Received by OCD: 2/3/2024 8:11:03 AM U.S. Department of the Interior		Sundry Print Report?7 04/03/2024
BUREAU OF LAND MANAGEMENT		and the second
Well Name: PEGASUS 3 FED COM	Well Location: T24S / R32E / SEC 3 / SESW / 32.2408713 / -103.6630417	County or Parish/State: LEA / NM
Well Number: 765H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM94850	Unit or CA Name:	Unit or CA Number:
US Well Number: 300254716900X1	Well Status: Producing Oil Well	Operator: EOG RESOURCES INCORPORATED

Notice of Intent

Sundry ID: 2644361

Type of Submission: Notice of Intent

Date Sundry Submitted: 11/16/2021

Date proposed operation will begin: 11/30/2021

Type of Action: Other Time Sundry Submitted: 02:15

Procedure Description: EOG respectfully requests an amendment to our approved APD for this well to reflect the following changes: Change name from Pegasus 3 Fed Com 707H to Pegasus 3 Fed Com 765H. Change BHL to T-23-S, R-32-E, Sec 34, 100' FNL, 1080' FEL, Lea Co., N.M. Change target formation to Wolfcamp M1. Update casing and cement program to current design. Update HSU to 640 acres.

Surface Disturbance

Is any additional surface disturbance proposed?: No

NOI Attachments

Procedure Description

Pegasus_3_Fed_Com_765H_Sundry_Info___Rev_Name__BHL__tgt__csg__HSU__Pilot_11.15.2021_202202 15123315.pdf

10_M_Choke_Manifold_20211116141415.pdf

EOG_BLM_10M_Annular_Variance____9.675_in_20211116141411.pdf

Co_Flex_Hose_Test_Chart_20211116141410.pdf

5.500in_20.00_VST_P110EC_VAM_SFC_20211116141409.pdf

7.625in_29.70_P110HC_FXL_20211116141409.pdf

10_M_BOP_Diagram_9.675_in_20211116141409.pdf

Received by OCD: 4/3/2024 8:11:03 AM Well Name: PEGASUS 3 FED COM	Well Location: T24S / R32E / SEC 3 / SESW / 32.2408713 / -103.6630417	County or Parish/State: LER 2 of 27 NM
Well Number: 765H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM94850	Unit or CA Name:	Unit or CA Number:
US Well Number : 300254716900X1	Well Status: Producing Oil Well	Operator: EOG RESOURCES INCORPORATED

Co_Flex_Hose_Certification_20211116141409.pdf

5.500in_20.00_VST_P110EC_DWC_C_IS_MS_Spec_Sheet_20211116141408.pdf

Wellhead_9.675_in_20211116141319.pdf

Pegasus_3_Fed_Com_765H_Wall_Plot_20211116141214.pdf

Pegasus_3_Fed_Com_765H_Planning_Report_20211116141133.pdf

PEGASUS_3_FED_COM_765H_C_102_20211115144422.pdf

Conditions of Approval

Additional

Pegasus_3_Federal_Com_707H_DrillingCOA_20220218092924.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STAR HARRELL

Name: EOG RESOURCES INCORPORATED

Title: Regulatory Specialist

Street Address: 5509 CHAMPIONS DRIVE

City: MIDLAND

State: TX

Phone: (432) 848-9161

Email address: STAR_HARRELL@EOGRESOURCES.COM

Field

Representative Name: Eric BrormanStreet Address: 5509 Champions DriveCity: MidlandState: TXPhone: (432)556-1276Email address: eric_brorman@eogresources.com

Zip: 79706

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls BLM POC Title: Petroleum Engineer BLM POC Email Address: cwalls@blm.gov Disposition Date: 02/18/2022

Signed on: FEB 15, 2022 12:33 PM

Received by OCD: 4/3/2024 8:11:03 AM

<i>cectrea by 0 cb. 4.5</i> /	MOM T 0.1	1.00 1111				ruge o oj	
Form 3160-5 (June 2019)					FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021 5. Lease Serial No.		
Do not u	ise this f		DRTS ON WELLS to drill or to re-enter an PD) for such proposals		6. If Indian, Allottee or	Tribe Name	
	UBMIT IN	TRIPLICATE - Other instr	uctions on page 2		7. If Unit of CA/Agreen	nent, Name and/or No.	
1. Type of Well Oil Well	Gas V	Vell Other			8. Well Name and No.		
2. Name of Operator					9. API Well No.		
3a. Address			3b. Phone No. (include area code	2)	10. Field and Pool or E	xploratory Area	
4. Location of Well (Foota)	ge, Sec., T.,F	R.,M., or Survey Description,			11. Country or Parish, S	State	
	12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICATE NATURE	E OF NOT	ICE, REPORT OR OTH	ER DATA	
TYPE OF SUBMIS	SION		TY	PE OF AC	CTION		
Notice of Intent		Acidize	Deepen Hydraulic Fracturing		duction (Start/Resume) lamation	Water Shut-Off Well Integrity	
Subsequent Report		Casing Repair Change Plans	New Construction Plug and Abandon	_	omplete porarily Abandon	Other	
Final Abandonment	Notice	Convert to Injection	Plug Back	Wat	er Disposal		
the proposal is to deepe the Bond under which completion of the invol	en directiona the work wil lved operation donment No	ally or recomplete horizontal Il be perfonned or provide th ons. If the operation results in	ly, give subsurface locations and n e Bond No. on file with BLM/BIA n a multiple completion or recomp	neasured a Required letion in a	and true vertical depths of d subsequent reports mus new interval, a Form 31	k and approximate duration thereof. If all pertinent markers and zones. Attach t be filed within 30 days following 60-4 must be filed once testing has been e operator has detennined that the site	

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)			
	Title		
Signature	Date		
THE SPACE FOR FEDE	RAL OR STATE	OFICE USE	
Approved by			
	Title		Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant of certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.			
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any any false, fictitious or fraudulent statements or representations as to any matter within		willfully to make to any d	lepartment or agency of the United States

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: SESW / 556 FSL / 2474 FWL / TWSP: 24S / RANGE: 32E / SECTION: 3 / LAT: 32.2408713 / LONG: -103.6630417 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 100 FSL / 1830 FWL / TWSP: 23S / RANGE: 32E / SECTION: 3 / LAT: 32.2396077 / LONG: -103.6651244 (TVD: 11945 feet, MD: 12015 feet) PPP: NESW / 0 FSL / 1830 FWL / TWSP: 24S / RANGE: 32E / SECTION: 34 / LAT: 32.2429604 / LONG: -103.6651253 (TVD: 12210 feet, MD: 13336 feet) BHL: NENW / 100 FNL / 1830 FWL / TWSP: 23S / RANGE: 32E / SECTION: 34 / LAT: 32.2680726 / LONG: -103.6651322 (TVD: 12210 feet, MD: 22472 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	EOG Resources Incorporated
WELL NAME & NO.:	Pegasus 3 Fed Com 765H
LOCATION:	Sec 3-24S-32E-NMP
COUNTY:	Lea County, New Mexico

COA

H2S	C Yes	💿 No	
Potash	None	C Secretary	© R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Other	4 String Area	Capitan Reef	□ WIPP
Other	🗆 Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	□ Water Disposal	COM	🗖 Unit

ALL PREVIOUS COAs STILL APPLY.

