Received by NCD: 5/4/2024 8:20:16 AM U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Report 06/04/2024
Well Name: MULE 11-14 FED COM	Well Location: T25S / R31E / SEC 11 / NENE / 32.150873 / -103.743227	County or Parish/State: EDDY / NM
Well Number: 535H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM000503	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Notice of Intent

Sundry ID: 2791639

Type of Submission: Notice of Intent

Date Sundry Submitted: 05/21/2024

Date proposed operation will begin: 05/20/2024

Type of Action: APD Change Time Sundry Submitted: 09:11 6

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the well name, BHL and depth on the subject well. Devon is also requesting a variance for offline cementing and break test. Please see attached revised C102, Drill plan, directional plan, variance requests. API: 30-015-55057 Permitted Well name: MULE 11-14 FED COM 525H Proposed Well name: MULE 11-23 FED COM 304H Permitted BHL: SWSE, 20 FSL, 1350 FEL, 14-25S-31E Proposed BHL: NWNE, 1288 FNL, 2600 FEL, 14-25S-31E Permitted TVD/MD: 9140/19363 Proposed TVD/MD: 10475/22226

NOI Attachments

Procedure Description

WA018222915_MULE_11_23_FED_COM_304H_WL_R1_SIGNED_20240521091116.pdf

Offline_Cementing___Variance_Request_20240521083146.pdf

break_test_variance_BOP_1_15_24_20240521083140.pdf

10.750_45.5_J55_SEAH_20240521083140.pdf

MULE_11_23_FED_COM_304H_Directional_Plan_04_30_24_20240521083140.pdf

MULE_11_23_FED_COM_304H_20240521083140.pdf

8.625_32lb_P110_MOFXL_20240521083140.pdf

5.5_20lb_P110EC_DWC_C_IS_PLUS_20240521083140.pdf

eceived by OCD: 6/4/2024 8:20:16 AM Well Name: MULE 11-14 FED COM	Well Location: T25S / R31E / SEC 11 / NENE / 32.150873 / -103.743227	County or Parish/State: EDDY?				
Well Number: 535H	Type of Well: OIL WELL	Allottee or Tribe Name:				
Lease Number: NMNM000503	Unit or CA Name:	Unit or CA Number:				
US Well Number: Operator: DEVON ENERGY PRODUCTION COMPANY LP						
Conditions of Appro	val					
pecialist Review Mule_11_14_Fed_Com_304H_Sund	lry_ID_2791639_20240529090125.pdf					
Operator						
crime for any person knowingly and w	correct. Title 18 U.S.C. Section 1001 and Title villfully to make to any department or agency ations as to any matter within its jurisdiction. I regulations requiring a	of the United States any false, fictitiou				
Operator Electronic Signature: CH	ELSEY GREEN Sig	ned on: MAY 21, 2024 08:31 AM				

Name: DEVON ENERGY PRODUCTION COMPANY LP

State: OK

State:

Title: Regulatory Compliance Professional

Street Address: 333 West Sheridan Avenue

City: Oklahoma City

Phone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Field

Representative Name: Street Address: City: Phone: Email address:

BLM Point of Contact

BLM POC Name: LONG VO BLM POC Phone: 5759885402 Disposition: Approved Signature: Long Vo BLM POC Title: Petroleum EngineerBLM POC Email Address: LVO@BLM.GOVDisposition Date: 05/29/2024

Zip:

Р	ag	e	3	0	f	5	6
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		~		~	~

Received by OCD: 6/4/2024 8:	20:16 AM					Page 3 of
	S NTERIOR			ON Expin	RM APPROVED //B No. 1004-0137 res: October 31, 2021	
BUI	REAU OF LAND MANA	5. Lease Serial No. NM	INM0503			
Do not use this	NOTICES AND REPO form for proposals to Use Form 3160-3 (Al	o drill or to	re-enter an		6. If Indian, Allottee or	Tribe Name
SUBMIT IN	ITRIPLICATE - Other instru	ctions on pag	e 2		7. If Unit of CA/Agreer	nent, Name and/or No.
1. Type of Well Image: Oil Well Image: Gas	Well Other				8. Well Name and No.	//ULE 11-14 FED COM/535H
2. Name of Operator DEVON ENER	RGY PRODUCTION COMPA	NY LP			9. API Well No.	
3a. Address 333 WEST SHERIDA	N AVE, OKLAHOMA CITY,			2)	10. Field and Pool or Ex PADUCA/BONE SP	* •
4. Location of Well <i>(Footage, Sec., T.</i> SEC 11/T25S/R31E/NMP	,R.,M., or Survey Description)				11. Country or Parish, S EDDY/NM	itate
12. CH	ECK THE APPROPRIATE BO	DX(ES) TO INI	DICATE NATURE	E OF NC	DTICE, REPORT OR OTHI	ER DATA
TYPE OF SUBMISSION			TY	PE OF A	ACTION	
✓ Notice of Intent	Acidize	Deep	en aulic Fracturing		oduction (Start/Resume)	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair Change Plans	Plug	Construction and Abandon		ecomplete emporarily Abandon	Other
Final Abandonment Notice	Convert to Injection	Plug			ater Disposal	
the Bond under which the work w completion of the involved operat	nally or recomplete horizontally vill be perfonned or provide the tions. If the operation results in	y, give subsurfa Bond No. on f a multiple com	ce locations and n le with BLM/BIA pletion or recomp	neasured . Requir letion in	and true vertical depths of red subsequent reports must a new interval, a Form 310	 and approximate duration thereof. If all pertinent markers and zones. Attach be filed within 30 days following 50-4 must be filed once testing has been e operator has detennined that the site
Devon Energy Production Correquesting a variance for offl			-			
API: 30-015-55057						
Permitted Well name: MULE Proposed Well name: MULE Permitted BHL: SWSE, 20 F Proposed BHL: NWNE, 1288 Permitted TVD/MD: 9140/19 Proposed TVD/MD: 10475/2	11-23 FED COM 304H SL, 1350 FEL, 14-25S-31E 3 FNL, 2600 FEL, 14-25S-31 363	E				
14. I hereby certify that the foregoing CHELSEY GREEN / Ph: (405) 22		nted/Typed)	Regulator Title	y Comp	liance Professional	
(Electronic Submiss	ion)		Date		05/21/202	24

THE SPACE FOR FEDERAL OR STATE OFICE USE

Approved by		
LONG VO / Ph: (575) 988-5402 / Approved	Petroleum Engineer Title	05/29/2024 Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.	Office CARLSBAD	

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENE / 450 FNL / 966 FEL / TWSP: 25S / RANGE: 31E / SECTION: 11 / LAT: 32.150873 / LONG: -103.743227 (TVD: 0 feet, MD: 0 feet) PPP: NWNE / 100 FNL / 1350 FEL / TWSP: 25S / RANGE: 31E / SECTION: 11 / LAT: 32.151844 / LONG: -103.744466 (TVD: 8424 feet, MD: 8491 feet) BHL: SWSE / 20 FSL / 1350 FEL / TWSP: 25S / RANGE: 31E / SECTION: 14 / LAT: 32.123097 / LONG: -103.74449 (TVD: 9140 feet, MD: 19363 feet)

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 86 Phone: (575) 393-6161 Fax: (575) 393-1 DISTRICT II 811 S. FIRST ST., ARTESIA, NM Phone: (575) 748-1283 Fax: (575) 74 DISTRICT III 1000 RIO BRAZOS RD., AZTEC, N Phone: (505) 334-6178 Fax: (505)	88210 8-9720	L CONS 1220 S		Resources De ON DIVIS FRANCIS DR.	SION	Revised A Submit one copy t	Form C-102 ugust 1, 2011 o appropriate ict Office
DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, Phone: (505) 476–3460 Fax: (505)	NM 87505					□ AMEND	ED REPORT
	476-3462 WEI			AGE DEDICATI			
API Number		Pool Code			Pool Name		
30-015-55057 Property Code		96641	Property Na		ONE SPRING	Well Nur	nber
335888		MU	JLE 11-23 H	FED COM		30	4H
OGRID No. 6137	DE	VON ENERG	^{Operator Na} GY PRODUCT	me 'ION COMPANY	, L.P.	Elevati 345	
	1		Surface Loo	eation			
UL or lot No. Section		Range Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
A 11	25-5 3	31-E	450	NORTH	966	EAST	EDDY
k	Во	ottom Hole L	ocation If Diff	erent From Sur	face		
UL or lot No. Section		Range Lot Idn		North/South line	Feet from the	East/West line	County
B 23	25-5 3	31-E	1288	NORTH	2600	EAST	EDDY
Dedicated Acres Joint o	or Infill Consoli	idation Code	Order No.				
720			NSL Pending				
NO ALLOWABLE V				UNTIL ALL INTER APPROVED BY		EEN CONSOLID	ATED
MULE 11-23 FED COM 304H E1: 3451.4' GEDDETIC CUDRDINATES NAD 83 NMSP EAST SURFACE LECATION N419123.43 ET723964.79 LAT:32.150873 LDN:103.743227 KICK DFF PDINT CALLS: 65 FNL 2601 FEL N: 419513 E: 72339 LAT:32.1519 LDN: 103.7486 EIRSI TAKE POINT(PPP 1) 100' FNL 2600' FEL SEC. 11 N: 41957.22 N: 407782.90 E:72238.38 LAT:32.151872 LDN:103.748505 LAST TAKE POINTI 1208' FNL 2600' FEL SEC. 23 N:407782.90 E:722383.98 LAT:32.119724 LDN:03.748533 BOTTOM OF HOLE N:407702.90 E:722383.57 LAT:32.119504 LDN:03.748533 BOTTOM OF HOLE N:414293.67 E:72233.57 LAT:32.137621 LDN:03.748517 A=N:419597.37 E:719631.86 B=N:40638.94 E:724969		© 0 ¹ <u>N 89'45'11</u> S202.4 N <u>89'45'11</u> S202.4 N <u>89'45'11</u> S202.7 N <u>89'45'11</u> N <u>1</u> N <u>1</u>	304H SHLJ 	s coristar e D s coristar e s coristar e G s coristar e G s coristar e H s core table H s core ta	I hereby herein is true my knowledge organization ei or unleased mi including the or has a right location pursuu owner of such or to a voluntic compulsory poo by the division Signature Chelsey Gree Printed Nam Chelsey Gree E-mail Addres SURVEYO I hereby shown on this notes of actua, under my supe true and correct	Date of Survey Restart of Survey Restart of Survey Seal of Professiona R $DEHO_{10}$ DATE OF SURVEY Seal of Professiona R $DEHO_{10}$ DATE OF SURVEY Seal of Professiona R $DEHO_{10}$ DATE OF SURVEY Seal of Professiona	Formation te best of t this g interest te land le location t this int an interest, ant or a re entered 5/20/24 Atte FION Il location om field me or te same is ty belief.

Received by OCD: 6/4/2024 8:20:16 AM

х

Intent	
--------	--

As Drilled	Γ	
7 to Driffed		

API #

30-015-55057			
Operator Name:		Property Name:	Well Number
DEVON ENERGY P COMPANY, LP.	RODUCTION	MULE 11-23 FED COM	304H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
В	11	25S	31E		65	FNL	2601	FEL	EDDY
Latitu	de				Longitude				NAD
32.15	519			103.7486				83	

First Take Point (FTP)

UL B	Section	Township 25-S	Range 31-E	Lot	Feet 100	From N/S	Feet 2600	From E/W	County EDDY
Latitu 32.	^{de} 1518	72			Longitude 103.748505				NAD 83

Last Take Point (LTP)

UL B	Section 23	Township 25-S	Range 31-E	Lot	Feet 1208	From N/S	Feet 2600	From E/W	County EDDY
	Latitude 32.119724				Longitud 103.		3		NAD 83

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

Y		

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #			
30-015-55054			
Operator Name:		Property Name:	Well Number
DEVON ENERGY PRODUCTIC	ON COMPANY, LP	MULE 11-14 FED COM	525H

KZ 06/29/2018

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

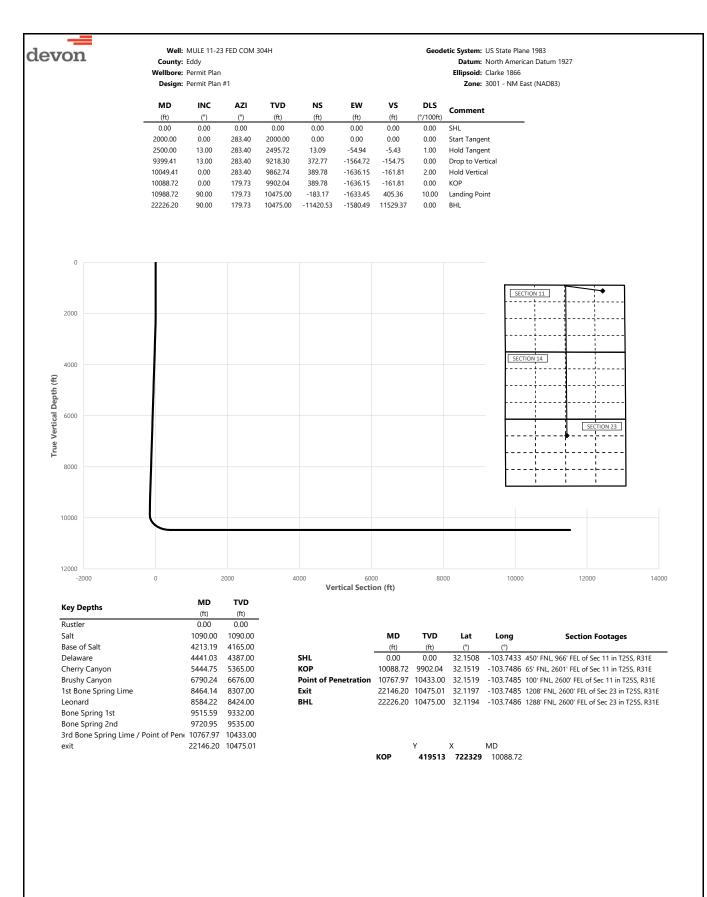
Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third



