

Sundry Print Report

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

DTD

Well Name: POKER LAKE UNIT 22 Well Location: T24S / R30E / SEC 22 / County or Parish/State:

NENE /

Well Number: 128H Type of Well: CONVENTIONAL GAS Allottee or Tribe Name:

WELL

Lease Number: NMNM068905 Unit or CA Name: Unit or CA Number:

US Well Number: 3001549867 Well Status: Approved Application for Operator: XTO PERMIAN

Permit to Drill OPERATING LLC

Notice of Intent

Sundry ID: 2762134

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 11/17/2023 Time Sundry Submitted: 06:06

Date proposed operation will begin: 11/27/2023

Procedure Description: XTO Permian Operating LLC. respectfully requests approval to make changes to the Approved APD as follows: SHL, BHL, FTP, LTP, Directional Drilling Plan, Casing and cement change SHL: FROM: 423' FNL & 1295' FWL TO: 328' FNL & 806' FEL of Section 22-T24S-R30E BHL: FROM: 201' FNL & 197' FEL TO: 230' FNL & 400' FEL of Section 3-T24S-R30E FTP: FROM: 100' FNL & 256' FEL TO: 328' FNL & 806' FEL of Section 22-T24S-R30E LTP: FROM: 330' FNL & 198' FEL TO: 330' FNL & 400' FEL of Section 3-T24S-R30E DRILLING AND CASING PLAN: 6" P-110 26# production casing will be run instead of 5-1/2" P-110 23# production casing. ATTACHMENTS: New C-102, Drilling and Casing Plan, Directional Plan, Wellhead Design, Casing Spec Sheet, BOP Variance Request and Well Control Plan

NOI Attachments

Procedure Description

PLU_22_DTD_128H_sundry_attachments_for_APD_Changes_1_11_2024_20240111104515.pdf

POKER_LAKE_UNIT_22_DTD_128H_C_102_signed_12_20_2023_20231220154941.pdf

by OCD: 1/29/2024 9:42:23 AM Name: POKER LAKE UNIT 22

DTD

Well Location: T24S / R30E / SEC 22 /

NENE /

Well Number: 128H Type of Well: CONVENTIONAL GAS

WELL

Allottee or Tribe Name:

County or Parish/State:

Page 2 of

Lease Number: NMNM068905 **Unit or CA Name: Unit or CA Number:**

US Well Number: 3001549867 Well Status: Approved Application for **Operator: XTO PERMIAN**

Permit to Drill OPERATING LLC

Conditions of Approval

Additional

Sec 22 24S 30E NMP Sundry 2762134 Poker Lake Unit 22 DTD 128H COAs 20240104081428.pdf

Sec_22_24S_30E_NMP_Sundry_2762134_Poker_Lake_Unit_22_DTD_128H_Eng_Worksheet_20231226115533.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: RANELL (RUSTY) KLEIN Signed on: JAN 11, 2024 10:45 AM

Name: XTO PERMIAN OPERATING LLC

Title: Regulatory Analyst

Street Address: 6401 HOLIDAY HILL ROAD BLDG 5

City: MIDLAND State: TX

Phone: (432) 620-6700

Email address: RANELL.KLEIN@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

State: Zip: City:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 01/26/2024

Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

1. Type of Well

3a. Address

2. Name of Operator

Oil Well

TYPE OF SUBMISSION

Final Abandonment Notice

Notice of Intent

Subsequent Report

Gas Well

4. Location of Well (Footage, Sec., T.,R.,M., or Survey Description)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVE	D
OMB No. 1004-013	7
Expires: October 31, 2	202

SUNDRY NOTICES AND REPORTS ON WELLS Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals.

SUBMIT IN TRIPLICATE - Other instructions on page 2

Change Plans

Convert to Injection

DEP	ARTMENT OF THE I	NTERIOR		Expir	es: October 31, 2021	
BURI	EAU OF LAND MAN	AGEMENT		5. Lease Serial No.		
this f		ORTS ON WELLS to drill or to re-enter an PD) for such proposals		6. If Indian, Allottee or	Tribe Name	_
BMIT IN 7	TRIPLICATE - Other instru	uctions on page 2		7. If Unit of CA/Agreen	nent, Name and/or No.	_
Gas W	/ell Other			8. Well Name and No.		_
				9. API Well No.		_
		3b. Phone No. (include area code	2)	10. Field and Pool or Ex	ploratory Area	-
Sec., T.,R	.,M., or Survey Description)			11. Country or Parish, S	tate	_
12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE	E OF NOTI	CE, REPORT OR OTHE	ER DATA	_
N		TY	PE OF AC	ΓΙΟΝ		_
	Acidize Alter Casing	Deepen Hydraulic Fracturing	=	uction (Start/Resume)	Water Shut-Off Well Integrity	_
	Casing Repair	New Construction	Reco	mplete	Other	

13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be perfonned or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has detennined that the site is ready for final inspection.)

Plug and Abandon

Temporarily Abandon

Water Disposal

Plug Back

14. I hereby certify that the foregoing is true and correct. Name (Printed/Typed)

Title

Signature

Date THE SPACE FOR FEDERAL OR STATE OFICE USE

Approved by Title Date Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease Office which would entitle the applicant to conduct operations thereon.

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

Released to Imaging: 2/1/2024 10:27:34 AM

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Location of Well

0. SHL: NENE / 423 FNL / 1295 FEL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.209418 / LONG: -103.864468 (TVD: 0 feet, MD: 0 feet) PPP: SENE / 100 FSL / 1577 FWL / TWSP: 24S / RANGE: 30E / SECTION: 15 / LAT: 32.210805 / LONG: -103.872488 (TVD: 11404 feet, MD: 14428 feet) PPP: SESE / 100 FSL / 256 FEL / TWSP: 24S / RANGE: 30E / SECTION: 15 / LAT: 32.210878 / LONG: -103.861106 (TVD: 11404 feet, MD: 11788 feet) PPP: SESE / 300 FNL / 313 FWL / TWSP: 24S / RANGE: 30E / SECTION: 10 / LAT: 32.253158 / LONG: -103.876545 (TVD: 11404 feet, MD: 17068 feet) BHL: LOT 1 / 201 FNL / 197 FEL / TWSP: 24S / RANGE: 30E / SECTION: 3 / LAT: 32.253553 / LONG: -103.860887 (TVD: 11404 feet, MD: 27313 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO Permian Operating LLC
WELL NAME & NO.: Poker Lake Unit 22 DTD 128H
LOCATION: Sec 22-24S-30E-NMP
COUNTY: Eddy County, New Mexico

Changes approved through engineering via **Sundry 2762134** on 12/26/2023. Any previous COAs not addressed within the updated COAs still apply.

COA

H_2S	⊙ No	O Yes		
Potash / WIPP	None	Secretary	C R-111-P	□ WIPP
Cave / Karst	• Low	Medium	O High	Critical
Wellhead	Conventional	Multibowl	O Both	Diverter
Cementing	☐ Primary Squeeze		EchoMeter	□ DV Tool
Special Req	Break Testing	☐ Water Disposal	□ СОМ	✓ Unit
Variance	▼ Flex Hose	☐ Casing Clearance	☐ Pilot Hole	☐ Capitan Reef
Variance	☐ Four-String	Offline Cementing	☐ Fluid-Filled	☐ Open Annulus
		Batch APD / Sundry		

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **9-5/8** inch surface casing shall be set at approximately 794 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 6227'
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the 7-5/8" casing to surface after the second stage BH to verify TOC.

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. *Variance approved to utilize a 5M annular tested to 5000 psi*.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).

- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County (API No. / US Well No. contains 30-015-####)
 Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822
 - Lea County (API No. / US Well No. contains 30-025-####)
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43 CFR part 3170 Subpart 3172** as soon as 2nd Rig is rigged up on well.

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.

