District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico **Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

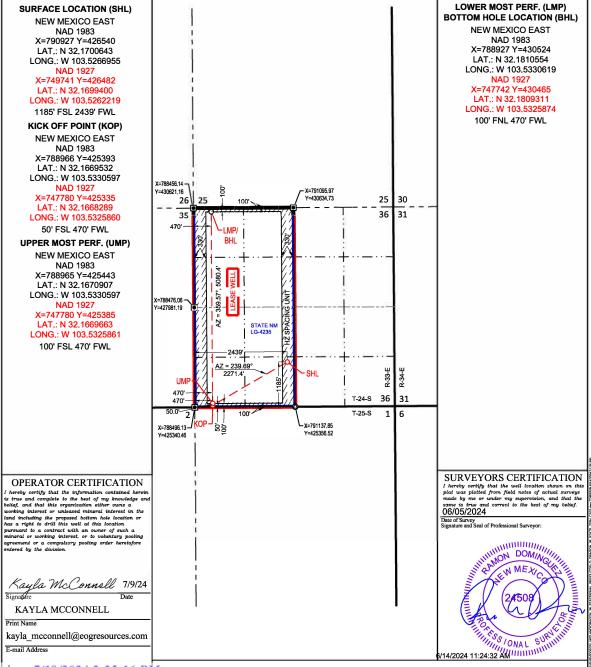
Form C-101 August 1, 2011 Permit 369673

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

	Operator Name and Address 2. OGRID Number EOG RESOURCES INC 7377													
	9 Champions Drive									3.4	PI Number	I		
	lland, TX 79706	-								0.7		25-53215	;	
4. Property Co	de		5. Property	Name						6. V	Vell No.			
396				RAGON	36 STA	TE					222	н		
						7 Surfac	e Location							
UL - Lot	Section	Township	Rar	nge			eet From	N/S Line	Feet I	From	E/W	Line	County	
N	36	24		338	E	N	1185		3	2439		W	. ,	Lea
						8. Proposed Bott	tom Hole Locat	ion	ľ					
UL - Lot	Section	Township	Ra	inge			Feet From	N/S Line	Feet	From	E/W I	ine	County	
D	36	24		33	BE	D	100		N	470		W		Lea
		•				9 Pool Ir	formation				•			
RED HILLS:U	RED HILLS;UPPER BONE SPRING SHALE											9790	00	
11. Work Type		40 Mail Ton			40.0-1		ell Information	14. Lease Type		45 0	nd Level Ele			
	Work Type 12. Well Type 13. Cable/R New Well OIL				ble/Rotary		State		15. Groui	3481	vation			
16. Multiple		17. Proposed Depth 18. Formation					19. Contractor		20. Spud					
N	N 15275 Bone Spring				Bone Spring					7/16/2024				
Depth to Grour	nd water				Distanc	e from nearest fresh	water well			Distance t	o nearest su	rface water		
				- 14 -										
	using a closed-loop	p system in lie	eu of línea	pits										
						Proposed Casing								
Type Surf	Hole Size 13	Casing 10.				g Weight/ft	•	Setting Depth Sacks of C 1310 390			nt		Estimated T 0	00
Int1	9.875	8.6	-			10.5 32				390 740		-	0	
Prod	7.875	6				24.5		10402		1650			0	
Prod	6.75	5.				20		15275		1650			0	
					Coolin	a/Comont Broard	m. Additional (`ommonto						
EOG respect	tfully requests the c	ntion to use t	he casing a	nd come		g/Cement Program			ned braden	head sau	aza on th	a producti	on string	The
	be notified of EOG			inu cemei	ni prog		Jesigii B oi the			ineau squi		e producti	on sung.	IIIE
	Туре					Proposed Blowou Pressure	ut Prevention F	rogram Test Pr	ASSIIRA			Мари	facturer	
	Double Ram					00		30				Manu	lacturer	
	Double Rain		I		00	,00		00	00					
23. I hereby o	certify that the inform	nation given a	bove is true	and com	plete to	o the best of my			OIL CON	SERVATIC	N DIVISIO	N		
knowledge a		Ū												
	tify I have complied	l with 19.15.14	I.9 (A) NMA	C X and	l/or 19.	15.14.9 (B) NMAC								
X, if applical	ble.													
Signature:														
Printed Name:	Electronicall	y filed by Patr	icia Donald				Approved By:	Paul F K	autz					
Title:	Regulatory	, ,					Title:	Geologi						
Email Address:		nald@eogres	ources.con	n			Approved Date	· · · · · ·			Expiration	Date: 7/18	/2026	
Date:	7/11/2024	0 9.11			188-76	84								
Date:	7/11/2024		Phone: 432-488-7684				Conditions of Approval Attached							

DISTRICT I 1623 N. Franch Dr., Hobbs, NM 88240 Phone: (75) 393-616 Fax: (75) 393-90720 DISTRICT II 811 S. Fint 3, Arenis, NM 88210 Phone: (75) 748-1285 Fax: (75) 748-9720 DISTRICT III 1000 No Bravos Rd., Arise, NM 87410 Phone: (50) 313-4178 Fax: (50) 334-6170 DISTRICT IV 1220 S. St. Francis, Dr., Santa Fo, NM 87505 Thom: (50) 746-406 Fax: (305) 746-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


AMENDED REPORT

Page 2 of 85

WELL LOCATION AND ACREAGE DEDICATION PLAT

	PI Number 0-025-		979	Pool Code	RI	RED HILLS; UPPER BONE SPRING SHALE					
Property C 3964					Property Na DRAGON 36			Well Number 222H			
OGRID N 7377			Operator Name Elevation EOG RESOURCES, INC. 3481'								
	Surface Location										
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
N	36	24-S	33-E	. 	1185'	SOUTH	2439'	WEST	LEA		
	et		Bott	om Hole	Location If D	ifferent From Surfa	ce	~			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County		
D	36	24-S	33-E		100'	NORTH	470'	WEST	LEA		
Dedicated Acres	Joint or	Infill	Consolidated Co	de Orde	er No.						
320.00				LEASE WELL							

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator	Name and Address:	API Number:						
	EOG RESOURCES INC [7377]	30-025-53215						
	5509 Champions Drive	Well:						
	Midland, TX 79706 DRAGON 36 STATE #222H							
OCD	Condition							
Reviewer								
pkautz	Notify OCD 24 hours prior to casing & cement							
pkautz	Will require a File As Drilled C-102 and a Directional Survey with the C-104							
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the	operator shall drill without interruption through the fresh						
	water zone or zones and shall immediately set in cement the water protection string							
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or drilling fluids and solids must be contained in a steel closed loop system	diesel. This includes synthetic oils. Oil based mud,						
pkautz	Cement is required to circulate on both surface and intermediate1 strings of casing							
pkautz	If cement does not circulate on any string, a CBL is required for that string of casing							
pkautz	The Operator is to notify NMOCD by sundry (Form C-103) within ten (10) days of the well being spud							

Permit 369673

Page 3 of 85

Re	ceived l	bv OC	D: 7/11	/2024 9):02:50 AM	ſ
----	----------	-------	---------	---------	------------	---

to

vived by OCD: 7/11/202	24 9:02:50 A	М					Page
	Ι	Sta Energy, Minerals	te of New Mez and Natural Res		ent	Sub Via	mit Electronically E-permitting
		1220	onservation Di South St. Fran nta Fe, NM 87	cis Dr.			
	Ν	NATURAL G	AS MANA	GEMENT P	LAN		
This Natural Gas Manaş	gement Plan r	nust be submitted v	vith each Applica	tion for Permit to I	Drill (APD) for	a new o	r recompleted wel
			<u>1 – Plan D</u> Effective May 25.				
I. Operator:EOG	Resources, In	icOGRI	D: 7377		Date: 7/	9/2024	
II. Type: 🛛 Origina	al 🗆 Amendr	ment due to \Box 19.1	5.27.9.D(6)(a) NI	MAC 🗆 19.15.27.	9.D(6)(b) NMA	AC □ 01	iher.
If Other, please describe	2:						
III. Well(s): Provide th be recompleted from a s	e following ir	nformation for each	new or recomple	eted well or set of		to be dr	illed or proposed t
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D		Anticipated Produced Water BBL/D
DRAGON 36 STATE 222H		N-36-24S-33E	1185' FSL & 2439' FWL	+/- 1000	+/- 3500	+/- 3	3000
IV. Central Delivery P	oint Name:	DRAGON 36 S	TATE CTB		[See 19.1	.5.27.9(1	D)(1) NMAC]
V. Anticipated Sched or proposed to be recom						vells pro	pposed to be drilled
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		l Flow CDate	First Production Date
DRAGON 36 STATE 222H		07/16/24	07/30/24	10/30/24	11/01/	24	12/01/24
VI. Separation Equipn VII. Operational Prac		-		-			
Subsection A through F		-		tions operator wi	ii take to comp	iy witti	the requirements (
VIII. Best Managemend during active and planned		-	ete description of	f Operator's best 1	nanagement pr	actices t	o minimize ventin

.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \square Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell Printed Name: Kayla McConnell Title: Regulatory Specialist E-mail Address: kayla_mcconnell@eogresources.com Date: 7/09/2024 Phone: (432) 265-6804 **OIL CONSERVATION DIVISION** (Only applicable when submitted as a standalone form) Approved By: Title: Approval Date: Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

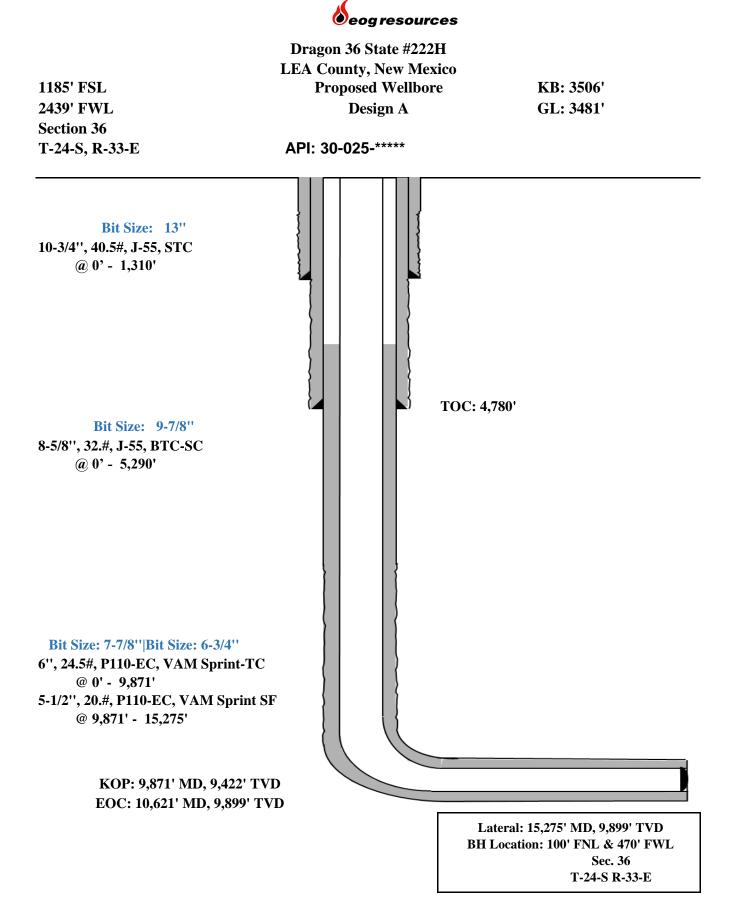
- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

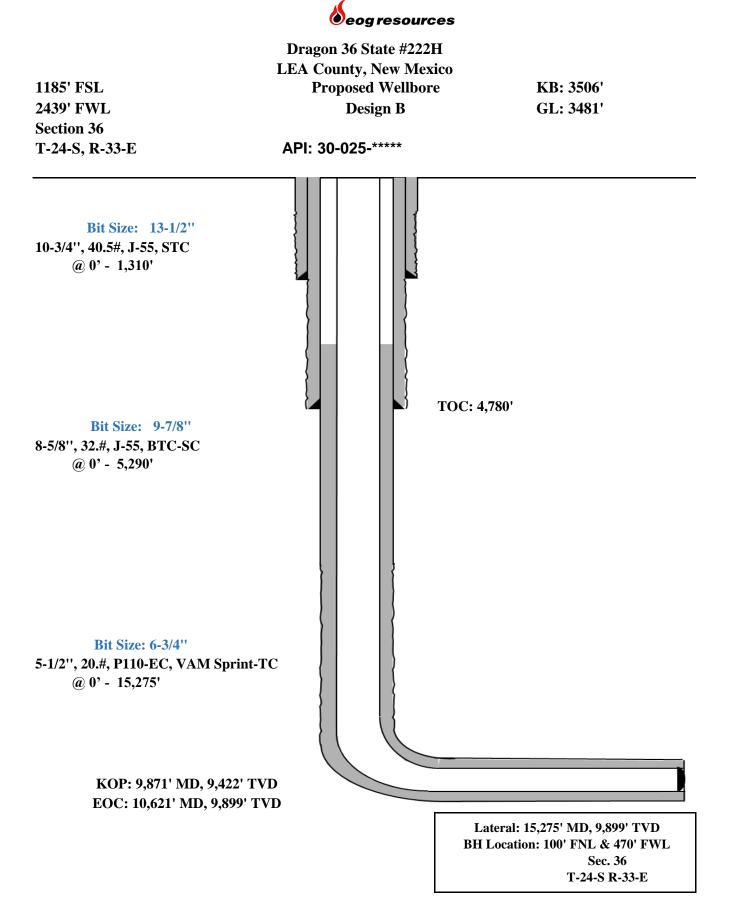
Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.


Measurement & Estimation


- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.

Dragon 36 State #222H

Permit Information:

Well Name: Dragon 36 State #222H

Location:

SHL: 1185' FSL & 2439' FWL, Section 36, T-24-S, R-33-E, LEA Co., N.M.
BHL: 100' FNL & 470' FWL, Section 36, T-24-S, R-33-E, LEA Co., N.M.

Design A

Casing Program:

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,310	0	1,310	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,811	0	5,280	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	10,402	0	9,422	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	10,402	15,275	9,422	9,899	5-1/2"	20#	P110-EC	VAM Sprint SF

Cement Program:

		Wt.	Yld	Chung Description			
Depth	No. Sacks	ppg	Ft3/sk	Slurry Description			
1 210	290	13.5	1.73	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)			
1,510	100 14.8 1.34		1.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Aetasilicate			
5 910	440	12.7	1.11	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)			
5,810	5,810' 300 14.8 1.5	1.5	Tail: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,225')				
	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)			
15,275'	650	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241			

Mud Program:

Depth	Туре	Wt (ppg)	Viscosity	Water Loss
0-1,310'	Fresh - Gel	8.6-8.8	28-34	N/c
1,310' – 5,280'	Brine	8.6-8.8	28-34	N/c
5,280' – 15,275' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Dragon 36 State #222H

<u>Design B</u>

CASING PROGRAM

Hole	Interva	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	1,310	0	1,310	10-3/4"	40.5#	J-55	STC
9-7/8"	0	5,811	0	5,280	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	15,275	0	9,899	5-1/2"	20#	P110-EC	DWC/C IS MS

Cementing Program:

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Starry Description
1,310'	360	13.5	1.73	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
1,510	70	14.8	1.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
5,810' -	540	12.7	1.11	Tail: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	1000	14.8	1.5	Lead: Class C + 3% CaCl2 + 3% Microbond (TOC @ 4,225')
	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
15,275'	390	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT- 241

Mud Program:

Depth	Туре	Veight (pp	Viscosity	Water Loss
0-1,310'	Fresh - Gel	8.6-8.8	28-34	N/c
1,310' – 5,280'	Brine	9.0-10.5	28-34	N/c
5,280' – 15,275' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Dragon 36 State 222H

EOG requests variance from minimum standards to pump a two stage cement job on the 6" and 5-1/2" production casing strings with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,793') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

19.15.16.10 Casing AND TUBING RQUIREMENTS:
 J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Dragon 36 State #222H

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

■ Visual warning systems.

