U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Kep304 01/03/2024
Well Name: POKER LAKE 23 DTD FEDERAL COM	Well Location: T24S / R30E / SEC 23 / SWSW /	County or Parish/State:
Well Number: 151H	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
Lease Number: NMNM068905	Unit or CA Name:	Unit or CA Number:
US Well Number:	Well Status: Approved Application for Permit to Drill	Operator: XTO PERMIAN OPERATING LLC

Notice of Intent

Sundry ID: 2764694

AEMOO

Type of Submission: Notice of Intent

Date Sundry Submitted: 12/05/2023

Date proposed operation will begin: 12/12/2023

Type of Action: APD Change Time Sundry Submitted: 06:32

Procedure Description: XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD (ID 10400080738): SHL, BHL, FTP, LTP, casing and cement changes. SHL: FROM: 406' FSL & 681' FWL of Section 14-T24S-R30E TO: 366' FSL & 681' FWL of Section 14-T24S-R30E BHL: FROM: 200' FNL & 440' FWL of Section 2-T24S-R30E TO: 230' FNL & 670' FWL of Section 2-T24S-R30E FTP: FROM: 100' FSL & 440' FWL of Section 14-T24S-R30E TO: 500' FNL & 670' FWL of Section 23-T24S-R30E LTP: FROM: 330' FNL & 440' FWL of Section 2-T24S-R30E TO: 330' FNL & 670' FWL of Section 2-T24S-R30E Casing and cement changes are listed on the attached drilling plan. We will be using a 4-string casing program. C-102, Drilling Plan, Directional Plan, Casing Spec Sheet and MultiBowl Schematic attached.

NOI Attachments

Procedure Description

Well_Control_Plan_20231221084237.pdf

10M_Choke_20231221084219.pdf

5M10M_BOP_Schematics_20231221084202.pdf

Drilling_Plan___PLU_23_DTD_151H_12_20_2023_20231221084144.pdf

Proprietary_Connections_Performance_Data_6.0000_26.0000_0.4360_P110_RY_20231205183145.pdf

4_String_Slimhole_SDT_3301_1_20231205183129.pdf

Well_Plan_Report____POKER_LAKE_UNIT_23_DTD_151H_20231205183051.pdf

Received by OCD: 13/2024 2:15:53 BM Well Name: POKER LAKE 23 DTD FEDERAL COM	Well Location: T24S / R30E / SEC 23 / SWSW /	County or Parish/State: Page 2 of
Well Number: 151H	Type of Well: CONVENTIONAL GAS WELL	Allottee or Tribe Name:
Lease Number: NMNM068905	Unit or CA Name:	Unit or CA Number:

POKER_LAKE_UNIT_23_DTD_151H_C_102_signed_12_4_2023_20231205182948.pdf

Conditions of Approval

Additional

Sec_14_24S_30E_NMP_Sundry_2764694_Poker_Lake_23_DTD_Federal_Com_151H_COAs_20231226090701.pdf

Sec_14_24S_30E_NMP_Sundry_2764694_Poker_Lake_23_DTD_Federal_Com_151H_Eng_Worksheet_20231226090 702.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: RANELL (RUSTY) KLEIN

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Analyst

Street Address: 6401 HOLIDAY HILL ROAD BLDG 5

State: TX

City: MIDLAND

Phone: (432) 620-6700

Email address: RANELL.KLEIN@EXXONMOBIL.COM

Field

Representative Name:	
Street Address:	
City:	State:
Phone:	
Email address:	

Zip:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS

BLM POC Phone: 5752342234

Disposition: Approved

Signature: Chris Walls

BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov

Disposition Date: 01/03/2024

Released to Imaging: 1/8/2024 2:29:04 PM

Signed on: DEC 21, 2023 08:42 AM

Received by OCD: 1/3/2024 2:15:53 PM

cccivea by 0 cb. 1/3/2	047 4.1	5.55 I IVI				1 450 5 09	
Form 3160-5 UNITED STATE (June 2019) DEPARTMENT OF THE I BUREAU OF LAND MAN			ES INTERIOR IAGEMENT		FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021 5. Lease Serial No.		
SUN Do not us abandoned	NDRY N se this f d well.	IOTICES AND REPC form for proposals t Use Form 3160-3 (A	ORTS ON WELLS to drill or to re-enter an PD) for such proposals		6. If Indian, Allottee or	Tribe Name	
SU.	BMIT IN	TRIPLICATE - Other instru	uctions on page 2		7. If Unit of CA/Agreen	ment, Name and/or No.	
Dil Well	Gas V	Vell Other			8. Well Name and No.		
2. Name of Operator					9. API Well No.		
3a. Address			3b. Phone No. (include area code)		10. Field and Pool or Exploratory Area		
4. Location of Well (Footage	e, Sec., T.,F	R.,M., or Survey Description))		11. Country or Parish, S	State	
	12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE	OF NOT	ICE, REPORT OR OTH	ER DATA	
TYPE OF SUBMISSI	ON		TY	PE OF AC	TION		
Notice of Intent		Acidize	Deepen Hydraulic Fracturing	Proc	duction (Start/Resume) lamation	Water Shut-Off Well Integrity	
Subsequent Report		Casing Repair Change Plans	New Construction	Rec	omplete porarily Abandon	Other	
Final Abandonment N	otice	Convert to Injection	Plug Back	Wat	er Disposal		
 Describe Proposed or Co the proposal is to deepen the Bond under which the completion of the involve completed. Final Abando is ready for final inspection 	mpleted O directiona e work wil ed operatio onment No on.)	peration: Clearly state all pe illy or recomplete horizontall l be perfonned or provide the ons. If the operation results in tices must be filed only after	rtinent details, including estimated ly, give subsurface locations and n e Bond No. on file with BLM/BIA n a multiple completion or recomp all requirements, including reclan	l starting on neasured a Required letion in a nation, hav	late of any proposed wor nd true vertical depths of d subsequent reports mus new interval, a Form 31 ve been completed and th	k and approximate duration thereof. If all pertinent markers and zones. Attach t be filed within 30 days following 60-4 must be filed once testing has been e operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
1	litle		
Signature	Date		
THE SPACE FOR FEDE	RAL OR STATE OF	ICE USE	
Approved by			
	Title	Date	
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject leas which would entitle the applicant to conduct operations thereon.	e Office		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within	person knowingly and will its jurisdiction.	fully to make to any departmen	t or agency of the United States

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SWSW / 406 FSL / 681 FWL / TWSP: 24S / RANGE: 30E / SECTION: 23 / LAT: 32.211731 / LONG: -103.858072 (TVD: 0 feet, MD: 0 feet) PPP: SWSW / 100 FSL / 440 FWL / TWSP: 24S / RANGE: 30E / SECTION: 14 / LAT: 32.210887 / LONG: -103.85854 (TVD: 11445 feet, MD: 11900 feet) BHL: LOT 4 / 200 FNL / 440 FWL / TWSP: 24S / RANGE: 30E / SECTION: 2 / LAT: 32.25356 / LONG: -103.858825 (TVD: 12260 feet, MD: 28153 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: 2	XTO Permian Operating LLC
WELL NAME & NO.: F	Poker Lake Unit 23 DTD Federal Com 151H
LOCATION: S	Sec 14-24S-30E-NMP
COUNTY: H	Eddy County, New Mexico

Changes approved through engineering via **Sundry 2764694** *on* 12/26/2023. *Any previous COAs not addressed within the updated COAs still apply.*

H ₂ S	• No	C Yes		
Potash / WIPP	C None	Secretary	© R-111-P	□ WIPP
Cave / Karst	• Low	C Medium	C High	C Critical
Wellhead	C Conventional	Multibowl	C Both	O Diverter
Cementing	□ Primary Squeeze	Cont. Squeeze	EchoMeter	DV Tool
Special Req	Break Testing	□ Water Disposal	COM	Unit Unit
Variance	Flex Hose	Casing Clearance	Pilot Hole	Capitan Reef
Variance	□ Four-String	☑ Offline Cementing	□ Fluid-Filled	Open Annulus
	Γ	Batch APD / Sundry		

COA

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- The 20 inch surface casing shall be set at approximately 620 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. Surface casing set depth adjusted per BLM geologist.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Due to the high probability of not getting cement to surface during conventional topout jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required. If these quantities are exceeded / procedure needs to be changed, contact the PE on-call line to discuss further remediation options.

- 2. The minimum required fill of cement behind the **13-3/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6255'
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to tie back at least **500 feet** into previous casing string. Operator should provide method of verification. **Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.**
- In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 9-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC.</u> Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 4. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification. **Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.**

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals using a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County (API No. / US Well No. contains 30-015-#####) Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822
 - Lea County (API No. / US Well No. contains 30-025-#####) Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in **43 CFR part 3170 Subpart 3172** must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR part 3170**

Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Poker Lake 23 DTD Federal Com 151H