- d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR part 3170 Subpart 3172 must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR part 3170 Subpart 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the

BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Poker Lake Unit 22 DTD 128H

9 5/8	surface o	esg in a	12 1/4	inch hole.		Design I	Factors			Surfa	ce	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	40.00	J	55	BTC	19.83	6.92	1.9	794	11	3.30	13.08	31,760
"B"				BTC				0				0
w/8.4#/g	mud, 30min Sfc	Csg Test psig:	1,500	Tail Cmt	does not	circ to sfc.	Totals:	794				31,76
comparison o	f Proposed to	Minimum R	equired Ceme	ent Volumes								
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
12 1/4	0.3132	290	475	249	91	9.00	1198	2M				0.81
					Site plat (pip	e racks S or E)	as per O.O.1	.III.D.4.i. not	found.			
7 5/8	casing ins	side the	9 5/8			Design I	Factors			Int 1	L	
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	29.70	RYP	110	Flush Joint	4.70	2.57	1.21	4,000	5	1.76	4.47	118,80
"B"	29.70	HCL	80	Flush Joint	∞	2.78	0.88	7,246	3	1.28	4.83	
w/8.4#/g	mud, 30min Sfc	Csg Test psig:					Totals:	11,246				334,00
_			intended to a	chieve a top of	0	ft from su		794				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
0.	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
Size	volulle											
	0.1005	790	1535	1136 (2, c, d All >	35	10.00	5365 MASP is with	10M hin 10% of 5	000psig,	need exrt	a equip?	0.56
8 3/4 Burst Frac Graco.70, OK. Tail cmt	0.1005 dient(s) for Seg	790 ment(s): A, E	1535 3, C, D = a, 1.7		35		MASP is with		000psig,			0.56
8 3/4 Burst Frac Grac 0.70, OK. Tail cmt 5 1/2	0.1005 casing ins	790 ment(s): A, F	1535	22, c, d All >		Design Fa	MASP is with	nin 10% of 5		Prod	1	
8 3/4 Burst Frac Grac 0.70, OK. Tail cmt 5 1/2 Segment	0.1005 dient(s) for Seg casing ins #/ft	790 sment(s): A, F	1535 3, C, D = a, 1.7 7 5/8	Coupling	Joint	Design Far	MASP is with	hin 10% of 5	B@s	Prod a-B	1 a-C	Weigh
8 3/4 Burst Frac Grac 0.70, OK. Tail cmt 5 1/2	0.1005 casing ins #/ft 23.00	ment(s): A, E side the Grade RY P	1535 3, C, D = a, 1.7 7 5/8	2, c, d All > Coupling Semi-Premiur		Design Far Collapse 1.86	MASP is with	Length 11,146	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35
8 3/4 Burst Frac Grac 70, OK. Tail cmt 5 1/2 Segment "A" "B"	0.1005 dient(s) for Seg casing ins #/ft 23.00 23.00	790 ment(s): A, E side the Grade RY P RY P	1535 3, C, D = a, 1.7 7 5/8 110 110	Coupling	Joint 2.36	Design Far	ctors Burst 1.28 1.62	Length 11,146 17,620	B@s	Prod a-B	1 a-C	Weigh 256,35 405,26
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	casing ins #/ft 23.00 23.00 mud, 30min Sfc	ment(s): A, E side the Grade RY P RY P Csg Test psig:	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452	Coupling Semi-Premiur Semi-Flush	Joint 2.36 ∞	Design Fac Collapse 1.86 1.42	ctors Burst 1.28 1.62 Totals:	Length 11,146 17,620 28,766	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35 405,26 661,61
8 3/4 Burst Frac Grac 0.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	casing ins #/ft 23.00 23.00 mud, 30min Sfc	ment(s): A, E side the Grade RY P RY P Csg Test psig: olume(s) are	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a	Coupling Semi-Premiur Semi-Flush chieve a top of	Joint 2.36 ∞ 10500	Design Fac Collapse 1.86 1.42 ft from su	ctors Burst 1.28 1.62 Totals:	Length 11,146 17,620 28,766 746	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35 405,26 661,61 overlap.
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g	casing ins #/ft 23.00 23.00 mud, 30min Sfc	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage	Coupling Semi-Premiur Semi-Flush chieve a top of Min	Joint 2.36 ∞ 10500 1 Stage	Design Fac Collapse 1.86 1.42 ft from su Drilling	ctors Burst 1.28 1.62 Totals:	Length 11,146 17,620 28,766 746 Req'd	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35 405,26 661,61 overlap. Min Dis
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size	casing ins #/ft 23.00 23.00 mud, 30min Sfc Fhe cement vo Annular Volume	ment(s): A, E grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a	Coupling Semi-Premiur Semi-Flush chieve a top of	Joint 2.36 ∞ 10500	Design Fac Collapse 1.86 1.42 ft from su Drilling Mud Wt	ctors Burst 1.28 1.62 Totals: rface or a Calc	Length 11,146 17,620 28,766 746	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35 405,26 661,61 overlap. Min Dis
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft	Joint 2.36	Design Fac Collapse 1.86 1.42 ft from su Drilling	ctors Burst 1.28 1.62 Totals: rface or a Calc	Length 11,146 17,620 28,766 746 Req'd	B@s	Prod a-B 1.86	1 a-C 2.71	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835	ment(s): A, E grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft	Joint 2.36	Design Fac Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50	Ctors Burst 1.28 1.62 Totals: urface or a Calc MASP	Length 11,146 17,620 28,766 746 Req'd	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cpi
8 3/4 Burst Frac Grac 7.70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835 nt yld > 1.35	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1533	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50	Ctors Burst 1.28 1.62 Totals: urface or a Calc MASP	Length 11,146 17,620 28,766 746 Req'd BOPE	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43
8 3/4 Burst Frac Grac 7,70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835	ment(s): A, E grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1533 Coupling	Joint 2.36	Design Fac Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50	Ctors Burst 1.28 1.62 Totals: urface or a Calc MASP	Length 11,146 17,620 28,766 746 Req'd BOPE	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43
8 3/4 Burst Frac Grac 70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A"	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835 nt yld > 1.35	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1533 Coupling 0.00	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50	Ctors Burst 1.28 1.62 Totals: urface or a Calc MASP	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43
8 3/4 Burst Frac Grac 70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g 1 Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835 nt yld > 1.35	ment(s): A, E grade RY P RY P Csg Test psig: olume(s) are 1 Stage Cmt Sx 1250 Grade	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911	Coupling Semi-Premiur Semi-Flush chieve a top of Min Cu Ft 1533 Coupling	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50	MASP is with ctors Burst 1.28 1.62 Totals: urface or a Calc MASP Factors Burst	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43 Weigh 0
8 3/4 Burst Frac Grac 70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g 1 Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B"	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft mud, 30min Sfc	rment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250 Grade	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1533 Coupling 0.00 0.00	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50 Design I Collapse	Ctors Burst 1.28 1.62 Totals: urface or a Calc MASP Factors Burst Totals:	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0 0	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43 Weigh 0 0
8 3/4 Surst Frac Grac .70, OK. Tail cmt 5 1/2 Segment "A" W/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" w/8.4#/g	casing ins #/ft 23.00 23.00 mud, 30min Sfc Che cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft mud, 30min Sfc Cmt vol cal	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250 Grade Csg Test psig:	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911 5 1/2	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1533 Coupling 0.00 0.00 TOC intended	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50 Design I Collapse	MASP is with ctors Burst 1.28 1.62 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0 0 #N/A	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43 Weigh 0 0 overlap.
8 3/4 Burst Frac Grac 7,70, OK. Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" w/8.4#/g Hole	casing ins #/ft 23.00 23.00 mud, 30min Sfc The cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft mud, 30min Sfc Cmt vol cal Annular	790 ment(s): A, E grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250 Grade Csg Test psig: c below included the control of the	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a: 1 Stage CuFt Cmt 1911 5 1/2 udes this csg, 1 Stage	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1533 Coupling 0.00 0.00 TOC intended Min	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50 Design I Collapse ft from su Drilling	MASP is with ctors Burst 1.28 1.62 Totals: urface or a Calc MASP Factors Burst Totals: urface or a Calc	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0 0 #N/A Req'd	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43 Weigh 0 0 overlap. Min Dis Mi
8 3/4 Burst Frac Grac 7,70, OK. Tail cmt 5 1/2 Segment "A" W/8.4#/g Hole Size 6 3/4 Class 'C' tail cm #N/A 0 Segment "A" "B" w/8.4#/g	casing ins #/ft 23.00 23.00 mud, 30min Sfc Che cement vo Annular Volume 0.0835 nt yld > 1.35 #/ft mud, 30min Sfc Cmt vol cal	ment(s): A, E side the Grade RY P RY P Csg Test psig: blume(s) are 1 Stage Cmt Sx 1250 Grade Csg Test psig:	1535 3, C, D = a, 1.7 7 5/8 110 110 2,452 intended to a 1 Stage CuFt Cmt 1911 5 1/2	Coupling Semi-Premiur Semi-Flush Chieve a top of Min Cu Ft 1533 Coupling 0.00 0.00 TOC intended	Joint 2.36	Design Far Collapse 1.86 1.42 ft from su Drilling Mud Wt 13.50 Design I Collapse	MASP is with ctors Burst 1.28 1.62 Totals: urface or a Calc MASP Factors Burst Totals: urface or a	Length 11,146 17,620 28,766 746 Req'd BOPE Length 0 0 #N/A	B@s 1 2	Prod a-B 1.86 2.36	1 a-C 2.71 2.07	Weigh 256,35 405,26 661,61 overlap. Min Dis Hole-Cp 0.43 Weigh 0 0 overlap.