- a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
- b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
- c. Two wind socks will be placed in strategic locations, visible from all angles.

Dragon 36 State #222H

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Seog resources

.

Dragon 36 State #222H Emergency Assistance Telephone List

PUBLIC SAFETY:		911 (
Lea County Sheriff's Department		(575) 396-3611
Rod Coffman		
Fire Department:		
Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		(575) 476-3440
NMOCD Inspection Group - South		(575) 626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		
EOG / Midland	Office	(432) 686-3600
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Stephen Davis	Cell	(432) 235-9789
Matt Day	Cell	(432) 296-4456
Drilling Manager	Con	(102) 290 1100
Branden Keener	Office	(432) 686-3752
	Cell	(210) 294-3729
Drilling Superintendent	Cen	(210) 294 5729
Steve Kelly	Office	(432) 686-3706
steve heny	Cell	(210) 416-7894
H&P Drilling	Con	(210) 110 7071
H&P Drilling	Office	(432) 563-5757
H&P 651 Drilling Rig	Rig	(903) 509-7131
	Кış	(903) 509 7151
Tool Pusher:		
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett		
Safety:		
Brian Chandler (HSE Manager)	Office	(432) 686-3695
	Cell	(817) 239-0251

Midland

Lea County, NM (NAD 83 NME) Dragon 36 State #222H

ОН

Plan: Plan #0.1 RT

Standard Planning Report

19 June, 2024

, 0.0	10,217.1 []			MWD + IFR1				
Plan Survey Tool Pro Depth From (usft) 1 0.0	Depth To (usft) Sເ	Date 6/19/2 urvey (Wellbo an #0.1 RT (1	ore)	Tool Name EOG MWD+IFR1	Rema	ırks		
				0.0	0.0			
Vertical Section:		(u	rom (TVD) Isft)).0	+N/-S (usft) 0.0	+E/-W (usft) 0.0		(°) 333.34	
Version:		_	Phase:	PLAN	Tie On Dep		0.0	
Audit Notes:								
Design	Plan #0.1 RT							
	IGRF	2020	6/19/2024	.,	6.17	59.75		1.94995746
Magnetics	Model Name	9	Sample Date	Declination (°)		Dip Angle (°)	Field Str (nT	-
Wellbore	ОН							
Grid Convergence:		0.43 °						
Position Uncertainty	,	0.0 usft	Wellhead Elev		usft	Ground Level:		3,481.0 usf
Well Position	+N/-S +E/-W	0.0 usft 0.0 usft	Northing: Easting:		26,540.00 usft 90,927.00 usft	Latitude: Longitude:		32° 10' 12.233 N 103° 31' 36.099 W
Well	#222H							
From: Position Uncertainty:	Мар	0.0 usft	Easting: Slot Radius:	793,102. 13-3/	-	de:		103° 31' 10.836 W
Site Position:			Northing:	426,079.	0 usft Latitude	ə:		32° 10' 7.510 N
Site	Dragon 36 State	!						
Geo Datum.	North American D New Mexico Easte							
Project Map System:	Lea County, NM US State Plane 19		IE)	System Datum:		Mean Sea Level		
Design:	Plan #0.1 RT							
Wellbore:	OH							
Well:	#222H	•		Survey Calcul		Minimum Curva	ature	
Project: Site:	Lea County, NM Dragon 36 State		ME)	MD Reference North Referen		kb = 26' @ 350 Grid)7.0usft	
Company:	Midland			TVD Referenc		kb = 26' @ 350		
Database:	PEDMB				nate Reference:	Well #222H		

Database:	PEDMB	Local Co-ordinate Reference:	Well #222H
Company:	Midland	TVD Reference:	kb = 26' @ 3507.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3507.0usft
Site:	Dragon 36 State	North Reference:	Grid
Well:	#222H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,707.4	24.15	239.68	2,671.9	-126.6	-216.4	2.00	2.00	0.00	239.68	
7,035.2	24.15	239.68	6,621.1	-1,020.4	-1,744.6	0.00	0.00	0.00	0.00	
8,242.6	0.00	0.00	7,793.0	-1,147.0	-1,961.0	2.00	-2.00	0.00	180.00	
9,871.1	0.00	0.00	9,421.5	-1,147.0	-1,961.0	0.00	0.00	0.00	0.00	KOP(Dragon 36 Star
10,091.5	26.46	358.85	9,634.2	-1,097.0	-1,962.0	12.00	12.00	-0.52	358.85	FTP(Dragon 36 Stat
10,621.0	90.00	359.59	9,898.9	-669.6	-1,966.7	12.00	12.00	0.14	0.82	
15,274.7	90.00	359.59	9,899.0	3,984.0	-2,000.0	0.00	0.00	0.00	0.00	PBHL(Dragon 36 St

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	2.00	239.68	1,600.0	-0.9	-1.5	-0.1	2.00	2.00	0.00
1,700.0	4.00	239.68	1,699.8	-3.5	-6.0	-0.4	2.00	2.00	0.00
1,800.0	6.00	239.68	1,799.5	-7.9	-13.5	-1.0	2.00	2.00	0.00
1,900.0	8.00	239.68	1,898.7	-14.1	-24.1	-1.8	2.00	2.00	0.00
2,000.0	10.00	239.68	1,997.5	-22.0	-37.6	-2.8	2.00	2.00	0.00
2,100.0	12.00	239.68	2,095.6	-31.6	-54.0	-4.0	2.00	2.00	0.00
2,200.0	14.00	239.68	2,193.1	-43.0	-73.5	-5.4	2.00	2.00	0.00
2,300.0	16.00	239.68	2,289.6	-56.0	-95.8	-7.1	2.00	2.00	0.00
2,400.0	18.00	239.68	2,385.3	-70.8	-121.0	-9.0	2.00	2.00	0.00
2,500.0	20.00	239.68	2,479.8	-87.2	-149.1	-11.0	2.00	2.00	0.00
2,600.0	22.00	239.68	2,573.2	-105.3	-180.1	-13.3	2.00	2.00	0.00
2,707.4	24.15	239.68	2,671.9	-126.6	-216.4	-16.0	2.00	2.00	0.00
2,800.0	24.15	239.68	2,756.5	-145.7	-249.1	-18.5	0.00	0.00	0.00
2,900.0	24.15	239.68	2,847.7	-166.4	-284.4	-21.1	0.00	0.00	0.00
3,000.0	24.15	239.68	2,939.0	-187.0	-319.7	-23.7	0.00	0.00	0.00
3,100.0	24.15	239.68	3,030.2	-207.7	-355.0	-26.3	0.00	0.00	0.00
3,200.0	24.15	239.68	3,121.5	-228.3	-390.3	-28.9	0.00	0.00	0.00
3,300.0	24.15	239.68	3,212.7	-249.0	-425.7	-31.5	0.00	0.00	0.00
3,400.0	24.15	239.68	3,304.0	-269.6	-461.0	-34.2	0.00	0.00	0.00
3,500.0	24.15	239.68	3,395.2	-290.3	-496.3	-36.8	0.00	0.00	0.00
3,600.0	24.15	239.68	3,486.5	-310.9	-531.6	-39.4	0.00	0.00	0.00
3,700.0	24.15	239.68	3,577.7	-331.6	-566.9	-42.0	0.00	0.00	0.00
3,800.0	24.15	239.68	3,669.0	-352.2	-602.2	-44.6	0.00	0.00	0.00
3,900.0	24.15	239.68	3,760.2	-372.9	-637.5	-47.2	0.00	0.00	0.00
4,000.0	24.15	239.68	3,851.5	-393.5	-672.8	-49.8	0.00	0.00	0.00
4,100.0	24.15	239.68	3,942.7	-414.2	-708.1	-52.5	0.00	0.00	0.00
4,200.0	24.15	239.68	4,034.0	-434.9	-743.5	-55.1	0.00	0.00	0.00
4,300.0	24.15	239.68	4,125.2	-455.5	-778.8	-57.7	0.00	0.00	0.00
4,400.0	24.15	239.68	4,216.5	-476.2	-814.1	-60.3	0.00	0.00	0.00
4,500.0	24.15	239.68	4,307.7	-496.8	-849.4	-62.9	0.00	0.00	0.00
4,600.0	24.15	239.68	4,399.0	-517.5	-884.7	-65.5	0.00	0.00	0.00
4,700.0	24.15	239.68	4,490.2	-538.1	-920.0	-68.2	0.00	0.00	0.00
4,800.0	24.15	239.68	4,581.5	-558.8	-955.3	-70.8	0.00	0.00	0.00
4,900.0	24.15	239.68	4,672.7	-579.4	-990.6	-73.4	0.00	0.00	0.00
5,000.0	24.15	239.68	4,764.0	-600.1	-1,026.0	-76.0	0.00	0.00	0.00
5,100.0	24.15	239.68	4,855.2	-620.7	-1,061.3	-78.6	0.00	0.00	0.00
5,200.0	24.15	239.68	4,946.5	-641.4	-1,096.6	-81.2	0.00	0.00	0.00
5,300.0	24.15	239.68	5,037.7	-662.0	-1,131.9	-83.9	0.00	0.00	0.00

6/19/2024 12:00:04PM

Page 4

COMPASS 5000.16 Build 100

Database:	PEDMB	Local Co-ordinate Reference:	Well #222H
Company:	Midland	TVD Reference:	kb = 26' @ 3507.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3507.0usft
Site:	Dragon 36 State	North Reference:	Grid
Well:	#222H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	24.15	239.68	5,129.0	-682.7	-1,167.2	-86.5	0.00	0.00	0.00
5,500.0	24.15	239.68	5,220.2	-703.4	-1,202.5	-89.1	0.00	0.00	0.00
5,600.0	24.15	239.68	5,311.5	-724.0	-1,237.8	-91.7	0.00	0.00	0.00
5,700.0	24.15	239.68	5,402.7	-744.7	-1,273.1	-94.3	0.00	0.00	0.00
5,800.0	24.15	239.68	5,494.0	-765.3	-1,308.4	-96.9	0.00	0.00	0.00
5,900.0	24.15	239.68	5,585.2	-786.0	-1,343.8	-99.6	0.00	0.00	0.00
5,900.0	24.13	239.00	3,303.2	-700.0	-1,545.0	-99.0	0.00	0.00	0.00
6,000.0	24.15	239.68	5,676.5	-806.6	-1,379.1	-102.2	0.00	0.00	0.00
6,100.0	24.15	239.68	5,767.7	-827.3	-1,414.4	-104.8	0.00	0.00	0.00
6,200.0	24.15	239.68	5,859.0	-847.9	-1,449.7	-107.4	0.00	0.00	0.00
6,300.0	24.15	239.68	5,950.2	-868.6	-1,485.0	-110.0	0.00	0.00	0.00
6,400.0	24.15	239.68	6,041.5	-889.2	-1,520.3	-112.6	0.00	0.00	0.00
0.500.0			0 100 7			445.0			
6,500.0	24.15	239.68	6,132.7	-909.9	-1,555.6	-115.3	0.00	0.00	0.00
6,600.0	24.15	239.68	6,224.0	-930.6	-1,590.9	-117.9	0.00	0.00	0.00
6,700.0	24.15	239.68	6,315.2	-951.2	-1,626.3	-120.5	0.00	0.00	0.00
6,800.0	24.15	239.68	6,406.5	-971.9	-1,661.6	-123.1	0.00	0.00	0.00
6,900.0	24.15	239.68	6,497.7	-992.5	-1,696.9	-125.7	0.00	0.00	0.00
7,000.0	24.15	239.68	6,588.9	-1,013.2	-1,732.2	-128.3	0.00	0.00	0.00
	24.15	239.68	,	-1,013.2	,	-120.3	0.00	0.00	0.00
7,035.2			6,621.1		-1,744.6				
7,100.0	22.85	239.68	6,680.5	-1,033.5	-1,766.9	-130.9	2.00	-2.00	0.00
7,200.0	20.85	239.68	6,773.3	-1,052.3	-1,799.0	-133.3	2.00	-2.00	0.00
7,300.0	18.85	239.68	6,867.4	-1,069.4	-1,828.4	-135.5	2.00	-2.00	0.00
7,400.0	16.85	239.68	6,962.5	-1,084.9	-1,854.8	-137.4	2.00	-2.00	0.00
7,500.0	14.85	239.68	7,058.7	-1,098.7	-1,878.4	-139.2	2.00	-2.00	0.00
7,600.0	12.85	239.68	7,155.8	-1,110.8	-1,899.1	-140.7	2.00	-2.00	0.00
7,700.0	10.85	239.68	7,155.8	-1,121.1	-1,916.8	-140.7	2.00	-2.00	0.00
7,800.0	8.85	239.68	7,352.2	-1,129.8	-1,910.8	-142.0	2.00	-2.00	0.00
7,900.0	6.85	239.68	7,451.3	-1,136.7	-1,943.3	-144.0	2.00	-2.00	0.00
8,000.0	4.85	239.68	7,550.7	-1,141.8	-1,952.1	-144.6	2.00	-2.00	0.00
8,100.0	2.85	239.68	7,650.5	-1,145.2	-1,957.9	-145.1	2.00	-2.00	0.00
8,200.0	0.85	239.68	7,750.4	-1,146.8	-1,960.7	-145.3	2.00	-2.00	0.00
8,242.6	0.00	0.00	7,793.0	-1,147.0	-1,961.0	-145.3	2.00	-2.00	0.00
8,300.0	0.00	0.00	7,850.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,400.0	0.00	0.00	7,950.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,500.0	0.00	0.00	8,050.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,600.0	0.00	0.00	8,150.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,700.0	0.00	0.00	8,250.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,800.0	0.00	0.00	8,350.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
8,900.0	0.00	0.00	8,450.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,000.0	0.00	0.00	8,550.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
	0.00						0.00	0.00	0.00
9,100.0		0.00	8,650.4 8,750.4	-1,147.0	-1,961.0	-145.3			
9,200.0	0.00	0.00	8,750.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,300.0	0.00	0.00	8,850.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,400.0	0.00	0.00	8,950.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,500.0	0.00	0.00	9,050.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,600.0	0.00	0.00	9,150.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,700.0	0.00	0.00	9,250.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
					,				
9,800.0	0.00	0.00	9,350.4	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,871.1	0.00	0.00	9,421.5	-1,147.0	-1,961.0	-145.3	0.00	0.00	0.00
9,875.0	0.47	358.85	9,425.4	-1,147.0	-1,961.0	-145.3	12.00	12.00	0.00
9,900.0	3.47	358.85	9,450.4	-1,146.1	-1,961.0	-144.5	12.00	12.00	0.00
9,925.0	6.48	358.85	9,475.3	-1,144.0	-1,961.1	-142.5	12.00	12.00	0.00
			0 500 4						
9,950.0	9.48	358.85	9,500.1	-1,140.5	-1,961.1	-139.4	12.00	12.00	0.00
9,975.0	12.48	358.85	9,524.6	-1,135.7	-1,961.2	-135.1	12.00	12.00	0.00
10,000.0	15.48	358.85	9,548.9	-1,129.7	-1,961.3	-129.7	12.00	12.00	0.00

