: Phase: Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)

0.0

0.0

Plan Survey Tool Program Date 2/23/2023

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

0.0

1 0.0 20,704.9 Design #1 (BHL: 100' FNL & 1320

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
750.0	0.00	0.00	750.0	0.0	0.0	0.00	0.00	0.00	0.00	
844.2	1.88	214.82	844.1	-1.3	-0.9	2.00	2.00	0.00	214.82	
9,693.7	1.88	214.82	9,688.9	-240.0	-166.9	0.00	0.00	0.00	0.00	
9,787.8	0.00	0.00	9,783.0	-241.3	-167.8	2.00	-2.00	0.00	180.00	KOP: 10' FSL & 1320'
10,690.5	90.26	359.68	10,356.0	334.3	-171.0	10.00	10.00	0.00	-0.32	
20,704.9	90.26	359.68	10,311.0	10,348.5	-226.5	0.00	0.00	0.00	0.00	BHL: 100' FNL & 1320

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E

Wellbore: BHL: 100' FNL & 1320' FWL (Sec 15)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

Grid

ed Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 250' F	SL & 1490' FWL	(Sec 22)							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
750.0	0.00	0.00	750.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	1.00	214.82	800.0	-0.4	-0.2	-0.4	2.00	2.00	0.00
844.2	1.88	214.82	844.1	-1.3	-0.9	-1.3	2.00	2.00	0.00
900.0	1.88	214.82	900.0	-2.8	-1.9	-2.7	0.00	0.00	0.00
1,000.0	1.88	214.82	999.9	-5.5	-3.8	-5.4	0.00	0.00	0.00
1,100.0	1.88	214.82	1,099.8	-8.2	-5.7	-8.0	0.00	0.00	0.00
1,200.0	1.88	214.82	1,199.8	-10.9	-7.6	-10.7	0.00	0.00	0.00
1,300.0	1.88	214.82	1,299.7	-13.6	-9.4	-13.4	0.00	0.00	0.00
1,400.0	1.88	214.82	1,399.7	-16.3	-11.3	-16.0	0.00	0.00	0.00
1,500.0	1.88	214.82	1,499.6	-19.0	-13.2	-18.7	0.00	0.00	0.00
1,600.0	1.88	214.82	1.599.6	-21.7	-15.1	-21.3	0.00	0.00	0.00
1,700.0	1.88	214.82	1,699.5	-24.4	-16.9	-24.0	0.00	0.00	0.00
1,800.0	1.88	214.82	1,799.5	-27.1	-18.8	-26.6	0.00	0.00	0.00
1,900.0	1.88	214.82	1,899.4	-29.8	-20.7	-29.3	0.00	0.00	0.00
2,000.0	1.88	214.82	1,999.4	-32.5	-22.6	-32.0	0.00	0.00	0.00
2,100.0	1.88	214.82	2,099.3	-35.2	-24.4	-34.6	0.00	0.00	0.00
2,200.0	1.88	214.82	2,199.3	-37.8	-26.3	-37.3	0.00	0.00	0.00
2,300.0	1.88	214.82	2,299.2	-40.5	-28.2	-39.9	0.00	0.00	0.00
2,400.0	1.88	214.82	2,399.1	-43.2	-30.1	-42.6	0.00	0.00	0.00
2,500.0	1.88	214.82	2,499.1	-45.9	-32.0	-45.2	0.00	0.00	0.00
2,600.0	1.88	214.82	2,599.0	-48.6	-33.8	-47.9	0.00	0.00	0.00
2,700.0	1.88	214.82	2,699.0	-51.3	-35.7	-50.5	0.00	0.00	0.00
2,800.0	1.88	214.82	2,798.9	-54.0	-37.6	-53.2	0.00	0.00	0.00
2,900.0	1.88	214.82	2,898.9	-56.7	-39.5	-55.9	0.00	0.00	0.00
3,000.0	1.88	214.82	2,998.8	-59.4	-41.3	-58.5	0.00	0.00	0.00
3,100.0	1.88	214.82	3,098.8	-62.1	-43.2	-61.2	0.00	0.00	0.00
3,200.0	1.88	214.82	3,198.7	-64.8	-45.1	-63.8	0.00	0.00	0.00
3,300.0	1.88	214.82	3,298.7	-67.5	-47.0	-66.5	0.00	0.00	0.00
3,400.0	1.88	214.82	3,398.6	-70.2	-48.8	-69.1	0.00	0.00	0.00
3,500.0	1.88	214.82	3,498.5	-72.9	-50.7	-71.8	0.00	0.00	0.00
3,600.0	1.88	214.82	3,598.5	-75.6	-52.6	-74.5	0.00	0.00	0.00
3,700.0	1.88	214.82	3,698.4	-78.3	-54.5	-77.1	0.00	0.00	0.00
3,800.0	1.88	214.82	3,798.4	-81.0	-56.3	-79.8	0.00	0.00	0.00
3,900.0	1.88	214.82	3,898.3	-83.7	-58.2	-82.4	0.00	0.00	0.00
4,000.0	1.88	214.82	3,998.3	-86.4	-60.1	-85.1	0.00	0.00	0.00
4,100.0	1.88	214.82	4,098.2	-89.1	-62.0	-87.7	0.00	0.00	0.00
4,200.0	1.88	214.82	4,198.2	-91.8	-63.9	-90.4	0.00	0.00	0.00
4,300.0	1.88	214.82	4,298.1	-94.5	-65.7	-93.0	0.00	0.00	0.00
4,400.0	1.88	214.82	4,398.1	-97.2	-67.6	-95.7	0.00	0.00	0.00
4,500.0	1.88	214.82	4,498.0	-99.9	-69.5	-98.4	0.00	0.00	0.00
4,600.0	1.88	214.82	4,598.0	-102.6	-71.4	-101.0	0.00	0.00	0.00
4,700.0	1.88	214.82	4,697.9	-105.3	-73.2	-103.7	0.00	0.00	0.00
4,800.0	1.88	214.82	4,797.8	-108.0	-75.1	-106.3	0.00	0.00	0.00
4,900.0	1.88 1.88	214.82 214.82	4,897.8 4,997.7	-110.7 -113.4	-77.0 -78.9	-109.0 -111.6	0.00 0.00	0.00 0.00	0.00 0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83