A. CASING

Primary Casing Design:

- 1. The **9-5/8** inch surface casing shall be set at approximately **1275** feet (a minimum of **25 feet (Lea County)** into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

The pilot hole plugging procedure is approved as written. Note plug tops on subsequent drilling report. The BLM is to be contacted (**575-689-5981 Lea County**) when tagging the plugs.

Or,

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (**575-689-5981 Lea County**) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

NMK2-16-2022

Seog resources

Pegasus 3 Fed Com 765H

Revised Permit Information 11/15/2021:

Well Name: Pegasus 3 Fed Com 765H Location: SHL: 556' FSL & 2474' FWL, Section 3, T-24-S, R-32-E, Lea Co., N.M. BHL: 100' FNL & 1080' FEL, Section 34, T-23-S, R-32-E, Lea Co., N.M.

Casing Program:

Hole		Csg				DFmin	DFmin	DFmin
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
12.25"	0' - 1,300'	9.625"	36#	J-55	LTC	1.125	1.25	1.6
8.75"	0' - 12,500'	7.625"	29.7#	HCP-110	FXL	1.125	1.25	1.6
6.75"	0' - 12,000'	5.5"	20#	P110-EC	DWC/C IS MS	1.125	1.25	1.6
6.75"	12,000' - 12,500'	5.5"	20#	P110-EC	Vam Sprint SF	1.125	1.25	1.6
6.75"	12,500' - 23,828'	5.5"	20#	P110-EC	DWC/C IS MS	1.125	1.25	1.6

Variance is requested to waive the centralizer requirements for the 7-5/8" casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4 hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive the annular clearance requirements for the 5-1/2" casing by 7-5/8" casing annulus to the proposed top of cement.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement from Onshore Order #2 under the following conditions:

- Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casing strings.
- Annular clearance less than 0.422" is acceptable for the production open hole section.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Siuny Description
1,300' 9-5/8''	350	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 Ib/sk Cello-Flake (TOC @ Surface)
	80	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1,100')
12,500' 7-5/8''	650	14.2	1.11	1st Stage (Tail): Class C + 0.6% Halad-9 + 0.45% HR-601 + 3% Microbond (TOC @ 6,945')
	0	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
14,200' 6" Pilot Hole	517	17.5	0.95	Plug: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 4,300')
23,828' 5-1/2''	1010	14.2	1.31	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 12,000')

Cementing Program:

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Pegasus 3 Fed Com 765H

EOG requests variance from minimum standards to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,145') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

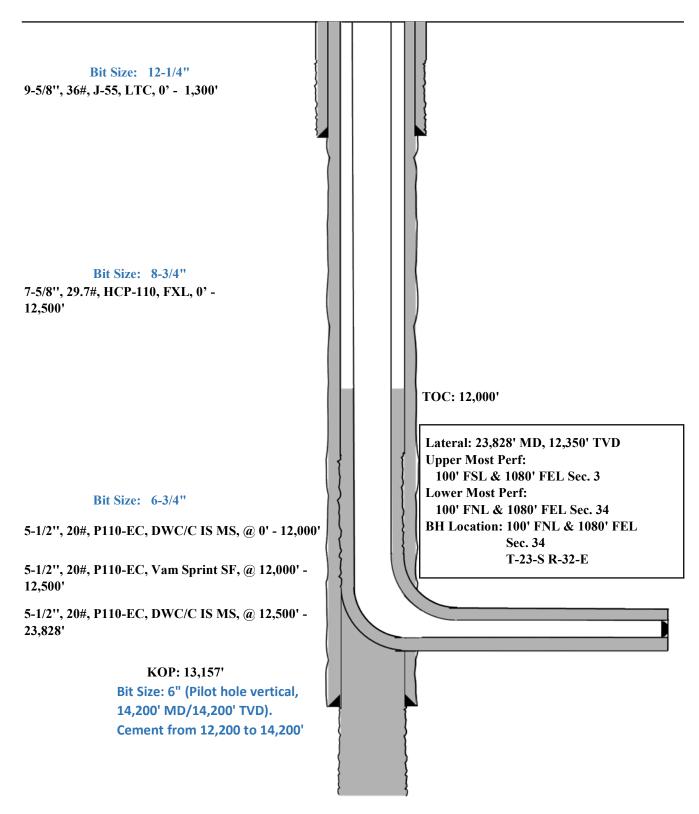
Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 1,300'	Fresh - Gel	8.6-8.8	28-34	N/c
1,300' – 12,500'	Brine	10.0-10.2	28-34	N/c
12,500' - 13,157'	Oil Base	8.7-9.4	58-68	N/c - 6
13,157' – 23,828' Production Lateral	Oil Base	10.0-14.0	58-68	4 - 6
13,157' – 14,200' Pilot Hole	Oil Base	10.0-14.5	58-68	4 - 6

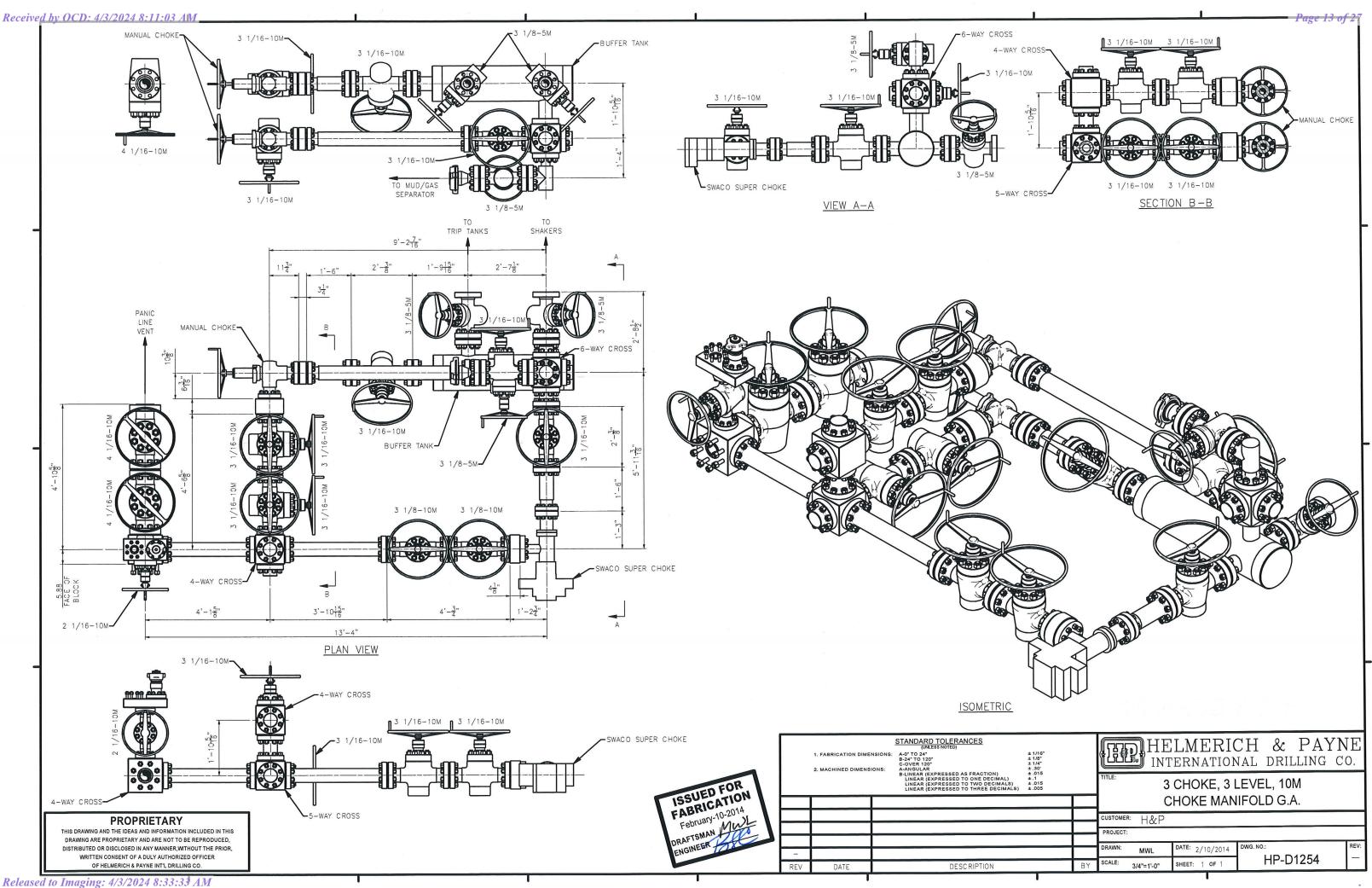
Mud Program:

Pegasus 3 Fed Com 765H

Wellhead:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of Onshore Order No. 2 (item III.A.2.i) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) to include the following:


- Full BOP testing at first installation on the pad.
- Full BOP testing every 30 days per Onshore Order No. 2.
- Function testing BOP elements upon tripping per Onshore Order No. 2.
- Break testing BOP and BOPE coupled with batch drilling operations and production sections that does not penetrate the Wolfcamp or deeper formations.
- Production sections that does penetrate the Wolfcamp or deeper formations a full BOP test will be performed before drilling out of the Intermediate casing shoe.
- After the well section is cemented the BOP will be disconnected from wellhead and walked with the rig to the next well on the pad. The cemented well is secured with a blind flange and a pressure gauge for monitoring.


Pegasus 3 Fed Com 765H

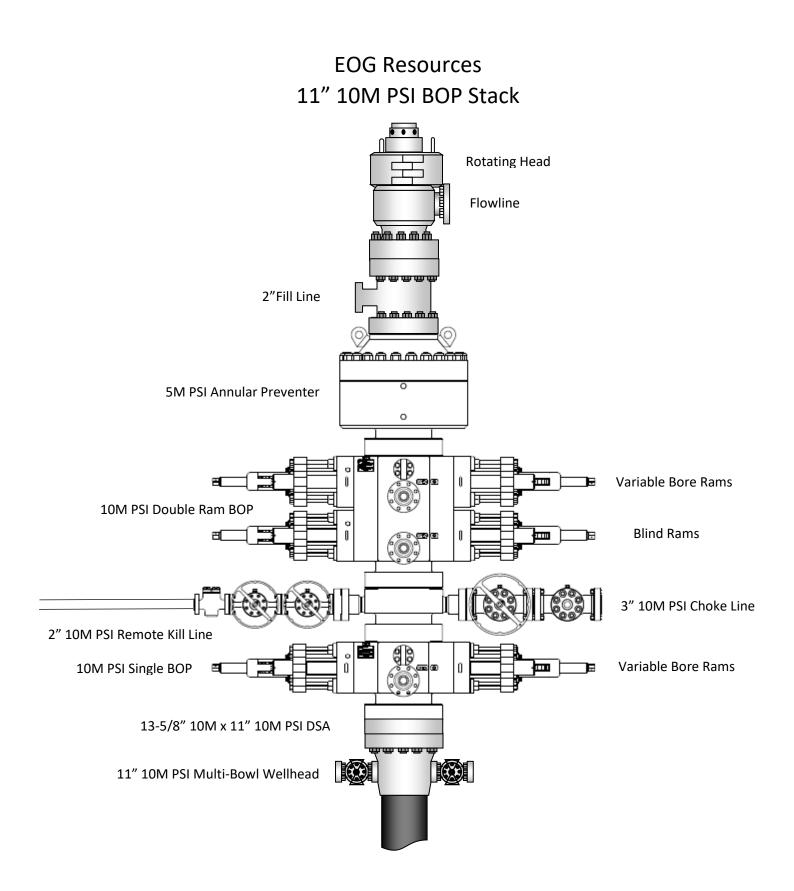
556' FSL 2474' FWL Section 3 T-24-S, R-32-E **Revised Wellbore KB: 3669'**

GL: 3644'

API: 30-025-47169

10,000 PSI BOP Annular Variance Request

EOG Resources request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).


1. Component and Preventer Compatibility Tables

The tables below outlines the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

9-7/8" & 8-3/4" Intermediate Hole Section 10M psi requirement								
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP			
Drillpipe	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
HWDP	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Jars	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
DCs and MWD tools	6.500 - 8.000"	Annular	5M	-	-			
Mud Motor	6.750 - 8.000"	Annular	5M	-	-			
Intermediate casing	7.625″	Annular	5M	-	-			
Open-hole	-	Blind Rams	10M	-	-			

6-3/4" Production Hole Section 10M psi requirement								
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP			
Drillpipe	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
HWDP	4.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
DCs and MWD tools	4.750 – 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Mud Motor	4.750 - 5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Mud Motor	5.500 – 5.750"	Annular	5M	-	-			
Production casing	5.500"	Annular	5M	Upper 3.5 - 5.5" VBR	10M			
				Lower 3.5 - 5.5" VBR	10M			
Open-hole	-	Blind Rams	10M	-	-			

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the EOG Resources drilling supervisor's office on location, and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 100% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

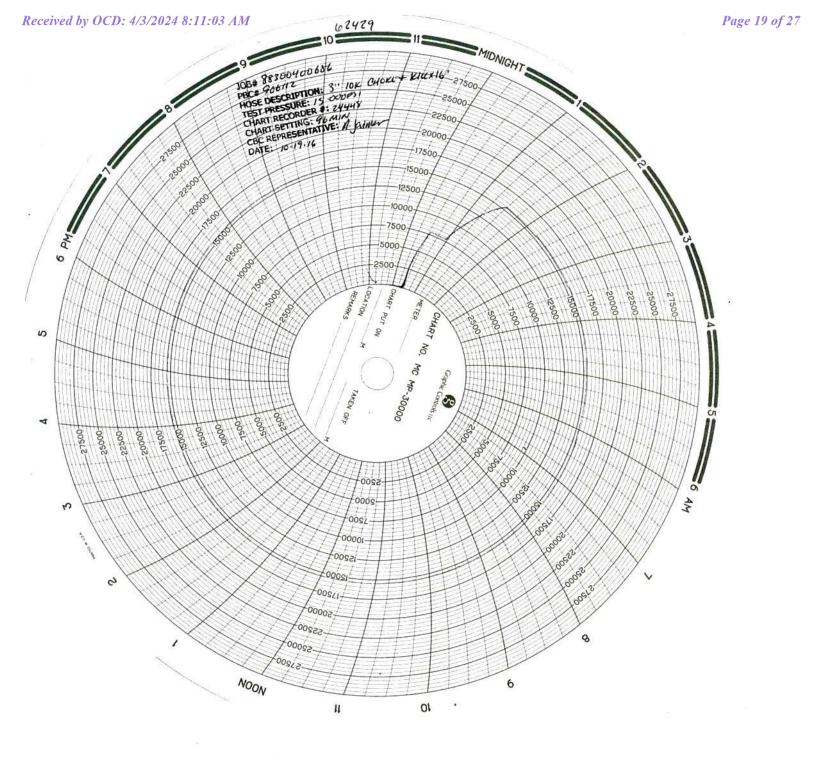
General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