6/19/2024 12:00:04PM

Released to Imaging: 7/18/2024 2:25:16 PM

Page 5

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #222H
Company:	Midland	TVD Reference:	kb = 26' @ 3507.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3507.0usft
Site:	Dragon 36 State	North Reference:	Grid
Well:	#222H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,025.0	18.48	358.85	9,572.8	-1,122.4	-1,961.5	-123.1	12.00	12.00	0.00
10,050.0	21.48	358.85	9,596.3	-1,113.9	-1,961.7	-115.4	12.00	12.00	0.00
10,075.0	24.48	358.85	9,619.3	-1,104.1	-1,961.9	-106.6	12.00	12.00	0.00
10,091.5	26.46	358.85	9,634.2	-1,097.0	-1,962.0	-100.1	12.00	12.00	0.00
10,100.0	27.48	358.89	9,641.8	-1,093.2	-1,962.1	-96.7	12.00	12.00	0.37
10,125.0	30.48	358.97	9,663.6	-1,081.0	-1,962.3	-85.8	12.00	12.00	0.33
10,150.0	33.48	359.04	9,684.8	-1,067.8	-1,962.5	-73.8	12.00	12.00	0.27
10,175.0	36.48	359.09	9,705.3	-1,053.5	-1,962.8	-60.9	12.00	12.00	0.23
	39.48	359.15	9,725.0	-1,038.1	-1,963.0	-47.1	12.00	12.00	0.20
10,200.0									
10,225.0	42.48	359.19	9,743.9	-1,021.7	-1,963.2	-32.3	12.00	12.00	0.18
10,250.0	45.48	359.23	9,761.9	-1,004.3	-1,963.5	-16.7	12.00	12.00	0.16
10,275.0	48.48	359.27	9,778.9	-986.1	-1,963.7	-0.2	12.00	12.00	0.14
10,300.0	51.48	359.30	9,795.0	-966.9	-1,964.0	17.0	12.00	12.00	0.13
10,325.0	54.48	359.33	9,810.1	-947.0	-1,964.2	34.9	12.00	12.00	0.12
10,350.0	57.48	359.36	9,824.0	-926.3	-1,964.4	53.5	12.00	12.00	0.11
10,375.0	60.48	359.38	9,836.9	-904.8	-1,964.7	72.8	12.00	12.00	0.10
10,400.0	63.48	359.41	9,848.7	-882.8	-1,964.9	92.6	12.00	12.00	0.10
10,425.0	66.48	359.43	9,859.2	-860.1	-1,965.1	113.0	12.00	12.00	0.09
10,450.0	69.48	359.45	9,868.6	-836.9	-1,965.4	133.8	12.00	12.00	0.09
10,475.0	72.48	359.47	9,876.8	-813.3	-1,965.6	155.0	12.00	12.00	0.09
10,500.0	75.48	359.50	9,883.7	-789.3	-1,965.8	176.6	12.00	12.00	0.08
10,525.0	78.48	359.52	9,889.3	-764.9	-1,966.0	198.4	12.00	12.00	0.08
10,550.0	81.48	359.54	9,893.6	-740.3	-1,966.2	220.5	12.00	12.00	0.08
10,575.0	84.48	359.56	9,896.7	-715.5	-1,966.4	242.8	12.00	12.00	0.08
10,600.0	87.48	359.57	9,898.5	-690.6	-1,966.6	265.1	12.00	12.00	0.08
10,621.0	90.00	359.59	9,898.9	-669.6	-1,966.7	284.0	12.00	12.00	0.08
10,021.0	90.00	359.59	9,898.9	-590.6	-1,967.3	354.8	0.00	0.00	0.08
10,700.0	90.00	309.09	9,090.9		-1,907.5		0.00	0.00	0.00
10,800.0	90.00	359.59	9,898.9	-490.6	-1,968.0	444.5	0.00	0.00	0.00
10,900.0	90.00	359.59	9,898.9	-390.6	-1,968.7	534.2	0.00	0.00	0.00
11,000.0	90.00	359.59	9,898.9	-290.6	-1,969.5	623.9	0.00	0.00	0.00
11,100.0	90.00	359.59	9,898.9	-190.6	-1,970.2	713.6	0.00	0.00	0.00
11,200.0	90.00	359.59	9,898.9	-90.6	-1,970.9	803.3	0.00	0.00	0.00
11,300.0	90.00	359.59	9,898.9	9.4	-1,971.6	893.0	0.00	0.00	0.00
11,400.0	90.00	359.59	9,898.9	109.4	-1,972.3	982.6	0.00	0.00	0.00
11,500.0	90.00	359.59	9,898.9	209.4	-1,973.0	1,072.3	0.00	0.00	0.00
11,600.0	90.00	359.59	9,898.9	309.4	-1,973.7	1,162.0	0.00	0.00	0.00
11,700.0	90.00	359.59	9,898.9	409.4	-1,974.5	1,251.7	0.00	0.00	0.00
11,800.0	90.00	359.59	9,898.9	509.4	-1,975.2	1,341.4	0.00	0.00	0.00
11,900.0	90.00	359.59	9,898.9	609.4	-1,975.9	1,431.1	0.00	0.00	0.00
12,000.0	90.00	359.59	9,898.9	709.4	-1,976.6	1,520.8	0.00	0.00	0.00
12,000.0	90.00	359.59	9,898.9	809.4	-1,970.0	1,610.5	0.00	0.00	0.00
12,100.0	90.00	359.59	9,898.9 9,898.9	909.4 909.4	-1,978.0	1,700.2	0.00	0.00	0.00
12,300.0	90.00	359.59	9,898.9	1,009.4	-1,978.7	1,789.8	0.00	0.00	0.00
12,400.0	90.00	359.59	9,898.9	1,109.4	-1,979.5	1,879.5	0.00	0.00	0.00
12,500.0	90.00	359.59	9,898.9	1,209.4	-1,980.2	1,969.2	0.00	0.00	0.00
12,600.0	90.00	359.59	9,899.0	1,309.4	-1,980.9	2,058.9	0.00	0.00	0.00
12,700.0	90.00	359.59	9,899.0	1,409.4	-1,981.6	2,148.6	0.00	0.00	0.00
12,800.0	90.00	359.59	9,899.0	1,509.4	-1,982.3	2,238.3	0.00	0.00	0.00
12,900.0	90.00	359.59	9,899.0	1,609.4	-1,983.0	2,328.0	0.00	0.00	0.00
13,000.0	90.00	359.59	9,899.0	1,709.4	-1,983.7	2,417.7	0.00	0.00	0.00
13,100.0	90.00	359.59	9,899.0	1,809.4	-1,984.5	2,507.4	0.00	0.00	0.00
13,200.0	90.00	359.59	9,899.0	1,909.3	-1,985.2	2,597.0	0.00	0.00	0.00
13,300.0	90.00	359.59	9,899.0	2,009.3	-1,985.9	2,686.7	0.00	0.00	0.00
13,400.0	90.00	359.59	9,899.0	2,109.3	-1,986.6	2,776.4	0.00	0.00	0.00

6/19/2024 12:00:04PM

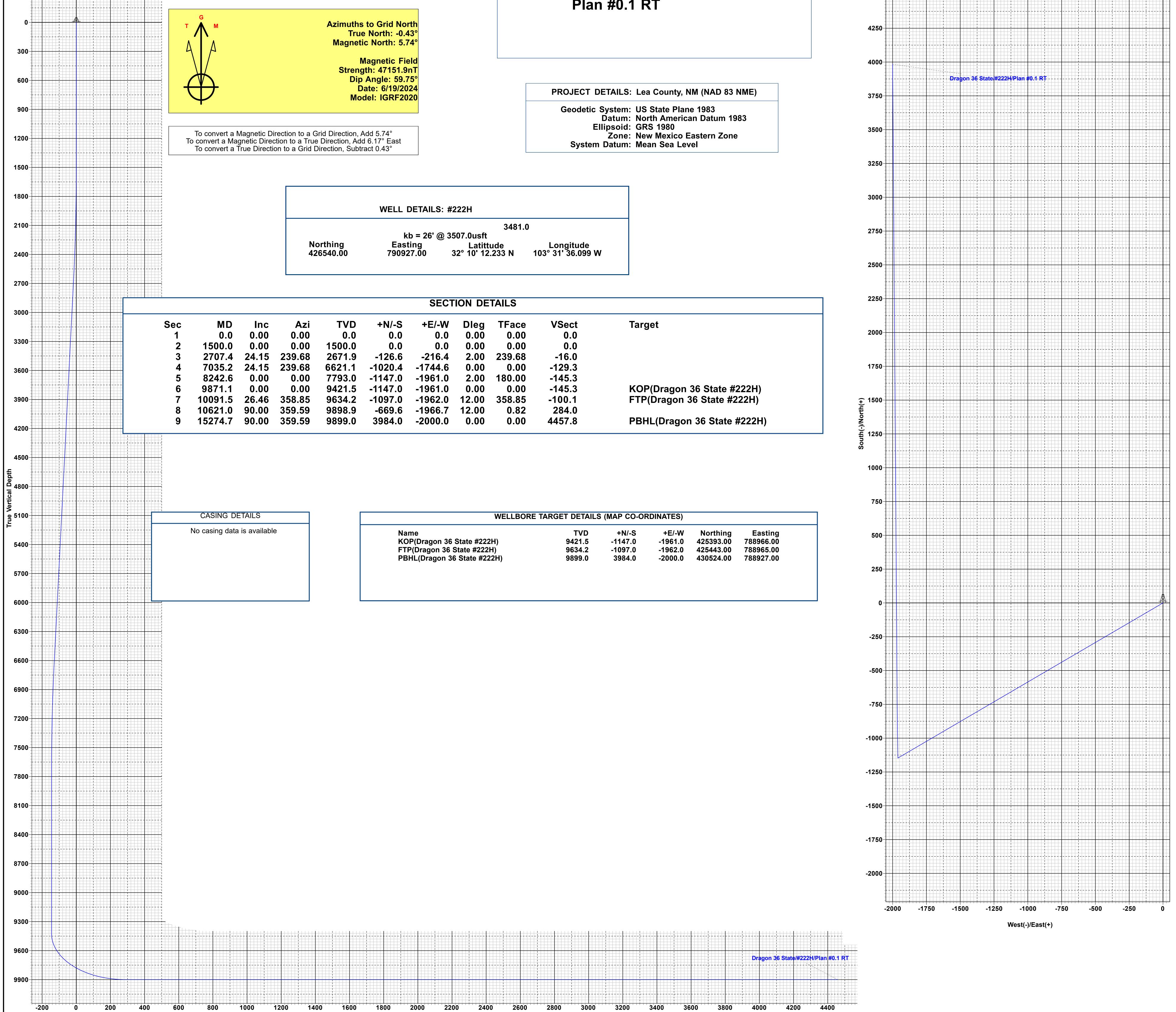
Released to Imaging: 7/18/2024 2:25:16 PM

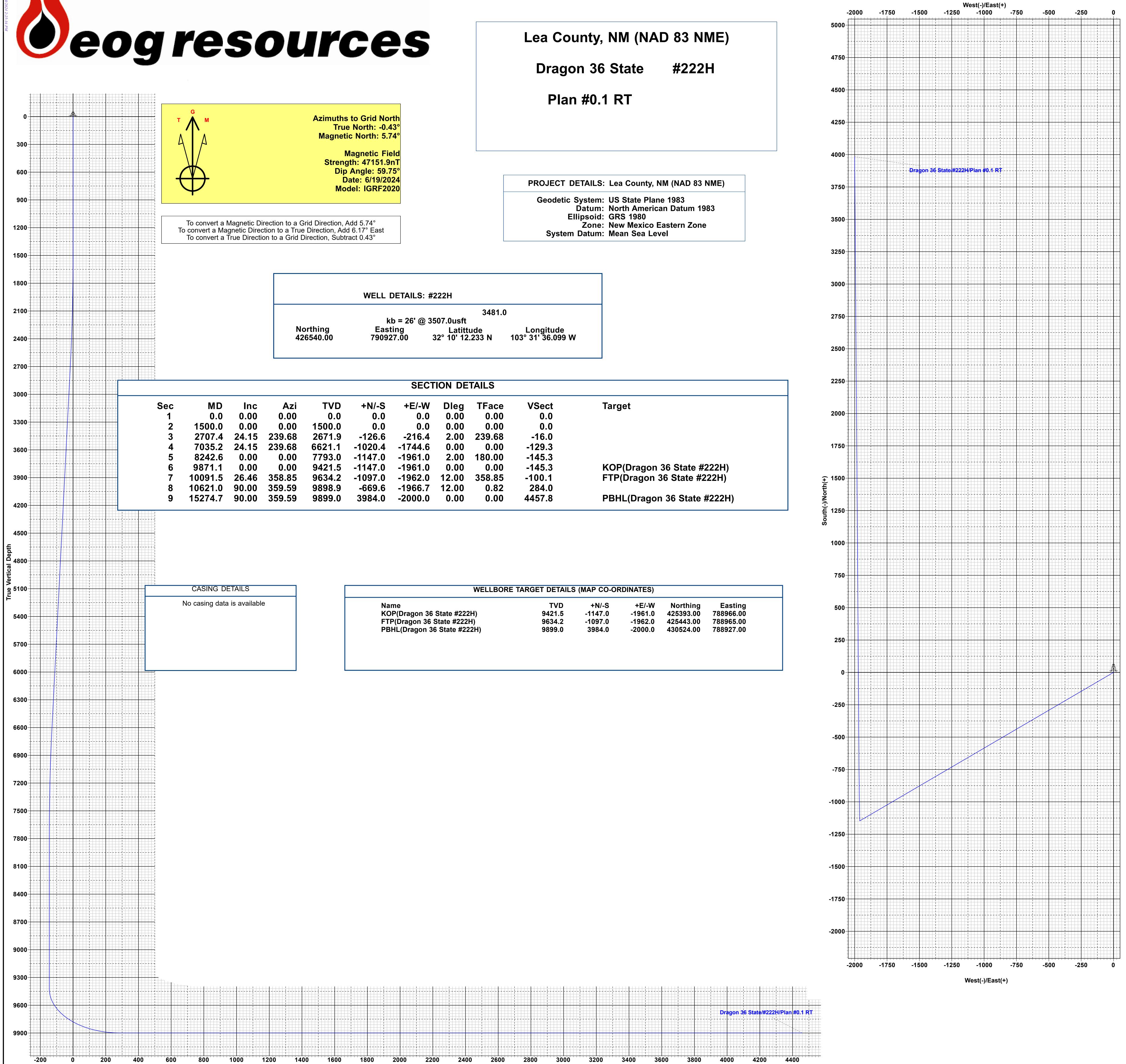
Page 6

COMPASS 5000.16 Build 100

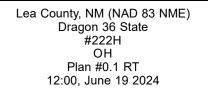
.

