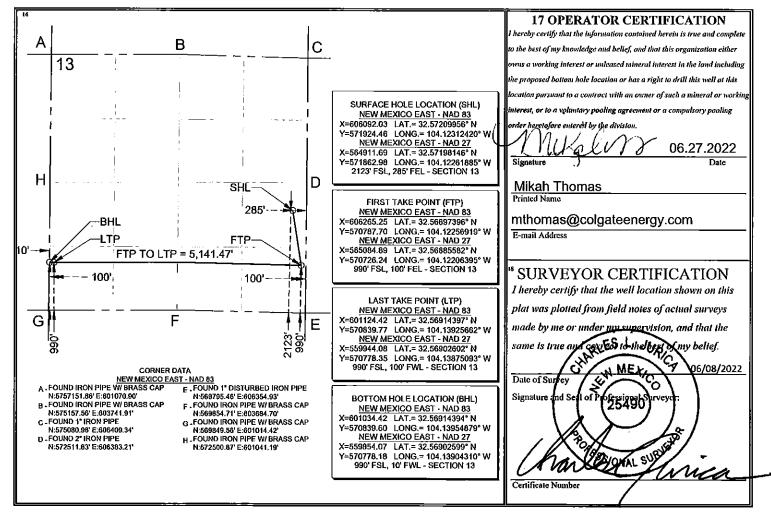
•

Form 3160-3 (June 2015)				OMBN	APPRC	0137
UNITED STATES	5			Expires: J	anuary 3	1, 2018
DEPARTMENT OF THE IN	•			5. Lease Serial No.		
BUREAU OF LAND MANA				NMNM6856		
APPLICATION FOR PERMIT TO D		REENTER		6. If Indian, Allotee	e or Trib	e Name
	EENTER			7. If Unit or CA Ag	recment	, Name and No.
	ngle Zone	Multiple Zone		8. Lease Name and	Well No),
		Muniple Zone		WOMBAT 13 FE	сом	
2. Name of Operator				134H		
COLGATE OPERATING LLC 3a. Address	26 Dh 3	to the first and the second second	<u>-</u>	9. API Well No.	- E 1	
300 N MARIENFELD STREET SUITE 1000, MIDLAND, T	(432) 695-4		e)	10. Field and Pool, AVALON/Bone S	_	•
4. Location of Well (Report location clearly and in accordance w	•			11. Sec., T. R. M. o SEC 13/T20S/R28		•
At surface NESE / 2123 FSL / 285 FEL / LAT 32.57209				SEC 13/1205/R20		
At proposed prod. zone SWSW / 990 FSL / 10 FWL / LA		9 / LONG -104.13	95487			
14. Distance in miles and direction from nearest town or post offine 12 miles	ce *			12. County or Paris EDDY	h	13. State NM
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any) 	16. No of ac	cres in lease	17. Spacir 160.0	ng Unit dedicated to	this well	
18. Distance from proposed location*	19. Propose	d Depth	20. BLM/	BIA Bond No. in file		
to nearest well, drilling, completed, 540 feet applied for, on this lease, ft.				IB001382		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)		mate date work will	siari*	23. Estimated dura	ion	
3258 feet	08/31/2022			90 days		
	24. Attac	hments				
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil	and Gas Order No. 1	I, and the H	lydraulic Fracturing	rule per	43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the Item 20 above).	e operation	s unless covered by a	n existin	g bond on file (see
 A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office) 		5. Operator certific		mation and/or plans a	s may be	requested by the
25. Signature	Name	(Printed/Typed)			Date	
(Electronic Submission)		H THOMAS / Ph: ((432) 695-	4224	07/12	/2022
Title Regulatory Manager					1	
Approved by (Signature) (Electronic Submission)		(Printed/Typed) (LAYTON / Ph: (5	75) 234-59)59	Datc 08/06	/2024
Title	Office				•	
Assistant Field Manager Lands & Minerals Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.		oad Field Office or equilable title to th	hose rights :	in the subject lease w	/hich wo	uld entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of					any dep	artment or agency
		·			-	
			INS			
	wn Wl	TH CONDIT	Inun	J		
				*(In	structi	ons on page 2)
	val Date	: 08/06/2024				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (\$753 393-6161 Fax: (\$753 393-0720 District III 811 S. First St., Artesia, NM 88210 Phone: (\$755 748-1283 Fax: (\$755 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (\$053 334-6178 Fax: (\$053 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (\$053 476-3460 Fax: (\$053 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

		W		JCAHO	IN AND ACI	EAGE DEDI	CATION PL	AI					
1.4	PI Number	-		2 Pool Cad	e		3 Pool Na	ume					
30-0	015- <mark>55</mark>	380		3713		AVA	LON;BONE	SPRING, EA	AST				
4 Property C			-		5 Property	Name	6	6 Well Number					
					WOMBAT 13 I	ED COM			134H				
7 OGRID I	No.				8 Operator	Name			9 Elevation				
371449			COLGATE OPERATING, LLC 3258'										
"Surface Location													
UL or lot no.	Section	Township	Range	Lot Idn	Fcet from the	North/South line	Feet from the	East/West line	County				
I	13	20-S	28-E		2123'	SOUTH	EAST	EDDY					
			" Bo	ttom Ho	le Location I	f Different Fro	m Surface		•				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West linc	County				
м	13	20-S	28-E		990'	SOUTH	10'	WEST	EDDY				
12 Dedicated Acres	i 13 Joint a	r Infill 14 (II 14 Consolidation Code 15 Order No.										
160													

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Recei	ved bv	OCD:	8/12/2024	12:41:58	PM
-------	--------	------	-----------	----------	----

	Energy, I		f New Mexico Natural Resource	s Department	Subn Via F	nit Electronically E-permitting
		1220 Sou	ervation Division th St. Francis Dr Fe, NM 87505			
	NATU	RAL GAS	MANAGEN	IENT PLAN		
is Natural Gas Management F	Plan must be su	bmitted with e	each Application for	r Permit to Drill (Al	PD) for a new or	recompleted we
			– Plan Descri tive May 25, 2021	ption		
Operator: Permian Resource	es Operating, L	LC	00	FRID: <u>372165</u>	Date:	8/12/2024
Type: 🛛 Original 🗆 Amen	dment due to [□ 19.15.27.9.I	D(6)(a) NMAC □ 1	9.15.27.9.D(6)(b) N	MAC □ Other.	
Other, please describe:						
Well(s): Provide the follow: recompleted from a single we				ell or set of wells pr	roposed to be dri	lled or proposed
Well Name	API	ULSTR	Anticipated Oil BBL/D		Anticipated Produced Water BBL/D	
				1		
Central Delivery Point Na Anticipated Schedule: Provi posed to be recompleted from	ide the followi	ng information		very point.		osed to be drilled
Anticipated Schedule: Provi	ide the followi	ng information				osed to be drilled
unticipated Schedule: Provi osed to be recompleted from Well Name MBAT 13 FED 132H	ide the followinn a single well API TBD	ng information pad or connec Spud Date TBD	ted to a central deli TD Reached Date TBD	very point. Completion Commencement Date TBD	et of wells propo Initial Flow Back Date TBD	osed to be drilled First Production Date TBD
nticipated Schedule: Provi osed to be recompleted from Well Name MBAT 13 FED 132H MBAT 13 FED 201H	ide the followi n a single well API	ng information pad or connec Spud Date	ted to a central deli TD Reached Date	very point. Completion Commencement Date	et of wells propo Initial Flow Back Date	osed to be drilled First Production Date
MBAT 13 FED 132H MBAT 13 FED 201H MBAT 13 FED 133H	ide the followinn a single well API TBD TBD TBD	ng information pad or connec Spud Date TBD TBD TBD TBD	ted to a central deli TD Reached Date TBD TBD	Very point. Completion Commencement Date TBD TBD	et of wells propo Initial Flow Back Date TBD TBD	First Production Date TBD TBD
MBAT 13 FED 132H MBAT 13 FED 201H MBAT 13 FED 201H MBAT 13 FED 202H MBAT 13 FED 202H MBAT 13 FED 133H MBAT 13 FED 133H	ide the followin n a single well API TBD TBD TBD TBD TBD TBD	ng information pad or connec Spud Date TBD TBD TBD TBD TBD	ted to a central deli TD Reached Date TBD TBD TBD TBD TBD TBD	very point. Completion Commencement Date TBD TBD TBD TBD TBD TBD	et of wells propo Initial Flow Back Date TBD TBD TBD TBD TBD TBD	First Production Date TBD TBD TBD TBD TBD TBD
MBAT 13 FED 132H MBAT 13 FED 132H MBAT 13 FED 201H MBAT 13 FED 202H MBAT 13 FED 133H MBAT 13 FED 133H MBAT 13 FED 203H	API TBD TBD TBD TBD TBD TBD TBD TBD TBD	ng information pad or connec Spud Date TBD TBD TBD TBD TBD TBD	ted to a central deli TD Reached Date TBD TBD TBD TBD TBD TBD TBD TBD	very point. Completion Commencement Date TBD TBD TBD TBD TBD TBD TBD	et of wells propo Initial Flow Back Date TBD TBD TBD TBD TBD TBD TBD	First Production Date TBD TBD TBD TBD TBD TBD TBD
Well Name Well Name MBAT 13 FED 132H MBAT 13 FED 201H MBAT 13 FED 201H MBAT 13 FED 202H MBAT 13 FED 133H MBAT 13 FED COM 134H MBAT 13 FED COM 134H MBAT 13 FED COM 204H	ide the followin n a single well API TBD TBD TBD TBD TBD TBD	ng information pad or connec Spud Date TBD TBD TBD TBD TBD	ted to a central deli TD Reached Date TBD TBD TBD TBD TBD TBD	very point. Completion Commencement Date TBD TBD TBD TBD TBD TBD	et of wells propo Initial Flow Back Date TBD TBD TBD TBD TBD TBD	First Production Date TBD TBD TBD TBD TBD TBD
Anticipated Schedule: Provi posed to be recompleted from	ide the followin n a single well API TBD TBD TBD TBD TBD TBD TBD TBD	ng information pad or connec Spud Date TBD TBD TBD TBD TBD TBD TBD TBD	ted to a central deli TD Reached Date TBD TBD TBD TBD TBD TBD TBD TBD	very point. Completion Commencement Date TBD TBD TBD TBD TBD TBD TBD TBD TBD	et of wells propo Initial Flow Back Date TBD TBD TBD TBD TBD TBD TBD TBD	First Production Date TBD TBD TBD TBD TBD TBD TBD

VI. Separation Equipment: 🛛 Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices: 🛛 Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: 🛛 Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

□ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in
LM Energy	LM Touchdown Gathering System	A-25-20S-28E	TBD	40 MMcfd

XI. Map. \boxtimes Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \boxtimes will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \boxtimes does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \boxtimes Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

(c) OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

1000				
Si	σn	at	110	
101	zп	au	a c	·

Printed Name: Ashley Brown

Title: Regulatory Lead

E-mail Address: Ashley.Brown@permianres.com

Date: 8/12/2024

Phone: (432) 400-2972

OIL CONSERVATION DIVISION

(Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

Permian Resources Operating, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

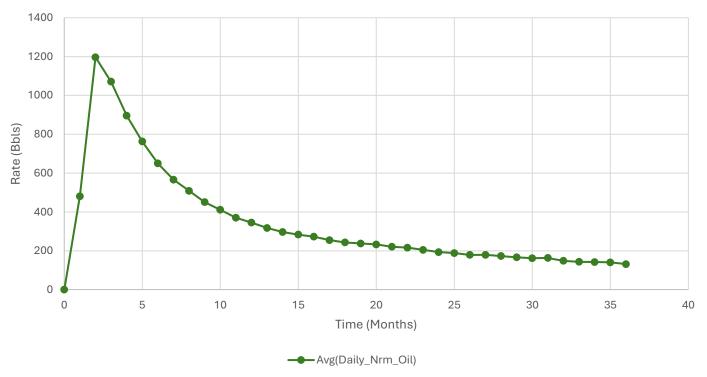
- Closed-loop systems
- Enclosed and properly sized tanks

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable

Measurement or estimation

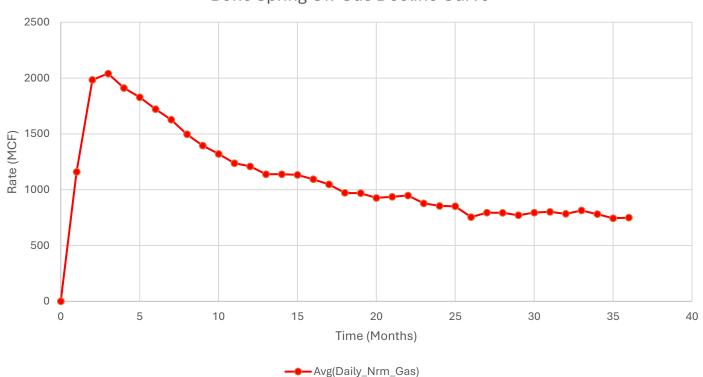
Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.

VIII. Best Management Practices:

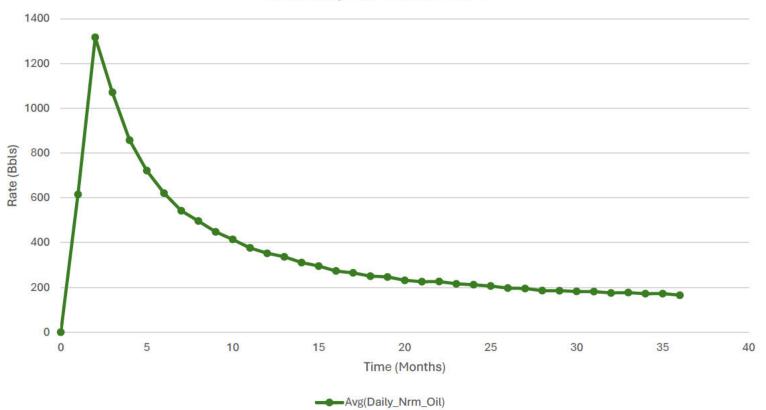

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

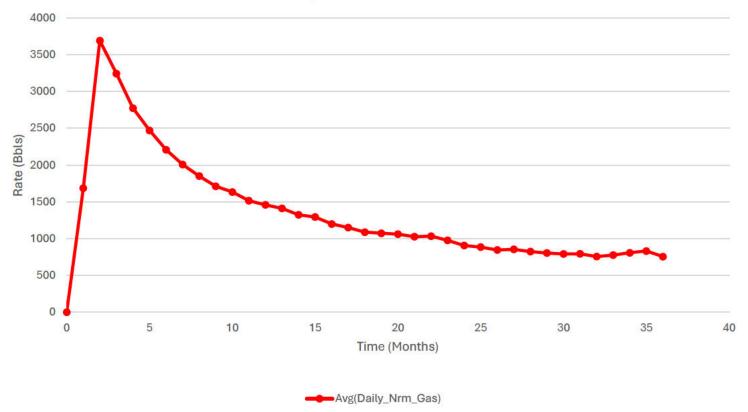
Enhanced Natural Gas Management Plan


Operator's Plan to Manage Production in Response to Increased Line Pressure

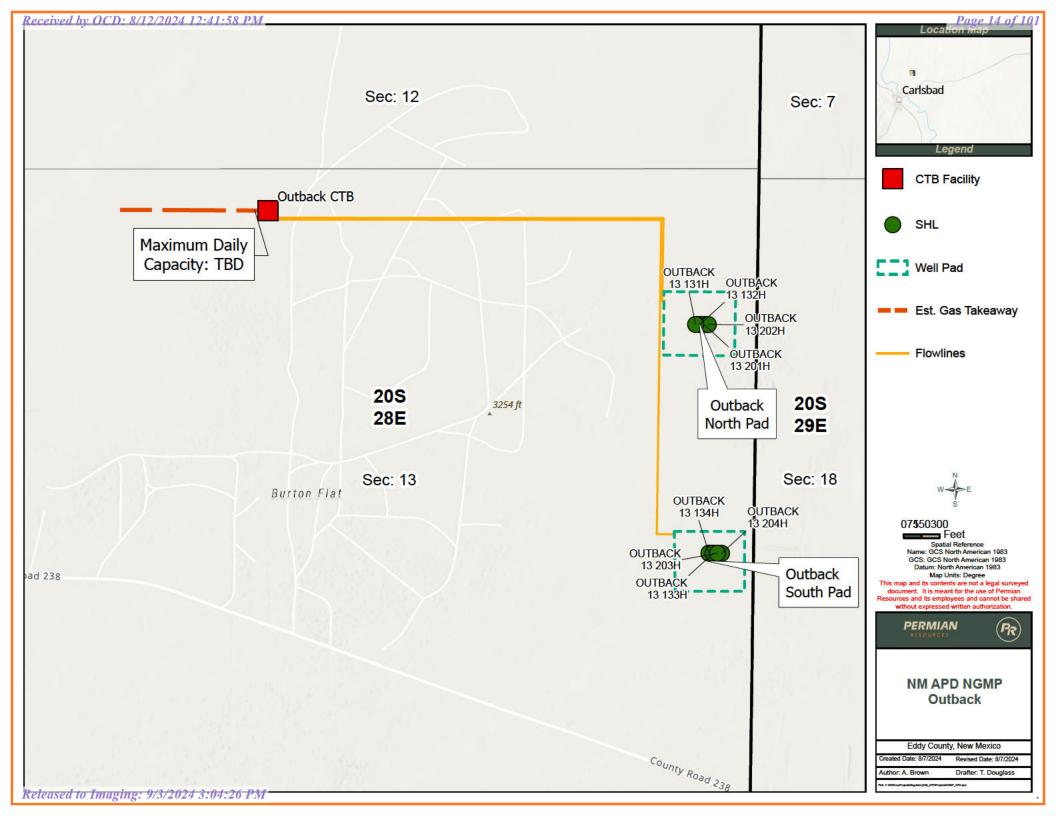
Permian Resources Operating, LLC (Permian) anticipates that its existing wells connected to the same portion of the natural gas gathering system will continue to meet anticipated increases in line pressure caused by the new wells. Permian will actively monitor line pressure throughout the field and will make necessary adjustments to existing production separators' pressures to send gas to sales. Permian also plans to implement automated alarms on all flare meters to alert of flaring events as they occur. The alarms will send notifications to field operations and engineering staff via text message and email at every occurrence of flaring. In addition, Permian plans to implement automated alarms on all flare meters to alert of any continuous flaring event that has continued for at least 4 hours. The alarms will send notifications to field operations and engineering management. Permian personnel will promptly respond to these alarms, communicate with midstream partners, and take the appropriate action to reduce flaring caused by high line pressure from new well production.


Bone Spring Oil Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.


Bone Spring Oil-Gas Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.


Wolfcamp Oil Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

Wolfcamp Oil-Gas Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400086672

Operator Name: COLGATE OPERATING LLC

Well Name: WOMBAT 13 FED COM

Well Type: OIL WELL

Well Number: 134H

Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources.	Producing Pormatio
13907497	QUATERNARY	3230	30	30	ALLUVIUM	NONE	N
13907507	RUSTLER	3001	229	229	ANHYDRITE, LIMESTONE, SALT	NONE	N
13907498	TOP SALT	2827	403	403	ANHYDRITE, SALT	NONE	N
13907499	TANSILL	2601	629	629	ANHYDRITE, DOLOMITE	NONE	N
13907500	YATES	2332	898	898	DOLOMITE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
13907501	SEVEN RIVERS	2082	1148	1148	ANHYDRITE, DOLOMITE, SANDSTONE	NATURAL GAS, OIL	N
13907502	CAPITAN REEF	2001	1229	1229	LIMESTONE	NATURAL GAS, OIL	N
13907503	CHERRY CÂNYON	18	3212	3239	LIMEŠTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
13907504	BONE SPRING LIME	-2053	5283	5340	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, ÒIL	N
13907505	BONE SPRING 1ST	-3498	6728	6806	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
13907506	BONE SPRING 2ND	-4265	7495	7585	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
13907496	BONE SPRING 3RD	-5432	8662	87 65	LIMESTONË, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 9088

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the effected in the table above. If the system is and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the effected in the table above in the effected in the table above in the table above.