Site: Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E

Wellbore: BHL: 100' FNL & 1320' FWL (Sec 15)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,100.0	1.88	214.82	5,097.7	-116.1	-80.7	-114.3	0.00	0.00	0.00
5,200.0	1.88	214.82	5,197.6	-118.8	-82.6	-117.0	0.00	0.00	0.00
5,300.0	1.88	214.82	5,297.6	-121.5	-84.5	-119.6	0.00	0.00	0.00
5,400.0	1.88	214.82	5,397.5	-124.2	-86.4	-122.3	0.00	0.00	0.00
5,500.0	1.88	214.82	5,497.5	-126.9	-88.2	-124.9	0.00	0.00	0.00
5,600.0	1.88	214.82	5,597.4	-129.6	-90.1	-127.6	0.00	0.00	0.00
5,700.0	1.88	214.82	5,697.4	-132.3	-92.0	-130.2	0.00	0.00	0.00
5,800.0	1.88	214.82	5,797.3	-135.0	-93.9	-132.9	0.00	0.00	0.00
5,900.0	1.88	214.82	5,897.3	-137.7	-95.8	-135.5	0.00	0.00	0.00
6,000.0	1.88	214.82	5,997.2	-140.4	-97.6	-138.2	0.00	0.00	0.00
6,100.0	1.88	214.82	6,097.1	-143.1	-99.5	-140.9	0.00	0.00	0.00
6,200.0	1.88	214.82	6,197.1	-145.8	-101.4	-143.5	0.00	0.00	0.00
6,300.0	1.88	214.82	6,297.0	-148.5	-103.3	-146.2	0.00	0.00	0.00
6,400.0	1.88	214.82	6,397.0	-151.2	-105.5	-148.8	0.00	0.00	0.00
6,500.0	1.88	214.82	6,496.9	-153.9	-107.0	-151.5	0.00	0.00	0.00
6,600.0	1.88	214.82	6,596.9	-156.6	-107.0	-154.1	0.00	0.00	0.00
6,700.0	1.88	214.82	6,696.8	-159.3	-110.8	-156.8	0.00	0.00	0.00
	1.88		6,796.8			-159.4	0.00	0.00	0.00
6,800.0 6,900.0	1.88	214.82 214.82	6,896.7	-162.0 -164.7	-112.6 -114.5	-159. 4 -162.1	0.00	0.00	0.00
7,000.0	1.88	214.82	6,996.7	-167.3	-114.3	-164.8	0.00	0.00	0.00
7,100.0	1.88	214.82	7,096.6	-170.0	-118.3	-167.4	0.00	0.00	0.00
7,100.0	1.88	214.82	7,196.5	-170.0	-120.1	-170.1	0.00	0.00	0.00
7,300.0	1.88	214.82	7,296.5	-175.4	-122.0	-172.7	0.00	0.00	0.00
7,400.0	1.88	214.82	7,396.4	-178.1	-123.9	-175.4	0.00	0.00	0.00
7,500.0 7,600.0	1.88 1.88	214.82 214.82	7,496.4 7,596.3	-180.8 -183.5	-125.8 -127.7	-178.0 -180.7	0.00 0.00	0.00 0.00	0.00 0.00
7,700.0	1.88	214.82	7,696.3	-186.2	-127.7	-183.4	0.00	0.00	0.00
7,800.0	1.88	214.82	7,796.2	-188.9	-131.4	-186.0	0.00	0.00	0.00
7,900.0	1.88	214.82	7,896.2	-191.6	-133.3	-188.7	0.00	0.00	0.00
8,000.0	1.88	214.82 214.82	7,996.1	-194.3	-135.2 -137.0	-191.3	0.00	0.00 0.00	0.00
8,100.0 8,200.0	1.88 1.88	214.82	8,096.1 8,196.0	-197.0 -199.7	-137.0	-194.0 -196.6	0.00 0.00	0.00	0.00 0.00
8,300.0	1.88	214.82	8,296.0	-202.4	-140.8	-199.3	0.00	0.00	0.00
8,400.0	1.88	214.82	8,395.9	-205.1	-142.7	-201.9	0.00	0.00	0.00
8,500.0	1.88	214.82	8,495.8	-207.8	-144.5	-204.6	0.00	0.00	0.00
8,600.0	1.88	214.82	8,595.8	-210.5	-146.4	-207.3	0.00	0.00	0.00
8,700.0	1.88	214.82	8,695.7	-213.2	-148.3	-209.9	0.00	0.00	0.00
8,800.0	1.88	214.82	8,795.7	-215.9	-150.2	-212.6	0.00	0.00	0.00
8,900.0	1.88	214.82	8,895.6	-218.6	-152.0	-215.2	0.00	0.00	0.00
9,000.0	1.88	214.82	8,995.6	-221.3	-153.9	-217.9	0.00	0.00	0.00
9,100.0	1.88	214.82	9,095.5	-224.0	-155.8	-220.5	0.00	0.00	0.00
9,200.0	1.88	214.82	9,195.5	-226.7	-157.7	-223.2	0.00	0.00	0.00
9,300.0	1.88	214.82	9,295.4	-229.4	-159.6	-225.9	0.00	0.00	0.00
9,400.0	1.88	214.82	9,395.4	-232.1	-161.4	-228.5	0.00	0.00	0.00
9,500.0	1.88	214.82	9,495.3	-234.8	-163.3	-231.2	0.00	0.00	0.00
9,600.0	1.88	214.82	9,595.3	-237.5	-165.2	-233.8	0.00	0.00	0.00
9,693.7	1.88	214.82	9,688.9	-240.0	-166.9	-236.3	0.00	0.00	0.00
9,700.0	1.76	214.82	9,695.2	-240.2	-167.1	-236.5	2.00	-2.00	0.00
9,787.8	0.00	0.00	9,783.0	-241.3	-167.8	-237.6	2.00	-2.00	0.00
	L & 1320' FWL (S								
9,800.0	1.22	359.68	9,795.2	-241.2	-167.8	-237.4	10.00	10.00	0.00
9,850.0	6.22	359.68	9,845.1	-237.9	-167.8	-234.2	10.00	10.00	0.00
9,900.0	11.22	359.68	9,894.5	-230.3	-167.9	-226.6	10.00	10.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E