20	surface c	sg in a	26	inch hole.		Design I	actors			Surfac	e	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	94.00	J	55	BTC	15.33	1.2	1.15	973	5	2.17	2.36	91,462
"B"				BTC				0				0
w/8.4#/	g mud, 30min Sfc	Csg Test psig:	1,052	Tail Cmt	does not	circ to sfc.	Totals:	973				91,462
Comparison	of Proposed to	Minimum R	equired Ceme	nt Volumes								Í
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
26	1.5053	2190	2913	#N/A	#N/A	8.60	974	2M				2.50
l <i></i>												l
13 3/8	casing ins	ide the	20	_		<u>Design I</u>	actors			Int 1		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	68.00	HCL	80	BTC	5.82	1.58	2.52	3,935	3	4.55	2.99	267,580
"B"								0				0
w/8.4#/	g mud, 30min Sfc	Csg Test psig:					Totals:	3,935				267,580
í	The cement vo	lume(s) are	intended to a	chieve a top of	0	ft from su	rface or a	973				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
17 1/2	0.6946	1980	4079	3049	34	9.00	1104	2M				8.75
	ini yiu > 1100											
·												
9 5/8	casing ins	ide the	13 3/8	_		Design Fa	ctors		-	Int 2		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	40.00	HCP	110	BTC	7.81	2.12	1.01	4,035	4	1.47	3.83	161,400
"B"	40.00	HCL	80	BTC	00	2.12	0.73	7,243	3	1.07	3.83	289,720
w/8.4#/	g mud, 30min Sfc	Csg Test psig:	1,500				Totals:	11,278				451,120
	The cement vo	lume(s) are	intended to a	chieve a top of	3400	ft from su	rface or a	535				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cplg
12 1/4	0.3132	2060	3201	2479	29	9.50	5380	10M				0.81
Class 'C' tail c	mt yld > 1.35		MASP is with	in 10% of 5000p	sig, need exr	ta equip?						
Burst Frac Gra	-		1011 101 10 1010		0.							
	adient(s) for Seg	ment(s): A, I	B, C, D = a,								,	!
Tail cmt	adient(s) for Seg	ment(s): A, I	3, C, D = a,									l
Tail cmt 5 1/2	adient(s) for Segr	ment(s): A, I	3, C, D = a, 9 5/8			Design I	-actors			Prod 1	,	
Tail cmt 5 1/2 Segment	adient(s) for Segr casing ins #/ft	ment(s): A, I ide the Grade	9 5/8	Coupling	Joint	<u>Design I</u> Collapse	Eactors Burst	Length	B@s	Prod 1 a-B	a-C	Weight
Tail cmt 5 1/2 Segment "A"	adient(s) for Seg casing ins #/ft 23.00	ide the Grade RY P	3, C, D = a, 9 5/8 110	Coupling Semi-Premiur	Joint 2.36	Design I Collapse	Factors Burst 1.28	Length 11,178	B@s	Prod 1 a-B 1.86	a-C 2.70	Weight 257,094
Tail cmt 5 1/2 Segment "A" "B"	adient(s) for Segr casing ins #/ft 23.00 23.00	ide the Grade RY P RY P	3, C, D = a, 9 5/8 110 110	Coupling Semi-Premiur Semi-Flush	Joint 2.36 ∞	Design I Collapse 1.85 1.42	Factors Burst 1.28 1.61	Length 11,178 17,818	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/	adient(s) for Segu casing ins #/ft 23.00 23.00 /g mud, 30min Sfc	ide the Grade RY P RY P Csg Test psig:	3, C, D = a, 9 5/8 110 110 2,459	Coupling Semi-Premiur Semi-Flush	Joint 2.36 ∞	Design I Collapse 1.85 1.42	Factors Burst 1.28 1.61 Totals:	Length 11,178 17,818 28,996	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/	adient(s) for Segu casing ins #/ft 23.00 23.00 /g mud, 30min Sfc The cement vo	ide the Grade RY P RY P Csg Test psig: lume(s) are	3, C, D = a, 9 5/8 110 110 2,459 intended to a	Coupling Semi-Premiur Semi-Flush	Joint 2.36 ∞ 10600	Design I Collapse 1.85 1.42 ft from su	Factors Burst 1.28 1.61 Totals: rface or a	Length 11,178 17,818 28,996 678	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908 overlap. Min Dict
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/ Hole	adient(s) for Segu casing ins #/ft 23.00 23.00 /g mud, 30min Sfc The cement vo Annular Volume	ide the Grade RY P RY P Csg Test psig: lume(s) are 1 Stage	3, C, D = a, 9 5/8 110 110 2,459 intended to a 1 Stage	Coupling Semi-Premiur Semi-Flush chieve a top of Min	Joint 2.36 ∞ 10600 1 Stage	Design I Collapse 1.85 1.42 ft from su Drilling Mud Wé	Factors Burst 1.28 1.61 Totals: rface or a Calc	Length 11,178 17,818 28,996 678 Req'd	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908 overlap. Min Dist
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/ Hole Size	adient(s) for Segr casing ins #/ft 23.00 23.00 /g mud, 30min Sfc The cement vo Annular Volume 0.2201	ide the Grade RY P RY P Csg Test psig: lume(s) are 1 Stage Cmt Sx 2070	3, C, D = a, 9 5/8 110 110 2,459 intended to a 1 Stage CuFt Cmt 4729	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 4226	Joint 2.36 ∞ 10600 1 Stage % Excess	Design I Collapse 1.85 1.42 ft from su Drilling Mud Wt 42 50	Factors Burst 1.28 1.61 Totals: rface or a Calc MASP	Length 11,178 17,818 28,996 678 Req'd BOPE	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908 overlap. Min Dist Hole-Cplg 1 20
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/ Hole Size 8 1/2	adient(s) for Segu casing ins #/ft 23.00 23.00 /g mud, 30min Sfc The cement vo Annular Volume 0.2291	ide the Grade RY P RY P Csg Test psig: lume(s) are 1 Stage Cmt Sx 3070	3, C, D = a, 9 5/8 110 110 2,459 intended to a 1 Stage CuFt Cmt 4718	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 4236	Joint 2.36 ∞ 10600 1 Stage % Excess 11	Design I Collapse 1.85 1.42 ft from su Drilling Mud Wt 13.50	Factors Burst 1.28 1.61 Totals: rface or a Calc MASP	Length 11,178 17,818 28,996 678 Req'd BOPE	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908 overlap. Min Dist Hole-Cplg 1.30
Tail cmt 5 1/2 Segment "A" "B" w/8.4#/ Hole Size 8 1/2 Class 'H' tail c	adient(s) for Segr casing ins #/ft 23.00 23.00 'g mud, 30min Sfc The cement vo Annular Volume 0.2291 mt yld > 1.20	ide the Grade RY P RY P Csg Test psig: lume(s) are 1 Stage Cmt Sx 3070	3, C, D = a, 9 5/8 110 110 2,459 intended to a 1 Stage CuFt Cmt 4718 Capitan Reef	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 4236 est top XXXX.	Joint 2.36 ∞ 10600 1 Stage % Excess 11	Design I Collapse 1.85 1.42 ft from su Drilling Mud Wt 13.50 MASP is with	Factors Burst 1.28 1.61 Totals: rface or a Calc MASP in 10% of 50	Length 11,178 17,818 28,996 678 Req'd BOPE	B@s 1 2	Prod 1 a-B 1.86 2.35	a-C 2.70 2.06	Weight 257,094 409,814 666,908 overlap. Min Dist Hole-Cplg 1.30

.

10,000 PSI Annular BOP Variance Request

XTO Energy/XTO Permian Op. request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOPL).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

8-1/2" Production Hole Section 10M psi Requirement										
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP					
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M					
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M					
Jars	6.500"	Annular	5M	-	-					
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-					
Mud Motor	6.750"-8.000"	Annular	5M	-	-					
Production Casing	5-1/2"	Annular	5M	-	-					
Open-Hole	-	Blind Rams	10M	-	-					

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the XTO Energy/Permian Operating drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per 43.CFR.3172 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- a. Sound alarm (alert crew)
- b. Stab crossover and full-opening safety valve and close
- c. Space out string
- d. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- e. Confirm shut-in
- f. Notify toolpusher/company representative
- g. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- h. Regroup and identify forward plan
- i. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time

- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Released to Imaging: 1/8/2024 2:29:04 PM

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc. POKER LAKE UNIT 23 DTD - 151H Projected TD: 28996' MD / 12194' TVD SHL: 366' FSL & 681' FWL , Section 14, T24S, R30E BHL: 230' FNL & 670' FWL , Section 2, T24S, R30E Eddy County, NM

1. Geologic Name of Surface Formation

Quaternary Α.

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Formation	Well Depth (TVD)	Water/Oil/Gas
Rustler	644'	Water
Top of Salt	998'	Water
Base of Salt	3835'	Water
Delaware	4044'	Water
Brushy Canyon	6255'	Water/Oil/Gas
Bone Spring	7908'	Water
1st Bone Spring Ss	8845'	Water/Oil/Gas
2nd Bone Spring Ss	9712'	Water/Oil/Gas
3rd Bone Spring Sh	10353'	Water/Oil/Gas
Wolfcamp	11164'	Water/Oil/Gas
Wolfcamp X	11197'	Water/Oil/Gas
Wolfcamp Y	11282'	Water/Oil/Gas
Wolfcamp A	11326'	Water/Oil/Gas
Wolfcamp B	11774'	Water/Oil/Gas
Wolfcamp D	12064'	Water/Oil/Gas
Target/Land Curve	12194'	Water/Oil/Gas

*** Hydrocarbons @ Brushy Canyon

*** Groundwater depth 40' (per NM State Engineers Office).

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 20 inch casing @ 973' (25' above the salt) and circulating cement back to surface. The salt will be isolated by setting 13.375 inch casing at 3935' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 9.625 inch casing at 11278' and cementing to surface. A 8.5 inch curve and 8.5 inch lateral hole will be drilled to 28996 MD/TD and 5.5 inch production casing will be set at TD and cemented back up to 2nd intermediate (estimated TOC 10978 feet) per Potash regulations.

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
26	0' – 973'	20	94	J-55	BTC	New	2.42	1.27	11.78
17.5	0' – 3935'	13.375	68	HC L-80	BTC	New	1.79	3.02	5.77
12.25	0' – 4035'	9.625	40	HC P-110	BTC	New	1.42	2.24	2.81
12.25	4035' – 11278'	9.625	40	HC L-80	BTC	New	1.03	2.08	3.16
8.5	0' – 11178'	5.5	23	RY P-110	Semi-Premium	New	1.21	1.92	1.71
8.5	11178' - 28996'	5.5	23	RY P-110	Semi-Flush	New	1.21	1.76	4.18

· Production casing meets the clearance requirements as tapered string crosses over before encountering the intermediate shoe, per

Onshore Order 2.3.B.1

· XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface and

intermediate 1 casing per this Sundry

· XTO requests to not utilize centralizers in the curve and lateral

• 13.375 Collapse analyzed using 50% evacuation based on regional experience.

• 9.625 Collapse analyzed using 50% evacuation based on regional experience.

• 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35

· XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

Permanent Wellhead – Multibowl System A. Starting Head: 24" 5M QC x 13-3/8" bottom

- B. Tubing Head: 13-5/8" 10M bottom flange x 7-1/16" 15M top flange
 - Wellhead will be installed by manufacturer's representatives. · Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - Operator will test the 7-5/8" casing per BLM Onshore Order 2
 - \cdot Wellhead Manufacturer representative will not be present for BOP test plug installation

Surface Casing: 20, 94 New BTC, J-55 casing to be set at +/- 973'

Optional Lead: 1520 sxs EconoCem-HLTRRC (mixed at 12.8 ppg, 1.33 ft3/sx, 10.13 gal/sx water) Tail: 670 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water) Top of Cement: Surface Compressives: 12-hr = 250 psi 24 hr = 500 psi

Due to the high probability of not getting cement to surface during conventional top-out jobs in the area, ~10-20 ppb gravel will be added on the backside of the 1" to get cement to surface, if required.