Carlsbad Field Office 12/26/2023

District I 1625 N French Dr., Hobbs, NM 88240 Phone (575) 393-6161 Fax: (575) 393-0720 District II 811 S First St., Artesia, NM 88210 Phone (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Bi 7501101 111 000 Rio Brazos Road, Aztec, NM 87410 hone (505) 334-6178 Fact (505) 334-6170

373075

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

X AMENDED REPORT

District IV 1220 S St. Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3460 Fax: (505) 476-3462 WELL LOCATION AND ACREAGE DEDICATION PLAT Pool Code API Number 30-015-49867 98220 rple Sage, Wolfcamp (gas) Property Code 128H **POKER LAKE UNIT 22 DTD** 333192 Elevation OGRID No XTO PERMIAN OPERATING, LLC. 3,430

"Surface Location East/West line UL or lot no. Section Township Rang EAST **EDDY** 806 NORTH 328 245 30E A 22 "Bottom Hole Location If Different From Surface East/West line County UL or lot no. **EDDY** EAST 230 **NORTH** 400 30E 245 3 Order No Consolidation Code Dedicated Acres Joint or Infill

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the

division. " OPERATOR **LEGEND** CERTIFICATION SECTION LINE hereby certify that the info. I herees cerain; may me information contained herein is tries and complete to the hest of fire. Involvedage with belief and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drift this well out this location pursuant to a contract with fire the property of the same and the s PROPOSED WELL BORE NEW MEXICO MINERAL LEASE **330' BUFFER** 330' FNL C-102.dwg 400' FEL ALLOCATION AREA un owner of such a mineral or working interest, or to a voluntary pooling ogreement or a compulsory pooling order heretofore entered by the division. 128H\DWC\128H SEC. 3 NMLC 0068545 LINE TABLE Date AZUMITH LENGTH LINE 112"21"11" 439.70 LI RUSTY KLEIN 359'46'57" 16,095.57 910 22 raneli klein@exxonmobil com E-mail Address PLO ł " SURVEYOR EDDY\Wells\-11 CERTIFICATION SEC. 10 -24-S I hereby certify that the well location shown on this plat was platted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief. R - 30 - Eខ្មែ 1 010 10-31-2023 22 Date of Survey PLU Professional Surveyor: NMNM 9002862 Unit\.08 - SEC. 15 Loke PPP 2 2.634' FN JEN MEXICO HAD NM\003 Poker WEN MEXICO NMNM 0002862 PO ONAL SURTA Energy 500' FNL 400' FEL NMNM 0002862 X MARK DILL ON HARP 23726 22 SEC. \618.013 618.013003.08-11 NMNM 0068431

Inte	nt X	As Dri	lled										
API 30	# 015												
Op	erator Na	_{me:} ИАN ОР	ERATIN	IG, LL	.C	Propert Poker I	y Nam _ake l	e: Unit :	22 DT	D			Well Number 128H
	Off Point												
UL	Section	Township	Range	Lot	Feet	Fro	m N/S	Fee	t	Froi	m E/W	County	
Latit	ude				Longitu	ıde						NAD	
	Take Poir							T-2				7 -	
UL A	Section 22	Township 24S	Range 30E	Lot	Feet 328 Longitu	Nor	n N/S th	Fee 806		Eas	n E/W st	County Eddy	
Latit. 32	^{ude} 209226							NAD 83					
Last 1 UL 1	Section	t (LTP) Township 24S	Range 30E	Lot	Feet 330	From N/S	5 Fee 400		From East		Count		
Latitu	de 253195	5			Longitu	de 361542					NAD 83		
		defining w	vell for the	e Horiz	ontal Sp	oacing Uni	t? []				
	l is yes pl ng Unit.	ease provi	de API if a	ıvailab	le, Oper	ator Nam	e and v	well n	umber	for E	Definin	ng well for	· Horizontal
API#													
Ope	rator Nan	ne:				Property	Name	•					Well Number
													K7 06/20/2018

Released to Imaging: 2/1/2024 10:27:34 AM

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.
POKER LAKE UNIT 22 DTD 128H
Projected TD: 28766' MD / 12162' TVD
SHL: 328' FNL & 806' FEL, Section 22, T24S, R30E
BHL: 230' FNL & 400' FEL, Section 3, T24S, R30E
Eddy County, NM

Geologic Name of Surface Formation A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Well Depth (TVD)	Water/Oil/Gas
694'	Water
1042'	Water
3791'	Water
4008'	Water
6227'	Water/Oil/Gas
7874'	Water
8669'	Water/Oil/Gas
9220'	Water/Oil/Gas
9968'	Water/Oil/Gas
11118'	Water/Oil/Gas
	Water/Oil/Gas
12162'	Water/Oil/Gas
	1042' 3791' 4008' 6227' 7874' 8669' 9220' 9968' 11118' 11157' 11241' 11285' 11730' 12062'

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 9.625 inch casing @ 794' (248' above the salt) and circulating cement back to surface. The intermediate will isolate from the top of salt down to the next casing seat by setting 7.625 inch casing at 11246' and cemented to surface. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 28766 MD/TD and 5.5 inch production casing will be set at TD and cemented back up in the intermediate shoe (estimated TOC 10946 feet).

3. Casing Design

Hole Size	Depth	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
12.25	0' - 794'	9.625	40	J-55	втс	New	1.28	7.84	19.84
8.75	0' - 4000'	7.625	29.7	RY P-110	Flush Joint	New	1.71	2.71	1.67
8.75	4000' – 11246'	7.625	29.7	HC L-80	Flush Joint	New	1.24	1.85	1.89
6.75	0' 11146'	5.5	23	RY P-110	Semi-Premium	New	1.21	1.93	1.60
6.75	11146' - 28766'	5.5	23	RY P-110	Semi-Flush	New	1.21	1.77	1.68

[·] XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing per this Sundry

^{***} Groundwater depth 40' (per NM State Engineers Office).

[·] XTO requests to not utilize centralizers in the curve and lateral

^{· 7.625} Collapse analyzed using 50% evacuation based on regional experience.

- · 5.5 Tension calculated using vertical hanging weight plus the lateral weight multiplied by a friction factor of 0.35 · XTO requests the option to use 5" BTC Float equipment for the the production casing

Wellhead:

- Permanent Wellhead Multibowl System

 A. Starting Head: 11* 10M top flange x 9-5/8* bottom

 B. Tubing Head: 11* 10M bottom flange x 7-1/16* 15M top flange

 - Wellhead will be installed by manufacturer's representatives. · Manufacturer will monitor welding process to ensure appropriate temperature of seal.
 - Operator will test the 7-5/8" casing per BLM Onshore Order 2
 - · Wellhead Manufacturer representative will not be present for BOP test plug installation

4. Cement Program

Surface Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 794'

Lead: 160 sxs EconoCem-HLTRRC (mixed at 10.5 ppg, 1.87 ft3/sx, 10.13 gal/sx water) Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

900 psi

Top of Cement: Surface

Compressives:

12-hr =

24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 11246'

Optional Lead: 330 sxs Class C (mixed at 10.5 ppg, 2.77 ft3/sx, 15.59 gal/sx water)

TOC: Surface

Tail: 460 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC: Brushy Canyon @ 6227

Compressives:

900 psi 12-hr =

24 hr = 1150 psi

2nd Stage

Lead: 0 sxs Class C (mixed at 12.9 ppg, 2.16 ft3/sx, 9.61 gal/sx water) Tail: 700 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 0

Compressives:

12-hr =

900 psi

24 hr = 1150 psi

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6227') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 23 New Semi-Flush, RY P-110 casing to be set at +/- 28766'

Lead: 20 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 10946 feet Tail: 1230 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 11546 feet 800 psi 24 hr = 1500 psi 12-hr =

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the 9.625 casing, the blow out preventer equipment (BOP) will consist of a 9.5/8" minimum 5/11 Hydril and a 9.5/8" minimum 10M Double Ram BOP. MASP should not exceed 5546 psi. In any instance where 10M BOP is required by BLM, XTO requests a variance to utilize 5M annular with 10M ram preventers (a common BOP configuration, which allows use of 10M rams in unlikely event that pressures exceed 5M).

All BOP testing will be done by an independent service company. Annular pressure tests will be limited to 50% of the working pressure. When nippling up on the 9.625, 10M bradenhead and flange, the BOP test will be limited to 10000 psi. When nippling up on the 7.625, the BOP will be tested to a minimum of 10000 psi. All BOP tests will include a low pressure test as per BLM regulations. The 10M BOP diagrams are attached. Blind rams will be functioned tested each trip, pipe rams will be functioned tested each day.

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken. Based on discussions with the BLM on February 27th 2020, we will request permission to ONLY retest broken pressure seals if the following conditions are met: 1. After a full BOP test is conducted on the first well on the pad 2. When skidding to drill an intermediate section that does not penetrate into the Wolfcamp.

6. Proposed Mud Circulation System

			MW	Viscosity	Fluid Loss				
INTERVAL	Hole Size	Mud Type	(ppg)	(sec/qt)	(cc)				
0' - 794'	12.25	FW/Native	8.5-9	35-40	NC				
794' - 11246'	8.75	FW / Cut Brine / Direct Emulsion	9.0 - 10.0	30-32	NC				
11246' - 28766'	6.75	ОВМ	12.5 - 13.5	50-60	NC - 20				

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under 9-5/8" surface casing with brine solution. A 9.7 ppg -10.2 ppg cut brine mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A Kelly cock will be in the drill string at all times.
- A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- H2S monitors will be on location when drilling below the 9.625 casing. C.