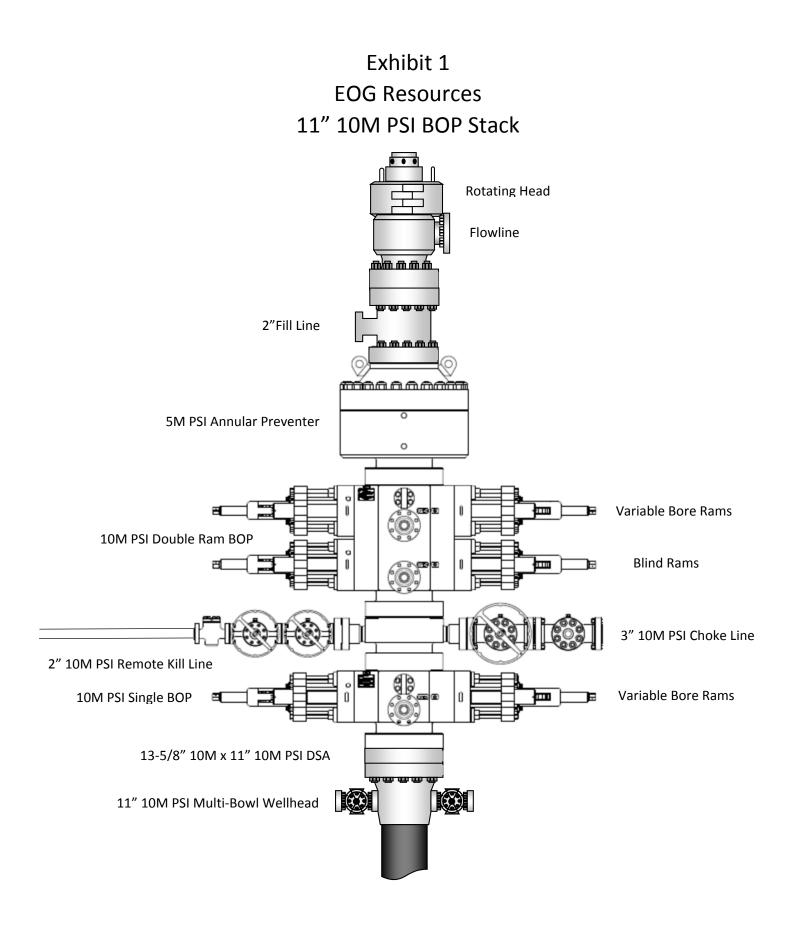
- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string

- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.


General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA thru Stack


- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams.
 - e. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams.
 - d. Shut-in using upper variable bore rams. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram.
 - f. Shut-in using upper variable bore ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

•

tal One Corp.	MO-EXI		Page					
			Date	3-Nov-1	6			
Metal One	Connection Dat	a Sheet						
		u oncor	Rev.	0				
	Geometry	Imperia	1	3-Nov-16 0 S.I. P110HC *1 193.68 mm 44.25 kg/n 43.26 kg/n 9.53 mm 174.63 mm 174.63 mm 171.45 mm 174.63 mm 107.16 mm 3686 mm 107.16 mm 3686 mm 107.16 mm 3686 mm 50.76 MPa ength of Pipe body we of Pipe body we of Pipe body we of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of Collapse Strength 40 21,000 N-m 23,300 N-m				
	Pipe Body Grade P110HC Pipe OD (D) 7 5/8 Weight 29.70 Actual weight 29.04 Wall Thickness (t) 0.375 Pipe ID (d) 6.875 Pipe body cross section 8.537 Drift Dia. 6.750 Connection 6.875 Box OD (W) 7.625 PIN ID 6.875 Make up Loss 4.219 Box Critical Area 5.714 Joint load efficiency 70 Thread Taper 70 Number of Threads 70 MI.Y.P. *1 10,760 Collapse Strength *1 7,360 Note S.M.Y.S.= Specified Minimum M.I.Y.P. = Minimum Internal *1 Based on VSB P110HC (YS) Performance Properties for Connee 1 Tensile Yield load 747 Min. Compression Yield 747	D110HC 11		DII OLICITA				
	and the second		in					
MO-FXL			lb/ft					
MO-FAL			ID/IL		-			
			in					
			in					
			in					
			in ²					
	Drift Dia.	6.750	in	171.45	mm			
	Connection							
	Box OD (W)	7.625	in	193.68	mm			
	PIN ID	6.875	in	174.63	mm			
N.	Make up Loss	4.219	in	107.16	mm			
Box	Box Critical Area	5.714	in ²	3686	mm ²			
critica	Joint load efficiency	70	%	70				
area								
	The day raper							
	Number of Threads							
ake a	Number of Threads Performance							
ake	Number of Threads Performance Performance Properties	for Pipe Body	5	TPI	kN			
ake s	Number of Threads Performance Performance Properties S.M.Y.S. *1	for Pipe Body 1,067	5 kips	TPI 4,747	kN MPa			
ake ss Pin	Number of Threads Performance Performance Properties S.M.Y.S.*1 M.I.Y.P.*1 Collepse Strength *1	for Pipe Body	5	TPI 4,747 74.21				
ake s	Number of Threads d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	for Pipe Body 1,067 10,760 7,360	5 kips psi psi	TPI 4,747 74.21 50.76	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specie	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE	5 kips psi psi LD Strer	4,747 74.21 50.76 ngth of Pipe bod	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S.*1 M.I.Y.P.*1 Collapse Strength *1 Note S.M.Y.S.= Specinon M.I.Y.P. = Minimized	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield	kips psi psi LD Strer Pressu	TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Speci M.I.Y.P. = Minim *1 Based on VSB Performance Properties	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connectio	kips psi psi Pressur 5~140ks n	TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si)	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Speci M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connectio	kips psi psi DStrer Pressur 25~140ks	TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si)	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi D Strer Pressur 5~140ks n (70% (70%	TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.)	MPa MPa			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi D Strer Pressur 5~140ks n (70% (70% (80%	TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	MPa MPa ty			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi LD Strer Pressur 5~140ks n (70% (70% (80%) 100% (TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa ty			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi LD Strer Pressur 5~140ks n (70% (70% (80%) 100% (TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa ty			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg./100ft) Recommended Torque	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi LD Strer Pressur 5~140ks n (70% (70% (80%) 100% (TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa ty			
ake ss Pin critica	Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1 Based on VSB Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips	5 kips psi psi LD Strer Pressur 5~140ks n (70% (70% (80%) 100% (TPI 4,747 74.21 50.76 ngth of Pipe body re of Pipe body si) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0	MPa MPa ty			
ake ss Pin critica	Number of Threads Image: Number of Threads Internal Pressure Image: Number of Threads Image: Number of Thread	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips 8,610 psi	5 kips psi psi ELD Strer Pressur 5~140ks n (70% (70% (80%) 100% (4	TPI 4,747 74.21 50.76 ngth of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000	MPa MPa hy			
ake ss Pin critica	Number of Threads Image: Number of	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connection 747 kips 747 kips 8,610 psi 15,500	5 kips psi psi LD Strer Pressur 25~140ks n (70% (70% (80% 100% (4 t-lb	TPI 4,747 74.21 50.76 ngth of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000	MPa MPa hy			
ake ss Pin critica	Number of Threads Image: Number of Threads Internal Pressure Image: Number of Threads Image: Number of Thread	for Pipe Body 1,067 10,760 7,360 fied Minimum YIE num Internal Yield P110HC (YS=12 for Connectio 747 kips 747 kips 8,610 psi 15,500 17,200	5 kips psi psi LD Strer Pressur 5~140ks n (70% (70% (80% 100% (4 ft-lb ft-lb	4,747 74.21 50.76 ngth of Pipe body i) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21,000 23,300	MI MI ty			