Wellbore: BHL: 100' FNL & 1320' FWL (Sec 15)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,950.0	16.22	359.68	9,943.0	-218.5	-167.9	-214.8	10.00	10.00	0.00
10,000.0	21.22	359.68	9,990.4	-202.5	-168.0	-198.7	10.00	10.00	0.00
10,050.0	26.22	359.68	10,036.1	-182.3	-168.1	-178.6	10.00	10.00	0.00
10,100.0	31.22	359.68	10,080.0	-158.3	-168.3	-154.6	10.00	10.00	0.00
10,113.3	32.55	359.68	10,091.3	-151.3	-168.3	-147.6	10.00	10.00	0.00
FTP: 100' F	SL & 1320' FWL ((Sec 22)							
10,150.0	36.22	359.68	10,121.5	-130.6	-168.4	-126.9	10.00	10.00	0.00
10,200.0	41.22	359.68	10,160.5	-99.3	-168.6	-95.6	10.00	10.00	0.00
10,250.0	46.21	359.68	10,196.7	-64.8	-168.8	-61.1	10.00	10.00	0.00
10,300.0	51.21	359.68	10,229.7	-27.2	-169.0	-23.5	10.00	10.00	0.00
10,350.0	56.21	359.68	10,259.2	13.1	-169.2	16.8	10.00	10.00	0.00
10,400.0	61.21	359.68	10,285.2	55.8	-169.5	59.5	10.00	10.00	0.00
10,450.0	66.21	359.68	10,307.3	100.6	-169.5	104.3	10.00	10.00	0.00
10,500.0	71.21	359.68	10,307.5	147.2	-170.0	150.9	10.00	10.00	0.00
10,550.0	76.21	359.68	10,323.5	195.1	-170.0	198.8	10.00	10.00	0.00
10,600.0	81.21	359.68	10,349.3	244.2	-170.5	247.8	10.00	10.00	0.00
10,650.0	86.21	359.68	10,354.8	293.8	-170.8	297.5	10.00	10.00	0.00
10,687.9	90.00	359.68	10,356.0	331.7	-171.0	335.4	10.00	10.00	0.00
	L & 1320' FWL (S	•							
10,690.5	90.26	359.68	10,356.0	334.3	-171.0	337.9	10.00	10.00	0.00
10,700.0	90.26	359.68	10,356.0	343.8	-171.1	347.5	0.00	0.00	0.00
10,800.0	90.26	359.68	10,355.5	443.8	-171.6	447.5	0.00	0.00	0.00
10,900.0	90.26	359.68	10,355.1	543.8	-172.2	547.4	0.00	0.00	0.00
11,000.0	90.26	359.68	10,354.6	643.8	-172.7	647.4	0.00	0.00	0.00
11,100.0	90.26	359.68	10,354.2	743.8	-173.3	747.4	0.00	0.00	0.00
11,200.0	90.26	359.68	10,353.7	843.8	-173.8	847.4	0.00	0.00	0.00
11,300.0	90.26	359.68	10,353.3	943.8	-174.4	947.4	0.00	0.00	0.00
11,400.0	90.26	359.68	10,352.8	1,043.8	-174.9	1,047.4	0.00	0.00	0.00
