

Application for Permit to Drill

U.S. Department of the Interior Bureau of Land Management

Date Printed: 10/07/2024 04:36 PM

APD Package Report

APD ID: 10400097898 Well Status: AAPD

APD Received Date: 04/11/2024 04:32 AM Well Name: POKER LAKE UNIT 22 DTD

Operator: XTO PERMIAN OPERATING LLC Well Number: 202H

APD Package Report Contents

- Form 3160-3

- Operator Certification Report

- Application Report

- Application Attachments

-- Well Plat: 1 file(s)

- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 1 file(s)
 - -- Casing Spec Documents: 2 file(s)
 - -- Casing Taperd String Specs: 2 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 3 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 1 file(s)
 - -- Other Facets: 7 file(s)
 - -- Other Variances: 4 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 4 file(s)
 - -- Other SUPO Attachment: 1 file(s)
- PWD Report
- PWD Attachments
 - -- None

- Bond Report
- Bond Attachments
 - -- None

Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMLC068431 BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. **✓** DRILL 1a. Type of work: REENTER NMNM071016X/POKER LAKE UNIT 1b. Type of Well: Oil Well ✓ Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone POKER LAKE UNIT 22 DTD 202H 2. Name of Operator 9. API Well No. 30-015**-5**5525 XTO PERMIAN OPERATING LLC 10. Field and Pool, or Exploratory 3a. Address 3b. Phone No. (include area code) PURPLE SAGE/WOLFCAMP (GAS) 6401 HOLIDAY HILL ROAD BLDG 5, MIDLAND, TX 7970 (432) 683-2277 4. Location of Well (Report location clearly and in accordance with any State requirements: *) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 22/T24S/R30E/NMP At surface NENW / 13 FNL / 1564 FWL / LAT 32.210494 / LONG -103.872529 At proposed prod. zone SENW / 2627 FNL / 1478 FWL / LAT 32.17432 / LONG -103,872733 12. County or Parish 13. State 14. Distance in miles and direction from nearest town or post office* **EDDY** NM 17. Spacing Unit dedicated to this well 15. Distance from proposed* 16. No of acres in lease 13 feet location to neares 1600.0 property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 30 feet 12082 feet / 24848 feet FED: COB000050 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3431 feet 12/25/2024 45 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. 6. Such other site specific information and/or plans as may be requested by the SUPO must be filed with the appropriate Forest Service Office). 25. Signature Name (Printed/Typed) Date (Electronic Submission) RICHARD REDUS / Ph: (432) 682-8873 04/11/2024 Permitting Manager Approved by (Signature) Date Name (Printed/Typed) (Electronic Submission) CODY LAYTON / Ph: (575) 234-5959 10/04/2024 Title Office Assistant Field Manager Lands & Minerals Carlsbad Field Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

APPROVED WITH CONDITIONS Released to Imaging: 10/11/2024 9:46:58 AM Approval Date: 10/04/2024

(Continued on page 2)

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

0. SHL: NENW / 13 FNL / 1564 FWL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.210494 / LONG: -103.872529 (TVD: 0 feet, MD: 0 feet)
PPP: NENW / 100 FNL / 1478 FWL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.210253 / LONG: -103.872808 (TVD: 12082 feet, MD: 12500 feet)
PPP: NENW / 0 FSL / 1491 FWL / TWSP: 24S / RANGE: 30E / SECTION: 27 / LAT: 32.196031 / LONG: -103.872779 (TVD: 12082 feet, MD: 17800 feet)
PPP: SESW / 1318 FSL / 1488 FWL / TWSP: 24S / RANGE: 30E / SECTION: 22 / LAT: 32.199653 / LONG: -103.872786 (TVD: 12082 feet, MD: 16500 feet)
BHL: SENW / 2627 FNL / 1478 FWL / TWSP: 24S / RANGE: 30E / SECTION: 34 / LAT: 32.17432 / LONG: -103.872733 (TVD: 12082 feet, MD: 24848 feet)

BLM Point of Contact

Name: MARIAH HUGHES Title: Land Law Examiner Phone: (575) 234-5972 Email: mhughes@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

 $C_{-}102$

Phone: (505) 476-3441 Fax: (55) 476-3462

General Information Phone: (505) 629-6116

Online Phone Directory Visit:

https://www.emnrd.nm.gov/ocd/contact-us/

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

	$\frac{C-102}{}$
Revised July 9	, 2024
Submit Electro	nically
via OCD Permi	tting

☐ Initial Submittal Submittal Amended Report Type: ☐ As Drilled

					WELL LOCA	TIO	N INFORMATION					
API Number Pool Code 97798 30-015-55525						Pool Name WILDCAT G-06 S243026M; BONE SPRING						
Property	y Code 333192		Property Na	^{me} POk	KER LAKE UN	VIT 2	22 DTD				Well Numbe	^r 202H
OGRID	No. 3730	75	Operator Na	me)	XTO PERMIA	AN C	OPERATING, LLC				Ground Leve 3,43	el Elevation 2
Surface	Owner: 🗆 S	tate 🗆 Fee 🗆	Tribal 🖰 Fede	eral			Mineral Owner: S	State 🗆	Fee □ Tribal 2	Fe	ederal	
					Sur	face	Location					
UL C	Section 22	Township 24S	Range 30E	Lot	Ft. from N/S 13 N		Ft. from E/W 1,564 W	Latitu 32.2	de 210370		ngitude 103.872	County EDDY
				I	Botto	m Ho	le Location	ı	<u> </u>			
UL F	Section 34	Township 235 24S	Range 30E	Lot	Ft. from N/S 2,327 N		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ngitude 03.872	County EDDY		
S				_	Defining Well API 3001549881		Overlapping Spacing Unit (Y/N) Consolida NO U			n Code		
Order N	lumbers.					Well setbacks are under Common Ownership: △Yes □No						
					Kick (Off P	oint (KOP)					
UL C	Section 22	Township 24S	Range 30E	Lot	Ft. from N/S 13 N		Ft. from E/W 1,564 W	Latitu 32	de 2103		ngitude -103.872	County EDDY
				I.	First T	Fake	Point (FTP)	1	Į.			
UL C	Section 22	Township 24S	Range 30E	Lot	Ft. from N/S 100 N EDDY		Ft. from E/W 1,478 W	Latitu 3	de 2.2101	Lo -1	ngitude 03.8723	County EDDY
					Last T	[ake]	Point (LTP)					
UL Section Township Range Lot Ft. from N/S Ft. from E/W F 34 24S 30E 2,537 N 1,478 W								Latitu 32.	^{de} 1744		ngitude 103.8722	County EDDY
									1		•	
Unitized Area or Area of Uniform Interest NMNM105422429					Spacing Unit Type Horizontal □ Vertical Ground Floor Elevation: 3,432'							

OPERATOR CERTIFICATIONS

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this $organization\ either\ owns\ a\ working\ interest\ or\ unleased\ mineral\ interest\ in\ the\ land$ including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.

If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed

interval will be located or obtained a compulsory pooling order from the division. 10/8/24 Adrian Baker Printed Name

see below

Signature and Seal of Professional Surveyor

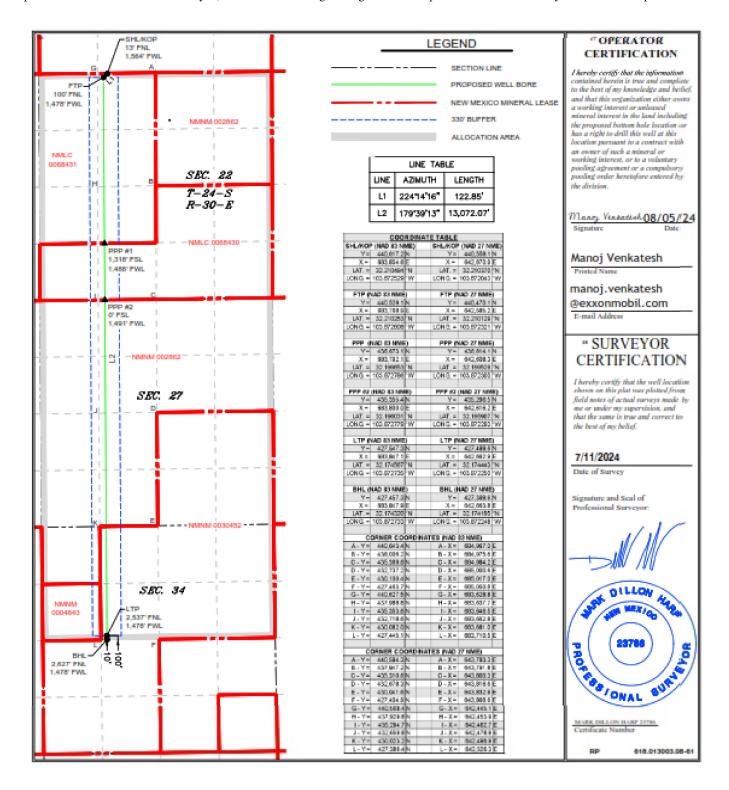
SURVEYOR CERTIFICATIONS

Certificate Number

Date of Survey

I hereby certify that the well location shown on this plat was plotted from field notes of actual

surveys made by me or under my supervision, and that the same is true and correct to the best of


Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Email Address

adrian.baker@exxonmobil.com

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:	XTO Permian Operating, LLC	OGRID:	<u>373075</u>	Date: <u>09 / 16 / 2024</u>	ı
II. Type: ⊠ (Original □ Amendment due to □ 19.15.27.9	'.D(6)(a) NMA	C □ 19.15.27.9.D(6)(b)	NMAC □ Other.	
If Other, pleas	e describe:				
TTT XX/ 11/ \ D		1	. 1 11	1 . 1 . 1 . 1 . 1	1.4

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	3 yr Anticipated decline Oil BBL/D	Anticipated Gas MCF/D	3 yr Anticipated decline Gas MCF/D	Anticipated Produced Water BBL/D	3 yr Anticipated decline Water BBL/D
Poker Lake Unit 22 DTD 103H	TBD	22 T24S R30E	916 FNL, 113 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 106H	TBD	22 T24S R30E	916 FNL, 203 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 907H	TBD	22 T24S R30E	916 FNL, 233 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 145H	TBD	22 T24S R30E	916 FNL, 173 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 153H	TBD	22 T24S R30E	414 FNL,1946 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 194H	TBD	22 T24S R30E	916 FNL, 143 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 197H	TBD	22 T24S R30E	414 FNL, 2286 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 201H	TBD	22 T24S R30E	13 FNL, 1534 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 202H	TBD	22 T24S R30E	13 FNL, 1564 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 203H	TBD	22 T24S R30E	13 FNL, 1594 FWL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 204H	TBD	22 T24S R30E	13 FNL, 1654 FWL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 205H	TBD	22 T24S R30E	13 FNL, 1684 FWL	1,900	200	3,250	900	3,750	450

Poker Lake Unit 22 DTD 401H	TBD	22 T24S R30E	233 FNL, 1387 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 402H	TBD	22 T24S R30E	233 FNL, 1357 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 403H	TBD	22 T24S R30E	233 FNL, 1327 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 404H	TBD	22 T24S R30E	233 FNL, 1297 FEL	1,900	200	3,250	900	3,750	450
Poker Lake Unit 22 DTD 405H	TBD	22 T24S R30E	233 FNL, 1267 FEL	1,800	200	7,500	1,200	7,000	800
Poker Lake Unit 22 DTD 406H	TBD	22 T24S R30E	233 FNL, 1237 FEL	1,800	200	7,500	1,200	7,000	800

IV. Central Delivery Point Name: PLU 22 DTD CTB [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
Well Raine	7111	Spad Bate	Date	Commencement Date	Back Date	Date
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
103H						
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
106H						
Poker Lake Unit 22 DTD	TBD	TBD	TBD	<u>TBD</u>	TBD	TBD
907H						
Poker Lake Unit 22 DTD	TBD	<u>TBD</u>	TBD	<u>TBD</u>	TBD	<u>TBD</u>
145H Poker Lake Unit 22 DTD	TDD	TDD	TDD	TDD	TDD	TDD
153H	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD	TDD	TDD	TDD	TDD	TDD	TDD
194H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD	TIP D	TED D	TDD	TED D	TERR	TED D
197H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
D 1 1 1 1 1 1 2 0 DTD						
Poker Lake Unit 22 DTD 201H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 202H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 203H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 204H	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 205H	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
203H						
Poker Lake Unit 22 DTD	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
401H						
Poker Lake Unit 22 DTD	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	TBD	<u>TBD</u>
402H						
Poker Lake Unit 22 DTD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
403H						
L			l .			

Poker Lake Unit 22 DTD 404H	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 405H	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>
Poker Lake Unit 22 DTD 406H	<u>TBD</u>	TBD	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>	<u>TBD</u>

406H						
VI. Separation Equipm	nent: Attacl	n a complete descri	ption of how Op	erator will size separatio	n equipment to op	timize gas capture
VII. Operational Practice Subsection A through F			ription of the ac	ctions Operator will take	to comply with t	he requirements of
VIII. Best Managemer during active and planned		•	te description o	f Operator's best manage	ement practices to	minimize venting

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering	Available Maximum Daily Capacity
			Start Date	of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system ⊠ will □ will not have capacity to gather 100% of the anticipated r	natural gas
production volume from the well prior to the date of first production.	