1st Intermediate Casing: 13.375, 68 New BTC, HC L-80 casing to be set at +/- 3935'

Lead: 1830 sxs Class C (mixed at 14.8 ppg, 2.06 ft3/sx, 10.13 gal/sx water) Tail: 150 sxs Class C + 2% CaCl (mixed at 15.6 ppg, 2.06 ft3/sx, 6.39 gal/sx water) Top of Cement: Surface Compressives: 12-hr = 900 psi 24 hr = 1500 psi

 2nd Intermediate Casing: 9.625, 40 New casing to be set at +/- 11278'

 <u>1st Stage</u>

 Optional Lead: 390 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

 TOC: 3635

 Tail: 1670 sxs Class C (mixed at 14.8 ppg, 1.27 ft3/sx, 6.39 gal/sx water)

 TOC: Brushy Canyon @ 6255

 Compressives:
 12-hr =

 900 psi
 24 hr = 1150 psi

 2nd Stage - bradenhead contingency

 Tail: 420 sxs Class C (mixed at 14.8 ppg, 2.77 ft3/sx, 6.39 gal/sx water)

 Top of Cement:
 3635

 Compressives:
 12-hr =
 900 psi
 24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6255') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement to surface. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per wellhead provider procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ope.

Production Casing: 5.5, 23 New Semi-Flush, RY P-110 casing to be set at +/- 28996'

 Lead: 70 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 10978 feet

 Tail: 3000 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement 11760 feet

 Compressives:
 12-hr =

 1375 psi
 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

The blow out preventer equipment (BOP) for surf casing / temp. wellhead will consist of a 21-1/4" minimum 2M Hydril. MASP should not exceed 873 psi.

Once the permanent WH is installed on the 13-3/8 casing, the blow out preventer equipment (BOP) will consist of a 13-5/8" minimum 5M Hydril and a 13-5/8" a 10M 3-Ram BOP. MASP should not exceed 5560 psi.

All BOP testing will be done by an independent service company. Annular pressure tests will be conducted to at least 50% of the rated working pressure. When nippling up on the 13.375, 10M bradenhead and flange, the BOP test will be limited to 10000 psi. When nippling up on the 9.625, the BOP will be tested to a minimum of 10000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 10M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors.

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to **ONLY** retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

	Hole Size	Mud Turpa	MW	Viscosity	Fluid Loss
INTERVAL		Mud Type (ppg)		(sec/qt)	(cc)
0' - 973'	26	FW/Native	8.1-8.6	35-40	NC
973' - 3935'	17.5	Brine	8.5-9	30-32	NC
3935' to 11278'	12.25	BDE/OBM or FW/Brine	9-9.5	30-32	NC
11278' to 28996'	8.5	OBM	13-13.5	50-60	NC - 20

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 13-3/8" surface casing with brine solution. A 10.0 ppg -10.5 ppg brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 20 casing.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing where necessary. Otherwise, gamma ray will be utilized while actively drilling.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 185 to 205 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 8243 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

8/27/2021 1:46:58 PM

U. S. Steel Tubular Products 6.000" 26.00lb/ft (0.436" Wall) P110 RY USS-TALON HTQ™

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™		[6]
Minimum Yield Strength	110,000		psi	
Maximum Yield Strength	125,000		psi	
Minimum Tensile Strength	125,000		psi	
DIMENSIONS	Pipe	USS-TALON HTQ™		
Outside Diameter	6.000	6.875	in.	
Wall Thickness	0.436		in.	
Inside Diameter	5.128	5.128	in.	
Standard Drift	5.003	5.003	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	26.00		lb/ft	
Plain End Weight	25.93		lb/ft	
SECTION AREA	Pipe	USS-TALON HTQ™		
Critical Area	7.621	7.621	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™		
Minimum Collapse Pressure	13,570	13,570	psi	
Minimum Internal Yield Pressure	14,010	14,010	psi	
Minimum Pipe Body Yield Strength	838,000		lb	
Joint Strength		838,000	lb	
Compression Rating		838,000	lb	
Reference Length		21,490	ft	[5]
Maximum Uniaxial Bend Rating		84.0	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™		
Make-Up Loss		5.58	in.	
Minimum Make-Up Torque		22,500	ft-lb	[4]
Maximum Make-Up Torque		25,500	ft-lb	[4]
Maximum Operating Torque		48,900	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

Well Plan Report - POKER LAKE UNIT 23 DTD 151H

Measured Depth:	28995.97 ft
TVD RKB:	12194.00 ft
Location	
Cartographic Reference System:	New Mexico East - NAD 27
Northing:	440987.60 ft
Easting:	647140.60 ft
RKB:	3479.00 ft
Ground Level:	3479.00 ft
North Reference:	Grid
Convergence Angle:	0.25 Deg

Plan Sections	PO	KER LAKE UNIT	Г 23 DTD 151H					
Measured			TVD			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1100.00	0.00	0.00	1100.00	0.00	0.00	0.00	0.00	0.00
2210.50	22.21	180.23	2182.90	-212.55	-0.86	2.00	0.00	2.00
5271.84	22.21	180.23	5017.10	-1369.74	-5.55	0.00	0.00	0.00
6382.34	0.00	0.00	6100.00	-1582.29	-6.41	-2.00	0.00	2.00
11760.15	0.00	0.00	11477.80	-1582.29	-6.41	0.00	0.00	0.00
12885.15	90.00	359.79	12194.00	-866.10	-9.10	8.00	0.00	8.00 FTP 2
28878.46	90.00	359.79	12194.00	15127.10	-69.10	0.00	0.00	0.00 LTP 2
28995.97	90.00	359.79	12194.00	15244.61	-69.54	0.00	0.00	0.00 BHL 2

Position Uncertainty POKER LAKE UNIT 23 DTD 151H

Measured	TVD	Highside	Lateral	Vertical	Magnitude	Semi-major	Semi-minor	Semi-minor	Tool
mouourou						•••····	•••••••	•••••••	

Released to Tharging 1. 178/19/9/2019 19:00 Per WellPlanning/Reports/POKERLAKEUNIT23DTD151H.HTML

Received by OAC	D: 1/3/2024 2	2:15:53 PM	PM Well Plan Report Page 29 of 4.											
Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth	Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	MWD+IFR1+MS
100.000	0.000	0.000	100.000	0.700	0.000	0.350	0.000	2.300	0.000	0.000	0.751	0.220	112.264	MWD+IFR1+MS
200.000	0.000	0.000	200.000	1.112	0.000	0.861	0.000	2.310	0.000	0.000	1.259	0.627	122.711	MWD+IFR1+MS
300.000	0.000	0.000	300.000	1.497	0.000	1.271	0.000	2.326	0.000	0.000	1.698	0.986	125.469	MWD+IFR1+MS
400.000	0.000	0.000	400.000	1.871	0.000	1.658	0.000	2.347	0.000	0.000	2.108	1.344	126.713	MWD+IFR1+MS
500.000	0.000	0.000	500.000	2.240	0.000	2.034	0.000	2.375	0.000	0.000	2.503	1.701	127.419	MWD+IFR1+MS
600.000	0.000	0.000	600.000	2.607	0.000	2.405	0.000	2.407	0.000	0.000	2.888	2.059	127.873	MWD+IFR1+MS
700.000	0.000	0.000	700.000	2.971	0.000	2.773	0.000	2.445	0.000	0.000	3.267	2.417	128.190	MWD+IFR1+MS
800.000	0.000	0.000	800.000	3.334	0.000	3.138	0.000	2.487	0.000	0.000	3.642	2.775	128.423	MWD+IFR1+MS
900.000	0.000	0.000	900.000	3.696	0.000	3.502	0.000	2.533	0.000	0.000	4.014	3.133	128.602	MWD+IFR1+MS
1000.000	0.000	0.000	1000.000	4.058	0.000	3.865	0.000	2.583	0.000	0.000	4.384	3.491	128.744	MWD+IFR1+MS
1100.000	0.000	0.000	1100.000	4.419	0.000	4.228	0.000	2.637	0.000	0.000	4.752	3.849	128.859	MWD+IFR1+MS
1200.000	2.000	180.232	1199.980	4.804	-0.000	4.529	0.000	2.693	0.000	0.000	5.081	4.220	125.797	MWD+IFR1+MS
1300.000	4.000	180.232	1299.838	5.599	-0.000	4.863	0.000	2.753	0.000	0.000	5.834	4.589	116.774	MWD+IFR1+MS
1400.000	6.000	180.232	1399.452	6.308	-0.000	5.200	0.000	2.819	0.000	0.000	6.540	4.928	112.936	MWD+IFR1+MS
1500.000	8.000	180.232	1498.702	6.955	-0.000	5.541	0.000	2.892	0.000	0.000	7.199	5.262	110.907	MWD+IFR1+MS
1600.000	10.000	180.232	1597.465	7.557	-0.000	5.885	0.000	2.975	0.000	0.000	7.818	5.598	109.685	MWD+IFR1+MS
1700.000	12.000	180.232	1695.623	8.121	-0.000	6.235	0.000	3.070	0.000	0.000	8.406	5.938	108.894	MWD+IFR1+MS
1800.000	14.000	180.232	1793.055	8.655	-0.000	6.592	0.000	3.178	0.000	0.000	8.966	6.284	108.364	MWD+IFR1+MS
1900.000	16.000	180.232	1889.643	9.162	-0.000	6.955	0.000	3.301	0.000	0.000	9.504	6.638	108.009	MWD+IFR1+MS
2000.000	18.000	180.232	1985.268	9.648	-0.000	7.327	0.000	3.441	0.000	0.000	10.022	7.000	107.782	MWD+IFR1+MS
2100.000	20.000	180.232	2079.816	10.114	-0.000	7.708	0.000	3.599	0.000	0.000	10.524	7.373	107.655	MWD+IFR1+MS
2200.000	22.000	180.232	2173.169	10.564	-0.000	8.099	0.000	3.776	0.000	0.000	11.012	7.755	107.614	MWD+IFR1+MS
2210.502	22.210	180.232	2182.899	10.584	-0.000	8.138	0.000	3.778	0.000	0.000	11.041	7.796	107.612	MWD+IFR1+MS
2300.000	22.210	180.232	2265.757	10.834	-0.000	8.483	0.000	3.874	0.000	0.000	11.275	8.148	107.851	MWD+IFR1+MS
2400.000	22.210	180.232	2358.337	11.133	-0.000	8.890	0.000	3.993	0.000	0.000	11.556	8.557	108.334	MWD+IFR1+MS
2500.000	22.210	180.232	2450.917	11.443	-0.000	9.307	0.000	4.118	0.000	0.000	11.849	8.971	108.883	MWD+IFR1+MS
2600.000	22.210	180.232	2543.498	11.761	-0.000	9.729	0.000	4.249	0.000	0.000	12.151	9.391	109.473	MWD+IFR1+MS
2700.000	22.210	180.232	2636.078	12.088	-0.000	10.156	0.000	4.384	0.000	0.000	12.459	9.815	110.107	MWD+IFR1+MS
2800.000	22.210	180.232	2728.659	12.423	-0.000	10.587	0.000	4.524	0.000	0.000	12.775	10.242	110.788	MWD+IFR1+MS
2900.000	22.210	180.232	2821.239	12.764	-0.000	11.022	0.000	4.669	0.000	0.000	13.098	10.672	111.521	MWD+IFR1+MS