11,500.0	90.26	359.68	10,352.4	1,143.8	-175.5	1,147.4	0.00	0.00	0.00
11,600.0	90.26	359.68	10,351.9	1,243.8	-176.1	1,247.3	0.00	0.00	0.00
11,700.0	90.26	359.68	10,351.5	1,343.8	-176.6	1,347.3	0.00	0.00	0.00
11,800.0	90.26	359.68	10,351.0	1,443.8	-177.2	1,447.3	0.00	0.00	0.00
11,900.0	90.26	359.68	10,350.6	1,543.8	-177.7	1,547.3	0.00	0.00	0.00
12,000.0	90.26	359.68	10,350.1	1,643.8	-177.7	1,647.3	0.00	0.00	0.00
12,100.0	90.26	359.68	10,350.1	1,743.8	-176.3 -178.8	1,747.3	0.00	0.00	0.00
12,700.0	90.26	359.68	10,349.2	1,843.8	-170.6	1,847.3	0.00	0.00	0.00
12,300.0	90.26	359.68	10,348.8	1,943.8	-179.4	1,947.3	0.00	0.00	0.00
12,400.0	90.26	359.68	10,348.3	2,043.8	-180.5	2,047.2	0.00	0.00	0.00
12,500.0	90.26	359.68	10,347.9	2,143.8	-181.0	2,147.2	0.00	0.00	0.00
12,600.0	90.26	359.68	10,347.4	2,243.8	-181.6	2,247.2	0.00	0.00	0.00
12,700.0 12,780.5	90.26 90.26	359.68 359.68	10,347.0 10,346.6	2,343.8 2,424.3	-182.1 -182.6	2,347.2 2,427.7	0.00 0.00	0.00 0.00	0.00 0.00
	90.∠6 S' FSL & 1320' FW		10,340.0	2,424.3	-102.0	۷,421.1	0.00	0.00	0.00
			40.040.5	0.440.0	400 =	0.447.6	2.25	0.00	2.22
12,800.0	90.26	359.68	10,346.5	2,443.8	-182.7	2,447.2	0.00	0.00	0.00
12,900.0	90.26	359.68	10,346.1	2,543.8	-183.3	2,547.2	0.00	0.00	0.00
13,000.0	90.26	359.68 350.68	10,345.6	2,643.8	-183.8 184.4	2,647.1	0.00	0.00	0.00
13,100.0 13,200.0	90.26 90.26	359.68 359.68	10,345.2 10,344.7	2,743.8	-184.4 -184.9	2,747.1 2,847.1	0.00 0.00	0.00 0.00	0.00 0.00
,		359.68		2,843.8					
13,300.0	90.26	359.68	10,344.3	2,943.8	-185.5	2,947.1	0.00	0.00	0.00
13,400.0	90.26	359.68	10,343.8	3,043.7	-186.0	3,047.1	0.00	0.00	0.00
13,500.0	90.26	359.68	10,343.4	3,143.7	-186.6	3,147.1	0.00	0.00	0.00
13,600.0	90.26	359.68	10,342.9	3,243.7	-187.1	3,247.1	0.00	0.00	0.00
13,700.0	90.26	359.68	10,342.5	3,343.7	-187.7	3,347.0	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Lea County, New Mexico NAD 83
Site: Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E