8. Logging, Coring and Testing Program

Mud Logger: Mud Logging Unit (2 man) below intermediate casing.

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 185 to 205 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 8222 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

111

Well Plan Report

30-015-49867

Well Plan Report - POKER LAKE UNIT 22 DTD 128H

11/8/23, 12:02 PM

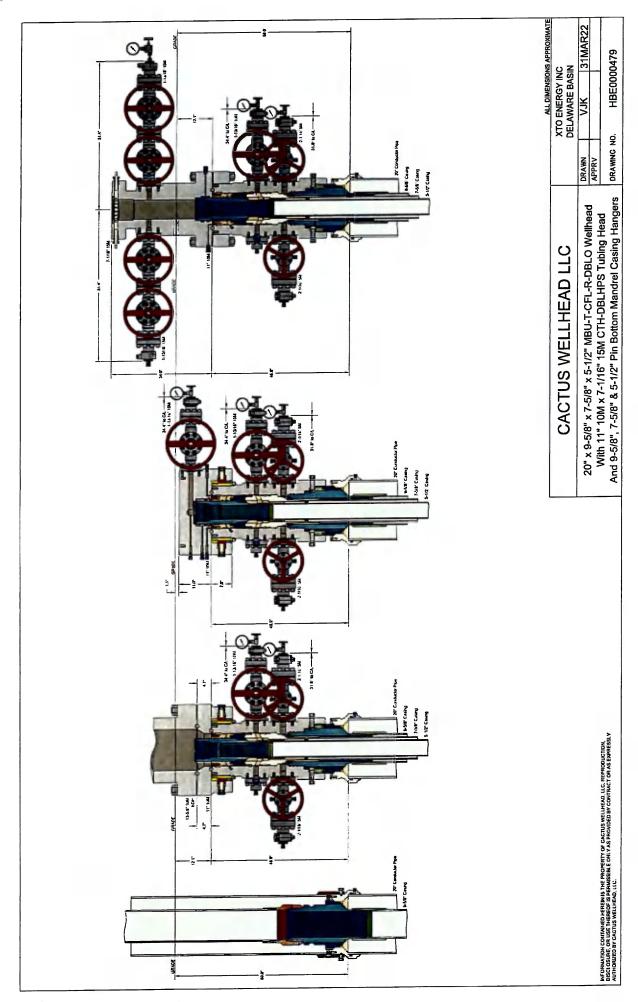
28765.69 ft	12162.00 ft		New Mexico East - NAD 27	440278.80 ft	645654.80 ft	3462.00 ft	3430.00 ft	Grid	0.25 Deg
Measured Depth:	TVD RKB:	Location	Cartographic Reference System:	Northing:	Easting:	RKB:	Ground Level:	North Reference:	Convergence Angle:

Plan Sections	a.	POKER LAKE UNIT	IT 22 DTD 128H							
Measured			ΔVΤ			ш	Build	Turn	Dogleg	
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset		Rate	Rate	Rate	
. €	(Deg)	(Deg)	(£)	£	((Deg/100ft)		(Deg/100ft)	(Deg/100ft) Target	
0.00	0.00	0.00	0.00	0.00	-0.00		00.00	0.00	00.00	
1100.00	0.00	0.00	1100.00	0.00	-0.00		0.00	00.0	0.00	
1712.37	12.25	155.14	1707.72	-59.16	27.42		2.00	00'0	2.00	
5687.40	12,25	155.14	5592.28	-824.23	381.97		00.00	0.00	0.00	
6299.78	0.00	0.00	6200.00	-883.39	409.39		-2.00	0.00	2.00	
11545.58	0.00	0.00	11445.80	-883.39	409.39		0.00	0.00	0.00	
12670.58	90.00	359.79	12162.00	-167.20	406.70		8.00	00.00	8.00 FTP 19	<u>6</u>
28665.69	90.00	359.79	12162.00	15827.80	346.70		0.00	0.00	0.00 LTP 19	6
28765.69	90.00	359.79	12162.00	15927.80	346.32		0.00	0.00	0.00 BHL 19	6
Position Uncertainty		POKER LAKE UNI	NIT 22 DTD 128H							
Measured		TVD Highside	ide Lateral		Vertical	Magnitude	Semi-major	Semi-minor	Semi-minor Tool	

file:///C:/Users/arsriva/Landmark/DecisionSpace/WellPlanning/Reports/POKERLAKEUNIT22DTD128H.HTML

_		
3		

	Azimuth Used	(6)	0.000 MWD+IFR1+MS	112.264 MWD+IFR1+MS	122.711 MWD+IFR1+MS	125.469 MWD+IFR1+MS	126.713 MWD+IFR1+MS	127.419 MWD+IFR1+MS	127.873 MWD+IFR1+MS	128.190 MWD+IFR1+MS	128,423 MWD+IFR1+MS	128.602 MWD+IFR1+MS	128,744 MWD+IFR1+MS	128.859 MWD+IFR1+MS	125.517 MWD+IFR1+MS	105,250 MWD+IFR1+MS	95.462 MWD+IFR1+MS	90,878 MWD+IFR1+MS	88.385 MWD+IFR1+MS	86.874 MWD+IFR1+MS	86.856 MWD+IFR1+MS	87.077 MWD+IFR1+MS	87.676 MWD+IFR1+MS	88,333 MWD+IFR1+MS	88.992 MWD+IFR1+MS		90.317 MWD+IFR1+MS	90.985 MWD+IFR1+MS	91.658 MWD+IFR1+MS	92.336 MWD+IFR1+MS	93.021 MWD+IFR1+MS	93.712 MWD+IFR1+MS	94.411 MWD+IFR1+MS
	Error	£	0.000	0.220	0.627	0.986	1.344	1.701	2.059	2.417	2.775	3.133	3.491	3.849	4.294	4.814	5.188	5.526	5.856	6.188	6.229	6.520	998'9	7.218	7.574	7.935	8.298	8.664	9.033	9.404	9.776	10.151	10.527
	Error	£	0.000	0.751	1.259	1.698	2.108	2.503	2.888	3.267	3.642	4.014	4.384	4.752	5.050	5.681	6.367	7.030	7.658	8.255	8.290	8.521	8.812	9.113	9.421	9.735	10.054	10.378	10.706	11.038	11.374	11.713	12.056
	of Bias	(#)	0.000	0.000	0.000	000'0	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0000	0000	0.000	0.000	0.000	000'0	0.000
Well Plan Report	Error Bias	(ft) (ft)	0.000 0.000	2.300 0.000	2.310 0.000	2.326 0.000	2.347 0.000	2.375 0.000	2.407 0.000	2.445 0.000	2.486 0.000	2.533 0.000	2.583 0.000	2.636 0.000	2.693 0.000	2.753 0.000	2.818 0.000	2.892 0.000	2.975 0.000	3.069 0.000	3.072 0.000	3.139 0.000	3.221 0.000	3.307 0.000	3.396 0.000	3.487 0.000	3.581 0.000	3.677 0.000	3.776 0.000	3.877 0.000	3,980 0,000	4.085 0.000	4.192 0.000
	Bias E	(£)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	9-0.000	2 -0.000	3 -0.000	9-0.000	3 -0.000	2 -0.000	2 -0.000	000.0- 0	8 -0.000	2 -0.000	000'0- 6	2 -0.000
	Error	Œ	0.000	0.350	0.861	1.271	1.658	2.034	2,405	2.773	3.138	3.502	3,865	4.228	4.876	5.191	5.512	5.839	6.172	6.511	6.550	6.835	7.185	7.543	7.906	8.273	8.642	9.015	9.390	9.768	10.147	10.529	10.912
	Error Bias	(ft)	0.000 0.000	0.700 0.000	1.112 0.000	1.497 0.000	1.871 0.000	2.240 0.000	2.607 0.000	2.971 0.000	3.334 0.000	3.696 0.000	4.058 0.000	4.419 0.000	4.488 0.000	5.331 0.000	6.072 0.000	6.744 0.000	7.364 0.000	7.944 0.000	7.973 0.000	8.209 0.000	8.498 0.000	8.797 0.000	9.103 0.000	9.414 0.000	9.732 0.000	10.054 0.000	10.381 0.000	10.712 0.000	11.047 0.000	11.385 0.000	11.727 0.000
	RKB	æ	0.000	100.000	200.000	300.000	400.000	200,000	000.009	700.000	800.000	900.006	1000.000	1100,000	1199.980	1299.838	1399.452	1498.702	1597.465	1695,623	1707.720	1793,353	1891.077	1988,801	2086.525	2184.249	2281.973	2379.697	2477.421	2575.145	2672.869	2770.593	2868.317
	Azimuth	Đ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	155.136	155.136	155.136	155.136	155.136	155,136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136	155.136
	Inclination A		0000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0000	0.000	2.000	4,000	000'9	8.000	10.000	12.000	12.247	12.247	12.247	12.247	12.247	12.247	12.247		12.247				12.247
11/8/23, 12:02 PM	Depth		0000	100.000	200.000	300.000	400,000	500.000	000'009	700,000	800.000	000'006	1000,000	1100,000	1200.000	1300.000	1400.000	1500.000	1600.000	1700.000	1712.373	1800,000	1900.000	2000.000	2100.000	2200,000	2300.000	2400.000	2500.000	2600.000	2700.000	2800.000	2900.000