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of t	ne
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

$\perp A$	ttach	Operat	or 's	plan	to	manage	proc	luction	ın	response	to	the	ıncreased	line	pressur	e.
-----------	-------	--------	-------	------	----	--------	------	---------	----	----------	----	-----	-----------	------	---------	----

Page 3 of 6

XIV. Confidentiality:

Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 - Certifications Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

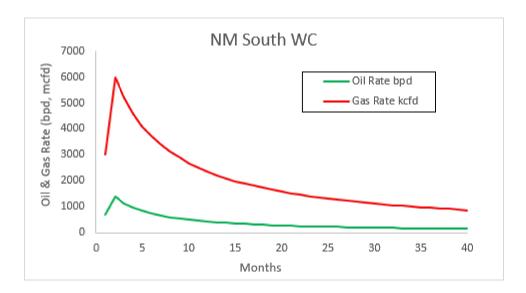
☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. ⊠ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:


- (a) power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- **(f)** reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Samantha Weis
Printed Name: Samantha Weis
Title: Permitting Advisor
E-mail Address: samantha.r.bartnik@exxonmobil.com
Date: 10/03/2024
Phone: +1-832-625-7361
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Drilling Plan Data Report

Highlighted data reflects the most

recent changes

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400097898 **Submission Date:** 04/11/2024

Operator Name: XTO PERMIAN OPERATING LLC

Well Name: POKER LAKE UNIT 22 DTD Well Number: 202H

Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14264965	QUATERNARY	3431	0	0	ALLUVIUM	USEABLE WATER	N
14264966	RUSTLER	2308	1123	1123	ANHYDRITE, SANDSTONE	USEABLE WATER	N
14264967	SALADO	1905	1526	1526	SALT	NONE	N
14264968	BASE OF SALT	-288	3719	3719	SALT	NONE	N
14264969	DELAWARE	-482	3913	3913	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264974	BRUSHY CANYON	-3028	6459	6459	SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264970	BONE SPRING	-4352	7783	7783	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264976	BONE SPRING 1ST	-5061	8492	8492	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264977	BONE SPRING 2ND	-5646	9077	9077	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264975	BONE SPRING 3RD	-6472	9903	9903	LIMESTONE, SANDSTONE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	N
14264973	WOLFCAMP	-8621	12052	12052	SANDSTONE, SHALE	NATURAL GAS, OIL, OTHER : PRODUCED WATER	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M Rating Depth: 12082

Equipment: Once the permanent WH is installed on the Surface casing, the blow out preventer equipment (BOP) will consist of a 10M Triple Ram BOP consisting of 5M Annular, 10M Double Pipe RAM, 10M Blind RAM. XTO will use a Multi-Bowl system which is attached.

Requesting Variance? YES

Variance request: A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. If this hose is used, a copy of the manufacturer's certification and pressure test chart will be kept on the rig. Attached is an example of a certification and pressure test chart. The manufacturer does not require anchors. XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and

the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

Testing Procedure: All BOP testing will be done by an independent service company. Operator will test as per 43 CFR 3172.

Choke Diagram Attachment:

PLU_22_DTD_10MCM_20240407122038.pdf

BOP Diagram Attachment:

PLU_22_DTD_5M10MBOP_20240610071950.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	12.2 5	9.625	NEW	API	N	0	1223	0	1223	3431	2208	1223	J-55	40	BUTT	5.15	1.49	DRY	12.8 8		12.8 8
2	INTERMED IATE	8.75	7.625	NEW	API	Υ	0	11167	0	11166	3411	-7735	11167	L-80	29.7	FJ	2.14	1.32	DRY	1.91	DRY	1.91
3	PRODUCTI ON	6.75	5.5	NEW	NON API	Υ	0	24848	0	12082	3411	-8651	24848	P- 110		OTHER - Freedom HTQ/Talon HTQ	1.41	1.05	DRY	1.91	DRY	1.91

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_202H_Csg_20240406125638.pdf

Casing Attachments

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

POKER_LAKE_UNIT_22_DTD_202H_Csg_20240406130258.pdf

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_202H_Csg_20240406130336.pdf

Casing ID: 3

String

PRODUCTION

Inspection Document:

Spec Document:

Freedom_semi_premium_5.5_production_casing_20240806091000.pdf Talon___semiflush_5.5_production_casing_20240806091000.pdf

Tapered String Spec:

POKER_LAKE_UNIT_22_DTD_202H_Csg_20240406125732.pdf

Casing Design Assumptions and Worksheet(s):

POKER_LAKE_UNIT_22_DTD_202H_Csg_20240406125809.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1223	300	1.87	10.5	561	100	EconoCem- HLTRRC	NA
SURFACE	Tail		0	1223	130	1.35	14.8	175.5	100	Class C	2% CaCl
INTERMEDIATE	Lead		0	6459	430	1.35	14.8	580.5	100	Class C	NA
INTERMEDIATE	Tail		6459	1116 7	730	1.33	14.8	970.9	100	Class C	NA

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		1086 7	1136 7	20	2.69	13.2	53.8	30	NeoCem	NA
PRODUCTION	Tail		1136 7	2484 8	960	1.51	14.5	1449. 6	30	VersaCem	NA

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: The necessary mud products for weight addition and fluid loss control will be on location at all times.

Describe the mud monitoring system utilized: Spud with fresh water/native mud. Drill out from under surface casing with Saturated Salt solution. Saturated Salt mud will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1223	3913	SALT SATURATED	10.5	11							
1116 7	2484 8	OIL-BASED MUD	12.5	13							
0	1223	WATER-BASED MUD	8.4	8.9							
3913	1116 7	OTHER : BDE/OBM	9	9.5							

Reperator, Name: XIVO 20 ERMISH SPERATING LLC

Page 20 of 6

Well Name: POKER LAKE UNIT 22 DTD Well Number: 202H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open hole logging will not be done on this well.

List of open and cased hole logs run in the well:

GAMMA RAY LOG,CEMENT BOND LOG,DIRECTIONAL SURVEY,MEASUREMENT WHILE DRILLING,MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

No coring is planned for the well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8167 Anticipated Surface Pressure: 5508

Anticipated Bottom Hole Temperature(F): 205

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

XTO_Energy_H2S_Plan_Updated_20240806090813.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

POKER LAKE UNIT 22 DTD 202H DD 20240406131222.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

POKER_LAKE_UNIT_22_DTD_202H_Cmt_20240406131352.pdf

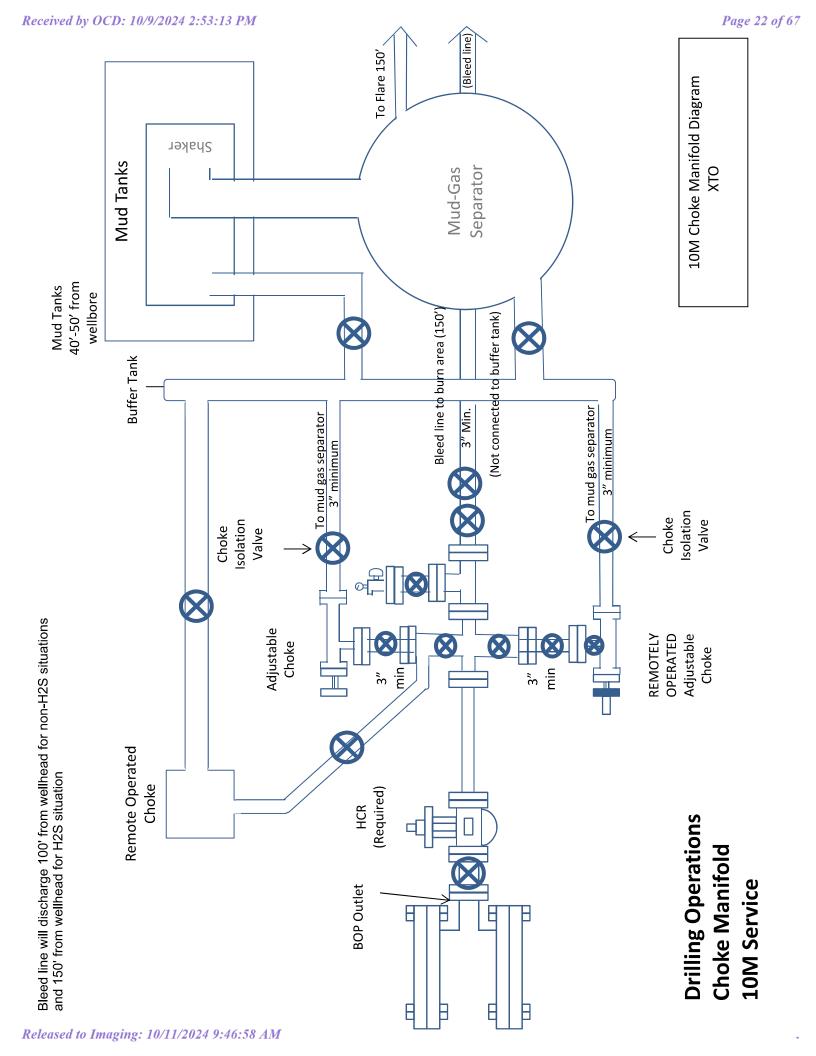
PLU 22 DTD MBS 20240610071739.pdf

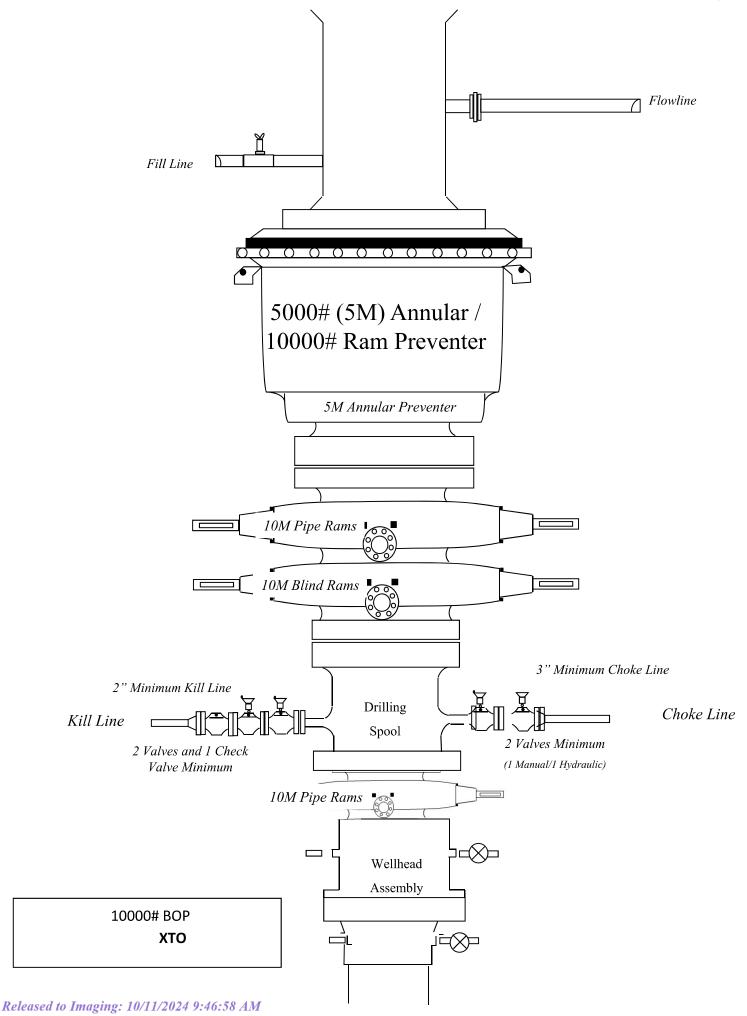
PLU_22_DTD_H2S_DiaA_20240806091518.pdf

PLU 22 DTD H2S DiaB 20240806091518.pdf

PLU_22_DTD_H2S_DiaC_20240806091518.pdf

PLU_22_DTD_H2S_DiaD_20240806091518.pdf


POKER_LAKE_UNIT_22_DTD_202H_RL_20240806091555.pdf


Other Variance attachment:

Spudder Rig Request 20240806091529.pdf

Offline_Cement_Variance_Surf___Interm_Csg_20240806091530.pdf

Updated_Flex_Hose_20240806091530.pdf Wild_Well_Control_Plan_20240912123350.pdf

Casing Assumptions

OD Csg Weight Grade Collar New/Used SF SF 9.625 40 J-55 BTC New 1.49 5.15 7.625 29.7 RY P-110 Flush Joint New 1.82 2.92 7.625 29.7 HC L-80 Flush Joint New 1.32 2.14 5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.41				Cas	Casing Assumptions	JS				
OD Csg Weight Grade Collar New/Used SF SF 9.625 40 J-55 BTC New 1.49 5.15 7.625 29.7 RY P-110 Flush Joint New 1.82 2.92 7.625 29.7 HC L-80 Flush Joint New 1.32 2.14 5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.54										
9.625 40 J-55 BTC New 1.49 5.15 7.625 29.7 RY P-110 Flush Joint New 1.82 2.92 7.625 29.7 HC L-80 Flush Joint New 1.32 2.14 5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.41	Depth	OD C		Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
7.625 29.7 RY P-110 Flush Joint New 1.82 2.92 7.625 29.7 HC L-80 Flush Joint New 1.32 2.14 5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.41	0' – 1223'	9.62	25	40	J-55	BTC	New	1.49	5.15	12.88
7.625 29.7 HC L-80 Flush Joint New 1.32 2.14 5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.41	0, – 4000,	7.62	25	29.7	RY P-110	Flush Joint	New	1.82	2.92	1.68
5.5 20 RY P-110 Semi-Premium New 1.05 1.54 5.5 20 RY P-110 Semi-Flush New 1.05 1.41	4000' – 11167'		25	29.7	HC L-80	Flush Joint	New	1.32	2.14	1.91
5.5 20 RY P-110 Semi-Flush New 1.05 1.41	0' – 11067'	5.5	2	20	RY P-110	Semi-Premium	New	1.05	1.54	1.91
	11067' - 24848'		2	20	RY P-110	Semi-Flush	New	1.05	1.41	1.91

Cement Variance Request

Intermediate Casing:

XTO requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brush Canyon (6459') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (2.30 yld, 12.91 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the first intermediate casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing:

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

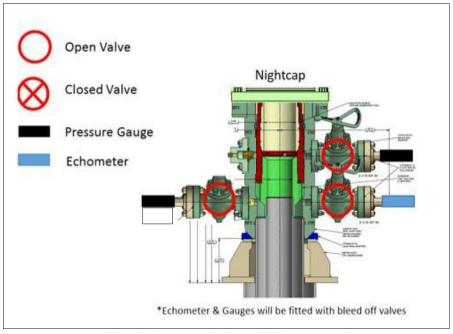
XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.