Database:	PEDMB	Local Co-ordinate Reference:	Well #222H
Company:	Midland	TVD Reference:	kb = 26' @ 3507.0usft
Project:	Lea County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 3507.0usft
Site:	Dragon 36 State	North Reference:	Grid
Well:	#222H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		


Planned Survey


Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,500.0	90.00	359.59	9,899.0	2,209.3	-1,987.3	2,866.1	0.00	0.00	0.00
13,600.0	90.00	359.59	9,899.0	2,309.3	-1,988.0	2,955.8	0.00	0.00	0.00
13,700.0	90.00	359.59	9,899.0	2,409.3	-1,988.7	3,045.5	0.00	0.00	0.00
13,800.0	90.00	359.59	9,899.0	2,509.3	-1,989.5	3,135.2	0.00	0.00	0.00
13,900.0	90.00	359.59	9,899.0	2,609.3	-1,990.2	3,224.9	0.00	0.00	0.00
14,000.0	90.00	359.59	9,899.0	2,709.3	-1,990.9	3,314.6	0.00	0.00	0.00
14,100.0	90.00	359.59	9,899.0	2,809.3	-1,991.6	3,404.2	0.00	0.00	0.00
14,200.0	90.00	359.59	9,899.0	2,909.3	-1,992.3	3,493.9	0.00	0.00	0.00
14,300.0	90.00	359.59	9,899.0	3,009.3	-1,993.0	3,583.6	0.00	0.00	0.00
14,400.0	90.00	359.59	9,899.0	3,109.3	-1,993.7	3,673.3	0.00	0.00	0.00
14,500.0	90.00	359.59	9,899.0	3,209.3	-1,994.5	3,763.0	0.00	0.00	0.00
14,600.0	90.00	359.59	9,899.0	3,309.3	-1,995.2	3,852.7	0.00	0.00	0.00
14,700.0	90.00	359.59	9,899.0	3,409.3	-1,995.9	3,942.4	0.00	0.00	0.00
14,800.0	90.00	359.59	9,899.0	3,509.3	-1,996.6	4,032.1	0.00	0.00	0.00
14,900.0	90.00	359.59	9,899.0	3,609.3	-1,997.3	4,121.8	0.00	0.00	0.00
15,000.0	90.00	359.59	9,899.0	3,709.3	-1,998.0	4,211.5	0.00	0.00	0.00
15,100.0	90.00	359.59	9,899.0	3,809.3	-1,998.8	4,301.1	0.00	0.00	0.00
15,200.0	90.00	359.59	9,899.0	3,909.3	-1,999.5	4,390.8	0.00	0.00	0.00
15,274.7	90.00	359.59	9,899.0	3,984.0	-2,000.0	4,457.8	0.00	0.00	0.00

Design Targets


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(Dragon 36 State #. - plan hits target cent - Point	0.00 er	0.00	9,421.5	-1,147.0	-1,961.0	425,393.00	788,966.00	32° 10' 1.028 N	103° 31' 59.012 W
FTP(Dragon 36 State #2 - plan hits target cent - Point	0.00 ter	0.00	9,634.2	-1,097.0	-1,962.0	425,443.00	788,965.00	32° 10' 1.523 N	103° 31' 59.019 W
PBHL(Dragon 36 State ‡ - plan hits target cent - Point	0.00 er	0.00	9,899.0	3,984.0	-2,000.0	430,524.00	788,927.00	32° 10' 51.804 N	103° 31' 59.021 W

Released to Imaging: 7/18/2024 2:25:16 PM

Vertical Section at 333.34°

Dragon 36 State 222H API #: 30-025-**** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.

- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.

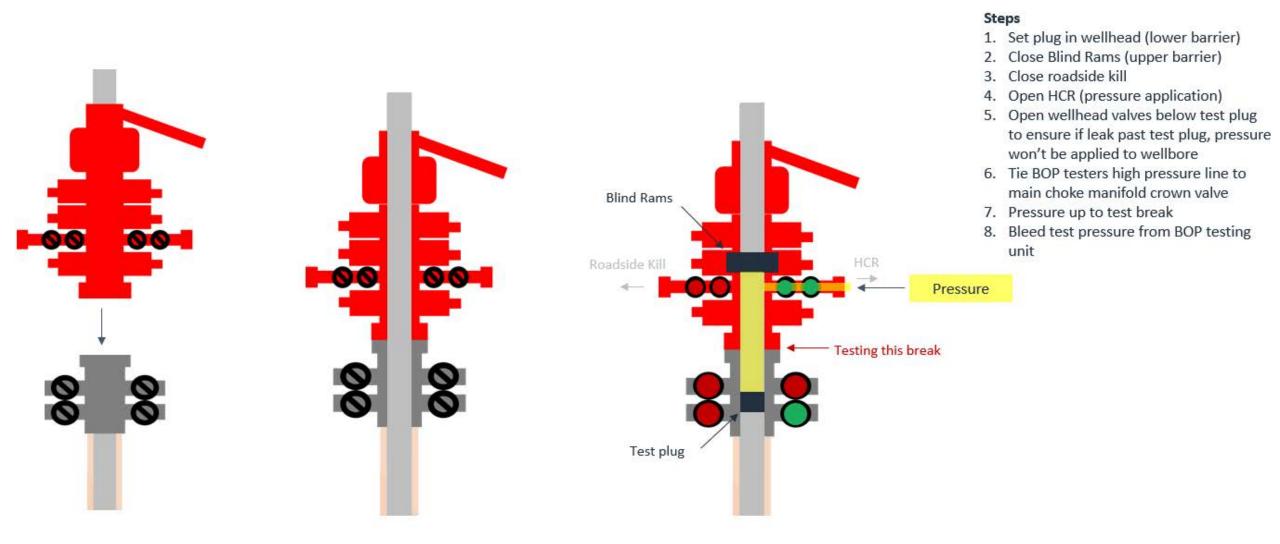
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.

- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

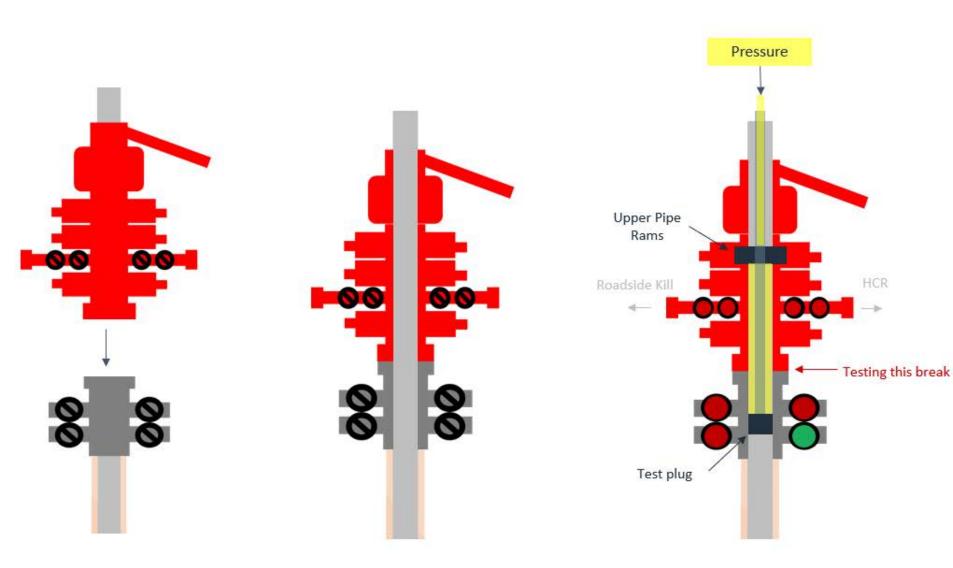
EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Inermediate Bradenhead Cement
- EOG BLM Variance 3a_b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs



Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:


- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Released to Imaging: 7/18/2024 2:25:16 PM

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Seog resources Offline Intermediate Cementing Procedure

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the **casing will be cemented online**.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

Page | 1

Page 31 of 85

2/24/2022

Seog resources

Offline Intermediate Cementing Procedure

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

2/24/2022

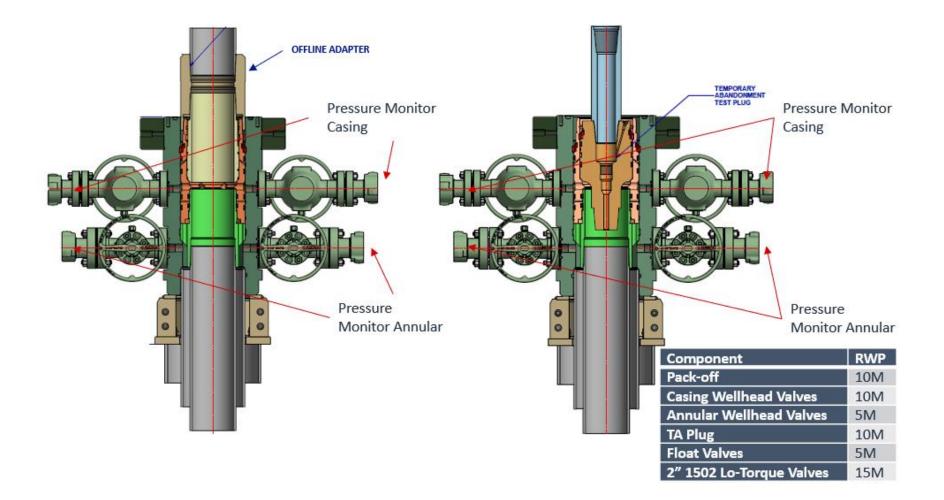
Seog resources

Offline Intermediate Cementing Procedure

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

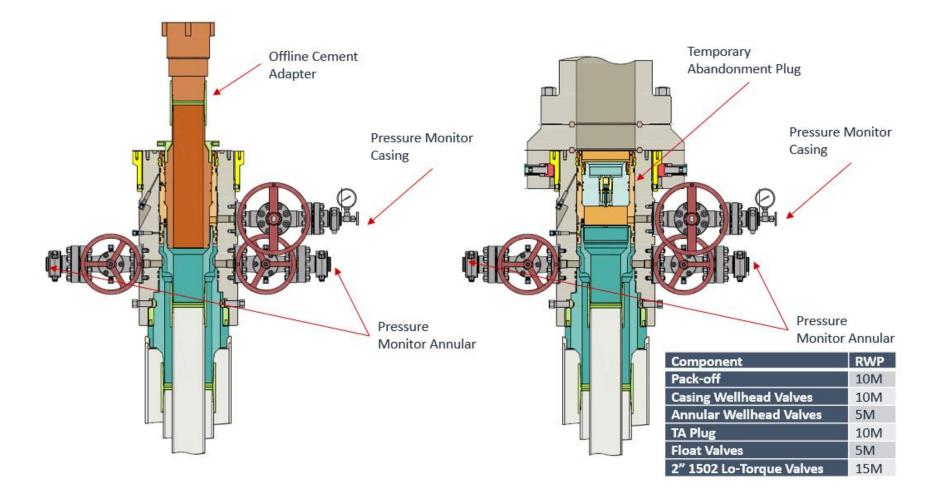

General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

Page | 4

Seog resources Offline Intermediate Cementing Procedure

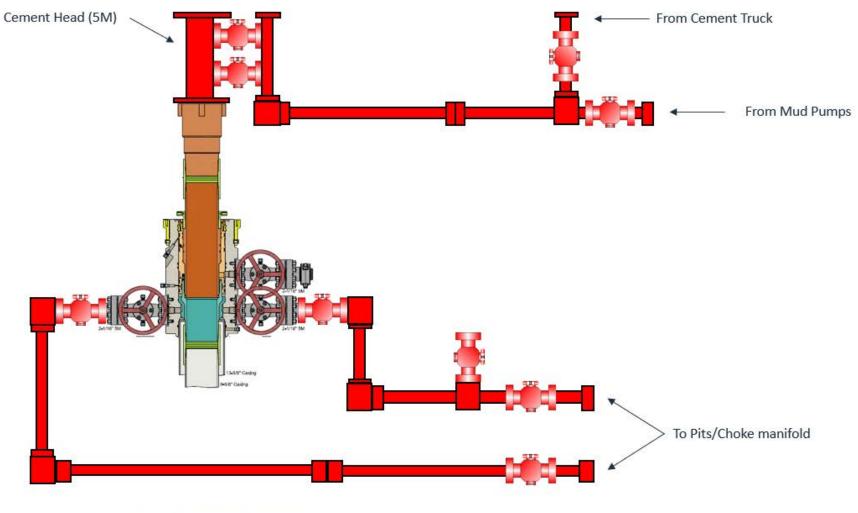
Figure 1: Cameron TA Plug and Offline Adapter Schematic



2/24/2022

Page | 5

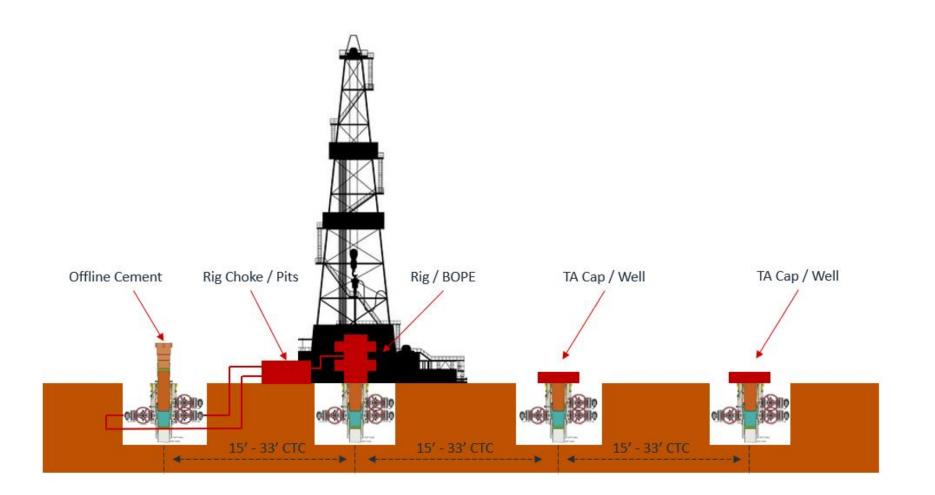
Offline Intermediate Cementing Procedure



2/24/2022

2/24/2022

Seog resources Offline Intermediate Cementing Procedure


*** All Lines 10M rated working pressure

Page | 7

Received by OCD: 7/11/2024 9:02:50 AM

Offline Intermediate Cementing Procedure

2/24/2022

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

0.422" Annular clearance requirement

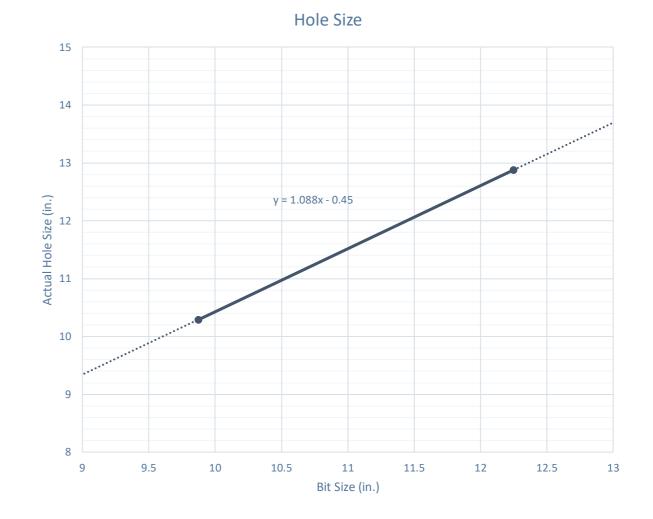
- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.

- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

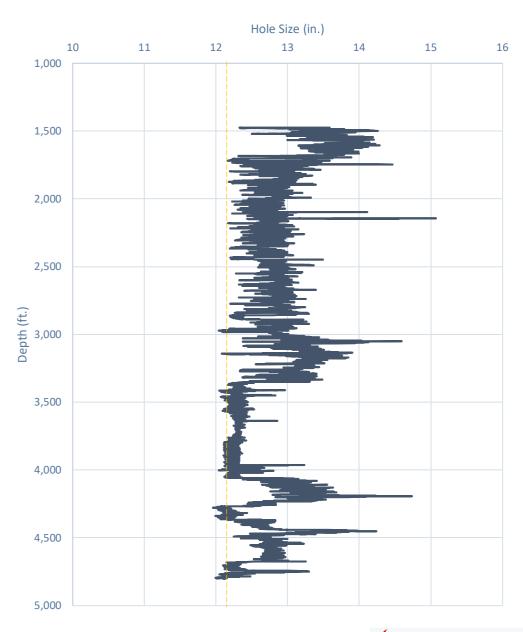
- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues


Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

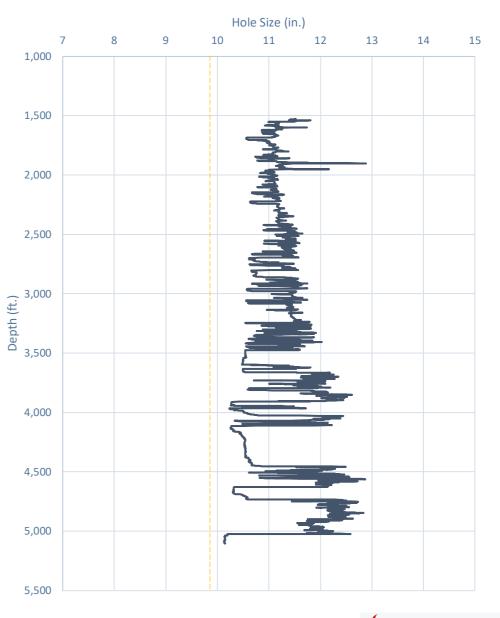
Average Hole Size


- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine


Modelo 10 Fed Com #501H

Caliper Hole Size (9.875")

Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

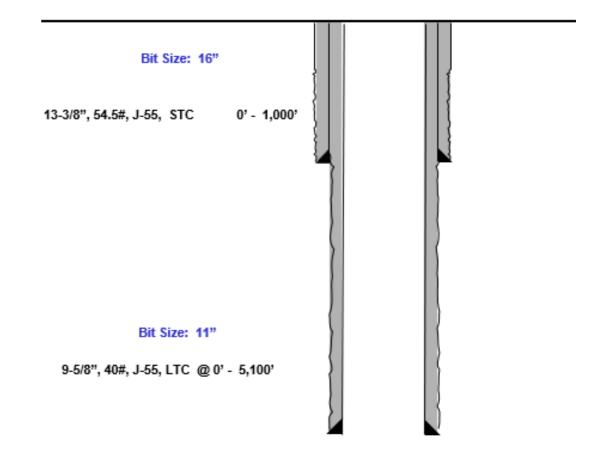
Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD

$$=\frac{11.52 - 9.625}{2}$$

475" Clearance to


• 0.4 ce to coupling OD 10.625

$$11.52 - 10.$$

=

- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Index

Released to Imaging: 7/18/2024 2:25:16 PM

.

Casing Spec Sheets

PERFORMANCE DATA

API LTC		
Technical	Data	Sheet

9.625 in 40.00 lbs/ft

K55 HC

Tubular Parameters

Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	
Nom. Pipe Body Area	11.454	in²			

Connection Parameters

10.625	in
10.500	in
8	tpi
3.50	turns
4.750	in
3,950	psi
	10.500 8 3.50 4.750

Pipe Body and API Connections Performance Data

13.375	54.50/0.380	J55

New Search »

« Back to Previous List

USC 💽 Metric

PDF

6/8/2015 10:04:37 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	BTC	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	libs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Ptpe	BTC	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55					P[
New Search »					« Back to Previous
					USC 🔵 Me
/8/2015 10:14:05 AM					
Mechantcal Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-		psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-		in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-		1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss		4.81	-	3.50	in.
Minimum Make-Up Torque		-	-	3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

			AP	9I 5CT, 1	10th Ed. Co	onnect	ion Data	a Shee
O.D. (in) WEIGHT (8.625 Nominal: Plain End:	lb/ft) 32.00 31.13	WALL (ir 0.352	^	ADE 55	* API DRIF 7.796	· · /	RBW 87.	
Material Proper	ties (PE)				Pipe Body	Data (I	PE)	
Pipe					Geom	etry		
Minimum Yield Strength:	ksi	Nomir	nal ID:			7.92 i		
Maximum Yield Strength:	80	ksi	Nomir	nal Area	1:		9.149 in ²	
Minimum Tensile Strength	: 75	ksi	*Spec	ial/Alt. [7.875 inch	
Couplin	•				Perform			
Minimum Yield Strength: 55 ksi Pipe Body Yield Strength:					1:	503 kips		
Maximum Yield Strength:	80	ksi			istance:		2,530 p	osi
Minimum Tensile Strength	: 75	ksi	Internal Yield Pressure: 3,930 ps (API Historical)					osi
API Connectio Coupling OD: 9				A	PI Connect	ion To	rque	
STC Perform			STC Torque (ft-lbs)					
STC Internal Pressure:	3,930	psi	Min:	2,793	Opti:	3,724	Max:	4,65
STC Joint Strength:	372	kips						
LTC Perform	ance				LTC Torqu	ie (ft-lk	os)	
LTC Internal Pressure:	3,930	psi	Min:	3,130	Opti:	4,174	Max:	5,21
LTC Joint Strength:		kips						
SC-BTC Performance - C	pig OD =	9.125"			BTC Torqu	ıe (ft-ll	os)	
BTC Internal Pressure:	3,930	psi	follo	w API gu	idelines rega	ding po	sitional ma	ke up
BTC Joint Strength:	503	kips						
	*Alt. Drift will	be used unles	ss API Drift	is specifie	ed on order.			
**If above API connect	tions do not	suit your nee 100% of pi			m connection	s are av	ailable up t	to
ALL INFORMATION IS PROVIDED BY VALLOURE AND ON AN "AS IS" BASIS WITHOUT WARA MERCHANTABILITY, FITNESS FOR PURPOSE, AI ONLY AND IS BASED ON ESTIMATES THAT HAVE INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSI ANTICIPATED PROFIT) HOWEVER CAUSED OR A 7/30/2021	NTY OR REPRESENT CCURACY OR COMP E NOT BEEN VERIFIE EQUENTIAL LOSS OF	ATION OF ANY KIN PLETENESS. THE INF ED OR TESTED. IN N R DAMAGE (INCLUE HER SUCH LOSSES	D, WHETHER EX ORMATION CO O EVENT SHALL NING WITHOUT	PRESS OR IMP NTAINED IN TH VALLOUREC O LIMITATION, L VERE FORESEE	PLIED, INCLUDING WI HIS DOCUMENT IS PR DR ITS AFFILIATES BE LOSS OF USE, LOSS OF	THOUT LIMI OVIDED FOR RESPONSIBL	TATION ANY WA INFORMATIONA FOR ANY INDIR OSS OF REVENU LIATES WERE AD	RRANTY OF AL PURPOSE IECT, SPECIA E, PROFIT O

eog

Released to Imaging: 7/18/2024 2:25:16 PM

11

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Shallow Design Boundary Conditions										
	Deepest	Max DLS								
	MD (ft)	TVD (ft)	(deg)	(°/100usft)						
Surface	2030	2030	0	0						
Intermediate	7793	5650	40	8						
Production	28578	12000	90	25						

Shallow Design A

т. С												
Hole	Interval MD		Interva	al TVD	Csg							
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,161	0	0 2,030		54.5#	J-55	STC				
11"	0	7,951	0 5,650		9-5/8"	40#	J-55	LTC				
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS				

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

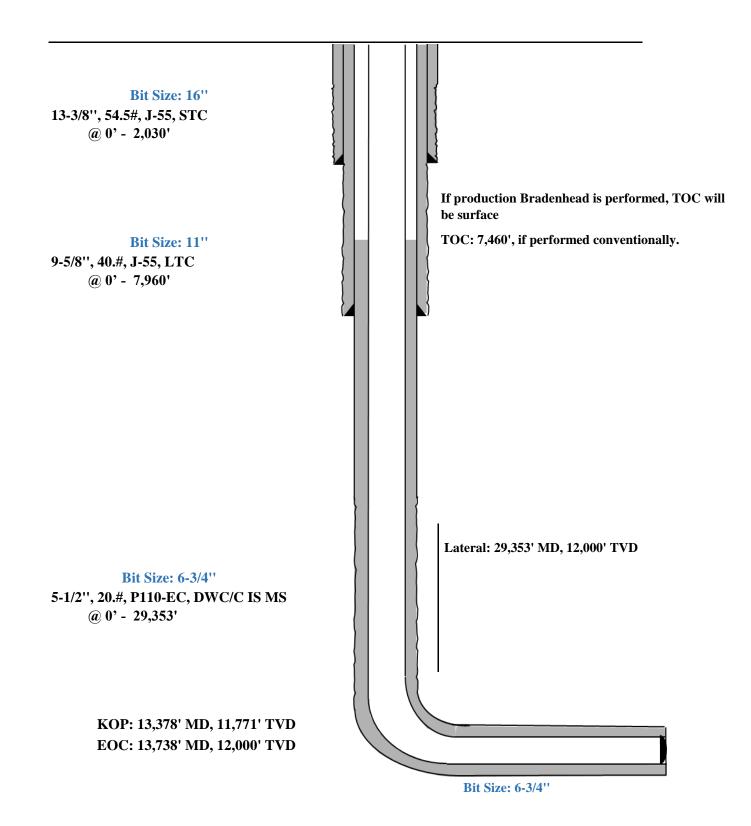
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	Metasilicate (TOC @ 1830')		Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Shallow Design A

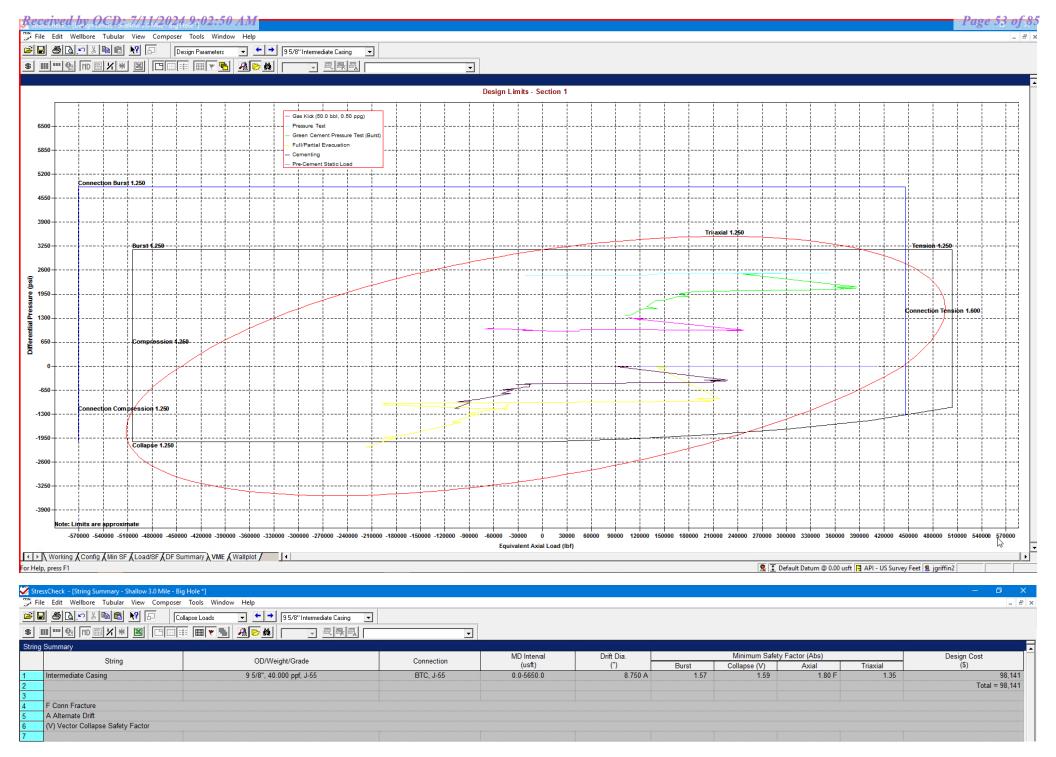
Proposed Wellbore

KB: 3558' GL: 3533'