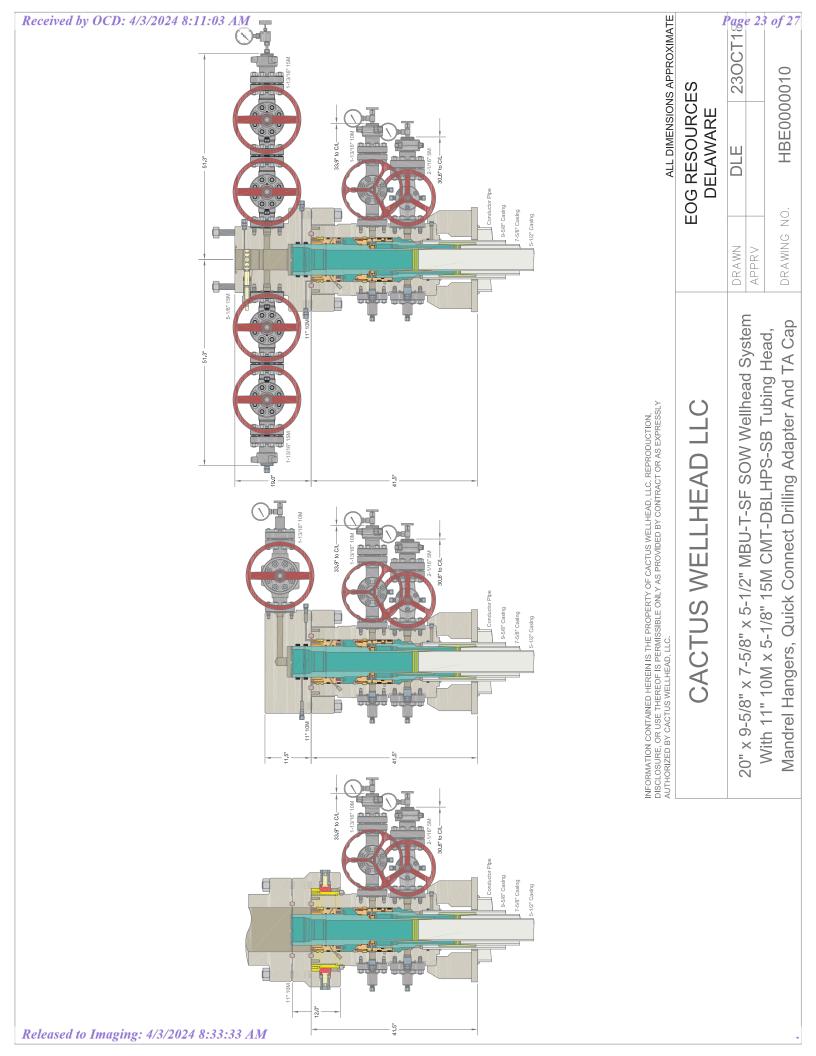
Hose Inspection Report

ContiTech Oil & Marine

Customer	Customer Reference #	CBC Reference #	CBC Inspector	Date of Inspection
H&P Drilling	740021604	COM906112	A. Jaimes	10/17/2016

Hose Manufacturer Contitech Rubber Industrial

Hose Serial #	62429	Date of Manufacture	05/2012
Hose I.D.	3"	Working Pressure	10000PSI
Hose Type	Choke and Kill	Test Pressure	15000PSI
Manufacturing Stan	dard API 16C		
Connections			
End A: 3.1/16" 10K	Psi API Spec 6A Type 6BX Flange	End B: 3.1/16" 10Kpsi A	API Spec 6A Type 6BX Flange
No damage		No damage	
Material: Carbon St	eel	Material: Carbon Steel	
Seal Face: BX154		Seal Face: BX154	
Length Before Hydr	o Test: 16'	Length After Hydro tes	t: 16'


Conclusion: Hose #62429 passed the external inspection with no notable damages to the hose armor. Internal borescope of the hose showed no damage to the hose liner. Hose #62429 passed the hydrostatic pressure test by holding a pressure of 15,000PSI for 60 minutes. <u>Hose #62429 is suitable for continued service.</u>

Recommendations: In general the hose should be inspected on a regular on-going basis. The frequency and degree of the inspection should as a minimum follow these guidelines:

Visual inspection: Every 3 months (or during installation/removal) Annual: In-situ pressure test Initial 5 years service: Major inspection 2nd Major inspection: 8 / 10 years of service (Detailed description of test regime available upon request, ISS-059 Rev 04)

**NOTE: There are a number of critical elements in the hose that cannot be thoroughly checked through standard inspection techniques. Away from dissecting the hose body, the best way to evaluate the condition of the hose is through review of the operating conditions recorded during the hose service life, in particular maximums and peak conditions.