Wellbore: BHL: 100' FNL & 1320' FWL (Sec 15)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

Grid

sign:	Design #1								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,800.0	90.26	359.68	10,342.0	3,443.7	-188.2	3,447.0	0.00	0.00	0.00
13,900.0	90.26	359.68	10,341.6	3,543.7	-188.8	3,547.0	0.00	0.00	0.00
14,000.0	90.26	359.68	10,341.1	3,643.7	-189.3	3,647.0	0.00	0.00	0.00
14,100.0	90.26	359.68	10,340.7	3,743.7	-189.9	3,747.0	0.00	0.00	0.00
14,200.0	90.26	359.68	10,340.2	3,843.7	-190.5	3,847.0	0.00	0.00	0.00
14,300.0	90.26	359.68	10,339.8	3,943.7	-191.0	3,947.0	0.00	0.00	0.00
14,400.0	90.26	359.68	10,339.3	4,043.7	-191.6	4,046.9	0.00	0.00	0.00
						,			
14,500.0	90.26	359.68	10,338.9	4,143.7	-192.1	4,146.9	0.00	0.00	0.00
14,600.0	90.26	359.68	10,338.4	4,243.7	-192.7	4,246.9	0.00	0.00	0.00
14,700.0	90.26	359.68	10,338.0	4,343.7	-193.2	4,346.9	0.00	0.00	0.00
14 000 0	00.26	250.60	10 227 5	4 442 7	102.0	4,446.9	0.00	0.00	0.00
14,800.0	90.26	359.68	10,337.5	4,443.7	-193.8				
14,900.0	90.26	359.68	10,337.1	4,543.7	-194.3	4,546.9	0.00	0.00	0.00
15,000.0	90.26	359.68	10,336.6	4,643.7	-194.9	4,646.9	0.00	0.00	0.00
15,100.0	90.26	359.68	10,336.2	4,743.7	-195.4	4,746.8	0.00	0.00	0.00
15,200.0	90.26	359.68	10,335.7	4,843.7	-196.0	4,846.8	0.00	0.00	0.00
45.000.0	00.00	250.00	40.005.0	4 0 40 7	400.0	4 0 4 0 0	0.00	0.00	0.00
15,300.0	90.26	359.68	10,335.3	4,943.7	-196.6	4,946.8	0.00	0.00	0.00
15,400.0	90.26	359.68	10,334.8	5,043.7	-197.1	5,046.8	0.00	0.00	0.00
15,457.0	90.26	359.68	10,334.6	5,100.7	-197.4	5,103.8	0.00	0.00	0.00
PPP3: 0' FS	L & 1320' FWL (Sec 15)							
15,500.0	90.26	359.68	10,334.4	5,143.7	-197.7	5,146.8	0.00	0.00	0.00
15,600.0	90.26	359.68	10,333.9	5,243.7	-198.2	5,246.8	0.00	0.00	0.00
13,000.0	90.20	339.00	10,333.9	5,245.7	-190.2	5,240.6	0.00	0.00	0.00
15,700.0	90.26	359.68	10,333.5	5,343.7	-198.8	5.346.8	0.00	0.00	0.00
15,800.0	90.26	359.68	10,333.0	5,443.7	-199.3	5,446.7	0.00	0.00	0.00
15,900.0	90.26	359.68	10,332.6	5,543.7	-199.9	5,546.7	0.00	0.00	0.00
16,000.0	90.26	359.68	10,332.1	5,643.7	-200.4	5,646.7	0.00	0.00	0.00
16,100.0	90.26	359.68	10,331.7	5,743.7	-201.0	5,746.7	0.00	0.00	0.00