Well Name: WOMBAT 13 FED COM

Well Number: 134H

gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing:

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30-day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed OP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachment:

Choke_Diagram_Attachment_20230829111131.pdf

BOP Diagram Attachment:

BOP_Diagram_Attachment_20230829111135.pdf

Well Name: WOMBAT 13 FED COM

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	26	20.0	NEW	API	N	0	310	0	310	3258	2948	310	J-55	94	ST&C	3.4	4.74	DRY	4.5	DRY	8.34
2	INTERMED IATE	17.5	13.375	NEW	API	N	0	769	0	769	3258	2489	769	J-55		OTHER - BTC	5.44	3.33	DRY	6.52	DRY	6.95
3		12.2 5	9.625	NEW	API	N	0	3162	0	3162	3258	96	3162	J-55		other - Btc	3.4	1.74	DRY	3.15	DRY	2.78
	PRODUCTI ON	8.75	5.5	NEW	NON API	N	0	9410	0	9410	3258	-6152	9410	р. 110		OTHER - GEOCONN	1.6	1.67	DRY	2.16	DRY	2.16
	PRODUCTI ON	7.87 5	5.5	NEW	NON API	N	9410	14097	9410	9410	-6152	-6152	4687	P- 110		OTHER - GEOCONN	1.6	1.67	DRY	2.16	DRY	2.16

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Casing_Assumptions_Worksheet_20230829111312.pdf$

Received by OCD: 8/12/2024 12:41:58 PM

Operator Name: COLGATE OPERATING LLC

Well Name: WOMBAT 13 FED COM

Well Number: 134H

Casing ID:	2	String	INTERMEDIATE
Inspection De	ocument:		
Spec Docum	ent:		
Tapered Strin	ng Spec:		
Cooling Doolo			-1-1
Casing Desig			
Casing_	Assumption:	s_Worksheet	_20230829111418.pdf
Casing ID:	3	String	INTERMEDIATE
Inspection De	ocument:		
Spec Docum	ent:		
Tapered Strir	ng Spec:		
Casing Desig	n Assumpti	ons and Wo	rksheet(s):
Casing_	Assumption	s_Worksheet	_20230829122218.pdf
Casing ID: 4	4	String	PRODUCTION
Inspection De		9	
•			
Spec Docum	ent:		
Connec	tion_Data_SI	heetGeoC	Conn_SCP_110RY_20230829122301.pdf
Tapered Strin	ig Spec:		
Casing Desig	n Assumpti	ons and Wo	rksheet(s):
Casing_	Design_Ass	umptions_202	230829122321.pdf

Well Name: WOMBAT 13 FED COM

Casing Attachments

Casing ID: 5 String PRODUCTION

Inspection Document:

Spec Document:

Connection_Data_Sheet___GeoConn_SC__P_110RY_20230829122417.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Assumptions_Worksheet_20230829122438.pdf

٦

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	0	0	0	0	0		N/A	N/A
SURFACE	Tail		0	310	530	1.34	14.8	710	50	CLASS C	ACCELERATOR
INTERMEDIATE	Lead		0	610	340	1.88	12.9	630	50	CLASS C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail		610	769	130	1.34	14.8	170	50	CLASS C	RETARDER
INTERMEDIATE	Lead		0	2520	600	1.88	12.9	1110	50	CLASS C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail		2520	3162	200	1.33	14.8	260	25	CLASS C	SALT
PRODUCTION	Lead		2662	8510	850	2.41	11.5	2030	40	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail		8510	1409 7	760	1.73	12.5	1300	25	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Lead		2662	8510	850	2.41	11.5	2030	40	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION Released to Imagin	Tail 1g: 9/3/2	2024 3:	8510 <i>04:26 1</i>	1409 7 M	760	1.73	12.5	1300	25	CLASS H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Well Name: WOMBAT 13 FED COM

Well Number: 134H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	
0	310	WATER-BASED MUD	8.6	9.5								
310	769	SALT SATURATED	10	10								
769	9410	OTHER : BRINE	9	10								
9410	1409 7	OIL-BASED MUD	9	10								

Well Name: WOMBAT 13 FED COM

Well Number: 134H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG, DIRECTIONAL SURVEY,

Coring operation description for the well: N/A.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4680

Anticipated Surface Pressure: 2702

Anticipated Bottom Hole Temperature(F): 146

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Colgate_H2S_Contingency_Plan_20200826124948.pdf

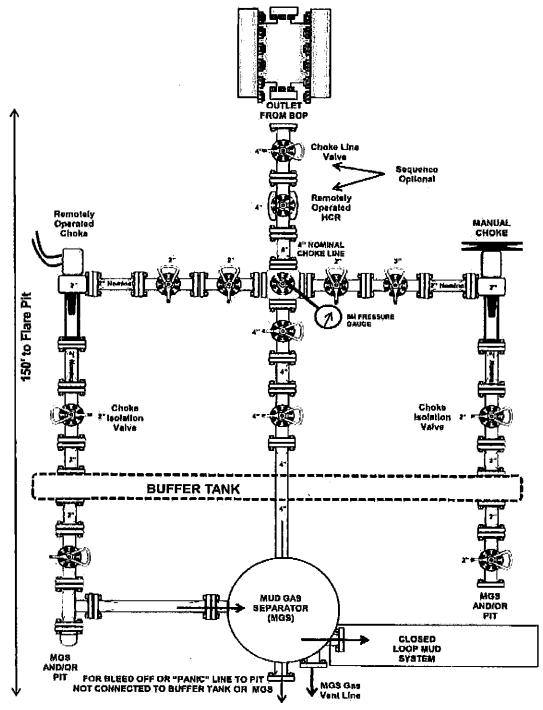
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

_B04__Wombat_13_Fed_134H_APD_Rev01_20220712093345.pdf

Other proposed operations facets description:

Please see attached Drilling Plan, including multi-bowl diagram and procedure, proposed WBD, and casing connection data sheet. We also plan to batch drill this well along with offline cementing, see details under variance request below. Permian Resources Operating, LLC requests to use a flex hose on H&P choke manifold for this well. The Flex Hose specifications are attached below.

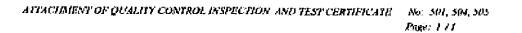

Other proposed operations facets attachment:

Wombat_13_Fed_134H_drilling_packet_20230829123332.pdf

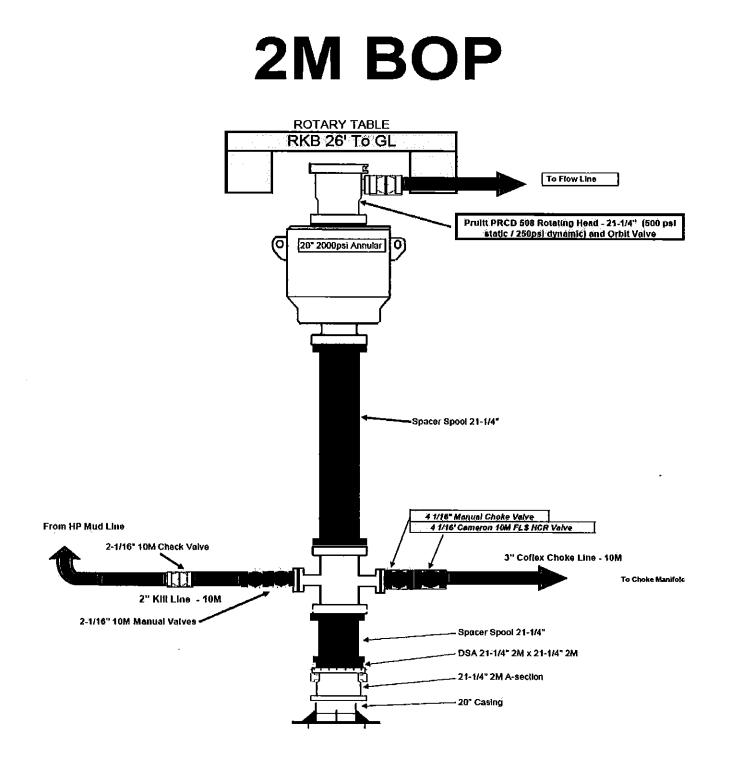
Other Variance attachment:

Flex_Hose_Specs_20230829123339.pdf Multi_Well_Pad_Batch_Drilling___Off_Line_Cement_Procedure_20230829123344.pdf

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)


CONTITECH RUBBER	No:QC-DB- 210/ 2014					
Industrial Kfi.	Page: 9/113					

ContiTech


QUA INSPECTION	LITY CON AND TES	ट्यमें, K	ł۰.	504				
hurchaser.	ConbTech I	E .	P.D. NA 4500409659					
CONTRECH ALUBRED, DIGAT N	Choke and	Kit Hoso	en onen stere in m					
HORE SERIAL Nº	67265	NOMINAL / ACTU	LENGTH:		10, 5 7 m	7 10,77 m	k / all (annu) dire a stall fall	
W.P. 68,9 MPa 1	0000 e#i	T⊓. 103,4 M	÷> 1600	j ¢≉	Dynaikwe	60	กปล.	
Ť 10-110-110 Ма		See attachment	. (1 þage	}				
<u></u>	-	Sand N.				Heale		
3° couding wit			9264	<u></u>	i 4 130	A0579		
4 17151 10K API b.w. FI	lango end			МŞ	14130	03560	្ត ទ	
Not Dealgred I	Por Well Ta	nting	<u> </u>		A	PI Spec 18	C.	
						oraluro rab	· .	
All methi parts and fitteries. WE GENTRY THAT THE ABOAT	E HOSE HAS DE	EN MANUFACTURED	IN ACCORDA	HCE WIT	II THE TERMS	OF THE ORDER	t	
Historic field Akis mission and in STATEWONT OF CONTINUM conducts and specifications of accordance with the information	Y. We hereby c live above Puxc landards, codos	certify theil the above t have Coder and that and garoffications and	errylegylarrau Iboso famalog meet (ho relow	i vogstigd uipment i ini excani	neie Abitratios	Inspected and (in beleas	
COÚNTRY OF CREDINGURANTRED								

na čeni pravni na tele pravni na tele pravni na sveni pravni klargani H držini Pra kar tele kongani, pravna na Pravna na pravni sveni sveni pravni na konga kar sveni pravna sveni pravna na kata na pravna na pravna na veni savan sveni Na sveni s

.

			Carlos Printipes
			eit 94 Hitting Hitting
	RU + 1003 nor () - Cid 221, 15 40 () - Cid 221, 15 40 ()		TIT
3	64 +1852 · 15 - 1	91 9 1	
1			
	64. [+365]. 85.() (24. [+21.36] *0.() 10. [+21.64 *1. 10. [+365]. 40.4		
	81. (11266) (17 2019) (17 100) (28 1 1031 1030 17 (17 10) 80 1 1031 1030 17 (17 10) 80 1 1031 1030 17 (17 10)		
ļ	m. +1864 har		
ĺ			
Ĩ	19785, coti+, corse-, 19785, coti+, corse-, Nations7209, sizast, to		nt ista
-			
ļ_			

5,000 psi BOP Schematic Flow line to pit ----> Rotating Head w/2" fill up line (0 Q 2" Fill up Line 5000# Annular Pre ٩T ПB **Blind Rams** 2 ∎ 6 13 5/8" 50 E ГВ Ð **Pipe Rams** 2" Kill line ----> 4" Choke line -Drig Spool Flex Hos 2" Valves 4" Valves Check Valve **Remotely Operated Valve**

.

al One Corp.	GEOCONN-S		Page		17 SeAH P110R			
Metal One	Pipe: SeAH P110RY S5%PBW (S Coupling: P110RY (SNY)		Date	95%RBW+SC-Cplg6.050 P110 3-Feb-21				
metai Qae			Rev_	3-	0			
	Connection Data	Sneet	Rev.	ļ,	U			
:	Geometry	lmpe	<u>eriat</u>	<u>s</u>	<u>.l.</u>			
	Pipe Body							
	Grade, 1.		A state - testinger	E RIJORY See	in and the second second			
	SMYS	110	ksi	110	ksi			
	Pipe OD (D)	5.600 MAR	AND A DECK	129.70				
GEOCONN-SC	Weight	17.00	ib/it	25.33	kg/m			
	Wall Thickness (1)	0.304	kersing In salah	- 7. 7 24.				
	Plpe ID (d)	4.892	iŋ	124.26	<u>mm</u>			
Wsc1	Drift Dia	4.767 👓	North Contraction	121.08	mn 🏎			
→ D	Connection							
	Coupling SMYS	110	kśi.	110	ksl			
	SG-Goupling-OD (W#61) restricts	······6.050 ·····	termen III.	inen 153.67 en en				
- a	Coupling Length (NL)	8.350	in	212.09	ຕາກ			
	Make up Loss	4 125	****CIA**	104.78	្វាល់ខ្ល			
	Pipe Critical Area	· 4,96	in ²	3,202	mm ²			
	Box Critical Area	6.10		937				
	Thread Taper	1 / 16 (3/4" per ft)						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number of Threads							
	Performance Properties for Plp	<u>imperial</u> e Body		<u>3</u>	<u></u>			
	3.MY.S. 1	546	kips .	2,428	KN			
	134 Z 32 ZD 44		(DS)	79.66				
	M.(.Y.P.,^1	11,550	- paj		MPa			
	Collepse Strength +1	7,480	19	51.69	MPa MPa			
	Collepse Strength *1 Note S.M.Y.S.= Specif	7,480 ied Minimum YIELD	pai Strength of Pipe t	. 51.59 ody				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minlm	7,480 ied Minimum YIELD um Internal Yield Pro	strength of Pipe t strength of Pipe too	. 51.59 ody				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minlm 71: SeAH P110RY 95%RBW: SMYS	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	strength of Pipe t strength of Pipe too	. 51.59 ody				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	psi Strength of Pipe to essure of Pipe boo psi	<u>51.69</u> ody V				
	Collepse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 11: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	psi Strength of Pipe t essure of Pipe boo psi 100%	51.59 ody V of S.M.Y.S.				
	Collepse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 11: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min. Compression Yield	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	B SI Strength of Pipe t essure of Pipe boo psi 100%	ody ody of S.M.Y.S. of S.M.Y.S.				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min. Compression Yield Internal Pressure	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	psi Strength of Pipe to assure of Pipe boo psi 100% 100% of M.I.Y.	51.59 ody 7 of S.M.Y.S. of S.M.Y.S. P.				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min. Compression Vield Internal Pressure External Pressure	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	psi Strength of Pipe to ssure of Pipe boo psi 100% 100% 100% of M.I.Y. 100% of Collap	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min. Compression Yield Internal Pressure	7,480 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550	psi Strength of Pipe to ssure of Pipe boo psi 100% 100% 100% of M.I.Y. 100% of Collap	51.59 ody 7 of S.M.Y.S. of S.M.Y.S. P.				
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Compression Joint Strength Min: Compression Yield Internal Pressure External Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	7,430 ied Minimum YIELD um Internal Yield Pro 110kal, MIYP11,550 panection	psi Strength of Pipe to assure of Pipe boo psi 100% 100% 100% of M.I.Y. 100% of Collap	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength 90	MP5			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim 71: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min: Connection Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min.	7,430 ied Minimum YIELD um Internal Yield Pro 110kel, MIYP11,550 panection 10,800	psi Strength of Pipe to essure of Pipe boo psi 100% 100% 100% of M.I.Y. 100% of Collap 54	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength 90	N-m			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. Minim Y1: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Min. Contension Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	10,800 12,000	psi Strength of Pipe to essure of Pipe boo psi 100% 100% 100% of Collap 54 ft-lb ft-lb	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength 90 14,600 16,200	N-m N-m			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. Minim Y1: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	7,490 ied Minimum YIELD um Internal Yield Pro 110kal, MIYP11,550 prinection 10,800 12,000 13,200	psi Strength of Pipe to essure of Pipe boo psi 100% 100% of MJ.Y 100% of Collap 100% of Collap 5 ft-lb ft-lb	51.69 ody Y of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600 16,200 17,800	N-m N-m N-m			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim Y1: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	7,490 ied Minimum YIELD um Internal Yield Pro 110kal, MIYP11,550 prinection 10,800 12,000 13,200 15,600	psi Strength of Pipe to assure of Pipe boo psi 100% 100% of M.I.Y. 100% of Collap 5 ft-lb ft-lb ft-lb	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength 90 14,600 16,200	N-m N-m			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. Minim Y1: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max.	7,490 ied Minimum YIELD um Internal Yield Pro 110kal, MIYP11,550 prinection 10,800 12,000 13,200 15,600	psi Strength of Pipe to assure of Pipe boo psi 100% 100% of M.I.Y. 100% of Collap 5 ft-lb ft-lb ft-lb	51.69 ody Y of S.M.Y.S. of S.M.Y.S. P se Strength 90 14,600 16,200 17,800	N-m N-m N-m			
	Collapse Strength 11 Note S.M.Y.S.= Specif M.I.Y.P. = Minim Y1: SeAH P110RY 95%RBW: SMYS Performance Properties for Co Min. Connection Joint Strength Max. DLS (deg. /100ft) Recommended Torque Min. Opti. Max. Operational Max.	7,430 ied Minimum YIELD um Internal Yield Pro 110kei, MIYP11,550 panection 10,800 12,000 13,200 15,600 n be applied for high to	gai Strength of Pipe to sesure of Pipe boo psi 100% 100% of M.I.Y. 100% of Collap 54 ft-lb ft-lb ft-lb ft-lb ft-lb	51.69 ody y of S.M.Y.S. of S.M.Y.S. P. se Strength 30 14,600 16,200 17,800 21,100	N-m N-m N-m N-m N-m			

Statements regarding the exitability of produces for optical hypes of applications are based on Metal One's innoveledge of hybrid requirements that are oben placed on Metal One products in standard well configurations. Such statements are not binding statements about the substitity of products for a particular application. If is the customer's responsibility to validate that a particular product with the product spectration is subside to use in a particular application are not binding statements about the substitity of products for a particular application. If is the customer's responsibility to validate that a particular application are not been and a subside of the product are product with the product and the product application in the product described in the product described in the product described in the product are not responsibility to validate that a particular application are not recommended for use in deep water offshore applications. For increation of the interval of the product are not responsibility to validate that are not recommended for use in deep water offshore applications. For increation of the product are not application and not applicate that the contents of which are increation of the product are into this Connection Data Sheet.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order (I.

Casing Design Assumptions:

<u>Surface</u>

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density,
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - (1) Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density,
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC:
 - b) Casing Pressure Test (Drilling)
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore OII and Gas Order No. 2 and NM NMAC 19,15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8,4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation,
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Permian Resources Casing Design Criteria

A sundry will be requested if any lesser grade or different size casing is substituted. All casing will be centralized as specified in On Shore Order II. Casing will be tested as specified in On Shore Order II.

Casing Design Assumptions:

Surface

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density,
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate I

- 1) Burst Design Loads
 - a) Displacement to Gas
 - (1) Internal: Assumes a full column of gas in the casing with a gas gradient of 0.7 psi/ft in the absence of better information. It is limited to the controlling pressure based on the maximum expected pore pressure within the next drilling interval.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.

- (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the TD of the next hole section and the fluid level falls to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Intermediate or Intermediate II

- 1) Burst Design Loads
 - a) Gas Kick Profile
 - (1) Internal: Load profile based on influx encountered in lateral portion of wellbore with a maximum influx volume of 150 bbl and a kick intensity of 1.5 ppg using maximum anticipated MW of 9.9 ppg.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
 - a) Cementing
 - (1) Internal: Displacement fluid density,
 - (2) External: Mud weight from TOC to surface and cement slurry weight from TOC to shoe.
 - b) Lost Returns with Mud Drop
 - (1) Internal: Lost circulation at the deepest TVD of the next hole section and the fluid level fails to a depth where the hydrostatic pressure of the mud column equals pore pressure at the depth of the lost circulation zone.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation.
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

Production

- 1) Burst Design Loads
 - a) Injection Down Casing
 - (1) Internal: Surface pressure plus Injection fluid gradient.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - b) Casing Pressure Test (Drilling)
 - (1) Internal: Displacement fluid plus surface pressure required to comply with regulatory casing test pressure requirements of Onshore Oil and Gas Order No. 2 and NM NMAC 19.15.16 of NMOCD regulations.
 - (2) External: Mud weight to TOC and cement mix water gradient (8.4 ppg) below TOC.
 - c) Casing Pressure Test (Production)
 - (1) Internal: The design pressure test should be the greater of the planned test pressure prior to simulation down the casing, the regulatory test pressure, and the expected gas lift system pressure. The design test fluid should be the fluid associated with the pressure test having the greatest pressure.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
 - d) Tubing Leak
 - (1) Internal: SITP plus a packer fluid gradient to the top of packer.
 - (2) External: Mud base-fluid density to top of cement and cement mix water gradient (8.4 ppg) below TOC.
- 2) Collapse Loads
- a) Cementing
 - (1) Internal: Displacement fluid density.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
 - b) Full Evacuation
 - (1) Internal: Full void pipe.
 - (2) External: Mud weight to TOC and cement slurry(s) density below TOC.
- 3) Tension Loads
 - a) Overpull Force
 - 1. Axial: Buoyant weight of the string plus planned 100,000 lbs applied in stuck pipe situation,
 - b) Green Cement Casing Test
 - 1. Axial: Buoyant weight of the string plus cement plug bump pressure load.

.