<u>10-3/4"</u> <u>45.50#</u> <u>0.400"</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter Wall Inside Diameter Drift	10.750 0.400 9.950 9.875	in. in. in. in.
Weight, T&C Weight, PE	45.500 44.260	lbs/ft lbs/ft
Internal Yield Pressure at Minimum Yield		
Collapse	2090	psi
Internal Yields Pressure		
PE	3580	psi
STC	3580	psi
BTC	3580	psi
Yield Strength, Pipe Body	715	1000 lbs
Joint Strength, STC		
STC	493	1000 lbs
BTC	796	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

devon		Well: County:		3 FED COM 3	04H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927
		-	Permit Plan	ı					Ellipsoid: Clarke 1866
		Design:	Permit Plan	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
-	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL
	100.00	0.00	283.40	100.00	0.00	0.00	0.00	0.00	5.12
	200.00	0.00	283.40	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	283.40	300.00	0.00	0.00	0.00	0.00	
	400.00 500.00	0.00 0.00	283.40 283.40	400.00 500.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	600.00	0.00	283.40	600.00	0.00	0.00	0.00	0.00	
	665.00	0.00	283.40	665.00	0.00	0.00	0.00	0.00	Rustler
	700.00	0.00	283.40	700.00	0.00	0.00	0.00	0.00	
	800.00 900.00	0.00 0.00	283.40 283.40	800.00 900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1000.00	0.00	283.40 283.40	1000.00	0.00	0.00	0.00	0.00	
	1090.00	0.00	283.40	1090.00	0.00	0.00	0.00	0.00	Salt
	1100.00	0.00	283.40	1100.00	0.00	0.00	0.00	0.00	
	1200.00	0.00	283.40	1200.00	0.00	0.00	0.00	0.00	
	1300.00 1400.00	0.00 0.00	283.40 283.40	1300.00 1400.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1500.00	0.00	283.40	1500.00	0.00	0.00	0.00	0.00	
	1600.00	0.00	283.40	1600.00	0.00	0.00	0.00	0.00	
	1700.00	0.00	283.40	1700.00	0.00	0.00	0.00	0.00	
	1800.00	0.00	283.40	1800.00	0.00	0.00	0.00	0.00	
	1900.00 2000.00	0.00 0.00	283.40 283.40	1900.00 2000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Start Tangent
	2100.00	2.60	283.40	2099.97	0.53	-2.21	-0.22	2.60	Start tangent
	2200.00	5.20	283.40	2199.73	2.10	-8.82	-0.87	2.60	
	2300.00	7.80	283.40	2299.07	4.72	-19.83	-1.96	2.60	
	2400.00 2500.00	10.40 13.00	283.40 283.40	2397.81 2495.72	8.39 13.09	-35.22 -54.94	-3.48 -5.43	2.60 1.00	Hold Tangent
	2600.00	13.00	283.40	2593.16	18.30	-76.83	-7.60	0.00	The tangent
	2700.00	13.00	283.40	2690.60	23.52	-98.71	-9.76	0.00	
	2800.00	13.00	283.40	2788.03	28.73	-120.59	-11.93	0.00	
	2900.00 3000.00	13.00 13.00	283.40 283.40	2885.47 2982.91	33.94 39.15	-142.47 -164.36	-14.09 -16.25	0.00 0.00	
	3100.00	13.00	283.40	3080.34	44.37	-186.24	-18.42	0.00	
	3200.00	13.00	283.40	3177.78	49.58	-208.12	-20.58	0.00	
	3300.00	13.00	283.40	3275.22	54.79	-230.00	-22.75	0.00	
	3400.00 3500.00	13.00 13.00	283.40 283.40	3372.65 3470.09	60.01 65.22	-251.89 -273.77	-24.91 -27.07	0.00 0.00	
	3600.00	13.00	283.40	3567.53	70.43	-295.65	-29.24	0.00	
	3700.00	13.00	283.40	3664.97	75.65	-317.54	-31.40	0.00	
	3800.00	13.00	283.40	3762.40	80.86	-339.42	-33.57	0.00	
	3900.00 4000.00	13.00 13.00	283.40 283.40	3859.84 3957.28	86.07 91.29	-361.30 -383.18	-35.73 -37.90	0.00 0.00	
	4100.00	13.00	283.40	4054.71	96.50	-405.07	-40.06	0.00	
	4200.00	13.00	283.40	4152.15	101.71	-426.95	-42.22	0.00	
	4213.19	13.00	283.40	4165.00	102.40	-429.83	-42.51	0.00	Base of Salt
	4300.00 4400.00	13.00 13.00	283.40 283.40	4249.59 4347.02	106.92 112.14	-448.83 -470.71	-44.39 -46.55	0.00 0.00	
	4441.03	13.00	283.40	4387.00	114.28	-479.69	-47.44	0.00	Delaware
	4500.00	13.00	283.40	4444.46	117.35	-492.60	-48.72	0.00	
	4600.00	13.00	283.40	4541.90	122.56	-514.48	-50.88	0.00	
	4700.00 4800.00	13.00 13.00	283.40 283.40	4639.34 4736.77	127.78 132.99	-536.36 -558.24	-53.04 -55.21	0.00 0.00	
	4900.00	13.00	283.40	4834.21	138.20	-580.13	-57.37	0.00	
	5000.00	13.00	283.40	4931.65	143.42	-602.01	-59.54	0.00	
	5100.00	13.00	283.40	5029.08	148.63	-623.89	-61.70	0.00	
	5200.00 5300.00	13.00 13.00	283.40 283.40	5126.52 5223.96	153.84 159.06	-645.78 -667.66	-63.86 -66.03	0.00 0.00	
	5400.00	13.00	283.40	5321.39	164.27	-689.54	-68.19	0.00	
	5444.75	13.00	283.40	5365.00	166.60	-699.33	-69.16	0.00	Cherry Canyon
	5500.00	13.00	283.40	5418.83	169.48	-711.42	-70.36	0.00	
	5600.00	13.00	283.40	5516.27	174.70	-733.31	-72.52	0.00	
	5700.00 5800.00	13.00 13.00	283.40 283.40	5613.71 5711.14	179.91 185.12	-755.19 -777.07	-74.68 -76.85	0.00 0.00	
	5900.00	13.00	283.40	5808.58	190.33	-798.95	-79.01	0.00	
	6000.00	13.00	283.40	5906.02	195.55	-820.84	-81.18	0.00	
	6100.00	13.00	283.40	6003.45	200.76	-842.72	-83.34	0.00	
	6200.00 6300.00	13.00 13.00	283.40 283.40	6100.89 6198.33	205.97 211.19	-864.60 -886.49	-85.51 -87.67	0.00 0.00	
	6400.00	13.00	283.40	6295.76	216.40	-908.37	-89.83	0.00	

		Well:	MULE 11-2	3 FED COM 3	04H				Geodetic System: US State Plane 1983
70N		County:		5125 60115					Datum: North American Datum 1927
		Wellbore:	Permit Plar	ı					Ellipsoid: Clarke 1866
		Design:	Permit Plar	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Common
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	6500.00	13.00	283.40	6393.20	221.61	-930.25	-92.00	0.00	
	6600.00 6700.00	13.00 13.00	283.40 283.40	6490.64 6588.08	226.83 232.04	-952.13 -974.02	-94.16 -96.33	0.00 0.00	
	6790.24	13.00	283.40	6676.00	236.74	-993.76	-98.28	0.00	Brushy Canyon
	6800.00	13.00	283.40	6685.51	237.25	-995.90	-98.49	0.00	
	6900.00	13.00	283.40	6782.95	242.47	-1017.78	-100.65	0.00	
	7000.00	13.00	283.40	6880.39	247.68	-1039.66	-102.82	0.00	
	7100.00 7200.00	13.00 13.00	283.40 283.40	6977.82 7075.26	252.89 258.10	-1061.55 -1083.43	-104.98 -107.15	0.00 0.00	
	7300.00	13.00	283.40	7172.70	263.32	-1105.31	-109.31	0.00	
	7400.00	13.00	283.40	7270.13	268.53	-1127.19	-111.47	0.00	
	7500.00	13.00	283.40	7367.57	273.74	-1149.08	-113.64	0.00	
	7600.00	13.00	283.40	7465.01	278.96	-1170.96	-115.80	0.00	
	7700.00 7800.00	13.00 13.00	283.40 283.40	7562.45 7659.88	284.17 289.38	-1192.84 -1214.73	-117.97 -120.13	0.00 0.00	
	7900.00	13.00	283.40	7059.00	289.58	-1214.75	-120.13	0.00	
	8000.00	13.00	283.40	7854.76	299.81	-1258.49	-124.46	0.00	
	8100.00	13.00	283.40	7952.19	305.02	-1280.37	-126.62	0.00	
	8200.00	13.00	283.40	8049.63	310.24	-1302.26	-128.79	0.00	
	8300.00	13.00	283.40	8147.07	315.45	-1324.14	-130.95	0.00	
	8400.00 8464.14	13.00 13.00	283.40 283.40	8244.50 8307.00	320.66 324.01	-1346.02 -1360.06	-133.12 -134.50	0.00 0.00	1st Bone Spring Lime
	8500.00	13.00	283.40	8341.94	325.88	-1367.90	-135.28	0.00	ist bolle spring time
	8584.22	13.00	283.40	8424.00	330.27	-1386.33	-137.10	0.00	Leonard
	8600.00	13.00	283.40	8439.38	331.09	-1389.79	-137.44	0.00	
	8700.00	13.00	283.40	8536.82	336.30	-1411.67	-139.61	0.00	
	8800.00 8900.00	13.00 13.00	283.40 283.40	8634.25 8731.69	341.51 346.73	-1433.55 -1455.44	-141.77 -143.94	0.00 0.00	
	9000.00	13.00	283.40	8829.13	340.73 351.94	-1455.44	-145.94 -146.10	0.00	
	9100.00	13.00	283.40	8926.56	357.15	-1499.20	-148.26	0.00	
	9200.00	13.00	283.40	9024.00	362.37	-1521.08	-150.43	0.00	
	9300.00	13.00	283.40	9121.44	367.58	-1542.97	-152.59	0.00	
	9399.41	13.00	283.40	9218.30	372.77	-1564.72	-154.75	0.00	Drop to Vertical
	9400.00 9500.00	12.99 10.99	283.40 283.40	9218.87 9316.69	372.80 377.61	-1564.85 -1585.05	-154.76 -156.76	2.01 2.00	
	9515.59	10.68	283.40	9332.00	378.29	-1587.90	-157.04	2.00	Bone Spring 1st
	9600.00	8.99	283.40	9415.17	381.63	-1601.92	-158.43	2.00	1 5
	9700.00	6.99	283.40	9514.19	384.85	-1615.44	-159.77	2.00	
	9720.95	6.57	283.40	9535.00	385.43	-1617.85	-160.00	2.00	Bone Spring 2nd
	9800.00 9900.00	4.99 2.99	283.40 283.40	9613.64 9713.39	387.27 388.88	-1625.59 -1632.36	-160.77 -161.44	2.00 2.00	
	10000.00	0.99	283.40	9813.33	389.69	-1635.73	-161.77	2.00	
	10049.41	0.00	283.40	9862.74	389.78	-1636.15	-161.81	2.00	Hold Vertical
	10088.72	0.00	179.73	9902.04	389.78	-1636.15	-161.81	0.00	КОР
	10100.00	1.13	179.73	9913.33	389.67	-1636.14	-161.70	10.00	
	10200.00 10300.00	11.13 21.13	179.73 179.73	10012.63 10108.57	379.01 351.27	-1636.09 -1635.96	-151.15 -123.69	10.00 10.00	
	10300.00	31.13	179.73	10108.57	351.27 307.29	-1635.96	-123.69 -80.15	10.00	
	10500.00	41.13	179.73	10278.91	248.40	-1635.48	-21.86	10.00	
	10600.00	51.13	179.73	10348.12	176.40	-1635.14	49.41	10.00	
	10700.00	61.13	179.73	10403.78	93.48	-1634.75	131.50	10.00	
	10767.97	67.93	179.73	10433.00	32.16	-1634.46	192.21	10.00	3rd Bone Spring Lime / Point of Penetration
	10800.00 10900.00	71.13 81.13	179.73 179.73	10444.20 10468.15	2.15 -94.81	-1634.32 -1633.86	221.91 317.89	10.00 10.00	
	10988.72	90.00	179.73	10475.00	-183.17	-1633.45	405.36	10.00	Landing Point
	11000.00	90.00	179.73	10475.00	-194.45	-1633.39	416.53	0.00	5
	11100.00	90.00	179.73	10475.00	-294.45	-1632.92	515.52	0.00	
	11200.00	90.00	179.73	10475.00	-394.45	-1632.45	614.51	0.00	
	11300.00 11400.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-494.45 -594.45	-1631.98 -1631.51	713.50 812.49	0.00 0.00	
	11500.00	90.00 90.00	179.73	10475.00	-594.45 -694.45	-1631.51	911.49	0.00	
	11600.00	90.00	179.73	10475.00	-794.44	-1630.56	1010.47	0.00	
	11700.00	90.00	179.73	10475.00	-894.44	-1630.09	1109.46	0.00	
	11800.00	90.00	179.73	10475.00	-994.44	-1629.62	1208.45	0.00	
	11900.00	90.00	179.73	10475.00	-1094.44	-1629.15	1307.44	0.00	
	12000.00	90.00 90.00	179.73 179.73	10475.00	-1194.44 -1294.44	-1628.68	1406.43 1505.42	0.00	
	12100.00 12200.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-1294.44 -1394.44	-1628.21 -1627.73	1505.42 1604.41	0.00 0.00	
	12300.00	90.00	179.73	10475.00	-1494.44	-1627.26	1703.40	0.00	
	12400.00	90.00	179.73	10475.00	-1594.44	-1626.79	1802.39	0.00	