5 II

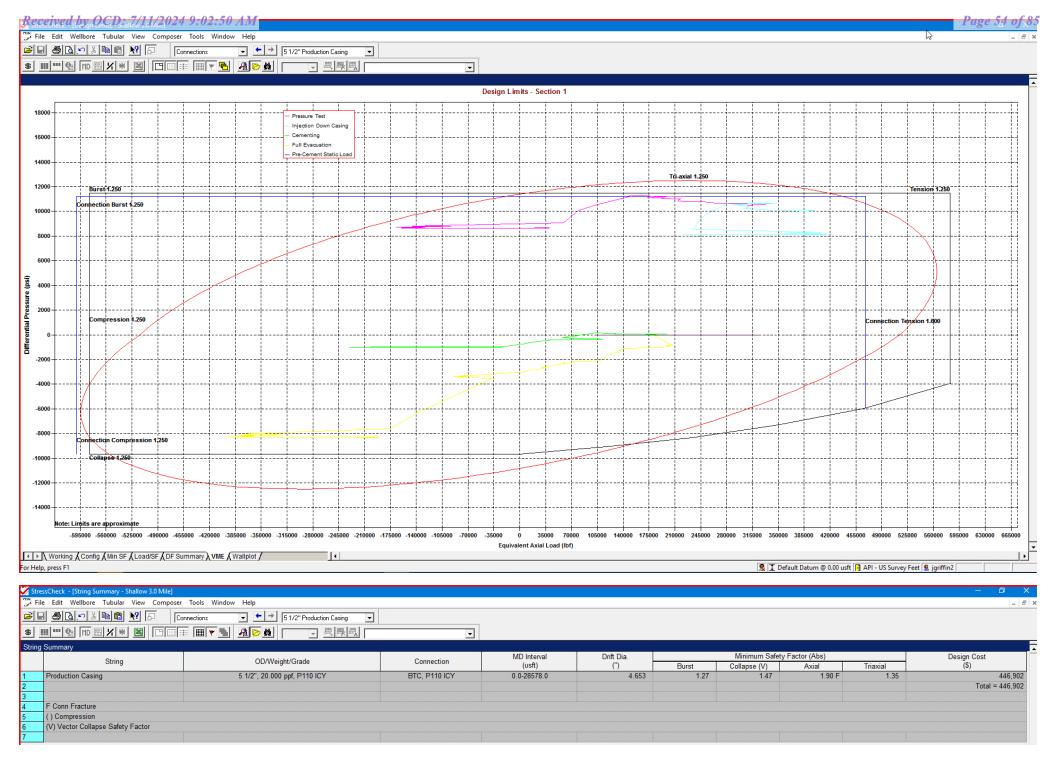
Triax

Page 52 of 8


oue ca	s Edit Wallhess Tubu	des View Commence	Tools Window Help											- 6
			·											
	1 <u>8 0 - 8 10 1</u>			→ 95/8'' Intermediate C	Casing 💌									
	Ш 🚥 💁 MD 🔤 И	* 🛛 🗀 🗄	• • • • • • • • • • • • • • • • • • •	8	🕸 🖳 Pressure Test	•	7							
	al Results						-							
		Axial	Force (lbf)	-			Absolute Sa	afety Factor		-	Pressur	e (psi)		
	Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (Ibf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (Ibf)	Buckled Length (usft)
	0		228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	33681 132027 348440 17885.2 1.51 1.57 N/A 2.1F 90.29 3305.05 805.05 850 31849 132027 32994 16284.8 1.54 1.57 N/A 2.24 F 90.29 3305.05 805.05 950 320468 127243 332475 16204.8 1.57 N/A 2.23 F 91.30 3344.87 844.87 950 312802 127243 332475 16200.7 1.53 1.57 N/A 2.28 F 91.30 3344.87 844.87 950 312802 12773 320295 16159.3 1.52 N/A 2.32 F 92.23 3381.89 881.89 950 303560 122772 31596 1578.4 1.53 1.57 N/A 2.35 F 92.23 3381.89 881.89 900 15124 112633 16365 3375.4 1.71 1.57 N/A 4.72 F 94.35 3466.13 966.13 900 132741 112633 144956 1.75.6 1.72 1.57 N/A 5												
	1850		13207 348440 17885.2 1.51 1.57 N/A 2.12 F 90.29 3305.05 805.05 649 132027 32994 16284.8 1.54 1.57 N/A 2.24 F 90.29 3305.06 805.06 468 12724 332475 16869.9 1.52 1.57 N/A 2.23 F 91.30 3344.87 844.87 468 12773 320295 16159.3 1.52 1.57 N/A 2.28 F 91.30 3344.87 844.87 858 122773 320295 16159.3 1.52 1.57 N/A 2.32 F 92.23 3381.89 881.89 650 12277 31596 15764.1 1.53 1.57 N/A 2.35 F 92.23 3381.89 881.89 294 11263 14966 1756 1.77 1.57 N/A 5.38 F 94.35 3466.13 966.13 996 10965 142452 1756 1.75 N/A 5.49											
	1850													
	1950													
	1950													
	2050													
	2050													
	2300													
	2300													
	2370													
	2700	105515												
	2700	111680												
	3100	110766												
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70 1.71	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700 4650	60887 34671	53302	79004 56495	662.3	1.71	1.61	N/A	11.72 F 20.59 F	106.16 114.20	3934.25	1502.55		
	4650	44595	14219 4828	67626	1785.6 3472.0	1.64	1.61 1.61	N/A N/A	20.59 F 16.01 F	114.20	4253.37 4337.37	1836.86 1924.87		
	4900	28975	4020	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	4900 5029	20975	4020	45340	1926.8	1.61	1.61	N/A	24.64 F 32.30 F	110.32	4380.40	1924.07		
	5029	22103	33	45339	1926.8	1.61	1.61	N/A N/A	32.30 F	117.40	4380.40	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.57	1.62	N/A	(15.31)	122.25	4572.11	2188.34		
	5050	-40403	-23210	-13031	1300.3	1.50	1.02		(13.31)	122.00	4300.01	2100.34		
	F	Conn Fracture												
		Compression												
		Vector Collapse Safe	ety Factor											
	(•7	Contra Contapor Card												
		.i			ll	l.			l.		l.	I		
												N		
												5		

working {Config {Min SF } Load/SF {DF Summary { VME { Wallplot } For Help, press F1

🕵 耳 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

Page 6 of 25

Seog resources

Shallow Design B

.	. CASING I ROOKAM										
Hole	Interval MD		Interva	l TVD	Csg						
Size	From (ft)	To (ft)	From (ft) To (ft)		OD	Weight	Grade	Conn			
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC			
9-7/8"	0	7,951	0 5,650		8-5/8"	32#	J-55	BTC-SC			
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS			

4. CASING PROGRAM

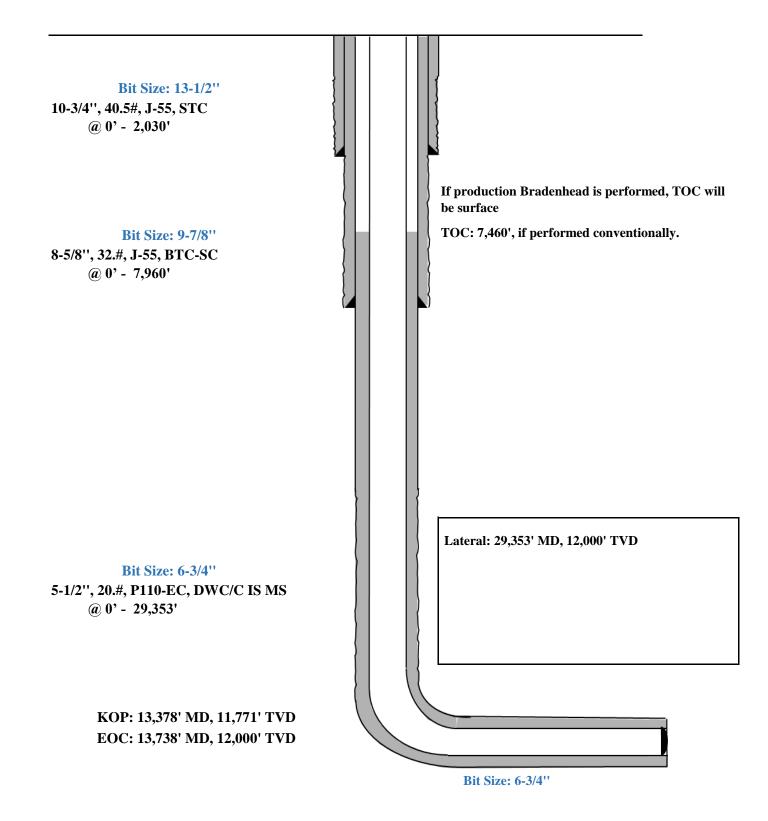
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	140	14.8	Metasilicate (TOC @ 1830')	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' ^{8-5/8''}	470	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

Shallow Casing Design B

Proposed Wellbore KB: 3558'

GL: 3533'

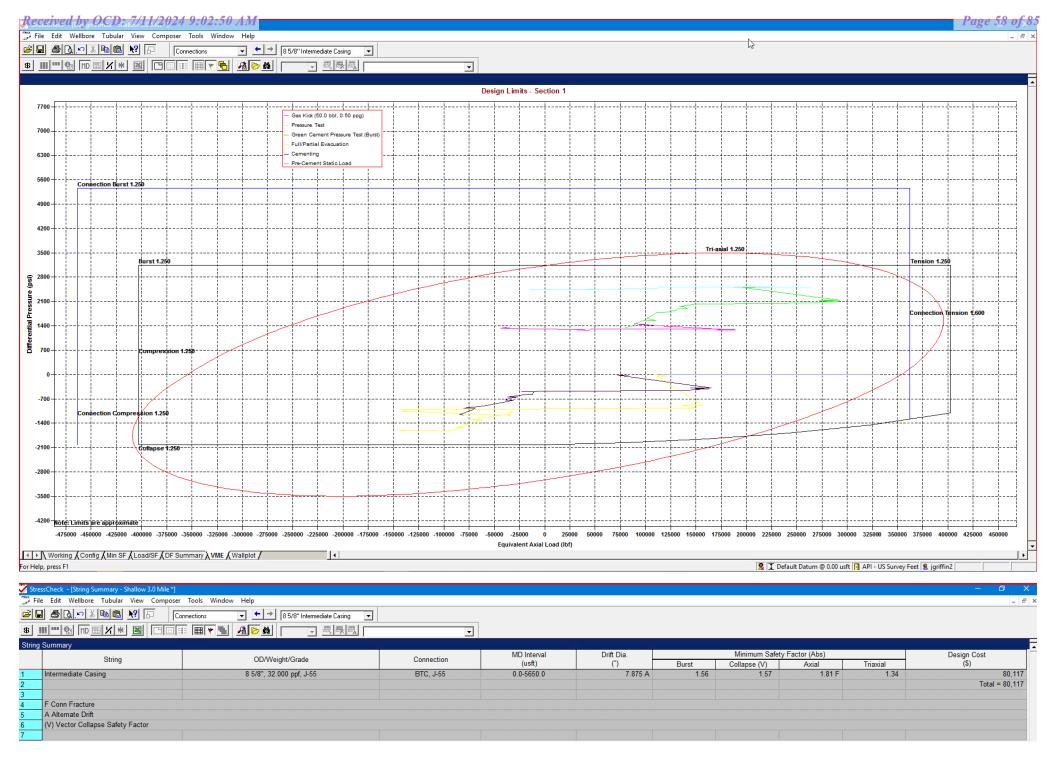
🚟 File Edit Wellbore Tubular View Composer Tools Window Help

Page	5 7	of 85
-	٥	×
		- 8 ×

 \mathbf{n}

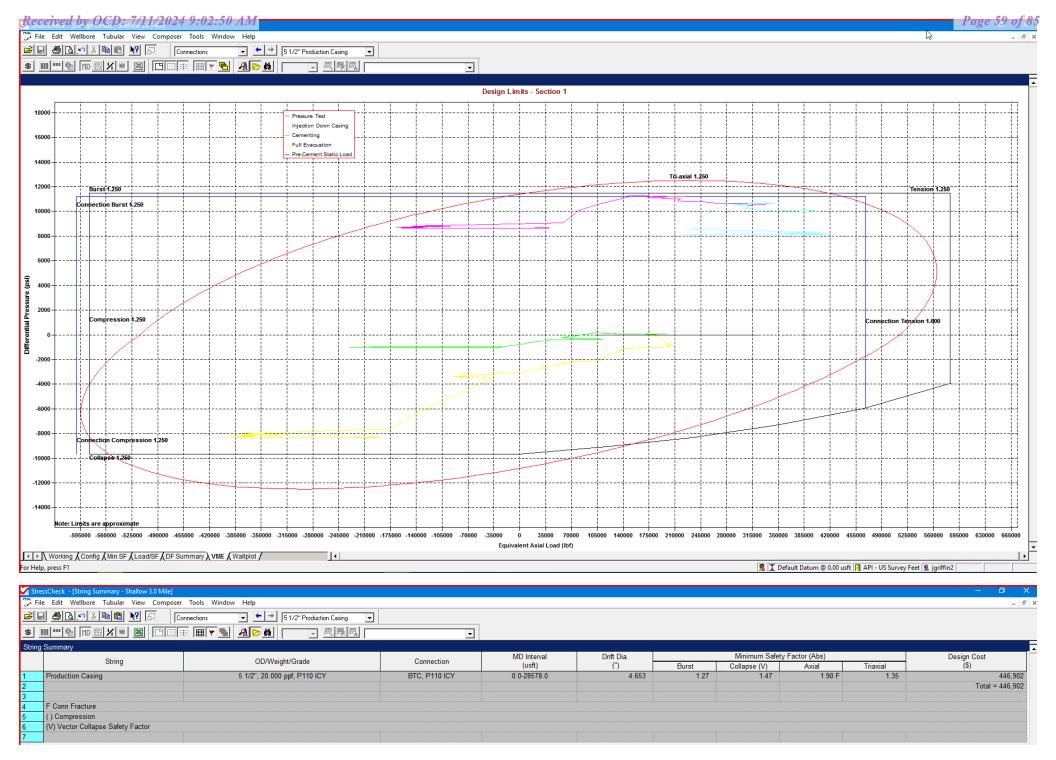
•	A 🔁 🕅	-	<u> </u>

Depth (MD)	Axial F	orce (lbf)	Equivalent	Bending Stress		Absolute Sa	afety Factor		Terretor	Pressur	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
 2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
2370 2370	102469	88077	112431	1573.2 1573.2	1.71 1.75	1.56 1.59	N/A	5.65 F 5.75 F	94.94 94.94	3489.28	989.28 1036.40		
 2370	100817 83660	86424 75583	111200 95052	882.8	1.75	1.59	N/A N/A	5.75 F 6.92 F	94.94	3489.29 3599.97	1036.40		
2700	88072	75583	95052	1365.1	1.74	1.59	N/A N/A	6.58 F	97.73	3599.97	1152.35		
3100	86049	62442	99504 98863	2580.4	1.74	1.59	N/A N/A	6.73 F	101.11	3734.23	1293.00		
3100	76477	62442	89195	1534.2	1.71	1.59	N/A N/A	7.57 F	101.11	3734.23	1293.00		
 3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
 3700	48311	42002	62778	593.5	1.71	1.60	N/A	11.99 F	106.15	3934.24	1502.54		
4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
 4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
 4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
 5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
F	Conn Fracture												
	<u> </u>												
 ()	Compression												
	Compression Vector Collapse Safety	/ Factor											


-

For Help, press F1

🕵 王 Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

Page 11 of 25

Seog resources

Page 60 of 85

Hole	Interv	al MD	Interval TVD		Csg							
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC				
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC				
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF				

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

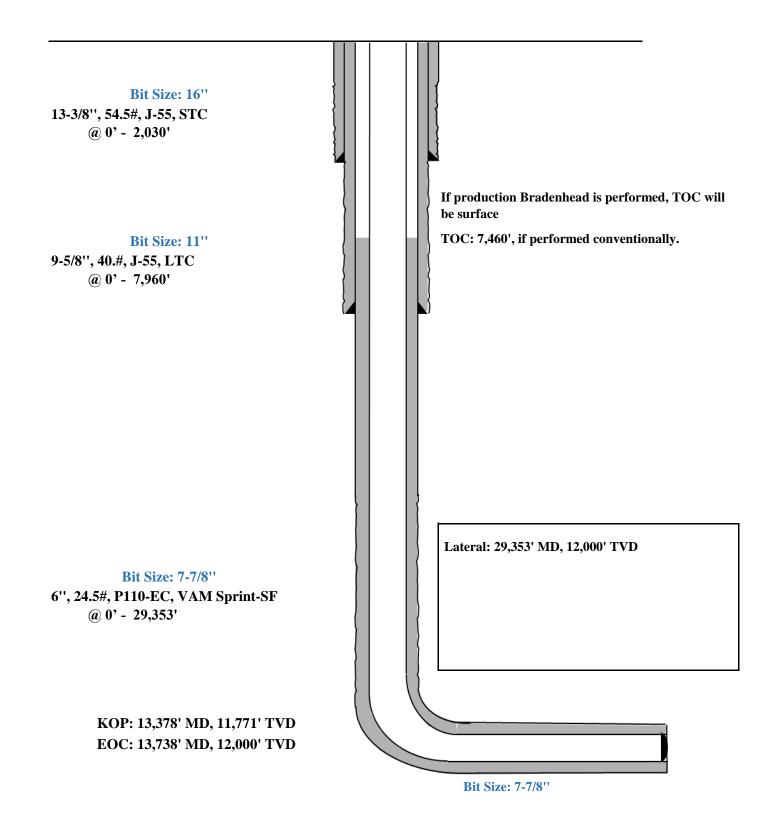
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	Metasilicate (TOC @ 1830')	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'

Page 62 of 85

Buckled

Length (usft)

N/A

🔨 Stre	ssCheck - [Triaxial Results -	Shallow 3.0 Mile - Big H	-lole *]								
📜 File	e Edit Wellbore Tubul	ar View Composer	Tools Window Help								
B	8 0. ~ % B (-	→ 95/8'' Intermediate 0	Casing 💌						
\$	II 🔁 ID 🔜 X	* 🛛 🗀 📰 🗄	I II 💌 🔊 🗛 💽	8 🖃 💻	Pressure Test	-]				
Triaxia	I Results										
	Death (MD)	Axial	Force (lbf)	Equivalent	Bending Stress		Absolute Sa	afety Factor		Temperature	Pre
	Depth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal
1	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500
2	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543
3	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543
4	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241
5	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241
6	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305
7	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305
8	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344
0	4070	240000	407042	204766	40000 7	4 7 2	4 7 7	NI/A	0.00 5	04.20	2244