16,200.0	90.26	359.68	10,331.2	5,843.7	-201.5	5,846.7	0.00	0.00	0.00
16,300.0	90.26	359.68	10,330.8	5,943.7	-202.1	5,946.7	0.00	0.00	0.00
16,400.0	90.26	359.68	10,330.3	6,043.7	-202.6	6,046.7	0.00	0.00	0.00
16,500.0	90.26	359.68	10,329.9	6,143.7	-203.2	6,146.6	0.00	0.00	0.00
16,600.0	90.26	359.68	10,329.4	6,243.7	-203.8	6,246.6	0.00	0.00	0.00
16,700.0	90.26	359.68	10,329.0	6,343.7	-204.3	6,346.6	0.00	0.00	0.00
,				,					
16,800.0	90.26	359.68	10,328.5	6,443.7	-204.9	6,446.6	0.00	0.00	0.00
16,900.0	90.26	359.68	10,328.1	6,543.7	-205.4	6,546.6	0.00	0.00	0.00
17,000.0	90.26	359.68	10,327.6	6,643.7	-206.0	6,646.6	0.00	0.00	0.00
17,100.0	90.26	359.68	10,327.2	6,743.7	-206.5	6,746.6	0.00	0.00	0.00
47.000.0	00.00	050.00	40.000 =	0.040.7	227 :	0.040.5	2.25	2.22	2.22
17,200.0	90.26	359.68	10,326.7	6,843.7	-207.1	6,846.5	0.00	0.00	0.00
17,300.0	90.26	359.68	10,326.3	6,943.6	-207.6	6,946.5	0.00	0.00	0.00
17,400.0	90.26	359.68	10,325.9	7,043.6	-208.2	7,046.5	0.00	0.00	0.00
17,500.0	90.26	359.68	10,325.4	7,143.6	-208.7	7,146.5	0.00	0.00	0.00
17,600.0	90.26	359.68	10,325.0	7,243.6	-209.3	7,246.5	0.00	0.00	0.00
						,			
17,700.0	90.26	359.68	10,324.5	7,343.6	-209.9	7,346.5	0.00	0.00	0.00
17,800.0	90.26	359.68	10,324.1	7,443.6	-210.4	7,446.5	0.00	0.00	0.00
17,900.0	90.26	359.68	10,323.6	7,543.6	-211.0	7,546.4	0.00	0.00	0.00
18.000.0	90.26	359.68	10,323.2	7,643.6	-211.5	7,646.4	0.00	0.00	0.00
18,100.0	90.26	359.68	10,322.7	7,743.6	-212.1	7,746.4	0.00	0.00	0.00
10,100.0	50.20			7,740.0	212.1		0.00	0.00	0.00
18,200.0	90.26	359.68	10,322.3	7,843.6	-212.6	7,846.4	0.00	0.00	0.00
18,300.0	90.26	359.68	10,321.8	7,943.6	-213.2	7,946.4	0.00	0.00	0.00
18,400.0	90.26	359.68	10,321.4	8,043.6	-213.7	8,046.4	0.00	0.00	0.00
18.500.0	90.26	359.68	10,320.9	8,143.6	-214.3	8,146.4	0.00	0.00	0.00
-,									
18,600.0	90.26	359.68	10,320.5	8,243.6	-214.8	8,246.3	0.00	0.00	0.00
18,700.0	90.26	359.68	10,320.0	8,343.6	-215.4	8,346.3	0.00	0.00	0.00
18,800.0	90.26	359.68	10,319.6	8,443.6	-215.9	8,446.3	0.00	0.00	0.00
18,900.0	90.26	359.68	10,319.1	8,543.6	-216.5	8,546.3	0.00	0.00	0.00