Permian Resources - Wombat 13 Fed 134H

1. Geologic Formations

Formation	Elevation	TVD	Lithology	Target
	3059	229	Sandstone	No
Top of Salt	2885	403	Salt	No
Tansill	2659	629	Anhydrite/Shale	No
Yates	2390	898	Anhydrile/Shale	No
Seven Rivers	2140	1148	Limestone	No
Capitan	2059	1229	Limestone	No
Delaware Sands	76	3212	Sandstone	No
Bone Spring Lime	-1995	5283	Limestone	No
1st Bone Spring Sand	-3460	6748	Sandstone/Limestone/Shale	No
2nd Bone Spring Sand	-4207	7495	Sandstone/Limestone/Shale	No
3rd Bone Spring Sand	-5374	8662	Sandstone/Limestone/Shale	Yes

2. Blowout Prevention

BOP Installed and tested before drilling	Size?	Min. Reguired WP	Туре		*	Tested to:	
			Anr	nular	х	1000 psi	
			Blind	Ram			
17.5	20"	2M	Pipe	Ram			
			Doubl	e Ram			
			Other*				
			Anr	Annular		2500 psi	
			Blind Ram		х	5000 psi	
12.25	13-5/8"	5M	Pipe Ram		х		
			Double Ram			ouuu psi	
			Other*				
			Anr	nular	x	2500 psi	
			Blind Ram		x		
8.75	13-5/8"	5M	Pipe Ram		х	5000 pai	
			Double Ram			5000 psi	
			Other*				

i.

Equipment: BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. All BOPE connections shall be flanged, welded or clamped. All choke lines shall be straight unless targeted with running tees or tee blocks are used, and choke lines shall be anchored to prevent whip and reduce vibrations. All valves in the choke line & the choke manifold shall be full opening as to not cause restrictions and to allow for straight fluid paths to minimize potential erosion. All gauges utilized in the well control system shall be of a type designed for drilling fluid service. A top drive inside BOP valve will be utilized at all times. Subs equipped with full opening valves sized to fit the drill pipe and collars will be available on the rig floor in the open position. The key to operate said valve equipped subs will be on the rig floor at all times. The accumulator system will have sufficient capacity to open the HCR and close all three sets of rams plus the annular preventer while retaining at least 300 psi above precharge on the closing manifold (accumulator system shall be capable of doing so without using the closing unit pumps). The fluid reservoir capacity will be double the usable fluid volume of the accumulator system capacity, and the fluid level will be maintained at the manufacturer's recommended level. Prior to connecting the closing unit to the BOP stack, an accumulator precharge pressure test shall be performed to ensure the precharge pressure is within 100 psi of the desired precharge pressure (only nitrogen gas will be used to precharge). Two independent power sources will be made available at all times to power the closing unit pumps so that the pumps can automatically start when the closing valve manifold pressure has decreased to the preset level. Closing unit pumps will be sized to allow opening of HCR and closing of annular preventer on 5" drill pipe achieving at least 200 psi above precharge pressure with the accumulator system isolated from service in less than two minutes. A valve shall be installed in the closing line as close to the annular preventer as possible to act as a locking device; the valve shall be maintained in the open position and shall be closed only when the power source for the accumulator system is inoperative. Remote controls capable of opening and closing all preventers & the HCR shall be readily accessible to the driller; master controls with the same capability will be operable at the accumulator. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing & isolation of the 133/8 x 95/8 annulus without breaking the connection between the BOP & wellhead to install an additional casing head. A wear bushing will be installed & inspected frequently to guard against internal wear to wellhead. VBRs (variablebore rams) will be run in upper rambody of BOP stack to provide redundancy to annular preventer while RIH w/ production casing;

Requesting Variance? YES

Variance request: Flex hose and offline cement variances, see attachments in section 8.

Testing Procedure: The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed b. whenever any seal subject to test pressure is broken c. following related repairs d. at 30 day intervals e. checked daily as to mechanical operating conditions. The ram type preventer(s) will be tested using a test plug to 250 psi (low) and 5,000 psi (high) (casinghead WP) with a test plug upon its installation onto the 13 surface casing. If a test plug is not used, the ram type preventer(s) shall be tested to 70% of the minimum internal yield pressure of the casing. The annular type preventer(s) shall be tested to 3500 psi. Pressure will be maintained for at least 10 minutes or until provisions of the test are met, whichever is longer. A Sundry Notice (Form 3160 5), along with a copy of the BOP test report, shall be submitted to the local BLM office within 5 working days following the test. If the bleed line is connected into the buffer tank (header), all BOP equipment including the buffer tank and associated valves will be rated at the required BOP pressure. The BLM office will be provided with a minimum of four (4) hours notice of BOP testing to allow witnessing. The BOP Configuration, choke manifold layout, and accumulator system, will be in compliance with Onshore Order 2 for a 5,000 psi system. A remote accumulator and a multi-bowl system will be used, please see attachment in section 8 for multi-bowl procedure. Pressures, capacities, and specific placement and use of the manual and/or hydraulic controls, accumulator controls, bleed lines, etc., will be identified at the time of the BLM 'witnessed BOP test. Any remote controls will be capable of both opening and closing all preventers and shall be readily accessible.

Choke Diagram Attachemnt: 5 M Choe Manifold BOP Diagram Attachment: BOP Schematic

3. Casing

String	Hole Size	Cæing Size	Top	Bottom	Top TVD	Bottom TVD	length	Gradė	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	26	20	0	310	0	310	310	J55	94	STC	3.40	4.74	Drγ	4.50	Dry	8.34
Intermediate 1	17.5	13.375	0	769	. 0	769	769	J55	40	BTC	5.44	3,33	Dry	6.52	Dry	6,95
Intermediate 2	12.25	9.625	0	3162	0	3162	3162	J55	40	втс	3,40	1.74	Dry	3.15	Dry	2.78
Production	8.75	5.5	0	9410	0	9410	9410	P110RY	17	GeoConn	1.60	1.67	Dry	2.16	Dry	2.16
Production	7,875	5,5	9410	140 97	9410	14097	4687	P110RY	17	GeoConn	1.60	1.67	Dry	2.16	Dry	2.16
								BLM Mi	n Safe	ty Factor	1.125	1		1,6		1.6

Non API casing spec sheets and casing design assumptions attached.

4. Cement

string	lieT/beal	Top:MD	Bottom MD	Quanity (sx)	Yield	Density	cu Ft	Dicess %	Cement Type	
Surface	Tall	0	310	530	1.34	14.8	710	50%	Class C	Accelerator
										EconoCem-HLC + 5% Salt +
Intermediate 1	Lead	0	610	340	1.88	12.9	630	50%	Class C	5% Kol-Seal
Intermediate 1	Tall	610	769	130	1.34	14.8	170	50%	Class C	Retarder
										EconoCem-HLC + 5% Salt +
Intermediate 2	Lead	0	2520	600	1.88	12.9	1110	50%	Class C	5% Kol-Seal
Intermediate 2	Tail	2520	3162	200	1.33	14.8	260	25%	Class C	Salt
										POZ, Extender, Fluid Loss,
Production	Lead	2662	8510	850	2.41	11,5	2030	40%	Class H	Dispersant, Retarder
										POZ, Extender, Fluid Loss,
Production	Tail	8510	14097	760	1,73	12,5	1300	25%	Class H	Dispersant, Retarder

If losses are encountered while drilling intermediate 2 a stage tool will be added and cement will be adjusted accordingly.

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate oter conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Cuttings Volume: 8070 Cu Ft

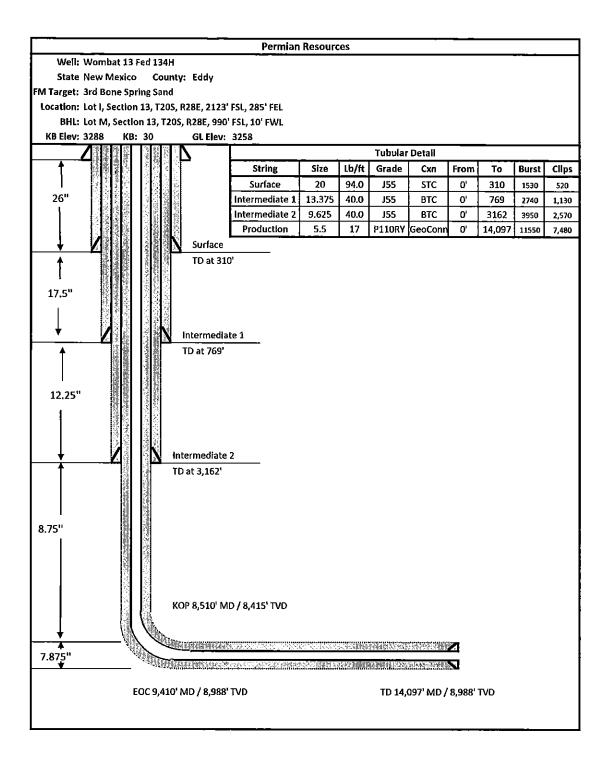
Circulating Medium Table

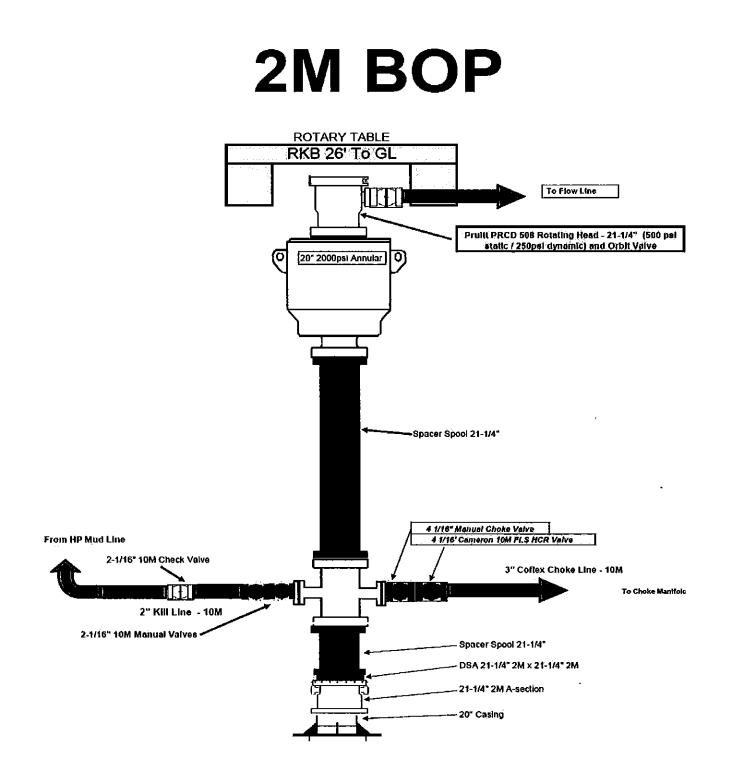
Top Depth	Bottom Depth.	Mud Type,	Min Weight	Max Weight
0	310	Water Based Mud	8.6	9.5
310	769	Salt Saturated	10	10
769	9410	Brine	9	10
9410	14097	ОВМ	9	10

6. Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: Will utilize MWD/LWD (Gamma Ray logging) from intermediate hole to TD of the well. List of open and cased hole logs run in the well: DIRECTIONAL SURVEY,GAMMA RAY LOG, Coring operation description for the well: N/A

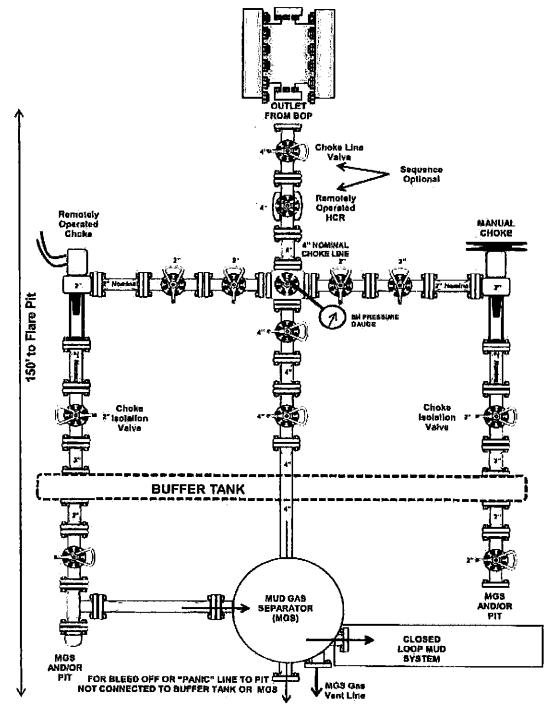
7. Pressure


· · · · · · · · · · · · · · · · · · ·		
Anticipated Bottom Hole Pressure	4680	psi
Anticipated Surface Pressure	2696	psi
Anticipated Bottom Hole Temperature	146	۴F
Anticipated Abnormal pressure, temp, or geo hazards	No	


8. Waste Management

Waste Type:	Drilling
Waste content description:	Fresh water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Weekly (after drilling all surfaces)
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Grey Water & Human Waste
Waste content description:	Grey Water/Human Waste
Amount of waste:	5000 gallons
Waste disposal frequency:	Weekly
Safe containment description:	Approved waste storage tanks with containment
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Garbage
Waste content description:	General trash/garbage
Amount of waste:	5000 lbs
Waste disposal frequency;	Weekly
Safe containment description:	Enclosed trash trailer
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Drill Cuttings
Amount of waste:	8070 Cu Ft
Waste disposal frequency:	Per well
Safe containment description:	Steel tanks
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Brine water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Monthly
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial

9. Other Information

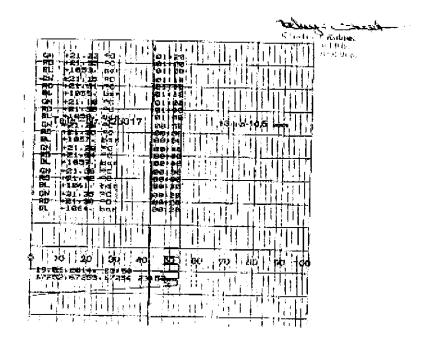

Well Plan and AC Report: attached Batching Drilling Procedure: attached WBD: attached Flex Hose Specs: attached Offline Cementing Procedure Attached:

5,000 psi BOP Schematic Flow line to plt ----> Rotating Head w/2" fill up line 0 Q 2" Fill up Line 5000# Annular Pre ളി Ľ **FB Blind Rams** Ξ E E 13 5/8" 50 Þ **Pipe Rams** 2" Kill line ----> 4" Choke line ---Drig Spool Flex Hos 2" Valves 4" Valves **Check Valve Remotely Operated Valve**

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

.

Om		nen	14	Å.
----	--	-----	----	----


ONTITECH RUBBER	No:OC-DB- 210/ 2014
Industriei Kit.	Page: 9/113
14 93 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13 64 13	Page: 91113

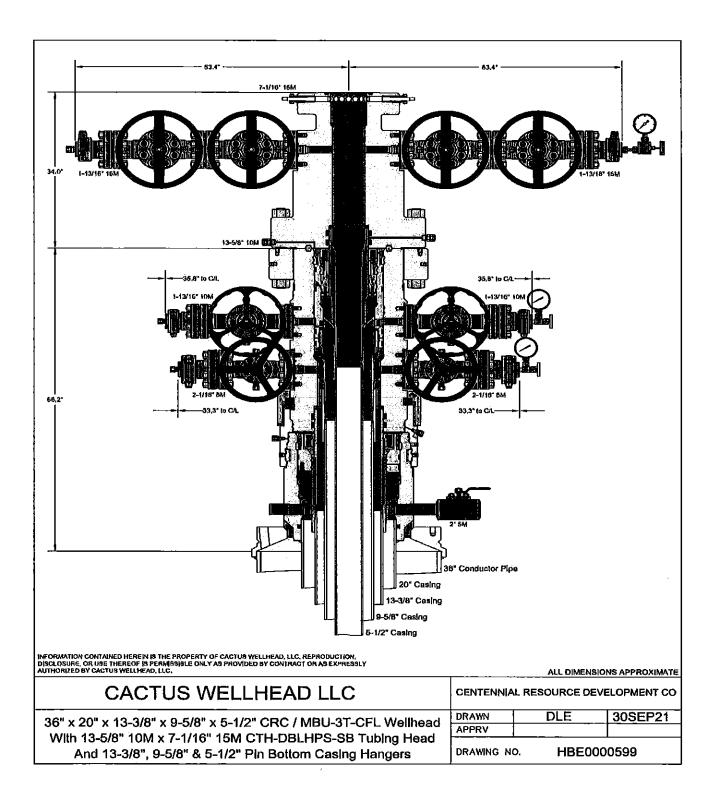
Contituch

QUA INSPECTION	LITY CON AND TES	CERT. I	4×	504			
Purchaser.	Contileon	orp.	₽,DUNA		4500409659		
CONTRECT ALLBOER OF AT N	·, 538236	HORE TYPE	á, 'U		Choka and	I KM Hose	
HOBE SERIAL Nº	67265	MOMINAL / ACT	IUAL LENGTH	:	10,67 m	1 10,77 m	
WP 68,8 MPs 16	164 CODO	<u>ज</u> ∩. 103,4	MP# 160	30 F#	Dimikin	Ġΰ	mia.
Ť∵10-йила⊐ 10 мил		See attachme	ont. (1 page	• >			
> 10 mm = 20 M ^p ; CO∐P≿ING6 Ty	-	Sonal			lusty	Heal A	J
ilw onliquia "S		9261	9261		SI 4 130	,ACI5784	Na committe
4 1/16" 10K API b.w. FI	ango end			AB	514130	035604	B
Not Designed I	Por Well Te			•	 Al	Pi Spoc 16 (C
· · · · · · · · · · · · · · · · · · ·		.			Temp	erature rat	₽¦ " ₿"
<u>All methi parts are flow'ess.</u> WE GERTIFY THAT THE ABOW					H THE TERMA	OF THE ORDER	t i
Historic Teb And Pressulent 1 STATEMENT OF CONFCHINT conducts and specifications of accordance with the referenced a	⁶ . We hareby the above Plus landards, codes	certify (he) the observations of the observation of	e dama ne vierna lat libere Pernaks ne meet ihe reiz	vi eugepiae quiprosit Vant atocep	neie fabricate:	i inspected and 6	ested in
COUNTRY OF CRIQUE HUNDARY, EU Date: Inspector Cuulty Convoc 20. March 2014.					at is to the Ender off? Auxility Cont Contractions Auxility Cont Cont	vilart ∦ –	<u> </u>

i

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No. 500, 505 Direct 1.11

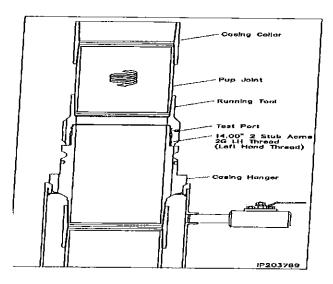
.



	No:QC-DB- 210/ 2014			
Industrial Kfi	Page:	15/113		
·····	Contille	ich		

Hose Data Sheet

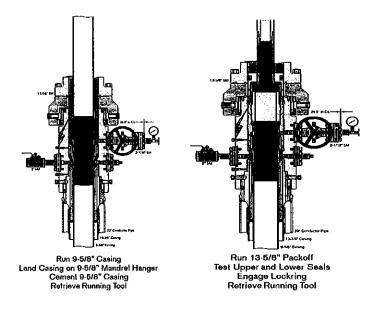
CRI Order No.	538236
Castomer	CantilTech Oi & Marine Corp.
Customer Order No	4500409859
ltem No.	ит вост на описа са на
Нояа Тура	Fiewible Hose
Standard	API SPEC 16 C
inside die in actuse	3
Length	35 R
Type of couping one end	FLANGE 4 1/16* 10K API SPEC 6A TYPE 68X FLANGE (JAV 8X156 R.GR SOUR
Type of coupling other and	FLANGE 4.1/10" 10K API SPEC 6A TYPE 6BX FLANGE CAV BX155 R.GR.SQUR
12S service NACE MR0175	Yas
Working Pressure	10 000 psi
Design Prezeure	10 000 per
Тем Ревение	15 000 pel
Sulety Factor	2.25
Mersing	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Oxneide protection	Si.aléel cover wap
internal strippiounal kina	
Linéragi	OIL + GAS RESISTANT SOUR
Salely clamp	No
Umng collar	ND
Element C	Np.
Sefety chain	No
Safety wire ropa	NJ
Mex.design temperature ["C]	100
Min.design tompore).ue (*C)	-20
Min Band Redius operating Imt	0,60
Men. Band Radius storage (m)	<u>(), 60</u>
Efectrices continuity	The Hose is electrically continuous
Type of poolong	WOODEN GRATE ISPIA-15


Printed: TRETECHIDGsontosG (2014.03.5015:32.17

Permian Resources Multi-Well Pad Batch Drilling & Off Line Cement Procedure

<u>20" Surface Casing</u> - PR intends to Batch set and offline cement all 20" casing to a depth approved in the APD. 24" Surface Holes will be batch drilled by a big rig. Appropriate notifications will be made prior to spudding the well, running, and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 24" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run casing with Cactus Multibowl system, with 32" baseplate supported by both 30" Conductor.
- 3. Circulate 1.5 csg capacity.
- 4. Flow test Confirm well is static.
- 5. Install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test Surface casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.