1. Cement Program

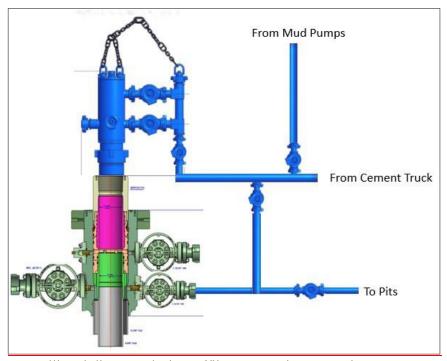
No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure


The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals


XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

GATES ENGINEERING & SERVICES NORTH AMERICA

7603 Prairie Oak Dr.

Houston, TX. 77086

PHONE: +1 (281) 602-4100

FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com

WEB: www.gates.com/oilandgas

NEW CHOKE HOSE

INSTAUED 02-10-2024

CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CUSTOMER:	
-----------	--

NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA

CUSTOMER P.O.#:

15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531)

CUSTOMER P/N:

IMR RETEST SN 74621 ASSET #66-1531

PART DESCRIPTION:

RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K

FLANGES

SALES ORDER #:

529480

QUANTITY:

- 1

SERIAL #:

74621 H3-012524-1

SIGNATURE: 7. CUSTUSE

TITLE: QUALITY ASSURANCE

DATE: 1/25/2024

H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT

CUSTOMER

Company:

Nabors Industries Inc.

TEST OBJECT

Serial number:

H3-012524-1

Lot number:

Production description:

74621/66-1531

Description:

74621/66-1531

3.0 x 4-1/16 10K

3.0 x 4-1/16 10K

feet

n. . . . 1/2

Sales order #:

529480 FG1213

Hose ID:

3" 16C CK

Part number:

TEST INFORMATION

Customer reference:

Test procedure: Test pressure:

GTS-04-053

15000.00 3600.00

psi

sec

Test pressure hold: Work pressure: Work pressure hold:

Length difference:

Length difference:

10000.00 900.00

psi

sec

% inch Fitting 1:

Part number:

Description:

Fitting 2:

Length:

Part number:

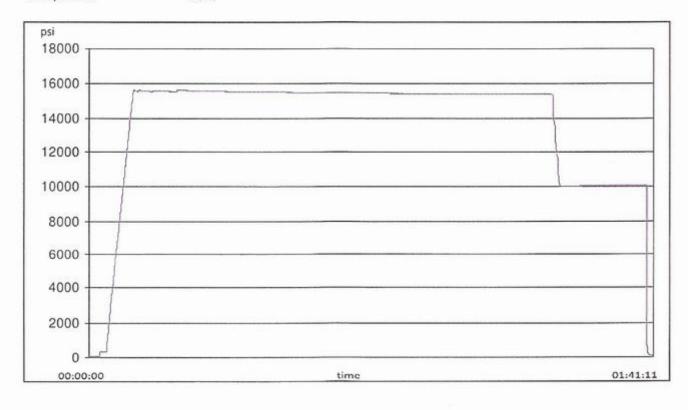
Description:

45

Visual check:

Pressure test result:

PASS

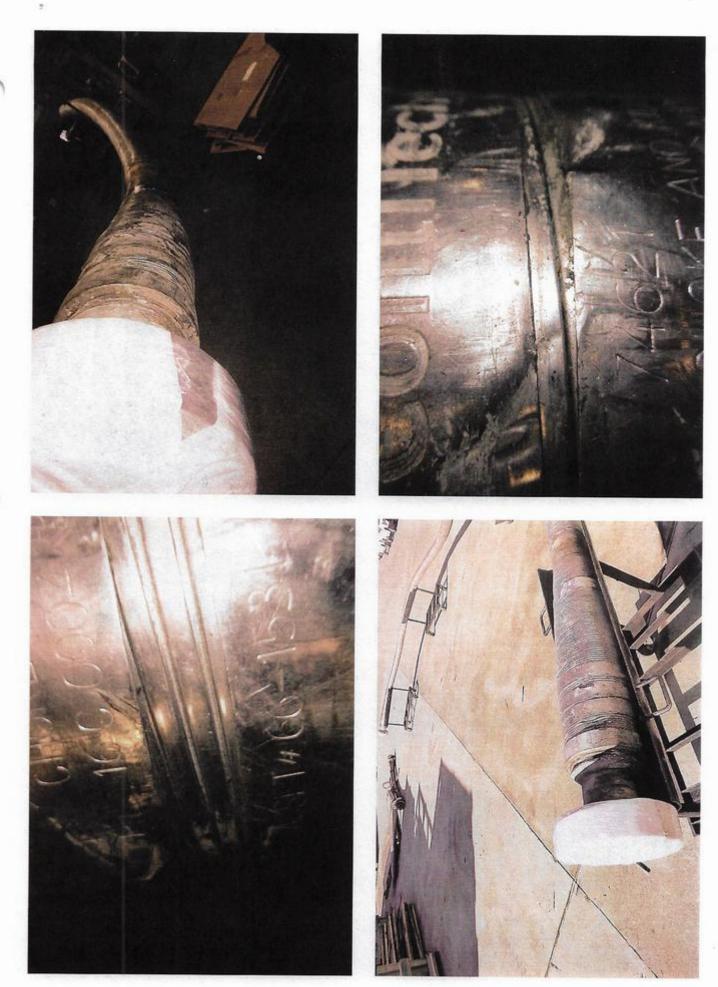

0.00

0.00

Length measurement result:

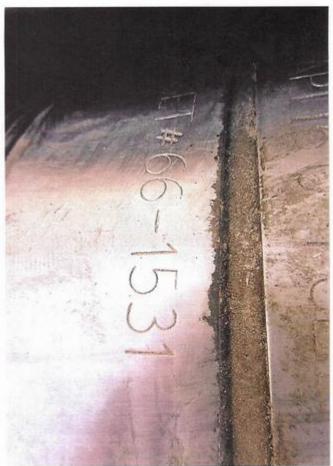
Test operator:

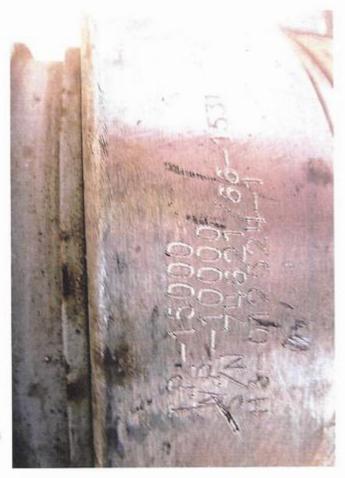
Travis


H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT


GAUGE TRACEABILITY


Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110D3PHO	2023-06-06	2024-06-06
S-25-A-W	110IQWDG	2023-05-16	2024-05-16
Comment			

Released to Imaging: 10/11/2024 9:46:58 AM

Released to Imaging: 10/11/2024 9:46:58 AM

10,000 PSI Annular BOP Variance Request

XTO Energy/XTO Permian Op. request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOPL).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

	8-	1/2" Production Hole Se	ection		
		10M psi Requiremen	t		
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M
	4.500"			Lower 3.5"-5.5" VBR	10M
Jars	6.500"	Annular	5M	-	-
DCs and MWD tools	6.500"-8.000"	Annular	5M	-	-
Mud Motor	6.750"-8.000"	Annular	5M	-	-
Production Casing	5-1/2"	Annular	5M	- -	-
Open-Hole	-	Blind Rams	10M	-	-

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the XTO Energy/Permian Operating drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan

9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP

- ii. Pit gain
- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Well Plan Report - Poker Lake Unit 22 DTD South 202H

Well Plan Report

Plan Sections	Po	Poker Lake Unit 22 DTD South 202H	OTD South 202H					
Measured			TVD			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(t)	(Ded)	(Deg)	(f)	(#)	(#)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target
00.00	0.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00
1100.00	00.00	0.00	1100.00	00.00	00.0	00.00	0.00	0.00
1163.55	1.27	224.24	1163.54	-0.50	-0.49	2.00	0.00	2.00
6637.81	1.27	224.24	6636.46	-87.50	-85.21	00.00	00.00	0.00
6701.36	00.00	0.00	6700.00	-88.00	-85.70	-2.00	00.00	2.00
11367.15	00.00	00.00	11365.80	-88.00	-85.70	00.00	00.00	0.00
12492.15	00.06	179.66	12082.00	-804.18	-81.41	8.00	00:00	8.00
24757.69	00.06	179.66	12082.00	-13069.50	-7.99	00.0	00.00	0.00 LTP 19
24847.69	90.00	179.66	12082.00	-13159.50	-7.45	0.00	0.00	0.00 BHL 19

	Semi- minor	Azimuth Used
	Semi- Semi- major minor	Error Az
	Semi- major	Error
	Magnitude	of Bias
		Bias
	Vertical	Error
I		Bias
outh 202	Latera	Error
2 DTD S		Bias
Poker Lake Unit 22 DTD South 202H	rVD Highside	Error
Poker La	ΔΛΙ	RKB
		Azimuth
ncertainty		Depth Inclination Azimuth
Position Uncertainty	Measured	Depth