evon		County: Wellbore:	Eddy Permit Plar		04H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866
		Design:	Permit Plar	ו #1					Zone: 3001 - NM East (NAD83)
	MD (ft)	INC	AZI	TVD	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment
	(ft) 12500.00	(°) 90.00	(°) 179.73	(ft) 10475.00	(ft) -1694.43	(ft) -1626.32	1901.38	0.00	
	12600.00	90.00	179.73	10475.00	-1794.43	-1625.85	2000.37	0.00	
	12700.00	90.00	179.73	10475.00	-1894.43	-1625.38	2099.36	0.00	
	12800.00	90.00	179.73	10475.00	-1994.43	-1624.90	2198.35	0.00	
	12900.00	90.00	179.73	10475.00	-2094.43	-1624.43	2297.34	0.00	
	13000.00	90.00	179.73	10475.00	-2194.43	-1623.96	2396.33	0.00	
	13100.00	90.00	179.73	10475.00	-2294.43	-1623.49	2495.32	0.00	
	13200.00 13300.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-2394.43 -2494.43	-1623.02 -1622.55	2594.31 2693.30	0.00 0.00	
	13400.00	90.00	179.73	10475.00	-2594.42	-1622.08	2792.29	0.00	
	13500.00	90.00	179.73	10475.00	-2694.42	-1621.60	2891.28	0.00	
	13600.00	90.00	179.73	10475.00	-2794.42	-1621.13	2990.27	0.00	
	13700.00	90.00	179.73	10475.00	-2894.42	-1620.66	3089.26	0.00	
	13800.00	90.00	179.73	10475.00	-2994.42	-1620.19	3188.25	0.00	
	13900.00	90.00	179.73	10475.00	-3094.42	-1619.72	3287.24	0.00	
	14000.00	90.00	179.73	10475.00	-3194.42	-1619.25	3386.24	0.00	
	14100.00	90.00	179.73	10475.00	-3294.42	-1618.78	3485.23	0.00	
	14200.00 14300.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-3394.42 -3494.41	-1618.30 -1617.83	3584.22 3683.21	0.00 0.00	
	14300.00	90.00 90.00	179.73	10475.00	-3494.41 -3594.41	-1617.83	3782.20	0.00	
	14500.00	90.00	179.73	10475.00	-3694.41	-1616.89	3881.19	0.00	
	14600.00	90.00	179.73	10475.00	-3794.41	-1616.42	3980.18	0.00	
	14700.00	90.00	179.73	10475.00	-3894.41	-1615.95	4079.17	0.00	
	14800.00	90.00	179.73	10475.01	-3994.41	-1615.47	4178.16	0.00	
	14900.00	90.00	179.73	10475.01	-4094.41	-1615.00	4277.15	0.00	
	15000.00	90.00	179.73	10475.01	-4194.41	-1614.53	4376.14	0.00	
	15100.00	90.00	179.73	10475.01	-4294.41	-1614.06	4475.13	0.00	
	15200.00	90.00	179.73	10475.01	-4394.40	-1613.59	4574.12	0.00	
	15300.00 15400.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-4494.40 -4594.40	-1613.12 -1612.65	4673.11 4772.10	0.00 0.00	
	15500.00	90.00	179.73	10475.01	-4694.40	-1612.05	4871.09	0.00	
	15600.00	90.00	179.73	10475.01	-4794.40	-1611.70	4970.08	0.00	
	15700.00	90.00	179.73	10475.01	-4894.40	-1611.23	5069.07	0.00	
	15800.00	90.00	179.73	10475.01	-4994.40	-1610.76	5168.06	0.00	
	15900.00	90.00	179.73	10475.01	-5094.40	-1610.29	5267.05	0.00	
	16000.00	90.00	179.73	10475.01	-5194.40	-1609.82	5366.04	0.00	
	16100.00	90.00	179.73	10475.01	-5294.39	-1609.35	5465.03	0.00	
	16200.00	90.00	179.73	10475.01	-5394.39	-1608.87	5564.02	0.00	
	16300.00	90.00	179.73	10475.01	-5494.39 -5594.39	-1608.40 -1607.93	5663.01 5762.00	0.00	
	16400.00 16500.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-5594.39	-1607.95	5860.99	0.00 0.00	
	16600.00	90.00	179.73	10475.01	-5794.39	-1606.99	5959.98	0.00	
	16700.00	90.00	179.73	10475.01	-5894.39	-1606.52	6058.97	0.00	
	16800.00	90.00	179.73	10475.01	-5994.39	-1606.04	6157.96	0.00	
	16900.00	90.00	179.73	10475.01	-6094.39	-1605.57	6256.95	0.00	
	17000.00	90.00	179.73	10475.01	-6194.38	-1605.10	6355.94	0.00	
	17100.00	90.00	179.73	10475.01	-6294.38	-1604.63	6454.93	0.00	
	17200.00	90.00	179.73	10475.01	-6394.38	-1604.16	6553.92	0.00	
	17300.00	90.00	179.73	10475.01	-6494.38	-1603.69	6652.91	0.00	
	17400.00 17500.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-6594.38 -6694.38	-1603.22 -1602.74	6751.90 6850.89	0.00 0.00	
	17600.00	90.00 90.00	179.73	10475.01	-6694.38 -6794.38	-1602.74	6949.88	0.00	
	17700.00	90.00	179.73	10475.01	-6894.38	-1601.80	7048.87	0.00	
	17800.00	90.00	179.73	10475.01	-6994.38	-1601.33	7147.86	0.00	
	17900.00	90.00	179.73	10475.01	-7094.37	-1600.86	7246.85	0.00	
	18000.00	90.00	179.73	10475.01	-7194.37	-1600.39	7345.84	0.00	
	18100.00	90.00	179.73	10475.01	-7294.37	-1599.92	7444.83	0.00	
	18200.00	90.00	179.73	10475.01	-7394.37	-1599.44	7543.82	0.00	
	18300.00	90.00	179.73	10475.01	-7494.37	-1598.97	7642.81	0.00	
	18400.00	90.00	179.73	10475.01	-7594.37	-1598.50	7741.80	0.00	
	18500.00	90.00	179.73	10475.01	-7694.37	-1598.03	7840.79	0.00	
	18600.00 18700.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-7794.37 -7894.37	-1597.56 -1597.09	7939.78 8038 77	0.00 0.00	
	18700.00	90.00 90.00	179.73	10475.01 10475.01	-7894.37 -7994.36	-1597.09	8038.77 8137.76	0.00	
	18900.00	90.00	179.73	10475.01	-8094.36	-1596.01	8236.75	0.00	
	19000.00	90.00	179.73	10475.01	-8194.36	-1595.67	8335.74	0.00	
	19100.00	90.00	179.73	10475.01	-8294.36	-1595.20	8434.73	0.00	
	19200.00	90.00	179.73	10475.01	-8394.36	-1594.73	8533.73	0.00	
	19300.00	90.00	179.73	10475.01	-8494.36	-1594.26	8632.72	0.00	
	19400.00	90.00	179.73	10475.01	-8594.36	-1593.79	8731.71	0.00	

evon		County: Wellbore:			804H		Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)		
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	19500.00	90.00	179.73	10475.01	-8694.36	-1593.31	8830.70	0.00	
	19600.00	90.00	179.73	10475.01	-8794.36	-1592.84	8929.69	0.00	
	19700.00	90.00	179.73	10475.01	-8894.35	-1592.37	9028.68	0.00	
	19800.00	90.00	179.73	10475.01	-8994.35	-1591.90	9127.67	0.00	
	19900.00	90.00	179.73	10475.01	-9094.35	-1591.43	9226.66	0.00	
	20000.00	90.00	179.73	10475.01	-9194.35	-1590.96	9325.65	0.00	
	20100.00	90.00	179.73	10475.01	-9294.35	-1590.49	9424.64	0.00	
	20200.00	90.00	179.73	10475.01	-9394.35	-1590.01	9523.63	0.00	
	20300.00	90.00	179.73	10475.01	-9494.35	-1589.54	9622.62	0.00	
	20400.00	90.00	179.73	10475.01	-9594.35	-1589.07	9721.61	0.00	
	20500.00	90.00	179.73	10475.01	-9694.35	-1588.60	9820.60	0.00	
	20600.00	90.00	179.73	10475.01	-9794.34	-1588.13	9919.59	0.00	
	20700.00	90.00	179.73	10475.01	-9894.34	-1587.66	10018.58	0.00	
	20800.00	90.00	179.73	10475.01	-9994.34	-1587.18	10117.57	0.00	
	20900.00	90.00	179.73	10475.01	-10094.34	-1586.71	10216.56	0.00	
	21000.00	90.00	179.73	10475.01	-10194.34	-1586.24	10315.55	0.00	
	21100.00	90.00	179.73	10475.01	-10294.34	-1585.77	10414.54	0.00	
	21200.00	90.00	179.73	10475.01	-10394.34	-1585.30	10513.53	0.00	
	21300.00	90.00	179.73	10475.01	-10494.34	-1584.83	10612.52	0.00	
	21400.00	90.00	179.73	10475.01	-10594.34	-1584.36	10711.51	0.00	
	21500.00	90.00	179.73	10475.01	-10694.33	-1583.88	10810.50	0.00	
	21600.00	90.00	179.73	10475.01	-10794.33	-1583.41	10909.49	0.00	
	21700.00	90.00	179.73	10475.01	-10894.33	-1582.94	11008.48	0.00	
	21800.00	90.00	179.73	10475.01	-10994.33	-1582.47	11107.47	0.00	
	21900.00	90.00	179.73	10475.01	-11094.33	-1582.00	11206.46	0.00	
	22000.00	90.00	179.73	10475.01	-11194.33	-1581.53	11305.45	0.00	
	22100.00	90.00	179.73	10475.01	-11294.33	-1581.06	11404.44	0.00	
	22146.20	90.00	179.73	10475.01	-11340.53	-1580.84	11450.18	0.00	exit
	22200.00	90.00	179.73	10475.01	-11394.33	-1580.58	11503.43	0.00	
	22226.20	90.00	179.73	10475.00	-11420.53	-1580.49	11529.37	0.00	BHL

.

1. Geologic Formations

TVD of target	10475	Pilot hole depth	N/A
MD at TD:	22226	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	665		
Salt	1090		
Base of Salt	4165		
Delaware	4387		
Cherry Canyon	5365		
Brushy Canyon	6676		
1st Bone Spring Lime	8307		
Leonard	8424		
Bone Spring 1st	9332		
Bone Spring 2nd	9535		
3rd Bone Spring Lime	10433		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

		Wt			Casing	Interval	Casing Interval		
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)	
14 3/4	10 3/4	45 1/2	J-55	BTC	0	690	0	690	
9 7/8	8 5/8	32	P110HSCY	MOFXL	0	9989	0	9989	
7 7/8	5 1/2	20	P110EC	DWC/C-IS PLUS	0	22226	0	10475	

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	423	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	332	Surf	9	3.27	Lead: Class C Cement + additives
1111 1	376	6776	13.2	1.44	Tail: Class H / C + additives
Int 1	431	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	332	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	376	6776	13.2	1.44	Tail: Class H / C + additives
Production	35	9489	9	3.27	Lead: Class H /C + additives
Production	1606	10089	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:
			Anı	nular	X	50% of rated working pressure
Int 1	13-58"	5M		d Ram	Х	
Int 1	15 50	5101	Pipe	Ram		5M
			Doub	le Ram	Х	5101
			Other*			
			Annul	ar (5M)	Х	50% of rated working pressure
Production	13-5/8"	5M	Blind Ram		Х	
Troduction		5101	Pipe Ram			5M
			Doub	le Ram	Х	5101
			Other*			
			Annul	ar (5M)		
			Bline	d Ram		
			Pipe	e Ram]
			Doub	le Ram]
			Other*			
	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to a	run a 5 M a	nnular on a	10M system	1		

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)		
Surface	FW Gel	8.5-9		
Intermediate	DBE / Cut Brine	10-10.5		
Production	OBM	8.5-9		

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, C	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
Х	Completion Rpeort and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?		
BH pressure at deepest TVD	4902		
Abnormal temperature	No		

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered measured values and formations will be provided to the BLM.NH2S is present

Y H2S plan attached.

MULE 11-23 FED COM 304H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

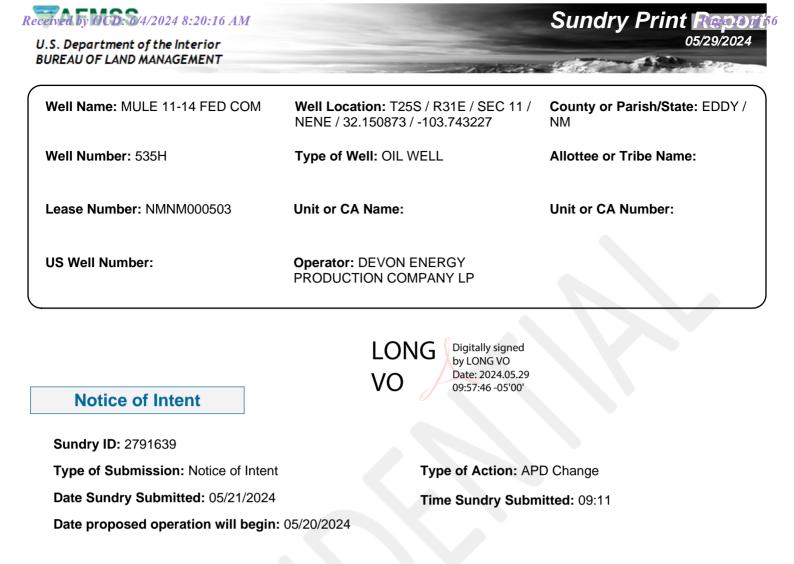
1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments


X Directional Plan

Other, describe

Metal One Corp.				MO-FXL 8-	-5/8 32.0	
	MO-FXL	MO-FXL		P110HSCY MinYS125ksi		
Metal One	*1 Pipe Body: BMP P110HSC	CDS#				
	Special Drift 7.875"		SD7.875			
	Connection Data	Sheet	Date	27-Nov-23		
	-					
	Geometry Imperial S.I. Pipe Body				<u>S.I.</u>	
	Grade *1	P110HSCY		P110HSCY		
	MinYS *1	125	ksi	125	ksi	
	Pipe OD (D)	8 5/8	in	219.08	mm	
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m	
	Actual weight	31.10		46.34	kg/m	
	Wall Thickness (t)	0.352	in	8.94	mm	
	Pipe ID (d)	7.921	in	201.19	mm	
	Pipe body cross section	9.149	in ²	5,902	mm ²	
	Special Drift Dia. *1	7.875	in	200.03	mm	
	-	-	-	-	-	
	•					
	Connection	0.005		0.40.00		
$\uparrow \leftrightarrow$	Box OD (W)	8.625	in	219.08	mm	
	PIN ID	7.921	in	201.19	mm	
Box	Make up Loss	3.847	in 2	97.71	mm	
critical	Box Critical Area	5.853	in ²	3686	mm ²	
area	Joint load efficiency 69 %		<u>69</u> %			
5	Thread Taper Number of Threads	1		2" per ft) TPI		
Make up loss	Performance Performance Properties for Pipe Body					
5	S.M.Y.S. *1	1,144	kips	5,087	kN	
	M.I.Y.P. *1	8,930	psi	61.59	MPa	
Pin	Collapse Strength *1	4,300	psi	29.66	MPa	
area	Note S.M.Y.S.= Specified Minimum YIELD Strength of Pipe body M.I.Y.P. = Minimum Internal Yield Pressure of Pipe body *1: BMP P110HSCY: MinYS125ksi, SD7.875, Collapse Strength 4,300psi Performance Properties for Connection					
<u>↓</u>	Tensile Yield load			of S.M.Y.S.)		
	Min. Compression Yield	789 kips	-	of S.M.Y.S.)		
	Internal Pressure	6,250 psi		of M.I.Y.P.)		
	External Pressure			of Collapse St	rength	
	Max. DLS (deg. /100ft)		2	9		
	Recommended Torque					
	Min.	13,600	ft-lb	18,400	N-m	
	Opti.	14,900	ft-lb	20,200	N-m	
	Max.	16,200	ft-lb	21,900	N-m	
	Operational Max.	28,400	ft-lb	38,500	N-m	
	Note : Operational Max. to	orque can be appli	ed for high	n torque applicatio	n	
iliates (herein collectively referred ta Sheet is for informational purpo		information contained I engineering informatior	nerein. The i in that is spec subject conne	information provided o ific to the subject prod ectors. Metal One ass	n this Connect ucts, without umes no	

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/ images/top/WebsiteTerms Active 20333287 1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

Procedure Description: Devon Energy Production Co., L.P. (Devon) respectfully requests to change the well name, BHL and depth on the subject well. Devon is also requesting a variance for offline cementing and break test. Please see attached revised C102, Drill plan, directional plan, variance requests. API: 30-015-55057 Permitted Well name: MULE 11-14 FED COM 525H Proposed Well name: MULE 11-23 FED COM 304H Permitted BHL: SWSE, 20 FSL, 1350 FEL, 14-25S-31E Proposed BHL: NWNE, 1288 FNL, 2600 FEL, 14-25S-31E Permitted TVD/MD: 9140/19363 Proposed TVD/MD: 10475/22226

NOI Attachments

Procedure Description

WA018222915_MULE_11_23_FED_COM_304H_WL_R1_SIGNED_20240521091116.pdf

Offline_Cementing___Variance_Request_20240521083146.pdf

break_test_variance_BOP_1_15_24_20240521083140.pdf

10.750_45.5_J55_SEAH_20240521083140.pdf

MULE_11_23_FED_COM_304H_Directional_Plan_04_30_24_20240521083140.pdf

MULE_11_23_FED_COM_304H_20240521083140.pdf

8.625_32lb_P110_MOFXL_20240521083140.pdf

5.5_20lb_P110EC_DWC_C_IS_PLUS_20240521083140.pdf

Received by OCD: 6/4/2024 8:20:16 AM Well Name: MULE 11-14 FED COM	Well Location: T25S / R31E / SEC 11 / NENE / 32.150873 / -103.743227	County or Parish/State: EDDY / of St
Well Number: 535H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM000503	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: DEVON ENERGY PRODUCTION COMPANY LP	

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREENName: DEVON ENERGY PRODUCTION COMPANY LPTitle: Regulatory Compliance ProfessionalStreet Address: 333 West Sheridan AvenueCity: Oklahoma CityState: OKPhone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Field

Representative Name: Street Address: City: State: Phone: Email address:

Zip:

Signed on: MAY 21, 2024 08:31 AM

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

	Devon Energy Production Company LP
	NMNM000503
COUNTY:	Section 11, T.24 S., R.29 E., NMPM
	Eddy County, New Mexico

WELL NAME & NO.:	Mule 11-14 Fed Com 304H
BOTTOM HOLE FOOTAGE	1288'/N & 2600'/E
ATS/API ID:	30-015-55057
APD ID:	10400066870
Sundry ID:	2791639
Date APD Submitted:	

COA

H2S	Yes		
Potash	None 🔽		
Cave/Karst Potential	Low		
Cave/Karst Potential	Critical		
Variance	C None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibow	/I 👤	
Other	□4 String	Capitan Reef None	□WIPP
Other	Pilot Hole None	Open Annulus	
Cementing	Contingency Squeeze None	Echo-Meter	Primary Cement Squeeze None
Special Requirements	□ Water Disposal/Injection	COM	Unit Unit
Special Requirements	Batch Sundry	Waste Prevention None	
Special Requirements Variance	✓ Break Testing	✓ Offline Cementing	Casing Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 725 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt when present, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6676' (708 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 700 sxs Class C)

Operator has proposed to pump down **10-3/4**" X **8-5/8**" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the **8-5/8**" casing to surface after the second stage <u>BH to verify TOC.</u></u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad. Operator may conduct a negative and positive pressure test during completion to remediate sustained casing pressure.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Cement excess is less than 25%, more cement is required if washout occurs. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.

b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **10-3/4** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR part 3170 Subpart 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Operator has been (Approved) to pump the proposed cement program offline in the Intermediate(s) interval.

Offline cementing should commence within 24 hours of landing the casing for the interval.

Notify the BLM 4hrs prior to cementing offline at Eddy County: 575-361-2822.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County
 EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,
 BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For at least one well per pad (deepest well preferred) the record of drilling rate (ROP) along with the Gamma Ray (GR) and Neutron (CNL) well logs run from TVD to surface in the vertical section of the hole shall be submitted to the BLM office as well as all other logs run on the full borehole within 30 days from completion. Only digital copies of the logs in .TIF or .LAS formats are necessary; Logs shall be emailed to <u>blm-cfo-geology@doimspp.onmicrosoft.com</u>. The email should have a subject line with the US Well Number / API Number, well name, and the body should include the starting depth and the TVD of the log.

The top of the Rustler, top and bottom of the salt, and the top of the Capitan Reef (if present are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a

larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of

the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR part 3170 Subpart 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Long Vo (LVO) 5/29/2024

(eceived by OCD. 0/4/2024 0.2)	7.10 AM				1 uge 55 0	
				FORM APPROVED OMB No. 1004-0137 Expires: October 31, 2021		
			5. Lease Serial No. NMNM0503			
			6. If Indian, Allottee or Tribe Name			
SUBMIT IN T	TRIPLICATE - Other instructions on pa	age 2		7. If Unit of CA/Agreer	nent, Name and/or No.	
1. Type of Well				8. Well Name and No.		
✓ Oil Well Gas W				N	MULE 11-14 FED COM/535H	
2. Name of Operator DEVON ENERG	SY PRODUCTION COMPANY LP			9. API Well No.		
^{3a. Address} 333 WEST SHERIDAN CITY, OK 73102	(405) 235-3	o. <i>(include area coa</i> 3611	<i>,</i>	10. Field and Pool or E: PADUCA/BONE SP	PRING	
4. Location of Well <i>(Footage, Sec., T.,R</i> SEC 11/T25S/R31E/NMP	.,M., or Survey Description)			11. Country or Parish, S EDDY/NM	state	
12. CHE	CK THE APPROPRIATE BOX(ES) TO I	NDICATE NATUR	E OF NOTIO	CE, REPORT OR OTHI	ER DATA	
TYPE OF SUBMISSION		ТҮ	PE OF ACT	TION		
✓ Notice of Intent		eepen ydraulic Fracturing	\equiv	uction (Start/Resume)	Water Shut-Off Well Integrity	
Subsequent Report		ew Construction	=	mplete	Other	
Final Abandonment Notice		ug and Abandon ug Back	_	orarily Abandon Disposal		
	1-23 FED COM 304H L, 1350 FEL, 14-25S-31E FNL, 2600 FEL, 14-25S-31E 33					
$\overline{14. \text{ I hereby certify that the foregoing is}}$	true and correct. Name (Printed/Typed)					
CHELSEY GREEN / Ph: (405) 228-8595 Regulatory Comp			ry Compliar	nce Professional		
(Electronic Submission) D				05/21/202	24	
	THE SPACE FOR FE	DERAL OR ST		ICE USE		
Approved by						
		Title		Da	ate	
	ned. Approval of this notice does not warr equitable title to those rights in the subject duct operations thereon.		ARLSBAD			
	3 U.S.C Section 1212, make it a crime for ents or representations as to any matter wi			fully to make to any dep	artment or agency of the United State	

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENE / 450 FNL / 966 FEL / TWSP: 25S / RANGE: 31E / SECTION: 11 / LAT: 32.150873 / LONG: -103.743227 (TVD: 0 feet, MD: 0 feet) PPP: NWNE / 100 FNL / 1350 FEL / TWSP: 25S / RANGE: 31E / SECTION: 11 / LAT: 32.151844 / LONG: -103.744466 (TVD: 8424 feet, MD: 8491 feet) BHL: SWSE / 20 FSL / 1350 FEL / TWSP: 25S / RANGE: 31E / SECTION: 14 / LAT: 32.123097 / LONG: -103.74449 (TVD: 9140 feet, MD: 19363 feet) Г