<u>Intermediate 1 Casing</u> – PR intends to Batch set all intermediate 1 casing strings to a depth approved in the APD, typically set into end of salts. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

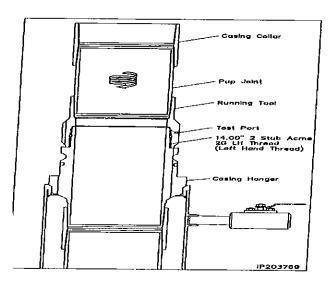
Rig will remove the nightcap and install and test BOPE (testing will be performed on the first intermediate 1 as per requested break testing variance).

Install wear bushing then drill out 20" shoe-track.

- 1. Drill 17.5" Intermediate 1 hole to approved casing point. Trip out of hole with BHA to run Casing.
- 2. Remove wear bushing then run and land Intermediate 13 3/8" 54.5# J-55 BTC casing with mandrel hanger in wellhead.
- 3. Flow test Confirm well is static.
- 4. Set Annular packoff and pressure test. Test to 5k.
- 5. Install BPV, Nipple down BOP and install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.

<u>Intermediate 2 Casing</u> – PR intends to Batch set all intermediate 2 casing strings to a depth approved in the APD, typically set into Captain past losses. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE (testing will be performed on the first intermediate 2 as per requested break testing variance).
- 2. Install wear bushing then drill out 13-3/8" shoe-track.
- 3. Drill Intermediate 12.25" hole to approved casing point. Trip out of hole with BHA to run Casing.
- 4. Remove wear bushing then run and land Intermediate 9.625" 40# J-55 BTC casing with mandrel hanger in wellhead.
- 5. Flow test Confirm well is static.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Install BPV, Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 16. Rig down cementers and equipment
- 17. Install night cap with pressure gauge to monitor.

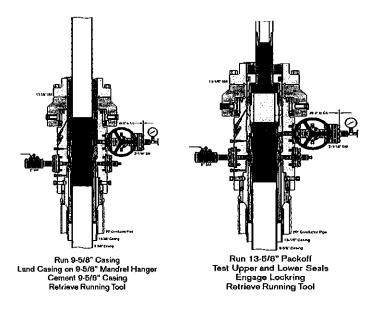

<u>Production Casing</u> – PR intends to Batch set all Production casings. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track.
- 3. 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string to surface with floats holding.

Permian Resources Multi-Well Pad Batch Drilling & Off Line Cement Procedure

<u>20" Surface Casing</u> - PR intends to Batch set and offline cement all 20" casing to a depth approved in the APD. 24" Surface Holes will be batch drilled by a big rig. Appropriate notifications will be made prior to spudding the well, running, and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill 24" Surface hole to Approved Depth with Surface Preset Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run casing with Cactus Multibowl system, with 32" baseplate supported by both 30" Conductor.
- 3. Circulate 1.5 csg capacity.
- 4. Flow test Confirm well is static.
- 5. Install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test Surface casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.



<u>Intermediate 1 Casing</u> – PR intends to Batch set all intermediate 1 casing strings to a depth approved in the APD, typically set into end of salts. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

Rig will remove the nightcap and install and test BOPE (testing will be performed on the first intermediate 1 as per requested break testing variance).

Install wear bushing then drill out 20" shoe-track.

- 1. Drill 17.5" Intermediate 1 hole to approved casing point. Trip out of hole with BHA to run Casing.
- 2. Remove wear bushing then run and land Intermediate 13 3/8" 54.5# J-55 BTC casing with mandrel hanger in wellhead.
- 3. Flow test Confirm well is static.
- 4. Set Annular packoff and pressure test. Test to 5k.
- 5. Install BPV, Nipple down BOP and install cap flange.
- 6. Skid rig to next well on pad
- 7. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 8. Install offline cement tool.
- 9. Rig up cementers.
- 10. Circulate bottoms up with cement truck
- 11. Commence planned cement job, take returns through the annulus wellhead valve
- 12. After plug is bumped confirm floats hold and well is static
- 13. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 14. Rig down cementers and equipment
- 15. Install night cap with pressure gauge to monitor.

<u>Intermediate 2 Casing</u> – PR intends to Batch set all intermediate 2 casing strings to a depth approved in the APD, typically set into Captain past losses. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE (testing will be performed on the first intermediate 2 as per requested break testing variance).
- 2. Install wear bushing then drill out 13-3/8" shoe-track.
- 3. Drill Intermediate 12.25" hole to approved casing point. Trip out of hole with BHA to run Casing.
- 4. Remove wear bushing then run and land Intermediate 9.625" 40# J-55 BTC casing with mandrel hanger in wellhead.
- 5. Flow test Confirm well is static.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Install BPV, Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Perform green cement casing test.
 - a) Test casing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst.
- 16. Rig down cementers and equipment
- 17. Install night cap with pressure gauge to monitor.

<u>Production Casing</u> – PR intends to Batch set all Production casings. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track.
- 3. 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run 5-1/2" Production Casing.
- 6. Remove wear bushing then run 5-1/2" production casing to TD landing casing mandrel in wellhead.
- 7. Cement 5-1/2" Production string to surface with floats holding.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

Colgate Operating LLC Wombat 13 Fed Com 134H Sec 13-20S-28E-NMP
Eddy County, New Mexico 🔽

Previously known as _____. Changes approved through engineering via Sundry _____ on _____. Any previous COAs not addressed within the updated COAs still apply.

COA

H ₂ S	С.	No	r Yes			
Potash / WIPP	None Secretary		C R-111-Q	「 Open Annulus 「 WIPP		
Cave / Karst	C Low	C Medium	r High	Critical		
Wellhead	Conventional	Multibowl	C Both	C Diverter		
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	EchoMeter	□ DV Tool		
Special Req	Capitan Reef	☐ Water Disposal	COM	Unit		
Waste Prev.	✓ Self-Certification	C Waste Min. Plan	• APD Submitted p	prior to 06/10/2024		
Additional Language		☐ Casing Clearance ☐ Offline Cementing	✓ Pilot Hole ✓ Fluid-Filled	☐ Break Testing		

Break testing is not approved on this well. BOP description and procedure request break testing, but the appropriate documents were not attached. Must sundry if operator wishes break testing to be approved.

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Brushy Canyon and Cherry Canyon** formation. As a result, the Hydrogen Sulfide area must meet all requirements from 43 CFR 3176, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 20 inch surface casing shall be set at approximately 310 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be

Page 1 of 8

notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 pounds compressive strength</u>, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 13-3/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
 - Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to freshwater mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top or 200 feet into the previous casing, whichever is greater. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Page 2 of 8

• Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the</u> <u>Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; BLM NM CFO DrillingNotifications@BLM.GOV; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

 Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Page 4 of 8

- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

Page 5 of 8

requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

open. (only applies to single stage cement jobs, prior to the cement setting up.)

- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

Page 7 of 8

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

 $\overline{\mathbf{COLGATE}}_{E \ N \ E \ R \ G \ Y}$

Colgate Energy

(Permit) Eddy County, NM (83-NME) (Permit) Wombat 13 Fed (B04) Wombat 13 Fed 134H - Slot (B04) Wombat 134H

Permit

Plan: APD-Rev01

Standard Planning Report

11 July, 2022

Received by OCD: 8/12/2024 12:41:58 PM

				Planning Re	port					
atabase:	EDM 5000.14 Single User Db			Local Co-	Local Co-ordinate Reference:) Wombat 13 134H	Fed 134H - S	lot (B04)
Company:	Colgate Energy		TVD Refer	ence:		3258+30	@ 3288.00us	sft		
roject:		y County, NM (8	33-NME)	MD Refere	nce:			@ 3288,00us	ift	
lite:	(Permit) Won			North Refe			Grid	. .		
Vell: Vell:	(B04) Womba Permit	al 13 Fed 134H		Survey Ça	liculation Met	thod:	Minimum	Curvature		
Vellbore: Jesign:	APD-Rev01									
Project	(Permit) Eddy	County, NM (8	3-NME)					·		-
	US State Plane North American New Mexico Ea	Datum 1983		System Dat	um:		Mean Sea I	evel		
Site	(Permit) Wom	bal 13 Fed								
Site Position:			Northing:	573.4	844.83 usft	Latitude				32.5773790
From:	Мар		Easting:		934.08 usft	Longitud	-			-104.1236246
Position Uncertainty:	b	0.00 usft	Slot Radlus:		3-3/16 "					
Vell	(B04) Wombal	t 13 Fed 134H -	Slot (B04) Wombal	134H						r
Nell Position	+N/-S	0.00 usft	Northing:	· · · ·	571,924.46	6 usft	Latitude:			32.572099
	+E/-W	0.00 usft	Easting:		606,092.03		Longitude:			-104.1231242
Position Uncertainty		0.00 usft	Wellhead Elev	ation:		usft	Ground Lev	el:		3,258.00 u
Grld Convergence:		0.11 °								
Wellbore	Permil	· .								
Magnetics	Model Na	ime	Sample Date	Declina (°)	tion		Dip Angle (°)		Fleid Streng (nT)	th
· · ·	IGI	RF2020	5/18/2022		6.72		6	0.10	47,547.44	385990
Design	APD-Rev01			· · ·						
Audit Notes:								•		
Version:			Phase:	PLAN	T1	le On Dept	h:	0.00		
Vertical Section:			rom (TVD)	+N/-S		E/-W		Direction	· · · · ·	
			16ft) 1.00	(usft) 0.00		usft) 0.00	· · · ·	(°) 270.57		
Plan Survey Tool Pro	gram	Date 7/11/2	2022	······································						
Depth From (usft)	Depth To (usft)	Survey (Wellb	ore)	Tool Name	: .: .	Remai	rks			n Santa Santa Santa
1 0.00	and the second second	APD-Rev01 (P		MWD+IFR1+8	AG+FDIR (S		na in	· . · . · .		e e tra de

EDM 5000,14 Single User Db

(Permit) Wombat 13 Fed

(B04) Wombat 13 Fed 134H

(Permit) Eddy County, NM (83-NME)

Colgate Energy

Permit

APD-Rev01

\frown		_					_
	C	C	L(G.	Ά	ГE	
Ľ	E	Ν	Ł	R	G	Y	-

Planning Report

Local Co-ofulitate Reference,	
TVD Reference:	
MD Reference:	
North Reference:	
Survey Calculation Method:	

Local Co.ordinate Reference:

Well (B04) Wombat 13 Fed 134H - Slot (B04) Wombat 134H 3258+30 @ 3288.00usft 3258+30 @ 3288.00usft Grid Minimum Curvature

Plan Sections

Database:

Company:

Project:

Wellbore:

Design:

Site:

Well:

Measured Deptin (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-8 (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,547.28	9.71	169.89	1,544.19	-53.86	9.60	1.50	1.50	0.00	169.89	
7,747.72	9.71	169.89	7,655.81	-1,083.32	193.17	0.00	0.00	0.00	0.00	
8,395.00	0.00	0.00	8,300.00	-1,137.18	202.77	1.50	-1.50	0.00	180.00	
8,510.04	0.00	0.00	8,415.04	-1,137.18	202.77	0.00	0.00	0.00	0.00	
9,410.04	90.00	270.57	8,988.00	-1,131.48	-370.16	10.00	10.00	-9.94	270.57	
14.097.72	90.00	270.57	8,988.00	-1,084.86	-5.057.61	0.00	0.00	0.00	0.00	03-PBHL(Wo-134H)

Received by OCD: 8/12/2024 12:41:58 PM

		Planning Report	
Database:	EDM 5000.14 Single User Db	Local Co-ordinate Reference:	Well (B04) Wombat 13 Fed 134H - Slot (B04) Wombat 134H
Company:	Colgale Energy	TVD Reference:	3258+30 @ 3288.00usft
Project:	(Permit) Eddy County, NM (83-NME)	MD Reference:	3258+30 @ 3288.00usft
Site:	(Permit) Wombat 13 Fed	North Reference:	Grid
Well:	(804) Wombat 13 Fed 134H	Survey Calculation Method:	Minimum Curvature
Wellbore;	Permit		
Design:	APD-Rev01		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	Azimutn (°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(*100usft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
229.00	0.00	0.00	229.00	0.00	0.00	0.00	0.00	0.00	0.00
Rustler									
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
403.00	0.00	0.00	403.00	0.00	0.00	0.00	0.00	0.00	0.00
T/Sait									
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
629.00	0.00	0.00	629.00	0.00	0.00	0.00	0.00	0.00	0.00
Tansill									
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
898.00	0.00	0.00	898.00	0.00	0.00	0.00	0.00	0.00	0.00
Yates									
900,00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	1.50	169.89	999.99	-1.29	0.23	-0.24	1.50	1.50	0.00
1,100.00	3.00	169.89	1.099.91	-5.15	0.92	-0.97	1.50	1.50	0.00
1,148.17	3.72	169.89	1,148.00	-7.93	1.41	-1.49	1.50	1.50	0.00
Seven Rivers		100.00	1,110.00	1.00					
1,200.00	4.50	169.89	1,199.69	-11.59	2.07	-2,18	1.50	1.50	0.00
1,229.41	4.94	169.89	1,229.00	-13.97	2.49	-2.63	1.50	1.50	0.00
Capitan	1.01	100.00	1,220.00	10.01	2110	4,000			
1,300.00	6.00	169.89	1,299.27	-20.60	3.67	-3.88	1.50	1.50	0.00
			•						
1,400.00	7.50	169.89	1,398.57	-32.17	5.74	-6.06	1.50	1.50	0.00
1,500.00	9.00	169.89	1,497.54	-46.30	8.26	-8.72	1.50	1.50	0.00
1,547.28	9.71	169.89	1,544.19	-53.86	9.60	-10.14	1.50	1.50	0.00
1,600.00	9.71	169.89	1,596.15	-62.62	11.16	-11.79	0.00	0.00	0.00
1,700.00	9.71	169.89	1,694.72	-79.22	14.13	-14.91	0.00	0.00	0.00
1,800.00	9.71	169.89	1,793.29	-95.82	17.09	-18.04	0.00	0.00	0.00
1,900.00	9.71	169.89	1,891.85	-112.42	20.05	-21.16	0.00	0.00	0.00
2,000.00	9.71	169.89	1,990.42	-129.03	23.01	-24.29	0.00	0.00	0.00
2,100.00	9.71	169.89	2,088.99	-145.63	25.97	-27.41	0.00	0.00	0.00
2,200.00	9.71	169.89	2,187.56	-162.23	28.93	-30.54	0.00	0.00	0.00
2,300.00	9.71	169.89	2,286.12	-178.84	31.89	-33.67	0.00	0.00	0.00
2,400.00	9.71	169.89	2,384.69	-195.44	34.85	-36.79	0.00	0.00	0.00
2,500.00	9,71	169.89	2,483.26	-212.04	37.81	-39.92	0.00	0.00	0.00
2,600.00	9.71	169.89	2,581.83	-228.64	40.77	-43.04	0.00	0.00	0.00
2,700.00	9.71	169.89	2,680.40	-245.25	43.73	-46.17	0.00	0.00	0.00
2,800.00	9.71	169.89	2,778.96	-261.85	46.69	-49.29	0.00	0.00	0.00
2,900.00	9.71	169.89	2,877.53	-278.45	49.65	-52.42	0.00	0.00	0.00
3,000.00	9.71	169.89	2,976.10	-295.06	52.61	-55.54	0.00	0.00	0.00
3,100.00	9.71	169.89	3,074.67	-311.66	55.57	-58.67	0.00	0.00	0.00
3,200.00	9.71	169.89	3,173.23	-328.26	58.53	-61.80	0.00	0.00	0.00
3,239.33	9.71	169.89	3,212.00	-334.79	59.70	-63.02	0.00	0.00	0.00
CYCN									
3,300.00	9.71	169.89	3,271.80	-344.87	61.49	-64.92	0.00	0.00	0.00
3,400.00	9.71	169.89	3,370.37	-361.47	64.45	-68.05	0.00	0.00	0.00
3,500.00	9.71	169.89	3,468.94	-378.07	67.41	-71.17	0.00	0.00	0.00
3,600.00	9.71	169.89	3,567.50	-394.67	70.37	-74.30	0.00	0.00	0.00

7/11/2022 8:49:09AM

Received by OCD: 8/12/2024 12:41:58 PM

,

(E	\overline{C}	C	L	<u>J</u> .	Α	ΓЕ	-
\mathbf{L}	E	Ν	E	R	G	¥	-

Planning Report

Database:	EDM 5000.14 Single User Db	Local Co-ordinate Reference:	Well (B04) Wombat 13 Fed 134H - Slot (B04) Wombat 134H
company:	Colgate Energy	TVD Reference;	3258+30 @ 3288.00usft
Project:	(Permit) Eddy County, NM (83-NME)	MD Reference:	3258+30 @ 3288.00usft
lte:	(Permit) Wombat 13 Fed	North Reference:	Grid
/ell:	(B04) Wombat 13 Fed 134H	Survey Calculation Method:	Minimum Curvature
ellbore:	Permit	7 ·	
esign:	APD-Rev01	· · · · · ·	

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Verticel Depih (usft)	+N/-S (usfl)	+E/-W (usfl)	Vertical Section (usft)	Dogleg Rate (*/100usft)	Bulld Rate (°/100usft)	Turn Rate (%100usft)
	3,700.00	9.71	169.89	3,666.07	-411.28	73.33	-77.42	0.00	0.00	0.00
	3,800.00	9.71	169.89	3,764.64	-427.88	76.30	-80.55	0.00	0.00	0.00
	3,900.00	9.71	169.89	3,863.21	-444.48	79.26	-83.67	0.00	0.00	0.00
	4,000.00	9.71	169.89	•	-461.09	82.22	-86.80	0.00	0.00	
				3,961.77						0.00
	4,100.00	9.71	169.89	4,060.34	-477.69	85.18	-89.92	0.00	0.00	0.00
	4,200.00	9.71	169.89	4,158.91	-494.29	88.14	-93.05	0.00	0.00	0.00
	4,300.00	9.71	169.89	4,257.48	-510.89	91.10	-96.18	0.00	0.00	0.00
	4,400.00	9.71	169.89	4,356.05	-527.50	94.06	-99.30	0.00	0.00	0.00
	4,500.00	9.71	169.89	4,454.61	-544.10	97.02	-102.43	0.00	0.00	0.00
	4,600.00	9.71	169.89	4,553.18	-560.70	99.98	-105.55	0.00	0.00	0.00
	4,700.00	9.71	169.89	4,651.75	-577.31	102.94	-108.68	0.00	0.00	0.00
	4,800.00	9.71	169.89	4,750.32	-593.91	105.90	-111.80	0.00	0.00	0.00
	4,900.00	9.71	169.89	4,848.88	-610.51	108.86	-114.93	0.00	0.00	0.00
	5,000.00	9.71	169.89	4,947.45	-627.12	111.82	-118.05	0.00	0.00	0.00
	5,100.00	9.71	169.89	5,046.02	-643.72	114.78	-121.18	0.00	0.00	0.00
	5,200.00	9.71	169.89	5,144.59	-660.32	117.74	-124.30	0.00	0.00	0.00
	5,300.00	9.71	169.89	5,243.15	-676.92	120.70	-127.43	0.00	0.00	0.00
	5,340.43	9.71	169.89	5,283.00	-683.64	121.90	-128.69	0.00	0.00	0.00
	BSGL			-1						
	5,400.00	9.71	169.89	5,341.72	-693.53	123.66	-130.56	0.00	0.00	0.00
	5,500.00	9.71	169.89	5,440.29	-710.13	126.62	-133.68	0.00	0.00	0.00
	5,600.00	9.71	169.89	5,538.86	-726.73	129.58	-136.81	0.00	0.00	0.00
	5,700.00	9.71	169.89	5,637,42	-743.34	132.54	-139.93	0.00	0.00	0.00
	5,800.00	9.71	169.89	5,735.99	-759,94	135.50	-143.06	0.00	0.00	0.00
	5,900.00 6,000.00	9.71 9.71	169.89 169.89	5,834,56 5,933,13	-776.54 -793.14	138.46 141.43	-146.18 -149.31	0.00 0.00	0.00 0.00	0.00 0.00
	-									
	6,100.00	9.71	169.89	6,031.70	-809.75	144.39	-152.43	0.00	0.00	0.00
	6,200.00	9.71	169.89	6,130.26	-826.35	147.35	-155.56	0.00	0.00	0.00
	6,300.00	9.71	169.89	6,228.83	-842.95	150.31	-158.69	0.00	0.00	0.00
	6,400.00	9.71	169.89	6,327.40	-859.56	153.27	-161.81	0.00	0.00	0.00
	6,500.00	9.71	169.89	6,425.97	-876.16	156.23	-164.94	0.00	0.00	0.00
	6,600.00	9.71	169.89	6,524.53	-892.76	159.19	-168.06	0.00	0.00	0.00
	6,700.00	9.71	169,89	6,623.10	-909,37	162,15	-171.19	0.00	0.00	0.00
	6,800,00	9.71	169,89	6,721.67	-925,97	165,11	-174.31	0.00	0.00	0.00
	6,806,42	9.71	169.89	6,728.00	-927.03	165.30	-174.51	0.00	0.00	0.00
	FBSG									
	6,900.00	9.71	169.89	6,820.24	-942.57	168.07	-177.44	0.00	0.00	0.00
	7,000.00	9.71	169.89	6,918.80	-959.17	171.03	-180.56	0.00	0.00	0.00
	7,100.00	9.71	169.89	7,017.37	-975.78	173.99	-183.69	0.00	0.00	0.00
	7,200.00	9.71	169.89	7,115.94	-992.38	176.95	-186.81	0.00	0.00	0.00
	7,300.00	9.71	169.89	7,214.51	-1,008.98	179.91	-189.94	0.00	0.00	0.00
	7,400.00	9.71	169.89	7,313.07	-1,025.59	182.87	-193.07	0.00	0.00	0.00
	7,500.00	9.71	169.89	7,411.64	-1,042.19	185.83	-196.19	0.00	0.00	0.00
	7,584.57	9.71	169.89	7,495.00	-1,056.23	188.34	-198.83	0.00	0.00	0.00
	SBSG	0.71	100.00	1,400.00	1,000.20	100.04	100.00	0.00	0.00	0.00
	7,600.00	9.71	169.89	7,510.21	-1,058.79	188.79	-199.32	0.00	0.00	0.00
1	7,700.00	9.71	169.89	7,608.78	-1,075.39	191.75	-202.44	0.00	0.00	0.00
1	7,747.72	9.71	169.89	7,655.81	-1,075.39	191.75	-202.44	0.00	0.00	0.00
+	7,800.00	8.92	169.89	7,707.40	-1,091.65	194.65	-205.50	1.50	-1.50	0.00
1	7,800.00	8.92 7.42	169.89	7,707.40	-1,091.65 -1,105.65	194.65 197.15	-205.50 -208.14	1.50	-1.50 -1.50	0.00
	8,000.00	5.92	169.89	7,905.70	-1,117.09	199.19 200.77	-210.29	1.50	-1.50	0.00
	8,100.00	4.42	169.89	8,005.29	-1,125.97	200.77	-211.96	1.50	-1.50	0.00
	8,200.00	2.92	169.89	8,105.08	-1,132.28	201.90	-213.15	1.50	-1.50	0.00