	(6)	0.000 XOM_R2OWSG MWD+IFR1+MS	9 90.000 XOM_R2OWSG MWD+IFR1+MS	3 90.000 XOM_R2OWSG MWD+IFR1+MS	3 90.000 XOM_R2OWSG MWD+IFR1+MS	5 90.000 XOM_R2OWSG MWD+IFR1+MS	3 90.000 XOM_R2OWSG MWD+IFR1+MS	90.000 XOM_R2OWSG MWD+IFR1+MS	90.000 XOM_R2OWSG MWD+IFR1+MS	90.000 XOM_R2OWSG MWD+IFR1+MS	7 90.000 XOM_R2OWSG MWD+IFR1+MS	5 90.000 XOM_R2OWSG MWD+IFR1+MS	t 90.000 XOM_R2OWSG MWD+IFR1+MS	2 89.994 XOM_R2OWSG MWD+IFR1+MS	90.007 XOM_R2OWSG MWD+IFR1+MS	t 89.902 XOM_R2OWSG MWD+IFR1+MS) 89.798 XOM_R2OWSG MWD+IFR1+MS	9 89.695 XOM_R2OWSG MWD+IFR1+MS	1 89.593 XOM_R2OWSG MWD+IFR1+MS	5 89.490 XOM_R2OWSG MWD+IFR1+MS) 89.388 XOM_R2OWSG MWD+IFR1+MS	7 89.287 XOM_R2OWSG MWD+IFR1+MS	89.185 XOM_R2OWSG MWD+IFR1+MS	5 89.083 XOM_R2OWSG MWD+IFR1+MS	5 88.981 XOM_R2OWSG MWD+IFR1+MS	7 88.878 XOM_R2OWSG MWD+IFR1+MS	3 88.776 XOM_R2OWSG MWD+IFR1+MS	1 88.673 XOM_R2OWSG MWD+IFR1+MS	t 88.570 XOM_R2OWSG MWD+IFR1+MS	7 88.467 XOM_R2OWSG MWD+IFR1+MS	1 88.363 XOM_R2OWSG MWD+IFR1+MS	88.259 XOM_R2OWSG MWD+IFR1+MS) 88.155 XOM_R2OWSG MWD+IFR1+MS	5 88.050 XOM_R2OWSG MWD+IFR1+MS
	(#)	0.000	0.179	0.538	0.896	1.255	1.613	1.972	2.330	2.689	3.047	3.405	3,764	3.982	4.102	4.434	4.770	5.109	5.451	5.795	6.140	6.487	6.836	7.185	7.535	7.887	8.238	8.591	8.944	9.297	9.651	10.006	10.360	10.715
	Œ	0.000	0.358	0.717	1.075	1.434	1.792	2.151	2.509	2.868	3.226	3.585	3.943	4.161	4.281	4.614	4.950	5.289	5.630	5.974	6.319	999'9	7.014	7.362	7.712	8.063	8.414	8.766	9.119	9.472	9.825	10.179	10.533	10.887
Well Plan Report	(£)	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	000.0	0000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	000.0	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000
Well Pla	(#) (#)	0.000 0.000	2.300 0.000	2.310 0.000	2.326 0.000	2.347 0.000	2.375 0.000	2.407 0.000	2.445 0.000	2.486 0.000	2.533 0.000	2.583 0.000	2.636 0.000	2.672 0.000	2.692 0.000	2.752 0.000	2.815 0.000	2.880 0.000	2.948 0.000	3.018 0.000	3.090 0.000	3.164 0.000	3.239 0.000	3.316 0.000	3.395 0.000	3.476 0.000	3.558 0.000	3.641 0.000	3.726 0.000	3.812 0.000	3.899 0.000	3.987 0.000	4.077 0.000	4.169 0.000
	(£	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	_					\circ						_	_	_	_	_	0	0	_							_	0	0	0	0	0	0	_	
	(#	0.000	0.179	0.538	968.0	1.255 (1.613	1.972	2.330	2.689	3.047	3.405	3,764 (4.070	4.190	4.523 (4.859 0	5.198 0	5.540 (5.884	6.230	6.577	6.925	7.275	7.625) 926.7	8.328 0	8.681 0	9.034 0	9 387 0	9.741 0			10.805
	(ft)		0.179		0.896	1.255	1.613				3.047	3.405	3.764	4.070	4.190	4.523	4.859	5.198	5.540	5.884					7.625	7.976	8.328	8.681	9.034	9.387	9.741	10.095	10.450	0.000 10.805
		0.000 0.000 0.000		0.717 0.000 0.538		0.000 1.255		2.151 0.000 1.972	2.509 0.000 2.330	2.868 0.000 2.689											6.230 -0.000 6.230	6.577 -0.000 6.577	6.925 -0.000 6.925	7.274 -0.000 7.275								-0.000 10.095	-0.000 10.450	-0.000
	(£)	0.000	0.000 0.179	0.000	0.000 0.896	0.000 1.255	0.000 1.613	0.000	0.000	0.000	0.000 3.047	0.000 3.405	0.000 3.764	-0.000 4.070	-0.000 4.190	-0.000 4.523	-0.000 4.859	-0.000 5.198	-0.000 5.540	-0.000 5.884	-0.000	-0.000	-0.000	-0.000	-0.000 7.625	-0.000 7.976	-0.000 8.328	-0.000 8.681	-0.000 9.034	-0.000 9.387	-0.000 9.741	10.095	10.450	
	(ft) (ft)	0.000 0.000	0.358 0.000 0.179	0.717 0.000	1.075 0.000 0.896	1.434 0.000 1.255	1,792 0,000 1,613	2.151 0.000	2.509 0.000	2.868 0.000	3.226 0.000 3.047	3.585 0.000 3.405	3.943 0.000 3.764	1163.544 4.074 -0.000 4.070	1199.986 4.194 -0.000 4.190	1299.961 4.526 -0.000 4.523	1399.937 4.862 -0.000 4.859	1499.912 5.200 -0.000 5.198	1599.888 5.542 -0.000 5.540	1699.863 5.885 -0.000 5.884	1799.838 6.230 -0.000	1899.814 6.577 -0.000	1999.789 6.925 -0.000	2099.765 7.274 -0.000	2199.740 7.623 -0.000 7.625	2299.715 7.974 -0.000 7.976	2399.691 8.325 -0.000 8.328	2499.666 8.677 -0.000 8.681	2599.642 9.030 -0.000 9.034	2699.617 9.383 -0.000 9.387	2799.592 9.736 -0.000 9.741	2899.568 10.090 -0.000 10.095	2999.543 10.444 -0.000 10.450	3099.519 10.798 -0.000
	(ft) (ft) (ft)	0.000 0.000 0.000	100.000 0.358 0.000 0.179	200.000 0.717 0.000	300.000 1.075 0.000 0.896	400.000 1.434 0.000 1.255	500.000 1.792 0.000 1.613	600.000 2.151 0.000	700.000 2.509 0.000	800.000 2.868 0.000	900.000 3.226 0.000 3.047	1000.000 3.585 0.000 3.405	1100.000 3.943 0.000 3.764	4.074 -0.000 4.070	4.194 -0.000 4.190	4.526 -0.000 4.523	4.862 -0.000 4.859	5.200 -0.000 5.198	5.542 -0.000 5.540	5.885 -0.000 5.884	6.230 -0.000	6.577 -0.000	6.925 -0.000	7.274 -0.000	7.623 -0.000 7.625	7.974 -0.000 7.976	8.325 -0.000 8.328	8.677 -0.000 8.681	9.030 -0.000 9.034	9.383 -0.000 9.387	9.736 -0.000 9.741	10.090 -0.000 10.095	10.444 -0.000 10.450	10.798 -0.000
3/4/24, 9:31 PM	(°) (ft) (ft)	0.000 0.000 0.000 0.000	0.000 100.000 0.358 0.000 0.179	0.000 200.000 0.717 0.000	0.000 300.000 1.075 0.000 0.896	0.000 400.000 1.434 0.000 1.255	0.000 500.000 1.792 0.000 1.613	0.000 600.000 2.151 0.000	0.000 700.000 2.509 0.000	0.000 800.000 2.868 0.000	0.000 900.000 3.226 0.000 3.047	0.000 1000.000 3.585 0.000 3.405	0.000 1100.000 3.943 0.000 3.764	224.241 1163.544 4.074 -0.000 4.070	224.241 1199.986 4.194 -0.000 4.190	224.241 1299.961 4.526 -0.000 4.523	224.241 1399.937 4.862 -0.000 4.859	224.241 1499.912 5.200 -0.000 5.198	224.241 1599.888 5.542 -0.000 5.540	224.241 1699.863 5.885 -0.000 5.884	224.241 1799.838 6.230 -0.000	224.241 1899.814 6.577 -0.000	224.241 1999.789 6.925 -0.000	224.241 2099.765 7.274 -0.000	224.241 2199.740 7.623 -0.000 7.625	224.241 2299.715 7.974 -0.000 7.976	224.241 2399.691 8.325 -0.000 8.328	224.241 2499.666 8.677 -0.000 8.681	224.241 2599.642 9.030 -0.000 9.034	224.241 2699.617 9.383 -0.000 9.387	224.241 2799.592 9.736 -0.000 9.741	224.241 2899.568 10.090 -0.000 10.095	224.241 2999.543 10.444 -0.000 10.450	224.241 3099.519 10.798 -0.000

24, 9:31 PM								Well Pla	Well Plan Report					
3200.000	1.271	224.241	3199.494	11.153 -0.000		11.160 0.0	0.000	4.261 0.000	0000	11.242	11.070	87.945	XOM_R2OWSG MWD+IFR1+MS	
3300.000	1.271	224.241	3299 469	11.508 -0.000		11 516 00	0.000	4.355 0.000	0000	11.597	11 426	87.840	XOM_R2OWSG MWD+IFR1+MS	
3400.000	1.271	224.241	3399.445	11.863 -0.000		11.871 0.0	0.000	4.450 0.000	0.000	11.952	11.781	87.734	XOM_R2OWSG MWD+IFR1+MS	
3500.000	1.271	224.241	3499.420	12.219 -0.000		12.227 0.0	0.000	4.546 0.000	0.000	12.307 1	12.137	87.627	XOM_R2OWSG MWD+IFR1+MS	
3600.000	1.271	224.241	3599 396	12.574 -0.000	`	12.584 0.0	0.000	4.644 0.000	0.000	12.663 1	12.493	87.521	XOM_R2OWSG MWD+IFR1+MS	
3700.000	1.271	224.241	3699,371	12.930 -0.000		12.940 0.0	0.000 4	4.743 0.000	0.000	13.019 1	12.850	87.414	XOM_R2OWSG MWD+IFR1+MS	
3800.000	1.271	224.241	3799.346	13.286 -0.000		13.296 0.0	0.000 4	4.844 0.000	0.000	13,375 1	13.206	87.306	XOM_R2OWSG MWD+IFR1+MS	
3900.000	1.271	224.241	3899 322	13.642 -0.000		13 653 0 0	0.000	4.946 0.000	0.000	13.731 1	13.563	87.198	XOM_R2OWSG MWD+IFR1+MS	
4000.000	1.271	224.241	3999.297	13.998 -0.000		14.010 0.0	0.000	5.049 0.000	0.000	14.087	13.919	87.090	XOM_R2OWSG MWD+IFR1+MS	
4100.000	1.271	224.241	4099.273	14.355 -0.000	`_	14.367 0.0	0.000	5.154 0.000	0.000	14.443 1	14.276	86.981	XOM_R2OWSG MWD+IFR1+MS	
4200.000	1.271	224.241	4199 248	14.711 -0.000		14 724 0 0	0.000	5.261 0.000	0.000	14.800	14.633	86.872)	XOM_R2OWSG MWD+IFR1+MS	
4300.000	1.271	224.241	4299.223	15.068 -0.000		15.081 0.0	0.000	5.369 0.000	0.000	15.156 1	14 990	86.762	XOM_R2OWSG MWD+IFR1+MS	
4400.000	1.271	224.241	4399,199	15,425 -0.000		15.438 0.0	0.000	5.478 0.000	0.000	15,513 1	15.347	86,652	XOM_R2OWSG MWD+IFR1+MS	
4500.000	1.271	224.241	4499 174	15.781 -0.000	`	15 795 0 0	0.000	5.589 0.000	0.000	15.870 1	15.704	86.542	XOM_R2OWSG MWD+IFR1+MS	
4600.000	1.271	224.241	4599.150	16 138 -0.000	`	16.153 0.0	0.000	5.702 0.000	0.000	16.227 1	16.062	86.431)	XOM_R2OWSG MWD+IFR1+MS	
4700.000	1.271	224.241	4699.125	16 495 -0.000	`_	16.510 0.0	0.000	5.817 0.000	0.000	16.584 1	16.419	86.319)	XOM_R2OWSG MWD+IFR1+MS	
4800.000	1.271	224.241	4799 100	16.852 -0.000	`	16.868 0.0	0.000	5.933 0.000	0.000	16.941	16.777	86.208	XOM_R2OWSG MWD+IFR1+MS	
4900.000	1.271	224.241	4899.076	17.209 -0.000		17.225 0.0	0.000	6.051 0.000	0.000	17.298 1	17.134	86.095	XOM_R2OWSG MWD+IFR1+MS	
5000.000	1.271	224.241	4999.051	17.567 -0.000	_	17 583 0 0	0.000	6.171 0.000	0.000	17.655 1	17.492	85.983)	XOM_R2OWSG MWD+IFR1+MS	
5100.000	1.271	224.241	5099 027	17.924 -0.000		17 941 0 0	0.000	6.293 0.000	0.000	18.012 1	17.850	85.869	XOM_R2OWSG MWD+IFR1+MS	
5200.000	1.271	224.241	5199.002	18.281 -0.000		18 299 0 0	0.000	6.417 0.000	0.000	18.370 1	18.207	85.756	XOM_R2OWSG MWD+IFR1+MS	
5300.000	1.271	224.241	5298.977	18.638 -0.000		18 656 0 0	0.000	6.542 0.000	0.000	18.727 1	18.565	85.642	XOM_R2OWSG MWD+IFR1+MS	
5400.000	1.271	224.241	5398.953	18.996 -0.000	_	19.014 0.0	0.000	0.000 0.000	0.000	19.085 1	18.923	85.527	XOM_R2OWSG MWD+IFR1+MS	
5500.000	1.271	224.241	5498.928	19.353 -0.000	_	19.372 0.0	0.000	6.800 0.000	0.000	19.442 1	19.281	85.412)	XOM_R2OWSG MWD+IFR1+MS	
5600.000	1.271	224.241	5598 903	19.711 -0.000		19 730 0.0	0.000	6.931 0.000	0.000	19.800	19.639	85.297)	XOM_R2OWSG MWD+IFR1+MS	
5700.000	1.271	224.241	5698.879	20.068 -0.000		20.088 0.0	0.000 7	7.065 0.000	0.000	20.157 1	19.997	85.181)	XOM_R2OWSG MWD+IFR1+MS	
5800.000	1.271	224.241	5798 854	20 426 -0 000		20 447 0 0	0.000 7	7.201 0.000	0.000	20 515 2	20.355	85.065	XOM_R2OWSG MWD+IFR1+MS	
5900.000	1.271	224.241	5898 830	20.784 -0.000		20 805 0 0	0.000 7	7.339 0.000	0.000	20.872 2	20.713	84.948	XOM_R2OWSG MWD+IFR1+MS	
6000.000	1.271	224.241	5998 805	21.141 -0.000		21 163 0 0	0.000 7	7.479 0.000	0.000	21.230 2	21.071	84.831)	XOM_R2OWSG MWD+IFR1+MS	
6100.000	1.271	224.241	6098.780	21.499 -0.000		21.521 0.0	0.000 7	7.621 0.000	0.000	21.588 2	21.429	84.714	XOM_R2OWSG MWD+IFR1+MS	
6200,000	1.271	224.241	6198 756	21 857 -0 000		21 879 0 0	0.000 7	7.766 0.000	0.000	21 946 2	21.787	84.596	XOM_R2OWSG MWD+IFR1+MS	
6300.000	1.271	224.241	6298.731	22.215 -0.000	_	22.238 0.0	0.000 7	7.913 0.000	0.000	22.304 2	22.146	84.478)	XOM_R2OWSG MWD+IFR1+MS	
6400.000	1.271	224.241	6398.707	22.573 -0.000	_	22.596 0.0	0.000	8.062 0.000	0.000	22.661 2	22.504	84.359)	XOM_R2OWSG MWD+IFR1+MS	
6500.000	1.271	224.241	6498.682	22.930 -0.000		22.955 0.0	00000	8.214 0.000	0.000	23.019 2	22.862	84.240	XOM_R2OWSG MWD+IFR1+MS	