Received by OCD:	1/3/2024 2	:15:53 PM	ſ					We	ll Plan Re	port				Page 30 of 41
3000.000	22.210	180.232	2913.820	13.112 -0	.000 [~]	11.461	0.000	4.817	0.000	0.000	13.428	11.104	112.308	MWD+IFR1+MS
3100.000	22.210	180.232	3006.400	13.465 -0	.000	11.903	0.000	4.969	0.000	0.000	13.763	11.539	113.154	MWD+IFR1+MS
3200.000	22.210	180.232	3098.980	13.824 -0	.000 1	12.347	0.000	5.124	0.000	0.000	14.105	11.975	114.064	MWD+IFR1+MS
3300.000	22.210	180.232	3191.561	14.188 -0	.000 1	12.794	0.000	5.282	0.000	0.000	14.452	12.411	115.040	MWD+IFR1+MS
3400.000	22.210	180.232	3284.141	14.557 -0	.000 1	13.243	0.000	5.443	0.000	0.000	14.804	12.849	116.089	MWD+IFR1+MS
3500.000	22.210	180.232	3376.722	14.930 -0	.000 1	13.694	0.000	5.606	0.000	0.000	15.162	13.288	117.213	MWD+IFR1+MS
3600.000	22.210	180.232	3469.302	15.307 -0	.000 1	14.147	0.000	5.772	0.000	0.000	15.525	13.726	118.417	MWD+IFR1+MS
3700.000	22.210	180.232	3561.883	15.688 -0	.000 1	14.602	0.000	5.941	0.000	0.000	15.893	14.165	119.704	MWD+IFR1+MS
3800.000	22.210	180.232	3654.463	16.072 -0	.000 1	15.058	0.000	6.111	0.000	0.000	16.266	14.603	121.075	MWD+IFR1+MS
3900.000	22.210	180.232	3747.044	16.460 -0	.000 1	15.515	0.000	6.284	0.000	0.000	16.643	15.040	122.533	MWD+IFR1+MS
4000.000	22.210	180.232	3839.624	16.850 -0	.000 1	15.974	0.000	6.459	0.000	0.000	17.026	15.477	124.076	MWD+IFR1+MS
4100.000	22.210	180.232	3932.204	17.243 - 0	.000 1	16.433	0.000	6.635	0.000	0.000	17.413	15.913	125.701	MWD+IFR1+MS
4200.000	22.210	180.232	4024.785	17.639 -0	.000 1	16.894	0.000	6.814	0.000	0.000	17.805	16.347	127.403	MWD+IFR1+MS
4300.000	22.210	180.232	4117.365	18.037 - 0	.000 1	17.356	0.000	6.994	0.000	0.000	18.202	16.780	129.173	MWD+IFR1+MS
4400.000	22.210	180.232	4209.946	18.437 - 0	.000 1	17.818	0.000	7.176	0.000	0.000	18.604	17.211	131.002	MWD+IFR1+MS
4500.000	22.210	180.232	4302.526	18.840 - 0	.000 1	18.281	0.000	7.359	0.000	0.000	19.010	17.640	132.876	MWD+IFR1+MS
4600.000	22.210	180.232	4395.107	19.244 - 0	.000 1	18.745	0.000	7.544	0.000	0.000	19.421	18.067	134.778	MWD+IFR1+MS
4700.000	22.210	180.232	4487.687	19.651 -0	.000 1	19.210	0.000	7.731	0.000	0.000	19.836	18.492	-43.307	MWD+IFR1+MS
4800.000	22.210	180.232	4580.268	20.059 -0	.000 1	19.676	0.000	7.919	0.000	0.000	20.256	18.915	- 41.397	MWD+IFR1+MS
4900.000	22.210	180.232	4672.848	20.469 -0	.000 2	20.142	0.000	8.108	0.000	0.000	20.680	19.337	-39.510	MWD+IFR1+MS
5000.000	22.210	180.232	4765.428	20.880 -0	.000 2	20.608	0.000	8.299	0.000	0.000	21.108	19.756	-37.662	MWD+IFR1+MS
5100.000	22.210	180.232	4858.009	21.293 -0	.000 2	21.075	0.000	8.492	0.000	0.000	21.539	20.173	-35.867	MWD+IFR1+MS
5200.000	22.210	180.232	4950.589	21.707 -0	.000 2	21.543	0.000	8.686	0.000	0.000	21.975	20.589	-34.136	MWD+IFR1+MS
5271.843	22.210	180.232	5017.101	22.003 -0	.000 2	21.876	0.000	8.825	0.000	0.000	22.284	20.887	-32.909	MWD+IFR1+MS
5300.000	21.647	180.232	5043.222	22.137 -0	.000 2	22.005	0.000	8.880	0.000	0.000	22.404	21.003	-32.434	MWD+IFR1+MS
5400.000	19.647	180.232	5136.794	22.642 - 0	.000 2	22.459	0.000	9.083	0.000	0.000	22.848	21.432	-31.792	MWD+IFR1+MS
5500.000	17.647	180.232	5231.540	23.180 -0	.000 2	22.905	0.000	9.293	0.000	0.000	23.318	21.885	-32.678	MWD+IFR1+MS
5600.000	15.647	180.232	5327.344	23.678 -0	.000 2	23.337	0.000	9.486	0.000	0.000	23.778	22.331	-33.684	MWD+IFR1+MS
5700.000	13.647	180.232	5424.089	24.135 -0	.000 2	23.755	0.000	9.662	0.000	0.000	24.227	22.765	-34.795	MWD+IFR1+MS
5800.000	11.647	180.232	5521.658	24.552 -0	.000 2	24.159	0.000	9.823	0.000	0.000	24.664	23.189	-35.995	MWD+IFR1+MS
5900.000	9.647	180.232	5619.931	24.928 -0	.000 2	24.548	0.000	9.972	0.000	0.000	25.090	23.599	-37.269	MWD+IFR1+MS
6000.000	7.647	180.232	5718.790	25.263 -0	.000 2	24.922	0.000	10.108	0.000	0.000	25.504	23.997	-38.599	MWD+IFR1+MS
6100.000	5.647	180.232	5818.113	25.556 -0	.000 2	25.281	0.000	10.235	0.000	0.000	25.906	24.379	-39.969	MWD+IFR1+MS