Checked By: Jeremy Mckay Date: 10/25/2016 QF97

leog resources

Sec

10

11

. _ _ _ _ _ _ _ _ 400-800-1200-_ _ _ _ _ _ _ _ 1600-2000

· - - - - **+** - - -

┝┝┾┷┷

---+-

2400

2800-

3200-

3600-

4000

4400

4800-

5200-

5600

6000-

e 6400

6800-

7200-

7600

8000

8400

8800-

9200-

9600-

10000-

10400-

10800-

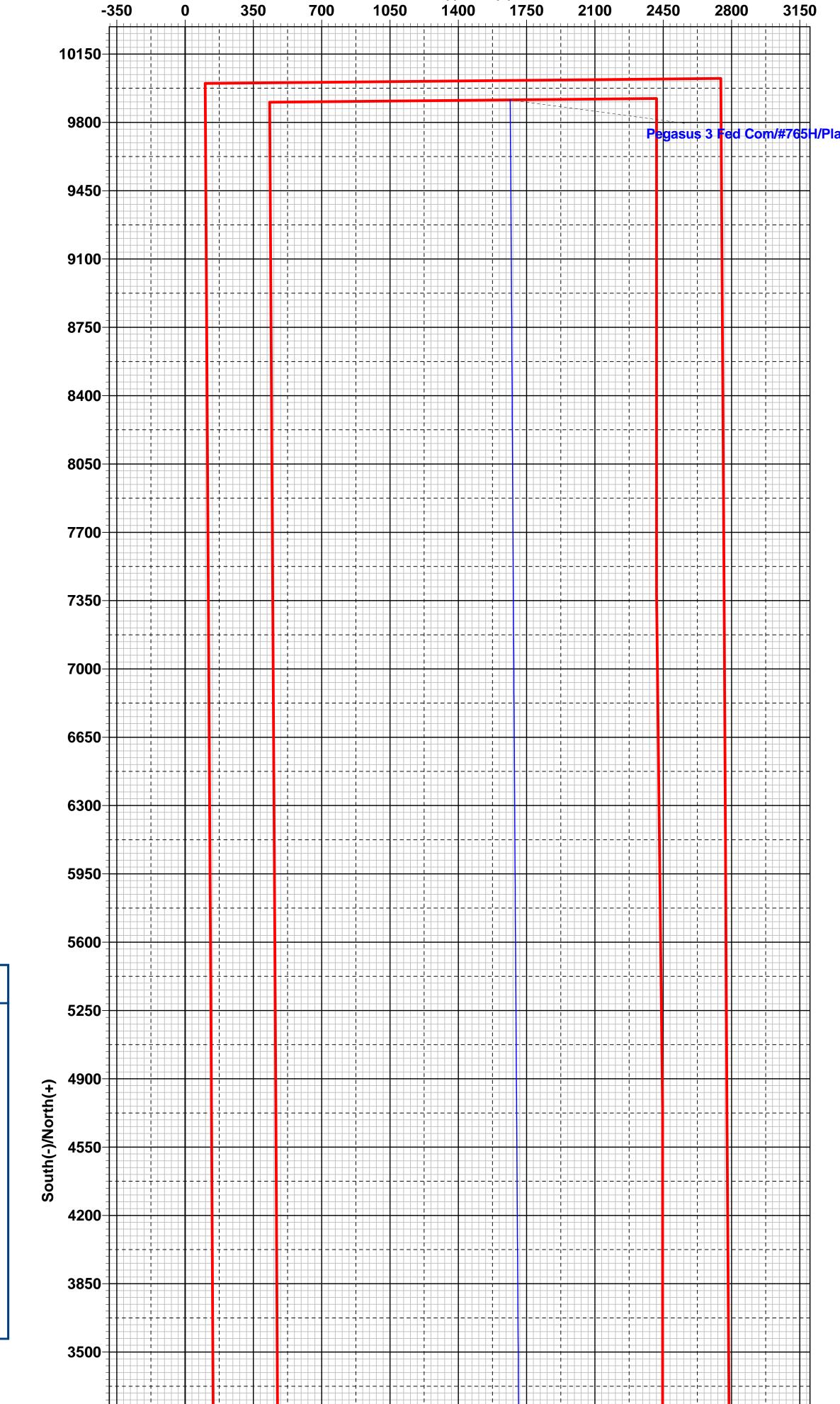
11200-

11600-

12000-

eived by OCD: 4/3/2024 8:11:03 AM

Lea County, NM (NAD 83 NME)


Pegasus 3 Fed Com #765H

Plan #0.1 RT

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

10150-9800-9450-9100-8750-

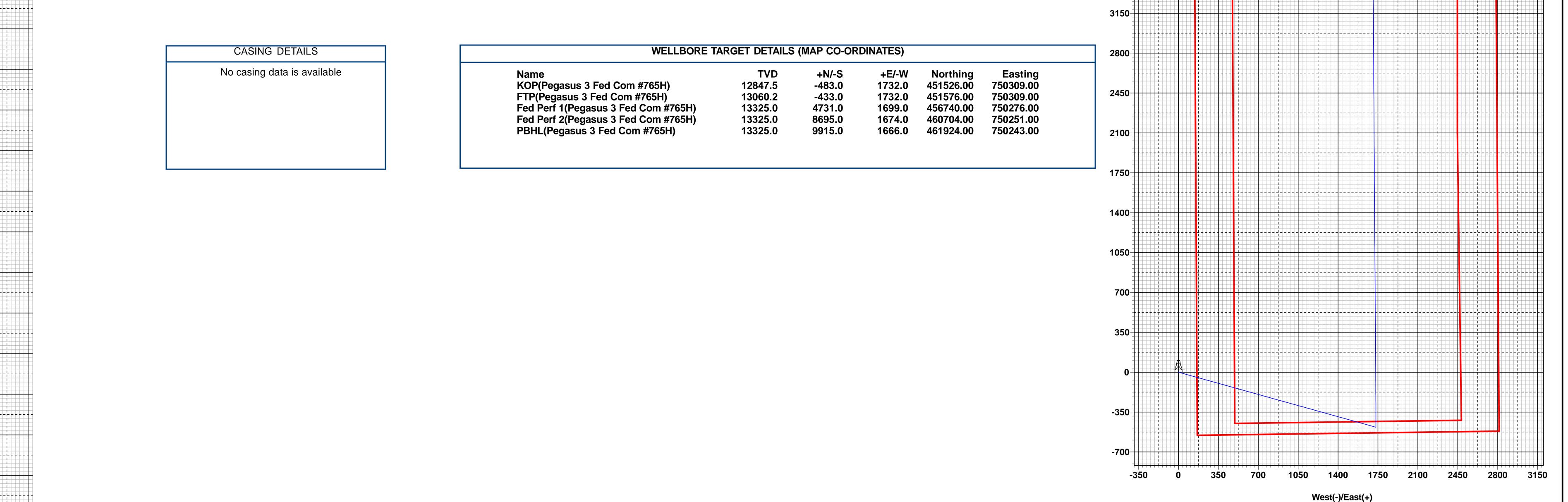
West(-)/East(+)

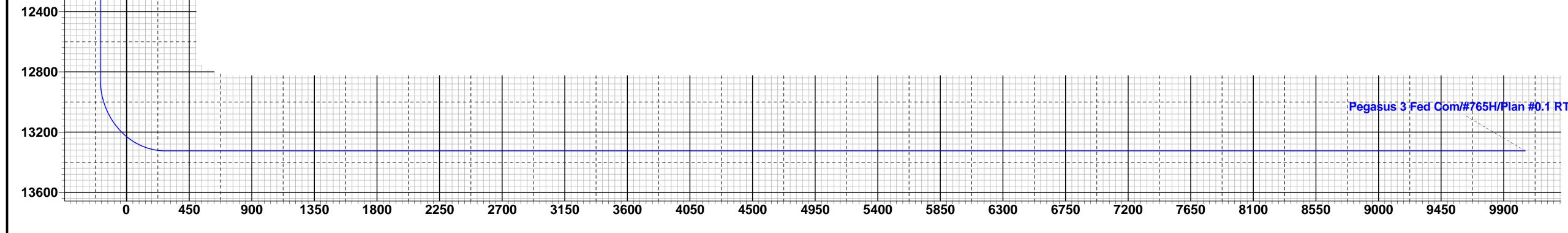
							WELL I	DETAILS: #	765H		
					Nortł 4520	ning 09.00	k East 74857		3644.0 670.0usft Latittude 32.2408707°N	Longitude 103.6630415°W	
						S	ECTION	DETAILS			
C	MD 0.0	Inc 0.00	Azi 0.00	TVD 0.0	+N/-S 0.0	+E/-W 0.0	Dleg 0.00	TFace 0.00	VSect 0.0	Target	
<u>></u>	1400.0	0.00	0.00	1400.0	0.0	0.0	0.00	0.00	0.0		
3	2450.3	21.01	105.58	2426.9	-51.1	183.4	2.00	105.58	-20.0		
1	6404.2	21.01	105.58	6118.1	-431.9	1548.6	0.00	0.00	-169.3		
5	7454.5	0.00	0.00	7145.0	-483.0	1732.0	2.00	180.00	-189.3		
5	13157.0	0.00	0.00	12847.5	-483.0	1732.0	0.00	0.00	-189.3	KOP(Pegasus 3 F	ed Com #765H)
7	13377.5	26.46	0.00	13060.2	-433.0	1732.0	12.00	0.00	-140.0	FTP(Pegasus 3 Fe	ed Com #765H)
3	13907.0	90.00	359.62	13324.9	-5.5	1730.1	12.00	-0.42	281.2		-
)	18643.6	90.00	359.62	13325.0	4731.0	1699.0	0.00	0.00	4947.1	· •	us 3 Fed Com #765H)
)	22607.7	90.00	359.65	13325.0	8695.0	1674.0	0.00	87.34	8852.2		us 3 Fed Com #765H)
	23827.7	90.00	359.60	13325.0	9915.0	1666.0	0.00	-91.33	10054.0	PBHL(Pegasus 3	Fed Com #765H)