7/11/2022 8:49:09AM

((г	7 7	C	ō	L	G	A'	Γ	Ē						
	T		E	Ν	E	R	G	Y							
		. •						. •			÷			÷.,	

Planning Report

Database:	EDM 5000.14 Single User Db	Local Co-ordinate Reference:	Well (B04) Wombat 13 Fed 134H - Slot (B04) Wombat 134H
Company:	Colgale Energy	TVD Reference:	3258+30 @ 3288.00usft
Project:	(Permit) Eddy County, NM (83-NME)	MD Reference:	3258+30 @ 3288.00usft
Site:	(Permit) Wombat 13 Fed	North Reference:	Grid
Vell:	(B04) Wombat 13 Fed 134H	Survey Calculation Method:	Minimum Curvature
Vellbore:	Permil	- · · · ·	
Design:	APD-Rev01		

Planned Survey

Depth Instruction Azimuth Depth +N-S +E/W Section Rate Rate Rate 0.410 (1) (1) (104) (1	Measured			Vertical			Vertical	Dogleg	Bulld	Turn
8,300,00 142 168,88 8,206,01 1,135,62 202,39 213,85 1,50 -1,50 0,00 8,305,00 0.00 0.00 8,305,00 -1,137,18 202,77 214,07 1,50 -1,50 0.00							the second s			
0.355.00 0.00	(usit)		\mathbf{O}	land	(usit)	(usit)	(asit)	(/ loodaly	(moodony	(neodony
4,400.00 0.00 4,305.00 -1,137.18 202,77 -214.47 0.00 0.00 0.00 8,510.04 0.00 0.00 8,415.04 -1,137.18 202,77 -214.07 0.00 0.00 0.00 8,510.04 0.00 270.57 8,454.97 -1,137.18 202,77 -214.07 0.00 0.00 0.00 8,550.00 4.00 270.57 8,554.63 -1,137.11 155.72 -270.58 10.00 10.00 0.00 8,650.00 14.00 270.57 8,556.64 -1,136.87 173.33 164.55 10.00 10.00 0.00 8,650.00 14.00 270.57 8,652.00 -1,136.87 171.57 -168.55 10.00 10.00 0.00 8,750.00 24.00 270.57 8,652.76 -1,136.62 164.55 10.00 10.00 0.00 9,690.00 34.00 270.57 8,613.02 -1,135.54 42.00 -53.25 10.00 10.00 0.00	8,300.00) 1.42	169.89	8,205.01	-1,136.02	202.56	-213.85	1.50	-1.50	0.00
8,800.00 0.00 8,045.00 -1,137,18 202.77 -214.07 0.00 0.00 0.00 KOP: 8510.0F MD, 214.07 VS,9415.04 "KOP 8,550.00 4.00 270.57 8,544.03 -1,137,18 202.77 -214.07 0.00 0.00 0.00 8,550.00 4.00 270.57 8,544.03 -1,137,19 195.72 -207.03 10.00 10.00 0.00 8,650.00 4.00 270.57 8,546.31 -1,137,18 202.77 -214.07 10.00 10.00 0.00 8,670.00 10.00 270.57 8,560.154 -1,136.89 153.22 -168.455 10.00 10.00 0.00 8,700.00 29.00 270.57 8,662.07 -1,136.47 150.96 -168.455 10.00 10.00 0.00 8,700.00 39.00 270.57 8,662.07 -1,136.47 150.26 -168.455 10.00 10.00 0.00 8,650.00 34.00 270.57 8,785.40 -1,135.41 142	8,395.00	0.00	0.00	8,300.00	-1,137.18	202.77	-214.07	1.50	-1.50	0.00
8,510.04 0.00 0.00 8,454.97 -1,137.16 202.77 -214.07 0.00 0.00 0.00 8,650.00 4.00 270.57 8,454.97 -1,137.11 195.72 -207.03 10.00 10.00 0.00 0.00 8,650.00 4.00 270.57 8,504.83 -1,137.11 195.72 -207.03 10.00 10.00 0.00 8,690.00 4.00 270.57 8,601.54 -1,136.89 173.23 -184.53 10.00 10.00 0.00 0.075.00 24.00 270.57 8,601.54 -1,136.89 173.23 -184.55 10.00 10.00 0.00 9,755.07 25.53 270.57 8,682.00 -1,136.42 146.42 -158.12 10.00 10.00 0.00 0.00 8,650.00 4.00 270.57 8,757.40 1,352.71 175.40 -26.41 10.00 10.00 0.00 8,650.00 4.00 270.57 8,473.43 -1,135.41 27.20 63.76 <td>8,400.00</td> <td>0.00</td> <td>0.00</td> <td>8,305.00</td> <td>-1,137.18</td> <td>202.77</td> <td>-214.07</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	8,400.00	0.00	0.00	8,305.00	-1,137.18	202.77	-214.07	0.00	0.00	0.00
KCP: 8510.47 MD, 2:44.67 VS, 844.64.47 VS 8,550.00 4.00 270.57 8,454.97 -1,137.17 201.38 272.68 10.00 10.00 0.00 8,650.00 1.00 270.57 8,558.40 -1,137.11 195.72 207.83 10.00 10.00 0.00 8,650.00 1.00 270.57 8,558.40 -1,135.80 -187.23 -187.05 10.00 10.00 0.00 8,750.00 2.400 270.57 8,648.05 -1,136.89 153.26 -168.45 10.00 10.00 0.00 8,755.00 2.400 270.57 8,648.05 -1,135.47 153.26 -168.45 10.00 10.00 0.00 8,755.00 2.400 270.57 8,752.40 -1,135.41 146.82 -168.45 10.00 10.00 0.00 8,650.00 34.00 270.57 8,735.82 -1,135.41 148.42 -168.41 10.00 10.00 0.00 8,650.00 44.00 270.57 8,785.5 -1,13	8,500.00	0.00	0.00	8,405.00	-1,137.18	202.77	-214.07	0.00	0.00	0.00
KCP: 8510.47 MD, 2:44.67 VS, 844.64.47 VS 8,550.00 4.00 270.57 8,454.97 -1,137.17 201.38 272.68 10.00 10.00 0.00 8,650.00 1.00 270.57 8,558.40 -1,137.11 195.72 207.83 10.00 10.00 0.00 8,650.00 1.00 270.57 8,558.40 -1,135.80 -187.23 -187.05 10.00 10.00 0.00 8,750.00 2.400 270.57 8,648.05 -1,136.89 153.26 -168.45 10.00 10.00 0.00 8,755.00 2.400 270.57 8,648.05 -1,135.47 153.26 -168.45 10.00 10.00 0.00 8,755.00 2.400 270.57 8,752.40 -1,135.41 146.82 -168.45 10.00 10.00 0.00 8,650.00 34.00 270.57 8,735.82 -1,135.41 148.42 -168.41 10.00 10.00 0.00 8,650.00 44.00 270.57 8,785.5 -1,13									0.00	0.00
8,600.00 9.00 270.57 8,550.463 -1,137.01 195.72 -207.03 10.00 10.00 0.00 8,694.63 16.49 270.57 8,558.64 -1,138.89 173.23 -144.53 10.00 10.00 0.00 8,700.00 19.00 270.57 8,564.64 -1,138.68 173.23 -144.53 10.00 10.00 0.00 8,700.00 24.00 270.57 8,564.00 -1,138.68 153.25 -164.55 10.00 10.00 0.00 8,750.00 24.00 270.57 8,562.00 -1,138.64 130.66 -142.25 10.00 10.00 0.00 8,860.00 34.00 270.57 8,735.40 -1,135.58 42.00 -53.24 10.00 10.00 0.00 8,875.00 34.00 270.57 8,878.45 -1,135.48 42.00 -53.24 10.00 10.00 0.00 0.00 8,875.00 54.00 270.57 8,878.85 -1,135.40 -33.37 22.06 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
8,600.00 9.00 270.57 8,550.463 -1,137.01 195.72 -207.03 10.00 10.00 0.00 8,694.63 16.49 270.57 8,558.64 -1,138.89 173.23 -144.53 10.00 10.00 0.00 8,700.00 19.00 270.57 8,564.64 -1,138.68 173.23 -144.53 10.00 10.00 0.00 8,700.00 24.00 270.57 8,564.00 -1,138.68 153.25 -164.55 10.00 10.00 0.00 8,750.00 24.00 270.57 8,562.00 -1,138.64 130.66 -142.25 10.00 10.00 0.00 8,860.00 34.00 270.57 8,735.40 -1,135.58 42.00 -53.24 10.00 10.00 0.00 8,875.00 34.00 270.57 8,878.45 -1,135.48 42.00 -53.24 10.00 10.00 0.00 0.00 8,875.00 54.00 270.57 8,878.85 -1,135.40 -33.37 22.06 <t< td=""><td>8,550.00</td><td>) 4.00</td><td>270.57</td><td>8,454.97</td><td>-1,137.17</td><td>201.38</td><td>-212.68</td><td>10.00</td><td>10.00</td><td>0.00</td></t<>	8,550.00) 4.00	270.57	8,454.97	-1,137.17	201.38	-212.68	10.00	10.00	0.00
8,694,83 18,48 270.57 8,596,64 -1,138,89 171,57 -164,53 10.00 10.00 0.00 8,700,00 19,00 270,57 8,601,54 -1,136,87 171,57 -162,87 10.00 10.00 0.00 8,750,00 24,00 270,57 8,662,07 1,136,47 130,69 -142,25 10.00 10.00 0.00 8,800,00 34,00 270,57 8,662,75 -1,135,81 146,83 146,84 10.00 10.00 0.00 8,850,00 34,00 270,57 8,735,40 -1,135,51 142,25 10.00 10.00 0.00 8,850,00 34,00 270,57 8,813,02 -1,135,51 42,00 -35,34 10.00 10.00 0.00 9,755,8 46,52 270,57 8,847,43 -1,135,42 5.75 -17,04 10.00 10.00 0.00 9,150,00 54,00 270,57 8,847,43 -1,133,42 -164,80 130,0 10.00 0.00 <	8,600.00) 9.00	270.57	8,504.63	-1,137.11	195.72	-207.03	10.00	10.00	0.00
100FEL - <td>8,650.00</td> <td>) 14.00</td> <td>270.57</td> <td>8,553.61</td> <td>-1,137.01</td> <td>185.76</td> <td>-197.06</td> <td>10.00</td> <td>10.00</td> <td>0.00</td>	8,650.00) 14.00	270.57	8,553.61	-1,137.01	185.76	-197.06	10.00	10.00	0.00
8,700.00 19,00 270.57 8,01.54 -1,138.67 171.57 -162.57 10.00 10.00 0.00 8,750.00 24.00 270.57 8,620.00 -1,138.69 153.26 -164.15 10.00 10.00 0.00 7B5G 53 270.57 8,627.8 -1,138.12 104.84 -142.25 10.00 10.00 0.00 8,600.00 34.00 270.57 8,735.40 -1,135.11 104.84 -141.00 10.00 0.00 8,950.00 44.00 270.57 8,735.40 -1,135.41 75.12 86.41 10.00 10.00 0.00 8,950.00 44.02 270.57 8,813.22 -1,735.40 -33.37 10.00 10.00 0.00 9,050.00 54.00 270.57 8,975.35 -1,134.42 -75.04 63.76 10.00 10.00 0.00 9,050.00 54.00 270.57 8,976.35 -1,134.81 -33.77 20.81 10.00 10.00 0.00	8,694.83	3 18,48	270.57		-1,136,89	173.23	-184.53	10.00	10.00	0.00
8,700.00 19,00 270.57 8,01.54 -1,138.67 171.57 -162.57 10.00 10.00 0.00 8,750.00 24.00 270.57 8,620.00 -1,138.69 153.26 -164.15 10.00 10.00 0.00 7B5G 53 270.57 8,627.8 -1,138.12 104.84 -142.25 10.00 10.00 0.00 8,600.00 34.00 270.57 8,735.40 -1,135.11 104.84 -141.00 10.00 0.00 8,950.00 44.00 270.57 8,735.40 -1,135.41 75.12 86.41 10.00 10.00 0.00 8,950.00 44.02 270.57 8,813.22 -1,735.40 -33.37 10.00 10.00 0.00 9,050.00 54.00 270.57 8,975.35 -1,134.42 -75.04 63.76 10.00 10.00 0.00 9,050.00 54.00 270.57 8,976.35 -1,134.81 -33.77 20.81 10.00 10.00 0.00	100FEL									
8,765.37 25.53 270.57 8,662.00 -1,136.62 146.82 -158.12 10.00 10.00 0.00 B,800.00 230.00 270.57 6,755.40 -1,135.41 100.86 -142.25 10.00 10.00 0.00 8,850.00 34.00 270.57 6,755.58 -1,135.91 75.12 -66.41 10.00 10.00 0.00 8,950.00 34.00 270.57 8,813.02 -1,135.58 42.00 -55.39 10.00 10.00 0.00 0.4.875.28 46.52 270.57 8,847.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,160.00 54.00 270.57 6,949.93 -1,133.98 -116.97 107.88 10.00 10.00 0.00 9,160.00 64.00 270.57 6,949.93 -1,133.26 -164.80 153.22 10.00 10.00 0.00 9,260.00 74.00 270.57 6,944.86 -1,132.63 -360.21 348.85 10.00) 19.00	270.57	8,601.54	-1,136.87	171.57	-182.87	10.00	10.00	0.00
TB-G 8.692.78 -1,136.47 130.96 -1.42.51 10.00 10.00 0.00 8,850.00 34.00 270.57 8,735.40 -1,136.21 104.84 -116.14 10.00 10.00 0.00 8,950.00 34.00 270.57 8,775.28 -1,135.91 75.12 -86.41 10.00 10.00 0.00 8,950.00 44.00 270.57 8,130.22 -1,135.58 42.00 -53.24 10.00 10.00 0.00 0.000.00 40.00 270.57 8,647.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,000.00 54.00 270.57 8,647.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,000.00 59.00 270.57 8,647.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,150.00 64.00 270.57 8,947.91 -1,135.85 -212.20 10.00 10.00 0.00 9,250.00	8,750.00	24.00	270.57	8,648,05	-1,136.69	153.25	-164.55	10.00	10.00	0.00
8,800.00 22.00 270.57 8,763.40 1,135.41 100.44 116.14 110.00 10.00 0.00 8,550.00 34.00 270.57 8,775.58 -1,135.91 75.12 -86.41 10.00 10.00 0.00 8,950.00 34.00 270.57 8,775.58 -1,135.58 42.00 -53.29 10.00 10.00 0.00 8,950.00 44.00 270.57 8,873.52 45.32 270.57 8,775.58 -1,135.40 24.04 -35.34 10.00 10.00 0.00 0.050.00 44.00 270.57 8,776.55 -1,134.43 -33.37 22.06 10.00 10.00 0.00 9,050.00 54.00 270.57 8,974.83 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,050.00 69.00 270.57 8,949.33 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,260.00 69.00 270.57 8,949.93 -1,133.65 <th< td=""><td></td><td>7 25.53</td><td>270.57</td><td>8,662.00</td><td>-1,136.62</td><td>146.82</td><td>-158.12</td><td>10.00</td><td>10.00</td><td>0.00</td></th<>		7 25.53	270.57	8,662.00	-1,136.62	146.82	-158.12	10.00	10.00	0.00
8,850.00 34.00 270.57 8,735.40 -1,135.31 104.84 116.14 10.00 10.00 0.00 8,950.00 34.00 270.57 8,813.02 -1,135.58 42.00 -53.29 10.00 10.00 0.00 8,975.28 46.52 270.57 8,813.02 -1,135.40 24.04 -53.29 10.00 10.00 0.00 01/FTP(Wo-134H) - - 1,135.51 27.057 8,874.35 -1,135.33 27.057 8,00 10.00 10.00 0.00 9,000.00 54.00 270.57 8,976.55 -1,134.42 -75.04 63.76 10.00 10.00 0.00 9,000.00 64.00 270.57 8,929.99 -1,135.25 -66.64 153.52 10.00 10.00 0.00 9,200.00 69.00 270.57 8,987.91 -1,132.05 -260.60 249.52 10.00 10.00 0.00 9,400.00 80.00 270.57 8,987.91 -1,131.85 -360.12 3		20.00	270 57	8 602 78	1 436 47	130.06	-142 25	10.00	10.00	0.00
8,900,00 39,00 270,57 8,775,58 -1,135,59 75,12 -86,41 10,00 10,00 0,00 8,950,00 44,00 270,57 8,813,02 -1,135,58 42,00 -53,29 10,00 10,00 0,00 0,077,57 8,4652 270,57 8,813,02 -1,135,40 24,04 -55,29 10,00 10,00 0,00 0,070,00 40,00 270,57 8,474,33 -1,135,40 24,04 -53,29 10,00 10,00 0,00 9,050,00 54,00 270,57 8,967,55 -1,134,43 -33,37 22,08 10,00 10,00 0,00 9,050,00 64,00 270,57 8,949,39 -1,133,38 -164,80 153,52 10,00 10,00 0,00 9,200,00 69,00 270,57 8,967,91 -1,132,65 -260,60 249,52 10,00 10,00 0,00 9,400,00 80,00 270,57 8,968,00 -1,132,68 -500,11 580,88 10,00					-					
8,950.00 44.00 270.57 8,813.02 -1,135.58 42.00 -53.29 10.00 10.00 0.00 9,75.28 46.52 270.57 8,830.82 -1,135.40 24.04 -53.29 10.00 10.00 0.00 9,000.00 40.00 270.57 8,47.43 -1,135.42 5.75 -17.04 10.00 10.00 0.00 9,000.00 54.00 270.57 8,47.43 -1,134.42 -75.04 63.76 10.00 10.00 0.00 9,000.00 64.00 270.57 8,929.99 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,200.00 69.00 270.57 8,929.99 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,200.00 74.00 270.57 8,987.91 -1,131.58 -310.23 298.55 10.00 10.00 0.00 9,300.00 9.00 270.57 8,988.00 -1,128.59 -660.11 548.85 10.00 10.0					-					
8,375.28 46.52 270.57 8,80.82 -1,135.40 24.04 -35.34 10.00 10.00 0.00 9,000.00 49.00 270.57 8,847.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,000.00 54.00 270.57 8,975.55 -1,134.43 -33.37 22.08 10.00 10.00 0.00 9,100.00 69.00 270.57 8,929.99 -1,133.52 -164.80 155.32 10.00 10.00 0.00 9,250.00 74.00 270.57 8,967.94 -1,132.08 -112.20 200.92 10.00 10.00 0.00 9,250.00 74.00 270.57 8,967.91 -1,132.08 -310.23 299.5 10.00 10.00 0.00 9,400.00 89.00 270.57 8,967.91 -1,132.08 -310.23 299.5 10.00 10.00 0.00 9,400.00 80.00 270.57 8,968.00 -1,132.68 -360.12 348.85 10.00 1				-						
01-FTP(Wo-134H) 9,000.0 49.00 270.57 6,477.43 -1,135.22 5.75 -17.04 10.00 10.00 0.00 9,050.00 54.00 270.57 6,976.55 -1,134.83 -33.37 22.08 10.00 10.00 0.00 9,100.00 59.00 270.57 6,929.99 -1,133.98 -118.97 107.68 10.00 10.00 0.00 9,200.00 69.00 270.57 8,949.93 -1,133.55 -212.20 200.92 10.00 10.00 0.00 9,300.00 79.00 270.57 8,967.97 -1,132.57 -260.60 245.52 10.00 10.00 0.00 9,350.00 84.00 270.57 8,987.91 -1,132.58 -310.23 298.95 10.00 10.00 0.00 9,410.04 80.00 270.57 8,987.91 -1,131.48 -370.16 358.88 10.00 10.00 0.00 9,400.00 80.00 270.57 8,988.00 -1,128.59 -660.11 548.85 <td></td>										
9,000.00 49,00 270.57 6,874.33 -1,134.83 -33.37 22.08 10.00 10.00 0.00 9,100.00 59.00 270.57 6,976.55 -1,134.43 -33.37 22.08 10.00 10.00 0.00 9,100.00 59.00 270.57 6,929.99 -1,133.98 -118.97 107.68 10.00 10.00 0.00 9,250.00 74.00 270.57 6,949.93 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,250.00 74.00 270.57 6,977.46 -1,132.07 -260.60 249.52 10.00 10.00 0.00 9,360.00 84.00 270.57 6,984.66 -1,132.08 -310.23 296.95 10.00 10.00 0.00 9,400.00 80.00 270.57 6,984.00 -1,131.48 -370.16 358.88 10.00 10.00 0.00 9,500.00 90.00 270.57 6,988.00 -1,128.69 -660.11 648.85 0.00 0.00 0.00 9,500.00 90.00 270.57 6,988.00			270.57	8,830.82	-1,135.40	24.04	-35.34	10.00	10.00	0.00
9,050.00 54.00 270.57 8,678.55 -1,134.83 -33.37 22.08 10.00 10.00 0.00 9,100.00 59.00 270.57 8,929.99 -1,133.98 -118.97 107.68 10.00 10.00 0.00 9,200.00 69.00 270.57 8,929.99 -1,133.05 -212.20 200.92 10.00 10.00 0.00 9,250.00 74.00 270.57 8,965.79 -1,132.05 -212.20 200.92 10.00 10.00 0.00 9,300.00 79.00 270.57 8,964.66 -1,132.08 -310.23 298.95 10.00 10.00 0.00 9,400.00 89.00 270.57 8,987.91 -1,131.48 -370.16 358.88 10.00 10.00 0.00 9,400.00 90.00 270.57 8,988.00 -1,122.59 -560.11 548.85 0.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,122.69 -560.11 548.85 0.00	•		A-4					10.00	40.00	