Received by OCD:	1/3/2024 2	:15:53 PM	ſ					We	ll Plan Re	port				Page 31 of 41
6200.000	3.647	180.232	5917.779	25.809	-0.000	25.625	0.000	10.353	0.000	0.000	26.296	24.747	-41.360	MWD+IFR1+MS
6300.000	1.647	180.232	6017.667	26.021	-0.000	25.954	0.000	10.464	0.000	0.000	26.674	25.099	-42.754	MWD+IFR1+MS
6382.344	0.000	0.000	6100.000	26.066	0.000	26.197	0.000	10.551	0.000	0.000	26.901	25.339	- 42.591	MWD+IFR1+MS
6400.000	0.000	0.000	6117.656	26.113	0.000	26.243	0.000	10.570	0.000	0.000	26.946	25.387	-42.607	MWD+IFR1+MS
6500.000	0.000	0.000	6217.656	26.381	0.000	26.508	0.000	10.675	0.000	0.000	27.207	25.659	-42.649	MWD+IFR1+MS
6600.000	0.000	0.000	6317.656	26.655	0.000	26.779	0.000	10.783	0.000	0.000	27.479	25.934	-42.704	MWD+IFR1+MS
6700.000	0.000	0.000	6417.656	26.932	0.000	27.052	0.000	10.894	0.000	0.000	27.752	26.210	-42.758	MWD+IFR1+MS
6800.000	0.000	0.000	6517.656	27.210	0.000	27.328	0.000	11.008	0.000	0.000	28.028	26.489	-42.811	MWD+IFR1+MS
6900.000	0.000	0.000	6617.656	27.490	0.000	27.605	0.000	11.124	0.000	0.000	28.305	26.769	-42.863	MWD+IFR1+MS
7000.000	0.000	0.000	6717.656	27.772	0.000	27.884	0.000	11.244	0.000	0.000	28.584	27.051	-42.914	MWD+IFR1+MS
7100.000	0.000	0.000	6817.656	28.056	0.000	28.165	0.000	11.366	0.000	0.000	28.865	27.335	-42.964	MWD+IFR1+MS
7200.000	0.000	0.000	6917.656	28.342	0.000	28.447	0.000	11.491	0.000	0.000	29.148	27.621	-43.014	MWD+IFR1+MS
7300.000	0.000	0.000	7017.656	28.629	0.000	28.732	0.000	11.619	0.000	0.000	29.432	27.908	-43.063	MWD+IFR1+MS
7400.000	0.000	0.000	7117.656	28.917	0.000	29.018	0.000	11.750	0.000	0.000	29.718	28.197	-43.111	MWD+IFR1+MS
7500.000	0.000	0.000	7217.656	29.208	0.000	29.305	0.000	11.884	0.000	0.000	30.005	28.488	-43.158	MWD+IFR1+MS
7600.000	0.000	0.000	7317.656	29.499	0.000	29.594	0.000	12.021	0.000	0.000	30.294	28.780	-43.204	MWD+IFR1+MS
7700.000	0.000	0.000	7417.656	29.792	0.000	29.885	0.000	12.161	0.000	0.000	30.585	29.074	- 43.250	MWD+IFR1+MS
7800.000	0.000	0.000	7517.656	30.087	0.000	30.177	0.000	12.304	0.000	0.000	30.876	29.369	-43.295	MWD+IFR1+MS
7900.000	0.000	0.000	7617.656	30.383	0.000	30.470	0.000	12.451	0.000	0.000	31.170	29.665	-43.340	MWD+IFR1+MS
8000.000	0.000	0.000	7717.656	30.680	0.000	30.765	0.000	12.600	0.000	0.000	31.464	29.963	-43.384	MWD+IFR1+MS
8100.000	0.000	0.000	7817.656	30.979	0.000	31.061	0.000	12.753	0.000	0.000	31.760	30.262	-43.427	MWD+IFR1+MS
8200.000	0.000	0.000	7917.656	31.279	0.000	31.359	0.000	12.909	0.000	0.000	32.057	30.562	-43.469	MWD+IFR1+MS
8300.000	0.000	0.000	8017.656	31.580	0.000	31.657	0.000	13.068	0.000	0.000	32.356	30.864	-43.511	MWD+IFR1+MS
8400.000	0.000	0.000	8117.656	31.882	0.000	31.957	0.000	13.230	0.000	0.000	32.655	31.167	-43.552	MWD+IFR1+MS
8500.000	0.000	0.000	8217.656	32.186	0.000	32.258	0.000	13.395	0.000	0.000	32.956	31.471	-43.593	MWD+IFR1+MS
8600.000	0.000	0.000	8317.656	32.490	0.000	32.561	0.000	13.564	0.000	0.000	33.258	31.776	-43.633	MWD+IFR1+MS
8700.000	0.000	0.000	8417.656	32.796	0.000	32.864	0.000	13.736	0.000	0.000	33.561	32.082	-43.673	MWD+IFR1+MS
8800.000	0.000	0.000	8517.656	33.102	0.000	33.169	0.000	13.911	0.000	0.000	33.865	32.389	-43.711	MWD+IFR1+MS
8900.000	0.000	0.000	8617.656	33.410	0.000	33.474	0.000	14.090	0.000	0.000	34.171	32.698	-43.750	MWD+IFR1+MS
9000.000	0.000	0.000	8717.656	33.719	0.000	33.781	0.000	14.272	0.000	0.000	34.477	33.007	-43.788	MWD+IFR1+MS
9100.000	0.000	0.000	8817.656	34.029	0.000	34.089	0.000	14.457	0.000	0.000	34.784	33.317	-43.825	MWD+IFR1+MS
9200.000	0.000	0.000	8917.656	34.339	0.000	34.397	0.000	14.645	0.000	0.000	35.092	33.629	-43.862	MWD+IFR1+MS
9300.000	0.000	0.000	9017.656	34.651	0.000	34.707	0.000	14.837	0.000	0.000	35.401	33.941	-43.898	MWD+IFR1+MS

Received by OKD:	1/3/2024 2	:15:53 PM	1					We	ll Plan Re	port				Page 32 of 41
9400.000	0.000	0.000	9117.656	34.963	0.000	35.017	0.000	15.032	0.000	0.000	35.711	34.254	-43.934	MWD+IFR1+MS
9500.000	0.000	0.000	9217.656	35.277	0.000	35.329	0.000	15.231	0.000	0.000	36.022	34.568	-43.969	MWD+IFR1+MS
9600.000	0.000	0.000	9317.656	35.591	0.000	35.641	0.000	15.433	0.000	0.000	36.334	34.883	- 44.004	MWD+IFR1+MS
9700.000	0.000	0.000	9417.656	35.906	0.000	35.954	0.000	15.638	0.000	0.000	36.647	35.199	-44.038	MWD+IFR1+MS
9800.000	0.000	0.000	9517.656	36.222	0.000	36.268	0.000	15.847	0.000	0.000	36.961	35.515	-44.072	MWD+IFR1+MS
9900.000	0.000	0.000	9617.656	36.538	0.000	36.583	0.000	16.059	0.000	0.000	37.275	35.832	-44.106	MWD+IFR1+MS
10000.000	0.000	0.000	9717.656	36.856	0.000	36.899	0.000	16.274	0.000	0.000	37.590	36.150	-44.139	MWD+IFR1+MS
10100.000	0.000	0.000	9817.656	37.174	0.000	37.215	0.000	16.493	0.000	0.000	37.906	36.469	-44.171	MWD+IFR1+MS
10200.000	0.000	0.000	9917.656	37.493	0.000	37.532	0.000	16.715	0.000	0.000	38.223	36.789	-44.203	MWD+IFR1+MS
10300.000	0.000	0.000	10017.656	37.812	0.000	37.850	0.000	16.941	0.000	0.000	38.540	37.109	-44.235	MWD+IFR1+MS
10400.000	0.000	0.000	10117.656	38.132	0.000	38.169	0.000	17.170	0.000	0.000	38.858	37.430	-44.266	MWD+IFR1+MS
10500.000	0.000	0.000	10217.656	38.453	0.000	38.488	0.000	17.402	0.000	0.000	39.177	37.752	- 44.297	MWD+IFR1+MS
10600.000	0.000	0.000	10317.656	38.775	0.000	38.808	0.000	17.638	0.000	0.000	39.496	38.074	-44.328	MWD+IFR1+MS
10700.000	0.000	0.000	10417.656	39.097	0.000	39.129	0.000	17.877	0.000	0.000	39.817	38.397	-44.358	MWD+IFR1+MS
10800.000	0.000	0.000	10517.656	39.420	0.000	39.450	0.000	18.120	0.000	0.000	40.137	38.720	-44.388	MWD+IFR1+MS
10900.000	0.000	0.000	10617.656	39.744	0.000	39.772	0.000	18.366	0.000	0.000	40.459	39.045	-44.417	MWD+IFR1+MS
11000.000	0.000	0.000	10717.656	40.068	0.000	40.095	0.000	18.615	0.000	0.000	40.781	39.369	-44.446	MWD+IFR1+MS
11100.000	0.000	0.000	10817.656	40.392	0.000	40.418	0.000	18.868	0.000	0.000	41.103	39.695	-44.475	MWD+IFR1+MS
11200.000	0.000	0.000	10917.656	40.717	0.000	40.742	0.000	19.124	0.000	0.000	41.427	40.020	-44.503	MWD+IFR1+MS
11300.000	0.000	0.000	11017.656	41.043	0.000	41.066	0.000	19.384	0.000	0.000	41.751	40.347	-44.531	MWD+IFR1+MS
11400.000	0.000	0.000	11117.656	41.370	0.000	41.391	0.000	19.647	0.000	0.000	42.075	40.674	-44.559	MWD+IFR1+MS
11500.000	0.000	0.000	11217.656	41.696	0.000	41.717	0.000	19.913	0.000	0.000	42.400	41.001	-44.586	MWD+IFR1+MS
11600.000	0.000	0.000	11317.656	42.024	0.000	42.043	0.000	20.183	0.000	0.000	42.725	41.329	-44.613	MWD+IFR1+MS
11700.000	0.000	0.000	11417.656	42.352	0.000	42.369	0.000	20.456	0.000	0.000	43.051	41.658	-44.640	MWD+IFR1+MS
11760.147	0.000	0.000	11477.803	42.547	0.000	42.564	0.000	20.622	0.000	0.000	43.245	41.856	-44.655	MWD+IFR1+MS
11800.000	3.188	359.785	11517.635	42.311	0.000	42.697	0.000	20.732	0.000	0.000	43.374	41.988	-44.795	MWD+IFR1+MS
11900.000	11.188	359.785	11616.769	41.759	0.000	43.005	0.000	21.023	0.000	0.000	43.969	42.471	126.217	MWD+IFR1+MS
12000.000	19.188	359.785	11713.197	41.140	0.000	43.295	0.000	21.416	0.000	0.000	44.952	42.936	114.470	MWD+IFR1+MS
12100.000	27.188	359.785	11805.044	40.006	0.000	43.560	0.000	21.964	0.000	0.000	45.888	43.270	108.943	MWD+IFR1+MS
12200.000	35.188	359.785	11890.522	38.468	0.000	43.798	0.000	22.708	0.000	0.000	46.691	43.538	106.197	MWD+IFR1+MS
12300.000	43.188	359.785	11967.966	36.672	0.000	44.010	0.000	23.665	0.000	0.000	47.335	43.761	104.790	MWD+IFR1+MS
12400.000	51.188	359.785	12035.870	34.805	0.000	44.194	0.000	24.830	0.000	0.000	47.815	43.947	104.126	MWD+IFR1+MS
12500.000	59.188	359.785	12092.912	33.094	0.000	44.351	0.000	26.174	0.000	0.000	48.143	44.099	103.925	MWD+IFR1+MS