A 11 25-S 31-E 450 N□RTH 966 EAST E Bottom Hole Location If Different From Surface Ductor It No. Section Tornship Bange Lot tim Peet from the Rast/West line Ce Bottom Hole Location If Different From Surface N□RTH 2600 EAST E Dedicated Acres Joint or Infill Consolidation Code Order No. N□RTH 2600 EAST E Dedicated Acres Joint or Infill Consolidation Code Order No. NSL Pending NO <allowable all="" assigned="" be="" been="" completion="" consolidate<br="" have="" interests="" this="" to="" untl="" will="">OR A NON-STANDARD UNT HAS BEEN APPROVED BY THE DIVISION Matrix 10-27 CD COLLOW Consolidation Code Diversion Code OPERATOR CERTIFICATION Code of the Code o</allowable>	DISTRICT I 1625 N. FRENCH DR., Phone: (575) 393-6161 DISTRICT II 811 S. FIRST ST., Phone: (575) 748-128: DISTRICT III 1000 RIO BRAZOS J Phone: (505) 334-61	Fax: (575) 393- ARTESIA, NM 3 Fax: (575) 74 RD., AZTEC, N	88210 88-9720	DIL C	nerals & CONSI 1220 SC	ERVATI DUTH ST. H	ew Mexico Resources De ON DIVIS FRANCIS DR. exico 87505	SION	Revised A Submit one copy t	Form C-102 ugust 1, 2011 o appropriate .ct Office
WELL LOCATION AND ACREAGE DEDICATION PLAT Pool Code Pool Same Bool 15-55057 96641 Pool Panue Bool 12-55057 96641 Pool Panue Bool 235888 MULE 11-23 FED COM 30-41 Octor 10 No. Section Township Bange Lot Ian Free Trem the Sect/Test time C C Lor Iot No. Section Township Bange Lot Ian Free Trem Starface Bettom Hole Location If Different From Surface C Lor Iot No. Section Township Bange Lot Ian Free Trem the Dest/Test time C Bettom Hole Location If Different From Surface Dedicated Acres Joint or Infill Consolitation Code Order No. NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NO. Pool From Surface Dedicated Acres Joint or Infill Consolitation Code Pool From Surface NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NO. Pool From Surface Dubbloch Coffic <	DISTRICT IV	. ,							□ AMEND	ED REPORT
30-015-55057 96641 PADUCA; BONE SPRING Property Scade MULE 11 -23 FED COM Kell Number 335888 MULE 11 -23 FED COM Revailant 61:37 DEVON ENERGY PRODUCTION COMPANY, L.P. Revailant 61:37 DEVON ENERGY PRODUCTION COMPANY, L.P. 3451.4 Surface Location UL or let No. Section Feet from the Cocation Revailant UL or let No. Section Tormahip Bange Lot Idn Pet from the Cocation UL or let No. Section Tormahip Bange Lot Idn Pet from the Cocation Revailant UL or let No. Section Tormahip Bange Lot Idn Pet from the Cocation Revailant Dedicated Acres Joint or Infill Consolidation code Order No. NSI Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNTI HAS BEEN APPROVED BY THE DIVISION DEFENTION CERTIFICATION CRETIFICATION CREVENTIFICATION CRETIFICATION CRETIFICATION CRETIFICATION CRE			470-3402	WELL LO		AND ACRE	AGE DEDICATI			
Property Name Property Name Will Number 335888 MULE 11 -23 FED COM 30-H 06000 No. DEVON ENERGY PRODUCTION COMPANY, L.P. 3451.4 Surface Location Use in the North/South line Peet from the Section A 11 25-S 31-E Bottom Hole Location If Different From Surface Detion No. Bottom Hole Location If Different From Surface Control No. Control No. Section Detion of Infill Consolidation Code Dedicated Acres Joint or Infill Consolidation Code Dedicated Acres Joint or Infill Consolidation Code OPERATION Statements Consolidation Code OPERATION Statements Consolidation Code OPERATION Statements Statement for Statements Statement for Statements Statement for Statements Consolidation Code OPERATION CENTIFICATION OPERATION CONTENTIFICATION State										
333888 MULE 11-23 FED COM 304H 00RU No. 0perator Name 0perator Name 304H 6137 DEVON ENERCY PRODUCTION COMPANY, L.P. 3451.4 Surface Location Lt or lot No. Section Ternship Range Lot Ma Feet from the Noth/South line Feet from the Had/West line C A 11 25-5 31-E Lot Ma Feet from the North/South line Feet from the East/West line C B 23 25-5 31-E Lot Ma Peet from the North/South line Feet from the East/West line C B 23 25-5 31-E Order No. NSI.Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OPERATOR CERTIFICATION NOA ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OPERATOR CERTIFICATION Non-STANDARD UNTIT HAS BEEN APPROVED BY THE DIVISION DIVISION OPERATOR CERTIFICATION Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-STANDARD Non-				96	641	Property Na		ONE SPRING	Well Num	nber
OREBUND Opperator Name Opperator Name Bievaion 6137 DEVON ENERGY PRODUCTION COMPANY, L.P. 3451.4 3451.4 Surface Location 3451.4 Ul or let No. Section Township Range Lot Idn Peet from the North/South line Peet from the Sact/West line C A 11 25-5 31-E Lot Idn Peet from the North/South line Peet from the EAST E Bottom Hole Location If Different From Surface 2600 EAST E Dedicated Acres Joint or Infill Consolidation Code Order No. Schull Prevalue Consolidation Code Order No. 720 NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OPERATOR CERTIFICATION No. ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OPERATOR CERTIFICATION No. ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OPERATOR CERTIFICATION No. ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE Development of the bastor any base of any base of a					MUL					
Surface Location UL or lot No. Section A 11 25-S 31-E Lot Han Feet from the North/South line Peet from the Point Point Peet from the Point Peet from Point Peet from the Point Peet fr	OGRID N	0.				•				
UL or ist No. Section Township Range Lot Idn Feet from the NoTh/South line Peet from the East/West line C Bottom Hole Location If Different From Surface UL or ist No. Section Township Range Lot Idn Feet from the NoTh/South line Peet from the East/West line C Bedicated Acree Joint or Infill Consolidation Code Order No. NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNITIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS EREN APPROVED BY THE DIVISION Mul of the cost of	6137			DEVON	ENERGY	7 PRODUCT	ION COMPANY	Z, L.P.	345	1.4'
A 11 25-S 31-E 450 NERTH 966 EAST E Bottom Hole Location If Different From Surface UL or lot No. Section Tommahip Range Lot Idn Peet from the North/South line Peet from the East/West line C B 23 25-S 31-E Lot Idn Peet from the East/West line C B 23 25-S 31-E Lot Idn Peet from the East/West line C B 23 25-S 31-E American Stress NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNTI HAS BEEN APPROVED BY THE DIVISION WILL 11-21 TDL COM 200H Marries and complete for the bar of th						Surface Loc	eation			
Bottom Hole Location If Different From Surface UL or lot No. Section Township Range Lot Idn Feet from the North/South line Peet from the East/West line C Bedicated Acres Joint or Infill Consolidation Code Order No. NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION OPERATOR CERTIFICATION Will 11-23 FD COM Joint Joint or Mail Joint or Mail Joint or Mail OPERATOR CERTIFICATION VIL 01-123 FD COM JOINT Joint or Mail			-	-	Lot Idn					County
UL or tot No. Section Township Range Lot Ian Feet from the 1288 NDRTH Peet from the 2600 East/West line C B 2.3 2.5-S 31-E Otder No. NDRTH 2600 EAST E Dedicated Acres Joint or Infill Consolidation Code Order No. NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION WHE 11-23 FD COM 302H1 State of the form the Complexity of the form the Complex	A	11	25-5	31-E		450	NORTH	966	EAST	EDDY
B 2.3 2.5 31-E 1288 NORTH 2600 EAST E Dedicated Acres Joint or Infill Consolidation Code Order No. NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNTIL HAS BEEN APPROVED BY THE DIVISION Mail 11-23 FD COM Some Relation OPERATOR CERTIFICATION No B SI MEY FAST State of the formation of th				Bottom	h Hole Lo	eation If Diff	erent From Sur	face		
Dedicated Acres Joint or Infill Consolidation Code Order No. 720 NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION OPERATOR CERTIFICATION (CIDENT CORRUNATES NAD 33 MMSP CAST NAD 34 MMSP CAS	UL or lot No.		-	-	Lot Idn		,			County
Tool NSL Pending NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION Mile 11-23 FD COM 30et (123614 Image: Standard Stan	B	23	25-5	31-E		1288	NORTH	2600	EAST	EDDY
NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATE OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION MULT 11-23 FED COM 304H (CLUSS)4 OPERATOR CERTIFICATION SUBJECT COMPLEXES OPERATOR CERTIFICATION I hereby certify that the inform subject is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is true and complete to the be may knowledge and belief, and that the inform is a staff to a volumean interest on working this is a staff to a volumean interest on working this is a volumean provide to the be may knowledge and belief, and that the inform is a staff to a volumean interest on working this is a volumean provide the information is a volumean provide to the be may knowledge and belief, and that the information is a volumean provide the information is a volumean p	Dedicated Acre	s Joint o	or Infill C	onsolidation	Code Or	der No.				
OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION MULL 11-23 FED COM 304H (EL) 361.4 (ED) ETT CURRINKTS (ED) ETT CURRIN	720				1	ISL Pending				
CLU-345.4' 304H FTP Image: Comparison of the set	NO ALLO	WABLE V							EEN CONSOLID	ATED
H=N403723.61 E724993.33 J=N403723.61 E724993.33 J=N403715.48 E722335.80 L=N405360.85 E7196678.01 L=N406360.85 E7196678.01 M=N409003.26 E719655.72 M=N409003.26 E719655.72 M=N409003.26 E719655.66 ≤1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL: 3451.4' GEDDE TIC CORRDINATI NAD 83 NMSP EAST SURFACE LUCATION N419123.43 E:723964.79 LAT:32.150873 LON103.743227 <u>KICK DFF PDINT</u> CALLS: <u>65 FNL 2601 FE</u> N: <u>419513</u> E: <u>722329</u> LAT: <u>32.1519</u> LDN: <u>103.7486</u> EIRST TAKE POINT(PPP 100' FNL 2600' FEL S N: <u>419477.94</u> E: <u>722329.35</u> LAT: <u>32.151872</u> LDN: <u>103.748503</u> <u>LAT: 32.151872</u> LDN: <u>103.748503</u> <u>LAT: 32.151872</u> LDN: <u>103.748533</u> <u>BOTTOM OF HOLE</u> N:407702.90 E: <u>722384.30</u> LAT: <u>32.119724</u> LDN: <u>103.748533</u> <u>BOTTOM OF HOLE</u> N:407702.90 E: <u>722383.98</u> LAT: <u>32.119504</u> LDN: <u>103.748533</u> <u>BOTTOM OF HOLE</u> N:407702.90 E: <u>722353.57</u> LAT: <u>32.137621</u> LDN: <u>103.748534</u> (PPP 2) O' FSL 2603' FEL SEC N:414293.67 E: <u>722353.57</u> LAT: <u>32.137621</u> LDN: <u>103.748517</u> A=N:419577.37 E: <u>719631</u> B=N:416925.27 E: <u>724925</u> E=N:416925.27 E: <u>724955</u> E=N:416925.	ES		$\frac{1}{N \frac{1}{2664,71^{\circ}}} = \frac{1}{N \frac{1}{2652,746^{\circ}}} = \frac{1}{N \frac{1}{2652,71^{\circ}}} = \frac{1}{N \frac{1}{2643,31^{\circ}}} = \frac{1}{N \frac{1}{2643,31^{\circ}}} = \frac{1}{N \frac{1}{2642,43^{\circ}}} =$	304H FTP (PPP 1) EIF 	304H SHL	S 00713'46" E E S 00713'46" E E S 00713'47" E E S 00713'47" E F S 00713'41" E G S 00714'00" E H S 00704'36" H S 00704'36" H S 00704'36"	I hereby herein is true my knowledge organization ei or unleased mi including the p or has a right location pursue owner of such or to a volunts compulsory pool by the division Signature Chelsey Gree E-mail Addres SURVEYO I hereby shown on this notes of actual under my supe true and correct	certify that the init and complete to the and belief, and tha ther owns a working ineral interest in the proposed bottom ho to drill this well a and to a contract w mineral or working ary pooling agreeme oling order heretofo.	Vormation e best of t this g interest le location t this le location t this interest, nt or a re entered 5/20/24 (te FION W location om field ne or le same is y belief. 1 Surveyor 4/10/24

Received by OCD: 6/4/2024 8:20:16 AM

Х

API #

30-015-55057			
Operator Name:		Property Name:	Well Number
DEVON ENERGY PI COMPANY, LP.	RODUCTION	MULE 11-23 FED COM	304H

Kick Off Point (KOP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
В	11	25S	31E		65	FNL	2601	FEL	EDDY
Latitu	de				Longitude				NAD
32.15	519				103.7486				83

First Take Point (FTP)

UL B	Section	Township 25-S	Range 31-E	Lot	Feet 100	From N/S	Feet 2600	From E/W	County EDDY
Latitu 32.	^{de} 1518	72			Longitude 103.74	8505			NAD 83

Last Take Point (LTP)

UL B	Section 23	Township 25-S	Range 31-E	Lot	Feet 1208	From N/S	Feet 2600	From E/W	County EDDY
Latitu 32.	^{de} 1197	24			Longitud 103.		3		NAD 83

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

Y		

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
30-015-55054		
Operator Name:	Property Name:	Well Number
DEVON ENERGY PRODUCTION COMPANY, LP	MULE 11-14 FED COM	525H

KZ 06/29/2018

Offline Cementing

Variance Request

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements.

Section 2 - Blowout Preventer Testing Procedure

Variance Request

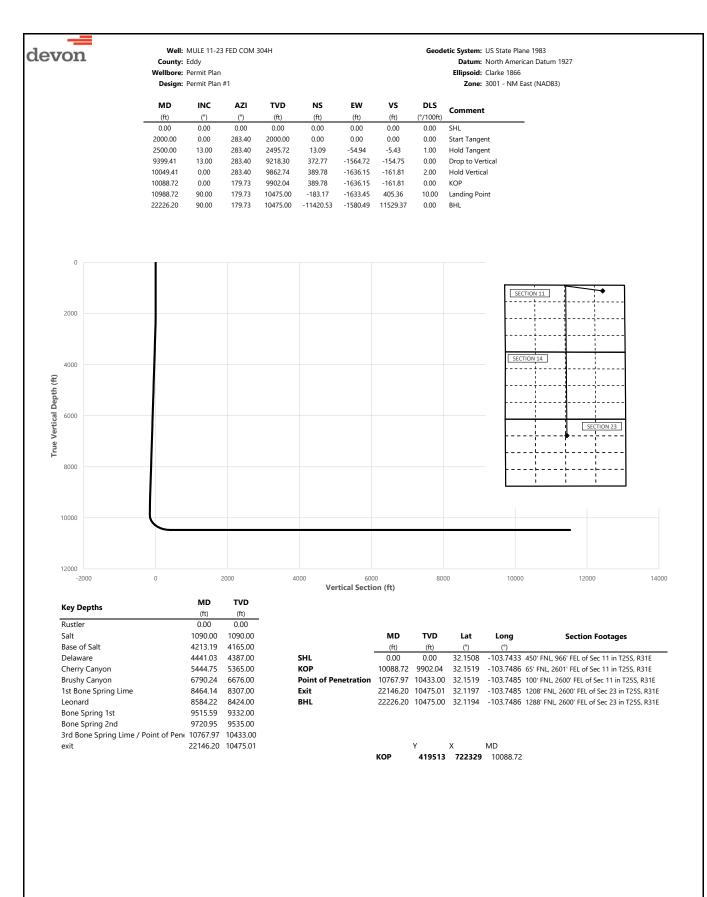
Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow 43 CFR 3172, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed 43 CFR 3172 per the following: Devon Energy will perform a full BOP test per 43 CFR 3172 before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third



<u>10-3/4"</u> <u>45.50#</u> <u>0.400"</u> <u>J-55</u>

Dimensions (Nominal)

Outside Diameter Wall Inside Diameter Drift	10.750 0.400 9.950 9.875	in. in. in. in.
Weight, T&C Weight, PE	45.500 44.260	lbs/ft lbs/ft
Internal Yield Pressure at Minimum Yield		
Collapse	2090	psi
Internal Yields Pressure		
PE	3580	psi
STC	3580	psi
BTC	3580	psi
Yield Strength, Pipe Body	715	1000 lbs
Joint Strength, STC		
STC	493	1000 lbs
ВТС	796	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