9,100.00 59.00 270.57 6,906.14 -1,134.42 -75.04 63.76 10.00 10.00 0.00 9,150.00 64.00 270.57 6,929.99 -1,133.98 -116.97 107.68 10.00 10.00 0.00 9,250.00 74.00 270.57 8,957.93 -1,133.55 -212.20 200.92 10.00 10.00 0.00 9,300.00 79.00 270.57 8,997.46 -1,132.57 -280.80 249.52 10.00 10.00 0.00 9,400.00 80.00 270.57 8,997.91 -1,131.58 -360.12 348.85 10.00 10.00 0.00 9,400.00 80.00 270.57 8,998.00 -1,122.59 -560.11 58.88 10.00 0.00 0.00 9,500.00 90.00 270.57 8,998.00 -1,122.59 -560.11 548.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,998.00 -1,122.61 -860.11 548.85 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
9,150.00 64.00 270.57 8,929.99 -1,133.98 -118.97 107.68 10.00 10.00 0.00 9,200.00 69.00 270.57 8,949.93 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,200.00 74.00 270.57 8,957.91 -1,132.57 -260.80 249.52 10.00 10.00 0.00 9,300.00 79.00 270.57 8,987.91 -1,132.56 -310.23 298.95 10.00 10.00 0.00 9,410.04 90.00 270.57 8,986.00 -1,131.58 -360.12 348.85 10.00 10.00 0.00 9,410.04 90.00 270.57 8,988.00 -1,130.59 -460.12 448.84 0.00 10.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,122.60 -660.11 548.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,122.61 -960.01 748.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00										
9,200.00 69.00 270.57 8,949.93 -1,133.52 -164.80 153.52 10.00 10.00 0.00 9,250.00 74.00 270.57 8,965.79 -1,133.05 -212.20 200.92 10.00 10.00 0.00 9,300.00 79.00 270.57 8,984.86 -1,132.08 -310.23 298.95 10.00 10.00 0.00 9,400.00 89.00 270.57 8,987.91 -1,131.68 -360.12 348.85 10.00 10.00 0.00 9,410.04 90.00 270.57 8,988.00 -1,131.48 -370.16 358.86 10.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,125.69 -560.11 548.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,126.69 -560.11 648.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,126.61 -860.10 748.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00	9,100.00					-75.04				
9,250.00 74.00 270.57 8,965.79 -1,133.05 -212.20 200.92 10.00 10.00 0.00 9,350.00 79.00 270.57 8,977.46 -1,132.26 -310.23 299.95 10.00 10.00 0.00 9,350.00 84.00 270.57 8,987.91 -1,131.58 -360.12 348.85 10.00 10.00 0.00 9,410.04 90.00 270.57 8,988.00 -1,131.48 -370.16 358.88 10.00 10.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,128.59 -560.11 548.65 0.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.65 0.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,128.61 -860.10 848.65 0.00 0.00 0.00 9,900.00 90.00 270.57 8,988.00 -1,128.61 -860.10 848.65 0.00 0.00 0.00 9,900.00 970.57 8,988.00 -1,128.61										
9,300.00 79.00 270.57 8,977.46 -1,132.57 -260.80 249.52 10.00 10.00 0.00 9,350.00 84.00 270.57 8,984.86 -1,132.08 -310.23 298.95 10.00 10.00 0.00 9,400.00 89.00 270.57 8,986.00 -1,131.58 -360.12 348.85 10.00 10.00 0.00 9,400.00 90.00 270.57 8,986.00 -1,131.48 -360.12 448.84 0.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,128.59 -560.11 548.65 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,128.61 -860.10 848.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,128.61 -860.10 848.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 <										
9,350.00 84.00 270.57 8,984.66 -1,132.08 -310.23 296.95 10.00 10.00 0.00 9,400.00 89.00 270.57 8,987.91 -1,131.48 -360.12 348.85 10.00 10.00 0.00 9,410.04 90.00 270.57 8,988.00 -1,131.48 -370.16 358.85 10.00 10.00 0.00 ECC: \$4410.04' MD, 356.84' V5,8986.00' TVD 90.00 270.57 8,988.00 -1,128.69 -660.11 548.85 0.00 0.00 0.00 9,500.00 90.00 270.57 8,988.00 -1,128.60 -660.11 548.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,128.61 -860.10 848.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,124.61 -960.09 948.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.99 1,488.85 0.00 0.00 0.00 10,000.00 90.00 270.				8,965.79						
9,400.00 89.00 270.57 8,987.91 -1,131.58 -360.12 348.85 10.00 10.00 0.00 9,410.04 90.00 270.57 8,988.00 -1,131.48 -370.16 358.88 10.00 10.00 0.00 ECC: 9410.04 MD, 358.84 VS,8988.00 TVD 90.00 270.57 8,988.00 -1,130.59 -460.12 448.84 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,125.69 -560.11 548.85 0.00 0.00 0.00 9,700.00 90.00 270.57 8,988.00 -1,127.60 -760.10 748.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,125.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.99 1,048.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.99 1,048.85 0.00 0.00 0.00 10,100.00 90.00 270.5	9,300.00									
9,410.04 90.00 270.57 8,988.00 -1,131.48 -370.16 358.88 10.00 10.00 0.00 EOC: 9410.04* MD, 358.88* VS,8986.00* TVD 9,500.00 90.00 270.57 8,988.00 -1,130.59 -460.12 448.84 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,129.59 -560.11 548.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,125.61 -960.10 748.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,126.61 -960.10 748.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,126.61 -960.99 948.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.99 1,048.85 0.00 0.00 0.00 10,100.00 90.00	9,350.00	0 84.00	270.57	8,984.86	-1,132.08	-310.23	298.95	10.00	10.00	0.00
EOC: 9410.04' MD, 358.88' VS,8988.00' TVD 9,500.00 90.00 270.57 8,988.00 -1,130.59 -460.12 448.64 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,129.59 -560.11 548.85 0.00 0.00 0.00 9,700.00 90.00 270.57 8,988.00 -1,127.60 -760.10 748.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,125.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,200.00 90.00 270.57 8,988.00 -1	9,400.00	00.68 0	270.57	8,987.91	-1,131.58	-360.12	348.85	10.00	10.00	0.00
9,500.00 90.00 270.57 8,988.00 -1,130.59 -460.12 448.84 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,129.59 -560.11 548.85 0.00 0.00 0.00 9,700.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,126.61 -860.10 848.65 0.00 0.00 0.00 9,900.00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,200.00 90.00 270.57 8,988.00 <td>9,410.04</td> <td>4 90.00</td> <td>270.57</td> <td>8,988.00</td> <td>-1,131.48</td> <td>-370.16</td> <td>358.88</td> <td>10.00</td> <td>10.00</td> <td>0.00</td>	9,410.04	4 90.00	270.57	8,988.00	-1,131.48	-370.16	358.88	10.00	10.00	0.00
9,500.00 90.00 270.57 8,988.00 -1,130.59 -460.12 448.84 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,129.59 -560.11 548.85 0.00 0.00 0.00 9,700.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,126.61 -860.10 848.65 0.00 0.00 0.00 9,900.00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,200.00 90.00 270.57 8,988.00 <td>EOC: 9410</td> <td>0.04' MD, 358.88' V</td> <td>S,8988.00' TVD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EOC: 9410	0.04' MD, 358.88' V	S,8988.00' TVD							
9,600.00 90.00 270.57 8,988.00 -1,129.59 -560.11 548.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,600.00 90.00 270.57 8,988.00 -1,127.60 -760.10 748.85 0.00 0.00 0.00 9,000.00 90.00 270.57 8,988.00 -1,126.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,124.62 -1,062.48 1,051.24 0.00 0.00 0.00 Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,160.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00		-	-	8,988.00	-1,130.59	-460.12	448.84	0.00	0.00	0.00
9,700.00 90.00 270.57 8,988.00 -1,128.60 -660.11 648.85 0.00 0.00 0.00 9,800.00 90.00 270.57 8,988.00 -1,127.60 -760.10 748.85 0.00 0.00 0.00 9,900.00 90.00 270.57 8,988.00 -1,125.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 948.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.99 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,123.63 -1,160.08 1,148.85 0.00 0.00 0.00 Exite NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,123.63 -1,160.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 0.00			270.57	8,988.00	-1,129.59	-560.11	548.85	0.00	0.00	0.00
9,900.00 90.00 270.57 8,988.00 -1,126.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,121.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600.00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00	9,700.00	90.00	270.57	8,988.00	-1,128.60	-660.11	648.85	0.00	0.00	0.00
9,900.00 90.00 270.57 8,988.00 -1,126.61 -860.10 848.85 0.00 0.00 0.00 10,000.00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,121.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,500.00 90.00 270.57 8,988.00 -1,112.64 -1,460.07 1,448.85 0.00 0.00 0.00	9,800.00	00.00	270.57	8,988.00	-1,127.60	-760.10	748.85	0.00	0.00	0.00
10,000,00 90.00 270.57 8,988.00 -1,125.61 -960.09 948.85 0.00 0.00 0.00 10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,124.60 -1,062.48 1,051.24 0.00 0.00 0.00 Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,122.63 -1,160.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,500.00 90.00 270.57 8,988.00 -1,112.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,500.00 90.00 270.57 8,988.00 -1,112.64 -1,460.07 1,448.85 0.00 0.00 0.00				8,988.00		-860.10	848.85	0.00	0.00	0.00
10,100.00 90.00 270.57 8,988.00 -1,124.62 -1,060.09 1,048.85 0.00 0.00 0.00 10,102.39 90.00 270.57 8,988.00 -1,124.60 -1,062.48 1,051.24 0.00 0.00 0.00 Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,123.63 -1,160.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,500.00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,600.00 90.00 270.57 8,988.00 -1,118.65 -1,660.06 1,648.85 0.00 0.00 0.00 <			270.57	8,988.00		-960.09	948.85	0.00	0.00	0.00
Exit NM006856 - Enter LC 0050797 10,200.00 90.00 270.57 8,988.00 -1,123.63 -1,160.08 1,148.85 0.00 0.00 0.00 10,300.00 90.00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400.00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,500.00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600.00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600.00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,700.00 90.00 270.57 8,988.00 -1,117.66 -1,660.05 1,648.85 0.00 0.00 0.00 10,800.00 90.00 270.57 8,988.00			270.57	8,988.00		-1,060.09	1,048.85	0.00	0.00	0.00
Section <	10,102.39	90.00	270.57	8,988.00		-1,062.48	1,051.24	0.00	0.00	0.00
10,300,00 90,00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400,00 90,00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,500,00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600,00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,700,00 90.00 270.57 8,988.00 -1,119.65 -1,660.06 1,648.85 0.00 0.00 0.00 10,700,00 90.00 270.57 8,988.00 -1,117.66 -1,760.05 1,748.85 0.00 0.00 0.00 10,800,00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 10,900,00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 11,000,00 90.00 270.57 <td></td>										
10,300,00 90,00 270.57 8,988.00 -1,122.63 -1,260.08 1,248.85 0.00 0.00 0.00 10,400,00 90.00 270.57 8,988.00 -1,121.64 -1,360.07 1,348.85 0.00 0.00 0.00 10,500,00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600,00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,700,00 90.00 270.57 8,988.00 -1,119.65 -1,660.06 1,648.85 0.00 0.00 0.00 10,700,00 90.00 270.57 8,988.00 -1,117.66 -1,760.05 1,748.85 0.00 0.00 0.00 10,800,00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 10,900,00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85	10,200.00	0.0 0	270.57	8,988.00	-1,123.63	-1,160.08	1,148.85	0.00	0.00	0.00
10,500.00 90.00 270.57 8,988.00 -1,120.64 -1,460.07 1,448.85 0.00 0.00 0.00 10,600.00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,700.00 90.00 270.57 8,988.00 -1,119.65 -1,660.06 1,648.85 0.00 0.00 0.00 10,800.00 90.00 270.57 8,988.00 -1,117.66 -1,760.05 1,748.85 0.00 0.00 0.00 10,900.00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 10,900.00 90.00 270.57 8,988.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 11,000.00 90.00 270.57 8,988.00 -1,115.67 -1,960.04 1,948.85 0.00 0.00 0.00 11,100.00 90.00 270.57 8,988.00 -1,114.67 -2,060.04 2,048.85	10,300.00	00.00	270.57	8,988.00	-1,122.63	-1,260.08	1,248.85	0.00	0.00	0.00
10,600.00 90.00 270.57 8,988.00 -1,119.65 -1,560.06 1,548.85 0.00 0.00 0.00 10,700.00 90.00 270.57 8,988.00 -1,118.65 -1,660.06 1,648.85 0.00 0.00 0.00 10,800.00 90.00 270.57 8,988.00 -1,117.66 -1,760.05 1,748.85 0.00 0.00 0.00 10,900.00 90.00 270.57 8,989.00 -1,116.66 -1,860.05 1,848.85 0.00 0.00 0.00 10,900.00 90.00 270.57 8,989.00 -1,115.67 -1,960.04 1,948.85 0.00 0.00 0.00 11,000.00 90.00 270.57 8,989.00 -1,114.67 -2,060.04 2,048.85 0.00 0.00 0.00 11,100.00 90.00 270.57 8,989.00 -1,114.67 -2,060.04 2,048.85 0.00 0.00 0.00	10,400.00	90.00			-1,121.64	-1,360.07				0.00
10,700.0090.00270.578,988.00-1,118.65-1,660.061,648.850.000.000.0010,800.0090.00270.578,988.00-1,117.66-1,760.051,748.850.000.000.0010,900.0090.00270.578,989.00-1,116.66-1,860.051,848.850.000.000.0011,000.0090.00270.578,989.00-1,115.67-1,960.041,948.850.000.000.0011,100.0090.00270.578,989.00-1,114.67-2,060.042,048.850.000.000.00				8,988.00	-1,120.64					
10,800.0090.00270.578,988.00-1,117.66-1,760.051,748.850.000.000.0010,900.0090.00270.578,988.00-1,116.66-1,860.051,848.850.000.000.0011,000.0090.00270.578,988.00-1,115.67-1,960.041,948.850.000.000.0011,100.0090.00270.578,988.00-1,114.67-2,060.042,048.850.000.000.00						•				
10,900.0090.00270.578,988.00-1,116.66-1,860.051,848.850.000.000.0011,000.0090.00270.578,988.00-1,115.67-1,960.041,948.850.000.000.0011,100.0090.00270.578,988.00-1,114.67-2,060.042,048.850.000.000.00					•					
11,000.00 90.00 270.57 8,988.00 -1,115.67 -1,960.04 1,948.85 0.00 0.00 0.00 11,100.00 90.00 270.57 8,988.00 -1,114.67 -2,060.04 2,048.85 0.00 0.00 0.00 0.00						•				
11,100.00 90.00 270.57 8,988.00 -1,114.67 -2,060.04 2,048.85 0.00 0.00 0.00						•				
				•	•					
11,200.00 90.00 270.57 8,988.00 -1,113.68 -2,160.03 2,148.85 0.00 0.00 0.00	11,100.00	0 90.00	270.57	8,988.00	-1,114.67	-2,060.04	2,048.85	0.00	0.00	0.00
	11,200.00	0 90.00	270.57	8,988.00		-2,160.03	2,148.85	0.00	0.00	0.00

7/11/2022 8:49:09AM

(E	C	C	L	Ĵ.	A'	ΓE	-
T,	Ë	Ν	E	ĸ	G	Y	-

Planning Report

Database:	EDM 5000.14 Single User Db	Local Co-ordinate Reference:	Well (804) Wombat 13 Fed 134H - Slot (804) Wombat 134H
Company:	Colgate Energy	TVD Reference:	3258+30 @ 3288.00usft
Project:	(Permit) Eddy County, NM (83-NME)	MD Reference:	3258+30 @ 3288.00usft
Site:	(Permit) Wombat 13 Fed	North Reference:	Grid
Well:	(B04) Wombal 13 Fed 134H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Permit		
Design:	APD-Rev01		