Received by OACD:	1/3/2024 2	:15:53 PM	1	Well Plan Report Page 33 of 41										
12600.000	67.188	359.785	12137.982	31.791	0.000	44.481	0.000	27.655	0.000	0.000	48.339	44.221	104.024	MWD+IFR1+MS
12700.000	75.188	359.785	12170.201	31.141	0.000	44.584	0.000	29.221	0.000	0.000	48.433	44.314	104.299	MWD+IFR1+MS
12800.000	83.188	359.785	12188.944	31.319	0.000	44.661	0.000	30.820	0.000	0.000	48.461	44.382	104.620	MWD+IFR1+MS
12885.147	90.000	359.785	12194.000	31.856	0.000	44.703	0.000	31.856	0.000	0.000	48.464	44.420	104.801	MWD+IFR1+MS
12900.000	90.000	359.785	12194.000	31.893	0.000	44.708	0.000	31.893	0.000	0.000	48.464	44.425	104.817	MWD+IFR1+MS
13000.000	90.000	359.785	12194.000	32.121	0.000	44.757	0.000	32.121	0.000	0.000	48.468	44.470	104.988	MWD+IFR1+MS
13100.000	90.000	359.785	12194.000	32.370	0.000	44.825	0.000	32.370	0.000	0.000	48.473	44.534	105.232	MWD+IFR1+MS
13200.000	90.000	359.785	12194.000	32.635	0.000	44.911	0.000	32.635	0.000	0.000	48.480	44.614	105.545	MWD+IFR1+MS
13300.000	90.000	359.785	12194.000	32.918	0.000	45.014	0.000	32.918	0.000	0.000	48.489	44.710	105.934	MWD+IFR1+MS
13400.000	90.000	359.785	12194.000	33.216	0.000	45.134	0.000	33.216	0.000	0.000	48.501	44.821	106.408	MWD+IFR1+MS
13500.000	90.000	359.785	12194.000	33.530	0.000	45.270	0.000	33.530	0.000	0.000	48.515	44.947	106.979	MWD+IFR1+MS
13600.000	90.000	359.785	12194.000	33.860	0.000	45.423	0.000	33.860	0.000	0.000	48.532	45.088	107.661	MWD+IFR1+MS
13700.000	90.000	359.785	12194.000	34.204	0.000	45.593	0.000	34.204	0.000	0.000	48.551	45.242	108.476	MWD+IFR1+MS
13800.000	90.000	359.785	12194.000	34.563	0.000	45.779	0.000	34.563	0.000	0.000	48.575	45.410	109.445	MWD+IFR1+MS
13900.000	90.000	359.785	12194.000	34.935	0.000	45.981	0.000	34.935	0.000	0.000	48.603	45.590	110.601	MWD+IFR1+MS
14000.000	90.000	359.785	12194.000	35.322	0.000	46.200	0.000	35.322	0.000	0.000	48.637	45.781	111.982	MWD+IFR1+MS
14100.000	90.000	359.785	12194.000	35.721	0.000	46.433	0.000	35.721	0.000	0.000	48.677	45.982	113.635	MWD+IFR1+MS
14200.000	90.000	359.785	12194.000	36.133	0.000	46.683	0.000	36.133	0.000	0.000	48.725	46.191	115.621	MWD+IFR1+MS
14300.000	90.000	359.785	12194.000	36.557	0.000	46.947	0.000	36.557	0.000	0.000	48.784	46.405	118.005	MWD+IFR1+MS
14400.000	90.000	359.785	12194.000	36.993	0.000	47.227	0.000	36.993	0.000	0.000	48.857	46.620	120.858	MWD+IFR1+MS
14500.000	90.000	359.785	12194.000	37.440	0.000	47.521	0.000	37.440	0.000	0.000	48.947	46.834	124.241	MWD+IFR1+MS
14600.000	90.000	359.785	12194.000	37.898	0.000	47.829	0.000	37.898	0.000	0.000	49.060	47.040	128.172	MWD+IFR1+MS
14700.000	90.000	359.785	12194.000	38.367	0.000	48.152	0.000	38.367	0.000	0.000	49.200	47.234	132.593	MWD+IFR1+MS
14800.000	90.000	359.785	12194.000	38.846	0.000	48.488	0.000	38.846	0.000	0.000	49.372	47.410	-42.657	MWD+IFR1+MS
14900.000	90.000	359.785	12194.000	39.335	0.000	48.838	0.000	39.335	0.000	0.000	49.579	47.565	-37.834	MWD+IFR1+MS
15000.000	90.000	359.785	12194.000	39.833	0.000	49.202	0.000	39.833	0.000	0.000	49.822	47.698	-33.214	MWD+IFR1+MS
15100.000	90.000	359.785	12194.000	40.340	0.000	49.578	0.000	40.340	0.000	0.000	50.100	47.810	-29.012	MWD+IFR1+MS
15200.000	90.000	359.785	12194.000	40.856	0.000	49.967	0.000	40.856	0.000	0.000	50.409	47.904	-25.334	MWD+IFR1+MS
15300.000	90.000	359.785	12194.000	41.381	0.000	50.368	0.000	41.381	0.000	0.000	50.746	47.983	-22.194	MWD+IFR1+MS
15400.000	90.000	359.785	12194.000	41.914	0.000	50.782	0.000	41.914	0.000	0.000	51.108	48.050	-19.546	MWD+IFR1+MS
15500.000	90.000	359.785	12194.000	42.454	0.000	51.207	0.000	42.454	0.000	0.000	51.491	48.108	-17.325	MWD+IFR1+MS
15600.000	90.000	359.785	12194.000	43.002	0.000	51.644	0.000	43.002	0.000	0.000	51.893	48.160	-15.458	MWD+IFR1+MS
15700.000	90.000	359.785	12194.000	43.558	0.000	52.092	0.000	43.558	0.000	0.000	52.313	48.205	-13.882	MWD+IFR1+MS

Received bis OGD:	1/3/2024 2	:15:53 PM	1	Well Plan Report Page 34 of 41										
15800.000	90.000	359.785	12194.000	44.120	0.000	52.551	0.000	44.120	0.000	0.000	52.748	48.247	- 12.544	MWD+IFR1+MS
15900.000	90.000	359.785	12194.000	44.689	0.000	53.021	0.000	44.689	0.000	0.000	53.197	48.286	-11.400	MWD+IFR1+MS
16000.000	90.000	359.785	12194.000	45.264	0.000	53.501	0.000	45.264	0.000	0.000	53.660	48.322	-10.415	MWD+IFR1+MS
16100.000	90.000	359.785	12194.000	45.846	0.000	53.991	0.000	45.846	0.000	0.000	54.135	48.357	-9.561	MWD+IFR1+MS
16200.000	90.000	359.785	12194.000	46.434	0.000	54.491	0.000	46.434	0.000	0.000	54.622	48.390	-8.816	MWD+IFR1+MS
16300.000	90.000	359.785	12194.000	47.027	0.000	55.000	0.000	47.027	0.000	0.000	55.121	48.422	-8.161	MWD+IFR1+MS
16400.000	90.000	359.785	12194.000	47.626	0.000	55.519	0.000	47.626	0.000	0.000	55.630	48.454	-7.582	MWD+IFR1+MS
16500.000	90.000	359.785	12194.000	48.230	0.000	56.047	0.000	48.230	0.000	0.000	56.149	48.484	-7.069	MWD+IFR1+MS
16600.000	90.000	359.785	12194.000	48.840	0.000	56.584	0.000	48.840	0.000	0.000	56.678	48.515	-6.610	MWD+IFR1+MS
16700.000	90.000	359.785	12194.000	49.454	0.000	57.129	0.000	49.454	0.000	0.000	57.216	48.545	-6.198	MWD+IFR1+MS
16800.000	90.000	359.785	12194.000	50.073	0.000	57.682	0.000	50.073	0.000	0.000	57.763	48.575	-5.828	MWD+IFR1+MS
16900.000	90.000	359.785	12194.000	50.697	0.000	58.244	0.000	50.697	0.000	0.000	58.319	48.605	-5.493	MWD+IFR1+MS
17000.000	90.000	359.785	12194.000	51.325	0.000	58.813	0.000	51.325	0.000	0.000	58.883	48.636	-5.188	MWD+IFR1+MS
17100.000	90.000	359.785	12194.000	51.958	0.000	59.390	0.000	51.958	0.000	0.000	59.456	48.666	-4.911	MWD+IFR1+MS
17200.000	90.000	359.785	12194.000	52.594	0.000	59.974	0.000	52.594	0.000	0.000	60.036	48.697	-4.657	MWD+IFR1+MS
17300.000	90.000	359.785	12194.000	53.234	0.000	60.566	0.000	53.234	0.000	0.000	60.624	48.727	-4.425	MWD+IFR1+MS
17400.000	90.000	359.785	12194.000	53.879	0.000	61.164	0.000	53.879	0.000	0.000	61.219	48.758	-4.211	MWD+IFR1+MS
17500.000	90.000	359.785	12194.000	54.527	0.000	61.770	0.000	54.527	0.000	0.000	61.821	48.790	-4.014	MWD+IFR1+MS
17600.000	90.000	359.785	12194.000	55.178	0.000	62.381	0.000	55.178	0.000	0.000	62.430	48.821	-3.832	MWD+IFR1+MS
17700.000	90.000	359.785	12194.000	55.833	0.000	63.000	0.000	55.833	0.000	0.000	63.045	48.854	-3.664	MWD+IFR1+MS
17800.000	90.000	359.785	12194.000	56.491	0.000	63.624	0.000	56.491	0.000	0.000	63.667	48.886	-3.507	MWD+IFR1+MS
17900.000	90.000	359.785	12194.000	57.153	0.000	64.254	0.000	57.153	0.000	0.000	64.295	48.919	-3.362	MWD+IFR1+MS
18000.000	90.000	359.785	12194.000	57.817	0.000	64.891	0.000	57.817	0.000	0.000	64.929	48.952	-3.226	MWD+IFR1+MS
18100.000	90.000	359.785	12194.000	58.485	0.000	65.532	0.000	58.485	0.000	0.000	65.569	48.986	-3.099	MWD+IFR1+MS
18200.000	90.000	359.785	12194.000	59.155	0.000	66.180	0.000	59.155	0.000	0.000	66.215	49.020	-2.981	MWD+IFR1+MS
18300.000	90.000	359.785	12194.000	59.828	0.000	66.832	0.000	59.828	0.000	0.000	66.866	49.055	-2.870	MWD+IFR1+MS
18400.000	90.000	359.785	12194.000	60.504	0.000	67.490	0.000	60.504	0.000	0.000	67.522	49.090	-2.766	MWD+IFR1+MS
18500.000	90.000	359.785	12194.000	61.183	0.000	68.153	0.000	61.183	0.000	0.000	68.183	49.126	-2.668	MWD+IFR1+MS
18600.000	90.000	359.785	12194.000	61.864	0.000	68.821	0.000	61.864	0.000	0.000	68.850	49.162	-2.575	MWD+IFR1+MS
18700.000	90.000	359.785	12194.000	62.547	0.000	69.493	0.000	62.547	0.000	0.000	69.521	49.198	-2.489	MWD+IFR1+MS
18800.000	90.000	359.785	12194.000	63.233	0.000	70.171	0.000	63.233	0.000	0.000	70.197	49.235	-2.407	MWD+IFR1+MS
18900.000	90.000	359.785	12194.000	63.921	0.000	70.852	0.000	63.921	0.000	0.000	70.877	49.273	-2.329	MWD+IFR1+MS
19000.000	90.000	359.785	12194.000	64.611	0.000	71.538	0.000	64.611	0.000	0.000	71.562	49.311	-2.256	MWD+IFR1+MS