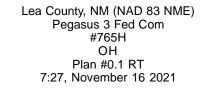
To convert a Magnetic Direction to a Grid Direction, Add 6.18° To convert a Magnetic Direction to a True Direction, Add 6.54° East To convert a True Direction to a Grid Direction, Subtract 0.36°

Azimuths to Grid North

Magnetic North: 6.18°


Strength: 47449.6nT


Dip Angle: 59.89° Date: 11/15/2021


Model: IGRF2020

True North: -0.36°

Magnetic Field

Vertical Section at 9.54°

Released to Imaging: 4/3/2024 8:33:33 AM

leog resources

. _ _ _ _ _ _ _ _ 400-800-1200-_ _ _ _ _ _ _ _ 1600-2000

· - - - - **+** - - -

┝┝┾┷┷

---+-

2400

2800-

3200-

3600-

4000

4400

4800-

5200-

5600

6000-

e 6400

6800-

7200-

7600

8000

8400

8800-

9200-

9600-

10000-

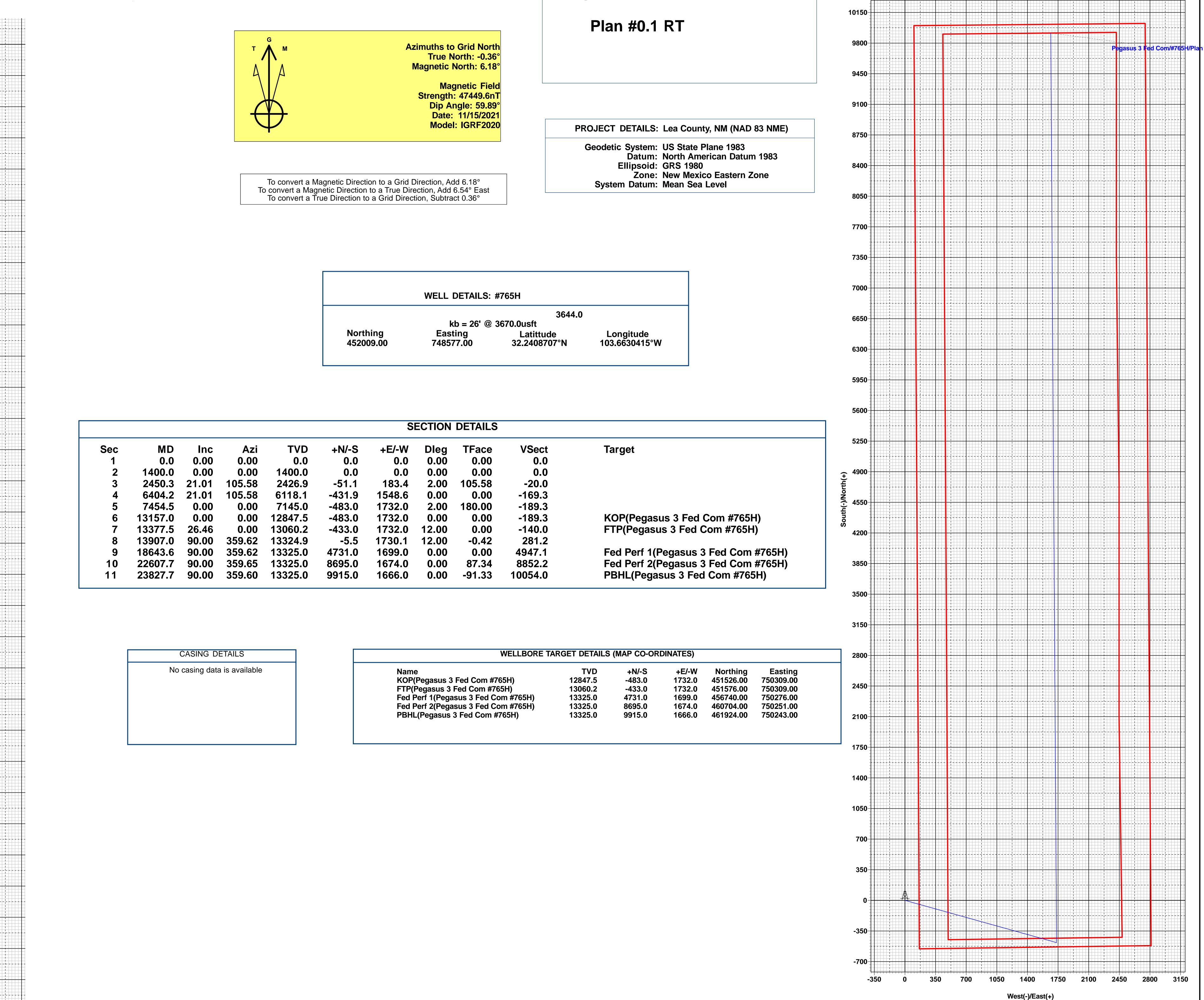
10400-

10800-

11200-

11600-

12000-


eived by OCD: 4/3/2024 8:11:03 AM

Lea County, NM (NAD 83 NME)

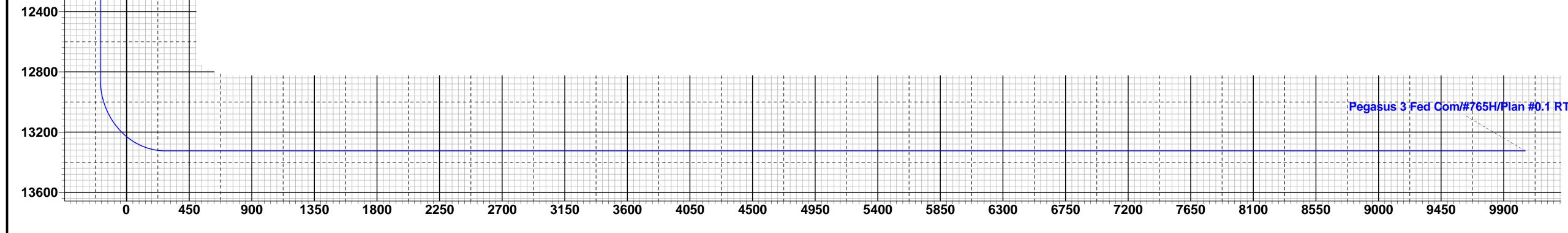
Pegasus 3 Fed Com #765H

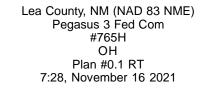
Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

1400 1050 700 350 10150-9800-9450-9100-8750-

3150

West(-)/East(+)