devon		Well: County:		3 FED COM 3	04H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927
		-	Permit Plan	ı					Ellipsoid: Clarke 1866
		Design:	Permit Plan	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
-	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL
	100.00	0.00	283.40	100.00	0.00	0.00	0.00	0.00	5.12
	200.00	0.00	283.40	200.00	0.00	0.00	0.00	0.00	
	300.00	0.00	283.40	300.00	0.00	0.00	0.00	0.00	
	400.00 500.00	0.00 0.00	283.40 283.40	400.00 500.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	600.00	0.00	283.40	600.00	0.00	0.00	0.00	0.00	
	665.00	0.00	283.40	665.00	0.00	0.00	0.00	0.00	Rustler
	700.00	0.00	283.40	700.00	0.00	0.00	0.00	0.00	
	800.00 900.00	0.00 0.00	283.40 283.40	800.00 900.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1000.00	0.00	283.40 283.40	1000.00	0.00	0.00	0.00	0.00	
	1090.00	0.00	283.40	1090.00	0.00	0.00	0.00	0.00	Salt
	1100.00	0.00	283.40	1100.00	0.00	0.00	0.00	0.00	
	1200.00	0.00	283.40	1200.00	0.00	0.00	0.00	0.00	
	1300.00 1400.00	0.00 0.00	283.40 283.40	1300.00 1400.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
	1500.00	0.00	283.40	1500.00	0.00	0.00	0.00	0.00	
	1600.00	0.00	283.40	1600.00	0.00	0.00	0.00	0.00	
	1700.00	0.00	283.40	1700.00	0.00	0.00	0.00	0.00	
	1800.00	0.00	283.40	1800.00	0.00	0.00	0.00	0.00	
	1900.00 2000.00	0.00 0.00	283.40 283.40	1900.00 2000.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	Start Tangent
	2100.00	2.60	283.40	2099.97	0.53	-2.21	-0.22	2.60	Start tangent
	2200.00	5.20	283.40	2199.73	2.10	-8.82	-0.87	2.60	
	2300.00	7.80	283.40	2299.07	4.72	-19.83	-1.96	2.60	
	2400.00 2500.00	10.40 13.00	283.40 283.40	2397.81 2495.72	8.39 13.09	-35.22 -54.94	-3.48 -5.43	2.60 1.00	Hold Tangent
	2600.00	13.00	283.40	2593.16	18.30	-76.83	-7.60	0.00	The tangent
	2700.00	13.00	283.40	2690.60	23.52	-98.71	-9.76	0.00	
	2800.00	13.00	283.40	2788.03	28.73	-120.59	-11.93	0.00	
	2900.00 3000.00	13.00 13.00	283.40 283.40	2885.47 2982.91	33.94 39.15	-142.47 -164.36	-14.09 -16.25	0.00 0.00	
	3100.00	13.00	283.40	3080.34	44.37	-186.24	-18.42	0.00	
	3200.00	13.00	283.40	3177.78	49.58	-208.12	-20.58	0.00	
	3300.00	13.00	283.40	3275.22	54.79	-230.00	-22.75	0.00	
	3400.00 3500.00	13.00 13.00	283.40 283.40	3372.65 3470.09	60.01 65.22	-251.89 -273.77	-24.91 -27.07	0.00 0.00	
	3600.00	13.00	283.40	3567.53	70.43	-295.65	-29.24	0.00	
	3700.00	13.00	283.40	3664.97	75.65	-317.54	-31.40	0.00	
	3800.00	13.00	283.40	3762.40	80.86	-339.42	-33.57	0.00	
	3900.00 4000.00	13.00 13.00	283.40 283.40	3859.84 3957.28	86.07 91.29	-361.30 -383.18	-35.73 -37.90	0.00 0.00	
	4100.00	13.00	283.40	4054.71	96.50	-405.07	-40.06	0.00	
	4200.00	13.00	283.40	4152.15	101.71	-426.95	-42.22	0.00	
	4213.19	13.00	283.40	4165.00	102.40	-429.83	-42.51	0.00	Base of Salt
	4300.00 4400.00	13.00 13.00	283.40 283.40	4249.59 4347.02	106.92 112.14	-448.83 -470.71	-44.39 -46.55	0.00 0.00	
	4441.03	13.00	283.40	4387.00	114.28	-479.69	-47.44	0.00	Delaware
	4500.00	13.00	283.40	4444.46	117.35	-492.60	-48.72	0.00	
	4600.00	13.00	283.40	4541.90	122.56	-514.48	-50.88	0.00	
	4700.00 4800.00	13.00 13.00	283.40 283.40	4639.34 4736.77	127.78 132.99	-536.36 -558.24	-53.04 -55.21	0.00 0.00	
	4900.00	13.00	283.40	4834.21	138.20	-580.13	-57.37	0.00	
	5000.00	13.00	283.40	4931.65	143.42	-602.01	-59.54	0.00	
	5100.00	13.00	283.40	5029.08	148.63	-623.89	-61.70	0.00	
	5200.00 5300.00	13.00 13.00	283.40 283.40	5126.52 5223.96	153.84 159.06	-645.78 -667.66	-63.86 -66.03	0.00 0.00	
	5400.00	13.00	283.40	5321.39	164.27	-689.54	-68.19	0.00	
	5444.75	13.00	283.40	5365.00	166.60	-699.33	-69.16	0.00	Cherry Canyon
	5500.00	13.00	283.40	5418.83	169.48	-711.42	-70.36	0.00	
	5600.00	13.00	283.40	5516.27	174.70	-733.31	-72.52	0.00	
	5700.00 5800.00	13.00 13.00	283.40 283.40	5613.71 5711.14	179.91 185.12	-755.19 -777.07	-74.68 -76.85	0.00 0.00	
	5900.00	13.00	283.40	5808.58	190.33	-798.95	-79.01	0.00	
	6000.00	13.00	283.40	5906.02	195.55	-820.84	-81.18	0.00	
	6100.00	13.00	283.40	6003.45	200.76	-842.72	-83.34	0.00	
	6200.00 6300.00	13.00 13.00	283.40 283.40	6100.89 6198.33	205.97 211.19	-864.60 -886.49	-85.51 -87.67	0.00 0.00	
	6400.00	13.00	283.40	6295.76	216.40	-908.37	-89.83	0.00	

•

evon		Well: County:		3 FED COM 3	04H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927
=		Wellbore:	Permit Plar Permit Plar						Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	6500.00 6600.00	13.00 13.00	283.40 283.40	6393.20 6490.64	221.61 226.83	-930.25 -952.13	-92.00 -94.16	0.00 0.00	
	6700.00	13.00	283.40	6588.08	232.04	-974.02	-96.33	0.00	
	6790.24	13.00	283.40	6676.00	236.74	-993.76	-98.28	0.00	Brushy Canyon
	6800.00	13.00	283.40	6685.51	237.25	-995.90	-98.49	0.00	
	6900.00	13.00	283.40	6782.95	242.47	-1017.78	-100.65	0.00	
	7000.00	13.00	283.40	6880.39	247.68	-1039.66	-102.82	0.00	
	7100.00	13.00	283.40	6977.82	252.89	-1061.55	-104.98	0.00	
	7200.00 7300.00	13.00 13.00	283.40 283.40	7075.26 7172.70	258.10 263.32	-1083.43 -1105.31	-107.15 -109.31	0.00 0.00	
	7400.00	13.00	283.40	7270.13	268.53	-1127.19	-111.47	0.00	
	7500.00	13.00	283.40	7367.57	273.74	-1149.08	-113.64	0.00	
	7600.00	13.00	283.40	7465.01	278.96	-1170.96	-115.80	0.00	
	7700.00	13.00	283.40	7562.45	284.17	-1192.84	-117.97	0.00	
	7800.00	13.00	283.40	7659.88	289.38	-1214.73	-120.13	0.00	
	7900.00	13.00	283.40	7757.32	294.60	-1236.61	-122.29	0.00	
	8000.00 8100.00	13.00 13.00	283.40 283.40	7854.76	299.81 305.02	-1258.49 -1280.37	-124.46 -126.62	0.00 0.00	
	8200.00	13.00	283.40 283.40	7952.19 8049.63	305.02 310.24	-1280.37	-126.62	0.00	
	8300.00	13.00	283.40	8147.07	315.45	-1324.14	-130.95	0.00	
	8400.00	13.00	283.40	8244.50	320.66	-1346.02	-133.12	0.00	
	8464.14	13.00	283.40	8307.00	324.01	-1360.06	-134.50	0.00	1st Bone Spring Lime
	8500.00	13.00	283.40	8341.94	325.88	-1367.90	-135.28	0.00	
	8584.22	13.00	283.40	8424.00	330.27	-1386.33	-137.10	0.00	Leonard
	8600.00	13.00	283.40	8439.38	331.09	-1389.79	-137.44	0.00	
	8700.00 8800.00	13.00 13.00	283.40 283.40	8536.82 8634.25	336.30 341.51	-1411.67 -1433.55	-139.61 -141.77	0.00 0.00	
	8900.00	13.00	283.40	8731.69	346.73	-1455.44	-143.94	0.00	
	9000.00	13.00	283.40	8829.13	351.94	-1477.32	-146.10	0.00	
	9100.00	13.00	283.40	8926.56	357.15	-1499.20	-148.26	0.00	
	9200.00	13.00	283.40	9024.00	362.37	-1521.08	-150.43	0.00	
	9300.00	13.00	283.40	9121.44	367.58	-1542.97	-152.59	0.00	
	9399.41	13.00	283.40	9218.30	372.77	-1564.72	-154.75	0.00	Drop to Vertical
	9400.00 9500.00	12.99 10.99	283.40 283.40	9218.87 9316.69	372.80 377.61	-1564.85 -1585.05	-154.76 -156.76	2.01 2.00	
	9515.59	10.68	283.40	9332.00	378.29	-1587.90	-157.04	2.00	Bone Spring 1st
	9600.00	8.99	283.40	9415.17	381.63	-1601.92	-158.43	2.00	1 5
	9700.00	6.99	283.40	9514.19	384.85	-1615.44	-159.77	2.00	
	9720.95	6.57	283.40	9535.00	385.43	-1617.85	-160.00	2.00	Bone Spring 2nd
	9800.00	4.99	283.40	9613.64	387.27	-1625.59	-160.77	2.00	
	9900.00	2.99	283.40	9713.39	388.88	-1632.36	-161.44	2.00 2.00	
	10000.00 10049.41	0.99 0.00	283.40 283.40	9813.33 9862.74	389.69 389.78	-1635.73 -1636.15	-161.77 -161.81	2.00	Hold Vertical
	10045.41	0.00	179.73	9902.04	389.78	-1636.15	-161.81	0.00	KOP
	10100.00	1.13	179.73	9913.33	389.67	-1636.14	-161.70	10.00	
	10200.00	11.13	179.73	10012.63	379.01	-1636.09	-151.15	10.00	
	10300.00	21.13	179.73	10108.57	351.27	-1635.96	-123.69	10.00	
	10400.00	31.13	179.73	10198.24	307.29	-1635.76	-80.15	10.00	
	10500.00	41.13	179.73	10278.91	248.40	-1635.48	-21.86	10.00	
	10600.00 10700.00	51.13 61.13	179.73 179.73	10348.12 10403.78	176.40 93.48	-1635.14 -1634.75	49.41 131.50	10.00 10.00	
	10767.97	67.93	179.73	10403.78	32.16	-1634.46	192.21	10.00	3rd Bone Spring Lime / Point of Penetration
	10800.00	71.13	179.73	10444.20	2.15	-1634.32	221.91	10.00	-r 2 - 7
	10900.00	81.13	179.73	10468.15	-94.81	-1633.86	317.89	10.00	
	10988.72	90.00	179.73	10475.00	-183.17	-1633.45	405.36	10.00	Landing Point
	11000.00	90.00	179.73	10475.00	-194.45	-1633.39	416.53	0.00	
	11100.00	90.00	179.73	10475.00	-294.45	-1632.92	515.52	0.00	
	11200.00 11300.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-394.45 -494.45	-1632.45 -1631.98	614.51 713.50	0.00 0.00	
	11400.00	90.00	179.73	10475.00	-494.45 -594.45	-1631.56	812.49	0.00	
	11500.00	90.00	179.73	10475.00	-694.45	-1631.03	911.48	0.00	
	11600.00	90.00	179.73	10475.00	-794.44	-1630.56	1010.47	0.00	
	11700.00	90.00	179.73	10475.00	-894.44	-1630.09	1109.46	0.00	
	11800.00	90.00	179.73	10475.00	-994.44	-1629.62	1208.45	0.00	
	11900.00	90.00	179.73	10475.00	-1094.44	-1629.15	1307.44	0.00	
	12000.00	90.00	179.73	10475.00	-1194.44	-1628.68	1406.43	0.00	
	12100.00	90.00	179.73 179.73	10475.00	-1294.44	-1628.21 -1627.73	1505.42	0.00	
	12200.00	90.00	179.73	10475.00	-1394.44	-1627.73	1604.41	0.00	
	12300.00	90.00	179.73	10475.00	-1494.44	-1627.26	1703.40	0.00	

.

l		County:		3 FED COM 3	04H				Geodetic System: US State Plane Datum: North America Ellipsoid: Clarke 1866	
			Permit Plar						Zone: 3001 - NM Eas	t (NAD83)
	MD (ft)	INC (°)	AZI (°)	TVD (ft)	NS (ft)	EW (ft)	VS (ft)	DLS (°/100ft)	Comment	
-	12500.00	90.00	179.73	10475.00	-1694.43	-1626.32	1901.38	0.00		
	12600.00	90.00	179.73	10475.00	-1794.43	-1625.85	2000.37	0.00		
	12700.00	90.00	179.73	10475.00	-1894.43	-1625.38	2099.36	0.00		
	12800.00	90.00	179.73	10475.00	-1994.43	-1624.90	2198.35	0.00		
	12900.00	90.00	179.73	10475.00	-2094.43	-1624.43	2297.34	0.00		
	13000.00	90.00	179.73	10475.00	-2194.43 -2294.43	-1623.96 -1623.49	2396.33	0.00		
	13100.00 13200.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-2294.43	-1623.49	2495.32 2594.31	0.00 0.00		
	13300.00	90.00	179.73	10475.00	-2494.43	-1622.55	2693.30	0.00		
	13400.00	90.00	179.73	10475.00	-2594.42	-1622.08	2792.29	0.00		
	13500.00	90.00	179.73	10475.00	-2694.42	-1621.60	2891.28	0.00		
	13600.00	90.00	179.73	10475.00	-2794.42	-1621.13	2990.27	0.00		
	13700.00	90.00	179.73	10475.00	-2894.42	-1620.66	3089.26	0.00		
	13800.00	90.00	179.73	10475.00	-2994.42	-1620.19	3188.25	0.00		
	13900.00	90.00	179.73	10475.00	-3094.42	-1619.72	3287.24	0.00		
	14000.00 14100.00	90.00 90.00	179.73 179.73	10475.00 10475.00	-3194.42 -3294.42	-1619.25 -1618.78	3386.24 3485.23	0.00 0.00		
	14200.00	90.00	179.73	10475.00	-3294.42	-1618.30	3584.22	0.00		
	14300.00	90.00	179.73	10475.00	-3494.41	-1617.83	3683.21	0.00		
	14400.00	90.00	179.73	10475.00	-3594.41	-1617.36	3782.20	0.00		
	14500.00	90.00	179.73	10475.00	-3694.41	-1616.89	3881.19	0.00		
	14600.00	90.00	179.73	10475.00	-3794.41	-1616.42	3980.18	0.00		
	14700.00	90.00	179.73	10475.00	-3894.41	-1615.95	4079.17	0.00		
	14800.00	90.00	179.73	10475.01	-3994.41	-1615.47	4178.16	0.00		
	14900.00 15000.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-4094.41 -4194.41	-1615.00 -1614.53	4277.15 4376.14	0.00 0.00		
	15100.00	90.00	179.73	10475.01	-4294.41	-1614.06	4370.14	0.00		
	15200.00	90.00	179.73	10475.01	-4394.40	-1613.59	4574.12	0.00		
	15300.00	90.00	179.73	10475.01	-4494.40	-1613.12	4673.11	0.00		
	15400.00	90.00	179.73	10475.01	-4594.40	-1612.65	4772.10	0.00		
	15500.00	90.00	179.73	10475.01	-4694.40	-1612.17	4871.09	0.00		
	15600.00	90.00	179.73	10475.01	-4794.40	-1611.70	4970.08	0.00		
	15700.00	90.00	179.73	10475.01	-4894.40	-1611.23	5069.07	0.00		
	15800.00 15900.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-4994.40 -5094.40	-1610.76 -1610.29	5168.06 5267.05	0.00 0.00		
	16000.00	90.00	179.73	10475.01	-5194.40	-1609.82	5366.04	0.00		
	16100.00	90.00	179.73	10475.01	-5294.39	-1609.35	5465.03	0.00		
	16200.00	90.00	179.73	10475.01	-5394.39	-1608.87	5564.02	0.00		
	16300.00	90.00	179.73	10475.01	-5494.39	-1608.40	5663.01	0.00		
	16400.00	90.00	179.73	10475.01	-5594.39	-1607.93	5762.00	0.00		
	16500.00	90.00	179.73	10475.01	-5694.39	-1607.46	5860.99	0.00		
	16600.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-5794.39	-1606.99	5959.98 6058 97	0.00		
	16700.00 16800.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-5894.39 -5994.39	-1606.52 -1606.04	6058.97 6157.96	0.00 0.00		
	16900.00	90.00	179.73	10475.01	-6094.39	-1605.57	6256.95	0.00		
	17000.00	90.00	179.73	10475.01	-6194.38	-1605.10	6355.94	0.00		
	17100.00	90.00	179.73	10475.01	-6294.38	-1604.63	6454.93	0.00		
	17200.00	90.00	179.73	10475.01	-6394.38	-1604.16	6553.92	0.00		
	17300.00	90.00	179.73	10475.01	-6494.38	-1603.69	6652.91	0.00		
	17400.00	90.00	179.73	10475.01	-6594.38	-1603.22	6751.90	0.00		
	17500.00 17600.00	90.00 90.00	179.73 179.73	10475.01	-6694.38	-1602.74 -1602.27	6850.89 6949.88	0.00		
	17600.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-6794.38 -6894.38	-1602.27	6949.88 7048.87	0.00 0.00		
	17800.00	90.00	179.73	10475.01	-6994.38	-1601.33	7147.86	0.00		
	17900.00	90.00	179.73	10475.01	-7094.37	-1600.86	7246.85	0.00		
	18000.00	90.00	179.73	10475.01	-7194.37	-1600.39	7345.84	0.00		
	18100.00	90.00	179.73	10475.01	-7294.37	-1599.92	7444.83	0.00		
	18200.00	90.00	179.73	10475.01	-7394.37	-1599.44	7543.82	0.00		
	18300.00	90.00	179.73	10475.01	-7494.37	-1598.97	7642.81	0.00		
	18400.00	90.00	179.73	10475.01	-7594.37	-1598.50	7741.80	0.00		
	18500.00	90.00	179.73	10475.01	-7694.37 -7794.37	-1598.03	7840.79	0.00		
	18600.00 18700.00	90.00 90.00	179.73 179.73	10475.01 10475.01	-7794.37 -7894.37	-1597.56 -1597.09	7939.78 8038.77	0.00 0.00		
	18800.00	90.00 90.00	179.73	10475.01	-7894.37	-1597.09	8137.76	0.00		
	18900.00	90.00	179.73	10475.01	-8094.36	-1596.14	8236.75	0.00		
	19000.00	90.00	179.73	10475.01	-8194.36	-1595.67	8335.74	0.00		
	19100.00	90.00	179.73	10475.01	-8294.36	-1595.20	8434.73	0.00		
	19200.00	90.00	179.73	10475.01	-8394.36	-1594.73	8533.73	0.00		
	19300.00	90.00	179.73	10475.01	-8494.36	-1594.26	8632.72	0.00		
	19400.00	90.00	179.73	10475.01	-8594.36	-1593.79	8731.71	0.00		