	118 MWD+IFR1+MS	332 MWD+IFR1+MS	556 MWD+IFR1+MS	287 MWD+IFR1+MS	027 MWD+IFR1+MS	98.776 MWD+IFR1+MS	99.533 MWD+IFR1+MS	100,299 MWD+IFR1+MS				103.441 MWD+IFR1+MS	104.244 MWD+IFR1+MS	105.053 MWD+IFR1+MS	105.866 MWD+IFR1+MS	106.685 MWD+IFR1+MS	107.506 MWD+IFR1+MS	108.330 MWD+IFR1+MS	109,156 MWD+IFR1+MS	109.983 MWD+IFR1+MS	110.809 MWD+IFR1+MS	111.634 MWD+IFR1+MS	112,456 MWD+IFR1+MS	113.275 MWD+IFR1+MS	114.089 MWD+IFR1+MS	114.898 MWD+IFR1+MS	115.701 MWD+IFR1+MS	116.411 MWD+IFR1+MS	116.520 MWD+IFR1+MS	116.345 MWD+IFR1+MS	114.013 MWD+IFR1+MS	111.735 MWD+IFR1+MS	109.546 MWD+IFR1+MS
	95.118	95.832	96.556	97.287	98.027			•						•	•	•						Ì	Ť			•			`	•			
	10.904	11.282	11.661	12.041	12.422	12.803	13.185	13.567	13.950	14,333	14.717	15.100	15.484	15.868	16.252	16.636	17.021	17,405	17.789	18.173	18.558	18.942	19.326	19.710	20.094	20.478	20.861	21.197	21.245	21.638	22.053	22.456	22.845
	12,401	12.749	13.099	13.452	13.807	14.164	14.523	14.884	15.246	15.610	15.976	16.343	16.711	17.081	17.452	17.824	18.198	18.573	18.948	19.325	19.703	20.081	20.461	20.841	21.223	21.605	21.988	22.320	22.366	22.756	23.193	23.624	24.050
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	0.000		0.000	0.000	0.000	0000	0.000	0000	3 0.000	0.000	000.0	1 0.000	8 0.000	00000 2	8 0.000	0.000	3 0.000	00000 81	25 0.000	33 0.000	000.0 50	14 0.000	97 0.000	32 0.000	78 0.000	27 0.000	76 0.000	7.809 0.000	7.828 0.000	7.983 0.000	8.139 0.000	8.288 0.000	8.430 0.000
š	4.300	4.411	4.523	4.636	4.752	4.868	4.987	5.107	5.228	5.351	5.475	5.601	5.728	5.857	5.988	6.120	6.253	6.388	6.525	6.663	0 6.803	0 6.944	7.087	0 7.232	0 7.378	0 7.527	0 7.676						
	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000		-0.000		-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	-0.000	900.0-	-0.000	3 -0.000		2 -0.000	000.0- 0	7 -0.000	5 -0.000	3 -0.000	2 -0.000	000.0- 0	27 -0.000	96 -0.000	24 -0.000	000'0- 20	30 -0.000	43 -0.000
	11.296	11.682	12.069	12,457	12.846	13.236	13.626	14.018	14.410	14.802	15.196	15.589	15.984	16.378	16.774	17.169	17.565	17.961	18.358	18.755	19.152	19.550		20.345	20.743	21.142	21.540	21.887		22.324	22.707	23.080	23.443
	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				0.000	0	_	_	_		5 0.000	00000						
	12 071								14.904	15.266	15.629	15.993	16.359	16.725	17.093	17.461	17.830	18.200	18.571	18.943	19.315	19,688	20.061	20.435	20.810	21.185	21.560	21.887	21.938	22.359	22.828	23,262	23.659
	2066 041			3259 214	3356.938	3454.662	3552.386	3650.110	3747.834	3845,558	3943.282	4041.006	4138.730	4236.454	4334.178	4431.902	4529.626	4627,350	4725.074	4822.798	4920.522	5018.247	5115.971	5213.695	5311.419	5409.143			5604.597	5702.756			
	455 126	155,136	155.150	155 126	155 136	155 136	155,136	155.136	155.136	155.136	155.136	155.136	155,136	155,136	155.136	155,136	155,136	155.136	155.136	155.136	155,136	155 136	155,136	155,136	155,136	155,136	155.136	155,136	155.136	155.136	155,136		
		12.241						-					12.247	12.247	12.247	12 247	12.247	12 247	12.247	12.247	12.247	12 247	12.247	12.247	12.247	12.247	12.247	12 247	11.996	966.6	7 996	7 ag6	3.996
A40 00:04 00:0144	11/8/23, 12:02 PM	3000.000	3100.000	3200,000	3300.000	3400.000	3600,000	3700 000	3800.000	3900.000	4000.000	4100.000	4200 000	4300 000	4400 000	4500 000	4500.000	4200.000	47.00.000	4900 000	5000.000	5000:000	5200 000	5300 000	5400.000	5500 000	5600.000	5687 403	5200,000	5800 000	5000,000	900.000	6100.000

	221 107.474 MWD+IFR1+MS	107.675	107.832	157 108.070 MWD+IFR1+MS	24.465 108.300 MWD+IFR1+MS	24.774 108.525 MWD+IFR1+MS	25.085 108.745 MWD+IFR1+MS	25.396 108.959 MWD+IFR1+MS	25.709 109.168 MWD+IFR1+MS	26.023 109.372 MWD+IFR1+MS	26.338 109.571 MWD+IFR1+MS	26.655 109.765 MWD+IFR1+MS	26.972 109.955 MWD+IFR1+MS	27.290 110.141 MWD+IFR1+MS	27.609 110.322 MWD+IFR1+MS	27.930 110.498 MWD+IFR1+MS	28.251 110.671 MWD+IFR1+MS	28.573 110.840 MWD+IFR1+MS	28.895 111.006 MWD+IFR1+MS	29.219 111.167 MWD+IFR1+MS	29.543 111.325 MWD+IFR1+MS	29.868 111.480 MWD+IFR1+MS	30.194 111.631 MWD+IFR1+MS	30.521 111.779 MWD+IFR1+MS	30.848 111.923 MWD+IFR1+MS	31.176 112.065 MWD+IFR1+MS	31.504 112.204 MWD+IFR1+MS	31.834 112.340 MWD+IFR1+MS	32.163 112.473 MWD+IFR1+MS	32.494 112.603 MWD+IFR1+MS	32.825 112.731 MWD+IFR1+MS	33.156 112.856 MWD+IFR1+MS	33.488 112.979 MWD+IFR1+MS
	23.221	23.547	23.850	24.157	24.	24.	25.	25.	25.		26.																						
	24,468	24.776	25.121	25.428	25.736	26,045	26.356	26.668	26,982	27.296	27.612	27.928	28.246	28.564	28.884	29.205	29.526	29.848	30.171	30.495	30.820	31.145	31.472	31.798	32.126	32.454	32.783	33.113	33.443	33.774	34.105	34.437	34.769
+-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Well Plan Report	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	00000	000.0	3 0.000	00000	00000	3 0.000	00000 6	2 0.000	00000 6	00000 6	2 0.000	8 0.000	0000 2	000.0 6	0.000	33 0.000
Wel	8.567	8.699	8.830	8.965	9.101	9.240	9.382	9.527	9.675	9.825	9.978	10.134	10.292	10.454	10.618	10.785	10.955	11.128	11.304	11.483	11.665	11.850	12.038	12.229	12.422	12.619	12.819	13.022	13.228	13,437	13.649	13.864	14.083
	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	3 0.000	0000
	23.795 -	23.663	23.972	24.282	24.593	24.905	25.219	25.534	25.849	26.166	26.484	26.803	27.123	27.444	27.766	28,089	28.413	28.737	29.062	29.388	29.715	30.043	30.371	30.700	31.029	31,359	31.690	32.022	32.354	32.686	33.019	33,353	33.687
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	_	0.000	0.000	0.000	0000	0.000		0.000	0.000	0000 2
	24.019		25.004 (25.308 (28.416	28.733	29.051	29.370	29.690	30.010	30.332	30.654	30.977	31.301	31.626	31.951	32.277	32.604	32.931	33.259	33.588	33.917	34.247	34.577
	6100.245		6300.225	6400,225	6500.225	6600,225	6700.225	6800.225	6900.225	7000.225	7100.225	7200.225	7300.225	7400.225	7500.225	7600.225	7700.225	7800.225	7900.225	8000.225	8100.225	8200.225	8300.225	8400.225	8500.225	8600.225	8700.225	8800.225	8900.225			-	
	155.136					0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	1.996 1		0.000	000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0000	0000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	000
11/8/23 12:02 PM	6200 000	6299.775	6400.000	6500 000	6600 000	000 0029	6800.000	000.0009	2000.000	7100.000	7200,000	7300.000	7400.000	7500.000	7600.000	000 0022	7800.000	2900.0007	800.000	8100.000	8200.000	8300.000	8400.000	8500.000	8600.000	8700.000	8800.000	8900.000	000.000	9100.000	9200.000	9300.000	9400 000