Well Plan Report

84.120 XOM_R2OWSG MWD+IFR1+MS	84.075 XOM_R2OWSG MWD+IFR1+MS	84.071 XOM_R2OWSG MWD+IFR1+MS	84.190 XOM_R2OWSG MWD+IFR1+MS	84.306 XOM_R2OWSG MWD+IFR1+MS	84.418 XOM_R2OWSG MWD+IFR1+MS	84.525 XOM_R2OWSG MWD+IFR1+MS	84.628 XOM_R2OWSG MWD+IFR1+MS	84.728 XOM_R2OWSG MWD+IFR1+MS	84.823 XOM_R2OWSG MWD+IFR1+MS	84.916 XOM_R2OWSG MWD+IFR1+MS	85.005 XOM_R2OWSG MWD+IFR1+MS	85.091 XOM_R2OWSG MWD+IFR1+MS	85.174 XOM_R2OWSG MWD+IFR1+MS	85.255 XOM_R2OWSG MWD+IFR1+MS	85.333 XOM_R2OWSG MWD+IFR1+MS	85.408 XOM_R2OWSG MWD+IFR1+MS	85.481 XOM_R2OWSG MWD+IFR1+MS	85.551 XOM_R2OWSG MWD+IFR1+MS	85.620 XOM_R2OWSG MWD+IFR1+MS	85.686 XOM_R2OWSG MWD+IFR1+MS	85.751 XOM_R2OWSG MWD+IFR1+MS	85.813 XOM_R2OWSG MWD+IFR1+MS	85.874 XOM_R2OWSG MWD+IFR1+MS	85.933 XOM_R2OWSG MWD+IFR1+MS	85.990 XOM_R2OWSG MWD+IFR1+MS	86.046 XOM_R2OWSG MWD+IFR1+MS	86.100 XOM_R2OWSG MWD+IFR1+MS	86.153 XOM_R2OWSG MWD+IFR1+MS	86.204 XOM_R2OWSG MWD+IFR1+MS	86.254 XOM_R2OWSG MWD+IFR1+MS	86.302 XOM_R2OWSG MWD+IFR1+MS	86.350 XOM_R2OWSG MWD+IFR1+MS	86.396 XOM_R2OWSG MWD+IFR1+MS
0.000 23.377 23.220	0.000 23.513 23.356	0.000 23.733 23.576	0.000 24.065 23.907	0.000 24.402 24.244	0.000 24.740 24.580	0.000 25.079 24.918	0.000 25.418 25.256	0.000 25.757 25.595	0.000 26.097 25.934	0.000 26.438 26.274	0.000 26.779 26.614	0.000 27.120 26.954	0.000 27.462 27.295	0.000 27.804 27.637	0.000 28.147 27.979	0.000 28.490 28.321	0.000 28.833 28.664	0.000 29.177 29.007	0.000 29.521 29.351	0.000 29.866 29.695	0.000 30.211 30.039	0.000 30.556 30.383	0.000 30.901 30.728	0.000 31.247 31.073	0.000 31.593 31.419	0.000 31.939 31.765	0.000 32.286 32.111	0.000 32.633 32.457	0.000 32.980 32.803	0.000 33.327 33.150	0.000 33.674 33.497	0.000 34.022 33.845	0.000 34.370 34.192
8.368 0.000	8.427 0.000	8.526 0.000	8.683 0.000	8.844 0.000	9.007 0.000	9.173 0.000	9.342 0.000	9.513 0.000	9.686 0.000	9.863 0.000	10.042 0.000	10.223 0.000	10.407 0.000	10.594 0.000	10.784 0.000	10.976 0.000	11.171 0.000	11.369 0.000	11.570 0.000	11.773 0.000	11.980 0.000	12.189 0.000	12.400 0.000	12.615 0.000	12.833 0.000	13.053 0.000	13.277 0.000	13.503 0.000	13.732 0.000	13.964 0.000	14.199 0.000	14.437 0.000	14.677 0.000
23.288 -0.000 23.313 0.000		23.732 0.000 23.578 0.000	24.064 0.000 23.909 0.000	24.401 0.000 24.245 0.000	24.739 0.000 24.582 0.000	25.077 0.000 24.919 0.000	25.416 0.000 25.257 0.000	25.756 0.000 25.596 0.000	26.096 0.000 25.935 0.000	26.436 0.000 26.275 0.000	26.777 0.000 26.615 0.000	27.119 0.000 26.956 0.000	27.461 0.000 27.297 0.000	27.803 0.000 27.638 0.000	28.146 0.000 27.980 0.000	28.489 0.000 28.322 0.000	28.832 0.000 28.665 0.000	29.176 0.000 29.008 0.000	29.520 0.000 29.352 0.000	29.865 0.000 29.696 0.000	30.210 0.000 30.040 0.000	30.555 0.000 30.384 0.000	30.900 0.000 30.729 0.000	31.246 0.000 31.074 0.000	31.592 0.000 31.420 0.000	31.938 0.000 31.765 0.000	32.285 0.000 32.111 0.000	32.632 0.000 32.458 0.000	32.979 0.000 32.804 0.000	33.326 0.000 33.151 0.000	33.674 0.000 33.498 0.000	34.022 0.000 33.845 0.000	34.370 0.000 34.193 0.000
6598.657	6636.456	6700.000	6798.643	6898.643	6998,643	7098.643	7198.643	7298.643	7398,643	7498.643	7598.643	7698,643	7798.643	7898.643	7998,643	8098.643	8198.643	8298.643	8398.643	8498,643	8598.643	8698.643	8798.643	8898.643	8998.643	9098,643	9198.643	9298.643	9398.643	9498.643	9598.643	9698.643	9798.643
1.271 224.241	1.271 224.241	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
000 0099	6637.807	6701.357	000'0089	000'0069	7000,000	7100,000	7200.000	7300.000	7400.000	7500.000	7600.000	7700,000	7800.000	7900,000	8000,000	8100.000	8200.000	8300.000	8400.000	8500,000	8600.000	8700.000	8800.000	8900,000	9000.0006	9100 000	9200.000	9300,000	9400.000	9500,000	9600.000	9700.000	9800.000

	86.441 XOM_R2OWSG MWD+IFR1+MS	86.485 XOM_R2OWSG MWD+IFR1+MS	86.528 XOM_R2OWSG MWD+IFR1+MS	86.569 XOM_R2OWSG MWD+IFR1+MS	86.610 XOM_R2OWSG MWD+IFR1+MS	86.650 XOM_R2OWSG MWD+IFR1+MS	86.689 XOM_R2OWSG MWD+IFR1+MS	86.727 XOM_R2OWSG MWD+IFR1+MS	86.764 XOM_R2OWSG MWD+IFR1+MS	86.800 XOM_R2OWSG MWD+IFR1+MS	86.836 XOM_R2OWSG MWD+IFR1+MS	86.870 XOM_R2OWSG MWD+IFR1+MS	86.904 XOM_R2OWSG MWD+IFR1+MS	86.938 XOM_R2OWSG MWD+IFR1+MS	86.970 XOM_R2OWSG MWD+IFR1+MS	86.992 XOM_R2OWSG MWD+IFR1+MS	86.990 XOM_R2OWSG MWD+IFR1+MS	86.843 XOM_R2OWSG MWD+IFR1+MS	86.418 XOM_R2OWSG MWD+IFR1+MS	85.453 XOM_R2OWSG MWD+IFR1+MS	83.265 XOM_R2OWSG MWD+IFR1+MS	77.062 XOM_R2OWSG MWD+IFR1+MS	49.276 XOM_R2OWSG MWD+IFR1+MS	17.449 XOM_R2OWSG MWD+IFR1+MS	10.322 XOM_R2OWSG MWD+IFR1+MS	7.922 XOM_R2OWSG MWD+IFR1+MS	6.903 XOM_R2OWSG MWD+IFR1+MS	6.534 XOM_R2OWSG MWD+IFR1+MS	6.526 XOM_R2OWSG MWD+IFR1+MS	6.267 XOM_R2OWSG MWD+IFR1+MS	5.976 XOM_R2OWSG MWD+IFR1+MS	5.678 XOM_R2OWSG MWD+IFR1+MS	5.388 XOM_R2OWSG MWD+IFR1+MS	5.111 XOM_R2OWSG MWD+IFR1+MS
Well Plan Report	0.000 34.718 34.540 86.	0.000 35.067 34.888 86.	0.000 35.415 35.236 86.	0.000 35.764 35.584 86.	0.000 36.113 35.933 86.	0.000 36.462 36.282 86.	0.000 36.812 36.631 86.	0.000 37.161 36.980 86.	0.000 37.511 37.329 86.	0.000 37.861 37.679 86.	0.000 38.211 38.028 86.	0.000 38.561 38.378 86.	0.000 38.911 38.728 86.	0.000 39.262 39.078 86.	0.000 39.612 39.428 86.	0.000 39.848 39.664 86.	0.000 39.962 39.778 86.	0.000 40.304 40.120 86.	0.000 40.634 40.456 86.	0.000 40.942 40.779 85.	0.000 41.218 41.087 83.	0.000 41.459 41.373 77.	0.000 41.671 41.624 49.	0.000 41.895 41.794 17.	0.000 42.108 41.907 10.	0.000 42.295 41.978 7.	0.000 42.451 42.017 6.	0.000 42.567 42.032 6.	0.000 42.576 42.033 6.	0.000 42.694 42.040 6.	0.000 42.825 42.047 5.	0.000 42.970 42.056 5.	0.000 43.128 42.066 5.	0.000 43.298 42.076 5
Well Pk	34.718 0.000 34.541 0.000 14.921 0.000	35.066 0.000 34.888 0.000 15.168 0.000	35.415 0.000 35.237 0.000 15.418 0.000	35.764 0.000 35.585 0.000 15.670 0.000	36.113 0.000 35.934 0.000 15.926 0.000	36.462 0.000 36.282 0.000 16.184 0.000	36.811 0.000 36.631 0.000 16.446 0.000	37.161 0.000 36.980 0.000 16.710 0.000	37.510 0.000 37.330 0.000 16.978 0.000	37.860 0.000 37.679 0.000 17.248 0.000	38.210 0.000 38.029 0.000 17.522 0.000	38.560 0.000 38.379 0.000 17.798 0.000	38.911 0.000 38.729 0.000 18.078 0.000	39.261 0.000 39.079 0.000 18.360 0.000	39.612 0.000 39.429 0.000 18.646 0.000	39.847 0.000 39.664 0.000 18.839 0.000	39.941 0.000 39.778 -0.000 18.934 0.000	39.818 0.000 40.121 -0.000 19.221 0.000	39.097 0.000 40.456 -0.000 19.496 0.000	37.807 0.000 40.780 -0.000 19.754 0.000	35.999 0.000 41.088 -0.000 19.990 0.000	33.753 0.000 41.377 -0.000 20.203 0.000	31.184 0.000 41.644 -0.000 20.394 0.000	28.451 0.000 41.886 -0.000 20.567 0.000	25.772 0.000 42.101 -0.000 20.729 0.000	23.437 0.000 42.288 -0.000 20.886 0.000	21.796 0.000 42.444 -0.000 21.043 0.000	21.191 0.000 42.560 -0.000 21.191 0.000	21.204 0.000 42.568 -0.000 21.204 0.000	21.385 0.000 42.685 -0.000 21.385 0.000	21.592 0.000 42.816 -0.000 21.592 0.000	21.825 0.000 42.960 -0.000 21.825 0.000	22.084 0.000 43.117 -0.000 22.084 0.000	22.368 0.000 43.287 -0.000 22.368 0.000
	0.000 0.000 9898.643 34.	0.000 0.000 9998.643 35.	0.000 0.000 10098.643 35.	0.000 0.000 10198.643 35.	0.000 0.000 10298.643 36.	0.000 0.000 10398.643 36.	0.000 0.000 10498.643 36.	0.000 0.000 10598.643 37.	0.000 0.000 10698.643 37.	0.000 0.000 10798.643 37.	0.000 0.000 10898.643 38.	0.000 0.000 10998.643 38.	0.000 0.000 11098.643 38.	0.000 0.000 11198.643 39.	0.000 0.000 11298.643 39.	0.000 0.000 11365.800 39.	2.628 179.657 11398.638 39.	10.628 179.657 11497.889 39.	18.628 179.657 11594.569 39.	26.628 179.657 11686.797 37.	34.628 179.657 11772.776 35.	42.628 179.657 11850.834 33.	50.628 179.657 11919.452 31.	58.628 179.657 11977.293 28.	66.628 179.657 12023.232 25.	74.628 179.657 12056.375 23.	82.628 179.657 12076.077 21.	90.000 179.657 12081.997 21.	90.000 179.657 12081.997 21.	90.000 179.657 12081.997 21.	90.000 179.657 12081.997 21.	90.000 179.657 12081.997 21.	90.000 179.657 12081.997 22.	90.000 179.657 12081.997 22.
a 3/4/24, 9:31 PM	000.006	10000.000	10100.000	10200,000	10300.000	10400.000	10500.000	10600.000	10700.000	10800.000	10900.000	11000.000	11100,000	11200.000	11300,000	11367.150	11400.000	11500.000	11600,000	11700,000	11800,000	11900.000	12000.000	12100.000	12200.000	12300.000	12400,000	12492.150	12500.000	12600.000	12700,000	12800.000	12900.000	13000.000