Planned Survey

Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/~S (usft)	+E/-W (usft)	Section (usft)	Rate (*/100usft)	Rate (°/100usft)	Turn Rate (°/100usft)
11,300.00	90.00	270.57	8,988.00	-1,112.68	-2,260.03	2,248.85	0.00	0.00	0.00
11,400.00	90.00	270.57	8,988.00	-1,111.69	-2,360.02	2,348.85	0.00	0.00	0.00
11,500.00	90.00	270.57	8,988.00	-1,110.70	-2,460.02	2,448.85	0.00	0.00	0.00
11,600.00	90.00	270.57	8,988.00	-1,109.70	-2,560.01	2,548.85	0.00	0.00	0.00
11,700.00	90.00	270.57	8,988.00	-1,108.71	-2,660.01	2,648.85	0.00	0.00	0.0
11,800.00	90.00	270.57	8,988.00	-1,107.71	-2,760.00	2,748.85	0.00	0.00	0.00
11,900.00	90.00	270.57	8,988.00	-1,106.72	-2,860.00	2,848.85	0.00	0.00	0.0
12,000.00	90.00	270.57	8,988.00	-1,105.72	-2,959.99	2,948.85	0.00	0.00	0,0
12,100.00	90.00	270.57	8,988.00	-1,104.73	-3,059.99	3,048.85	0.00	0.00	0.0
12,200.00	90.00	270.57	8,988.00	-1,103.73	-3,159.98	3,148.85	0.00	0.00	0.00
12,300.00	90.00	270.57	8,988.00	-1,102.74	-3,259.98	3,248.85	0.00	0.00	0.0
12,400.00	90.00	270.57	8,988.00	-1,101.74	-3,359.97	3,348.85	0.00	0.00	0.0
12,500.00	90.00	270.57	8,988.00	-1,100.75	-3,459.97	3,448.85	0.00	0.00	0.0
12,600.00	90.00	270.57	8,988.00	-1,099.76	-3,559.96	3,548.85	0.00	0.00	0.0
12,700.00	90.00	270.57	8,988.00	-1,098.76	-3,659.96	3,648.85	0.00	0.00	0.0
12,800.00	90.00	270.57	8,988.00	-1,097.77	-3,759.95	3,748.85	0.00	0.00	0.0
12,900.00	90.00	270.57	8,988.00	-1,096.77	-3,859.95	3,848.85	0.00	0.00	0.0
13,000.00	90.00	270.57	8,988.00	-1,095.78	-3,959.94	3,948.85	0.00	0.00	0.0
13,100.00	90.00	270.57	8,988.00	-1,094.78	-4,059.94	4,048.85	0.00	0.00	0.0
13,200.00	90.00	270.57	8,988.00	-1,093.79	-4,159.93	4,148.85	0.00	0.00	0.0
13,300.00	90.00	270.57	8,988.00	-1,092.79	-4,259.93	4,248.85	0.00	0.00	0.0
13,400.00	90.00	270.57	8,988.00	-1,091.80	-4,359.92	4,348.85	0.00	0.00	0.0
13,500.00	90.00	270.57	8,988.00	-1,090.80	-4,459.92	4,448.85	0.00	0.00	0.0
13,600.00	90.00	270.57	8,988.00	-1,089.81	-4,559.91	4,548.85	0.00	0.00	0.0
13,700.00	90.00	270.57	8,988.00	-1,088.82	-4,659.91	4,648.85	0.00	0.00	0.0
13,800.00	90.00	270.57	8,988.00	-1,087.82	-4,759.90	4,748.85	0.00	0.00	0.0
13,900.00	90.00	270.57	8,988.00	-1,086.83	-4,859.90	4,848.85	0.00	0.00	0.0
14,000.00	90.00	270.57	8,988.00	-1,085.83	-4,959.89	4,948.85	0.00	0.00	0.0
14,007.72	90.00	270.57	8,988.00	-1,085.76	-4,967.61	4,956.57	0.00	0.00	0.0
100FWL - 02	2-LTP(Wo-134H)								
14,097.72	90.00	270.57	8,988.00	-1,084.86	-5,057.61	5,046.57	0.00	0.00	0,0
TD: 14097.7	2' MD, 5046.56' \	/S,8988.00' TVD	- 03-PBHL(Wo	-134H)					
Targets									


Target Name			÷ : :			· · · · ·			
- hit/miss target	Dlp Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
03-PBHL(Wo-134H) - plan hits target ce - Point	0.00 nler	0.00	8,988.00	-1,084.86	-5,057,61	570,839.60	601,034.42	32.56914395	-104.13954878
02-LTP(Wo-134H) - plan misses target - Point	0.00 I center by 1.07	0.00 usît at 1400	8,988.00 7.72usft MD	-1,084.69 (8988.00 TVC	-4,967.61), -1085.76 N,	570,839.77 -4967.61 E)	601,124.42	32.56914397	-104.13925663
01-FTP(Wo-134H) - plan misses largel - Point	0.00 I center by 216.	0.00 71usfi at 89	8,988.00 75.28usft Mi	-1,136.76 D (8830.82 TV	173.22 D, -1135.40 N	570,787.70 I, 24.04 E)	606,265.25	32,56897396	-104.12256920

Received by OCD: 8/12/2024 12:41:58 PM

COL	.GATE			Р	lanning Re	port					
L ENE	ERGY				5	,					
Database:	EDM 5000.14 Single User Db			Local Co-ordinate Reference: Well (804) Wombat 13 Fed 134H - Slot (804 Wombat 134H				l - Slot (B04)	4)		
ompany:	Colgate E	nergy			TVD Refer	ance:	<u>i</u> - 1	3258+30 @ 3288.0	Qusfi		
roject:	-	(Permit) Eddy County, NM (83-NME)		MD Reference:			3258+30 @ 3288.0				
lite:	(Permit) Wombat 13 Fed (B04) Wombat 13 Fed 134H		North Reference:			5256+50 @ 5266.000sh Grid					
Vell:				Survey Calculation Method: Minimum Curvature							
Vellbore: Permit											
)eslgn:	APD-Rev(Я <u>,</u>									
Casing Points		·									
		11 - 41 - 1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						· .	
	Measured Depth	Vertical Depth	. •					Casing Diameter	Hole Diameter		
	(usit)	(usit)			Name		1.1	(")	(")		
		lacity	00" 0 ***		Name				-		
	14,102.24		20" Casing					20		24	
Formations											
	Measured	Vertical		5. ₁ .	<i>i</i>	·			Dip		•
	Depth	Depth					10 A.	Dlp	Direction		
	(usft)	(usit)		Name		LI	thology	(°)	(*)	1. 	
	229.00	229.00	Rusller	,		. –		0.00			
	403.00	403.00						0.00			
	629.00	629.00	Tansili								
	898.00	898.00									
	1,148.17	1,148.00	Seven Rivers								
	1,229.41	1,229.00	•								
	3,239.33	3,212.00									
	5,340.43	5,283.00									
	6,806.42	6,72 8 .00	F8SG								
	7,584.57	7,495.00	SBSG								
	8,765.37	8,662.00	TBSG								
Plan Annotation	18					n - 1		· .	· .		
			· . ·	· · ·				a aa 1997 a			
	and the second	Vertical	Local	Coordinate	3				an di		
	Depth	Depth	+N/-S		E/-W					1 a.	
	-		(usft)	(usft)	Comment				÷	
	(usft)	(usft)	(agir)								
	(usft) 8,510.04	8,415.04	-1,137.18		202.77		' MD, -214.()7' VS,8415.04' TVC)		
	(usft) 8,510.04 8,694.83	8,415.04 8,596.64	-1,137.18 -1,136.89)	173.23	100FEL	-				
	(usft) 8,510,04 8,694,83 9,410,04	8,415.04 8,596.64 8,988.00	-1,137.18 -1,136.89 -1,131.48) L	173.23 -370.16	100FEL EOC: 9410.04	' MD, 358.8)7' VS,8415.04' TVC 8' VS,8988.00' TVD			
	(usft) 8,510.04 8,694.83 9,410.04 10,102.39	8,415.04 8,596.64 8,988.00 8,988.00	-1,137.18 -1,136.89 -1,131.48 -1,124.60		173.23 -370.16 -1,062.48	100FEL EOC: 9410.04 Exil NM00685	' MD, 358,8 6				
	(usft) 8,510,04 8,694,83 9,410,04	8,415.04 8,596.64 8,988.00	-1,137.18 -1,136.89 -1,131.48		173.23 -370.16	100FEL EOC: 9410.04	' MD, 358,8 6				

H₂S Contingency Plan

1

Table of Contents

١.	EMERGENCY ASSISTANCE TELEPHONE LIST
II.	H ₂ S CONTINGENCY PLAN SECTION
111.	OPERATING PROCEDURES
IV.	OPERATING CONDITIONS
V.	EMERGENCY PROCEDURES 11
VI.	POST EMERGENCY ACTIONS 14
VII.	IGNITION PROCEDURES
VIII.	TRAINING PROGRAM
IX.	EMERGENCY EQUIPMENT
Х.	CHECKLISTS
XI.	BRIEFING PROCEDURES
XII.	EVACUATION PLAN
XIII.	APPENDICES AND GENERAL INFORMATION

i

I. EMERGENCY ASSISTANCE TELEPHONE LIST

PUBLIC SAFETY	911 or
Sheriff's Department:	
Eddy County Sherriff's Office	(575) 887-7551
Fire Department:	
Carlsbad Fire Department	(575) 885-3125
Artesia Fire Department	(575) 746-5051
Ambulance:	
Elite Medical Transport (Carlsbad)	(915) 542-1144
Trans Aero MedEvac (Artesia)	(970) 657-7449
Hospitals:	
Carlsbad Medical Center	(575) 887-4100
Artesia General Hospital	(575) 748-3333
New Mexico Dept. of Transportation:	
Highway & Transportation Department	(505) 795- 1401
New Mexico Railroad Commission:	
Main Line	(505) 476-3441
OSHA 24 Hr. Reporting (8 hrs. after death or 24 hrs. after in-patient, amputation, loss of an eye)	(800) 321-6742

.

•

Office Contacts	911 or
Colgate Energy LLC.	(432) 695-4222
Vice Dussident of Oneusticus	
Vice President of Operations:	
Casey McCain	(432) 664-6140
Drilling Engineering Supervisor	
Rafael Madrid	(432) 556-6387
Drilling Engineering Technical Adviser	
Steven Segrest	(405) 550-0277
Operations Superintendent	
Rick Lawson	(432) 530- 3188
	(452) 550 5100
Drilling Superintendent	
Daniel Cameron	(405) 933-0435
Onsite Supervision (H&P 481 Rig Managers)	
Juan Gutierrez	(970)394-4768
Jonathan Jackson	(970)394-4768
Onsite Supervision (H&P 481 Company Men)	
Pierre Dupuis	(432)438-0114
Eric Rutherford	(432)438-0114
Rolando Torres	(432)438-0114
Trevor Hein	(432)438-0114
Emergency Accommodations	
Safety Solutions Office	(432) 563-0400
Safety Solutions Dispatch	(432) 556-2002
Craig Strasner	(432) 894-0341 (Cell)

II. H₂S CONTINGENCY PLAN SECTION

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H₂S).

Objective:

Prevent any and all accidents and prevent the uncontrolled release of H₂S into the atmosphere. Provide proper evacuation procedures to cope with emergencies. Provide immediate and adequate medical attention should an injury occur.

Purpose, Distribution and Updating of Contingency Plan:

The Purpose of this contingency plan is to protect the general public from the harmful effects of H₂S accidentally escaping from the subject producing well. This plan is designed to accomplish its purpose by assuring the preparedness necessary to:

- 1. Minimize the possibility of releasing H₂S into the atmosphere during related operations.
- 2. Provide for the logical, efficient, and safe emergency actions required to protect the general public in the event of an accidental release of a potentially hazardous quantity of H₂S.

Supplemental information is included with this plan and is intended as reference material for anyone needing a more detailed understanding of the many factors pertinent to H₂S drilling operations safety. The release of a potentially hazardous quantity of H₂S is highly unlikely. If such a release should occur however, obviously the exact time, rate, duration, and other pertinent facts will be known in advance thus, this contingency plan must necessarily be somewhat general. The plan does review in detail, as is reasonably possible, the type of accidental release that could possibly endanger the general public, the probable extent of such danger, and the emergency actions generally appropriate. In the event of such an accidental release, the specific actions to be taken will have to be determined at the time of release by the responsible personnel at the drilling location. Complete familiarity with this plan will help such personnel make the proper decisions rapidly. Familiarity with this plan is so required all operators, operator representatives, and drilling contractor supervisory personnel who could possibly be on duty at the drilling location at the time of an H₂S emergency.

IT IS THE RESPONSIBILITY OF THE OPERATOR TO ASSURE SUCH FAMILIARITY BEFORE DRILLING WITHIN 1000' OR THREE DAYS PRIOR TO PENETRATION OF THE SHALLOWEST FORMATION KNOWN OR SUSPECTED TO CONTAIN H_2S IN POTENTIALLY HAZARDOUS QUANTITIES, AND ALSO TO ASSURE THE TIMELY ACCOMPLISHMENT OF ALL THE OTHER ACTION SPECIFIED HERE IN.

As this contingency plan was prepared considerably in advance of the anticipated H₂S operation, the plan must be kept current if it is to effectively serve its purpose. The operators will be responsible for seeing that all copies are updated. Updating the plan is required when any changes to the personnel Call List (Section) including telephone numbers occur or when any pertinent data or plans for the well are altered. The plan must also be updated when any changes in the general public likely to be within the exposure area in the event of an accidental release from the well bore of a potentially hazardous quantity of H₂S. Two copies of this plan shall be retained at the office of Colgate Energy. Two copies shall be retained at the drilling location.

Discussion of Plan:

Suspected Problem Zones:

Implementation: This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone.

Emergency Response Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone.

Emergency call list: Included are the telephone numbers of all persons that would need to be contacted, should an H₂S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

Check Lists: Status check lists and procedural check lists have been included to ensure adherence to the plan.

General Information: A general information section has been included to supply support information.

III. OPERATING PROCEDURES

A. Blowout Preventer Drills

Due to the special piping and Mani folding necessary to handle poisonous gas, particular care will be taken to ensure that all rig personnel are completely familiar with their jobs during the drills. The Drilling Consultant and Tool Pusher (Rig Superintendent) are thoroughly familiar with the additional controls and piping necessary.

B. H₂S Alarm Drills

The Company Man and/ or designee will conduct frequent H_2S alarm drills for each crew by injecting a trace of H_2S where the detector will give an alarm. Under these conditions all personnel on location will put on air equipment and remain masked until all clear is announced.

C. Surface Annular Preventer/ Diverter System Testing

After installation of the surface annular preventer, Hydraulic Control Valve and diverter system, both are to be function tested. They also should be function tested frequently while drilling surface hole.

D. Blowout Preventer

After installation of the Blowout Preventer Stack, the stack will be pressure tested. The Choke manifold is also to be pressure tested at this time. This procedure will be repeated as required by the NMOCD, the BLM, or if any of the stack is nipped down. Also, at this time, the Blind and Pipe Rams are checked for correct operation.

E. Well Control Practice Drills and Safety Meeting for Crew Members

Pit drills are for the purpose of acquainting each member of the drilling crew with his duties in the event of an emergency. Drills will be held with each crew as frequently as required to thoroughly familiarize each man with his duties. Drills are to be held at least weekly from that time forward.

1. BOP Drill while on Bottom Drilling:

A. Signal will be three or more long blast given by driller on the horn.

B. Procedure will be as follows:

1. Tool Pusher: Supervises entire operation.

- 2. Driller
 - a. Gives signal.
 - b. Picks up Kelly.
 - c. Stops pumps.
 - d. Observes flow.
 - e. Signal to close (pipe rams if necessary).
 - f. Check that Choke Manifold is closed.
 - g. Record drill pipe pressure, casing pressure and determine mud volume gain.
- 3. Motorman
 - a. Go to closing unit and standby for signal to close BOP.
 - b. Close BOP in signal.
 - c. Check on BOP closing.
 - d. Go to floor to assist driller. (NOTE: During test drills the BOP

need not be completely closed at the discretion of the supervisor. Supervisor should make it very clear that it is a test drill only!)

- 4. Derrickman
 - a. Check pumps.
 - b. Go to floor for directions from the driller.
- 5. Floorman
 - a. Go to manifold.
 - b. Observe and record pressure.
 - c. Check manifold and BOP for leaks.
 - d. Check with driller for additional instructions.
- 2. BOP Drill While Making Trip:
 - A. During trip driller will fill hole every five (5) stands and check the pits to be sure hole is taking mud.
 - B. Drill Procedure is as follows:
 - 1. Driller
 - a. Order Safety valve installed.
 - b. Alert those not on the floor.
 - c. Go to stations as described in above drill.
- 3. Safety Meetings
 - A. Every person involved in the operating will be informed of the characteristics of H₂S, its danger and safety procedures to be used when it is encountered, and recommended first-aid procedure for regular rig personnel. This will be done through a series of talks made before spud.
 - B. The Safety Advisor or Drilling Supervisor will conduct these training sessions and will repeat them as deemed necessary by him or as instructed by Colgate Energy. Talks may include the following subjects:
 - 1. Dangers of Hydrogen Sulfide (H₂S).
 - 2. Use and limitations of air equipment.
 - 3. Use of resuscitator.
 - 4. Organize Buddy System.
 - First Aid procedures.
 - 6. Use of H₂S detection devices.
 - 7. Designate responsible people.
 - 8. Explain rig layout and policy to visitors.
 - a. Designate smoking and safety or Muster area.
 - b. Emphasize the importance of wind directions.
 - 9. Describe and explain operation of BOP stack, manifold, separator, and pit piping. Include maximum allowable pressure for casing procedure.
 - 10. Explain functions of Safety Supervisor.
 - 11. Explain organize H₂S Drills.
 - 12. Explain the overall emergency plan with emphasis given to the evacuation phase of the plans.

Note: The above talks will be attended by every person involved in the operation. When drilling has
reached a depth where H₂S is anticipated, temporary service personnel and visitors will be directed to
the Drilling Consultant, who will designate the air equipment to be used by them in case of emergency,
acquaint them with the dangers involved and be sure of their safety while they are in the area. He will
point out the Briefing Areas, Windsocks, and Smoking Areas. He may refuse entrance to anyone, who in
his opinion should not be admitted because of lack of safety equipment, special operations in progress
or for other reasons involving personnel safety.

F. Outside Service Personnel

All service people such as cementing crews, logging crews, specialist, mechanics, and welders will furnish their own safety equipment. The Company Man/ or designee will be sure that the number of people on location does not exceed the number of masks on location, and they have been briefed regarding safety procedures. He will also be sure each of these people know about smoking and "Briefing Areas" and know what to do in case of an emergency alert or drill. Visitors will be restricted, except with special permission from the Drilling Consultant, when H₂S might be encountered. They will be briefed as to what to do in case of an alert or drill.

G. Onsite/ off shift workers

All workers that are staying on site must be identified as to where they are staying while off tour. If a drill/ or emergency takes place related to an H_2S release, each crew must have a designated person(s) that will wake them up and ensure that they are cleared to the appropriate muster area immediately.

H. Simultaneous Operations (SIMOPS)

If work is going on adjacent to the location is the responsibility of the Drilling Consultant or designee to communicate any applicable risks that may affect personnel working on that adjacent location. In the case of an H2S drill or event, there should be a designated crew member that is responsible for contacting personnel on adjacent locations. This could include just communication on potential events or in case of an event, notification to evacuate location. Drilling Consultant or designee are the Point of Contact and oversee all activities at such point of an H₂S event occurrence.

I. Area Residences/ Occupied Locations/ Public Roads

Any occupied residences/ businesses that are within a reasonable perimeter of the location (attached map will identify a 3000' radius around location) should be identified as part of this contingency and a reasonable effort will be made to gain contact information for them. As part of the briefing of the contingency plan, the team reviewing should identify where these potential receptors are and plan on who will contact them in case of a release that may impact that area.

J. Drilling Fluids

<u>Drilling Fluid Monitoring</u> – On Any Hazardous H_2S gas well, the earlier the warning of danger the better chance to control operations. Mud Company will be in daily contact with Colgate Energy Consultant. The Mud Engineer will take samples of the mud, analyze these samples, and make necessary recommendations to prevent H_2S gas from the formation, the pH will be increased as necessary for corrosion control.

<u>pH Control</u> -- For normal drilling, pH of 10.5 - 11.5. Would be enough for corrosion protection. If there is an influx of H₂S gas from the formation, the pH will be increased as necessary for corrosion control.

<u> H_2S Scavengers</u> – If necessary H_2S scavengers will be added to the drilling mud.

IV. OPERATING CONDITIONS

A. Posting Well Condition Flags

Post the green, yellow or red well condition flag, as appropriate, on the well condition sign at the location entrance, and take necessary precautions as indicated below:

- 1. Green Flag: Potential Danger- When Drilling in known H₂S zones or when H₂S has been detected in the drilling fluid atmosphere. Protective breathing equipment shall be inspected, and all personnel on duty shall be alerted to be ready to use this equipment.
- Yellow Flag: Potential Danger- When the threshold limit value of H₂S (10 PPM) or of SO₂ (5 PPM) is reached. If the concentration of H₂S or SO₂ reaches 10 PPM, protective breathing equipment shall be worn by all working personnel, and non-working personnel shall go to the upwind Safe Briefing Area.
- 3. **Red Flag:** Extreme danger*- When the ambient concentration of H₂S or SO₂ is reasonably believed or determined to have exceeded the potentially hazardous level. All non-essential personnel shall leave the drilling location taking the route most likely to exposure to escaping gas.

B. Requiring Air Masks Conditions

- 1. Whenever air masks are used, the person must be clean shaven as shown in the APC Guidelines
- 2. When breaking out any line where H₂S can reasonably be expected.
- 3. When sampling air in areas to determine if toxic concentrations of H₂S exist.
- 4. When working in areas where 10 PPM or more of H₂S has been detected.
- 5. At any time, there is doubt as to the H₂S level in the area to be entered.

C. Kick Procedure

- 1. It is very important that the driller be continuously alert, especially when approaching a gas formation.
- 2. Should gas come into the well bore, it is very important to be aware of a kick at the earliest time.
- 3. If a kick is identified, follow appropriate diverter or shut in procedures according to the situation that is presented utilizing appropriate kick procedures.