•

devon		Well:	MULE 11-2	3 FED COM 3	804H				Geodetic System: US State Plane 1983
devon		County:	Eddy						Datum: North American Datum 1927
		Wellbore:	Permit Plar	ı					Ellipsoid: Clarke 1866
		Design:	Permit Plar	n #1					Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	VS	DLS	Comment
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	19500.00	90.00	179.73	10475.01	-8694.36	-1593.31	8830.70	0.00	
	19600.00	90.00	179.73	10475.01	-8794.36	-1592.84	8929.69	0.00	
	19700.00	90.00	179.73	10475.01	-8894.35	-1592.37	9028.68	0.00	
	19800.00	90.00	179.73	10475.01	-8994.35	-1591.90	9127.67	0.00	
	19900.00	90.00	179.73	10475.01	-9094.35	-1591.43	9226.66	0.00	
	20000.00	90.00	179.73	10475.01	-9194.35	-1590.96	9325.65	0.00	
	20100.00	90.00	179.73	10475.01	-9294.35	-1590.49	9424.64	0.00	
	20200.00	90.00	179.73	10475.01	-9394.35	-1590.01	9523.63	0.00	
	20300.00	90.00	179.73	10475.01	-9494.35	-1589.54	9622.62	0.00	
	20400.00	90.00	179.73	10475.01	-9594.35	-1589.07	9721.61	0.00	
	20500.00	90.00	179.73	10475.01	-9694.35	-1588.60	9820.60	0.00	
	20600.00	90.00	179.73	10475.01	-9794.34	-1588.13	9919.59	0.00	
	20700.00	90.00	179.73	10475.01	-9894.34	-1587.66	10018.58	0.00	
	20800.00	90.00	179.73	10475.01	-9994.34	-1587.18	10117.57	0.00	
	20900.00	90.00	179.73	10475.01	-10094.34	-1586.71	10216.56	0.00	
	21000.00	90.00	179.73	10475.01	-10194.34	-1586.24	10315.55	0.00	
	21100.00	90.00	179.73	10475.01	-10294.34	-1585.77	10414.54	0.00	
	21200.00	90.00	179.73	10475.01	-10394.34	-1585.30	10513.53	0.00	
	21300.00	90.00	179.73	10475.01	-10494.34	-1584.83	10612.52	0.00	
	21400.00	90.00	179.73	10475.01	-10594.34	-1584.36	10711.51	0.00	
	21500.00	90.00	179.73	10475.01	-10694.33	-1583.88	10810.50	0.00	
	21600.00	90.00	179.73	10475.01	-10794.33	-1583.41	10909.49	0.00	
	21700.00	90.00	179.73	10475.01	-10894.33	-1582.94	11008.48	0.00	
	21800.00	90.00	179.73	10475.01	-10994.33	-1582.47	11107.47	0.00	
	21900.00	90.00	179.73	10475.01	-11094.33	-1582.00	11206.46	0.00	
	22000.00	90.00	179.73	10475.01	-11194.33	-1581.53	11305.45	0.00	
	22100.00	90.00	179.73	10475.01	-11294.33	-1581.06	11404.44	0.00	
	22146.20	90.00	179.73	10475.01	-11340.53	-1580.84	11450.18	0.00	exit
	22200.00	90.00	179.73		-11394.33		11503.43	0.00	
	22226.20	90.00	179.73		-11420.53		11529.37	0.00	BHL

•

.

1. Geologic Formations

TVD of target	10475	Pilot hole depth	N/A
MD at TD:	22226	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	665		
Salt	1090		
Base of Salt	4165		
Delaware	4387		
Cherry Canyon	5365		
Brushy Canyon	6676		
1st Bone Spring Lime	8307		
Leonard	8424		
Bone Spring 1st	9332		
Bone Spring 2nd	9535		
3rd Bone Spring Lime	10433		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

1	2. Casing Program (Prin					Casing	Interval	Casing Interval	
	Hole Size	Csg. Size	Wt (PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD
	14 3/4	10 3/4	45 1/2	J-55	BTC	0	690	0	690
	9 7/8	8 5/8	32	P110HSCY	MOFXL	0	9989	0	9989
	7 7/8	5 1/2	20	P110EC	DWC/C-IS PLUS	0	22226	0	10475

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

3. Cementing Program (Primary Design)

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	423	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	332	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	376	6776	13.2	1.44	Tail: Class H / C + additives
Int 1	700	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	332	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	376	6776	13.2	1.44	Tail: Class H / C + additives
Draduation	35	9489	9	3.27	Lead: Class H /C + additives
Production	1606	10089	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures

Devon Energy requests to offline cement on intermediate strings that are set in formations shallower than the Wolfcamp. Prior to commencing offline cementing operations, the well will be monitored for any abnormal pressures and confirmed to be static. A dual manifold system (equipped with chokes) for the returns will also be utilized as a redundancy. All equipment used for offline cementing will have a minimum 5M rating to match intermediate sections' 5M BOPE requirements

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		~	Tested to:
			Anı	nular	Х	50% of rated working pressure
Int 1	13-58"	5M		d Ram	Х	
int i	15 50	5101	•	e Ram		5M
			Doub	le Ram	Х	5101
			Other*			
	13-5/8"	5M	Annular (5M)		Х	50% of rated working pressure
Production			Blind Ram		Х	
Troduction			Pipe Ram			5M
			Double Ram		Х	5101
			Other*			
			Annul	ar (5M)		
	Blind Ram					
Pipe Ram						
			Double Ram			
			Other*			
	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to a	A variance is requested to run a 5 M annular on a 10M system					

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	8.5-9

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
Х	Completion Rpeort and sbumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additiona	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	4902
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered measured values and formations will be provided to the BLM.NH2S is present

Y H2S plan attached.

MULE 11-23 FED COM 304H

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

1 Spudder rig will move in and batch drill surface hole.

- a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan

Other, describe

etal One Corp.			MO-FXL 8-5/8 32.0				
	MO-FXL		0004	P110HSCY			
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HSC	CDS#	MinYS125ksi				
	Special Drift 7.8	Special Drift 7.875"			SD7.875		
	Connection Data	Date	27-No	v-23			
	Coometry						
	Geometry	<u>ıl</u>	<u>S.I.</u>				
	Pipe Body						
	Grade *1	P110HSCY		P110HSCY			
	MinYS *1	125	ksi	125	ksi		
	Pipe OD (D)	8 5/8			mm		
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m		
	Actual weight	31.10		46.34	kg/m		
	Wall Thickness (t)	0.352	in	8.94	mm		
	Pipe ID (d)	7.921	in	201.19	mm		
	Pipe body cross section	9.149	in ²	5,902	mm ²		
	Special Drift Dia. *1	7.875	in	200.03	mm		
	-	-	-	-	-		
	Connection						
	Box OD (W)	8.625	in	219.08	mm		
\leftarrow	PIN ID	7.921	in	201.19	mm		
	Make up Loss	3.847	in	97.71	mm		
Box	Box Critical Area	5.853	in ²	3686	mm ²		
critical	20/1 0/11/04/7 1/04		%				
				69 %			
area	Joint load efficiency	69			70		
lake d	Joint load efficiency Thread Taper Number of Threads Performance		/ 10 (1.	2" per ft) TPI			
1ake p	Thread Taper Number of Threads Performance Performance Properties	1 for Pipe Body	/ 10 (1. 5	2" per ft) TPI			
fake	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1	1 for Pipe Body 1,144	/ 10 (1. 5 kips	2" per ft) TPI 5,087	kN		
lake p sss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1	1 for Pipe Body 1,144 8,930	/ 10 (1. 5 kips psi	2" per ft) TPI 5,087 61.59	kN MPa		
fake	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1 for Pipe Body 1,144 8,930 4,300	/ 10 (1. 5 kips psi psi	2" per ft) TPI 5,087 61.59 29.66	kN MPa MPa		
nake p pss Pin	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif	1 for Pipe Body 1,144 8,930 4,300 ied Minimum YIE	/ 10 (1. 5 kips psi psi ELD Stree	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe boo	kN MPa MPa		
lake p ss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield	/ 10 (1. 5 psi psi ELD Stree Pressu	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body re of Pipe body	kN MPa MPa Jy		
lake p ss D Pin critical	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875,	/ 10 (1. 5 kips psi psi clD Stred d Pressu Collapse	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body re of Pipe body	kN MPa MPa Jy		
lake p ss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio	/ 10 (1. 5 kips psi psi J Pressu Collapse n	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body re of Pipe body e Strength 4,300	kN MPa MPa Jy		
lake ss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips	/ 10 (1. 5 psi psi ELD Stree d Pressue Collapse n (69%	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e of Pipe body e Strength 4,300 of S.M.Y.S.)	kN MPa MPa Jy		
lake p ss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips	/ 10 (1. 5 psi psi LD Stree d Pressur Collapse n (69% (69%	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.)	kN MPa MPa Jy		
lake p sss D Pin critical	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips	/ 10 (1. 5 psi psi LD Stree d Pressue Collapse n (69% (69% (70%	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.)	kN MPa MPa dy Opsi		
lake p sss D Pin critical	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips	/ 10 (1. 5 kips psi psi 2LD Stree d Pressuu Collapse n (69% (69% (70% 200% c	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	kN MPa MPa dy Opsi		
lake p sss D Pin critical	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips	/ 10 (1. 5 psi psi LD Stree d Pressue Collapse n (69% (69% (70%	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	kN MPa MPa dy Opsi		
lake p sss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft)	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips	/ 10 (1. 5 kips psi psi 2LD Stree d Pressuu Collapse n (69% (69% (70% 200% c	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	kN MPa MPa dy Opsi		
lake p ss D Pin critical	Thread Taper Number of Threads Performance S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi	/ 10 (1. 5 kips psi psi 2LD Stree d Pressuu Collapse n (69% (69% (70% 200% c	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9	kN MPa MPa dy Opsi rength		
lake p ss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 789 kips 6,250 psi 43,600	/ 10 (1. 5 kips psi psi 2LD Strei d Pressur Collapse n (69% (69% (70% 100% c 2 (ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400	kN MPa dy Dpsi rength		
hake p pss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 6,250 psi 13,600 14,900	/ 10 (1. 5 kips psi psi 2LD Strei d Pressui Collapse n (69% (69% (69% (70% 100% c 2 ft-lb ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200	kN MPa MPa dy Opsi rength		
hake p pss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 6,250 psi 13,600 14,900 16,200	/ 10 (1. 5 kips psi psi 2LD Strei d Pressui Collapse n (69% (69% (70% 100% c 2 ft-lb ft-lb ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200 21,900	kN MPa MPa dy Dpsi rength N-m N-m		
hake p pss D Pin critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 6,250 psi 13,600 14,900 16,200 28,400	/ 10 (1. 5 kips psi psi 2LD Strei d Pressui Collapse n (69% (69% (69% (70% 100% c 2 ft-lb ft-lb ft-lb ft-lb ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200 21,900 38,500	kN MPa MPa dy Opsi rength N-m N-m N-m N-m		
Aake p SSS D Pin critical area	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 6,250 psi 13,600 14,900 16,200 28,400	/ 10 (1. 5 kips psi psi 2LD Strei d Pressui Collapse n (69% (69% (69% (70% 100% c 2 ft-lb ft-lb ft-lb ft-lb ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200 21,900 38,500	kN MPa MPa dy Opsi rength N-m N-m N-m N-m		
Aake p oss D Pin critical area	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max. Note : Operational Max. to	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yiek 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 6,250 psi 13,600 14,900 16,200 28,400 orque can be applied	/ 10 (1. 5 kips psi psi 2LD Streed d Pressur Collapse n (69% (69% (69% (69% (70% 20% 100% c 20% ft-lb ft-lb ft-lb ft-lb ft-lb ft-lb	2" per ft) TPI 29.66 1.59 29.66 1.59 29.66 19 body 5 Strength 4,300 of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200 21,900 38,500 n torque application	kN MPa MPa dy Dpsi rength N-m N-m N-m N-m		
I Notice Inse of this information is at the tes (herein collectively referred	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield Ioad Min. Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	for Pipe Body 1,144 8,930 4,300 ied Minimum YIE um Internal Yield 25ksi, SD7.875, for Connectio 789 kips 6,250 psi 13,600 14,900 16,200 28,400 orque can be applied or expressed by Metal C information contained f	/ 10 (1. 5 kips psi psi 2LD Strei d Pressui Collapse n (69% (69% (69% (70% 100% c 2 ft-lb ft-lb ft-lb ft-lb ft-lb ft-lb ft-lb ft-lb	2" per ft) TPI 5,087 61.59 29.66 ngth of Pipe body e Strength 4,300 of S.M.Y.S.) of S.M.Y.S. SU of S.M.Y.S. SU SU SU SU SU SU SU SU SU SU	kN MPa MPa dy Opsi rength N-m N-m N-m N-m N-m n sidiaries or n this Conne		

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to <u>http://www.mtlo.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf</u> the contents of which are incorporated by reference into this Connection Data Sheet.