Received by OCD:	1/3/2024 2	:15:53 PM	1	Well Plan Report Page 35 of 4										
19100.000	90.000	359.785	12194.000	65.303	0.000	72.228	0.000	65.303	0.000	0.000	72.251	49.350	-2.187	MWD+IFR1+MS
19200.000	90.000	359.785	12194.000	65.998	0.000	72.923 (0.000	65.998	0.000	0.000	72.945	49.389	-2.121	MWD+IFR1+MS
19300.000	90.000	359.785	12194.000	66.694	0.000	73.621 (0.000	66.694	0.000	0.000	73.642	49.429	-2.058	MWD+IFR1+MS
19400.000	90.000	359.785	12194.000	67.393	0.000	74.323 (0.000	67.393	0.000	0.000	74.343	49.469	-1.999	MWD+IFR1+MS
19500.000	90.000	359.785	12194.000	68.093	0.000	75.029 (0.000	68.093	0.000	0.000	75.048	49.510	-1.943	MWD+IFR1+MS
19600.000	90.000	359.785	12194.000	68.795	0.000	75.739 (0.000	68.795	0.000	0.000	75.757	49.551	-1.889	MWD+IFR1+MS
19700.000	90.000	359.785	12194.000	69.499	0.000	76.452 (0.000	69.499	0.000	0.000	76.470	49.593	-1.838	MWD+IFR1+MS
19800.000	90.000	359.785	12194.000	70.205	0.000	77.168 (0.000	70.205	0.000	0.000	77.185	49.635	-1.789	MWD+IFR1+MS
19900.000	90.000	359.785	12194.000	70.912	0.000	77.888 (0.000	70.912	0.000	0.000	77.905	49.678	-1.743	MWD+IFR1+MS
20000.000	90.000	359.785	12194.000	71.621	0.000	78.612 (0.000	71.621	0.000	0.000	78.627	49.721	-1.698	MWD+IFR1+MS
20100.000	90.000	359.785	12194.000	72.331	0.000	79.338 (0.000	72.331	0.000	0.000	79.353	49.765	-1.656	MWD+IFR1+MS
20200.000	90.000	359.785	12194.000	73.043	0.000	80.068 (0.000	73.043	0.000	0.000	80.082	49.810	-1.615	MWD+IFR1+MS
20300.000	90.000	359.785	12194.000	73.756	0.000	80.800 (0.000	73.756	0.000	0.000	80.814	49.855	-1.577	MWD+IFR1+MS
20400.000	90.000	359.785	12194.000	74.471	0.000	81.536 (0.000	74.471	0.000	0.000	81.549	49.900	-1.539	MWD+IFR1+MS
20500.000	90.000	359.785	12194.000	75.188	0.000	82.274 (0.000	75.188	0.000	0.000	82.287	49.947	-1.504	MWD+IFR1+MS
20600.000	90.000	359.785	12194.000	75.905	0.000	83.015 (0.000	75.905	0.000	0.000	83.028	49.993	-1.469	MWD+IFR1+MS
20700.000	90.000	359.785	12194.000	76.624	0.000	83.759 (0.000	76.624	0.000	0.000	83.771	50.040	-1.437	MWD+IFR1+MS
20800.000	90.000	359.785	12194.000	77.344	0.000	84.505 (0.000	77.344	0.000	0.000	84.517	50.088	-1.405	MWD+IFR1+MS
20900.000	90.000	359.785	12194.000	78.066	0.000	85.254 (0.000	78.066	0.000	0.000	85.266	50.136	-1.375	MWD+IFR1+MS
21000.000	90.000	359.785	12194.000	78.788	0.000	86.006 (0.000	78.788	0.000	0.000	86.017	50.185	-1.346	MWD+IFR1+MS
21100.000	90.000	359.785	12194.000	79.512	0.000	86.760 (0.000	79.512	0.000	0.000	86.770	50.234	-1.318	MWD+IFR1+MS
21200.000	90.000	359.785	12194.000	80.237	0.000	87.516 (0.000	80.237	0.000	0.000	87.526	50.284	-1.291	MWD+IFR1+MS
21300.000	90.000	359.785	12194.000	80.963	0.000	88.275 (0.000	80.963	0.000	0.000	88.285	50.335	-1.265	MWD+IFR1+MS
21400.000	90.000	359.785	12194.000	81.691	0.000	89.035 (0.000	81.691	0.000	0.000	89.045	50.386	-1.240	MWD+IFR1+MS
21500.000	90.000	359.785	12194.000	82.419	0.000	89.798 (0.000	82.419	0.000	0.000	89.808	50.437	-1.216	MWD+IFR1+MS
21600.000	90.000	359.785	12194.000	83.148	0.000	90.564 (0.000	83.148	0.000	0.000	90.573	50.489	-1.193	MWD+IFR1+MS
21700.000	90.000	359.785	12194.000	83.878	0.000	91.331 (0.000	83.878	0.000	0.000	91.340	50.541	-1.170	MWD+IFR1+MS
21800.000	90.000	359.785	12194.000	84.610	0.000	92.100 (0.000	84.610	0.000	0.000	92.109	50.595	-1.149	MWD+IFR1+MS
21900.000	90.000	359.785	12194.000	85.342	0.000	92.871 (0.000	85.342	0.000	0.000	92.880	50.648	-1.128	MWD+IFR1+MS
22000.000	90.000	359.785	12194.000	86.075	0.000	93.645 (0.000	86.075	0.000	0.000	93.653	50.702	-1.108	MWD+IFR1+MS
22100.000	90.000	359.785	12194.000	86.809	0.000	94.420 (0.000	86.809	0.000	0.000	94.428	50.757	-1.088	MWD+IFR1+MS
22200.000	90.000	359.785	12194.000	87.544	0.000	95.197 (0.000	87.544	0.000	0.000	95.204	50.812	-1.069	MWD+IFR1+MS
22300.000	90.000	359.785	12194.000	88.280	0.000	95.975 (0.000	88.280	0.000	0.000	95.983	50.868	-1.051	MWD+IFR1+MS

Received by OCD:	1/3/2024 2	:15:53 PM	1	Well Plan Report Page 36 of 4										
22400.000	90.000	359.785	12194.000	89.016	0.000	96.756	0.000	89.016	0.000	0.000	96.763	50.924	-1.033	MWD+IFR1+MS
22500.000	90.000	359.785	12194.000	89.754	0.000	97.538	0.000	89.754	0.000	0.000	97.545	50.981	-1.016	MWD+IFR1+MS
22600.000	90.000	359.785	12194.000	90.492	0.000	98.322	0.000	90.492	0.000	0.000	98.329	51.038	-1.000	MWD+IFR1+MS
22700.000	90.000	359.785	12194.000	91.231	0.000	99.107	0.000	91.231	0.000	0.000	99.114	51.096	-0.984	MWD+IFR1+MS
22800.000	90.000	359.785	12194.000	91.971	0.000	99.894	0.000	91.971	0.000	0.000	99.901	51.154	-0.968	MWD+IFR1+MS
22900.000	90.000	359.785	12194.000	92.711	0.000	100.683	0.000	92.711	0.000	0.000	100.689	51.213	-0.953	MWD+IFR1+MS
23000.000	90.000	359.785	12194.000	93.453	0.000	101.473	0.000	93.453	0.000	0.000	101.479	51.272	-0.939	MWD+IFR1+MS
23100.000	90.000	359.785	12194.000	94.194	0.000	102.265	0.000	94.194	0.000	0.000	102.271	51.332	-0.925	MWD+IFR1+MS
23200.000	90.000	359.785	12194.000	94.937	0.000	103.058	0.000	94.937	0.000	0.000	103.064	51.392	-0.911	MWD+IFR1+MS
23300.000	90.000	359.785	12194.000	95.680	0.000	103.852	0.000	95.680	0.000	0.000	103.858	51.453	-0.898	MWD+IFR1+MS
23400.000	90.000	359.785	12194.000	96.424	0.000	104.648	0.000	96.424	0.000	0.000	104.654	51.514	-0.885	MWD+IFR1+MS
23500.000	90.000	359.785	12194.000	97.169	0.000	105.445	0.000	97.169	0.000	0.000	105.451	51.576	-0.872	MWD+IFR1+MS
23600.000	90.000	359.785	12194.000	97.914	0.000	106.244	0.000	97.914	0.000	0.000	106.249	51.638	-0.860	MWD+IFR1+MS
23700.000	90.000	359.785	12194.000	98.660	0.000	107.044	0.000	98.660	0.000	0.000	107.049	51.701	-0.848	MWD+IFR1+MS
23800.000	90.000	359.785	12194.000	99.406	0.000	107.845	0.000	99.406	0.000	0.000	107.850	51.765	-0.836	MWD+IFR1+MS
23900.000	90.000	359.785	12194.000	100.153	0.000	108.647	0.000	100.153	0.000	0.000	108.652	51.828	-0.825	MWD+IFR1+MS
24000.000	90.000	359.785	12194.000	100.901	0.000	109.450	0.000	100.901	0.000	0.000	109.455	51.893	-0.814	MWD+IFR1+MS
24100.000	90.000	359.785	12194.000	101.649	0.000	110.255	0.000	101.649	0.000	0.000	110.260	51.958	-0.804	MWD+IFR1+MS
24200.000	90.000	359.785	12194.000	102.398	0.000	111.061	0.000	102.398	0.000	0.000	111.065	52.023	-0.793	MWD+IFR1+MS
24300.000	90.000	359.785	12194.000	103.147	0.000	111.868	0.000	103.147	0.000	0.000	111.872	52.089	-0.783	MWD+IFR1+MS
24400.000	90.000	359.785	12194.000	103.897	0.000	112.676	0.000	103.897	0.000	0.000	112.680	52.155	-0.774	MWD+IFR1+MS
24500.000	90.000	359.785	12194.000	104.647	0.000	113.485	0.000	104.647	0.000	0.000	113.489	52.222	-0.764	MWD+IFR1+MS
24600.000	90.000	359.785	12194.000	105.398	0.000	114.295	0.000	105.398	0.000	0.000	114.299	52.289	-0.755	MWD+IFR1+MS
24700.000	90.000	359.785	12194.000	106.149	0.000	115.107	0.000	106.149	0.000	0.000	115.111	52.357	-0.746	MWD+IFR1+MS
24800.000	90.000	359.785	12194.000	106.901	0.000	115.919	0.000	106.901	0.000	0.000	115.923	52.425	-0.737	MWD+IFR1+MS
24900.000	90.000	359.785	12194.000	107.653	0.000	116.732	0.000	107.653	0.000	0.000	116.736	52.494	-0.728	MWD+IFR1+MS
25000.000	90.000	359.785	12194.000	108.406	0.000	117.546	0.000	108.406	0.000	0.000	117.550	52.563	-0.720	MWD+IFR1+MS
25100.000	90.000	359.785	12194.000	109.159	0.000	118.362	0.000	109.159	0.000	0.000	118.365	52.633	-0.712	MWD+IFR1+MS
25200.000	90.000	359.785	12194.000	109.913	0.000	119.178	0.000	109.913	0.000	0.000	119.181	52.703	-0.704	MWD+IFR1+MS
25300.000	90.000	359.785	12194.000	110.667	0.000	119.995	0.000	110.667	0.000	0.000	119.998	52.774	-0.696	MWD+IFR1+MS
25400.000	90.000	359.785	12194.000	111.421	0.000	120.813	0.000	111.421	0.000	0.000	120.816	52.845	-0.688	MWD+IFR1+MS
25500.000	90.000	359.785	12194.000	112.176	0.000	121.631	0.000	112.176	0.000	0.000	121.635	52.917	-0.681	MWD+IFR1+MS
25600.000	90.000	359.785	12194.000	112.931	0.000	122.451	0.000	112.931	0.000	0.000	122.454	52.989	-0.674	MWD+IFR1+MS