	4.850 XOM_R2OWSG MWD+IFR1+MS	4.607 XOM_R2OWSG MWD+IFR1+MS	4.381 XOM_R2OWSG MWD+IFR1+MS	4.171 XOM_R2OWSG MWD+IFR1+MS	3.976 XOM_R2OWSG MWD+IFR1+MS	3.796 XOM_R2OWSG MWD+IFR1+MS	3.629 XOM_R2OWSG MWD+IFR1+MS	3.473 XOM_R2OWSG MWD+IFR1+MS	3.328 XOM_R2OWSG MWD+IFR1+MS	3.193 XOM_R2OWSG MWD+IFR1+MS	3.067 XOM_R2OWSG MWD+IFR1+MS	2.949 XOM_R2OWSG MWD+IFR1+MS	2.839 XOM_R2OWSG MWD+IFR1+MS	2.735 XOM_R2OWSG MWD+IFR1+MS	2.638 XOM_R2OWSG MWD+IFR1+MS	2.547 XOM_R2OWSG MWD+IFR1+MS	2.460 XOM_R2OWSG MWD+IFR1+MS	2.379 XOM_R2OWSG MWD+IFR1+MS	2.302 XOM_R2OWSG MWD+IFR1+MS	2.229 XOM_R2OWSG MWD+IFR1+MS	2.160 XOM_R2OWSG MWD+IFR1+MS	2.094 XOM_R2OWSG MWD+IFR1+MS	2.032 XOM_R2OWSG MWD+IFR1+MS	1.973 XOM_R2OWSG MWD+IFR1+MS	1.916 XOM_R2OWSG MWD+IFR1+MS	1.863 XOM_R2OWSG MWD+IFR1+MS	1.811 XOM_R2OWSG MWD+IFR1+MS	1.762 XOM_R2OWSG MWD+IFR1+MS	1.715 XOM_R2OWSG MWD+IFR1+MS	1.670 XOM_R2OWSG MWD+IFR1+MS	1.627 XOM_R2OWSG MWD+IFR1+MS	1.586 XOM_R2OWSG MWD+IFR1+MS	1.547 XOM_R2OWSG MWD+IFR1+MS	1.509 XOM_R2OWSG MWD+IFR1+MS
Well Plan Report	0.000 43.482 42.087	0.000 43.677 42.099	0.000 43.886 42.111	0.000 44.106 42.124	0.000 44.339 42.138	0.000 44.584 42.153	0.000 44.840 42.169	0.000 45.108 42.185	0.000 45.387 42.202	0.000 45.677 42.219	0.000 45.979 42.238	0.000 46.290 42.257	0.000 46.613 42.276	0.000 46.945 42.297	0.000 47.288 42.318	0.000 47.641 42.340	0.000 48.003 42.362	0.000 48.374 42.385	0.000 48.755 42.409	0.000 49.145 42.434	0.000 49.543 42.459	0.000 49.950 42.485	0.000 50.366 42.512	0.000 50.789 42.539	0.000 51.220 42.567	0.000 51.660 42.596	0.000 52.106 42.626	0.000 52.560 42.656	0.000 53.022 42.687	0.000 53.490 42.718	0.000 53.965 42.750	0.000 54.447 42.783	0.000 54.935 42.816	0.000 55.429 42.851
Well F	375 0.000 43.470 -0.000 22.675 0.000	005 0.000 43.666 -0.000 23.005 0.000	556 0.000 43.874 -0.000 23.356 0.000	728 0.000 44.094 -0.000 23.728 0.000	21 0.000 44.327 -0.000 24.121 0.000	331 0.000 44.571 -0.000 24.531 0.000	960 0.000 44.828 -0.000 24.960 0.000	106 0.000 45.095 -0.000 25.406 0.000	368 0.000 45.375 -0.000 25.868 0.000	345 0.000 45.665 -0.000 26.345 0.000	337 0.000 45.966 -0.000 26.837 0.000	942 0.000 46.278 -0.000 27.342 0.000	361 0.000 46.600 -0.000 27.861 0.000	991 0.000 46.933 -0.000 28.391 0.000	334 0.000 47.275 -0.000 28.934 0.000	187 0.000 47.628 -0.000 29.487 0.000	0000 0.000 30.050 0.000	523 0.000 48.362 -0.000 30.623 0.000	05 0.000 48.742 -0.000 31.205 0.000	97 0.000 49.132 -0.000 31.797 0.000	996 0.000 49.531 -0.000 32.396 0.000	003 0.000 49.938 -0.000 33.003 0.000	117 0.000 50.353 -0.000 33.617 0.000	39 0.000 50.777 -0.000 34.239 0.000	167 0.000 51.208 -0.000 34.867 0.000	01 0.000 51.647 -0.000 35.501 0.000	41 0.000 52.094 -0.000 36.141 0.000	87 0.000 52.548 -0.000 36.787 0.000	138 0.000 53.010 -0.000 37.438 0.000	994 0.000 53.478 -0.000 38.094 0.000	55 0.000 53.953 -0.000 38.755 0.000	120 0.000 54.435 -0.000 39.420 0.000	990 0.000 54.923 -0.000 40.090 0.000	64 0.000 55.417 -0.000 40.764 0.000
	90.000 179.657 12081.997 22.675	90.000 179.657 12081.997 23.005	90.000 179.657 12081.997 23.356	90.000 179.657 12081.997 23.728	90.000 179.657 12081.997 24.121	90.000 179.657 12081.997 24.531	90.000 179.657 12081.997 24.960	90.000 179.657 12081.997 25.406	90.000 179.657 12081.997 25.868	90.000 179.657 12081.997 26.345	90.000 179.657 12081.997 26.837	90.000 179.657 12081.997 27.342	90.000 179.657 12081.997 27.861	90.000 179.657 12081.997 28.391	90.000 179.657 12081.997 28.934	90.000 179.657 12081.997 29.487	90.000 179.657 12081.997 30.050	90.000 179.657 12081.997 30.623	90.000 179.657 12081.997 31.205	90.000 179.657 12081.997 31.797	90.000 179.657 12081.997 32.396	90.000 179.657 12081.997 33.003	90.000 179.657 12081.997 33.617	90.000 179.657 12081.997 34.239	90.000 179.657 12081.997 34.867	90.000 179.657 12081.997 35.501	90.000 179.657 12081.997 36.141	90.000 179.657 12081.997 36.787	90.000 179.657 12081.997 37.438	90.000 179.657 12081.997 38.094	90.000 179.657 12081.997 38.755	90.000 179.657 12081.997 39.420	90.000 179.657 12081.997 40.090	90.000 179.657 12081.997 40.764
3/4/24, 9:31 PM	eleas	13200.000	13300.000	13400.000	13500.000	13600,000	13700.000	13800.000	13900.000	14000.000	14100.000	14200.000	14300.000 90.	14400.000 90.	14500.000 90.	14600.000 90.	14700.000 90.	14800.000 90.	14900.000 90.	15000.000 90.	15100.000 90.	15200.000 90.	15300.000 90.	15400.000 90.	15500.000 90.	15600.000 90.	15700.000 90.	15800.000 90.	15900.000 90.	16000.000 90.	16100.000 90.	16200.000 90.	16300.000 90.	16400.000 90.

	1.472 XOM_R2OWSG MWD+IFR1+MS	1.437 XOM_R2OWSG MWD+IFR1+MS	1.403 XOM_R2OWSG MWD+IFR1+MS	1.371 XOM_R2OWSG MWD+IFR1+MS	1.339 XOM_R2OWSG MWD+IFR1+MS	1.309 XOM_R2OWSG MWD+IFR1+MS	1.280 XOM_R2OWSG MWD+IFR1+MS	1.252 XOM_R2OWSG MWD+IFR1+MS	1.224 XOM_R2OWSG MWD+IFR1+MS	1.198 XOM_R2OWSG MWD+IFR1+MS	1.173 XOM_R2OWSG MWD+IFR1+MS	1.148 XOM_R2OWSG MWD+IFR1+MS	1.124 XOM_R2OWSG MWD+IFR1+MS	1.101 XOM_R2OWSG MWD+IFR1+MS	1.079 XOM_R2OWSG MWD+IFR1+MS	1.057 XOM_R2OWSG MWD+IFR1+MS	1.036 XOM_R2OWSG MWD+IFR1+MS	1.015 XOM_R2OWSG MWD+IFR1+MS	0.995 XOM_R2OWSG MWD+IFR1+MS	0.976 XOM_R2OWSG MWD+IFR1+MS	0.957 XOM_R2OWSG MWD+IFR1+MS	0.939 XOM_R2OWSG MWD+IFR1+MS	0.922 XOM_R2OWSG MWD+IFR1+MS	0.904 XOM_R2OWSG MWD+IFR1+MS	0.887 XOM_R2OWSG MWD+IFR1+MS	0.871 XOM_R2OWSG MWD+IFR1+MS	0.855 XOM_R2OWSG MWD+IFR1+MS	0.840 XOM_R2OWSG MWD+IFR1+MS	0.825 XOM_R2OWSG MWD+IFR1+MS	0.810 XOM_R2OWSG MWD+IFR1+MS	0.796 XOM_R2OWSG MWD+IFR1+MS	0.782 XOM_R2OWSG MWD+IFR1+MS	0.768 XOM_R2OWSG MWD+IFR1+MS	0.755 XOM_R2OWSG MWD+IFR1+MS
Well Plan Report	0.000 55.929 42.885	0.000 56.436 42.921	0.000 56.948 42.957	0.000 57.466 42.994	0.000 57.989 43.031	0.000 58.518 43.070	0.000 59.052 43.108	0.000 59.591 43.148	0.000 60.134 43.188	0.000 60.683 43.229	0.000 61.236 43.270	0.000 61.794 43.312	0.000 62.356 43.355	0.000 62.923 43.398	0.000 63.493 43.442	0.000 64.068 43.487	0.000 64.647 43.532	0.000 65.229 43.578	0.000 65.816 43.625	0.000 66.406 43.672	0.000 66.999 43.720	0.000 67.596 43.768	0.000 68.196 43.817	0.000 68.800 43.867	0.000 69.407 43.917	0.000 70.017 43.968	0.000 70.630 44.020	0.000 71.246 44.072	0.000 71.864 44.125	0.000 72.486 44.178	0.000 73.110 44.232	0.000 73.737 44.287	0.000 74.367 44.342	0.000 74.999 44.398
Well F	00 41.441 0.000	00 42.123 0.000	00 42.808 0.000	00 43.496 0.000	00 44.188 0.000	00 44.882 0.000	00 45.580 0.000	00 46.280 0.000	000.0 46.983 0.000	000.0 689.0000	000.0 48.397 0.000	000.0 49.107 0.000	00 49.820 0.000	00 20.535 0.000	000 21.251 0.000	000.0 01.970 0.000	000 52.691 0.000	00 53.413 0.000	000 54.137 0.000	00 54.863 0.000	000 25.591 0.000	00 26.320 0.000	000.0 020.02	00 57.782 0.000	00 58.515 0.000	00 29.250 0.000	000'0 986'65 00	00 60.723 0.000	000 01.461 0.000	00 62.201 0.000	00 62.941 0.000	000:0 83:0:000	00 64.425 0.000	00 65.169 0.000
	0.000 55.918 -0.000	3 0.000 56.424 -0.000	3 0.000 56.937 -0.000	3 0.000 57.455 -0.000	3 0.000 57.978 -0.000	9 0.000 58.507 -0.000	0.000 59.041 -0.000	0.000 59.580 -0.000	3 0.000 60.124 -0.000	0.000 60.672 -0.000	7 0.000 61.226 -0.000	7 0.000 61.783 -0.000	0.000 62.346 -0.000	5 0.000 62.912 -0.000	0.000 63.483 -0.000	0.000 64.058 -0.000	0.000 64.637 -0.000	3 0.000 65.219 -0.000	7 0.000 65.806 -0.000	0.000 66.396 -0.000	0.000 66.989 -0.000	0.000 67.586 -0.000	0.000 68.187 -0.000	0.000 68.790 -0.000	0.000 69.397 -0.000	0.000 70.007 -0.000	3 0.000 70.620 -0.000	3 0.000 71.236 -0.000	0.000 71.855 -0.000	0.000 72.477 -0.000	0.000 73.101 -0.000	3 0.000 73.728 -0.000	5 0.000 74.358 -0.000	9 0.000 74.990 -0.000
	97 41,441	97 42.123	97 42.808	97 43.496	97 44.188	97 44.882	97 45.580	97 46.280	97 46.983	97 47.689	97 48.397	97 49.107	97 49,820	97 50.535	97 51.251	97 51.970	97 52.691	97 53.413	97 54.137	97 54.863	97 55.591	97 56.320	97 57.050	97 57.782	97 58.515	97 59.250	986.65 76	97 60.723	97 61.461	97 62.201	97 62.941	97 63.683	97 64.425	97 65.169
	7 12081.997	7 12081.997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081,997	7 12081 997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081.997	7 12081.997	7 12081.997	7 12081.997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081 997	7 12081 997	7 12081.997	7 12081.997	7 12081.997
	179.657	0 179.657	7 179.657	0 179.657	0 179.657	179.657	0 179.657	179.657	179.657	0 179.657	0 179.657	0 179.657	0 179,657	0 179.657	179.657	179.657	179.657	179.657	179.657	0 179.657	7 179.657	0 179.657	179.657	0 179.657	179.657	0 179.657	179.657	179.657	0 179.657	7 179.657	0 179.657	0 179.657	0 179.657	0 179.657
	90.000	90.000	90.000	90.000	90.000	000'06	90.000	90.000	90.000	90.000	90.000	90.000	000'06	90.000	90.000	000 06	000 06	90.000	90.000	000.06	90.000	90.000	90.000	90.000	90.000	90.000	000'06	90.000	90.000	90.000	90.000	90.000	90.000	000 06
3/4/24, 9:31 PM	16500.000	16600.000	16700.000	16800.000	16900.000	17000.000	17100.000	17200.000	17300.000	17400.000	17500.000	17600.000	17700,000	17800.000	17900,000	18000.000	18100.000	18200.000	18300.000	18400.000	18500.000	18600.000	18700.000	18800.000	18900.000	19000.000	19100.000	19200.000	19300.000	19400.000	19500.000	19600.000	19700.000	19800.000
	eleas	sed 1	to In	nagi	ing:	10/	11/2	2024	9:4	16:5	8 A	М																						