Database: Hobbs Company: Mewbo

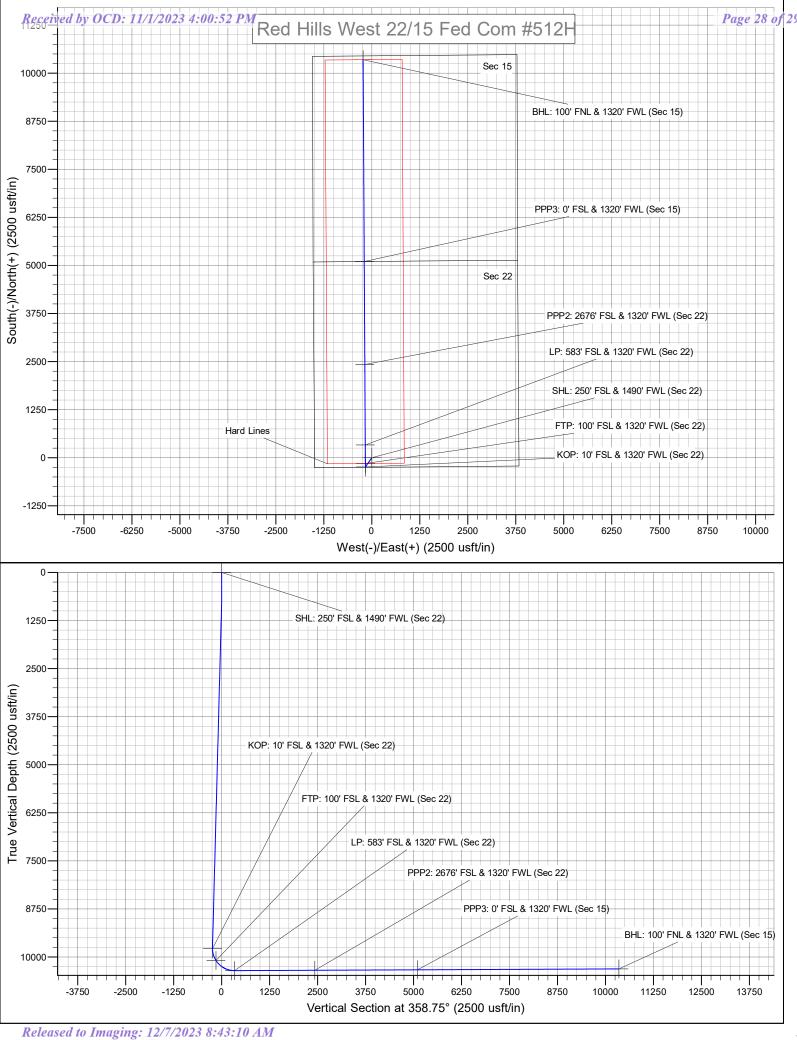
Project:

Site:

Mewbourne Oil Company

Lea County, New Mexico NAD 83
Red Hills West 22/15 Fed Com #512H

Well: Sec 22, T26S, R32E


Wellbore: BHL: 100' F
Design: Design #1

Sec 22, T26S, R32E BHL: 100' FNL & 1320' FWL (Sec 15) Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Site Red Hills West 22/15 Fed Com #512H WELL @ 3164.0usft (Original Well Elev) WELL @ 3164.0usft (Original Well Elev)