		113.217 MWD+IFR1+MS	113.332 MWD+IFR1+MS	113.446 MWD+IFR1+MS	13.557 MWD+IFR1+MS	113.666 MWD+IFR1+MS	113.773 MWD+IFR1+MS	113.878 MWD+IFR1+MS	113,981 MWD+IFR1+MS	114.082 MWD+IFR1+MS	_				114.561 MWD+IFR1+MS	114.651 MWD+IFR1+MS	114.741 MWD+IFR1+MS	114.828 MWD+IFR1+MS	114.914 MWD+IFR1+MS	114.999 MWD+IFR1+MS	115.082 MWD+IFR1+MS	115.077 MWD+IFR1+MS						99.947 MWD+IFR1+MS	99.818 MWD+IFR1+MS	99.894 MWD+IFR1+MS	100.096 MWD+IFR1+MS	100.355 MWD+IFR1+MS	100.587 MWD+IFR1+MS	
	33.821 113	34.154 113	34,488 113	34.822 11:	35.156 113	35,492 11	35.827 11	36.163	36.499	36.836		37.511 11	37.849 1		38.525 1	38.864	39.204	39.543	39.883	40.224	40.564	40.719	40.904					42.426	42.631	42.808	42.957	43.080	43.178	
	35.102	35,436	35.770	36.104	36.439	36.774	37.110	37.446	37.783	38.120	38.457	38.795	39.133	39,472	39.811	40.150	40.490	40,829	41.170	41.510	41.851	42.004	42.206	43.052	44.205	45.228	46.089	46.777	47.291	47,645	47.861	47.968	48.003	
_	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	
Well Plan Report	0000 400	328 0.000	14.756 0.000	14.987 0.000	15.220 0.000	15.457 0.000	15.697 0.000	15,940 0.000	16.187 0.000	16.436 0.000	16.688 0.000	16.944 0.000	17.203 0.000	17.465 0.000	17.730 0.000	17,998 0.000	8.269 0.000	18.544 0.000	18.821 0.000	19.102 0.000	19.386 0.000	19.516 0.000	19.672 0.000	19.984 0.000	20.413 0.000	21.007 0.000	21.800 0.000	22.805 0.000	24.010 0.000	25.383 0.000	26.879 0.000	28.447 0.000	30.033 0.000	
	0.000 14.304	0.000 14.528	0.000 14.7	0.000 14.8	0.000 15.2			0.000 15.	0.000 16.	0.000 16.	0.000 16.	0.000 16	0.000 17	0.000 17	0.000	0.000 17	0.000 18	0000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	34.021	34.356	34.692	35.028	35,364	35,701	36.039	36,376	36.714	37.053	37.392	37.731	38.070	38.410	38.751	39.091	39.432	39.773	40.115	40.456	40.798	40.953	41.139	41.465	41.776	42.064	42.329	42.568	42.780	42.965	1 43.123) 43.253	3 43.357	
	34.908 0.000							37.239 0.000	37.574 0.000	37.909 0.000	38.245 0.000	38.581 0.000	38.917 0.000	39.254 0.000	39.592 0.000	39,929 0.000	40.267 0.000	40.606 0.000		41.283 0.000	41.623 0.000		41.666 0.000	41.547 0.000	41.240 0.000	40.383 0.000	39.066 0.000	37.412 0.000	35.581 0.000	33.771 0.000		31,173 0,000		
	9400.225			9700.225	9800,225	9900 225	10000.225	10100.225	10200,225	10300.225	10400.225	10500.225	10600.225	10700.225	10800.225	10900.225	11000.225	11100.225	11200.225	11300.225	11400.225	11445.803	11500.172	11599.031	11694.907	11785.935	11870.342	11946.487	12012.886					
	0.000	0000	0000	0000	000							0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	359.785	359.785	359.785	359.785	359.785	359,785	359.785	359.785	359.785	359 785	359.785	
	0.00	000	000.0			0000	0000	000	0000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0000	0000	0000	0000	0000	4.354	12.354	20.354	28.354	36.354	44.354	52.354	60.354	68.354	76 354	84.354	
11/8/23 12:02 PM	9500 000	9300,000	9600:000	9700.000	900.000	9900.000	10000,000	10200 000	10300 000	10400:000	10500.000	10600.000	10700,000	10800.000	10900.000	11000 000	11100.000	11200 000	11300 000	11400.000	11500.000	11545.578	11600.000	11700.000	11800.000	11900.000	12000.000	12100 000	12200.000	12300 000	12400 000	12500.000	12600.000	

	100.665 MWD+IFR1+MS	100.681 MWD+IFR1+MS	100.775 MWD+IFR1+MS	100.917 MWD+IFR1+MS	101.104 MWD+IFR1+MS	101.342 MWD+IFR1+MS	101.637 MWD+IFR1+MS	102,000 MWD+IFR1+MS	102,441 MWD+IFR1+MS	102.975 MWD+IFR1+MS	103.624 MWD+IFR1+MS	104.414 MWD+IFR1+MS	105.382 MWD+IFR1+MS	106.578 MWD+IFR1+MS	108.074 MWD+IFR1+MS	109.970 MWD+IFR1+MS	112.403 MWD+IFR1+MS	115.566 MWD+IFR1+MS	119.692 MWD+IFR1+MS	125.002 MWD+IFR1+MS	131.518 MWD+IFR1+MS	-41.191 MWD+IFR1+MS	-34.002 MWD+IFR1+MS	-27.722 MWD+IFR1+MS	-22.669 MWD+IFR1+MS	-18.754 MWD+IFR1+MS	-15.744 MWD+IFR1+MS	-13,411 MWD+IFR1+MS	-11.576 MWD+IFR1+MS	-10.109 MWD+IFR1+MS	-8.918 MWD+IFR1+MS	-7.936 MWD+IFR1+MS	
	43.231	43.250	43.331	43.432	43.549	43.684	43.834	44.001	44.183	44.381	44.593	44.820	45.060	45.313	45.577	45.850	46.129	46.411	46.688	46.954	47.195	47.401	47.565	47.690	47.786	47.860	47.920	47.970	48.013	48.052	48.088	48.121	
	48.007	48.008	48.011	48.015	48.021	48.029	48.037	48.047	48.059	48.073	48.089	48.107	48.129	48.155	48.185	48.222	48,268	48.326	48.404	48.508	48.651	48.843	49.090	49.388	49.730	50.106	50.509	50,933	51.376	51.835	52.308	52.794	
Ħ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	
Well Plan Report	30.656 0.000	30.717 0.000	30.888 0.000	31.080 0.000	31.291 0.000	31.521 0.000	31.768 0.000	32.032 0.000	32.313 0.000	32.611 0.000	32.924 0.000	33.254 0.000	33.598 0.000	33,957 0.000	34.330 0.000	34.717 0.000	35.117 0.000	35.530 0.000	35.956 0.000	36,393 0.000	36.842 0.000	37.302 0.000	37.773 0.000	38.254 0.000	38.745 0.000	39.245 0.000	39.755 0.000	40.273 0.000	40.800 0.000	41.336 0.000	41.879 0.000	42.429 0.000	
	0.000	0.000 30	0.000	0.000	0.000	0.000	0.000	0.000 33	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	3 0.000	
	43.410	43.429	43.510	43.612	43.730	43.866	44.020	44.190	44.377	44.581	44.801	45.037	45.289	45.557	45.840	46.138	46.451	46.779	47.121	47.476		48.228	48.623	49.031	49.451	49.884	50.328	50.783	51,250	51.727	52.215	52.713	
	30.656 0.000	30.717 0.000		31,080 0.000		31.521 0.000		32.032 0.000	32.313 0.000	32.611 0.000	32.924 0.000	33.254 0.000	33,598 0.000	33.957 0.000	34.330 0.000	34.717 0.000	35.117 0.000	35.530 0.000	35.956 0.000	36.393 0.000	36.842 0.000	37.302 0.000	37.773 0.000	38.254 0.000	38.745 0.000	39.245 0.000	39.755 0.000	40.273 0.000	40.800 0.000	41.336 0.000	41.879 0.000		
	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000				12162,000					12162.000	12162.000		12162.000			
	359.785								359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359,785	359.785	359.785	359,785	359.785	359,785	359.785	359.785	359.785	359.785	359.785					
	000.06									90,000	90.000	90.000	90.000	90.000	90.000	000 06	000.06	90.000	000.00	90.000	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	000 06	1 1 1 1 1
11/8/23 12-02 PM	12670 578	12700 000	12800 000	12900 000	13000 000	13100 000	13200 000	13300.000	13400.000	13500.000	13600.000	13700.000	13800.000	13900.000	14000.000	14100 000	14200 000	14300 000	14400 000	14500.000	14600.000	14700 000	14800.000	14900.000	15000,000	15100.000	15200,000	15300.000	15400.000	15500.000	15600.000	15700 000	110000