1750


2100

2450

2800

MD Inc Azi TVD +N/-S +E/-W Dleg TFace VSect Target 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 103.6630415°W 103.6630415°W SECTION DETAILS SECTION DETAILS Target 103.6630415°W 100.0 0.00 0.00 0.00 0.00 0.00 0.00 1400.0 0.00 0.00 0.00 0.00 0.00 0.00 1400.0 0.00 0.00 0.00 0.00 0.00 0.00 1400.0 0.00 0.00 0.00 0.00 0.00 0.00 13157.0 0.00 0.00 12847.5 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13325.0 4731.0 1699.0 0.00 -448.2 2852.2						WELL	DETAILS: #	765H	
MD Inc Azi TVD +N/-S +E/-W Dleg TFace VSect Target 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 1400.0 0.00 0.00 1400.0 0.0 0.00 0.00 0.00 2450.3 21.01 105.58 2426.9 -51.1 183.4 2.00 105.58 -20.0 6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13325.0 4731.0 1699.0 0.00 <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>East</th> <th>ting</th> <th>670.0usft Latittude</th> <th>Longitude</th>					•	East	ting	670.0usft Latittude	Longitude
MD Inc Azi TVD +N/-S +E/-W Dleg TFace VSect Target 0.0 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 1400.0 0.00 0.00 1400.0 0.0 0.00 0.00 0.00 2450.3 21.01 105.58 2426.9 -51.1 183.4 2.00 105.58 -20.0 6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13325.0 4731.0 1699.0 0.00 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 2 1400.0 0.00 0.00 1400.0 0.0 0.00 0.00 0.00 0.00 3 2450.3 21.01 105.58 2426.9 -51.1 183.4 2.00 105.58 -20.0 4 6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 5 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 6 13157.0 0.00 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 7 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 3 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 1 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00					S	ECTION	DETAILS		
1400.0 0.00 0.00 1400.0 0.0 0.0 0.00 0.00 0.0 2450.3 21.01 105.58 2426.9 -51.1 183.4 2.00 105.58 -20.0 6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 0.00 12847.5 -483.0 1732.0 0.00 0.00 -189.3 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasu 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasu <th>;</th> <th></th> <th>TVD</th> <th>+N/-S</th> <th>+E/-W</th> <th></th> <th></th> <th></th> <th>Target</th>	;		TVD	+N/-S	+E/-W				Target
2450.3 21.01 105.58 2426.9 -51.1 183.4 2.00 105.58 -20.0 6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 0.00 12847.5 -483.0 1732.0 0.00 0.00 -189.3 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasu 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasu	_								
6404.2 21.01 105.58 6118.1 -431.9 1548.6 0.00 0.00 -169.3 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 13157.0 0.00 0.00 12847.5 -483.0 1732.0 0.00 0.00 -189.3 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasus 2) 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasus 2)	-								
5 7454.5 0.00 0.00 7145.0 -483.0 1732.0 2.00 180.00 -189.3 5 13157.0 0.00 0.00 12847.5 -483.0 1732.0 0.00 0.00 -189.3 KOP(Pegasus 3 Fe 7 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 8 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 9 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasus 2) 9 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasus 2)	5								
13157.0 0.00 0.00 12847.5 -483.0 1732.0 0.00 0.00 -189.3 KOP(Pegasus 3 Fe 13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasus 3 Fe 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasus 4)	• •								
13377.5 26.46 0.00 13060.2 -433.0 1732.0 12.00 0.00 -140.0 FTP(Pegasus 3 Fe 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasus 3 Fe 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasus 3 Fe									
3 13907.0 90.00 359.62 13324.9 -5.5 1730.1 12.00 -0.42 281.2 9 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasu 9 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasu)								
) 18643.6 90.00 359.62 13325.0 4731.0 1699.0 0.00 0.00 4947.1 Fed Perf 1(Pegasu) 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasu									FIP(Pegasus 3 Fed
) 22607.7 90.00 359.65 13325.0 8695.0 1674.0 0.00 87.34 8852.2 Fed Perf 2(Pegasu	5								Ead Darf 1/Dagaana
	7								
	J								PBHL(Pegasus 3 Fe

Vertical Section at 9.54°

Released to Imaging: 4/3/2024 8:33:33 AM

District I

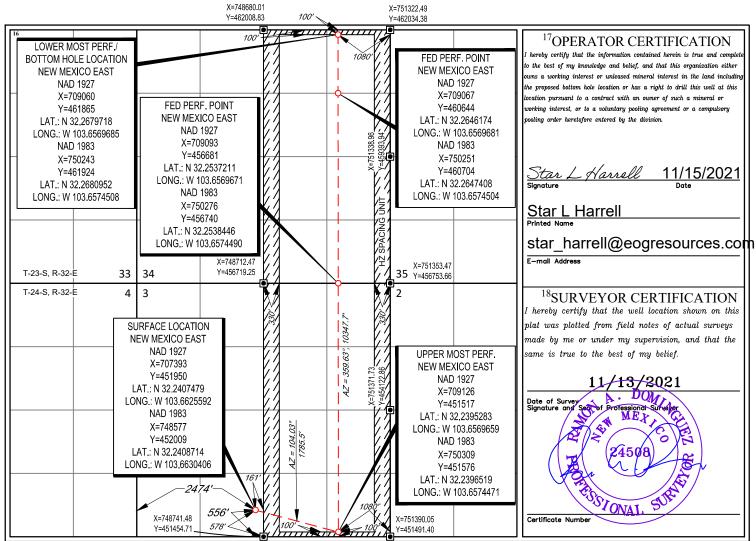
District II

District III

District IV

State of New Mexico 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 Energy, Minerals & Natural Resources 811 S. First St., Artesia, NM 88210 Department Phone: (575) 748-1283 Fax: (575) 748-9720 OIL CONSERVATION DIVISION 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 1220 South St. Francis Dr. 1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

Page 26 of 27


FORM C-102 Revised August 1, 2011 Submit one copy to appropriate

District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT ¹API Number ²Pool Code ³Pool Name 30-025-47169 98248 WC-025 G-08 S243217P; Upper Wolfcamp Well Number ⁴Property Code Property Name 328120 PEGASUS 3 FED COM 765H ⁸Operator Name ⁷OGRID No. ⁹Elevation 3644 7377 EOG RESOURCES, INC. ¹⁰Surface Location UL or lot no. Section Township Rang Lot Idn Feet from the North/South line Feet from the East/West line County 3 24-S32 - E556' SOUTH 2474' WEST LEA Ν ¹¹Bottom Hole Location If Different From Surface UL or lot no. Range Lot Idn Feet from the North/South line Feet from the East/West line County Section Township 100' 1080' Α 3423-S 32-E NORTH EAST LEA ²Dedicated Acres ³Joint or Infill ⁴Consolidation Code ⁵Order No. 639.39

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Refeased to Imaging: 4/3/2024 8:33:33 AM

\SURVEY\EOG_MIDLAND\PEGASUS_3_FED_COM\FINAL_PRODUCTS\LO_PEGASUS_3_FED_COM_765H_C102.DWG 11/13/2021 3:46:47 PM cs

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	329302
	Action Type:
	[C-103] NOI Change of Plans (C-103A)
CONDITIONS	

-		
Created	Condition	Condition
By		Date
pkautz	z None	4/3/2024

CONDITIONS

Page 27 of 27

Action 329302