Grid

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,000.0	90.26	359.68	10,318.7	8,643.6	-217.1	8,646.3	0.00	0.00	0.00
19,100.0	90.26	359.68	10,318.2	8,743.6	-217.6	8,746.3	0.00	0.00	0.00
19,200.0	90.26	359.68	10,317.8	8,843.6	-218.2	8,846.3	0.00	0.00	0.00
19,300.0	90.26	359.68	10,317.3	8,943.6	-218.7	8,946.2	0.00	0.00	0.00
19,400.0	90.26	359.68	10,316.9	9,043.6	-219.3	9,046.2	0.00	0.00	0.00
19,500.0	90.26	359.68	10,316.4	9,143.6	-219.8	9,146.2	0.00	0.00	0.00
19,600.0	90.26	359.68	10,316.0	9,243.6	-220.4	9,246.2	0.00	0.00	0.00
19,700.0	90.26	359.68	10,315.5	9,343.6	-220.9	9,346.2	0.00	0.00	0.00
19,800.0	90.26	359.68	10,315.1	9,443.6	-221.5	9,446.2	0.00	0.00	0.00
19,900.0	90.26	359.68	10,314.6	9,543.6	-222.0	9,546.2	0.00	0.00	0.00
20,000.0	90.26	359.68	10,314.2	9,643.6	-222.6	9,646.1	0.00	0.00	0.00
20,100.0	90.26	359.68	10,313.7	9,743.6	-223.1	9,746.1	0.00	0.00	0.00
20,200.0	90.26	359.68	10,313.3	9,843.6	-223.7	9,846.1	0.00	0.00	0.00
20,300.0	90.26	359.68	10,312.8	9,943.6	-224.3	9,946.1	0.00	0.00	0.00
20,400.0	90.26	359.68	10,312.4	10,043.6	-224.8	10,046.1	0.00	0.00	0.00
20,500.0	90.26	359.68	10,311.9	10,143.6	-225.4	10,146.1	0.00	0.00	0.00
20,600.0	90.26	359.68	10,311.5	10,243.6	-225.9	10,246.1	0.00	0.00	0.00
20,704.9	90.26	359.68	10,311.0	10,348.5	-226.5	10,351.0	0.00	0.00	0.00
BHL: 100' FI	NL & 1320' FWL ((Sec 15)							

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 250' FSL & 1490' F - plan hits target cent - Point	0.00 er	0.00	0.0	0.0	0.0	372,219.00	747,983.70	32.0215574	-103.6665576
KOP: 10' FSL & 1320' F\ - plan hits target cent - Point	0.00 er	0.00	9,783.0	-241.3	-167.8	371,977.71	747,815.87	32.0208969	-103.6671039
FTP: 100' FSL & 1320' F - plan hits target cent - Point	0.00 er	0.00	10,091.3	-151.3	-168.3	372,067.70	747,815.38	32.0211443	-103.6671037
BHL: 100' FNL & 1320' F - plan hits target cent - Point	0.00 er	0.00	10,311.0	10,348.5	-226.5	382,567.50	747,757.20	32.0500072	-103.6670824
PPP3: 0' FSL & 1320' F\ - plan hits target cent - Point	0.00 er	0.00	10,334.6	5,100.7	-197.4	377,319.72	747,786.27	32.0355816	-103.6670931
PPP2: 2676' FSL & 132(- plan hits target cent - Point	0.00 er	0.00	10,346.6	2,424.3	-182.6	374,643.28	747,801.10	32.0282243	-103.6670985
LP: 583' FSL & 1320' FV - plan hits target cent - Point	0.00 er	0.00	10,356.0	331.7	-171.0	372,550.69	747,812.70	32.0224720	-103.6671027

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 281960

CONDITIONS

Operator:	OGRID:		
MEWBOURNE OIL CO	14744		
P.O. Box 5270	Action Number:		
Hobbs, NM 88241	281960		
	Action Type:		
	[C-103] NOI Change of Plans (C-103A)		

CONDITIONS

Crea By	d Condition	Condition Date
pka	Z IF ON ANY STRING CEMENT DOES NOT CIRCULATE, A CBL MUST BE RUN ON THAT STRING OF CASING.	12/7/2023