	-6,424 MWD+IFR1+MS	-5.832 MWD+IFR1+MS	-5.323 MWD+IFR1+MS	-4.880 MWD+IFR1+MS	-4.493 MWD+IFR1+MS	-4.152 MWD+IFR1+MS	-3.849 MWD+IFR1+MS	-3,579 MWD+IFR1+MS	-3.338 MWD+IFR1+MS	-3.120 MWD+IFR1+MS	-2.924 MWD+IFR1+MS	-2.746 MWD+IFR1+MS	-2.584 MWD+IFR1+MS	-2.436 MWD+IFR1+MS	-2,301 MWD+IFR1+MS	-2.176 MWD+IFR1+MS	-2,062 MWD+IFR1+MS			-1,768 MWD+IFR1+MS		-1.606 MWD+IFR1+MS	-1.533 MWD+IFR1+MS	-1.465 MWD+IFR1+MS	-1.402 MWD+IFR1+MS	-1.342 MWD+IFR1+MS	-1.287 MWD+IFR1+MS	-1.234 MWD+IFR1+MS	-1.185 MWD+IFR1+MS	-1.139 MWD+IFR1+MS	-1.095 MWD+IFR1+MS	-1.054 MWD+IFR1+MS	-1.015 MWD+IFR1+MS	7111
	48.184	48.215	48.244	48.274	48.304	48.333	48.363	48.393	48.423	48,453	48.484	48.515	48.547	48.579	48.611	48.644	48.677	48 711	48 745	48.780	48.816	48.852	48.888	48.925	48.963	49.001	49.039	49.078	49.118	49.158	49.199	49.240	49.282	
	53.801	54.320	54.850	55.390	55.939	56.497	57.063	57,638	58.220	58.810	59.408	60.013	60,625	61,243	61.868	62.499	63 136	63 770	027.50	04.420 65.082	65 742	66 407	67.076	67.751	68.431	69.115	69.803	70.496	71,193	71.894	72.598	73.307	74.020	
	0.000	0000			0.000	0000	0000	0000	0000	000	0.000	0.000	0.000	000	000	0000	200.0	000.0	0.000	0.000	000.0	0.000		0000	0000	0000	000 0	0000	0000	0000	0.000	0.000	0000	
Well Plan Report	42 EE2 0 000				45.286 0.000					48.293 0.000								-		54.657	55.314	55.975	56,639	57.306		58.040	59.324	200.00	60.000	67.064	62.730	63.429	64.122	
					0.000	0.000	0.000	0.000	0,000	0.000	0.00			0.000								_						_	_	_	89 0.000			
	1	53.738	54.265	54.801	55,346	55.899	56.461	57.031	57.608	58.194	58.786	59.380	59.335	60.606	61.220			63.123	63.767									_				72.594		
		0.0				45.877 0.000											52.706 0.000	53.353 0.000	54.003 0.000	54.657 0.000	55.314 0.000	55.975 0.000	56.639 0.000						60.683 0.000				63.429 0.000	04.122
			12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000	12162.000		12162.000	12162.000					5 12162.000
		359.785 12	359.785 12	359.785 1	359.785 1	359.785 1	359.785 1	359.785 1	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785	359.785			359.785
		90.000 35	90.000 35	90.000	90.000 34	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000	90.000
	11/8/23, 12:02 PM	15900.000		16100.000	16200.000	16300.000	16400.000	16500.000	16600.000	16700.000	16800.000	16900.000	17000.000	17100.000	17200.000	17300.000	17400.000	17500.000	17600.000	17700.000	17800.000	17900.000	18000.000	18100.000	18200.000	18300.000	18400.000	18500.000	18600.000	18700.000	18800.000	18900.000	19000.000	19100.000

2/22/2022 2:07:15 PM

U. S. Steel Tubular Products 6.000" 26.00lb/ft (0.436" Wall)

P110 HP USS-FREEDOM HTQ®

MECHANICAL PROPERTIES	Pipe	USS-FREEDOM HTQ®	
Minimum Yield Strength	125,000	-	psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	130,000	_	psi -
DIMENSIONS	Pipe	USS-FREEDOM HTQ®	
Outside Diameter	6.000	6.875	in.
Wall Thickness	0.436		in.
Inside Diameter	5.128	5.128	in.
Standard Drift	5.003	5.003	in.
Alternate Drift	-	-	in.
Nominal Linear Weight, T&C	26.00	-	lb/ft -
Plain End Weight	25.93	_	lb/ft -
SECTION AREA	Pipe	USS-FREEDOM HTQ®	
Critical Area	7.621	7.621	sq. in.
Joint Efficiency		100.0	%
PERFORMANCE	Pipe	USS-FREEDOM HTQ®	
Minimum Collapse Pressure	15,550	15,550	psi -
Minimum Internal Yield Pressure	15,920	15,920	psi -
Minimum Pipe Body Yield Strength	953,000	_	ib -
Joint Strength		953,000	ib -
Compression Rating		953,000	lb -
Reference Length [4]		24,492	ft -
Maximum Uniaxial Bend Rating [2]	-	95.5	deg/100 ft -
MAKE-UP DATA	Pipe	USS-FREEDOM HTQ®	
Make-Up Loss	_	4.31	in. –
Minimum Make-Up Torque [3]		15,000	ft-lb -
Maximum Make-Up Torque [3]	-	21,000	ft-lb -
Maximum Operating Torque[3]		44,000	ft-lb -

Notes

- Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate
 any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

8/27/2021 1:48:58 PM

U. S. Steel Tubular Products 6.000" 26.00lb/ft (0.436" Wall) P110 RY USS-TALON HTQ™

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™		[6]
Minimum Yield Strength	110,000	_	psi	_
Maximum Yield Strength	125,000	_	psi	_
Minimum Tensile Strength	125,000	-	psi	-
DIMENSIONS	Pipe	USS-TALON HTQ™	75.465	-
Outside Diameter	6.000	6.875	in.	-
Wall Thickness	0.436	_	in.	_
Inside Diameter	5.128	5.128	in.	-
Standard Drift	5.003	5.003	in.	_
Alternate Drift			in.	-
Nominal Linear Weight, T&C	26.00	_	lb/ft	-
Plain End Weight	25.93	-	lb/ft	
SECTION AREA	Pipe	USS-TALON HTQ™		
Critical Area	7.621	7.621	sq. in.	
Joint Efficiency	-	100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™		
Minimum Collapse Pressure	13,570	13,570	psi	-
Minimum Internal Yield Pressure	14,010	14,010	psi	-
Minimum Pipe Body Yield Strength	838,000		lb	-
Joint Strength		838,000	lb	-
Compression Rating		838,000	lb	-
Reference Length		21,490	ft	[5]
Maximum Uniaxial Bend Rating	-	84.0	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™	Market Land	-
Make-Up Loss	-	5.58	in.	-
Minimum Make-Up Torque	_	22,500	ft-lb	[4]
Maximum Make-Up Torque	-	25,500	ft-lb	[4]
Maximum Operating Torque		48,900	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3. Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- 6. Coupling must meet minimum mechanical properties of the pipe.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

<u>Subject:</u> Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by- well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance.