V. EMERGENCY PROCEDURES

- I. In the event of any evidence of H₂S level above 10ppm, take the following steps immediately:
 - a. Secure breathing apparatus.
 - b. Order non-essential personnel out of the danger zone.
 - c. Take steps to determine if the H₂S level can be corrected or suppressed, and if so, proceed with normal operations.
- II. If uncontrollable conditions occur, proceed with the following:
 - a. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel.
 - b. Remove all personnel to the Safe Briefing Area.
 - c. Notify public safety personnel for help with maintaining roadblocks, thus limiting traffic and implementing evacuation.
 - d. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.
- III. Responsibility
 - a. The Company Approved Supervisor shall be responsible for the total implementation of the plan.
 - b. The Company Approved Supervisor shall be in complete command during any emergency.
 - c. The Company Approved Supervisor shall designate a backup Supervisor if he/she is not available.
- IV. Actions to be taken
 - a. Assign specific tasks to drilling location personnel
 - b. Evacuate the general public from the exposure area
 - c. Cordon off the exposure area to prevent entry by unauthorized persons
 - d. Request assistance if and as needed and initiate emergency notifications
 - e. Stop the dispersion of H₂S
 - f. Complete emergency notifications as required
 - g. Return the situation to normal

EMERGENCY PROCEDURE IMPLEMENTATION

I. Drilling or Tripping

- a. <u>All Personnel</u>
 - i. When alarm sounds, don escape unit and report to upwind Safe Briefing Area.
 - ii. Check status of other personnel (buddy system).
 - iii. Secure breathing apparatus.
 - iv. Wait for orders from supervisor.

b. Drilling Consultant

- i. Report to the upwind Safe Briefing Area.
- ii. Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).
- iii. Determine the concentration of H₂S.
- iv. Assess the situation and take appropriate control measures.

c. Tool Pusher

- i. Report to the upwind Safe Briefing Area.
- ii. Don Breathing Apparatus and return to the point of release with the Drilling Consultant or the Driller (buddy system).
- iii. Determine the concentration of H₂S.
- iv. Assess the situation and take appropriate control measures.
- d. <u>Driller</u>
 - i. Check the status of other personnel (in a rescue attempt, always use the buddy system).
 - ii. Assign the least essential person to notify the Drilling Consultant and Tool Pusher, in the event of their absence.
 - iii. Assume the responsibility of the Drilling Consultant and the Tool Pusher until they arrive, in the event of their absence.
- e. Derrick Man and Floor Hands
 - i. Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.
- f <u>Mud Engineer</u>
 - i. Report to the upwind Safe Briefing Area.
 - ii. When instructed, begin check of mud for pH level and H₂S level.
- g. <u>Safety Personnel</u>
 - i. Don Breathing Apparatus.
 - ii. Check status of personnel.
 - iii. Wait for instructions from Drilling Consultant or Tool Pusher.

II. Taking a Kick

- a. All Personnel report to the upwind Safe Briefing Area.
- b. Follow standard BOP/ diverter procedures.

III. Open Hole Logging

- a. All unnecessary personnel should leave the rig floor.
- *b.* Drilling Consultant and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging

- *a*. Follow "Drilling or Tripping" procedures.
- b. Assure that all personnel have access to protective equipment.

VI. POST EMERGENCY ACTIONS

In the event this plan is activated, the following post emergency actions shall be taken in an effort to reduce the possibility of a reoccurrence of the type of problem that required its activation, and/or assure that any future activation of a similar plan will be as effective as possible.

- A. Review the factors that caused or permitted the emergency occur, and if the need is indicated, modify operating, maintance and/or surveillance procedures.
- B. If the need is indicated, retrain employees in blowout prevention, H₂S emergency procedures and etc.
- C. Clean up, recharge, restock, reapair, and/ or repalce H₂S emergency equipment as necessary , and return it to its proper place. (For whatever rental equipment is used, this will be the resposibility of Rental Company).
- D. See that future H₂S drilling contingency plans are modified accordingly, if the need is indicated.

VII. IGNITION PROCEDURES

Responsibilities:

The decision to ignite the well is the responsibility of the DRILLING CONSULTANT in concurrence with the STATE POLICE. In the event the Drilling Consultant is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- 1. Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Consultant is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Consultant.

Note: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Also, both are heavier than air. Do not assume the area is safe even after the well is ignited.

VIII. TRAINING PROGRAM

When working in an area where Hydrogen Sulfide (H₂S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel, at the well site, have had adequate training in the following:

- 1. Hazards and characteristics of Hydrogen Sulfide (H₂S).
- 2. Physicals effects of Hydrogen Sulfide on the human body.
- **3.** Toxicity of Hydrogen Sulfide and Sulfur Dioxide.
- 4. H₂S detection, Emergency alarm and sensor location.
- 5. Don and Doff of SCBA and be clean shaven.
- 6. Emergency rescue.
- 7. Resuscitators.
- 8. First aid and artificial resuscitation.
- 9. The effects of Hydrogen Sulfide on metals.
- 10. Location safety.

Service company personnel and visiting personnel must be notified if the zone contains H₂S, and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

IX. EMERGENCY EQUIPMENT

Lease Entrance Sign:

Should be located at the lease entrance with the following information:

CAUTION – POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Respiratory Equipment:

- Fresh air breathing equipment should be placed at the safe briefing areas and should include the following:
- Two SCBA's at each briefing area.
- Enough airline units to operate safely, anytime the H₂S concentration reaches the IDLH level (100 ppm).

• Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrickman and the other operation areas.

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location.
- Wind streamers (if preferred) should always be placed at various locations on the well site to ensure wind consciousness. (Corners of location).

Hydrogen Sulfide Detector and Alarms:

- 1 Four channel H₂S monitor with alarms.
- Three (3) sensors located as follows: #1 Rig Floor, #2 Shale Shaker, #3 Cellar.
- Gastec or Draeger pump with tubes.
- Sensor test gas.

Well Condition Sign and Flags:

The Well Condition Sign w/flags should be placed a minimum of 150' before you enter the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN – Normal Operating Conditions YELLOW – Potential Danger RED – Danger, H₂S Gas Present

Auxiliary Rescue Equipment:

- Stretcher
- 2 100' Rescue lines.
- First Aid kit properly stocked.

Mud Inspection Equipment:

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations.

Blowout Preventer:

- The well shall have hydraulic BOP equipment for the anticipated bottom hole pressure (BHP).
- The BOP should be tested upon installation.
- BOP, Choke Line and Kill Line will be tested as specified by Operator.

Confined Space Monitor:

There should be a portable multi-gas monitor with at least 3 sensors (O_2 , LEL H_2S), preferably 4 (O_2 , LEL, H_2S , CO). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided.

Communication Equipment:

- Proper communication equipment such as cell phones or 2-way radios should be available at the rig.
- Radio communication shall be available for communication between the company man's trailer, rig floor and the tool pusher's trailer.
- Communication equipment shall be available on the vehicles.

Special Control Equipment:

- Hydraulic BOP equipment with remote control on the ground.
- Rotating head at the surface casing point.

Evacuation Plan:

- Evacuation routes should be established prior to spudding the well.
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- Designated smoking area.

Safe Briefing Areas:

- Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds, or they are at a 180-degree angle if wind directions tend to shift in the area.
- Personal protective equipment should be stored at both briefing areas and if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

Note:

- Additional equipment will be available at the H₂S Provider Safety office.
- Additional personal H₂S monitors are available for all employees on location.
- Automatic Flare Igniters are recommended for installation on the rig.

X. CHECKLISTS

Rig-up & Equipment Status Check List

Note: initial & Date each item as they are implemented. Multiple wells require additional Columns to be Dated/ Initialed

	Date & Initial 1 st Well	Date & Initial 2 nd Well	Date & Initial 3 rd Well	Date & Initial 4 th Well
Sign at location entrance.				
Two (2) windsocks (in required locations).				
Wind Streamers (if required).				
SCBA's on location (Minimum of 2 @ each Muster Area)				
Air packs (working packs and escape packs), inspected and ready for use.				
Spare bottles for each air pack (if required).				
Cascade system and hose line hook up.				
Choke manifold hooked-up and tested. (before drilling out surface casing.)				
Remote Hydraulic BOP control tested (before drilling out surface casing).				
BOP tested (before drilling out surface casing).				
Safe Briefing Areas set-up				
Well Condition sign and flags on location and ready.				
Hydrogen Sulfide detection/ alarm system hooked-up & tested.				
Stretcher on location				
2 – 100' Lifelines on location.				
1 – 20# Fire Extinguisher in safety trailer.				
Confined Space monitor on location and tested.				
All rig crews and supervisor trained (as required).				
All rig crews and supervision medically qualified and fit tested on proper respirators				
Access restricted for unauthorized personnel.				
Pre-spud meeting held reviewing Contingencies				· · · ·
Drills on H ₂ S and well control procedures.				
All outside service contractors advised of potential H ₂ S on the well.				
25mm Flare Gun on location w/flares.				

Procedural Check List

Perform the following on each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that they have not been tampered with.
- 3. Check pressure on the supply air bottles to make sure they are capable of recharging.
- 4. Make sure all the Hydrogen Sulfide detection systems are operative.
- 5. Ensure that all BOP/ Surface Annular/ Diverter systems are functioning and operational.

Perform the following each week:

- Check each piece of breathing equipment to make sure that they are fully charged and operational. This
 requires that the air cylinder be opened, and the mask assembly be put on and tested to make sure that
 the regulators and masks are properly working. Negative and Positive pressure should be conducted on
 all masks.
- 2. BOP skills.
- 3. Check supply pressure on BOP accumulator stand-by source.
- 4. Check all breathing air mask assemblies to see that straps are loosened and turned back, ready for use.
- 5. Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary.
- 6. Check all cascade system regulators to make sure they work properly.
- 7. Perform breathing drills with on-site personnel.
- 8. Check the following supplies for availability (may be with H₂S Techs On-call):
 - Stretcher
 - Safety Belts and Ropes
 - Spare air Bottles
 - Spare Oxygen Bottles (if resuscitator required)
 - Gas Detector Pump and Tubes
 - Emergency telephone lists
 - Test the Confined Space Monitor to verify the batteries are good.

XI. BRIEFING PROCEDURES

The following scheduled briefings will be held to ensure the effective drilling and operation of this project:

Pre-Spud Meeting

Date: Prior to spudding the well.

- Attendance: Drilling Supervisor Drilling Engineer Drilling Consultant Rig Tool Pushers Rig Drillers Mud Engineer All Safety Personnel Key Service Company Personnel
- Purpose: Review and discuss the well program, step-by-step, to insure complete understanding of assignments and responsibilities.

XII. EVACUATION PLAN

General Plan

The direct lines of action prepared by Colgate Energy to protect the public from hazardous gas situations are as follows:

- 1. When the company approved supervisor (Drilling Consultant, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the area map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists, and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining roadblocks. Also, they will aid in evacuation of the public if necessary.
- NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.
 - 5. After the discharge of gas has been controlled, "Company" personnel will determine when the area is safe for re-entry.
 - 6. If a major release is secured, all exposed housing, vehicles, rig buildings, and low-lying areas and other structures downwind must be tested and clear with SCBAs donned to ensure that all residual H₂S is cleared. Fans, or opening of doors is recommended to ensure that areas are cleared out as part of this process.

XIII. APPENDICES AND GENERAL INFORMATION

Radius of Exposure Affected Notification List

(within a 65' radius of exposure @100ppm)

The geologic zones that will be encountered during drilling are known to contain hazardous quantities of H₂S. The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, conditions of evacuation, evacuation drill siren alarms and other precautionary measures.

Evacuee Description: Residents:

Notification Process:

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents.

Evacuation Plan:

All evacuees will migrate lateral to the wind direction.

The Operating Company will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary.

Toxic Effects of H₂S Poisoning

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity – 1.192) and is colorless and transparent. Hydrogen Sulfide is almost as toxic as Hydrogen Cyanide and is 5-6 times more toxic than Carbon Monoxide. Occupational exposure limits for Hydrogen Sulfide and other gases are compared below in Table 1. Toxicity table for H₂S and physical effects are shown in Table 2.

	Table 1 Permissible Exposure Limits of Various Gases				
Common Name	<u>Symbol</u>	<u>Sp. Gravity</u>	<u>TLV</u>	<u>STEL</u>	IDLH
Hydrogen Cyanide	HCN	.94	4.7 ppm	4.7 ppm	50 ppm
Hydrogen Sulfide	H₂S	1.192	10 ppm	15 ppm	100 ppm
Sulfide Dioxide	SO ₂	2.21	2 ppm	5 ppm	100 ppm
Chlorine	CL	2.45	.5 ppm	1 ppm	10 ppm
Carbon Monoxide	со	.97	25 ppm	200 ppm	1200 ppm
Carbon Dioxide	CO ₂	1.52	5000 ppm	30,000 ppm	40,000 ppm
Methane	CH₄	.55	5% LEL	15% UEL	

25

Definitions

- A. TLV Threshold Limit Value is the concentration employees may be exposed based on a TWA (time weighted average) for eight (8) hours in one day for 40 hours in one (1) week. This is set by ACGIH (American Conference of Governmental Hygienists) and regulated by OSHA.
- B. STEL Short Term Exposure Limit is the 15-minute average concentration an employee may be exposed to providing that the highest exposure never exceeds the OEL (Occupational Exposure Limit). The OEL for H₂S is 20 PPM.
- C. IDLH Immediately Dangerous to Life and Health is the concentration that has been determined by the ACGIH to cause serious health problems or death if exposed to this level. The IDLH for H₂S is 100 PPM.
- D. TWA Time Weighted Average is the average concentration of any chemical or gas for an eight (8) hour period. This is the concentration that any employee may be exposed based on a TWA.

÷

.

Toxicity Table of H₂S

<u>Percent %</u> .0001	<u>PPM</u> 1	<u>Physical Effects</u> Can smell less than 1 ppm.
.001 .0015	10 15	TLV for 8 hours of exposure. STEL for 15 minutes of exposure.
.01	100	Immediately Dangerous to Life & Health. Kills sense of smell in 3 to 5 minutes.
.02	200	Kills sense of smell quickly, may burn eyes and throat.
.05	500	Dizziness, cessation of breathing begins in a few minutes.
.07	700	Unconscious quickly, death will result if not rescued promptly.
.10	1000	Death will result unless rescued promptly. Artificial resuscitation may be necessary.

PHYSICAL PROPERTIES OF H₂S

The properties of all gases are usually described in the context of seven major categories:

COLOR ODOR VAPOR DENSITY EXPLOSIVE LIMITS FLAMMABILITY SOLUBILITY (IN WATER) BOILING POINT

Hydrogen Sulfide is no exception. Information from these categories should be considered in order to provide a complete picture of the properties of the gas.

COLOR - TRANSPARENT

Hydrogen Sulfide is colorless, so it is invisible. This fact simply means that you can't rely on your eyes to detect its presence. In fact, that makes this gas extremely dangerous to be around.

ODOR - ROTTEN EGGS

Hydrogen Sulfide has a distinctive offensive smell, like "rotten eggs". For this reason, it earned its common name "sour gas". However, H₂S, even in low concentrations, is so toxic that it attacks and quickly impairs a victim's sense of smell, so it could be fatal to rely on your nose as a detection device.

VAPOR DENSITY - SPECIFIC GRAVITY OF 1.192

Hydrogen Sulfide is heavier than air, so it tends to settle in low-lying areas like pits, cellars or tanks. If you find yourself in a location where H_2S is known to exist, protect yourself. Whenever possible, work in an area upwind and keep to higher ground.

EXPLOSIVE LIMITS - 4.0% TO 44%

Mixed with the right proportion of air or oxygen, H₂S will ignite and burn or explode, producing another alarming element of danger besides poisoning.

FLAMMABILITY

Hydrogen Sulfide will burn readily with a distinctive clear blue flame, producing Sulfur Dioxide (SO₂), another hazardous gas that irritates the eyes and lungs.

SOLUBILITY - 4 TO 1 RATIO WITH WATER

Hydrogen Sulfide can be dissolved in liquids, which means that it can be present in any container or vessel used to carry or hold well fluids including oil, water, emulsion and sludge. The solubility of H₂S is dependent on temperature and pressure, but if conditions are right, simply agitating a fluid containing H₂S may release the gas into the air.

BOILING POINT – (-77° Fahrenheit)

Liquefied Hydrogen Sulfide boils at a very low temperature, so it is usually found as a gas.

28

RESPIRATOR USE

The Occupational Safety and Health Administration (OSHA) regulate the use of respiratory protection to protect the health of employees. OSHA's requirements are written in the Code of Federal Regulations, Title 29, Part 1910, Section 134, Respiratory Protection. This regulation requires that all employees who might be required to wear respirators, shall complete an OSHA mandated medical evaluation questionnaire. The employee then should be fit tested prior to wearing any respirator while being exposed to hazardous gases.

Written procedures shall be prepared covering safe use of respirators in dangerous atmospheric situations, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available respirators.

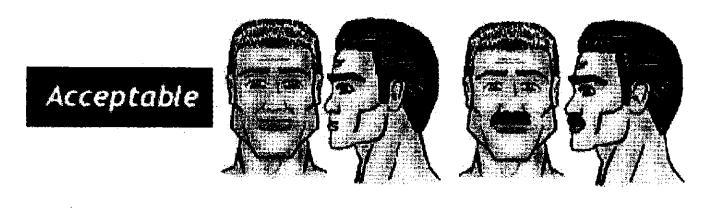
Respirators shall be inspected prior to and after each use to make sure that the respirator has been properly cleaned, disinfected and that the respirator works properly. The unit should be fully charged prior to being used.

Anyone who may use respirators shall be properly trained in how to properly seal the face piece. They shall wear respirators in normal air and then in a test atmosphere. (Note: Such items as facial hair (beard or sideburns) and eyeglass temple pieces will not allow a proper seal.) Anyone who may be expected to wear respirators should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses. Contact lenses should not be allowed.

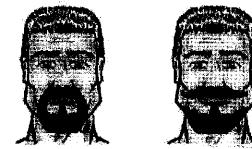
Respirators shall be worn during the following conditions:

- A. Any employee who works near the top or on the top of any tank unless tests reveal less than 20 ppm of H_2S .
- B. When breaking out any line where H₂S can reasonably be expected.
- C. When sampling air in areas where H₂S may be present.
- D. When working in areas where the concentration of H₂S exceeds the Threshold Limit Value for H₂S (10 ppm).
- E. At any time where there is a doubt as to the H₂S level in the area to be entered.

EMERGENCY RESCUE PROCEDURES


DO NOT PANIC!!!

Remain Calm – Think


- 1. Before attempting any rescue, you must first get out of the hazardous area yourself. Go to a safe briefing area.
- 2. Sound alarm and activate the 911 system.
- 3. Put on breathing apparatus. At least two persons should do this, when available use the buddy system.
- 4. Rescue the victim and return them to a safe briefing area.
- 5. Perform an initial assessment and begin proper First Aid/CPR procedures.
- 6. Keep victim lying down with a blanket or coat, etc.., under the shoulders to keep airway open. Conserve body heat and do not leave unattended.
- 7. If the eyes are affected by H₂S, wash them thoroughly with potable water. For slight irritation, cold compresses are helpful.
- 8. In case a person has only minor exposure and does not lose consciousness totally, it's best if he doesn't return to work until the following day.
- 9. Any personnel overcome by H₂S should always be examined by medical personnel. They should always be transported to a hospital or doctor.

Facial Hair – Clean Shaven Examples

Purpose: To define clean shaven expectations in the field for: 1) Respirator Use, if applicable and 2) First Aid Administration, if situation occurs related to H_2S exposure, having no facial hair can greatly benefit response time and treatment ability.

Unacceptable

Full Beard

t standed such thirth

Gomer & Narrow Hustaine Goatee & Wide Musiaclin

Wale Hustiche

Operator Name: COLGATE OPERATING LLC

Well Name: WOMBAT 13 FED COM

Well Number: 134H

Disposal location description: Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

Waste type: GARBAGE

Waste content description: Trash

Amount of waste: 10 barrels

Waste disposal frequency : Daily

Safe containment description: Portable trash cage

Safe containmant attachment:

Waste disposal type: OTHER

Disposal location ownership: OTHER

Disposal type description: Public

Disposal location description: All trash will be placed in portable trash cage. It will be hauled to the Eddy County Landfill. There will be no trash burning.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.) Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 101 of 101 CONDITIONS

Action 372761

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	372761
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Notify OCD 24 hours prior to casing & cement	9/3/2024
ward.rikala	Will require a File As Drilled C-102 and a Directional Survey with the C-104	9/3/2024
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string	9/3/2024
ward.rikala	Cement is required to circulate on both surface and intermediate1 strings of casing	9/3/2024
ward.rikala	If cement does not circulate on any string, a CBL is required for that string of casing	9/3/2024
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system	9/3/2024