Well Plan Report

3/4/24, 9:31 PM

1,24, 0.01								all report	
19900.000	90.000	179.657	12081.997	65.913	0.000	75.625 -0.000	65.913 0.000	0.000 75.633 44.454	0.741 XOM_R2OWSG MWD+IFR1+MS
20000.000	000 06	179 657	12081.997	66.659	0.000	76.262 -0.000	000.0 659.99	0.000 76.270 44.511	0.729 XOM_R2OWSG MWD+IFR1+MS
20100.000	90.000	179.657	12081.997	67.405	0.000	76.901 -0.000	67.405 0.000	0.000 76.910 44.569	0.716 XOM_R2OWSG MWD+IFR1+MS
20200.000	000 06	179.657	12081.997	68 152	0000	77.543 -0.000	68.152 0.000	0.000 77.551 44.627	0.704 XOM_R2OWSG MWD+IFR1+MS
20300.000	000 06	179 657	12081.997	006 89	0.000.0	78.187 -0.000	68.900 0.000	0.000 78.195 44.686	0.692 XOM_R2OWSG MWD+IFR1+MS
20400,000	000.06	179.657	12081.997	69.649	0.000	78.833 -0.000	69.649 0.000	0.000 78.841 44.745	0.681 XOM_R2OWSG MWD+IFR1+MS
20500.000	000.06	179,657	12081.997	70.399	0.000.0	79.481 -0.000	70.399 0.000	0.000 79.489 44.805	0.669 XOM_R2OWSG MWD+IFR1+MS
20600.000	000.06	179.657	12081.997	71.149	0.000	80.131 -0.000	71.149 0.000	0.000 80.140 44.866	0.658 XOM_R2OWSG MWD+IFR1+MS
20700.000	000.06	179.657	12081.997	71.900	0.000	80.783 -0.000	71.900 0.000	0.000 80.792 44.927	0.647 XOM_R2OWSG MWD+IFR1+MS
20800.000	000.06	179.657	12081.997	72.652	0.000	81.438 -0.000	72.652 0.000	0.000 81.446 44.989	0.637 XOM_R2OWSG MWD+IFR1+MS
20900.000	90.000	179.657	12081.997	73.405	0.000	82.094 -0.000	73.405 0.000	0.000 82.102 45.051	0.626 XOM_R2OWSG MWD+IFR1+MS
21000.000	90.000	179.657	12081.997	74.158	0.000	82.752 -0.000	74.158 0.000	0.000 82.760 45.114	0.616 XOM_R2OWSG MWD+IFR1+MS
21100,000	000.06	179.657	12081.997	74.912	0.000.0	83,412 -0,000	74.912 0.000	0.000 83.420 45.177	0.606 XOM_R2OWSG MWD+IFR1+MS
21200.000	000 06	179 657	12081.997	75.666	0.000	84.074 -0.000	75.666 0.000	0.000 84.082 45.241	0.596 XOM_R2OWSG MWD+IFR1+MS
21300.000	90.000	179.657	12081.997	76.421	0.000	84.737 -0.000	76.421 0.000	0.000 84.745 45.306	0.587 XOM_R2OWSG MWD+IFR1+MS
21400.000	000.06	179.657	12081.997	77.177	0.000	85.402 -0.000	77 177 0 000	0.000 85.410 45.371	0.577 XOM_R2OWSG MWD+IFR1+MS
21500.000	90.000	179.657	12081.997	77.933	0.000	86.069 -0.000	77.933 0.000	0.000 86.077 45.437	0.568 XOM_R2OWSG MWD+IFR1+MS
21600.000	000.06	179.657	12081.997	78.690	0.000	86.738 -0.000	78.690 0.000	0.000 86.745 45.503	0.559 XOM_R2OWSG MWD+IFR1+MS
21700.000	90.000	179.657	12081.997	79.447	0.000	87.408 -0.000	79.447 0.000	0.000 87.415 45.570	0.550 XOM_R2OWSG MWD+IFR1+MS
21800.000	000.06	179.657	12081.997	80.205	0.000	88.079 -0.000	80.205 0.000	0.000 88.087 45.637	0.542 XOM_R2OWSG MWD+IFR1+MS
21900.000	000.06	179.657	12081.997	80.964	0.000	88.752 -0.000	80.964 0.000	0.000 88.760 45.705	0.533 XOM_R2OWSG MWD+IFR1+MS
22000.000	000.06	179.657	12081.997	81.723	0.000	89.427 -0.000	81.723 0.000	0.000 89.435 45.774	0.525 XOM_R2OWSG MWD+IFR1+MS
22100.000	90.000	179.657	12081.997	82.482	0.000	90.103 -0.000	82.482 0.000	0.000 90.111 45.843	0.517 XOM_R2OWSG MWD+IFR1+MS
22200.000	000.06	179.657	12081.997	83.242	0.000	90.781 -0.000	83.242 0.000	0.000 90.788 45.912	0.509 XOM_R2OWSG MWD+IFR1+MS
22300.000	90.000	179.657	12081.997	83.622	0.000	91.204 -0.000	83.622 0.000	0.000 91.212 52.613	0.628 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22400.000	90.000	179.657	12081.997	83.625	0.000	91 374 -0 000	83.625 0.000	0.000 91.383 52.703	0.626 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22500,000	000.06	179.657	12081.997	83.630	0.000	91 548 -0 000	83.630 0.000	0.000 91.556 52.793	0.623 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22600.000	90.000	179.657	12081.997	83.637	0.000	91 725 -0 000	83.637 0.000	0.000 91.733 52.883	0.620 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22700.000	90.000	179.657	12081.997	83.647	0.000	91.905 -0.000	83.647 0.000	0.000 91.914 52.974	0.617 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22800.000	90.000	179.657	12081.997	83.659	0.000	92.089 -0.000	83.659 0.000	0.000 92.098 53.066	0.614 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
22900.000	000'06	179.657	12081.997	83.674	000.0	92.276 -0.000	83.674 0.000	0.000 92.284 53.157	0.611 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
23000.000	90.000	179.657	12081.997	83.691	0.000	92.466 -0.000	83.691 0.000	0.000 92.475 53.249	0.608 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
23100.000	90.000	179.657	12081.997	83.711	0.000	92.660 -0.000	83.711 0.000	0.000 92.668 53.342	0.605 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22
23200.000	90.000	179.657	12081.997	83.733	0.000	92.857 -0.000	83.733 0.000	0.000 92.865 53.435	0.602 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22

8619.00 RECTANGLE

642663.80

427398.60

24848.04

BHL 19

	0.599 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.595 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	22 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	3 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	5 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	1 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.578 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.574 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22) MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	3 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	2 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	3 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	t MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22) MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.546 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.544 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	2 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22	0.540 MWD+IFR1+SAG+MS+GS_XTO_PLUDTD_22		TVD MSL Target Shape	(ft)	8619.00 RECTANGLE	7759.40 RECTANGLE	8619.00 RECTANGLE
			6 0.592	0 0.588	0.585	0.581			0.570	995.0 586	0.562	0.558	7 0.554	6 0.550			3 0.542			ting	(#)	5.20	3.76	2.90
Well Plan Report	0.000 93.065 53.528	0.000 93.268 53.622	0.000 93.474 53.716	0.000 93.684 53.810	0.000 93.896 53.905	0.000 94.112 54.000	0.000 94.331 54.096	0.000 94.553 54.192	0.000 94.777 54.288	0.000 95.005 54.385	0.000 95.236 54.482	0.000 95.470 54.580	0.000 95.707 54.677	0.000 95.947 54.776	0.000 96.189 54.874	0.000 96.330 54.931	0.000 96.434 54.973	0.000 96.552 55.021		Grid Easting		642585.20	642653.76	642662.90
Well Pla	83.758 0.000	83.785 0.000	83.815 0.000	83.847 0.000	83.881 0.000	83.918 0.000	83.957 0.000	83.999 0.000	84.043 0.000	84.090 0.000	84.139 0.000	84.191 0.000	84.245 0.000	84.301 0.000	84.360 0.000	84 395 0 000	84.421 0.000	84.451 0.000		Grid Northing	(ft)	440470.10	440558.12	427488.60
	0.000 93.056 -0.000	0.000 93.260 -0.000	0.000 93.466 -0.000	0.000 93.675 -0.000	0.000 93.888 -0.000	0.000 94.104 -0.000	0.000 94.323 -0.000	0.000 94.544 -0.000	0.000 94.769 -0.000	0.000 94.997 -0.000	0.000 95.228 -0.000	0.000 95.462 -0.000	0.000 95.699 -0.000	0.000 95.939 -0.000	0.000 96.182 -0.000	0.000 96.323 -0.000	0.000 96.426 -0.000	0.000 96.544 -0.000	Poker Lake Unit 22 DTD South 202H	Depth	(ft)	12198.75	11314.07	24757.69
	83.758 0.0	83.785 0.0	83.815 0.0	83.847 0.0	83.881 0.0	83.918 0.0	83 957 0 (83.999 0.0	84 043 0 (84 090 0 0	84 139 0 (84 191 0 (84 245 0.0	84 301 0 (84 360 0 (84.395 0.0	84 421 0 (84.451 0.0	Unit 22 DTD	Measured Depth		121	113	247
	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	179.657 12081.997	Poker Lake					
	179.657	179.657		179.657	179.657			179.657	179.657				179.657		179.657		179.657	179.657						
	90.000	90.000	90.000	90.000	90.000	000'06	000'06	90.000	90.000	90.000	90.000	90.000	90,000	90.000	90.000	000'06	90.000	90.000						
3/4/24, 9:31 PM	23300.000	23400.000	23500.000	23600.000	23700.000	23800.000	23900,000	24000.000	24100.000	24200.000	24300.000	24400.000	24500,000	24600.000	24700.000	24757.690	24800.000	24847.690	Plan Targets		Target Name	FTP 19	SHL 18	LTP 19
	eleas	sed 1	to In	nagi	ing:	10/	11/2	2024	9:4	6:5	8 <i>A</i> l	И												

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: XTO

LEASE NO.: NMLC068431

LOCATION: Sec. 22, T.24 S, R 30 E

COUNTY: Eddy County, New Mexico

WELL NAME & NO.: Poker Lake Unit 22 DTD 202H

SURFACE HOLE FOOTAGE: 13'/N & 1564'/W

BOTTOM HOLE FOOTAGE: 2627'/N & 1478'/W

COA

H ₂ S	•	No	C Yes		
Potash /	None	Secretary	Ō R-111-Q	Open Annulus	
WIPP	Choose	Choose an option (including blank option.)			
Cave / Karst	• Low	Medium	Ü High	Critical	
Wellhead	Conventional	• Multibowl	O Both	Diverter	
Cementing	Primary Squeeze	Cont. Squeeze	EchoMeter	DV Tool	
Special Req	Capitan Reef	Water Disposal	COM	Unit	
Waste Prev.	C Self-Certification	O Waste Min. Plan	APD Submitted p	rior to 06/10/2024	
Additional	Flex Hose	Casing Clearance	Pilot Hole	Break Testing	
Language	Four-String	Offline Cementing	Fluid-Filled		

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 9-5/8 inch surface casing shall be set at approximately 950 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the

lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **7-5/8** inch Intermediate casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.
 - a. First stage: Operator will cement with intent to reach the top of the Brushy Canyon at 6459'.
 - b. **Second stage:** Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Operator has proposed to pump down Surface X Intermediate 1 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Surface casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

If cement does not reach surface, the next casing string must come to surface.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

A commercial well determination shall be submitted after production has been established for at least six months. (This is not necessary for secondary recovery unit wells)

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable.