Mule 11-14 Fed Com 535H

	Sui	face csg in a	14 3/4	inch hole.		Design	Factors			Surfac	e	
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weight
"A"	45.50		j 55	btc	21.69	6.17	0.66	725	11	1.10	11.65	-
"B"			1	btc				0				0
	w/8.4#	/g mud, 30min Sfc Csg Test p	osig: 1,500	Tail Cmt	does not	circ to sfc.	Totals:	725				32,988
omparison o		inimum Required Ceme										- ,
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
14 3/4	0.5563	423	609	403	51	9.00	3251	5M				1.50
urst Frac Grad	dient(s) for Segm	ent(s) A, B = , b All > 0	.70, OK.									
									_			••=•=•
8 5/8	casi	ng inside the	10 3/4			<u>Design</u>	Factors	/		Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weigh
"A"	32.00		p 110	mo-fxl	2.47	0.79	1.28	9,989	1	2.41	1.32	319,64
"B"								0				0
	w/8.4#,	/g mud, 30min Sfc Csg Test p	osig:				Totals:	9,989				319,64
		The cement v	volume(s) are inten	ided to achieve a top of	0	ft from su	irface or a	725				overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min Dis
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-Cp
9 7/8	0.1261	708	1627	1266	29	10.50	2593	3M				0.63
) V Tool(s):			6676				sum of sx	<u>Σ</u> CuFt				Σ%exces
by stage % :		289	19				1408	2635				108
Tail cmt	200		o r /o			Decian Ec				Dred 1		
5 1/2		ng inside the	8 5/8	Coupling	loint	Design Fa		Longth	Pea	Prod 1		Woigh
5 1/2 Segment	#/ft	ng inside the Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	•
5 1/2 Segment "A"		0	8 5/8 p 110	Coupling dwc/c is+	Joint 3.48			22,226	B@s 3			444,52
5 1/2 Segment	#/ft 20.00	Grade	p 110			Collapse	Burst 2.93	22,226 0	-	a-B	a-C	444,52 0
5 1/2 Segment "A"	#/ft 20.00	Grade /g mud, 30min Sfc Csg Test p	p 110 osig: 2,305	dwc/c is+	3.48	Collapse 2.47	Burst 2.93 Totals:	22,226 0 22,226	-	a-B	a-C	444,52 0 444,52
5 1/2 Segment "A" "B"	#/ft 20.00 w/8.4#,	Grade /g mud, 30min Sfc Csg Test p The cement v	p 110 psig: 2,305 volume(s) are inten	dwc/c is+	3.48 9789	Collapse 2.47 ft from su	Burst 2.93 Totals:	22,226 0 22,226 200	-	a-B	a-C	444,52 0 444,52 overlap.
5 1/2 Segment "A" "B" Hole	#/ft 20.00 w/8.4#, Annular	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage	p 110 psig: 2,305 volume(s) are inter 1 Stage	dwc/c is+ nded to achieve a top of Min	3.48 9789 1 Stage	Collapse 2.47 ft from su Drilling	Burst 2.93 Totals: Irface or a Calc	22,226 0 22,226 200 Req'd	-	a-B	a-C	444,52 0 444,52 overlap. Min Dis
5 1/2 Segment "A" "B" Hole Size	#/ft 20.00 w/8.4#, Annular Volume	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	p 110 osig: 2,305 rolume(s) are inten 1 Stage CuFt Cmt	dwc/c is+ nded to achieve a top of Min Cu Ft	3.48 9789 1 Stage % Excess	Collapse 2.47 ft from su Drilling Mud Wt	Burst 2.93 Totals:	22,226 0 22,226 200	-	a-B	a-C	444,520 0 444,520 overlap. Min Dist Hole-Cpl
5 1/2 Segment "A" "B" Hole	#/ft 20.00 w/8.4#, Annular Volume 0.1733	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage	p 110 psig: 2,305 volume(s) are inter 1 Stage	dwc/c is+ nded to achieve a top of Min	3.48 9789 1 Stage	Collapse 2.47 ft from su Drilling	Burst 2.93 Totals: Irface or a Calc	22,226 0 22,226 200 Req'd	-	a-B	a-C	0 444,520
5 1/2 Segment "A" "B" Hole Size 7 7/8 class 'C' tail cm	#/ft 20.00 w/8.4#, Annular Volume 0.1733	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	p 110 osig: 2,305 rolume(s) are inten 1 Stage CuFt Cmt	dwc/c is+ nded to achieve a top of Min Cu Ft	3.48 9789 1 Stage % Excess	Collapse 2.47 ft from su Drilling Mud Wt	Burst 2.93 Totals: Irface or a Calc	22,226 0 22,226 200 Req'd	-	a-B	a-C	444,52 0 444,52 overlap. Min Dis Hole-Cpl
5 1/2 Segment "A" "B" Hole Size 7 7/8	#/ft 20.00 w/8.4#, Annular Volume 0.1733	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	p 110 polyme(s) are inter 1 Stage CuFt Cmt 2427	dwc/c is+ nded to achieve a top of Min Cu Ft	3.48 9789 1 Stage % Excess	Collapse 2.47 ft from su Drilling Mud Wt	Burst 2.93 Totals: urface or a Calc MASP	22,226 0 22,226 200 Req'd	3	a-B	a-C 4.66	444,520 0 444,520 overlap. Min Dist Hole-Cpl
5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A	#/ft 20.00 w/8.4#, Annular Volume 0.1733	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx	p 110 osig: 2,305 rolume(s) are inten 1 Stage CuFt Cmt	dwc/c is+ nded to achieve a top of Min Cu Ft	3.48 9789 1 Stage % Excess	Collapse 2.47 ft from su Drilling Mud Wt 9.00	Burst 2.93 Totals: urface or a Calc MASP	22,226 0 22,226 200 Req'd	3	a-B 5.54	a-C 4.66	444,520 0 444,520 overlap. Min Dist Hole-Cpl
5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail cm #N/A 0	#/ft 20.00 w/8.4#, Annular Volume 0.1733 ht yld > 1.35	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641	p 110 polyme(s) are inter 1 Stage CuFt Cmt 2427	dwc/c is+ Inded to achieve a top of Min Cu Ft 2156	3.48 9789 1 Stage % Excess 13	Collapse 2.47 ft from su Drilling Mud Wt 9.00 Design	Burst 2.93 Totals: Inface or a Calc MASP Factors	22,226 0 22,226 200 Req'd BOPE	3	a-B 5.54 Choose Ca	a-C 4.66	444,520 0 444,520 overlap. Min Dis: Hole-Cpl 0.79
5 1/2 Segment "A" "B" Hole Size 7 7/8 iJass 'C' tail cm #N/A 0 Segment	#/ft 20.00 w/8.4#, Annular Volume 0.1733 ht yld > 1.35	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641	p 110 polyme(s) are inter 1 Stage CuFt Cmt 2427	dwc/c is+	3.48 9789 1 Stage % Excess 13	Collapse 2.47 ft from su Drilling Mud Wt 9.00 Design	Burst 2.93 Totals: Inface or a Calc MASP Factors	22,226 0 22,226 200 Req'd BOPE	3	a-B 5.54 Choose Ca	a-C 4.66	444,520 0 444,520 overlap. Min Dis Hole-Cpl 0.79 Weight
5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A"	#/ft 20.00 w/8.4#, Annular Volume 0.1733 nt yld > 1.35 #/ft	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641 Grade	p 110 poig: 2,305 rolume(s) are inter 1 Stage CuFt Cmt 2427 5 1/2	dwc/c is+	3.48 9789 1 Stage % Excess 13 #N/A	Collapse 2.47 ft from su Drilling Mud Wt 9.00 <u>Design</u> Collapse	Burst 2.93 Totals: urface or a Calc MASP Factors Burst Totals:	22,226 0 22,226 200 Req'd BOPE	3	a-B 5.54 Choose Ca	a-C 4.66	444,52 0 444,52 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0
5 1/2 Segment "A" "B" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B"	#/ft 20.00 w/8.4#, Annular Volume 0.1733 nt yld > 1.35 #/ft w/8.4#,	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641 Grade /g mud, 30min Sfc Csg Test p Cmt vol ca	p 110 poig: 2,305 rolume(s) are inter 1 Stage CuFt Cmt 2427 5 1/2 poig: also below includes	dwc/c is+	3.48 9789 1 Stage % Excess 13 #N/A	Collapse 2.47 ft from su Drilling Mud Wt 9.00 <u>Design</u> Collapse	Burst 2.93 Totals: urface or a Calc MASP Factors Burst	22,226 0 22,226 200 Req'd BOPE Length 0 0 wN/A	3	a-B 5.54 Choose Ca	a-C 4.66	444,52 0 444,52 overlap. Min Dis Hole-Cp 0.79 Weigh 0 0 0 0 0 0 0 0 0 0 0 0
5 1/2 Segment "A" "B" Hole Size 7 7/8 Class 'C' tail or #N/A 0 Segment "A" "B" Hole	#/ft 20.00 w/8.4#, Annular Volume 0.1733 nt yld > 1.35 #/ft w/8.4#, Annular	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641 Grade /g mud, 30min Sfc Csg Test p Cmt vol ca 1 Stage	p 110 p 110 prolume(s) are inter 1 Stage CuFt Cmt 2427 5 1/2 psig: alc below includes 1 Stage	dwc/c is+	3.48 9789 1 Stage % Excess 13 #N/A 1 Stage	Collapse 2.47 ft from su Drilling Mud Wt 9.00 <u>Design</u> Collapse ft from su Drilling	Burst 2.93 Totals: urface or a Calc MASP Factors Burst	22,226 0 22,226 200 Req'd BOPE Length 0 0 0 #N/A Req'd	3	a-B 5.54 Choose Ca	a-C 4.66	444,52 0 444,52 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 0 0 overlap. Min Dis Min Dis Min Dis Min Dis Min Dis Min Dis Hole-Cpl 0.79 Nin Dis Min Dis Hole-Cpl 0.79 Nin Dis
5 1/2 Segment "A" "B" Hole Size 7 7/8 Ilass 'C' tail cm #N/A 0 Segment "A" "B" Hole Size	#/ft 20.00 w/8.4#, Annular Volume 0.1733 nt yld > 1.35 #/ft w/8.4#,	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641 Grade /g mud, 30min Sfc Csg Test p Cmt vol ca 1 Stage Cmt Sx	p 110 p 110 polume(s) are inter 1 Stage CuFt Cmt 2427 5 1/2 policity of the second sec	dwc/c is+	3.48 9789 1 Stage % Excess 13 #N/A #N/A 1 Stage % Excess	Collapse 2.47 ft from su Drilling Mud Wt 9.00 <u>Design</u> Collapse	Burst 2.93 Totals: urface or a Calc MASP Factors Burst	22,226 0 22,226 200 Req'd BOPE Length 0 0 wN/A	3	a-B 5.54 Choose Ca	a-C 4.66	444,52 0 444,52 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1/2 Segment "A" "B" Hole Size 7 7/8 Iass 'C' tail or #N/A 0 Segment "A" "B" Hole	#/ft 20.00 w/8.4#, Annular Volume 0.1733 nt yld > 1.35 #/ft w/8.4#, Annular	Grade /g mud, 30min Sfc Csg Test p The cement v 1 Stage Cmt Sx 1641 Grade /g mud, 30min Sfc Csg Test p Cmt vol ca 1 Stage	p 110 p 110 prolume(s) are inter 1 Stage CuFt Cmt 2427 5 1/2 psig: alc below includes 1 Stage	dwc/c is+	3.48 9789 1 Stage % Excess 13 #N/A 1 Stage	Collapse 2.47 ft from su Drilling Mud Wt 9.00 <u>Design</u> Collapse ft from su Drilling	Burst 2.93 Totals: urface or a Calc MASP Factors Burst	22,226 0 22,226 200 Req'd BOPE Length 0 0 0 #N/A Req'd	3	a-B 5.54 Choose Ca	a-C 4.66	444,52 0 444,52 overlap. Min Dis Hole-Cpl 0.79 Weigh 0 0 0 0 0 overlap. Min Dis Min Dis Min Dis Min Dis Min Dis Min Dis Hole-Cpl 0.79 Nin Dis Min Dis Hole-Cpl 0.79 Nin Dis

.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	350579
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS							
Created By	Condition	Condition Date					
ward.rikala	All original COA's still apply. Additionally, if cement is not circulated to surface during cementing operations, then a CBL is required.	8/6/2024					

Action 350579