Recained by OCD:	1/3/2024 2	:15:53 PM	1					We	ll Plan Re	port				Page 37 of 41
25700.000	90.000	359.785	12194.000	113.687	0.000	123.272	0.000	113.687	0.000	0.000	123.275	53.061	-0.667	MWD+IFR1+MS
25800.000	90.000	359.785	12194.000	114.443	0.000	124.093	0.000	114.443	0.000	0.000	124.096	53.134	-0.660	MWD+IFR1+MS
25900.000	90.000	359.785	12194.000	115.199	0.000	124.915	0.000	115.199	0.000	0.000	124.918	53.208	-0.653	MWD+IFR1+MS
26000.000	90.000	359.785	12194.000	115.956	0.000	125.738	0.000	115.956	0.000	0.000	125.741	53.282	-0.647	MWD+IFR1+MS
26100.000	90.000	359.785	12194.000	116.713	0.000	126.562	0.000	116.713	0.000	0.000	126.565	53.356	-0.640	MWD+IFR1+MS
26200.000	90.000	359.785	12194.000	117.471	0.000	127.386	0.000	117.471	0.000	0.000	127.389	53.431	-0.634	MWD+IFR1+MS
26300.000	90.000	359.785	12194.000	118.229	0.000	128.211	0.000	118.229	0.000	0.000	128.214	53.506	-0.628	MWD+IFR1+MS
26400.000	90.000	359.785	12194.000	118.987	0.000	129.037	0.000	118.987	0.000	0.000	129.040	53.582	-0.622	MWD+IFR1+MS
26500.000	90.000	359.785	12194.000	119.746	0.000	129.864	0.000	119.746	0.000	0.000	129.867	53.658	-0.616	MWD+IFR1+MS
26600.000	90.000	359.785	12194.000	120.505	0.000	130.691	0.000	120.505	0.000	0.000	130.694	53.735	-0.610	MWD+IFR1+MS
26700.000	90.000	359.785	12194.000	121.264	0.000	131.519	0.000	121.264	0.000	0.000	131.522	53.812	-0.605	MWD+IFR1+MS
26800.000	90.000	359.785	12194.000	122.023	0.000	132.348	0.000	122.023	0.000	0.000	132.351	53.890	-0.599	MWD+IFR1+MS
26900.000	90.000	359.785	12194.000	122.783	0.000	133.178	0.000	122.783	0.000	0.000	133.180	53.968	-0.594	MWD+IFR1+MS
27000.000	90.000	359.785	12194.000	123.544	0.000	134.008	0.000	123.544	0.000	0.000	134.010	54.046	-0.588	MWD+IFR1+MS
27100.000	90.000	359.785	12194.000	124.304	0.000	134.838	0.000	124.304	0.000	0.000	134.841	54.125	-0.583	MWD+IFR1+MS
27200.000	90.000	359.785	12194.000	125.065	0.000	135.670	0.000	125.065	0.000	0.000	135.672	54.205	-0.578	MWD+IFR1+MS
27300.000	90.000	359.785	12194.000	125.826	0.000	136.502	0.000	125.826	0.000	0.000	136.504	54.284	-0.573	MWD+IFR1+MS
27400.000	90.000	359.785	12194.000	126.587	0.000	137.334	0.000	126.587	0.000	0.000	137.336	54.365	-0.568	MWD+IFR1+MS
27500.000	90.000	359.785	12194.000	127.349	0.000	138.167	0.000	127.349	0.000	0.000	138.170	54.445	-0.564	MWD+IFR1+MS
27600.000	90.000	359.785	12194.000	128.111	0.000	139.001	0.000	128.111	0.000	0.000	139.003	54.526	-0.559	MWD+IFR1+MS
27700.000	90.000	359.785	12194.000	128.873	0.000	139.836	0.000	128.873	0.000	0.000	139.838	54.608	-0.554	MWD+IFR1+MS
27800.000	90.000	359.785	12194.000	129.636	0.000	140.670	0.000	129.636	0.000	0.000	140.672	54.690	-0.550	MWD+IFR1+MS
27900.000	90.000	359.785	12194.000	130.399	0.000	141.506	0.000	130.399	0.000	0.000	141.508	54.772	-0.546	MWD+IFR1+MS
28000.000	90.000	359.785	12194.000	131.162	0.000	142.342	0.000	131.162	0.000	0.000	142.344	54.855	-0.541	MWD+IFR1+MS
28100.000	90.000	359.785	12194.000	131.925	0.000	143.178	0.000	131.925	0.000	0.000	143.180	54.938	-0.537	MWD+IFR1+MS
28200.000	90.000	359.785	12194.000	132.688	0.000	144.015	0.000	132.688	0.000	0.000	144.017	55.022	-0.533	MWD+IFR1+MS
28300.000	90.000	359.785	12194.000	133.452	0.000	144.853	0.000	133.452	0.000	0.000	144.855	55.106	-0.529	MWD+IFR1+MS
28400.000	90.000	359.785	12194.000	134.216	0.000	145.691	0.000	134.216	0.000	0.000	145.693	55.191	-0.525	MWD+IFR1+MS
28500.000	90.000	359.785	12194.000	134.980	0.000	146.530	0.000	134.980	0.000	0.000	146.532	55.275	-0.521	MWD+IFR1+MS
28600.000	90.000	359.785	12194.000	135.745	0.000	147.369	0.000	135.745	0.000	0.000	147.371	55.361	-0.517	MWD+IFR1+MS
28700.000	90.000	359.785	12194.000	136.510	0.000	148.208	0.000	136.510	0.000	0.000	148.210	55.447	-0.514	MWD+IFR1+MS
28800.000	90.000	359.785	12194.000	137.275	0.000	149.048	0.000	137.275	0.000	0.000	149.050	55.533	-0.510	MWD+IFR1+MS
28878.460	90.000	359.785	12194.000	137.875	0.000	149.707	0.000	137.875	0.000	0.000	149.709	55.601	-0.507	MWD+IFR1+MS

Received by OKD:	1/3/2024 2	:15:53 PM	ſ					We	ll Plan Rep	port				Page 38 of 41
28900.000	90.000	359.785	12194.000	138.039	0.000	149.888	0.000	138.039	0.000	0.000	149.889	55.619	-0.506 MWD+	IFR1+MS
28995.972	90.000	359.785	12194.000	138.773	0.000	150.694	0.000	138.773	0.000	0.000	150.696	55.703	-0.503 MWD+	IFR1+MS

Plan Targets	POKER LAKE UNIT 23 DTD 151H			
	Measured Depth	Grid Northing	Grid Easting	TVD MSL Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)
FTP 2	12885.10	440121.50	647131.50	8715.00 RECTANGLE
LTP 2	28878.46	456114.70	647071.50	8715.00 RECTANGLE
BHL 2	28978.46	456214.70	647071.00	8715.00 RECTANGLE

Received by OCD: 1/3/2024 2:15:53 PM

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio B

 District III

 1000 Rio Brazos Road, Aztec, NM 87410

 Phone: (505) 334-6178 Fax: (505) 334-6170
 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

1220 South St. Francis Dr. Santa Fe, NM 87505

AMENDED REPORT APD ID 10400080738

Phone: (505) 476-3460 Fax: (505) 476-3462 WELL LOCATION AND ACREAGE DEDICATION PLAT ¹API Number ² Pool Code Pool Name 30-015-98220 Purple Sage; Wolfcamp (gas) ⁴ Property Code ⁵ Property Name Well Number POKER LAKE UNIT 23 DTD 151H OGRID No. Elevation **XTO PERMIAN OPERATING, LLC.** 373075 3,447' ¹⁰ Surface Location UL or lot no. East/West lin Section Township Rang Lot Idr Feet from the North/South lin Feet from th County 24S 30E SOUTH 681 WEST EDDY М 14 366 "Bottom Hole Location If Different From Surface UL or lot no. Section East/West line Feet from the County Township Rang Lot Idn Feet from the North/South line 4 2 24S 30E 230 NORTH 670 WEST EDDY Dedicated Acres Joint or Infill **Consolidation** Code ⁵Order No. 960

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent X As Drilled		
API # 30015		
Operator Name: XTO PERMIAN OPERATIN	Property Name: IG, LLC Poker Lake Unit 23 DTD	Well Number 151H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
Latitu	de				Longitude				NAD

First Take Point (FTP)

UL D	Section 23	Township 24S	Range 30E	Lot	Feet 500	From N/S North	Feet 670	From E/W West	County Eddy
Latitu 32.2	^{de} 20924				Longitude 103.858	11			NAD 83

Last Take Point (LTP)

UL 4	Section 2	Township 24S	Range 30E	Lot	Feet 330	From N/S North	Feet 670	From E/W West	County Eddy
Latitu	de				Longituc	le			NAD
32.2	253204	1			103.8	58080			83

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
Operator Name:	Property Name:	Well Number

KZ 06/29/2018

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	299602
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

CONDITIONS	
Created By	Condition
ward.rikala	All original COA's still apply.

Page 41 of 41

CONDITIONS

Action 299602

Condition Date 1/8/2024