Supporting Documentation

CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

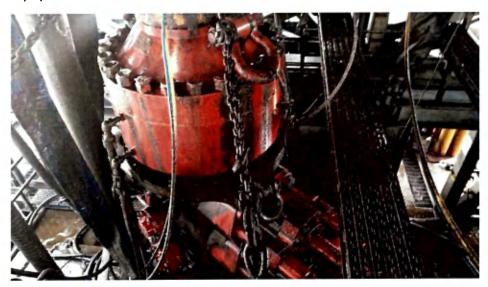


Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

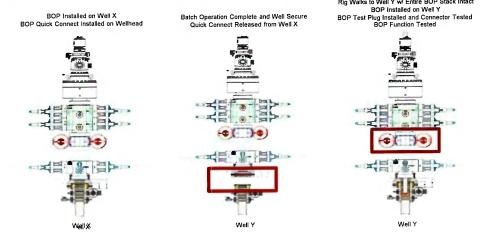
American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

2	API STANDARD	53	
Tal	ole C.4—Initial Pressure Te	sting. Surface BOP Stacks	
	Pressure Test—Low	Pressure Test	-High Pressure*
Component to be Pressure Tested	Pressure rest—Low Pressure <mark>sc</mark> psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
Annular preventer ^b	250 to 350 (1 72 to 2 41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
Fixed pipe, variable bore, blind, and BSR preventers	250 to 350 (1.72 to 2.41)	RWP of ram preventer or weithead system, whichever is lower	ПР
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1 72 to 2 41)	RWP of side outlet valve or wethead system, whichever is lower	ПР
Choke manifold—upstream of chokes*	250 to 350 (1.72 to 2 41)	RWP of ram preventers or wellhead system, whichever is lower	пе
Choke manifold—downstream of chokes ^e	250 to 350 (1 72 to 2.41)	RWP of valve(s), line(s), or k whichever is lower	ASP for the well program,
Kelly, kelly valves, dnil pipe safety valves, IBOPs	250 to 350 (1 72 to 2.41)	MASP for the well program	
Annular(s) and VBR(s) shall be pre	during the evaluation period. The persure tested on the largest and sm	ressure shall not decrease below the allest OD drill pipe to be used in well	program.
pressure-controlling connections	when the integrity of a pressure se		
For surface offshore operations, ti	ne ram BOPs shall be pressure tes tand operations, the ram BOPs sha	ited with the ram locks engaged and all be pressure tested with the ram to	the closing and locking pressur cks engaged and the closing an

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 0and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after

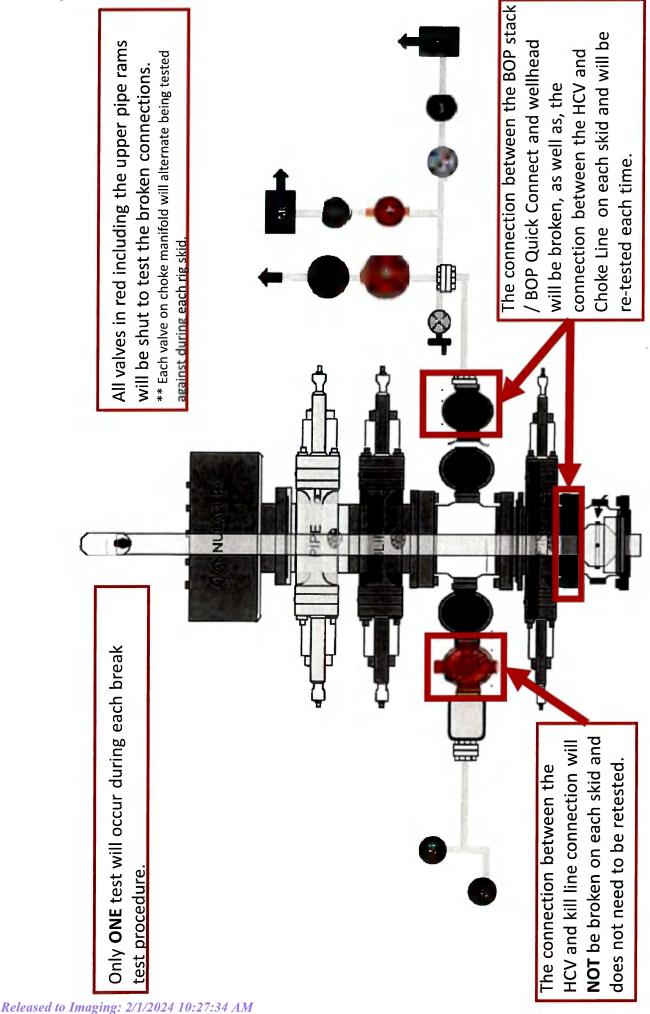

each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170.

Procedures

- 1. XTO Energy will use this document for our break testing plan for New Mexico Delaware basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - Between the HCV valve and choke line connection
 - Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations


Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the XTO Energy/Permian Operating drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per 43.CFR.3172 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- a. Sound alarm (alert crew)
- b. Stab crossover and full-opening safety valve and close
- c. Space out string
- d. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- e. Confirm shut-in
- f. Notify toolpusher/company representative
- g. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- h. Regroup and identify forward plan
- i. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time

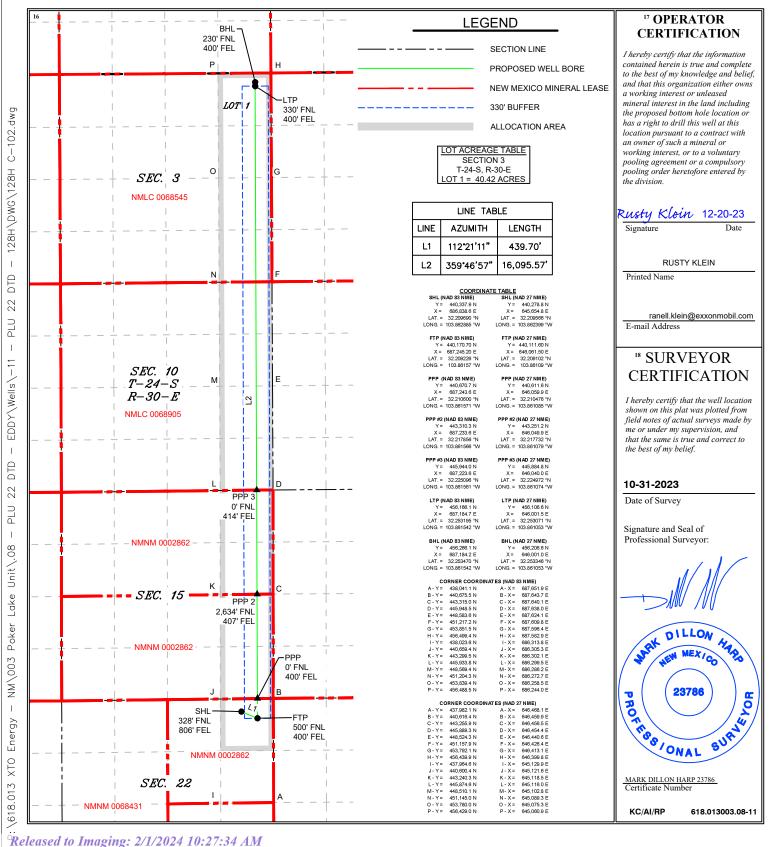
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 <u>District II</u> 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462 State of New Mexico
Energy, Minerals & Natural Resources Department
OIL CONSERVATION DIVISION
1220 South St. Francis Dr.
Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


X AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

	** 171	DE LOCITION THIS	HEREITGE BEBIEFITION I EITI	
¹ API Number	r	² Pool Code	³ Pool Name	
30-015-	19867	98220	Purple Sage; Wolfcamp (gas)	
⁴ Property Code		⁵ P	roperty Name	⁶ Well Number
333192		POKER L	AKE UNIT 22 DTD	128H
⁷ OGRID No.		8 O	perator Name	⁹ Elevation
373075		XTO PERMIA	AN OPERATING, LLC.	3,430'

¹⁰ Surface Location UL or lot no. Section Township Range North/South lin Feet from the East/West line 22 **24S** 30E **NORTH** 806 **EAST EDDY** Α 328 "Bottom Hole Location If Different From Surface UL or lot no. East/West line Section Feet from the County Township Rang Lot Idn Feet from the North/South line 3 **24S** 30E 230 **NORTH** 400 **EAST EDDY** Joint or Infill Dedicated Acres Consolidation Code Order No.

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Inten	t X	As Dril	led											
API #														
Ope	rator Na	^{ne:} IIAN OPI	ERATIN	NG, LL	.C	Prope	erty N er Lal	lame ke U	: nit 2:	2 DTI	D			Well Number 128H
(ick (Off Point	(KOP)												
UL	Section	Township	Range	Lot	Feet		From N	1/S	Feet		Fron	n E/W	County	
Latit	<u> </u> ude				Longitu	ude							NAD	
irst Tul	Take Poir Section 22	t (FTP) Township 24S	Range 30E	Lot	Feet 328		From North		Feet 806		From Eas	n E/W t	County Eddy	
Latiti 32.2	ude 209226	6			Longitu 103.	ude 8615	57						NAD 83	
_ast ∃	Take Poin	t (LTP)	Range	Lot	Feet	From	n N/S	Feet		From	E/W	Count	tv	
1 Latit	3	24S	30E		330 Longitu	Nort		400		East		Eddy		
32.	25319	5			103.	8615	42					83		
		defining v	vell for t	he Hori:	zontal S _l	pacing	Unit?	. []				
	ng Unit.	lease prov	ide API if	⁻ availat	ole, Ope	rator N	lame	and v	vell n	umbei	r for I	Definir	ng well fo	r Horizontal
						Dron	orty N	lama						Well Number
Оре	rator Nai	ne:				Prope	erty N	iame	•					vveii ivumber
						1								K2 06/20/201

KZ 06/29/2018

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 308865

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	308865
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date
ward.rikala	All original COA's still apply. Additionally, if cement is not circulated to surface during cementing a casing string, then a CBL is required.	2/1/2024