Casing Clearance

String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing easing set depth or grade to meet clearance requirement.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; BLM NM CFO DrillingNotifications@BLM.GOV; (575) 361-2822

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

- open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approved by Zota Stevens on 10/2/2024 575-234-5998 / zstevens@blm.gov

HYDROGEN SULFIDE (H2S) CONTINGENCY PLAN

Assumed 100 ppm ROE = 3000'

100 ppm H2S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

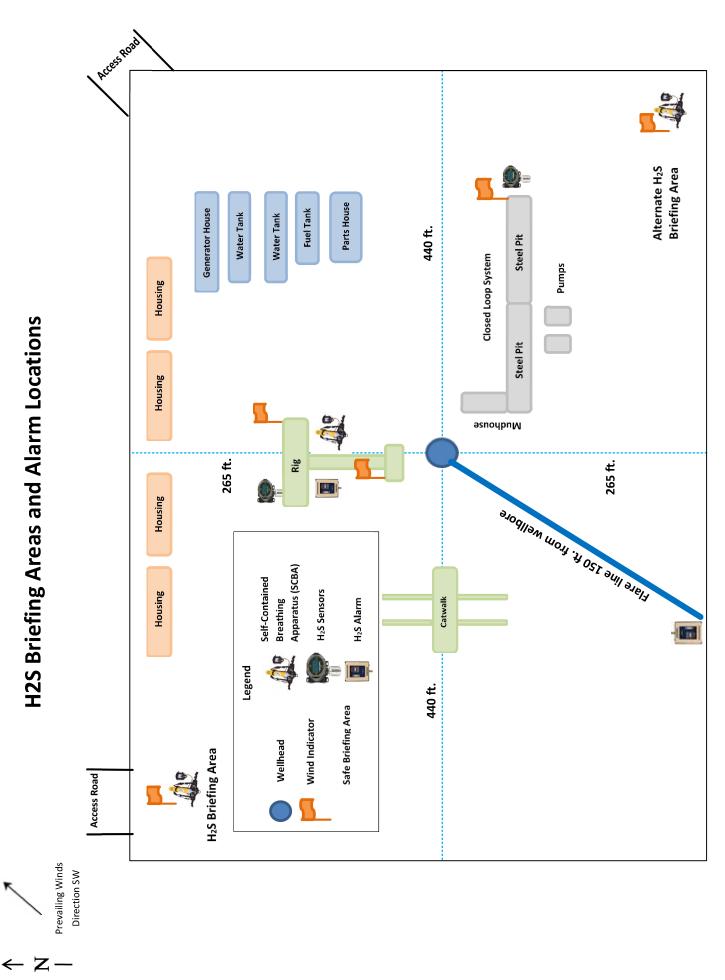
- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

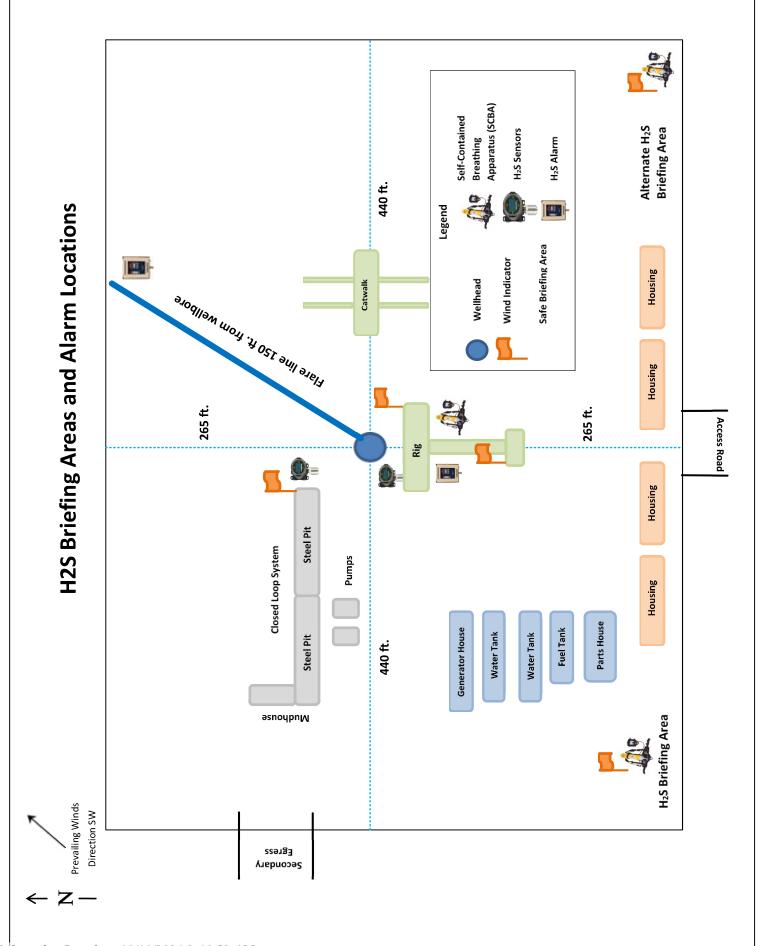
Ignition of Gas source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever this is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air = I	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = I	2 ppm	N/A	1000 ppm


Contacting Authorities


All XTO location personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

CARLSBAD OFFICE – EDDY & LEA COUNTIES

3104 E. Greene St., Carlsbad, NM 88220 Carlsbad, NM	575-887-7329
XTO PERSONNEL: Will Dacus, Drilling Manager Brian Dunn, Drilling Supervisor Robert Bartels, Construction Execution Planner Andy Owens, EH & S Manager Frank Fuentes, Production Foreman	832-948-5021 832-653-0490 406-478-3617 903-245-2602 575-689-3363
SHERIFF DEPARTMENTS:	
Eddy County Lea County	575-887-7551 575-396-3611
NEW MEXICO STATE POLICE:	575-392-5588
FIRE DEPARTMENTS: Carlsbad Eunice Hobbs Jal Lovington	911 575-885-2111 575-394-2111 575-397-9308 575-395-2221 575-396-2359
HOSPITALS: Carlsbad Medical Emergency Eunice Medical Emergency Hobbs Medical Emergency Jal Medical Emergency Lovington Medical Emergency	911 575-885-2111 575-394-2112 575-397-9308 575-395-2221 575-396-2359
AGENT NOTIFICATIONS: For Lea County: Bureau of Land Management – Hobbs New Mexico Oil Conservation Division – Hobbs	575-393-3612 575-393-6161
For Eddy County: Bureau of Land Management - Carlsbad New Mexico Oil Conservation Division - Artesia	575-234-5972 575-748-1283

H2S Briefing Areas and Alarm Locations

Well Name: POKER LAKE UNIT 22 DTD Well Number: 202H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? Y

Description of cuttings location Cuttings. The well will be drilled utilizing a closed-loop mud system. Drill cuttings will be held in roll-off style mud boxes and taken to a New Mexico Oil Conservation Division (NMOCD) approved disposal site. Drilling Fluids. These will be contained in steel mud pits and then taken to a NMOCD approved commercial disposal facility. Produced Fluids. Water produced from the well during completion will be held temporarily in steel tanks and then taken to a NMOCD approved commercial disposal facility. Oil produced during operations will be stored in tanks until sold.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

POKER_LAKE_UNIT_22_DTD_202H_Well_20240406131557.pdf

Comments: Multi-well pad.

Released to Imaging: 10/11/2024 9:46:58 AM

Well Name: POKER LAKE UNIT 22 DTD Well Number: 202H

Section 10 - Plans for Surface Reclamation

Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: POKER LAKE UNIT 22 DTD

Multiple Well Pad Number: B

Recontouring

PLU 22 DTD IR2 20240330135315.pdf PLU 22 DTD IR3 20240330135315.pdf PLU_22_DTD_IR4_20240330135315.pdf PLU_22_DTD_IR1_20240330135315.pdf

Drainage/Erosion control construction: Initial seedbed preparation will consist of recontouring to the appropriate interim or final reclamation standard. All compacted areas to be seeded will be ripped to a minimum depth of 18 inches with a minimum furrow spacing of 2 feet, followed by recontouring the surface and then evenly spreading the stockpiled topsoil. Prior to seeding, the seedbed will be scarified to a depth of no less than 4-6 inches

Drainage/Erosion control reclamation: Erosion features are equal to or less than surrounding area and erosion control is sufficient so that water naturally infiltrates into the soil and gullying, headcutting, slumping, and deep or excessive rills (greater than 3 inches) are not observed.

Well pad proposed disturbance

Powerline proposed disturbance

Pipeline proposed disturbance

(acres):

(acres):

Road proposed disturbance (acres):

Road interim reclamation (acres): 0

Road long term disturbance (acres): 0

(acres): 0

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 0

Pipeline interim reclamation (acres): 0 Pipeline long term disturbance

(acres): 0

Well pad interim reclamation (acres): 0 Well pad long term disturbance

(acres): Other proposed disturbance (acres): Other interim reclamation (acres): 0

Other long term disturbance (acres): 0

Total proposed disturbance: 0 Total interim reclamation: 0 Total long term disturbance: 0

Disturbance Comments:

Reconstruction method: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded.

Topsoil redistribution: The original stock piled topsoil will be spread over the areas being reclaimed and the original landform will be restored for all disturbed areas including well pads, production facilities, roads, pipelines, and utility corridors as close as possible to the original topography. The location will then be ripped and seeded.

Soil treatment: A self-sustaining, vigorous, diverse, native (or otherwise approved) plan community will be established on the site with a density sufficient to control erosion and invasion by non-native plants and to re-establish wildlife habitat or forage production. At a minimum, the established plant community will consist of species included in the seed mix and/or desirable species occurring in the surrounding natural vegetation

<style isBold="true">Existing Vegetation at the well pad:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation at the well pad

Well Name: POKER LAKE UNIT 22 DTD Well Number: 202H

<style isBold="true">Existing Vegetation Community at the road:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation Community at the road

<style isBold="true">Existing Vegetation Community at the pipeline:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Existing Vegetation Community at the pipeline

<style isBold=&guot;true&guot;>Existing Vegetation Community at other disturbances:</style> Soils are classified as Simona Gravelly Fine Sandy Loam and Simona-Bippus Complex. Simona soils are found on alluvial fans and plans and form in mixed alluvium and/or Aeolian sands. Bippus soils are found on alluvial fans and floodplains and form in mixed alluvium. The SimonaBippus soils are dominant to the east and the Simona Gravelly Fine Sandy Loams are dominant to the West. Dominant vegetation species include: mesquite, sumac snakeweed, and various forbs and grasses. Ground cover is minimal, offering 90 percent visibility

Total pounds/Acre:

Existing Vegetation Community at other disturbances

Non native seed used? N

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? N

Seedling transplant description

Will seed be harvested for use in site reclamation? N

Seed harvest description:

Seed harvest description attachment:

Seed

Seed Table

Seed Summary

Seed Type Pounds/Acre

Seed reclamation

Operator Contact/Responsible Official

Released to Imaging: 10/11/2024 9:46:58 AM

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 391343

CONDITIONS

| Operator: | OGRID: | |
|----------------------------|---|--|
| XTO PERMIAN OPERATING LLC. | 373075 | |
| 6401 HOLIDAY HILL ROAD | Action Number: | |
| MIDLAND, TX 79707 | 391343 | |
| | Action Type:
[C-101] BLM - Federal/Indian Land Lease (Form 3160-3) | |

CONDITIONS

| Created By | Condition | Condition Date |
|-------------|--|----------------|
| ward.rikala | Notify OCD 24 hours prior to casing & cement | 10/11/2024 |
| ward.rikala | Will require a File As Drilled C-102 and a Directional Survey with the C-104 | 10/11/2024 |
| ward.rikala | Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string | 10/11/2024 |
| ward.rikala | Cement is required to circulate on both surface and intermediate1 strings of casing | 10/11/2024 |
| ward.rikala | If cement does not circulate on any string, a CBL is required for that string of casing | 10/11/2024 |
| ward.rikala | Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system | 10/11/2024 |