3305.06 805.06 3344.87 844.87 1950 312802 127243 324756 16200.7 1.53 1.57 N/A 2.28 F 91.30 3344.87 844.87 2050 307858 122773 320295 16159.3 1.52 1.57 N/A 2.32 F 92.23 3381.89 881.89 10 11 12 13 14 2050 303560 122772 315965 15784.1 1.53 1.57 N/A 2.35 F 92.23 3381.89 881.89 2300 151294 112633 163658 3375.4 1.71 1.57 N/A 4.72 F 94.35 3466.13 966.13 2300 132741 112633 144956 1755.6 1.72 1.57 N/A 5.38 F 94.35 3466.14 966.14 2370 129966 109858 142452 1755.6 1.72 1.57 N/A 5.49 F 94.94 3489.28 989.28 15 2370 127909 107800 140922 1755.6 1.75 1.60 N/A 5.58 F 94.94 3489.29 1036.40 16 17 2700 105515 94232 119785 985.1 1.75 1.60 N/A 6.77 F 97.73 3599.97 1152.35 2700 111680 94231 126006 1523.4 1.75 1.60 N/A 6.39 F 97.73 3599.97 1152.35 18 19 20 3100 110766 77783 126839 2879.6 1.71 1.60 N/A 6.44 F 101.11 3734.23 1293.00 3100 97392 77783 113331 1712.1 1.73 1.60 N/A 7.33 F 101.11 3734.23 1293.01 3700 71565 53303 89806 1594.4 1.70 1.61 N/A 9.97 F 106.15 3934.24 1502.54 3700 60887 53302 79004 662.3 1.71 1.61 N/A 11.72 F 106.16 3934.25 1502.55 4650 34671 14219 56495 1785.6 1.64 1.61 N/A 20.59 F 114.20 4253.37 1836.86 4900 44595 4828 67626 3472.0 1.59 4337.37 1.61 N/A 16.01 F 116.32 1924.87 4900 28975 4828 51775 2108.2 1.62 1.61 116.32 4337.38 1924.87 N/A 24.64 F 5029 22103 34 45340 1926.8 1.61 1.61 N/A 32.30 F 117.40 4380.40 1969.94 33 117.40 5029 45339 1926.8 1.61 1.61 N/A 32.30 F 4380.41 1969.95 22102 5600 -45329 -21341 -20805 2094.3 1.57 1.62 N/A (13.67) 122.23 4572.11 2170.78 5650 -40465 -23210 -15657 1506.5 1.58 1.62 N/A (15.31) 122.66 4588.87 2188.34 28 29 F Conn Fracture () Compression (V) Vector Collapse Safety Factor

Working (Config (Min SF Load/SF (DF Summary (VME (Wallplot)

For Help, press F1

🙎 Ī Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2

6

Pressure (psi)

2500.00

2543.63

2543.64

3241.64

3241.65

3305.05

External

0.00

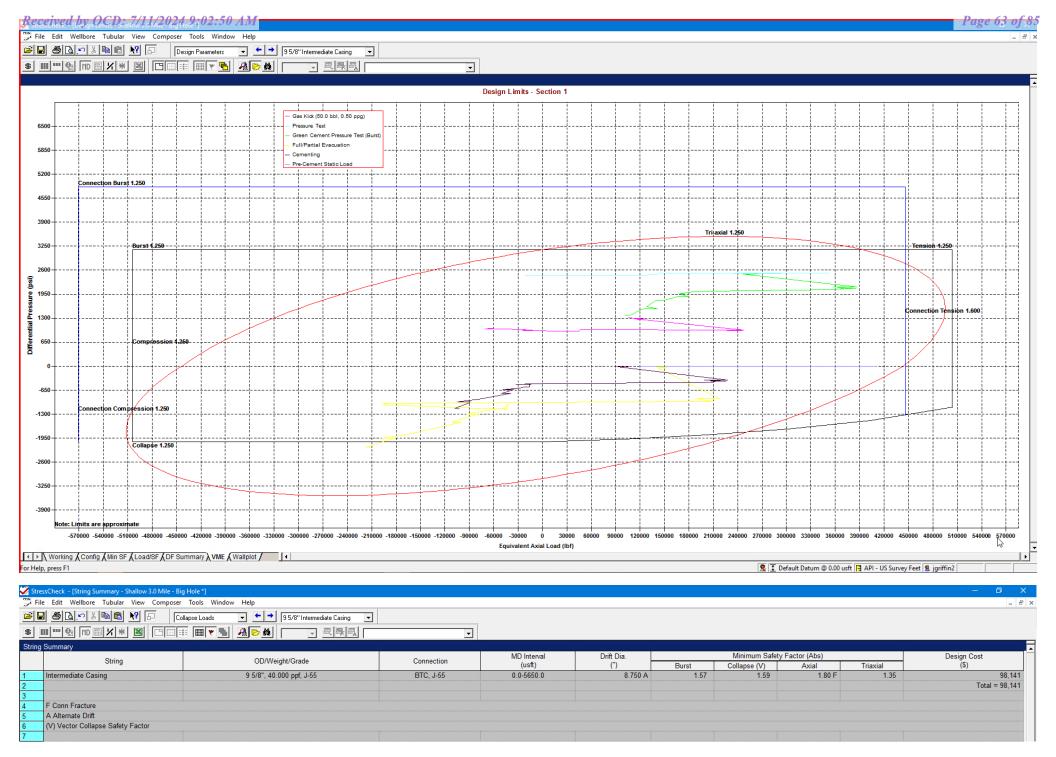
43.63

43.64

741.64

741.65

805.05


Addt'l Pickup To

Prevent Buck. (lbf)

N/A

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

Seog resources

Shallow Design D

 C	CABING I ROOKAM											
Hole	Interval MD		Interval TVD		Csg							
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn				
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC				
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC				
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS				
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS				

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

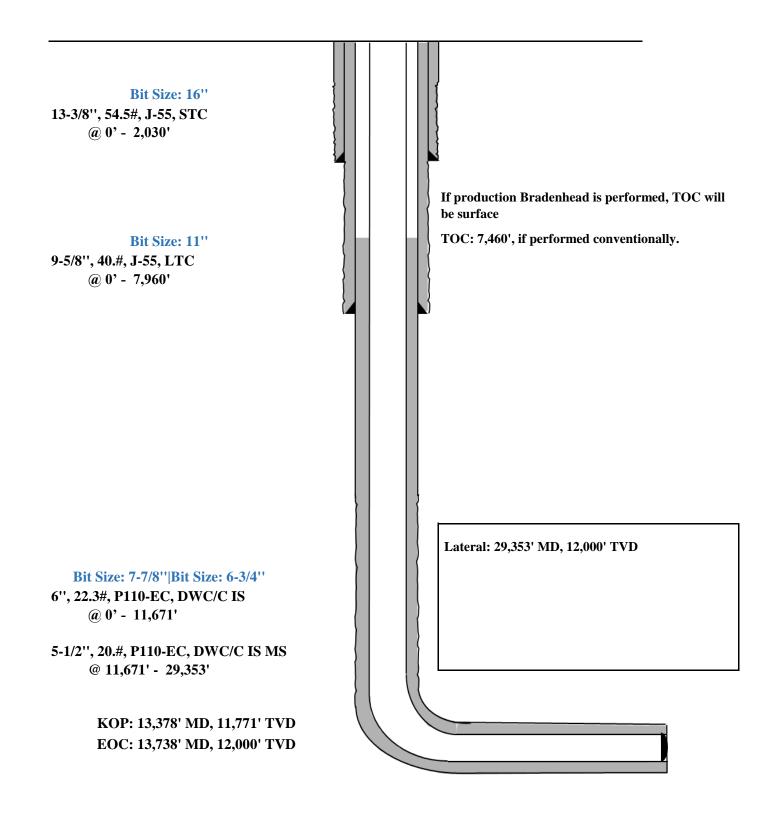
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Seog resources

Shallow Design D

Proposed Wellbore

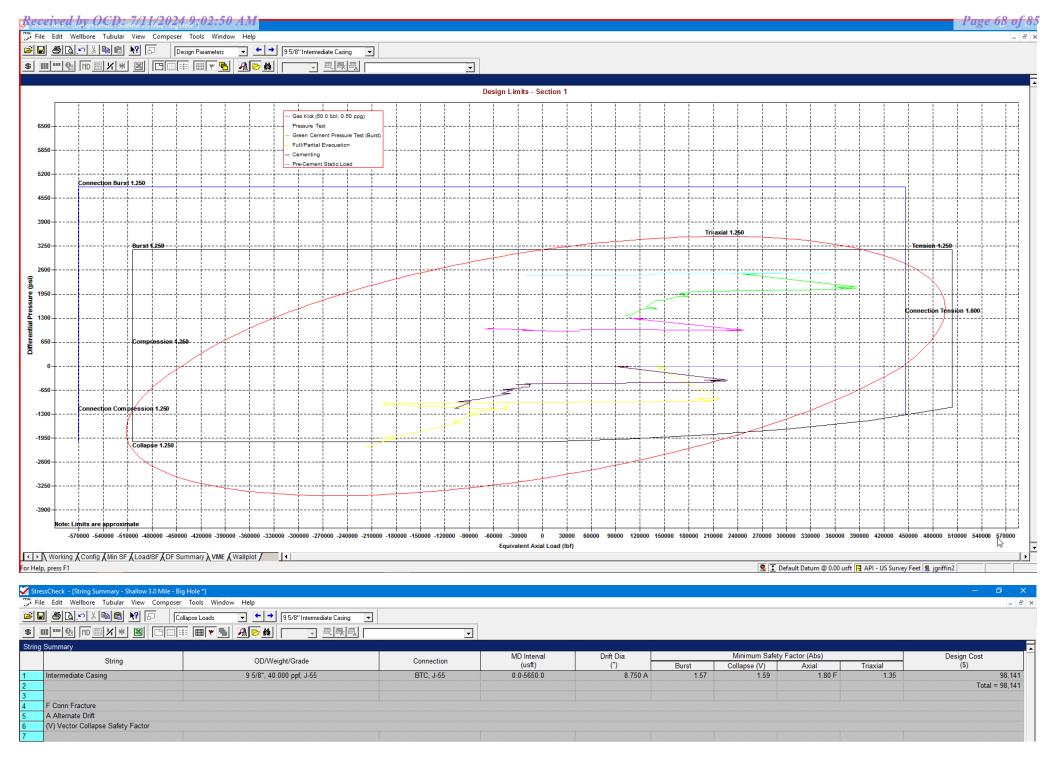
KB: 3558' GL: 3533'

File Edit Wellbore Tubular View Composer Tools Window Help

🖻 🖬 🚳 🖪 💀 🗴 🛍 💼 🕺 🕞

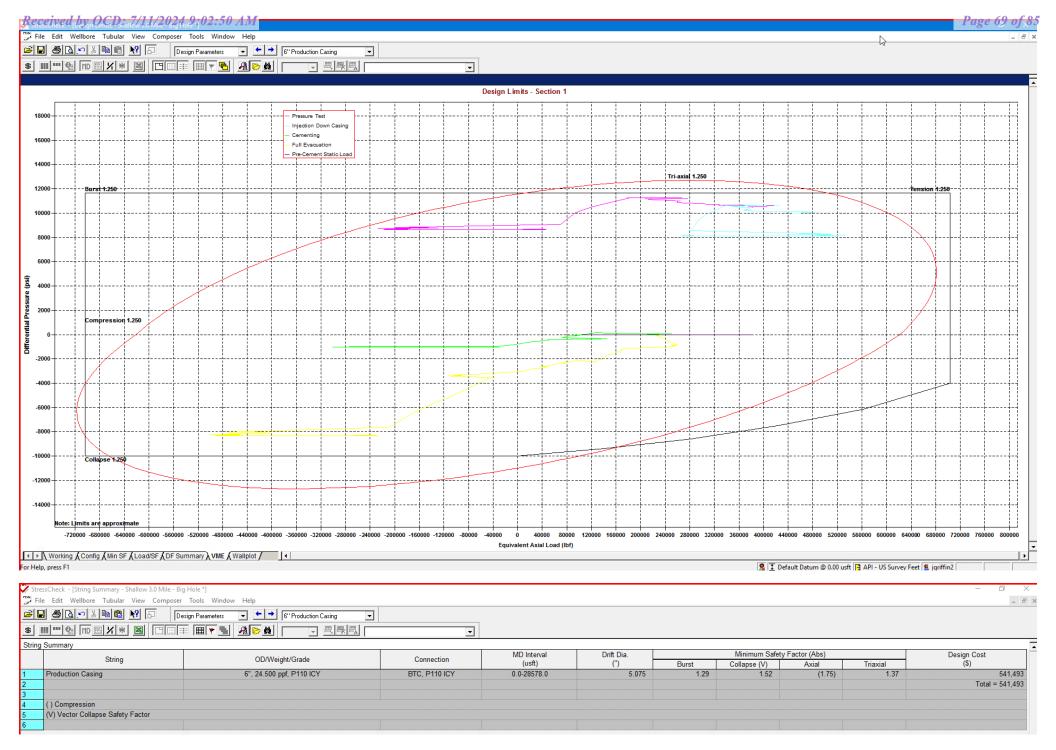
▼ ← → 95/8" Intermediate Casing ▼

Depth (MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure	e (psi)	Addt'l Pickup To	Buckled
(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
1850	318549	132027	329984	16284.8 16869.9	1.54	1.57 1.57	N/A N/A	2.24 F 2.23 F	90.29	3305.06	805.06 844.87		
1950 1950	320468 312802	127243 127243	332475 324756	16200.7	1.52 1.53	1.57	N/A	2.23 F	91.30 91.30	3344.87 3344.87	844.87		
2050	307858	127243	320295	16159.3	1.55	1.57	N/A	2.20 F	92.23	3381.89	881.89		
2050	303560	122772	315965	15784.1	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
2300	151294	112633	163658	3375.4	1.55	1.57	N/A	4.72 F	94.35	3466.13	966.13		
2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
	Conn Fracture												
F													
()	Compression Vector Collapse Safety	Eactor											

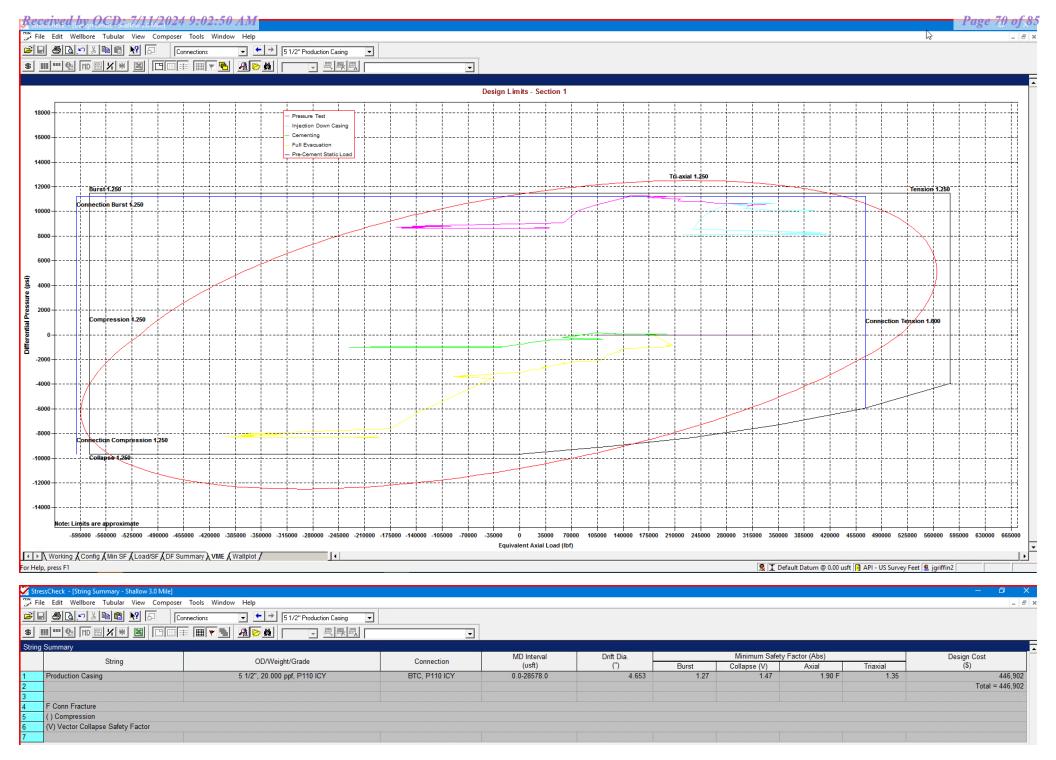

· Vorking (Config (Min SF) Load/SF (DF Summary (VME (Wallplot For Help, press F1

🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2

9-5/8" Intermediate Casing Pressure Test:


Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

Page 67 of 85


*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 7/18/2024 2:25:16 PM

Page 22 of 25

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

•

Pipe Bodu and API Connections Performance Data Received by OCD: 7/11/2024 9:02:50 AM 13.375 54.50/0.380 J55

Page 74 of 85 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM								
Mechanical Properties	Pipe	BTC	LTC	STC				
Minimum Yield Strength	55,000				psi			
Maximum Yield Strength	80,000	-		-	psi			
Minimum Tensile Strength	75,000				psi			
Dimensions	Ріре	втс	LTC	STC				
Outside Diameter	13.375	14.375	-	14.375	in.			
Wall Thickness	0.380	-		-	in.			
Inside Diameter	12.615	12.615		12.615	in.			
Standard Drift	12.459	12.459		12.459	in.			
Alternate Drift	-	-	-	-	in.			
Nominal Linear Weight, T&C	54.50	-	3 0	1-0	lbs/ft			
Plain End Weight	52.79	· · · · · · · · · · · · · · · · · · ·			lbs/ft			
Performance	Pipe	втс	LTC	STC				
Minimum Collapse Pressure	1,130	1, <mark>1</mark> 30	-	1,130	psi			
Minimum Internal Yield Pressure	2,740	2,740	# 0	2,740	psi			
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs			
Joint Strength	=	909	1 77 13	514	1000 lbs			
Reference Length	-	11,125	-	6,290	n			
Make-Up Data	Ріре	втс	LTC	STC				
Make-Up Loss	-	4.81	-	3.50	in.			
Minimum Make-Up Torque	-		, %	3,860	ft-Ibs			
Released to Imaging: 7/18/2024 2:25:16 PM Maximum Make-Up Torque	-	-	-	6,430	ft-lbs			

Pipe Body and API Connections Performance Data Received by OCD: 7/11/2024 9:02:50 AM 9.625 40.00/0.395 J55

Page 75 of 85 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM	15	97		0	~
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-		-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	π.		-	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-	27-23	lbs/ft
Plain End Weight	38.97	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length		11,898	8,665	7,529	ft
Make_Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque	12	-	3,900	3,390	ft-lbs
Released to Imaging: 7/18/2024 2:25:16 PM Maximum Make-Up Torque	-	-	6,500	5,650	ft-lbs

USA	10	Ľ	Connectio		5 Shee
OD (in.) WEIGHT (Ibs./ft.) WALL (in.) 5.500 Nominal: 20.00 0.361 Plain End: 19.83 19.83	-	RADE P110EC	API DRIFT (in.) RBW% 4.653 87.5	CONNECTIO DWC/C-IS M	
PIPE PROPERTIES			CONNECTION PROF	PERTIES	
Outside Diameter	5,500	in.	Connection Type	Semi-Prem	nium ⁻
Inside Diameter	4.778	in.	Connection O.D. (nom)	6.115	nam
Nominal Area	5.828	sq.in.	Connection I.D. (nom)	4.778	
Grade Type	API 5CT		Make-Up Loss	4.125	
Min. Yield Strength	125	ksi	Coupling Length	9.250	
Max. Yield Strength	140	ksi	Critical Cross Section	5.828	S
Min. Tensile Strength	135	ksi	Tension Efficiency	100.0%	of
Yield Strength	729	klb	Compression Efficiency	100.0%	of
Ultimate Strength	787	klb	Internal Pressure Efficiency	100.0%	of
Min. Internal Yield	14,360	psi	External Pressure Efficiency	100.0%	of
Collapse	12,090	psi			
	NCES		FIELD END TORQUE	VALUES	
Yield Strength	729	klb	Min. Make-up torque	16,100	
Parting Load	787	klb	Opti. Make-up torque	17,350	
Compression Rating	729	klb	Max. Make-up torque	18,600	
Min. Internal Yield	14,360	psi	Min. Shoulder Torque	1,610	
External Pressure	12,090	psi	Max. Shoulder Torque	12,880	
Maximum Uniaxial Bend Rating	104.2	°/100 ft	Min. Delta Turn	-	Т
Reference String Length w 1.4 Design Factor	26,040	ft	Max. Delta Turn	0.200	Т
			Maximum Operational Torque	21,100	
			Maximum Torsional Value (MTV)	23,210	

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Date: 12/03/2019 Time: 06:19:27 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55

Released to Imaging: 7/18/2024 2:25:16 PM

Maximum Make-Up Torque

New Search »

« Back to Previous List

USC 🔵 Metric

ft-lbs

5,250

6/8/2015 10:14:05 AM								
Mechanical Properties	Ptpe	втс	LTC	STC				
Minimum Yield Strength	55,000	-	-		psi			
Maximum Yield Strength	80,000	-	-	-	psi			
Minimum Tensile Strength	75,000	-	-	-	psi			
Dimensions	Pipe	втс	LTC	STC				
Outside Diameter	10.750	11.750	-	11.750	in.			
Wall Thickness	0.350	-	-	-	in.			
Inside Diameter	10.050	10.050	-	10.050	in.			
Standard Drift	9.894	9.894	-	9.894	in.			
Alternate Drift	-	-	-	-	in.			
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft			
Plain End Weight	38.91	-	-	-	lbs/ft			
Performance	Pipe	BTC	LTC	STC				
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi			
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi			
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs			
Joint Strength		700		420	1000 lbs			
Reference Length	-	11,522	-	6,915	ft			
Make-Up Data	Pipe	втс	LTC	STC				
Make-Up Loss	-	4.81	-	3.50	in.			
Minimum Make-Up Torque	-	-	-	3,150	ft-Ibs			

API 5CT, 10th Ed. Connection Data Sheet

				-			
O.D. (in) WEIGHT (II	,	WALL (i	n)	GRADE	*API DRIFT (in)	RBW	/ %
8.625 Nominal: Plain End:	32.00 31.13	0.352		J55	7.796	87.	.5
Material Properti	ies (PE)				Pipe Body Data	(PE)	
Pipe					Geometry		
Minimum Yield Strength:	55	ksi		Nominal ID:		7.92 i	nch
Maximum Yield Strength:	80	ksi		Nominal Area	a:	9.149 i	n²
Minimum Tensile Strength:	75	ksi		*Special/Alt.	Drift:	7.875 i	nch
Coupling					Performance	•	
Minimum Yield Strength:	55	ksi		Pipe Body Yi	eld Strength:	503 k	kips
Maximum Yield Strength:	80	ksi		Collapse Res		2,530 p	osi
Minimum Tensile Strength:	75	ksi		Internal Yield Pr (API Historical)	essure:	3,930 p	osi
API Connection				A	PI Connection T	orque	
API Connection Coupling OD: 9. STC Performa	625"				PI Connection To STC Torque (ft-I		
Coupling OD: 9.	625"	psi				bs)	4,65
Coupling OD: 9. STC Performa	625" ance				STC Torque (ft-	bs)	4,6
Coupling OD: 9. STC Performa STC Internal Pressure:	625" ance 3,930 372				STC Torque (ft-	bs) Max:	4,65
Coupling OD: 9. STC Performa STC Internal Pressure: STC Joint Strength:	625" ance 3,930 372	kips			STC Torque (ft- Opti: 3,724	bs) Max: bs)	
Coupling OD: 9. STC Performa STC Internal Pressure: STC Joint Strength: LTC Performa	625" ance 3,930 372 ance	kips psi		Min: 2,793	STC Torque (ft-l Opti: 3,724	bs) Max: bs)	
Coupling OD: 9. STC Performa STC Internal Pressure: STC Joint Strength: LTC Performa LTC Internal Pressure:	625" ance 3,930 372 ance 3,930 417	kips psi kips		Min: 2,793 Min: 3,130	STC Torque (ft-l Opti: 3,724	bs) Max: bs) Max:	
Coupling OD: 9. STC Performa STC Internal Pressure: STC Joint Strength: LTC Performa LTC Internal Pressure: LTC Joint Strength:	625" ance 3,930 372 ance 3,930 417	kips psi kips 9.125"		Min: 2,793 Min: 3,130	STC Torque (ft-l Opti: 3,724 LTC Torque (ft-l Opti: 4,174	bs) Max: bs) Max:	4,65 5,2* ke up

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Rev 3, 7/30/2021

S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

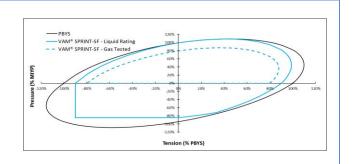
VALLOUREC STAR 8.625 32# J55

10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF
	Plain End: 23.95			I	

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCI	ES	
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70		•		•	

PIPE PROPE	RTIES	
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES			
Yield Strength	797	klb	
Parting Load	861	klb	
Compression Rating	797	klb	
Min. Internal Yield	13,880	psi	
External Pressure	9,800	psi	
Maximum Uniaxial Bend Rating	47.7	°/100 ft	
Reference String Length w 1.4 Design Factor	25,530	ft.	

CONNECTION PROPERTIES				
Connection Type	Semi-Pren	Semi-Premium T&C		
Connection OD (nom)	6.650	in.		
Connection ID (nom)	5.280	in.		
Make-Up Loss	4.313	in.		
Coupling Length	9.625	in.		
Critical Cross Section	6.379	sq.in.		
Tension Efficiency	100.0%	of pipe		
Compression Efficiency	100.0%	of pipe		
Internal Pressure Efficiency	100.0%	of pipe		
External Pressure Efficiency	100.0%	of pipe		

FIELD END TORQUE VALUES				
Min. Make-up torque	17,000	ft.lb		
Opti. Make-up torque	18,250	ft.lb		
Max. Make-up torque	19,500	ft.lb		
Min. Shoulder Torque	1,700	ft.lb		
Max. Shoulder Torque	13,600	ft.lb		
Min. Delta Turn	-	Turns		
Max. Delta Turn	0.200	Turns		
Maximum Operational Torque	24,200	ft.lb		
Maximum Torsional Value (MTV)	26,620	ft.lb		

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

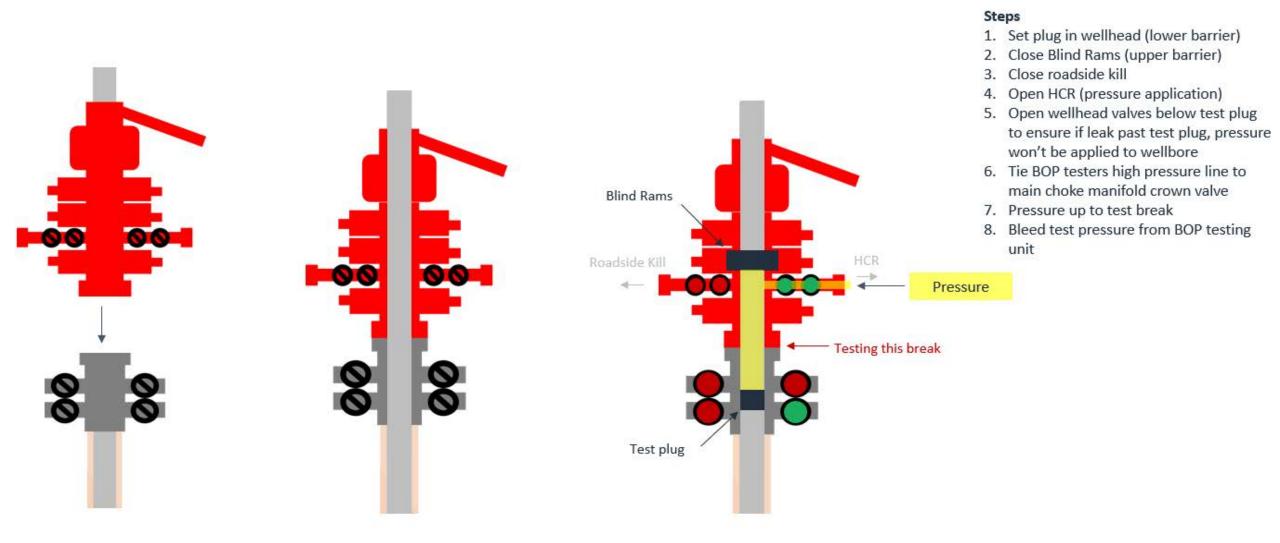
10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

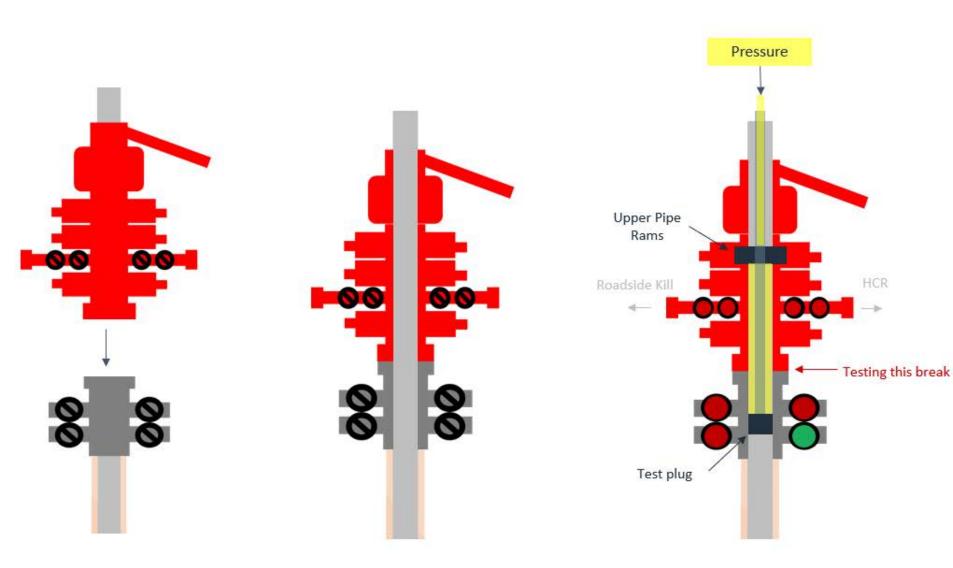
12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.



Break-test BOP & Offline Cementing:


EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit