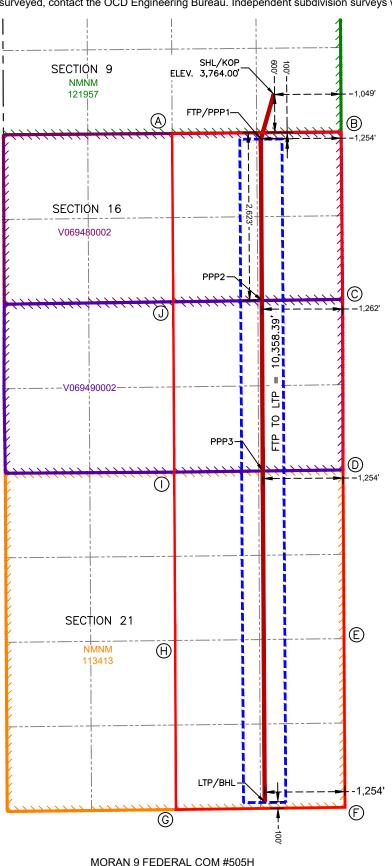
Form 3160-3 FORM APPROVED OMB No. 1004-0137 (June 2015) Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR 5. Lease Serial No. BUREAU OF LAND MANAGEMENT APPLICATION FOR PERMIT TO DRILL OR REENTER 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER 1a. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone 2. Name of Operator 9. API Well No. 30-025-54500 3a. Address 3b. Phone No. (include area code) 10. Field and Pool, or Exploratory 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area At surface At proposed prod. zone 14. Distance in miles and direction from nearest town or post office* 12. County or Parish 13. State 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the 25. Signature Name (Printed/Typed) Date Title Approved by (Signature) Name (Printed/Typed) Date Title Office Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

APPROVED WITH CONDITIONS Released to Imaging: 4/22/2025 12:39:30 PM Approval Date: 02/06/2025


*(Instructions on page 2)

<u>C-10</u>	<u>12</u>		En			ral Resources Depa	artment		l	Revised July 9, 2024				
	Electronically Permitting	/		OIL (CONSERVA	TION DIVISION			☑ Initial Su	ıbmittal				
	_							Submittal Type:	☐ Amende	d Report				
								,,	☐ As Drilled					
					WELL LOCAT	ON INFORMATION								
API Nu	mber 30-025	-54500	Pool Code	695		Pool Name Bilbrey Basin; Bone Spring								
Prop	erty Coo		Property N	ame	MORAN	FEDERAL COM		Well Number 505H						
OGRID	No. 37216	5	Operator N	lame PFF	RMIAN RESOL	JRCES OPERATING,			vel Elevation 3,764'					
		wner: State	∟ e □ Fee □					e □ Fee l	_L □ Tribal ဩ Fe					
UL	Section	Township	Range	Lot	Surfa Ft. from N/S	ce Location Ft. from E/W	Latitude	1.	ongitude	County				
P	9 21S 32E 600' FSL				1,049' FEL	32.4876		03.674558°	LEA					
			V			Hole Location								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	L	ongitude.	County				
Р	21	21S	32E		100' FSL	1,254' FEL	32.4572	277° -1	103.675239°	LEA				
	1				l			l l						
	ted Acres 10	Infill or Defin	ing Well	Defining	Well API	Overlapping Spacing N	Unit (Y/N)	Consolida C	tion Code					
Order I	Numbers.	TBD		l		Well setbacks are under Common Ownership: ⊠Yes □No								
					Kick O	ff Point (KOP)								
UL	Kick Off Point (KOP) Section Township Range Lot Ft. from N/S Ft. from E/W						Latitude	L	ongitude.	County				
Р	9	218	32E		600' FSL	1,049' FEL	32.4876	674° -1	03.674558°	LEA				
					First Ta	ke Point (FTP)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	L	ongitude.	County				
Α	16	21S	32E		100' FNL	1,254' FEL	32.4857	749° -1	103.675222°	LEA				
	1			1.	1	ake Point (LTP)		· · · · ·						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	- 1	ongitude	County				
Р	21	21S	32E		100' FSL	1,254' FEL	32.4572	2// -1	03.675239°	LEA				
Unitize	d Area or A	rea of Uniform	Interest	Spacing	Unit Type ⊠ Ho	Horizontal □ Vertical Ground Floor Elevation:								
ODER	ATOR CER	TIFICATIONS		ı		SURVEYOR CERTIFIC	CATIONS							
			ontoined bee	n io +	d complete +- +-									
best of that this in the la well at t unlease pooling If this well the consideral the well	my knowledge organization and including this location p d mineral intorder heretofe ell is a horizo sent of at lea interest in each	e and belief, an either owns a wathe proposed bursuant to a coretest, or to a voore entered by the stone lessee of the tract (in the tract interval will be	d, if the well is vorking interes of the hole local stract with an oll untary pooling the division. The certify that the prowner of a sarget pool or for the prowner of the prowner	a vertical of tor unlease tion or has owner of a vertical of a vertical of a vertical of the time of a vertical of the time of	d complete to the or directional well, and mineral interest a right to drill this vorking interest or t or a compulsory ation has received erest or unleased which any part of empulsory pooling	1	the addunger of the little of	own on this by supervisi	on, and that the	from field notes of e same is true and				
Signatu			D	ate		Signature and Seal of Pro	fessional Sur							
	Caso	i Evans		3/3/25										
	Name ssie Eva		s@permiar	ires co	m	Certificate Number	Date of Survey 2/6/2025							
						ts have been consolidated or a non-standard unit has been approved by the								

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

SURFACE HOLE LOCATION & KICK-OFF POINT 600' FSL & 1,049' FEL ELEV. = 3,764.00'

NAD 83 X = 744,463.72' NAD 83 Y = 541,773.83' NAD 83 LAT = 32.487674° NAD 83 LONG = -103.674558° NAD 27 X = 703,282.27' NAD 27 Y = 541,712.36' NAD 27 LAT = 32.487551° NAD 27 LONG = -103.674067°

FIRST TAKE POINT & PENETRATION POINT 1 100' FNL & 1.254' FEL

NAD 83 X = 744,263.17'
NAD 83 Y = 541,072.15'
NAD 83 LAT = 32.485749'
NAD 83 LONG = -103.675222'
NAD 27 X = 703,081.71'
NAD 27 Y = 541,010.69'
NAD 27 LAT = 32.4856269'
NAD 27 LONG = -103.674731'

PENETRATION POINT 2 2,623' FNL & 1,262' FEL

NAD 83 X = 744,277.42' NAD 83 Y = 538,549.62' NAD 83 LAT = 32.478815° NAD 83 LONG = -103.675226° NAD 27 X = 703,095.89' NAD 27 Y = 538,488.23' NAD 27 LAT = 32.478692° NAD 27 LONG = -103.674736°

PENETRATION POINT 3 0' FNL & 1,254' FEL

NAD 83 X = 744,292.46' NAD 83 Y = 535,886.32' NAD 83 LAT = 32.471494° NAD 83 LONG = -103.675231° NAD 27 X = 703,110.86' NAD 27 Y = 535,825.01' NAD 27 LAT = 32.471372° NAD 27 LONG = -103.674740°

LAST TAKE POINT & BOTTOM HOLE LOCATION 100' FSL & 1,254' FEL

NAD 83 X = 744,321.98' NAD 83 Y = 530,713.93' NAD 83 LAT = 32.457277' NAD 83 LONG = -103.675239' NAD 27 X = 703,140.24' NAD 27 Y = 530,652.76' NAD 27 LAT = 32.457154' NAD 27 LONG = -103.674749'

	CORNER COORDINATES MEXICO EAST - NAD 83
POINT	NORTHING/EASTING
Α	N:541,160.12' E:742,876.40'
В	N:541,183.02' E:745,516.24'
С	N:538,567.58' E:745,539.31'
D	N:535,902.84' E:745,546.35'
Е	N:533,266.43' E:745,561.42'
F	N:530,630.01' E:745,576.48'
G	N:530,596.15' E:742,936.36'
Н	N:533,237.61' E:742,923.24'
I	N:535,868.11' E:742,910.18'
J	N:538,529.92' E:742,893.19'

State of New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

		<u> 1211C</u>	ctive May 25, 2021									
I. Operator: Permian Ro	esources (Operating, LLC	OGRID: <u>372</u>	165	I	Date: 7/9 <u>/2024</u>						
II. Type: ☑ Original ☐ Amendment due to ☐ 19.15.27.9.D(6)(a) NMAC ☐ 19.15.27.9.D(6)(b) NMAC ☐ Other. If Other, please describe:												
III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.												
Well Name	API	ULSTR	Footages	Anticipated Oil	Anticipated Gas	Anticipated Prod Water						
IV. Central Delivery Poi	nt Namas				Sec. 10.15.27.0	(D)(1) NMAC]						
1v. Central Denvery For	iit ivaine:			[See 19.13.27.9	(D)(1) NMAC]						

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date

VI. Separation Equipment: ☑ Attach a complete description of how Operator will seize separation equipment to optimize gas capture.

VII. Operations Practices: ☑ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: ☑ Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan Effective April 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

□ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well Name	API	Anticipated Average Natural Gas Rate	Anticipated Volume of Natural Gas for the First Year

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Volume of Natural Gas for the First Year

XI. Map. ✓ Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas system(s) to which the well(s) will be connected.

XII. Line Capacity. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

☑ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: ☑ Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attached a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Section 3 – Certifications

Effective May 25, 2021

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

☑ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

□ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system.

If Operator checks this box, Operator will select one of the following:

Well Shut-In. □ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. □ Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) Power generation on lease;
- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 – Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
 - (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
 - (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, not later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file and update for each Natural Gas Management Plan until the Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
 - (c) OCD may deny or conditionally approve and APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.								
Signature: MVIII ()								
Printed Name: JENNIFER ELROD								
Title: SR. REGULATORY ANALYST								
E-mail Address: jennifer.elrod@permianres.com								
Date: 7/9/2024								
Phone: 940-452-6214								
OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)								
Approved By:								
Title:								
Approval Date:								
Conditions of Approval:								

I certify, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true

.

Permian Resources Operating, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

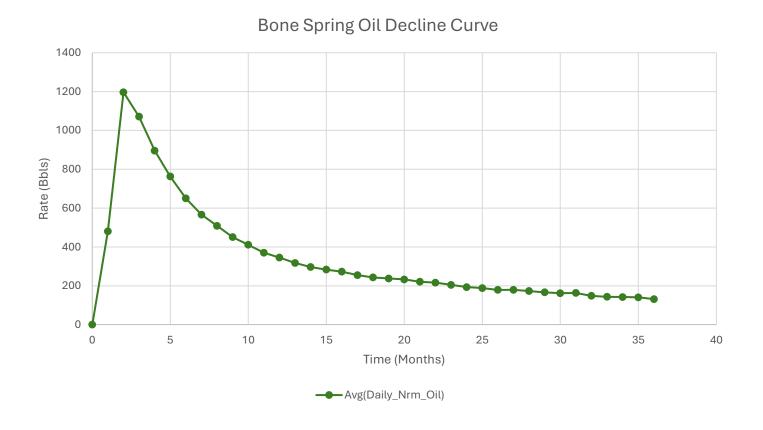
Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

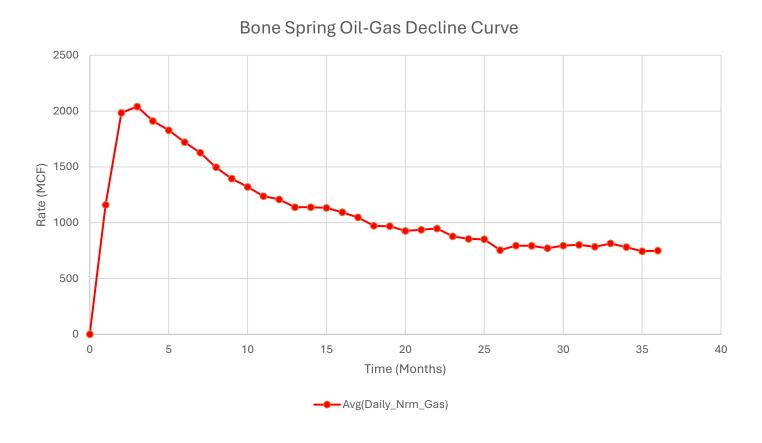
- Closed-loop systems
- Enclosed and properly sized tanks

Permian Resources Operating, LLC (372165)

- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable


Measurement or estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.


VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:

- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

02/07/2025

APD ID: 10400099793 Submission Date: 07/14/2024

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

Well Type: OIL WELL Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
14992534	RUSTLER	2427	1211	1211	SANDSTONE	USEABLE WATER	N
14992535	TOP SALT	615	1812	1812	SALT	NONE	N
14992537	YATES	-733	3160	3160	ANHYDRITE, SHALE	NONE	N
14992538	CAPITAN REEF	-946	3373	3373	SANDSTONE	NONE	N
14992539	DELAWARE SAND	-3161	5588	5588	SANDSTONE	NATURAL GAS, OIL	N
14992540	BRUSHY CANYON	-4411	6838	6838	SANDSTONE	NATURAL GAS, OIL	N
14992541	BONE SPRING LIME	-6211	8638	8638	LIMESTONE, SHALE	NATURAL GAS, OIL	N
14992542	BONE SPRING 1ST	-7158	9585	9585	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
14992546	BONE SPRING 2ND	-7888	10315	10315	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M Rating Depth: 11535

Equipment: BOPE will meet all requirements for above listed system per 43 CFR 3172. BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional, tested, and will meet all requirements per 43 CFR 3172. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing of the surface x intermedicate annulus without breaking the connection between the BOP & wellhead. A variance is requested to utilize a flexible choke line (flexhose) from the BOP to choke manifold.

Requesting Variance? YES

Variance request: Variance request: Multibowl Wellhead, Flexhose, Breaktesting, Offline Cementing Variances. Attachments in Section 8.

Testing Procedure: Operator requests to ONLY test broken pressure seals per API Standard 53 and the attachments in Section 8. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed, b. whenever any seal subject to test pressure is broken, c.

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

following related repairs, d. at 21-day intervals. Testing of the ram type preventer(s) and annual type preventer(s) shall be tested per 43 CFR 3172. The BOPE configuration, choke manifold layout, and accumulator system will be in compliance with 43 CFR 3172. Bleed lines will discharge 100' from wellhead in non-H2S scenarios and 150' from wellhead in H2S scenarios.

Choke Diagram Attachment:

5M_Choke_Manifold_20240621114516.pdf

BOP Diagram Attachment:

5M_BOP_20240621114521.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1236	0	1236	3764	2528	1236	J-55	54.5	BUTT	1.85	2.11	DRY	5.43	DRY	5.1
2	INTERMED IATE	12.2 5	10.75	NEW	API	N	0	3085	0	3085	3533	679	3085	J-55	45.5	BUTT	6.79	3.64	DRY	4.42	DRY	4.33
3	INTERMED IATE	9.87 5	8.625	NEW	NON API	N	0	5538	0	5538	3533	-1774	ı	OTH ER		OTHER - MO-FXL	4.86	2.33	DRY	2.85	DRY	4.13
4	PRODUCTI ON	7.87 5	5.5	NEW	NON API	N	0	21285	0	10535	3533	-6771	21285	OTH ER		OTHER - GEOCONN	2.03	2.12	DRY	2.06	DRY	2.06

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Moran_9_Fed_Com_505H_CsgAssumptions_20240712163306.pdf

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

Casing Attachments

Casing ID: 2

String

INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Moran_9_Fed_Com_505H_CsgAssumptions_20240712163147.pdf

Casing ID: 3

String

INTERMEDIATE

Inspection Document:

Spec Document:

Int_2_Csg_8.625_32_p110_20240709153723.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Moran_9_Fed_Com_505H_CsgAssumptions_20240712163219.pdf

Casing ID: 4

String

PRODUCTION

Inspection Document:

Spec Document:

Prod_Csg_5.5_20_p110_20240709152857.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Moran_9_Fed_Com_505H_CsgAssumptions_20240712163359.pdf

Section 4 - Cement

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1236	970	1.34	14.8	1290	50	CLASS C	ACCELERATOR

INTERMEDIATE	Lead	0	2460	350	1.88	12.9	640	50	CLASS C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	2460	3085	140	1.34	14.8	180	50	CLASS C	Retarder
INTERMEDIATE	Lead	0	4430	360	1.88	12.9	670	50	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	4430	5538	140	1.33	14.8	180	25	Class C	Salt
PRODUCTION	Lead	6038	1008	300	2.41	11.5	700	0	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail	1008 2	2117 3	1120	1.73	12.5	1930	0	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	РН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1236	SPUD MUD	8.6	9.5							
1236	3085	SALT SATURATED	10	10							
3085	5538	WATER-BASED MUD	8.6	9.5							
5538	2117 3	OTHER : BRINE - 5538'-10814' OBM-10814'- 21173	9	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD from intermediate hole to TD of the well

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY,

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5480 Anticipated Surface Pressure: 3162

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Moran_9_Fed_H2S_Plan_D_20240712134743.pdf

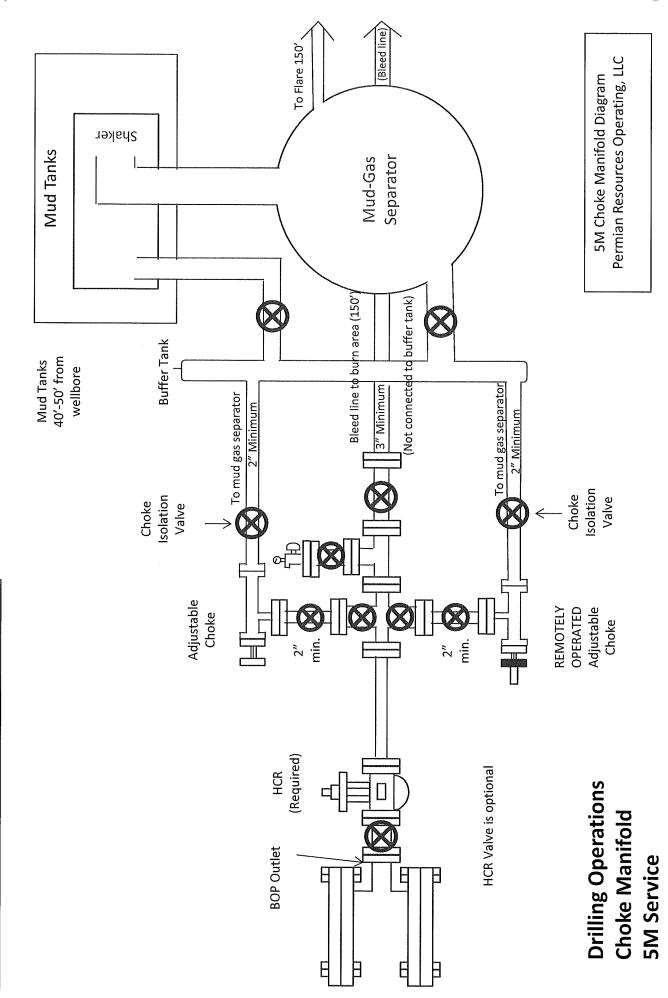
Well Name: MORAN 9 FEDERAL COM Well Number: 505H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MORAN_9_FED_COM_505H_DD_20240712163816.pdf MORAN_9_FED_COM_505H_AC_20240712163816.pdf

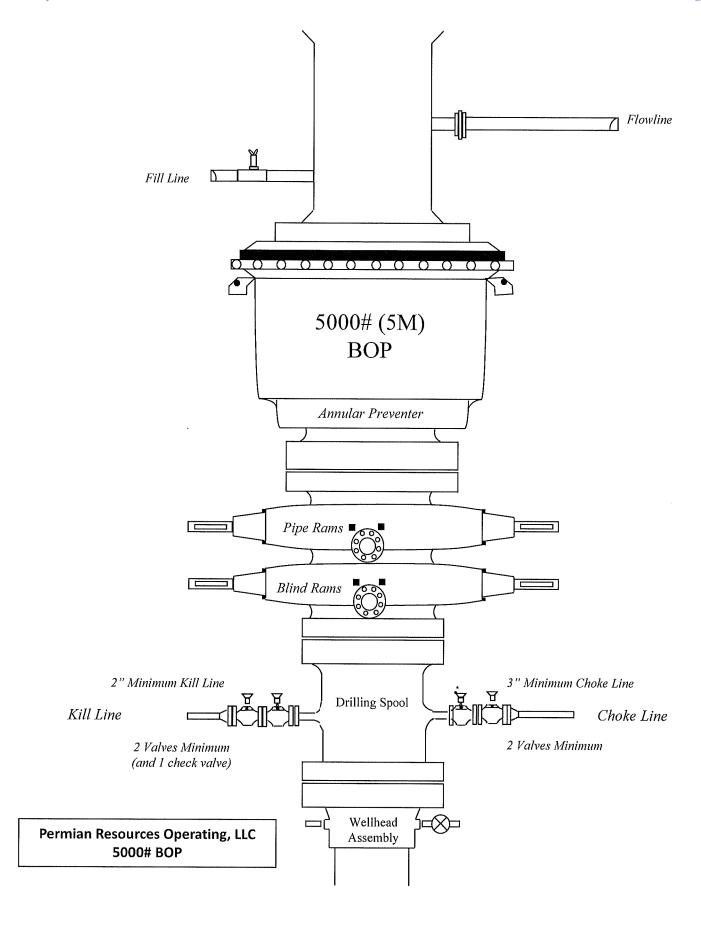
Other proposed operations facets description:

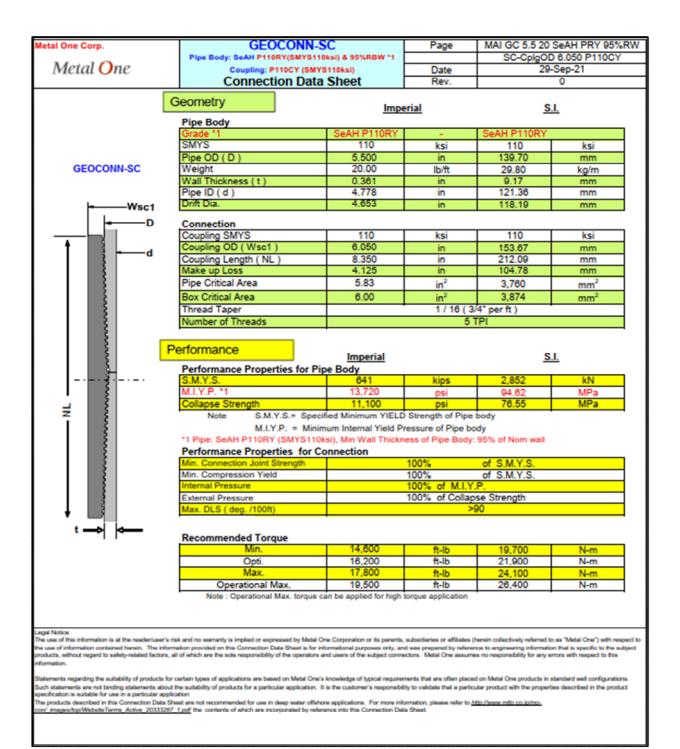

WASTE MANAGEMENT PLAN & R-111Q DOCUMENTATION ATTACHED

Other proposed operations facets attachment:

Moran_9_Fed_D_Pad_R111Q_20240712134824.pdf Moran_NGMP_20240709143438.pdf

Other Variance attachment:


Moran_9_Fed_BOP_Break_20240709125029.pdf
Moran_9_Fed_Batch_20240709125030.pdf
Moran_9_Fed_FH_20240709125031.pdf
Moran_9_Fed_MBS_20240709125029.pdf
Moran_9_Fed_OLCV_20240709125030.pdf

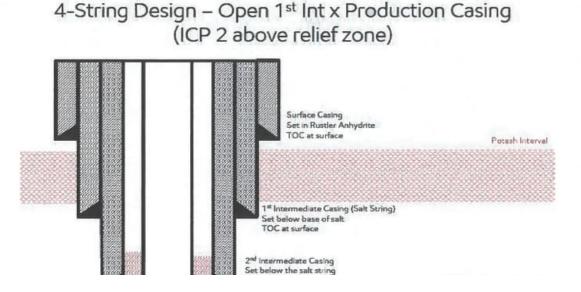

Released to Imaging: 4/22/2025 12:39:30 PM

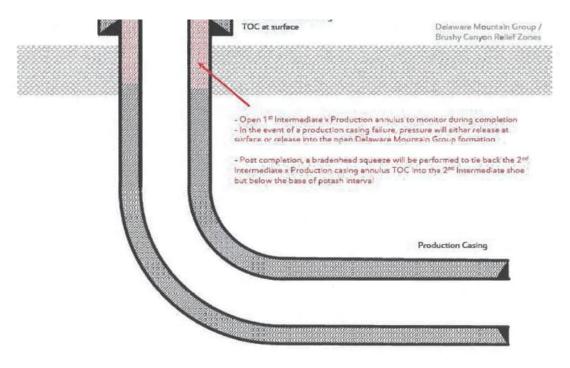
Bleed lines will discharge 100' from WH in non-H2S scenarios

and 150' from WH in H2S scenarios.

Bleed lines will discharge 100' from WH in non-H2S scenarios and 150' from WH in H2S scenarios.

Metal One Corp.	MO-FXL			MO-FXL 8		
Motal Oue		CDS#	P110HSCY MinYS125ksi			
Metal <mark>O</mark> ne	*1 Pipe Body: BMP P110HSC Min95%WT		Min95%WT			
	Connection Data	Date	8-Sep-21			
	Connection Data	Sneet	Date	8-Sep-21		
	Geometry	<u>Imperia</u>	<u>1</u>	<u>S.I.</u>		
	Pipe Body					
	Grade *1	P110HSCY		P110HSCY	_	
	MinYS *1	125	ksi	125	ksi	
MO EVI	Pipe OD (D)	8 5/8	in	219.08	mm	
MO-FXL	Weight	32.00	lb/ft	47.68	kg/m	
	Actual weight	31.10		46.34	kg/m	
	Wall Thickness (t)	0.352	in	8.94	mm	
	Pipe ID (d)	7.921	in	201.19	mm	
	Pipe body cross section	9.149	in ²	5,902	mm ²	
	Drift Dia.	7.796	in	198.02	mm	
	-	-	-	-	-	
_	Connection					
<u> </u>	Box OD (W)	8.625	in	219.08	mm	
î 😝	PIN ID	7.921	in	201.19	mm	
	Make up Loss	3.847	in	97.71	mm	
Box	Box Critical Area	5.853	in ²	3686	mm ²	
critical	Joint load efficiency	69	%	69	%	
	IJOHIL IOAG EHICIERICY					
area	-				70	
	Thread Taper Number of Threads		/ 10 (1.	2" per ft) TPI	70	
Make up	Thread Taper Number of Threads Performance	1	/ 10 (1. 5	2" per ft)	70	
Make d	Thread Taper Number of Threads Performance Performance Properties	for Pipe Body	/ 10 (1. 5	2" per ft) TPI		
Make up	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1	for Pipe Body	/ 10 (1. 5	2" per ft) TPI 5,087	kN	
Make up loss D	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1	for Pipe Body	/ 10 (1. 5	2" per ft) TPI 5,087 66.83	kN MPa	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	for Pipe Body 1,144 9,690 4,300	/ 10 (1. 5	2" per ft) TPI 5,087 66.83 29.66	kN MPa MPa	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE	kips psi psi	2" per ft) TPI 5,087 66.83 29.66 ngth of Pipe bo	kN MPa MPa MPa	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yield	kips psi psi psi tLD Streid Pressur	2" per ft) TPI 5,087 66.83 29.66 ngth of Pipe body re of Pipe body	kN MPa MPa MPa	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiek 25ksi, Min95%V	kips psi psi psi d Pressur VT, Colla	2" per ft) TPI 5,087 66.83 29.66 ngth of Pipe body re of Pipe body	kN MPa MPa	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiek 25ksi, Min95%V	Kips psi psi cLD Streid Pressur	5,087 66.83 29.66 ngth of Pipe body	kN MPa MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiek 25ksi, Min95%V for Connectio	Kips psi psi ELD Streid Pressur	2" per ft) TPI 5,087 66.83 29.66 ngth of Pipe body re of Pipe body	kN MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiele 25ksi, Min95%V for Connectio 789 kips 789 kips	Kips psi psi ELD Streid Pressur VT, Colla n (69%	5,087 66.83 29.66 ngth of Pipe body pse Strength 4	kN MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiele 25ksi, Min95%V for Connectio 789 kips 789 kips	Kips psi psi psi psi psi pressur VT, Collain (69% 69% 70% 70% 100 10	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S.	kN MPa MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiele 25ksi, Min95%V for Connectio 789 kips 789 kips	Kips psi psi psi psi psi pressur VT, Collain (69% 69% 70% 70% 100 10	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	kN MPa MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiele 25ksi, Min95%V for Connectio 789 kips 789 kips	/ 10 (1. 5	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	kN MPa MPa MPa dy	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiek 25ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi	Kips psi psi psi d Pressur VT, Colla n (69% 70% 100% c	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.) f Collapse S	kN MPa MPa MPa dy ,300psi	
Make up loss D	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiel 25ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi	Kips psi psi psi psi VT, Colla n (69% 70% 70% 71-1b)	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of Collapse S 9	kN MPa MPa MPa dy ,300psi	
Make up loss Din critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiek 25ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi i	Kips psi psi psi psi VT, Colla n (69% 70% 100% c	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of Collapse S 9	kN MPa MPa MPa dy ,300psi	
Make up loss Din critical	Thread Taper Number of Threads Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS1 Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	for Pipe Body 1,144 9,690 4,300 ied Minimum YIE um Internal Yiel 25ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi	Kips psi psi psi psi VT, Colla n (69% 70% 70% 71-1b)	5,087 66.83 29.66 ngth of Pipe body pse Strength 4 of S.M.Y.S. of S.M.Y.S. of Collapse S 9	kN MPa MPa MPa dy ,300psi	


String	Hole Size	Casing Size	Тор	Bottom	Тор ТУБ	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1236	0	1236	1236	J55	54.5	BTC	1.85	2.11	Dry	5.43	Dry	5.10
Intermediate 1	12.25	10.75	0	3085	0	3085	3085	J55	45.5	BTC	6.79	3.64	Dry	4.42	Dry	4.33
Intermediate 2	9.875	8.625	0	5538	0	5538	5538	P110 HS	32	MO-FXL	4.86	2.33	Dry	2.85	Dry	4.13
Production	7.875	5.5	0	21173	0	10535	21173	P110RY	20	GeoConn	2.03	2.12	Dry	2.06	Dry	2.06
								BLM M	in Safe	ety Factor	1.125	1		1.6		1.6


The WBD below depicts the cement design required for R111Q.

The annulus between the production and intermediate casing strings shall be actively monitored for pressure during hydraulic fracturing operations. If pressure communication is observed, indicating a possible production casing failure, hydraulic fracturing operations must immediately cease, and source of the pressure increase shall be investigated. During hydraulic fracturing operations, a pressure relief valve or appropriate venting system shall be installed to relieve pressure in the event of a production casing failure. The opening pressure of any pressure relief valves must be set below 50% of the intermediate casing burst rating. If the well design features an uncemented intermediate casing shoe (for example as shown in Exhibit B, Figure B) and the well approaches to within ¼ mile of an offset well drilling, completing or producing from the Delaware Mountain Group, then the pressure relief valve opening pressure shall be set no more than 1000 psi and at no time shall the pressure on the annulus be allowed to exceed 1000 psi. This requirement can be waived by the offset well operator.

Production cement will be 500' below the 2nd intermediate shoe with 0% excess leaving the DMG uncemented as a pressure relief zone.

Bradenhead operations will be performed within 180 days of completing hydraulic fracturing operations, tying back cement at least 500' inside the 2nd intermediate shoe but below Marker Bed

[Figure E] 4 String - Uncemented Annulus between 2nd Intermediate and Production Casing Strings

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in §§ 3172.6 through 3172.12. All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s).". Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

<u>Supporting Documentation</u>

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

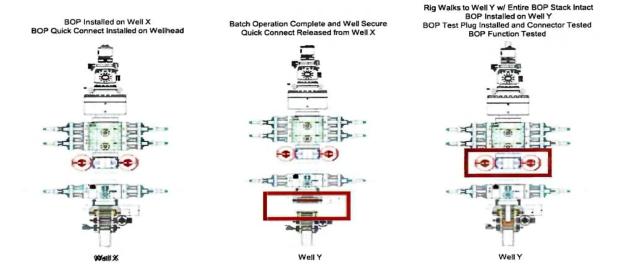
Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

2	API STANDARD	53				
Ta	ble C.4—Initial Pressure Te	esting, Surface BOP Stacks				
	Pressure Test—Low	Pressure Test—High Pressure**				
Component to be Pressure Tested	Pressure** psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket			
Annular preventer	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.			
Fixed pipe, variable bore, blind, and BSR preventers [∞]	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ПР			
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2 41)	RWP of side outlet valve or wellhead system, whichever is lower	ІТР			
Choke manifold—upstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP			
Choke manifold—downstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or N whichever is lower	MASP for the well program,			
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program				
No visible leaks. The pressure shall remain stable Annular(s) and VBR(s) shall be pre	ssure tested on the largest and sma	ressure shall not decrease below the allest OD drill pipe to be used in well	program.			
	from one wellhead to another within when the integrity of a pressure sea	the 21 days, pressure testing is required in the stroken.	uired for pressure-containing and			
	land operations, the ram BOPs sha	ed with the ram locks engaged and ill be pressure tested with the ram lo				

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.


Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

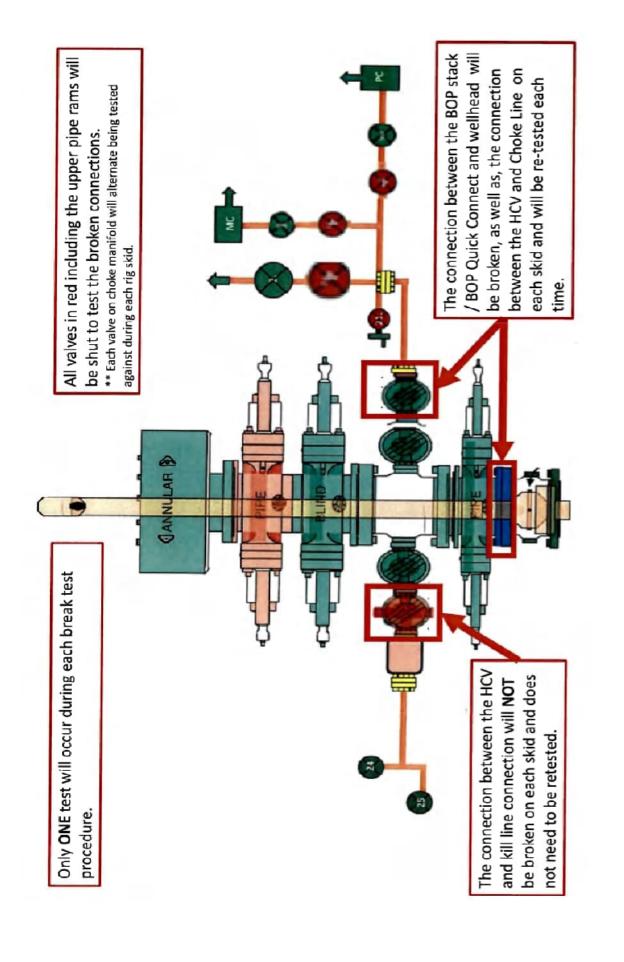
Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

Procedures

- 1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a)A full BOP test will be conducted on the first well on the pad.
- b) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.
- c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d) A full BOP test will be required prior to drilling any production hole.
- 3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a) Between the HCV valve and choke line connection
 - b)Between the BOP quick connect and the wellhead
- 4) The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6) The connections mentioned in 3a and 3b will then be reconnected.
- 7) Install test plug into the wellhead using test joint or drill pipe.
- 8) A shell test is performed against the upper pipe rams testing the two breaks.
- 9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.
- 11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary


A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control

event occurs prior to the commencement of a BOPE Break Testing operation.

Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1) After a full BOP test is conducted on the first well on the pad.
- 2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.
- 3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4) A full BOP test will be required prior to drilling the production hole.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land planned surface casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

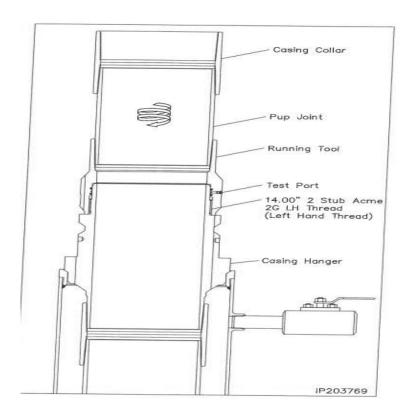


Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD. Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior to testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out surface casing shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

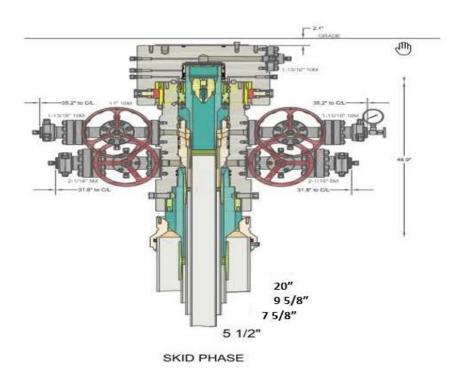


Illustration 2-2

<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Drilling Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
- 6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
- 7. Cement Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in Production mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000 psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

@ntinental<u>⅓</u>

ContiTech Fluid Technology

ContiTech	Oil & Marine Corp. # 11535 Brittmoore Park Dr., Houston	Packing list / Delivery note
77041-69	16 USA	Document No. 71461553
		Document Date 28.01.2022
CONSIGNEE / Ship-to address: HELMERICH & PAYNE INT'L DRILLING CO ATTN: FLEX RIG WHSE - B-BAY 210 MAGNOLIA DRIVE GALENA PARK TX 77547		Customer Number 11697 Customer VAT No. Supplier Number Purchase Order No. Purchase Order Date 18.01.2022
Buyer:		Sales Order Number 1388153
		Sales Order Date 18.01.2022
1437 S	ERICH & PAYNE INT'L DRILLING CO OUTH BOULDER TULSA	Unloading Point RAN-No.
Conditi	ons	
		Page 1 of 2
Incoter	ms EXW Houston Ex Works	Weights (Gross / Net) Total Gross Weight 2,507.000 LB Total Net Weight 2,507.000 LB
Item	Material/Description	Quantity Net Weight Gross Weight
20	Buyer: Jack Peebles E-mail: Jackie.Peebles@hpinc.com Tel: 832-782-6000 Rig/Whse: HOW OORECERTIFY Recert of HP Hoses Serial# 67094 Commodity Code:	1 PC 2,507.000 LB 2,507.000 LB
	3" X 35 FT 10K Choke & Kill Hoses API 16C	
	End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flange	
	Standard: API Spec 16C - Monogrammed	1
	Standard: API Spec 16C - Monogrammed Working Pressure: 10,000psi	40-
		0240-
	Working Pressure: 10,000psi	1000240-
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings	48000240-
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner	88000240-
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly	58000740-
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end of	onnections (limited $2000000000000000000000000000000000000$
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end to minor repairs).	onnections (limited $1000000000000000000000000000000000000$
	Working Pressure: 10,000psi Test Pressure: 15,000psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end of	onnections (limited

ContiTech Rubber Industrial Kft.
H-6728 Szeged Budapesti út 10.
P. O. Box 152 Szeged H-6701
Phone: (62)566-700, Fax (62)566-713
Tax Number: 11087209-2-06
EU Community VAT: HU11087209
Registration No.: Cg. 0609-002502
Registry Court. Csongrád Megyei Cégbíróság
Released to Imaging: 4/22/2025 12:39:30 PM

COMMERZBANK ZRT (HUF) H-1054 Budapest, Széchenyi rakpart 8. H-1245 Budapest P.O. Box 1070 Account No.: 14220108-26830003 IBAN: HU83 1422 0108 2683 0003 0000 0000 SWIFT: COBA HU HXXXX

COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No.: 3 086 156 00 Sort Code: 250 400 66 BIC: COBADEFF250 IBAN: DE41250400660306615600

ContiTech Fluid Technology

Conditions	Packing list / Delivery note			
	Delivery no.	71461553		
Incoterms EXW Houston	Document Date	01/28/2022		
Ex Works				
	Page 2 of2			
Buyer: Jack Peebles				
E-mail: Jackie.Peebles@hpinc.com Tel: 832-782-6000				
161. 032-7 02-0000				
Rig/Whse: HOW				
88000240				
Dooksaas				
Packages Quantity Packaging	Material	Packed Quantity		
1 113"X30"X110" -Wooden crate	00RECERTIFY	1		
Package number 159912920				
, doinings from the second sec				

ContiTech Rubber Industrial Kft. H-6728 Szeged Budapesti út 10. P. O. Box 152 Szeged H-6701 Phone: (62)566-700, Fax: (62)566-713 Tax Number: 11087209-2-06 EU Communiity VAT: HU11087209 Registration No.: Cg. 0609-002502

COMMERZBANK ZRT. (HUF) H-1054 Budaņest, Szēchenyi rakpart 8. H-1245 Budaņest P.O. Box 1070 Account No:14220108-26830003 IBAN: Hu83 1422 0108 2683 0003 0000 0000 SWIFT: COBA HU HXXXX COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No.: 3 066 156 00 Sort Code: 250 400 66 BIC: COBADEFF250 IBAN: DE41250400660306615600

Certificate of Conformity

ContiTech

Certificate Number H100122	COM Order Reference 1388153	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740362040	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed: Date: 02/09/22	

We certify that the items detailed below meet the requirements of the customer's Purchase Order referenced above, and are in conformance with the specifications given below.

Item	Part No.	Description	Qnty	Serial Number	Specifications
20	RECERTIFICATION	3" ID 10K Choke and Kill Hose x 35ft OAL	1	67094	ContiTech Standard

Hydrostatic Test Certificate

ContiTech

Certificate Number H100122	COM Order Reference 1388153	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740362040	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed: Gerson Mejia-Lazo Date: 02/09/22	

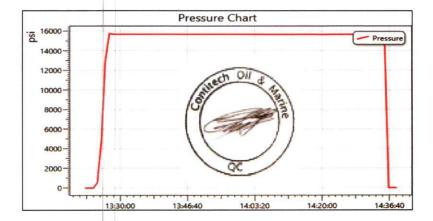
We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qnty	Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)

20 RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL

67094


10,000

15,000

60

Record Information				
Start Time	1/27/2022 13:21:21			
End Time	1/27/2022 14:38:28			
Interval	00:01:00			
Number	78			
MaxValue	15849			
MinValue	-3			
AvgValue	14240			
RecordName	67094-sh			
RecordNumber	199			

Gauge Information			
Model	ADT680		
SN	21817380014		
Range	(0-40000)psi		
Unit	psi		

ContiTech Fluid Technology

	h Oil & Marine Corp. # 11535 Brittmoore Park Dr., Hous	ston, TX	Packing list / Deli	very note			
77041-69	916 USA		Document No.	71461480			
CONCI	CNFF / Ship to address:		Document Date	13.01.2022			
CONSI	GNEE / Ship-to address:		Customer Number 11697				
HELM	ERICH & PAYNE INT'L DRILLING CO		Customer VAT No. Supplier Number				
	FLEX RIG WHSE - B-BAY						
210 MAGNOLIA DRIVE GALENA PARK TX 77547			Purchase Order No. 740359505				
			Purchase Order Date 06.01.2022				
Buyer:			Sales Order Number 1385114				
buyer.			Sales Order Date	06.01.2022			
HELM	ERICH & PAYNE INT'L DRILLING CO						
	SOUTH BOULDER		Unloading Point				
74119	TULSA		RAN-No.				
	Access records.	-	-				
Condit	ions		D 4 60				
1	TV\A/11t		Page 1 of 2				
Incote	rms EXW Houston Ex Works		Weights (Gross / N				
	EX VVOIKS		Total Gross Weigh	2,507.000 LB 2,507.000 LB			
			Total Net Weight				
Item	Material/Description	Qu	antity Net W	eight Gross Weight			
	Buyer: Jack Peeebles						
	E-mail: jackie.peebles@hpinc.com						
	Tel: 832-782-6800		/				
	Rig/Whse: HOW						
10	00RECERTIFY	/	1 PQ 2,507.0	0015 0507 00015			
10				0018 /50/00018			
10		(1 PG 2,507.0	00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088		1 PG 2,507.0	000 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code:		2,507.0	00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088	(1 Pg 2,507.0	00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL		1 Pg 2,507.0	00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang Hose metallic parts NACE MR0175 latest edition: Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes:			00 LB 2,507.000 LB			
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flang Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings						
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner						
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly	ge c/w BX155 ring	groove each end				
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and en	ge c/w BX155 ring	groove each end				
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and ento minor repairs).	ge c/w BX155 ring	groove each end				
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and en	d connections (lim	groove each end				
	Recert of HP Hoses Serial# 67088 Commodity Code: 3" 10K 16C C&K HOSE x 35ft OAL End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Fland Hose metallic parts NACE MR0175 latest edition Standard: API Spec 16C - Monogrammed Working Pressure: 10000 psi Test Pressure: 15000 psi Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and ento minor repairs). Clean & protect end connections Inspection Report	d connections (lim	groove each end	00 LB 2,507.000 LB			

ContiTech Rubber Industrial Kft. ContiTech Rubber Industrial Kft.
H-6728 Szeged Budapesti út 10.
P. O. Box 152 Szeged H-6701
Phone: (62)568-700, Fax: (62)568-713
Tax Number: 11087209-2-06
EU Community VAT: HU11087209
Registration No.: Cg. 0609-002502
Registry Court: Csongrád Megyei Cégbíróság
Released to Imaging: 4/22/2025 12:39:30 PM COMMERZBANK ZRT. (HUF)
H-1054 Budapest, Széchenyi rakpart 8.
H-1245 Budapest P.O. Box 1070
Account No.:14220108-26830003
IBAN: HU83 1422 0108 2683 0003 0000 0000
SWIFT: COBÁ HU HXXXX

COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No.: 3 066 156 00 Sort Code: 250 400 66 BIC: COBADEFF250 IBAN: DE41250400660306615600

ContiTech Fluid Technology

Conditions	Packing list / Deliv	very note
Incoterms EXW Houston Ex Works	Delivery no. Document Date	71461480 01/13/2022
	Page 2 of2	
SHIPPING CRATE 113" x30" x 110" OD Included		
Buyer: Jack Peeebles E-mail: jackie.peebles@hpinc.com Tel: 832-782-6800 Rig/Whse: HOW 88000240		
Packages		Dealer Oversity
Quantity Packaging 1 113"X33"X110" -Wooden crate Package number 159912906	aterial DRECERTIFY	Packed Quantity 1

Certificate of Conformity

ContiTech Certificate Number COM Order Reference **Customer Name & Address** 1385114 HELMERICH & PAYNE DRILLING CO H100120 740359505 Customer Purchase Order No: 1434 SOUTH BOULDER AVE TULSA, OK 74119 USA Project: Accepted by COM Inspection Accepted by Client Inspection **Test Center Address** ContiTech Oil & Marine Corp. Gerson Mejia-Lazo Signed: 11535 Brittmoore Park Drive Houston, TX 77041 USA Date: 01/25/22

We certify that the items detailed below meet the requirements of the customer's Purchase Order referenced above, and are in conformance with the specifications given below.

Item	Part No.	Description	Qnty	Serial Number	Specifications
10	RECERTIFICATION	3" ID 10K Choke and Kill Hose x 35ft OAL	1	67088	ContiTech Standard

Hydrostatic Test Certificate

		ContiTech
Certificate Number H100120	COM Order Reference 1385114	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740359505	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp.	Gerson Mejia-Lazo	
11535 Brittmoore Park Drive	Signed:	
Houston, TX 77041	The state of the s	
USA	Date: 01/25/22	

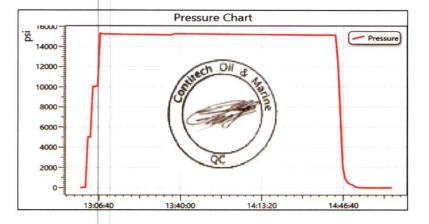
We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qnty	Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)

10 RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL

67088


10,000

15,000

60

Record Information			
Start Time	1/13/2022 12:59:12		
End Time	1/13/2022 15:06:23		
Interval	00:01:00		
Number	128		
MaxValue	15523		
MinValue	2		
AvgValue	12202		
RecordName	67088-jwb		
RecordNumber	191		

Gauge Information			
Model	ADT680		
SN	21817380014		
Range	(0-40000)psi		
Unit	psi		

ContiTech Fluid Technology

ContiTech Oil & Marin	ne Corp. # 11535 Brittmoore Park Dr., Houston, TX	Packing list	/ Delivery	note			
77041-6916 USA		Document N	o. 7 1	461464			
CONSIGNEE / SI	nin to address:	Document D	ate 07	7.01.2022			
00110101122701	ip to address.	Customer Number 11697					
HELMERICH & F	PAYNE INT'L DRILLING CO	Customer VA					
[12] [12] [13] [14] [14] [15] [15] [15] [15] [15] [15] [15] [15	G WHSE - B-BAY	Supplier Nun					
210 MAGNOLIA		Purchase Or		0359508			
GALENA PARK	TX 77547	Purchase Or					
Buyer:		Sales Order		884753			
		Sales Order	Date 05	5.01.2022			
HELMERICH & F	PAYNE INT'L DRILLING CO						
1437 SOUTH BO	DULDER	Unloading Po	Unloading Point				
74119 TULSA		RAN-No.					
10 10 10 10 10 10 10 10 10 10 10 10 10 1							
Conditions							
		Page 1 of 2					
Incoterms	EXW Houston	Weights (Gro	oss / Net)				
	Ex Works	Total Gross \	1000 100 100 100 100 100 100 100 100 10	07.000 LB			
		Total Net We	eight 2,5	07.000 LB			
Item Materia	I/Description	Quantity	Net Weight	Gross Weight			
D							

		Total 140	t vveignt 2,50	7.000 EB
Item	Material/Description	Quantity	Net Weight	Gross Weight
	Buyer: Jack Peeples			
	E-mail: jackie.peeples@hpinc.com			
	Tel: 832-782-6800	()2		
10	00RECERTIFY	(1 PC/	2,507.000 LB	2,507.000 LB
	Recert of HP Hoses Serial#60672			
	Commodity Code:			
	3" 10K 16C C&K HOSE x 35ft OAL			
	End A: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange			
	End B: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w	BX155 ring groove each	end	
	Hose metallic parts NACE MR0175 latest edition			
	Standard: API Spec 16C - Monogrammed			
	Working Pressure: 10000 psi			
	Test Pressure: 15000 psi			
	Inspection & Certification includes:			
	External inspection of the hose & couplings			
	Internal boroscopic inspection of hose liner			
	Hydrostatic pressure test of hose assembly			
	Repair of any external damage to hose body and end con	nections (limited		
	to minor repairs).			1

ContiTech Rubber Industrial Kft. H-6728 Szeged Budapesti út 10. P. O. Box 152 Szeged H-6701 Phone: (62)566-700, Fax: (62)566-713 Tax Number: 11087209-2-06 EU Communiity VAT: HU11087209 Registration No.: Cg. 0609-002502 Registration No.: Cg. 0609-002502

process.

Clean & protect end connections Inspection Report

Please Flush Hoses before sending them to our Facility

Disposal of hose assembly if hose fails inspection and recertification

Shipping Crate SHIPPING CRATE 113" x30" x 110" OD included

COMMERZBANK ZRT (HUF)
H-1054 Budapest, Széchenyi rakpart 8.
H-1245 Budapest P.O. Box 1070
Account No.:14220108-26830003
IBAN: HU83 1422 0108 2683 0003 0000 0000
SWIFT: COBA HU HXXXX

COMMERZBANK AG Hannover (EUR) 30159 Hannover, Theaterstr. 11-12. Account No.: 3 066 156 00 Sort Code: 250 400 66 BIC: COBADEFF250 IBAN: DE41250400680306615600

ContiTech Fluid Technology

Conditions		Packing list / Deli	very note
nostormo EVIA/II		Delivery no.	71461464
ncoterms EXW Houston Ex Works		Document Date	01/07/2022
		Page 2 of2	
Buyer: Jack Peeples E-mail: jackie.peeples@hpinc.com Tel: 832-782-6800			
88000240			
Packages			
Quantity Packaging 1 113"X33"X110" -Wooden crate	Materi 00RE0	al CERTIFY	Packed Quantity 1
Package number 159912720			
			*

Certificate of Conformity

ContiTech Certificate Number COM Order Reference **Customer Name & Address** H100116 1384753 HELMERICH & PAYNE DRILLING CO 740359508 Customer Purchase Order No: 1434 SOUTH BOULDER AVE TULSA, OK 74119 Project: USA **Test Center Address** Accepted by COM Inspection Accepted by Client Inspection ContiTech Oil & Marine Corp. Gerson Mejia-Lazo 11535 Brittmoore Park Drive Signed: Houston, TX 77041 USA Date: 01/25/22

We certify that the items detailed below meet the requirements of the customer's Purchase Order referenced above, and are in conformance with the specifications given below.

Item	Part No.	Description	Qnty	Serial Number	Specifications
10	RECERTIFICATION	3" ID 10K Choke and Kill Hose x 35ft OAL	1	60672	ContiTech Standard

Hydrostatic Test Certificate

[O 4:5: 4 N 1	Inches in the second	ContiTech
Certificate Number H100116	COM Order Reference 1384753	Customer Name & Address HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:	740359508	1434 SOUTH BOULDER AVE TULSA, OK 74119
Project:		USA
Test Center Address	Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA	Signed: Gerson Mejia-Lazo Date: 01/25/22	

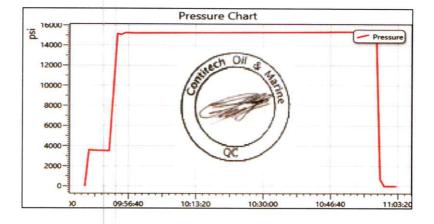
We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qnty	Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)
			•				

10 RECERTIFICATION

3" ID 10K Choke and Kill Hose x 35ft OAL

60672


10,000

15,000

60

Record Information				
1/14/2022 09:45:53				
1/14/2022 11:02:59				
00:01:00				
78				
15724				
-1				
13342				
60672 JWB				
192				

Gauge Information				
Model	ADT680			
SN	21817380014			
Range	(0-40000)psi			
Unit	psi			

Sender/Vendor Ven	dor-no.				Recipient			
Sender/Vendor ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive 77041-6916 Houston Loading point 3301 / CT O&M Corp Houston Sending-/loading-ref.number 32490243 Recipient Custno. HELMERICH & PAYNE INT'L DRILLING CO ATTN: FLEX RIG WHSE - B-BAY 210 MAGNOLIA DRIVE GALENA PARK TX 77547 Deliv/Uploading point					Sender no. at shipping carrier			
					Freight	Order		
Loading point 3301 / CT O&M Corp Houston			n		Date 02-09-2022	Relation-no.		
Sending-/loading-ref.number 32490243					Shipping carrier	Carrier-no.		
Recipient Custno.		11697		1				
HELMERICH & PAYN	E INT	''L DRILLING	3					
ATTN: FLEX RIG W	HSE -	B-BAY						
210 MAGNOLIA DRI GALENA PARK TX	VE 77547	6			Phone	Fax	_	
Deliv/Uploading point	77347			00000		***************************************	Page	el von 1
, , , , , , , , , , , , , , , , , , , ,					Sender comment for the shipping	g carrier		
					Incoming date			
Delivery-note-no. Packaging number	Quan.	Packaging	S	C	Contents	Incoming	Net-	Gross-
Delivery(ies): 71461464			П				weight LB	weight LB
159912720		113"X33"X110"			88000240		1137	1,137
71461480					88000240		1137	1,137
159912906 71461553		113"X33"X110"						
159912920		113"X30"X110"		1	88000240		1137	1,137
		113 A30 A110 "			17091			
Total:		Volume / westing width	Ц		67088 1			
	3	Volume / working widh	t app	rox	60672	Total:	7521	7,521
Prepayment of charges Ex Works		od S						
Sales order no. / PO no.	********			1	740	250500		
SO: 1384753 / PO: 7403 SO: 1385114 / PO: 7403 SO: 1388153 / PO: 7403	59508 59505 62040	1			Cust. order number 740 Weans of transp. no.	359508	Accnt assgmn	t
SO: 1388153 / PO: 7403	62040)			Truck code			
				L		ck (Subco		
1		2			Acknowlgmnt of receipt of the go Shipment above complete and i			
Viet H. Conquest					Received in correct state.			
Driver's confirmation of reception					Company stamp/signature		ſ	(O)
Shipment above complete and in							1012	
Taken over in correct state. Date Time		Signature				(20)	062c	
		Siğilatalğ.	- [1		1 000		
ndor-no.								
				Ser	nding-/Loading-Ref.number			

S

H

P

Name:_

Company:

Address:

City:

FROM:

4744

Owner/Operator Cell: (832) 681-0268

Specializing in HOT SHOT delivery

C

0

G

Name:

Company:

Address:

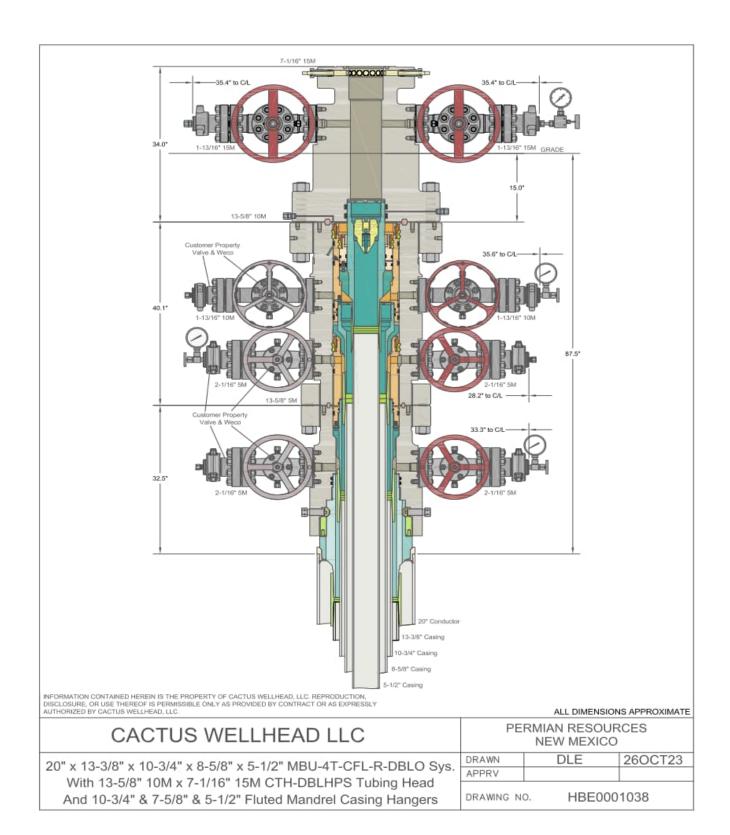
FROM:

US DOT 2382504

TXDOT 006712023C

MC818372

The property described by understood throughout the carrier of all or any said pied to all the terms and co to carrier on account of se	elow, in apparent good order, except as noted (contents and conditions or his contract as meaning any person or corporation in possession of the property over all or any portion said route to destination and as to each panditions under the Uniform Domestic Straight Bill of Landing set forth in truch shipment and all cost of collection including but not limited to attorneuriff and uniform contract terms and conditions which are available for ins	operty under contract) agrees to carry to it: irty at any time interested in all or any part the applicable motor classification or tariff i eys fees and court cost. Shipper hereby cert	s usual place of delivery at said destini od said property, that every service to f this is a motor carrier shipment. The ifies that he is familiar with the terms	ation it is mutually agreed as to each performed hereunder shall be subject- shipper upon tender of the shipment
Quantity	Commodity or Service Rendered	Tariff Miles	Weight	Amount
3	Crates			
	1/			
	Hose5			
Estimated Cost	\$	Subtotal Tracking B	ill	
Extra Stops	Detention Time	Fuel Surcharge	Total Extra	Charges
Dates: 19	States Traveled: Tariff:		\$\$ TOTA	LS\$\$
Shipper (R	eceiver	4111.	

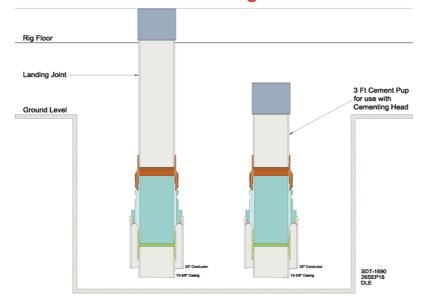

Ending Mileage

Starting Mileage

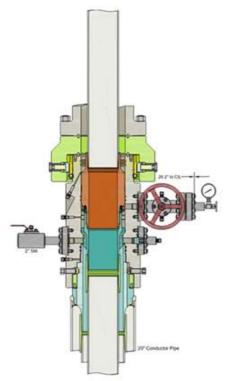
Carriers Cargo liability will not exceed limits as designated on insurance.

Truck #

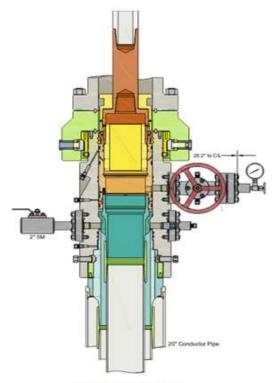
Driver:

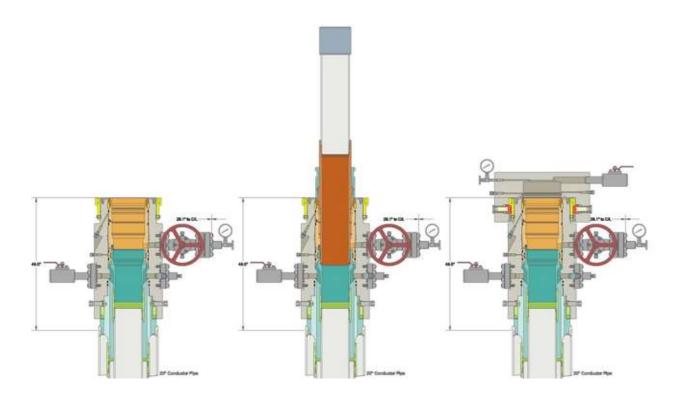


Permian Resources Offline Cementing Procedure Surface & Intermediate Casing


- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.

13 3/8" Surface


CFL Off-Line Cementing Tool


Intermediate

Run 7 5/8" Casing Land Casing on 7 5/8" Mandrel Hanger Cement 7 5/8" Casing Retrieve Running Tool

Run 9 5/8" Packoff Test Upper and Lower Seals Engage Lockring Retrieve Running Tool

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Permian Resources Operating LLC
WELL NAME & NO.: Moran 9 Federal Com 505H
LOCATION: Sec 09-21S-32E-NMP
COUNTY: Lea County, New Mexico

COA

H_2S	O No		•	Yes
Potash /	None	Secretary	⊙ R-111-Q	☐ Open Annulus
WIPP	4-String Design: Ope	elief		
Cave / Karst	• Low	Medium	C High	Critical
Wellhead	Conventional	• Multibowl	O Both	O Diverter
Cementing	☐ Primary Squeeze	☐ Cont. Squeeze	☐ EchoMeter	□ DV Tool
Special Req	Capitan Reef	☐ Water Disposal	▼ COM	Unit
Waste Prev.	C Self-Certification	• Waste Min. Plan	C APD Submitted p	prior to 06/10/2024
Additional		☐ Casing Clearance	☐ Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	☐ Fluid-Filled	

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Morrow** formation. As a result, the Hydrogen Sulfide area must meet all requirements from 43 CFR 3176, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

APD is within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the updated order.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **1450** feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Set depth adjusted per BLM geologist*.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8 hours or 500

- **pounds compressive strength**, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing (set at 3500' per BLM geologist) is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - ❖ Special Capitan Reef requirements: Ensure freshwater based mud used across the Capitan interval.
- 3. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - Cement should tie-back 500 feet or 50 feet on top of the Capitan Reef, whichever is closer to surface into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 500 feet or 50 feet on top of the Capitan Reef, whichever is closer to surface into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.

- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following

- conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

NEW MEXICO

(SP) LEA MORAN PROJECT MORAN 9 FEDERAL COM 505H

OWB

Plan: PWP0

Standard Planning Report - Geographic

05 June, 2024

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

Well: MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Project (SP) LEA

Map System: Geo Datum:

Map Zone:

US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone System Datum:

Mean Sea Level

Site MORAN PROJECT

 Site Position:
 Northing:
 541,421.20 usft
 Latitude:
 32° 29' 12.311 N

 From:
 Map
 Easting:
 741,590.81 usft
 Longitude:
 103° 41' 1.973 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well MORAN 9 FEDERAL COM 505H

 Well Position
 +N/-S
 0.0 usft
 Northing:
 541,773.83 usft
 Latitude:
 32° 29' 15.626 N

 +E/-W
 0.0 usft
 Easting:
 744,463.72 usft
 Longitude:
 103° 40' 28.408 W

Position Uncertainty

0.0 usft

Wellhead Elevation:

usft

Ground Level:

3,764.0 usft

Grid Convergence: 0.35 °

Wellbore OWB

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF200510
 12/31/2009
 7.82
 60.47
 48,938.57141187

Design PWP0

Audit Notes:

Version:Phase:PROTOTYPETie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 180.73

Plan Survey Tool Program Date 6/5/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 21,173.3 PWP0 (OWB) MWD

OWSG Rev2 MWD - Stan

Plan Sections Vertical Measured Dogleg Build Turn Depth Inclination **Azimuth** Depth +N/-S +E/-W Rate Rate Rate **TFO** (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (usft) (usft) Target (°) (°) (°) 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 4,000.0 0.00 0.00 0.00 4,000.0 0.0 0.0 0.00 0.00 0.00 4,139.8 2.80 4,139.7 2.00 2.00 220.06 220.06 -2.6 -2.2 0.00 10,082.6 2.80 220.06 10,075.5 -224.5 -188.7 0.00 0.00 0.00 0.00 10.814.9 90.00 179.67 10.535.0 -701.7 -200.5 12.00 11.91 -5.51 -40.41 FTP-MORAN 9 FEI 21,173.3 90.00 179.67 10,535.0 -11,059.9 -141.7 0.00 0.00 0.00 0.00 BHL -MORAN 9 FE

Planning Report - Geographic

Database: Compass **NEW MEXICO** Company: Project: (SP) LEA Site:

MORAN PROJECT MORAN 9 FEDERAL COM 505H

Wellbore: OWB

Well:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid Minimum Curvature

Wellbore: Design:	OW PW								
Planned Surv	/ey								
Measured Depth (usft)	Inclination	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0			0.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
100.0			100.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
200.0			200.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
300.0			300.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
400.0 500.0			400.0 500.0	0.0 0.0	0.0 0.0	541,773.83 541,773.83	744,463.72 744,463.72	32° 29' 15.626 N 32° 29' 15.626 N	103° 40' 28.408 W 103° 40' 28.408 W
600.0			600.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
700.0			700.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
800.0			800.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
900.0			900.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,000.0			1,000.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,100.0			1,100.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,400.0			1,400.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,500.0			1,500.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,600.0			1,600.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,700.0			1,700.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,800.0			1,800.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
1,900.0 2,000.0			1,900.0 2,000.0	0.0 0.0	0.0 0.0	541,773.83 541,773.83	744,463.72 744,463.72	32° 29' 15.626 N 32° 29' 15.626 N	103° 40' 28.408 W 103° 40' 28.408 W
2,100.0			2,000.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,200.0			2,200.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,300.0			2,300.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,400.0			2,400.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,500.0			2,500.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,600.0	0.00	0.00	2,600.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,700.0	0.00	0.00	2,700.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,800.0		0.00	2,800.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
2,900.0			2,900.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,000.0			3,000.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,100.0			3,100.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,200.0			3,200.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,300.0 3,400.0			3,300.0 3,400.0	0.0 0.0	0.0 0.0	541,773.83 541,773.83	744,463.72 744,463.72	32° 29' 15.626 N 32° 29' 15.626 N	103° 40' 28.408 W 103° 40' 28.408 W
3,500.0			3,500.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,600.0			3,600.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,700.0			3,700.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,800.0			3,800.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
3,900.0			3,900.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
4,000.0			4,000.0	0.0	0.0	541,773.83	744,463.72	32° 29' 15.626 N	103° 40' 28.408 W
	uild 2.00								
4,100.0		220.06	4,100.0	-1.3	-1.1	541,772.50	744,462.59	32° 29' 15.613 N	103° 40' 28.421 W
4,139.8			4,139.7	-2.6	-2.2	541,771.22	744,461.52	32° 29' 15.601 N	103° 40' 28.434 W
Start 5	942.9 hold a	at 4139.8 MC							
4,200.0			4,199.9	-4.9	-4.1	541,768.97	744,459.63	32° 29' 15.578 N	103° 40' 28.456 W
4,300.0	2.80	220.06	4,299.8	-8.6	-7.2	541,765.24	744,456.49	32° 29' 15.542 N	103° 40' 28.493 W
4,400.0			4,399.6	-12.3	-10.4	541,761.51	744,453.36	32° 29' 15.505 N	103° 40' 28.530 W
4,500.0			4,499.5	-16.1	-13.5	541,757.77	744,450.22	32° 29' 15.468 N	103° 40' 28.566 W
4,600.0			4,599.4	-19.8	-16.6	541,754.04	744,447.08	32° 29' 15.431 N	103° 40' 28.603 W
4,700.0			4,699.3	-23.5	-19.8	541,750.31	744,443.94	32° 29' 15.395 N	103° 40' 28.640 W
4,800.0			4,799.2	-27.3	-22.9	541,746.57	744,440.80	32° 29' 15.358 N	103° 40' 28.677 W

541,742.84

541,739.11

744,437.66

744,434.52

32° 29' 15.321 N

32° 29' 15.284 N

103° 40' 28.714 W

103° 40' 28.751 W

-26.1

-29.2

2.80

2.80

220.06

220.06

4,899.0

4,998.9

-31.0

-34.7

4,900.0

5,000.0

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

Well: MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0 **Local Co-ordinate Reference:**

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Planned Surv	'ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
5,100.0	2.80	220.06	5,098.8	-38.5	-32.3	541,735.38	744,431.38	32° 29' 15.248 N	103° 40' 28.788 W
5,200.0		220.06	5,198.7	-42.2	-35.5	541,731.64	744,428.25	32° 29' 15.211 N	103° 40' 28.825 W
5,300.0		220.06	5,298.6	-45.9	-38.6	541,727.91	744,425.11	32° 29' 15.174 N	103° 40' 28.862 W
5,400.0		220.06	5,398.4	-49.7	-41.7	541,724.18	744,421.97	32° 29' 15.137 N	103° 40' 28.899 W
5,500.0		220.06	5,498.3	-53.4	-44.9	541,720.44	744,418.83	32° 29' 15.101 N	103° 40' 28.936 W
5,600.0		220.06	5,598.2	-57.1	-48.0	541,716.71	744,415.69	32° 29' 15.064 N	103° 40' 28.973 W
5,700.0		220.06	5,698.1	-60.9	-51.2	541,712.98	744,412.55	32° 29' 15.027 N	103° 40' 29.009 W
5,800.0 5,900.0		220.06 220.06	5,798.0 5,897.8	-64.6 -68.3	-54.3 -57.4	541,709.24 541,705.51	744,409.41 744,406.27	32° 29' 14.990 N 32° 29' 14.954 N	103° 40' 29.046 W 103° 40' 29.083 W
6,000.0		220.06	5,997.7	-06.3 -72.1	-60.6	541,703.51	744,400.27	32° 29' 14.917 N	103° 40' 29.120 W
6,100.0		220.06	6,097.6	-75.8	-63.7	541,698.04	744,400.00	32° 29' 14.880 N	103° 40' 29.120 W
6,200.0		220.06	6,197.5	-79.5	-66.9	541,694.31	744,396.86	32° 29' 14.843 N	103° 40' 29.194 W
6,300.0		220.06	6,297.4	-83.3	-70.0	541,690.58	744,393.72	32° 29' 14.807 N	103° 40' 29.231 W
6,400.0		220.06	6,397.3	-87.0	-73.1	541,686.84	744,390.58	32° 29' 14.770 N	103° 40' 29.268 W
6,500.0		220.06	6,497.1	-90.7	-76.3	541,683.11	744,387.44	32° 29' 14.733 N	103° 40' 29.305 W
6,600.0	2.80	220.06	6,597.0	-94.5	-79.4	541,679.38	744,384.30	32° 29' 14.696 N	103° 40' 29.342 W
6,700.0	2.80	220.06	6,696.9	-98.2	-82.6	541,675.64	744,381.16	32° 29' 14.660 N	103° 40' 29.379 W
6,800.0		220.06	6,796.8	-101.9	-85.7	541,671.91	744,378.03	32° 29' 14.623 N	103° 40' 29.415 W
6,900.0		220.06	6,896.7	-105.7	-88.8	541,668.18	744,374.89	32° 29' 14.586 N	103° 40' 29.452 W
7,000.0		220.06	6,996.5	-109.4	-92.0	541,664.44	744,371.75	32° 29' 14.549 N	103° 40' 29.489 W
7,100.0		220.06	7,096.4	-113.1	-95.1	541,660.71	744,368.61	32° 29' 14.513 N	103° 40' 29.526 W
7,200.0		220.06	7,196.3	-116.9	-98.2	541,656.98	744,365.47	32° 29' 14.476 N	103° 40' 29.563 W
7,300.0		220.06	7,296.2	-120.6	-101.4	541,653.24	744,362.33	32° 29' 14.439 N	103° 40' 29.600 W
7,400.0		220.06	7,396.1	-124.3	-104.5	541,649.51	744,359.19	32° 29' 14.402 N	103° 40' 29.637 W
7,500.0 7,600.0		220.06 220.06	7,495.9 7,595.8	-128.1 -131.8	-107.7 -110.8	541,645.78 541,642.04	744,356.06 744,352.92	32° 29' 14.366 N 32° 29' 14.329 N	103° 40' 29.674 W 103° 40' 29.711 W
7,700.0		220.06	7,595.6	-135.5	-113.9	541,638.31	744,349.78	32° 29' 14.292 N	103° 40' 29.748 W
7,800.0		220.06	7,795.6	-139.3	-117.1	541,634.58	744,346.64	32° 29' 14.255 N	103° 40' 29.785 W
7,900.0		220.06	7,895.5	-143.0	-120.2	541,630.84	744,343.50	32° 29' 14.219 N	103° 40' 29.822 W
8,000.0		220.06	7,995.4	-146.7	-123.4	541,627.11	744,340.36	32° 29' 14.182 N	103° 40' 29.858 W
8,100.0		220.06	8,095.2	-150.5	-126.5	541,623.38	744,337.22	32° 29' 14.145 N	103° 40' 29.895 W
8,200.0	2.80	220.06	8,195.1	-154.2	-129.6	541,619.65	744,334.08	32° 29' 14.109 N	103° 40' 29.932 W
8,300.0	2.80	220.06	8,295.0	-157.9	-132.8	541,615.91	744,330.95	32° 29' 14.072 N	103° 40' 29.969 W
8,400.0	2.80	220.06	8,394.9	-161.7	-135.9	541,612.18	744,327.81	32° 29' 14.035 N	103° 40' 30.006 W
8,500.0		220.06	8,494.8	-165.4	-139.0	541,608.45	744,324.67	32° 29' 13.998 N	103° 40' 30.043 W
8,600.0		220.06	8,594.6	-169.1	-142.2	541,604.71	744,321.53	32° 29' 13.962 N	103° 40' 30.080 W
8,700.0		220.06	8,694.5	-172.9	-145.3	541,600.98	744,318.39	32° 29' 13.925 N	103° 40' 30.117 W
8,800.0		220.06	8,794.4	-176.6	-148.5	541,597.25	744,315.25	32° 29' 13.888 N	103° 40' 30.154 W
8,900.0		220.06	8,894.3	-180.3	-151.6	541,593.51	744,312.11	32° 29' 13.851 N	103° 40' 30.191 W
9,000.0 9,100.0	2.80	220.06	8,994.2 9,094.0	-184.1	-154.7	541,589.78 541,586.05	744,308.97 744,305.84	32° 29' 13.815 N	103° 40' 30.228 W 103° 40' 30.264 W
9,100.0		220.06 220.06	9,094.0	-187.8 -191.5	-157.9 -161.0	541,582.31	744,305.64	32° 29' 13.778 N 32° 29' 13.741 N	103° 40' 30.301 W
9,300.0		220.06	9,293.8	-191.3	-164.2	541,578.58	744,302.70	32° 29' 13.704 N	103° 40' 30.338 W
9,400.0		220.06	9,393.7	-199.0	-167.3	541,574.85	744,296.42	32° 29' 13.668 N	103° 40' 30.335 W
9,500.0		220.06	9,493.6	-202.7	-170.4	541,571.11	744,293.28	32° 29' 13.631 N	103° 40' 30.412 W
9,600.0		220.06	9,593.4	-206.5	-173.6	541,567.38	744,290.14	32° 29' 13.594 N	103° 40' 30.449 W
9,700.0		220.06	9,693.3	-210.2	-176.7	541,563.65	744,287.00	32° 29' 13.557 N	103° 40' 30.486 W
9,800.0		220.06	9,793.2	-213.9	-179.9	541,559.91	744,283.87	32° 29' 13.521 N	103° 40' 30.523 W
9,900.0	2.80	220.06	9,893.1	-217.7	-183.0	541,556.18	744,280.73	32° 29' 13.484 N	103° 40' 30.560 W
10,000.0	2.80	220.06	9,993.0	-221.4	-186.1	541,552.45	744,277.59	32° 29' 13.447 N	103° 40' 30.597 W
10,082.6	2.80	220.06	10,075.5	-224.5	-188.7	541,549.36	744,274.99	32° 29' 13.417 N	103° 40' 30.627 W
Start D	LS 12.00 TF	O -40.41							
10,100.0		202.90	10,092.8	-225.4	-189.3	541,548.40	744,274.45	32° 29' 13.407 N	103° 40' 30.634 W
10,125.0	7.44	193.70	10,117.7	-227.9	-190.0	541,545.91	744,273.68	32° 29' 13.383 N	103° 40' 30.643 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

Well: MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0 **Local Co-ordinate Reference:**

TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Diamed Sum									
Planned Surv	ey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
10,150.0		189.63	10,142.4	-231.7	-190.8	541,542.11	744,272.92	32° 29' 13.345 N	103° 40' 30.652 W
10,175.0		187.34	10,166.9	-236.8	-191.5	541,537.04	744,272.17	32° 29' 13.295 N	103° 40' 30.661 W
10,200.0		185.88	10,191.0	-243.2	-192.3	541,530.68	744,271.45	32° 29' 13.232 N	103° 40' 30.670 W
10,225.0		184.86	10,214.8	-250.8	-193.0	541,523.07	744,270.74	32° 29' 13.157 N	103° 40' 30.679 W
10,250.0		184.10	10,238.2	-259.6	-193.7	541,514.23	744,270.05	32° 29' 13.069 N	103° 40' 30.687 W
10,275.0		183.52	10,261.1	-269.7	-194.3	541,504.17	744,269.38	32° 29' 12.970 N	103° 40' 30.696 W
10,300.0 10,325.0		183.05 182.66	10,283.4 10,305.1	-280.9 -293.3	-195.0 -195.6	541,492.93 541,480.54	744,268.74 744,268.12	32° 29' 12.859 N 32° 29' 12.736 N	103° 40' 30.704 W 103° 40' 30.712 W
10,323.0		182.34	10,303.1	-306.8	-195.0	541,467.02	744,267.53	32° 29' 12.602 N	103° 40' 30.712 W
10,335.0		182.06	10,346.4	-321.4	-196.7	541,452.43	744,266.97	32° 29' 12.458 N	103° 40' 30.728 W
10,400.0		181.82	10,365.9	-337.0	-197.3	541,436.79	744,266.45	32° 29' 12.303 N	103° 40' 30.735 W
10,425.0		181.60	10,384.5	-353.7	-197.8	541,420.15	744,265.95	32° 29' 12.139 N	103° 40' 30.742 W
10,450.0		181.41	10,402.3	-371.3	-198.2	541,402.56	744,265.49	32° 29' 11.965 N	103° 40' 30.749 W
10,475.0		181.24	10,419.1	-389.8	-198.7	541,384.07	744,265.06	32° 29' 11.782 N	103° 40' 30.755 W
10,500.0		181.08	10,434.9	-409.1	-199.0	541,364.72	744,264.67	32° 29' 11.590 N	103° 40' 30.761 W
10,525.0	55.23	180.93	10,449.7	-429.3	-199.4	541,344.57	744,264.32	32° 29' 11.391 N	103° 40' 30.767 W
10,550.0	58.23	180.80	10,463.4	-450.2	-199.7	541,323.67	744,264.00	32° 29' 11.184 N	103° 40' 30.772 W
10,575.0		180.67	10,476.0	-471.7	-200.0	541,302.08	744,263.73	32° 29' 10.971 N	103° 40' 30.777 W
10,600.0		180.55	10,487.5	-494.0	-200.2	541,279.87	744,263.49	32° 29' 10.751 N	103° 40' 30.781 W
10,625.0		180.44	10,497.8	-516.8	-200.4	541,257.08	744,263.30	32° 29' 10.525 N	103° 40' 30.785 W
10,650.0		180.33	10,506.8	-540.0	-200.6	541,233.79	744,263.14	32° 29' 10.295 N	103° 40' 30.788 W
10,675.0		180.22	10,514.7	-563.8	-200.7	541,210.05	744,263.03	32° 29' 10.060 N	103° 40' 30.791 W
10,700.0		180.12	10,521.3	-587.9	-200.8	541,185.94	744,262.96	32° 29' 9.821 N	103° 40' 30.794 W
10,714.0		180.06	10,524.4	-601.5	-200.8	541,172.31	744,262.93	32° 29' 9.687 N	103° 40' 30.795 W
10,725.0	18 Entry at 1 79.22	180.02	10,526.6	-612.3	-200.8	541,161.51	744,262.93	32° 29' 9.580 N	103° 40' 30.796 W
10,750.0		179.92	10,530.6	-637.0	-200.8	541,136.84	744,262.94	32° 29' 9.336 N	103° 40' 30.798 W
10,775.0		179.83	10,533.3	-661.8	-200.7	541,111.99	744,262.99	32° 29' 9.090 N	103° 40' 30.799 W
10,800.0		179.73	10,534.8	-686.8	-200.6	541,087.04	744,263.09	32° 29' 8.843 N	103° 40' 30.799 W
10,814.9		179.67	10,535.0	-701.7	-200.5	541,072.15	744,263.17	32° 29' 8.695 N	103° 40' 30.800 W
Start 1	0358.4 hold	at 10814.9 I							
10,900.0	90.00	179.67	10,535.0	-786.8	-200.1	540,987.04	744,263.65	32° 29' 7.853 N	103° 40' 30.800 W
11,000.0	90.00	179.67	10,535.0	-886.8	-199.5	540,887.04	744,264.22	32° 29' 6.864 N	103° 40' 30.801 W
11,100.0		179.67	10,535.0	-986.8	-198.9	540,787.05	744,264.79	32° 29' 5.874 N	103° 40' 30.801 W
11,200.0		179.67	10,535.0	-1,086.8	-198.4	540,687.05	744,265.35	32° 29' 4.885 N	103° 40' 30.802 W
11,300.0		179.67	10,535.0	-1,186.8	-197.8	540,587.05	744,265.92	32° 29' 3.895 N	103° 40' 30.802 W
11,400.0		179.67	10,535.0	-1,286.8	-197.2	540,487.05	744,266.49	32° 29′ 2.906 N	103° 40' 30.803 W
11,500.0		179.67	10,535.0	-1,386.8	-196.7	540,387.05	744,267.06	32° 29' 1.916 N 32° 29' 0.927 N	103° 40' 30.804 W
11,600.0		179.67 179.67	10,535.0	-1,486.8 -1,586.8	-196.1 -195.5	540,287.05 540,187.06	744,267.62 744,268,10	32° 28' 59.937 N	103° 40' 30.804 W
11,700.0 11,800.0		179.67 179.67	10,535.0 10,535.0	-1,586.8 -1,686.8	-195.5 -195.0	540,187.06 540,087.06	744,268.19 744,268.76	32° 28' 58.948 N	103° 40' 30.805 W 103° 40' 30.805 W
11,900.0		179.67	10,535.0	-1,786.8	-193.0	539,987.06	744,269.33	32° 28' 57.958 N	103° 40' 30.806 W
12,000.0		179.67	10,535.0	-1,786.8	-193.8	539,887.06	744,269.90	32° 28' 56.968 N	103° 40' 30.806 W
12,100.0		179.67	10,535.0	-1,986.8	-193.3	539,787.06	744,270.46	32° 28' 55.979 N	103° 40' 30.807 W
12,200.0		179.67	10,535.0	-2,086.8	-192.7	539,687.06	744,271.03	32° 28' 54.989 N	103° 40' 30.808 W
12,300.0		179.67	10,535.0	-2,186.8	-192.1	539,587.07	744,271.60	32° 28' 54.000 N	103° 40' 30.808 W
12,400.0		179.67	10,535.0	-2,286.8	-191.6	539,487.07	744,272.17	32° 28' 53.010 N	103° 40' 30.809 W
12,500.0		179.67	10,535.0	-2,386.8	-191.0	539,387.07	744,272.73	32° 28' 52.021 N	103° 40' 30.809 W
12,600.0		179.67	10,535.0	-2,486.8	-190.4	539,287.07	744,273.30	32° 28′ 51.031 N	103° 40' 30.810 W
12,700.0		179.67	10,535.0	-2,586.8	-189.8	539,187.07	744,273.87	32° 28' 50.042 N	103° 40' 30.810 W
12,800.0		179.67	10,535.0	-2,686.8	-189.3	539,087.07	744,274.44	32° 28' 49.052 N	103° 40' 30.811 W
12,900.0		179.67	10,535.0	-2,786.8	-188.7	538,987.07	744,275.00	32° 28' 48.063 N	103° 40' 30.812 W
13,000.0		179.67	10,535.0	-2,886.8	-188.1	538,887.08	744,275.57	32° 28' 47.073 N	103° 40' 30.812 W
13,100.0	90.00	179.67	10,535.0	-2,986.8	-187.6	538,787.08	744,276.14	32° 28' 46.084 N	103° 40' 30.813 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

Well: MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0 **Local Co-ordinate Reference:**

TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Design.	1 441								
Planned Surv	rey								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
13,200.0	90.00	179.67	10,535.0	-3,086.8	-187.0	538,687.08	744,276.71	32° 28' 45.094 N	103° 40' 30.813 W
13,300.0	90.00	179.67	10,535.0	-3,186.8	-186.4	538,587.08	744,277.28	32° 28' 44.105 N	103° 40' 30.814 W
13,338.0	90.00	179.67	10,535.0	-3,224.7	-186.2	538,549.11	744,277.49	32° 28' 43.729 N	103° 40' 30.814 W
VO-694	8 Exit at 133	338.0 MD							
13,400.0	90.00	179.67	10,535.0	-3,286.7	-185.9	538,487.08	744,277.84	32° 28' 43.115 N	103° 40' 30.814 W
13,500.0		179.67	10,535.0	-3,386.7	-185.3	538,387.08	744,278.41	32° 28' 42.126 N	103° 40' 30.815 W
13,600.0		179.67	10,535.0	-3,486.7	-184.7	538,287.09	744,278.98	32° 28' 41.136 N	103° 40' 30.816 W
13,700.0		179.67	10,535.0	-3,586.7	-184.2	538,187.09	744,279.55	32° 28' 40.147 N	103° 40' 30.816 W
13,800.0		179.67	10,535.0	-3,686.7	-183.6	538,087.09	744,280.11	32° 28' 39.157 N	103° 40' 30.817 W
13,900.0 14,000.0		179.67 179.67	10,535.0 10,535.0	-3,786.7 -3,886.7	-183.0 -182.5	537,987.09 537,887.09	744,280.68 744,281.25	32° 28' 38.168 N 32° 28' 37.178 N	103° 40' 30.817 W 103° 40' 30.818 W
14,100.0		179.67	10,535.0	-3,000.7 -3,986.7	-182.5 -181.9	537,787.09	744,281.82	32° 28' 36.189 N	103° 40' 30.818 W
14,100.0		179.67	10,535.0	-4,086.7	-181.3	537,687.10	744,281.32	32° 28' 35.199 N	103° 40' 30.819 W
14,300.0		179.67	10,535.0	-4,186.7	-180.8	537,587.10	744,282.95	32° 28' 34.210 N	103° 40' 30.820 W
14,400.0		179.67	10,535.0	-4,286.7	-180.2	537,487.10	744,283.52	32° 28' 33.220 N	103° 40' 30.820 W
14,500.0	90.00	179.67	10,535.0	-4,386.7	-179.6	537,387.10	744,284.09	32° 28' 32.231 N	103° 40' 30.821 W
14,600.0	90.00	179.67	10,535.0	-4,486.7	-179.1	537,287.10	744,284.66	32° 28' 31.241 N	103° 40' 30.821 W
14,700.0		179.67	10,535.0	-4,586.7	-178.5	537,187.10	744,285.22	32° 28' 30.251 N	103° 40' 30.822 W
14,800.0		179.67	10,535.0	-4,686.7	-177.9	537,087.11	744,285.79	32° 28' 29.262 N	103° 40' 30.822 W
14,900.0		179.67	10,535.0	-4,786.7	-177.4	536,987.11	744,286.36	32° 28' 28.272 N	103° 40' 30.823 W
15,000.0		179.67	10,535.0	-4,886.7	-176.8	536,887.11	744,286.93	32° 28' 27.283 N	103° 40' 30.824 W
15,100.0		179.67	10,535.0	-4,986.7	-176.2	536,787.11	744,287.50	32° 28' 26.293 N	103° 40' 30.824 W
15,200.0 15,300.0		179.67 179.67	10,535.0 10,535.0	-5,086.7 -5,186.7	-175.7 -175.1	536,687.11 536,587.11	744,288.06 744,288.63	32° 28' 25.304 N 32° 28' 24.314 N	103° 40' 30.825 W 103° 40' 30.825 W
15,400.0		179.67	10,535.0	-5,186.7 -5,286.7	-173.1	536,487.12	744,289.20	32° 28' 23.325 N	103° 40' 30.826 W
15,500.0		179.67	10,535.0	-5,386.7	-174.0	536,387.12	744,289.77	32° 28' 22.335 N	103° 40' 30.826 W
15,600.0		179.67	10,535.0	-5,486.7	-173.4	536,287.12	744,290.33	32° 28' 21.346 N	103° 40' 30.827 W
15,700.0	90.00	179.67	10,535.0	-5,586.7	-172.8	536,187.12	744,290.90	32° 28' 20.356 N	103° 40' 30.828 W
15,800.0	90.00	179.67	10,535.0	-5,686.7	-172.2	536,087.12	744,291.47	32° 28' 19.367 N	103° 40' 30.828 W
15,900.0		179.67	10,535.0	-5,786.7	-171.7	535,987.12	744,292.04	32° 28' 18.377 N	103° 40' 30.829 W
15,997.0		179.67	10,535.0	-5,883.7	-171.1	535,890.16	744,292.59	32° 28' 17.418 N	103° 40' 30.829 W
	9 Exit at 159								
16,000.0		179.67	10,535.0	-5,886.7	-171.1	535,887.12	744,292.61	32° 28' 17.388 N	103° 40' 30.829 W
16,100.0		179.67	10,535.0	-5,986.7	-170.5	535,787.13	744,293.17	32° 28' 16.398 N	103° 40' 30.830 W
16,200.0		179.67	10,535.0	-6,086.7 -6,186.7	-170.0	535,687.13 535,587.13	744,293.74	32° 28′ 15.409 N	103° 40' 30.830 W
16,300.0 16,400.0		179.67 179.67	10,535.0 10,535.0	-6,186.7 -6,286.7	-169.4 -168.8	535,367.13	744,294.31 744,294.88	32° 28' 14.419 N 32° 28' 13.430 N	103° 40' 30.831 W 103° 40' 30.832 W
16,500.0		179.67	10,535.0	-6,386.7	-168.3	535,387.13	744,294.66	32° 28' 12.440 N	103° 40' 30.832 W
16,600.0		179.67	10,535.0	-6,486.7	-167.7	535,287.13	744,296.01	32° 28' 11.451 N	103° 40' 30.833 W
16,700.0		179.67	10,535.0	-6,586.7	-167.1	535,187.14	744,296.58	32° 28' 10.461 N	103° 40' 30.833 W
16,800.0		179.67	10,535.0	-6,686.7	-166.6	535,087.14	744,297.15	32° 28' 9.472 N	103° 40' 30.834 W
16,900.0		179.67	10,535.0	-6,786.7	-166.0	534,987.14	744,297.72	32° 28' 8.482 N	103° 40' 30.834 W
17,000.0		179.67	10,535.0	-6,886.7	-165.4	534,887.14	744,298.28	32° 28' 7.492 N	103° 40' 30.835 W
17,100.0		179.67	10,535.0	-6,986.7	-164.9	534,787.14	744,298.85	32° 28' 6.503 N	103° 40' 30.836 W
17,200.0		179.67	10,535.0	-7,086.7	-164.3	534,687.14	744,299.42	32° 28' 5.513 N	103° 40' 30.836 W
17,300.0		179.67	10,535.0	-7,186.7 7,286.7	-163.7	534,587.15	744,299.99	32° 28' 4.524 N	103° 40' 30.837 W
17,400.0 17,500.0		179.67 179.67	10,535.0 10,535.0	-7,286.7 -7,386.7	-163.2 -162.6	534,487.15 534,387.15	744,300.55 744,301.12	32° 28' 3.534 N 32° 28' 2.545 N	103° 40' 30.837 W 103° 40' 30.838 W
17,500.0		179.67 179.67	10,535.0	-7,386.7 -7,486.7	-162.6 -162.0	534,387.15	744,301.12 744,301.69	32° 28' 1.555 N	103° 40' 30.838 W
17,700.0		179.67	10,535.0	-7,486.7 -7,586.7	-161.5	534,187.15	744,301.09	32° 28' 0.566 N	103° 40' 30.839 W
17,800.0		179.67	10,535.0	-7,686.7	-160.9	534,087.15	744,302.82	32° 27' 59.576 N	103° 40' 30.840 W
17,900.0		179.67	10,535.0	-7,786.7	-160.3	533,987.16	744,303.39	32° 27' 58.587 N	103° 40' 30.840 W
18,000.0		179.67	10,535.0	-7,886.7	-159.8	533,887.16	744,303.96	32° 27' 57.597 N	103° 40' 30.841 W
18,100.0	90.00	179.67	10,535.0	-7,986.7	-159.2	533,787.16	744,304.53	32° 27' 56.608 N	103° 40' 30.841 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

Well: MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Design:	PWF	30							
Planned Surv	еу								
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
18,200.0 18,300.0 18,400.0 18,500.0 18,600.0 18,700.0 18,900.0 19,100.0 19,100.0 19,300.0 19,400.0 19,500.0 19,600.0 19,700.0 20,000.0 20,100.0 20,200.0 20,300.0 20,400.0 20,500.0 20,500.0 20,600.0 20,700.0 20,800.0 20,900.0 21,000.0	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	179.67 179.67	10,535.0 10,535.0	-8,086.7 -8,186.7 -8,286.7 -8,386.7 -8,486.7 -8,586.7 -8,686.7 -8,786.7 -9,086.7 -9,186.7 -9,186.7 -9,286.7 -9,386.7 -9,486.6 -9,586.6 -9,886.6 -9,886.6 -10,086.6 -10,186.6 -10,286.6 -10,286.6 -10,286.6 -10,386.6 -10,586.6 -10,586.6 -10,586.6 -10,586.6 -10,586.6 -10,786.6 -10,786.6 -10,786.6 -10,786.6 -10,786.6 -10,886.6	-158.6 -158.1 -157.5 -156.3 -155.8 -155.2 -154.6 -154.1 -153.5 -152.9 -152.4 -151.8 -151.2 -150.7 -150.1 -149.5 -149.0 -148.4 -147.8 -147.3 -146.1 -145.6 -145.0 -144.4 -143.9 -143.3 -142.7	533,687.16 533,587.16 533,587.16 533,387.16 533,287.17 533,187.17 532,987.17 532,987.17 532,887.17 532,687.18 532,587.18 532,587.18 532,487.18 532,287.18 532,287.18 532,187.18 532,187.19 531,987.19 531,587.19 531,587.19 531,587.19 531,487.20 531,287.20 531,287.20 531,187.20 531,087.20 531,087.20 530,987.20 530,987.20 530,987.20 530,987.20	744,305.66 744,305.66 744,306.80 744,307.37 744,307.93 744,309.07 744,309.64 744,310.21 744,311.34 744,311.34 744,311.91 744,312.48 744,313.61 744,314.18 744,314.18 744,314.18 744,315.32 744,315.32 744,315.88 744,315.88 744,317.02 744,317.02 744,317.02 744,318.72 744,318.72 744,319.29 744,319.86 744,320.43 744,320.49	32° 27' 55.618 N 32° 27' 54.629 N 32° 27' 53.639 N 32° 27' 51.660 N 32° 27' 51.660 N 32° 27' 51.660 N 32° 27' 49.681 N 32° 27' 49.681 N 32° 27' 44.7702 N 32° 27' 44.773 N 32° 27' 45.723 N 32° 27' 44.733 N 32° 27' 44.733 N 32° 27' 44.734 N 32° 27' 44.754 N 32° 27' 44.756 N 32° 27' 41.765 N 32° 27' 31.876 N 32° 27' 37.807 N 32° 27' 37.807 N 32° 27' 35.828 N 32° 27' 35.828 N 32° 27' 32.859 N 32° 27' 31.870 N 32° 27' 31.880 N 32° 27' 31.880 N 32° 27' 29.891 N 32° 27' 29.891 N 32° 27' 29.891 N 32° 27' 27.912 N	103° 40' 30.842 W 103° 40' 30.842 W 103° 40' 30.843 W 103° 40' 30.844 W 103° 40' 30.845 W 103° 40' 30.845 W 103° 40' 30.846 W 103° 40' 30.846 W 103° 40' 30.848 W 103° 40' 30.848 W 103° 40' 30.848 W 103° 40' 30.849 W 103° 40' 30.850 W 103° 40' 30.850 W 103° 40' 30.852 W 103° 40' 30.852 W 103° 40' 30.853 W 103° 40' 30.853 W 103° 40' 30.855 W 103° 40' 30.855 W 103° 40' 30.855 W 103° 40' 30.856 W 103° 40' 30.856 W 103° 40' 30.856 W 103° 40' 30.856 W 103° 40' 30.857 W
21,100.0 21,173.3 TD at 2	90.00	179.67 179.67	10,535.0 10,535.0	-10,986.6 -11,059.9	-142.2 -141.7	530,787.21 530,713.93	744,321.56 744,321.98	32° 27' 26.922 N 32° 27' 26.197 N	103° 40' 30.858 W 103° 40' 30.859 W
ID at 2	1173.3								

Design Targets									
Target Name - hit/miss target Di - Shape	p Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP-MORAN 9 FED (- plan hits target cent - Point	0.00 er	0.00	10,535.0	-701.7	-200.5	541,072.15	744,263.17	32° 29' 8.695 N	103° 40' 30.800 W
BHL -MORAN 9 FED - plan hits target cent - Point	0.00 er	0.00	10,535.0	-11,059.9	-141.7	530,713.93	744,321.98	32° 27' 26.197 N	103° 40' 30.859 W

Planning Report - Geographic

Database: Compass
Company: NEW MEXICO
Project: (SP) LEA
Site: MORAN PROJECT

MORAN 9 FEDERAL COM 505H

Wellbore: OWB Design: PWP0

Well:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Plan Annotations				
Measured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment
4,000.0 4,139.8 10,082.6 10,714.0 10,814.9 13,338.0 15,997.0 21,173.3	4,000.0 4,139.7 10,075.5 10,524.4 10,535.0 10,535.0 10,535.0	0.0 -2.6 -224.5 -601.5 -701.7 -3,224.7 -5,883.7 -11,059.9	0.0 -2.2 -188.7 -200.8 -200.5 -186.2 -171.1 -141.7	Start Build 2.00 Start 5942.9 hold at 4139.8 MD Start DLS 12.00 TFO -40.41 VO-6948 Entry at 10714.0 MD Start 10358.4 hold at 10814.9 MD VO-6948 Exit at 13338.0 MD VO-6949 Exit at 15997.0 MD TD at 21173.3

NEW MEXICO

(SP) LEA MORAN PROJECT MORAN 9 FEDERAL COM 505H

OWB PWP0

Anticollision Report

05 June, 2024

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method: Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

2.00 sigma Compass Offset Datum

Reference PWP0

Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria

Interpolation Method: Stations

Depth Range: Unlimited

Error Model: Scan Method:

Maximum centre distance of 800.0usft Results Limited by:

Warning Levels Evaluated at: 2.00 Sigma **ISCWSA**

Closest Approach 3D

Pedal Curve Not applied

Casing Method:

Error Surface:

Survey Tool Program Date 6/5/2024

> From (usft)

То

0.0

(usft)

Survey (Wellbore)

21,173.3 PWP0 (OWB)

Tool Name

Description

MWD OWSG_Rev2_ MWD - Standard

Reference	055				
Measured Depth (usft)	Offset Measured Depth (usft)	Dista Between Centres (usft)		Separation Factor	Warning
					Out of range
2,000.0 5,800.0 8,959.9 9,100.0	1,994.0 5,720.7 8,950.9 9,090.7	438.5 792.2 73.2 73.9	424.4 751.5 9.8 9.5	19.498 1.155	CC, ES SF Level 3, CC Level 3, ES, SF Out of range
					Out of range
2,000.0 10,250.0 5,081.9 5,200.0 5,700.0 2,000.0 6,300.0 7,310.6 7,500.0 7,600.0 9,185.3 1,965.6 2,200.0 5,500.0	1,991.0 10,215.2 5,085.6 5,202.5 5,697.5 1,990.0 6,218.1 7,301.5 7,490.6 7,590.5 9,190.7 1,968.6 2,200.6 5,481.5	285.1 548.9 250.5 251.1 265.2 320.1 791.9 81.8 82.5 83.5 189.6 301.1 301.9 445.9	271.0 476.3 214.2 213.9 224.6 306.0 747.9 30.4 29.8 30.2 124.9 287.2 286.4 407.2	7.565 6.893 6.755 6.531 22.721 17.969 1.593 1.567 1.565 2.928 21.683 19.433	CC, ES SF CC ES SF Out of range CC, ES SF CC ES SF CC ES SF CC, ES, SF CC, ES, SF
8,480.9 8,800.0 8,900.0 2,000.0 10,375.0 3,645.3	8,475.7 8,794.4 8,894.3 1,986.0 10,379.6 3,653.3	90.6 91.9 92.9 320.1 669.3	31.2 30.2 30.5 306.0 595.9 29.5	1.490 1.488 22.721 9.119	Level 3, ES Level 3, SF Out of range CC, ES
	2,000.0 5,800.0 8,959.9 9,100.0 2,000.0 5,081.9 5,200.0 5,700.0 7,310.6 7,500.0 7,600.0 9,185.3 1,965.6 2,200.0 5,500.0	2,000.0 1,994.0 5,800.0 5,720.7 8,959.9 8,950.9 9,100.0 10,250.0 10,215.2 5,081.9 5,085.6 5,200.0 5,697.5 2,000.0 1,990.0 6,300.0 6,218.1 7,310.6 7,301.5 7,500.0 7,490.6 7,600.0 7,590.5 9,185.3 9,190.7 1,965.6 1,968.6 2,200.0 5,500.0 5,481.5 8,480.9 8,475.7 8,800.0 8,794.4 8,900.0 8,894.3 2,000.0 1,986.0 10,375.0 10,379.6 3,645.3 3,653.3	(usft) (usft) (usft) 2,000.0 1,994.0 438.5 5,800.0 5,720.7 792.2 8,959.9 8,950.9 73.2 9,100.0 9,090.7 73.9 2,000.0 1,991.0 285.1 10,250.0 10,215.2 548.9 5,081.9 5,085.6 250.5 5,200.0 5,202.5 251.1 5,700.0 5,697.5 265.2 2,000.0 1,990.0 320.1 6,300.0 6,218.1 791.9 7,310.6 7,301.5 81.8 7,500.0 7,490.6 82.5 7,600.0 7,590.5 83.5 9,185.3 9,190.7 189.6 1,965.6 1,968.6 301.1 2,200.0 2,200.6 301.9 5,500.0 5,481.5 445.9 8,480.9 8,475.7 90.6 8,800.0 8,794.4 91.9 8,900.0 8,894.3 92.9 2,000.	(usft) (usft) (usft) (usft) 2,000.0 1,994.0 438.5 424.4 5,800.0 5,720.7 792.2 751.5 8,959.9 8,950.9 73.2 9.8 9,100.0 9,090.7 73.9 9.5 2,000.0 1,991.0 285.1 271.0 10,250.0 10,215.2 548.9 476.3 5,081.9 5,085.6 250.5 214.2 5,200.0 5,202.5 251.1 213.9 5,700.0 5,697.5 265.2 224.6 2,000.0 1,990.0 320.1 306.0 6,300.0 6,218.1 791.9 747.9 7,310.6 7,301.5 81.8 30.4 7,500.0 7,490.6 82.5 29.8 7,600.0 7,590.5 83.5 30.2 9,185.3 9,190.7 189.6 124.9 1,965.6 1,968.6 301.1 287.2 2,200.0 2,200.6 301.9 286.4	(usft) (usft) (usft) 2,000.0 1,994.0 438.5 424.4 31.097 5,800.0 5,720.7 792.2 751.5 19.498 8,959.9 8,950.9 73.2 9.8 1.155 9,100.0 9,090.7 73.9 9.5 1.148 2,000.0 1,991.0 285.1 271.0 20.232 10,250.0 10,215.2 548.9 476.3 7.565 5,081.9 5,085.6 250.5 214.2 6.893 5,200.0 5,202.5 251.1 213.9 6.755 5,700.0 5,697.5 265.2 224.6 6.531 2,000.0 1,990.0 320.1 306.0 22.721 6,300.0 6,218.1 791.9 747.9 17.969 7,310.6 7,301.5 81.8 30.4 1.593 7,500.0 7,490.6 82.5 29.8 1.567 7,600.0 7,590.5 83.5 30.2 1.565 9,185

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Offset TVD Reference:

Database:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset D	esign:M	ORAN PR	OJECT -	MORAN	9 FED C	OM 172H	- OWB - PWP	0					Offset Site Error:	0.0 usft
Survey Pro		-MWD								Rule Assi	gned:		Offset Well Error:	0.0 usft
Measured		Measured		Reference	Major Axis Offset	Highside	Offset Wellb		Between	tance Between		Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0	0.0	0.0	0.0	0.0	-133.62	-302.5	-317.5	438.6	()	(4314)			
100.0	100.0	94.0	94.0	0.3	0.2	-133.62	-302.5	-317.5	438.5	438.1	0.49	900.855		
200.0	200.0	194.0	194.0	0.6	0.6	-133.62	-302.5	-317.5	438.5	437.3	1.20	366.276		
300.0	300.0	294.0	294.0	1.0	0.9	-133.62	-302.5	-317.5	438.5	436.6	1.91	229.094		
400.0	400.0	394.0	394.0	1.3	1.3	-133.62	-302.5	-317.5	438.5	435.9	2.63	166.671		
500.0	500.0	494.0	494.0	1.7	1.7	-133.62	-302.5	-317.5	438.5	435.2	3.35	130.981		
600.0	600.0	594.0	594.0	2.0	2.0	-133.62	-302.5	-317.5	438.5	434.5	4.07	107.880		
700.0	700.0	694.0	694.0	2.4	2.4	-133.62	-302.5	-317.5	438.5	433.8	4.78	91.706		
800.0	800.0	794.0	794.0	2.8	2.7	-133.62	-302.5	-317.5	438.5	433.0	5.50	79.750		
900.0	900.0	894.0	894.0	3.1	3.1	-133.62	-302.5	-317.5	438.5	432.3	6.22	70.551		
1,000.0	1,000.0	994.0	994.0	3.5	3.5	-133.62	-302.5	-317.5	438.5	431.6	6.93	63.256		
1,100.0	1,100.0	1,094.0	1,094.0	3.8	3.8	-133.62	-302.5	-317.5	438.5	430.9	7.65	57.327		
1,200.0	1,200.0	1,194.0	1,194.0	4.2	4.2	-133.62	-302.5	-317.5	438.5	430.2	8.37	52.415		
1,300.0	1,300.0	1,294.0	1,294.0	4.6	4.5	-133.62	-302.5	-317.5	438.5	429.5	9.08	48.278		
1,400.0	1,400.0	1,394.0	1,394.0	4.9	4.9	-133.62	-302.5	-317.5	438.5	428.7	9.80	44.746		
1,500.0	1,500.0	1,494.0	1,494.0	5.3	5.2	-133.62	-302.5	-317.5	438.5	428.0	10.52	41.696		
1,600.0	1,600.0	1,594.0	1,594.0	5.6	5.6	-133.62	-302.5	-317.5	438.5	427.3	11.23	39.035		
1,700.0	1,700.0	1,694.0	1,694.0	6.0	6.0	-133.62	-302.5	-317.5	438.5	426.6	11.95	36.694		
1,800.0	1,800.0	1,794.0	1,794.0	6.3	6.3	-133.62	-302.5	-317.5	438.5	425.9	12.67	34.617		
1,900.0	1,900.0	1,894.0	1,894.0	6.7	6.7	-133.62	-302.5	-317.5	438.5	425.2	13.39	32.763		
2,000.0	2,000.0	1,994.0	1,994.0	7.1	7.0	-133.62	-302.5	-317.5	438.5	424.4	14.10	31.097 CC	, ES	
2,100.0	2,100.0	2,085.1	2,085.0	7.4	7.4	-133.50	-302.5	-318.7	439.5	424.7	14.78	29.741		
2,200.0 2,300.0	2,200.0 2,300.0	2,175.4 2,265.3	2,175.3 2,265.0	7.8 8.1	7.7 8.0	-133.11 -132.47	-302.2 -301.9	-322.8 -329.7	442.6 448.0	427.2 431.9	15.44 16.09	28.671 27.840		
2,400.0	2,400.0	2,354.8	2,353.9	8.5	8.3	-132.47	-301.3	-339.4	455.6	431.9	16.74	27.225		
2,500.0	2,500.0	2,448.3	2,446.5	8.9	8.6	-130.49	-300.6	-352.1	465.4	448.0	17.40	26.745		
,	,	,	,											
2,600.0	2,600.0	2,547.3	2,544.6	9.2	9.0	-129.33	-299.9	-366.0	475.7	457.6	18.10	26.275		
2,700.0	2,700.0	2,646.3	2,642.6	9.6	9.4	-128.22	-299.1	-379.8	486.2	467.4	18.81	25.846		
2,800.0	2,800.0	2,745.3	2,740.6	9.9	9.7	-127.15	-298.3	-393.7	496.8	477.3	19.52	25.454		
2,900.0 3,000.0	2,900.0 3,000.0	2,844.3 2,943.3	2,838.6 2,936.7	10.3 10.6	10.1 10.5	-126.13 -125.15	-297.6 -296.8	-407.6 -421.5	507.7 518.6	487.4 497.7	20.23 20.94	25.096 24.768		
3,000.0	3,000.0	2,943.3	2,930.7	10.0	10.5	-123.13	-290.0	-421.3	310.0	451.1	20.54	24.700		
3,100.0	3,100.0	3,042.4	3,034.7	11.0	10.9	-124.22	-296.0	-435.3	529.8	508.1	21.65	24.467		
3,200.0	3,200.0	3,141.4	3,132.7	11.4	11.2	-123.32	-295.3	-449.2	541.0	518.7	22.37	24.190		
3,300.0	3,300.0	3,240.4	3,230.8	11.7	11.6	-122.45	-294.5	-463.1	552.4	529.3	23.08	23.935		
3,400.0	3,400.0	3,339.4	3,328.8	12.1	12.0	-121.63	-293.7	-476.9	563.9	540.1	23.80	23.699		
3,500.0	3,500.0	3,438.4	3,426.8	12.4	12.4	-120.83	-293.0	-490.8	575.5	551.0	24.51	23.481		
3,600.0	3,600.0	3,537.4	3,524.9	12.8	12.8	-120.07	-292.2	-504.7	587.3	562.0	25.23	23.279		
3,700.0	3,700.0	3,636.4	3,622.9	13.2	13.2	-119.34	-291.4	-518.6	599.1	573.1	25.94	23.092		
3,800.0	3,800.0	3,735.4	3,720.9	13.5	13.6	-118.63	-290.7	-532.4	611.0	584.3	26.66	22.918		
3,900.0	3,900.0	3,834.4	3,818.9	13.9	14.0	-117.95	-289.9	-546.3	623.0	595.6	27.38	22.757		
4,000.0	4,000.0	3,933.5	3,917.0	14.2	14.4	-117.30	-289.1	-560.2	635.1	607.0	28.09	22.606		
4,100.0	4,100.0	4,032.6	4,015.1	14.6	14.8	23.25	-288.4	-574.1	645.7	616.9	28.79	22.423		
4,139.8	4,139.7	4,072.1	4,054.2	14.7	14.9	23.53	-288.1	-579.6	649.0	619.9	29.07	22.328		
4,200.0	4,199.9	4,131.9	4,113.4	14.9	15.2	23.99	-287.6	-588.0	653.7	624.2	29.48	22.175		
4,300.0	4,299.8	4,231.2	4,211.8	15.2	15.6	24.75	-286.8	-601.9	661.7	631.5	30.17	21.932		
4,400.0	4,399.6	4,330.5	4,310.1	15.6	16.0	25.49	-286.1	-615.8	669.7	638.8	30.86	21.703		
4,500.0	4,499.5	4,429.8	4,408.4	15.0	16 /	26.24	205.2	-629.7	677.8	646.3	24 55	21.486		
4,600.0	4,499.5	4,429.8 4,529.1	4,408.4	15.9 16.2	16.4 16.8	26.21 26.92	-285.3 -284.5	-629.7 -643.6	686.1	653.9	31.55 32.24	21.486		
4,700.0	4,699.3	4,628.4	4,605.0	16.6	17.2	27.61	-283.8	-657.6	694.5	661.5	32.93	21.287		
4,800.0	4,799.2	4,727.7	4,703.4	16.9	17.6	28.28	-283.0	-671.5	702.9	669.3	33.63	20.903		
4,900.0	4,899.0	4,827.0	4,801.7	17.2	18.0	28.94	-282.2	-685.4	711.5	677.1	34.32	20.729		
								4						
5,000.0	4,998.9	4,926.3	4,900.0	17.6	18.4	29.58	-281.5	-699.3	720.1	685.1	35.02	20.563		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset De	esign: ^{MC}	DRAN PRO	OJECT -	MORAN	9 FED C	OM 172H -	OWB - PWP	0					Offset Site Error:	0.0 usft
Survey Prog Refer	ence	MWD Offs			lajor Axis		Offset Wellb	ore Centre		Rule Assig	•		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
5,100.0	5,098.8	5,025.6	4,998.3	17.9	18.8	30.21	-280.7	-713.2	728.8	693.1	35.72	20.406		
5,200.0	5,198.7	5,124.9	5,096.7	18.3	19.2	30.82	-279.9	-727.1	737.7	701.2	36.42	20.256		
5,300.0	5,298.6	5,224.2	5,195.0	18.6	19.6	31.41	-279.2	-741.1	746.6	709.4	37.12	20.114		
5,400.0	5,398.4	5,323.5	5,293.3	18.9	20.0	32.00	-278.4	-755.0	755.5	717.7	37.82	19.979		
5,500.0	5,498.3	5,422.8	5,391.6	19.3	20.5	32.57	-277.6	-768.9	764.6	726.1	38.52	19.850		
5,600.0	5,598.2	5,522.1	5,489.9	19.6	20.9	33.12	-276.9	-782.8	773.7	734.5	39.22	19.727		
5,700.0	5,698.1	5,621.4	5,588.3	20.0	21.3	33.67	-276.1	-796.7	782.9	743.0	39.92	19.610		
5,800.0	5,798.0	5,720.7	5,686.6	20.3	21.7	34.20	-275.3	-810.6	792.2	751.5	40.63	19.498 SF		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

MORAN PROJECT Reference Site:

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

		ORAN PR	OJECT -	MORAN	9 FED C	OM 174H	- OWB - PWP	U					Offset Site Error:	0.0 usft
Survey Prog Refer	gram: 0	-MWD Off	eat	Sami N	Major Axis		Offset Wellb	ore Centre	Die	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)		Measured Depth (usft)		Reference (usft)		Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)		Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	-136.93	-302.2	-282.5	413.7	()	(3.5.5)			
100.0	100.0	95.0	95.0	0.3	0.2	-136.93	-302.2	-282.5	413.7	413.2	0.49	845.445		
200.0	200.0	195.0	195.0	0.6	0.6	-136.93	-302.2	-282.5	413.7	412.5	1.20	344.487		
300.0	300.0	295.0	295.0	1.0	0.9	-136.93	-302.2	-282.5	413.7	411.8	1.92	215.707		
400.0	400.0	395.0	395.0	1.3	1.3	-136.93	-302.2	-282.5	413.7	411.1	2.63	157.011		
500.0	500.0	495.0	495.0	1.7	1.7	-136.93	-302.2	-282.5	413.7	410.3	3.35	123.426		
600.0	600.0	595.0	595.0	2.0	2.0	-136.93	-302.2	-282.5	413.7	409.6	4.07	101.677		
700.0	700.0	695.0	695.0	2.4	2.4	-136.93	-302.2	-282.5	413.7	408.9	4.79	86.444		
0.008	800.0	795.0	795.0	2.8	2.7	-136.93	-302.2	-282.5	413.7	408.2	5.50	75.181		
900.0	900.0	895.0	895.0	3.1	3.1	-136.93	-302.2	-282.5	413.7	407.5	6.22	66.515		
1,000.0	1,000.0	995.0	995.0	3.5	3.5	-136.93	-302.2	-282.5	413.7	406.8	6.94	59.640		
1,100.0	1,100.0	1,095.0	1,095.0	3.8	3.8	-136.93	-302.2	-282.5	413.7	406.0	7.65	54.053		
1,200.0	1,200.0	1,195.0	1,195.0	4.2	4.2	-136.93	-302.2	-282.5	413.7	405.3	8.37	49.423		
1,300.0	1,300.0	1,295.0	1,295.0	4.6	4.5	-136.93	-302.2	-282.5	413.7	404.6	9.09	45.524		
1,400.0	1,400.0	1,395.0	1,395.0	4.9	4.9	-136.93	-302.2	-282.5	413.7	403.9	9.80	42.195		
1,500.0	1,500.0	1,495.0	1,495.0	5.3	5.3	-136.93	-302.2	-282.5	413.7	403.2	10.52	39.320		
1,600.0	1,600.0	1,595.0	1,595.0	5.6	5.6	-136.93	-302.2	-282.5	413.7	402.5	11.24	36.811		
1,700.0	1,700.0	1,695.0	1,695.0	6.0	6.0	-136.93	-302.2	-282.5	413.7	401.7	11.96	34.604		
1,800.0	1,800.0	1,795.0	1,795.0	6.3	6.3	-136.93	-302.2	-282.5	413.7	401.0	12.67	32.646		
1,900.0	1,900.0	1,895.0	1,895.0	6.7	6.7	-136.93	-302.2	-282.5	413.7	400.3	13.39	30.898		
2,000.0	2,000.0	1,995.0	1,995.0	7.1	7.0	-136.93	-302.2	-282.5	413.7	399.6	14.11	29.327		
2,100.0	2,100.0	2,104.9	2,104.9	7.4	7.4	-137.05	-301.6	-280.8	412.2	397.4	14.85	27.764		
2,200.0	2,200.0	2,204.9	2,204.8	7.8	7.8	-137.22	-300.7	-278.3	409.8	394.3	15.55	26.350		
2,300.0	2,300.0	2,304.8	2,304.7	8.1	8.1	-137.40	-299.8	-275.7	407.4	391.2	16.26	25.057		
2,400.0	2,400.0	2,404.8	2,404.7	8.5	8.5	-137.57	-298.9	-273.2	405.0	388.1	16.97	23.871		
2,500.0	2,500.0	2,504.8	2,504.6	8.9	8.8	-137.75	-298.0	-270.7	402.7	385.0	17.68	22.779		
2,600.0	2,600.0	2,604.7	2,604.5	9.2	9.2	-137.93	-297.1	-268.1	400.3	381.9	18.39	21.770		
2,700.0	2,700.0	2,704.7	2,704.4	9.6	9.5	-138.12	-296.2	-265.6	397.9	378.8	19.10	20.836		
2,800.0	2,800.0	2,804.6	2,804.4	9.9	9.9	-138.30	-295.2	-263.0	395.5	375.7	19.81	19.969		
2,900.0	2,900.0	2,904.6	2,904.3	10.3	10.2	-138.49	-294.3	-260.5	393.2	372.7	20.52	19.161		
3,000.0	3,000.0	3,004.6	3,004.2	10.6	10.6	-138.68	-293.4	-258.0	390.8	369.6	21.23	18.408		
3,100.0	3,100.0	3,104.5	3,104.2	11.0	10.9	-138.87	-292.5	-255.4	388.5	366.5	21.94	17.703		
3,200.0	3,200.0	3,204.5	3,204.1	11.4	11.3	-139.07	-291.6	-252.9	386.1	363.4	22.66	17.042		
3,300.0	3,300.0	3,304.5	3,304.0	11.7	11.7	-139.26	-290.7	-250.4	383.7	360.4	23.37	16.422		
3,400.0	3,400.0	3,404.4	3,403.9	12.1	12.0	-139.46	-289.8	-247.8	381.4	357.3	24.08	15.838		
3,500.0	3,500.0	3,504.4	3,503.9	12.4	12.4	-139.66	-288.9	-245.3	379.1	354.3	24.79	15.288		
3,600.0	3,600.0	3,604.4	3,603.8	12.8	12.7	-139.87	-288.0	-242.8	376.7	351.2	25.51	14.769		
3,700.0	3,700.0	3,704.3	3,703.7	13.2	13.1	-140.08	-287.0	-240.2	374.4	348.2	26.22	14.278		
3,800.0	3,800.0	3,804.3	3,803.6	13.5	13.4	-140.28	-286.1	-237.7	372.1	345.1	26.94	13.813		
3,900.0 4,000.0	3,900.0 4,000.0	3,904.2 4,004.2	3,903.6 4,003.5	13.9 14.2	13.8 14.2	-140.50 -140.71	-285.2 -284.3	-235.1 -232.6	369.8 367.4	342.1 339.1	27.65 28.37	13.372 12.954		
4,100.0	4,100.0	4,104.1	4,103.4	14.6	14.5	-0.99	-283.4	-230.1	363.4	334.3	29.06	12.503		
4,139.8	4,139.7	4,143.8	4,143.0	14.7	14.7	-1.08	-283.0	-229.1	360.8	331.5	29.34	12.299		
4,200.0	4,199.9	4,203.9	4,203.1	14.9	14.9	-1.23	-282.5	-227.5	356.5	326.7	29.75	11.984		
4,300.0	4,299.8	4,303.6	4,302.8	15.2	15.2	-1.48	-281.6	-225.0	349.3	318.9	30.43	11.479		
4,400.0	4,399.6	4,403.3	4,402.5	15.6	15.6	-1.73	-280.7	-222.5	342.2	311.0	31.12	10.996		
4,500.0	4,499.5	4,503.1	4,502.2	15.9	15.9	-2.00	-279.8	-220.0	335.0	303.2	31.80	10.534		
4,600.0	4,599.4	4,602.8	4,601.9	16.2	16.3	-2.28	-278.9	-217.4	327.8	295.4	32.49	10.090		
4,700.0	4,699.3	4,702.5	4,701.6	16.6	16.6	-2.58	-277.9	-214.9	320.7	287.5	33.18	9.666		
4,800.0	4,799.2	4,802.2	4,801.2	16.9	17.0	-2.88	-277.0	-212.4	313.6	279.7	33.87	9.258		
4,900.0	4,899.0	4,902.0	4,900.9	17.2	17.4	-3.20	-276.1	-209.8	306.5	271.9	34.56	8.867		
5,000.0	4,998.9	5,001.7	5,000.6	17.6	17.7	-3.54	-275.2	-207.3	299.3	264.1	35.26	8.491		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Database:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Lumicon - Direct	aramı O	MWD								Dulo Assis	unodi		Offset Site Error: Offset Well Error:	0.0 usf 0.0 usf
urvey Prog Refer		Offs	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dist	Rule Assig	gnea:		Offset Well Error:	0.0 us
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)		Warning	
5,100.0	5,098.8	5,101.4	5,100.3	17.9	18.1	-3.89	-274.3	-204.8	292.2	256.3	35.95	8.129		
5,200.0	5,198.7	5,201.2	5,200.0	18.3	18.4	-4.26	-273.4	-202.2	285.1	248.5	36.64	7.781		
5,300.0	5,298.6	5,300.9	5,299.7	18.6	18.8	-4.65	-272.5	-199.7	278.1	240.7	37.34	7.447		
5,400.0	5,398.4	5,400.6	5,399.4	18.9	19.2	-5.06	-271.6	-197.2	271.0	233.0	38.04	7.125		
5,500.0	5,498.3	5,500.4	5,499.1	19.3	19.5	-5.49	-270.7	-194.7	264.0	225.2	38.74	6.814		
5,600.0	5,598.2	5,600.1	5,598.8	19.6	19.9	-5.95	-269.8	-192.1	256.9	217.5	39.43	6.515		
5,700.0	5,698.1	5,699.8	5,698.5	20.0	20.2	-6.43	-268.9	-189.6	249.9	209.8	40.13	6.227		
5,800.0	5,798.0	5,799.6	5,798.2	20.3	20.6	-6.93	-267.9	-187.1	242.9	202.1	40.83	5.949		
5,900.0	5,897.8	5,899.3	5,897.9	20.7	20.9	-7.47	-267.0	-184.5	235.9	194.4	41.53	5.680		
6,000.0	5,997.7	5,999.0	5,997.6	21.0	21.3	-8.04	-266.1	-182.0	229.0	186.7	42.24	5.421		
6,100.0	6,097.6	6,098.7	6,097.3	21.4	21.7	-8.65	-265.2	-179.5	222.0	179.1	42.94	5.171		
6,200.0	6,197.5	6,198.5	6,197.0	21.7	22.0	-9.29	-264.3	-176.9	215.1	171.5	43.64	4.930		
6,300.0	6,297.4	6,298.2	6,296.7	22.1	22.4	-9.98	-263.4	-174.4	208.3	163.9	44.35	4.696		
6,400.0	6,397.3	6,397.9	6,396.4	22.4	22.7	-10.71	-262.5	-171.9	201.4	156.4	45.05	4.471		
6,500.0	6,497.1	6,497.7	6,496.1	22.8	23.1	-11.50	-261.6	-169.3	194.6	148.8	45.76	4.253		
6,600.0	6,597.0	6,597.4	6,595.8	23.1	23.4	-12.34	-260.7	-166.8	187.8	141.4	46.46	4.043		
6,700.0	6,696.9	6,697.1	6,695.4	23.5	23.8	-13.25	-259.8	-164.3	181.1	133.9	47.17	3.840		
6,800.0	6,796.8	6,796.9	6,795.1	23.8	24.2	-14.22	-258.9	-161.8	174.4	126.5	47.88	3.643		
6,900.0	6,896.7	6,896.6	6,894.8	24.2	24.5	-15.28	-257.9	-159.2	167.8	119.2	48.58	3.454		
7,000.0	6,996.5	6,996.3	6,994.5	24.5	24.9	-16.42	-257.0	-156.7	161.2	111.9	49.29	3.271		
7,100.0	7,096.4	7,096.1	7,094.2	24.9	25.2	-17.65	-256.1	-154.2	154.7	104.7	50.00	3.095		
7,200.0	7,196.3	7,195.8	7,193.9	25.2	25.6	-18.99	-255.2	-151.6	148.3	97.6	50.71	2.925		
7,300.0	7,296.2	7,295.5	7,293.6	25.6	26.0	-20.45	-254.3	-149.1	142.0	90.6	51.43	2.761		
7,400.0	7,396.1	7,395.3	7,393.3	25.9	26.3	-22.05	-253.4	-146.6	135.8	83.6	52.14	2.604		
7,500.0	7,495.9	7,495.0	7,493.0	26.3	26.7	-23.80	-252.5	-144.0	129.7	76.8	52.85	2.453		
7,600.0	7,595.8	7,594.7	7,592.7	26.7	27.0	-25.72	-251.6	-141.5	123.7	70.1	53.57	2.309		
7,700.0	7,695.7	7,694.4	7,692.4	27.0	27.4	-27.83	-250.7	-139.0	117.9	63.6	54.28	2.171		
7,800.0	7,795.6	7,794.2	7,792.1	27.4	27.8	-30.16	-249.8	-136.5	112.2	57.2	55.00	2.040		
7,900.0	7,895.5	7,893.9	7,891.8	27.7	28.1	-32.73	-248.8	-133.9	106.8	51.0	55.72	1.916		
8,000.0	7,995.4	7,993.6	7,991.5	28.1	28.5	-35.57	-247.9	-131.4	101.5	45.1	56.44	1.799		
8,100.0	8,095.2	8,093.4	8,091.2	28.4	28.8	-38.70	-247.0	-128.9	96.6	39.4	57.17	1.690		
8,200.0	8,195.1	8,193.1	8,190.9	28.8	29.2	-42.16	-246.1	-126.3	92.0	34.1	57.89	1.589		
8,300.0	8,295.0	8,292.8	8,290.6	29.2	29.5	-45.97	-245.2	-123.8	87.8	29.1	58.62	1.497 Lev	el 3	
8,400.0	8,394.9	8,392.6	8,390.3	29.5	29.9	-50.14	-244.3	-121.3	83.9	24.6	59.35	1.414 Lev	el 3	
8,500.0	8,494.8	8,492.3	8,490.0	29.9	30.3	-54.69	-243.4	-118.7	80.6	20.5	60.07	1.342 Lev	el 3	
8,600.0	8,594.6	8,592.0	8,589.6	30.2	30.6	-59.58	-242.5	-116.2	77.8	17.0	60.80	1.280 Lev	el 3	
8,700.0	8,694.5	8,691.8	8,689.3	30.6	31.0	-64.80	-241.6	-113.7	75.7	14.1	61.53	1.230 Lev	el 3	
8,800.0	8,794.4	8,791.5	8,789.0	30.9	31.3	-70.28	-240.7	-111.1	74.2	11.9	62.25	1.191 Lev		
8,900.0	8,894.3	8,891.2	8,888.7	31.3	31.7	-75.92	-239.8	-108.6	73.4	10.4	62.97	1.165 Lev	el 3	
8,959.9	8,954.1	8,950.9	8,948.4	31.5	31.9	-79.34	-239.2	-107.1	73.2	9.8	63.40	1.155 Lev	el 3, CC	
9,000.0	8,994.2	8,990.9	8,988.4	31.7	32.1	-81.64	-238.8	-106.1	73.3	9.6	63.68	1.151 Lev	el 3	
9,100.0	9,094.0	9,090.7	9,088.1	32.0	32.4	-87.31	-237.9	-103.6	73.9	9.5	64.39	1.148 Lev	el 3, ES, SF	
9,200.0	9,193.9	9,190.4	9,187.8	32.4	32.8	-92.83	-237.0	-101.0	75.3	10.2	65.10	1.157 Lev		
9,300.0	9,293.8	9,290.1	9,287.5	32.7	33.1	-98.10	-236.1	-98.5	77.4	11.6	65.80	1.176 Lev		
9,400.0	9,393.7	9,389.9	9,387.2	33.1	33.5	-103.07	-235.2	-96.0	80.0	13.5	66.49	1.203 Lev		
9,500.0	9,493.6	9,489.6	9,486.9	33.5	33.9	-107.68	-234.3	-93.4	83.2	16.1	67.19	1.239 Lev		
9,600.0	9,593.4	9,589.3	9,586.6	33.8	34.2	-111.93	-233.4	-90.9	87.0	19.1	67.89	1.281 Lev	el 3	
9,700.0	9,693.3	9,689.1	9,686.3	34.2	34.6	-115.81	-232.5	-88.4	91.1	22.5	68.58	1.329 Lev	el 3	
9,800.0	9,793.2	9,788.8	9,786.0	34.5	34.9	-119.33	-231.6	-85.8	95.7	26.4	69.28	1.381 Lev	el 3	
9,900.0	9,893.1	9,888.5	9,885.7	34.9	35.3	-122.53	-230.7	-83.3	100.5	30.6	69.98	1.437 Lev	el 3	
10,000.0	9,993.0	9,988.3	9,985.4	35.3	35.6	-125.42	-229.8	-80.8	105.7	35.0	70.68	1.496 Lev		
10,082.6	10,075.5	10,070.7	10,067.8	35.6	35.9	-127.61	-229.0	-78.7	110.2	38.9	71.25	1.546		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

MORAN PROJECT Reference Site:

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Offset TVD Reference:

Database:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

_		1440											Offset Site Error:	0.0 usf
urvey Pro Refe	gram: 0- rence	-MWD Off	set	Semi M	lajor Axis		Offset Wellbo	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 usf
leasured Depth (usft)		Measured Depth (usft)		Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)		Between Ellipses (usft)	Minimum Separation (usft)		Warning	
10,100.0	10,092.8	10,088.0	10,085.0	35.6	36.0	-110.97	-228.8	-78.3	111.1	39.7	71.38	1.557		
10,125.0	10,117.7	10,112.8	10,109.8	35.7	36.1	-103.06	-228.6	-77.6	112.4	40.9	71.55	1.572		
10,150.0	10,142.4	10,137.4	10,134.5	35.8	36.2	-100.86	-228.4	-77.0	113.9	42.2	71.72	1.588		
10,175.0	10,166.9	10,161.8	10,158.9	35.9	36.3	-100.98	-228.2	-76.4	115.5	43.6	71.88	1.607		
10,200.0	10,191.0	10,185.9	10,182.9	36.0	36.4	-102.38	-228.0	-75.8	117.5	45.5	72.04	1.631		
10,225.0	10,214.8	10,209.6	10,206.6	36.1	36.4	-104.57	-227.7	-75.2	120.1	47.9	72.20	1.663		
10,250.0	10,238.2	10,232.9	10,229.9	36.2	36.5	-107.28	-227.5	-74.6	123.4	51.0	72.36	1.705		
10,275.0	10,261.1	10,255.6	10,252.6	36.3	36.6	-110.28	-227.3	-74.0	127.6	55.1	72.51	1.760		
10,300.0	10,283.4	10,277.8	10,274.8	36.4	36.7	-113.41	-227.1	-73.4	133.0	60.3	72.66	1.830		
10,325.0	10,305.1	10,299.4	10,296.4	36.5	36.8	-116.52	-226.9	-72.9	139.6	66.7	72.81	1.917		
10,350.0	10,326.1	10,320.2	10,317.2	36.6	36.8	-119.49	-226.7	-72.4	147.5	74.6	72.95	2.022		
10,375.0	10,346.4	10,340.4	10,337.4	36.7	36.9	-122.25	-226.5	-71.9	156.9	83.8	73.09	2.146		
10,400.0	10,365.9	10,359.7	10,356.7	36.8	37.0	-124.72	-226.4	-71.4	167.7	94.5	73.22	2.290		
10,425.0	10,384.5	10,378.2	10,375.2	36.9	37.1	-126.86	-226.2	-70.9	179.9	106.6	73.35	2.453		
10,450.0	10,402.3	10,395.8	10,392.7	37.0	37.1	-128.65	-226.0	-70.4	193.5	120.0	73.47	2.633		
10,475.0	10,419.1	10,412.4	10,409.3	37.1	37.2	-130.06	-225.9	-70.0	208.4	134.8	73.59	2.832		
10,500.0	10,434.9	10,428.0	10,425.0	37.2	37.2	-131.10	-225.7	-69.6	224.5	150.8	73.70	3.046		
10,525.0	10,449.7	10,442.6	10,439.6	37.3	37.3	-131.73	-225.6	-69.3	241.7	167.9	73.80	3.276		
10,550.0	10,463.4	10,456.1	10,453.1	37.4	37.3	-131.93	-225.5	-68.9	260.0	186.1	73.89	3.519		
10,575.0	10,476.0	10,468.5	10,465.4	37.6	37.4	-131.68	-225.4	-68.6	279.3	205.3	73.97	3.775		
10,600.0	10,487.5	10,479.7	10,476.7	37.7	37.4	-130.93	-225.3	-68.3	299.4	225.3	74.04	4.043		
10,625.0	10,497.8	10,489.8	10,486.7	37.8	37.5	-129.61	-225.2	-68.1	320.3	246.2	74.11	4.321		
10,650.0	10,506.8	10,498.7	10,495.6	37.9	37.5	-127.63	-225.1	-67.8	341.8	267.7	74.17	4.609		
10,675.0	10,514.7	10,506.3	10,503.2	38.0	37.5	-124.85	-225.0	-67.6	364.0	289.8	74.21	4.905		
10,700.0	10,521.3	10,512.6	10,509.6	38.1	37.5	-121.12	-225.0	-67.5	386.7	312.4	74.25	5.208		
10,725.0	10,526.6	10,517.7	10,514.6	38.3	37.6	-116.23	-224.9	-67.4	409.8	335.5	74.28	5.516		
10,750.0	10,530.6	10,521.5	10,518.5	38.4	37.6	-109.96	-224.9	-67.3	433.2	358.9	74.31	5.830		
10,775.0	10,533.3	10,524.0	10,521.0	38.5	37.6	-102.16	-224.9	-67.2	457.0	382.6	74.32	6.148		
10,800.0	10,534.8	10,525.2	10,522.2	38.6	37.6	-92.86	-224.9	-67.2	480.9	406.6	74.33	6.469		
10,814.9	10,535.0	10,525.3	10,522.3	38.7	37.6	-86.75	-224.9	-67.2	495.2	420.9	74.33	6.662		
10,900.0	10,535.0	10,524.6	10,521.5	39.1	37.6	-86.43	-224.9	-67.2	577.5	503.1	74.34	7.768		
11,000.0	10,535.0	10,523.7	10,520.6	39.7	37.6	-86.05	-224.9	-67.2	675.1	600.7	74.35	9.080		
11,100.0	10,535.0	11,796.6	11,235.0	40.4	41.6	-167.66	-985.9	-44.7	721.7	674.7	47.00	15.354		
11,200.0	10,535.0	11,896.6	11,235.0	41.0	42.1	-167.66	-1,085.9	-44.1	721.7	674.2	47.45	15.208		
11,300.0	10,535.0	11,996.6	11,235.0	41.8	42.6	-167.66	-1,185.9	-43.6	721.7	673.7	47.96	15.047		
11,400.0	10,535.0	12,096.6	11,235.0	42.6	43.2	-167.66	-1,285.9	-43.0	721.7	673.2	48.52	14.873		
11,500.0	10,535.0	12,196.6	11,235.0	43.4	43.9	-167.66	-1,385.9	-42.4	721.7	672.5	49.13	14.688		
11,600.0	10,535.0	12,296.6	11,235.0	44.3	44.6	-167.66	-1,485.9	-41.9	721.7	671.9	49.80	14.493		
11,700.0	10,535.0	12,396.6	11,235.0	45.3	45.3	-167.66	-1,585.9	-41.3	721.7	671.2	50.51	14.289		
11,800.0	10,535.0	12,496.6	11,235.0	46.2	46.1	-167.66	-1,685.9	-40.7	721.7	670.4	51.26	14.079		
11,900.0	10,535.0	12,596.6	11,235.0	47.2	47.0	-167.66	-1,785.9	-40.2	721.7	669.6	52.06	13.862		
12,000.0	10,535.0	12,696.6	11,235.0	48.3	47.9	-167.66	-1,885.9	-39.6	721.7	668.8	52.90	13.642		
12,100.0	10,535.0	12,796.6	11,235.0	49.4	48.8	-167.66	-1,985.9	-39.0	721.7	667.9	53.78	13.419		
12,200.0	10,535.0	12,896.6	11,235.0	50.5	49.8	-167.66	-2,085.9	-38.5	721.7	667.0	54.70	13.194		
12,300.0 12,400.0	10,535.0 10,535.0	12,996.6 13,096.6	11,235.0 11,235.0	51.6 52.8	50.8 51.8	-167.66 -167.66	-2,185.9 -2,285.9	-37.9 -37.3	721.7 721.7	666.0 665.0	55.65 56.64	12.968 12.741		
12,500.0	10,535.0	13,196.6	11,235.0	54.0	52.9	-167.66	-2,385.9	-36.7	721.7	664.0	57.66	12.516		
12,600.0	10,535.0	13,190.6	11,235.0	55.2	54.0	-167.66	-2,485.9	-36.2	721.7	663.0	58.71	12.310		
12,700.0	10,535.0	13,396.6	11,235.0	56.4	55.1	-167.66	-2,585.9	-35.6	721.7	661.9	59.79	12.070		
12,800.0	10,535.0	13,496.6	11,235.0	57.7	56.2	-167.66	-2,685.9	-35.0	721.7	660.8	60.90	11.850		
12,900.0	10,535.0	13,596.6	11,235.0	59.0	57.4	-167.66	-2,785.9	-34.5	721.7	659.6	62.03	11.633		
13,000.0	10,535.0	13,696.6	11,235.0	60.2	58.6	-167.66	-2,885.9	-33.9	721.7	658.5	63.19	11.420		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset De	esign: ^{M0}	ORAN PR	OJECT -	MORAN	9 FED C	OM 174H	- OWB - PWP	J					Offset Site Error:	0.0 usft
Survey Prog	gram: 0-	-MWD								Rule Assi	gned:		Offset Well Error:	0.0 usft
Refer Measured	rence	Off Measured	set Vertical	Semi I Reference	Major Axis Offset	Highside	Offset Wellbo	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)		3	
13,100.0	10,535.0	13,796.6	11,235.0	61.6	59.8	-167.66	-2,985.9	-33.3	721.7	657.3	64.38	11.210		
13,100.0	10,535.0	13,790.0	11,235.0	62.9	61.1	-167.66	-3,085.9	-32.8	721.7	656.1	65.58	11.005		
13,200.0	10,535.0	13,996.6	11,235.0	64.2	62.3	-167.66	-3,185.9	-32.2	721.7	654.9	66.80	10.803		
13,400.0	10,535.0	14,096.6	11,235.0	65.6	63.6	-167.66	-3,285.9	-31.6	721.7	653.6	68.05	10.605		
13,500.0	10,535.0	14,196.6	11,235.0	67.0	64.9	-167.66	-3,385.9	-31.1	721.7	652.4	69.31	10.412		
13,600.0	10,535.0	14,190.0	11,235.0	68.3	66.2	-167.66	-3,485.9	-30.5	721.7	651.1	70.59	10.412		
13,000.0	10,555.0	14,290.0	11,233.0	00.5	00.2	-107.00	-5,465.9		721.7	031.1	70.59	10.223		
13,700.0	10,535.0	14,396.6	11,235.0	69.7	67.5	-167.66	-3,585.9	-29.9	721.7	649.8	71.89	10.038		
13,800.0	10,535.0	14,496.6	11,235.0	71.1	68.9	-167.66	-3,685.9	-29.4	721.7	648.5	73.21	9.858		
13,900.0	10,535.0	14,596.6	11,235.0	72.6	70.2	-167.66	-3,785.9	-28.8	721.7	647.1	74.54	9.682		
14,000.0	10,535.0	14,696.6	11,235.0	74.0	71.6	-167.66	-3,885.9	-28.2	721.7	645.8	75.88	9.511		
14,100.0	10,535.0	14,796.6	11,235.0	75.4	73.0	-167.66	-3,985.9	-27.6	721.7	644.4	77.23	9.344		
14,200.0	10,535.0	14,896.6	11,235.0	76.9	74.3	-167.66	-4,085.9	-27.1	721.7	643.1	78.60	9.181		
14,300.0	10,535.0	14,996.6	11,235.0	78.3	75.7	-167.66	-4,185.9	-26.5	721.7	641.7	79.99	9.023		
14,400.0	10,535.0	15,096.6	11,235.0	79.8	77.1	-167.66	-4,285.9	-25.9	721.7	640.3	81.38	8.868		
14,500.0	10,535.0	15,196.6	11,235.0	81.3	78.6	-167.66	-4,385.9	-25.4	721.7	638.9	82.78	8.718		
14,600.0	10,535.0	15,296.6	11,235.0	82.7	80.0	-167.66	-4,485.9	-24.8	721.7	637.5	84.20	8.571		
14,700.0	10,535.0	15,396.6	11,235.0	84.2	81.4	-167.66	-4,585.9	-24.2	721.7	636.1	85.62	8.429		
14,800.0	10,535.0	15,496.6	11,235.0	85.7	82.9	-167.66	-4,685.8	-23.7	721.7	634.6	87.06	8.290		
14,900.0	10,535.0	15,596.6	11,235.0	87.2	84.3	-167.66	-4,785.8	-23.1	721.7	633.2	88.50	8.155		
15,000.0	10,535.0	15,696.6	11,235.0	88.7	85.8	-167.66	-4,885.8	-22.5	721.7	631.7	89.95	8.023		
15,100.0	10,535.0	15,796.6	11,235.0	90.2	87.2	-167.66	-4,985.8	-22.0	721.7	630.3	91.41	7.895		
15,200.0	10,535.0	15,896.6	11,235.0	91.7	88.7	-167.66	-5,085.8	-21.4	721.7	628.8	92.88	7.770		
15,300.0	10,535.0	15,996.6	11,235.0	93.2	90.2	-167.66	-5,185.8	-20.8	721.7	627.3	94.35	7.649		
15,400.0	10,535.0	16,096.6	11,235.0	94.7	91.7	-167.66	-5,285.8	-20.3	721.7	625.8	95.83	7.531		
15,500.0	10,535.0	16,196.6	11,235.0	96.3	93.2	-167.66	-5,385.8	-19.7	721.7	624.4	97.32	7.416		
15,600.0	10,535.0	16,296.6	11,235.0	97.8	94.7	-167.66	-5,485.8	-19.1	721.7	622.9	98.81	7.303		
15,700.0	10,535.0	16,396.6	11,235.0	99.3	96.2	-167.66	-5,585.8	-18.6	721.7	621.4	100.32	7.194		
15,800.0	10,535.0	16,496.6	11,235.0	100.9	97.7	-167.66	-5,685.8	-18.0	721.7	619.9	101.82	7.088		
15,900.0	10,535.0	16,596.6	11,235.0	102.4	99.2	-167.66	-5,785.8	-17.4	721.7	618.3	103.33	6.984		
16,000.0	10,535.0	16,696.6	11,235.0	103.9	100.7	-167.66	-5,885.8	-16.8	721.7	616.8	104.85	6.883		
16,100.0	10,535.0	16,796.6	11,235.0	105.5	102.2	-167.66	-5,985.8	-16.3	721.7	615.3	106.37	6.784		
16,200.0	10,535.0	16,896.6	11,235.0	107.0	103.7	-167.66	-6,085.8	-15.7	721.7	613.8	107.90	6.688		
16,300.0	10,535.0	16,996.6	11,235.0	108.6	105.3	-167.66	-6,185.8	-15.1	721.7	612.2	109.43	6.595		
16,400.0	10,535.0	17,096.6	11,235.0	110.1	106.8	-167.66	-6,285.8	-14.6	721.7	610.7	110.97	6.503		
16,500.0	10,535.0	17,196.6	11,235.0	111.7	108.3	-167.66	-6,385.8	-14.0	721.7	609.2	112.51	6.414		
16,600.0	10,535.0	17,296.6	11,235.0	113.3	109.9	-167.66	-6,485.8	-13.4	721.7	607.6	114.06	6.327		
16,700.0	10,535.0	17,396.6	11,235.0	114.8	111.4	-167.66	-6,585.8	-12.9	721.7	606.1	115.61	6.243		
16,800.0	10,535.0	17,496.6	11,235.0	116.4	113.0	-167.66	-6,685.8	-12.3	721.7	604.5	117.16	6.160		
16,900.0	10,535.0	17,596.6	11,235.0	118.0	114.5	-167.66	-6,785.8	-11.7	721.7	603.0	118.72	6.079		
17,000.0	10,535.0	17,696.6	11,235.0	119.5	116.1	-167.66	-6,885.8	-11.2	721.7	601.4	120.28	6.000		
17,100.0	10,535.0	17,796.6	11,235.0	121.1	117.6	-167.66	-6,985.8	-10.6	721.7	599.8	121.84	5.923		
17,200.0	10,535.0	17,896.6	11,235.0	122.7	119.2	-167.66	-7,085.8	-10.0	721.7	598.3	123.41	5.848		
17,200.0	10,535.0	17,090.0	11,235.0	124.3	120.7	-167.66	-7,185.8	-10.0 -9.5	721.7	596.7	124.98	5.775		
17,400.0	10,535.0	18,096.6	11,235.0	124.3	120.7	-167.66	-7,285.8	-8.9	721.7	595.1	126.55	5.703		
17,500.0	10,535.0	18,196.6	11,235.0	127.4	123.8	-167.66	-7,385.8	-8.3	721.7	593.6	128.13	5.633		
17,600.0	10,535.0	18,296.6	11,235.0	127.4	125.6	-167.66	-7,485.8	-0.3 -7.7	721.7	592.0	129.70	5.564		
17 700 0	10 525 0	18 206 6	11 225 0	120.6	127.0	167 66	7 505 0	70	701 7	E00 4	121 20	5 407		
17,700.0	10,535.0	18,396.6	11,235.0	130.6	127.0	-167.66	-7,585.8 7,685.8	-7.2	721.7 721.7	590.4	131.29	5.497 5.431		
17,800.0	10,535.0	18,496.6	11,235.0	132.2	128.5	-167.66	-7,685.8 7,785.9	-6.6	721.7	588.8	132.87	5.431		
17,900.0	10,535.0	18,596.6	11,235.0	133.8	130.1	-167.66	-7,785.8	-6.0	721.7	587.2	134.46	5.367		
18,000.0 18,100.0	10,535.0 10,535.0	18,696.6 18,796.6	11,235.0 11,235.0	135.4 136.9	131.7 133.3	-167.66 -167.66	-7,885.8 -7,985.8	-5.5 -4.9	721.7 721.7	585.6 584.0	136.05 137.64	5.305 5.243		
18,200.0	10,535.0	18,896.6	11,235.0	138.5	134.8	-167.66	-8,085.8	-4.3	721.7	582.5	139.23	5.183		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method: Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

													Offset Site Error:	0.0 usf
urvey Pro	gram: 0- rence	MWD Off s	201	Comi I	Major Axis		Offset Wellb	ara Cantra	Diet	Rule Assig	gned:		Offset Well Error:	0.0 usf
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S (usft)	+E/-W (usft)	Between Centres	Between Ellipses	Minimum Separation		Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)			(usft) 721.7	(usft)	(usft)	5.125		
18,300.0 18,400.0	10,535.0 10,535.0	18,996.6 19,096.6	11,235.0	140.1 141.7	136.4 138.0	-167.66 -167.66	-8,185.8 -8,285.8	-3.8 -3.2	721.7	580.9 579.3	140.83 142.43	5.125		
18,500.0	10,535.0	19,096.6	11,235.0 11,235.0	141.7	130.0	-167.66	-6,265.6 -8,385.8	-3.2 -2.6	721.7	579.3 577.7	144.03	5.067		
18,600.0	10,535.0	19,196.6	11,235.0		141.2	-167.66	-0,305.0 -8,485.8	-2.0 -2.1	721.7 721.7	577.7 576.1	144.03	4.956		
-				144.9										
18,700.0	10,535.0	19,396.6	11,235.0	146.5	142.8	-167.66	-8,585.8	-1.5	721.7	574.5	147.23	4.902		
18,800.0	10,535.0	19,496.6	11,235.0	148.1	144.3	-167.66	-8,685.8	-0.9	721.7	572.8	148.84	4.849		
18,900.0	10,535.0	19,596.6	11,235.0	149.7	145.9	-167.66	-8,785.8	-0.4	721.7	571.2	150.44	4.797		
19,000.0	10,535.0	19,696.6	11,235.0	151.3	147.5	-167.66	-8,885.8	0.2	721.7	569.6	152.05	4.746		
19,100.0	10,535.0	19,796.6	11,235.0	152.9	149.1	-167.66	-8,985.8	0.8	721.7	568.0	153.67	4.696		
19,200.0	10,535.0	19,896.6	11,235.0	154.5	150.7	-167.66	-9,085.8	1.3	721.7	566.4	155.28	4.648		
19,300.0	10,535.0	19,996.6	11,235.0	156.1	152.3	-167.66	-9,185.8	1.9	721.7	564.8	156.89	4.600		
19,400.0	10,535.0	20,096.6	11,235.0	157.7	153.9	-167.66	-9,285.8	2.5	721.7	563.2	158.51	4.553		
19,500.0	10,535.0	20,090.0	11,235.0	157.7	155.5	-167.65	-9,385.8	3.1	721.7	561.6	160.13	4.507		
19,600.0	10,535.0	20,196.6	11,235.0	161.0	155.5	-167.65	-9,365.6 -9,485.8	3.6	721.7	559.9	161.74	4.462		
			11,235.0				-9,465.6 -9,585.8	3.6 4.2						
19,700.0 19,800.0	10,535.0 10,535.0	20,396.6 20,496.6	11,235.0	162.6 164.2	158.7 160.3	-167.65 -167.65	-9,565.6 -9,685.8	4.2	721.7 721.7	558.3 556.7	163.36 164.99	4.418 4.374		
13,000.0	10,000.0	20,430.0	11,200.0	104.2	100.5	-107.03	-5,005.0	4.0	121.1	330.7	104.55	4.574		
19,900.0	10,535.0	20,596.6	11,235.0	165.8	161.9	-167.65	-9,785.8	5.3	721.7	555.1	166.61	4.332		
20,000.0	10,535.0	20,696.6	11,235.0	167.4	163.5	-167.65	-9,885.8	5.9	721.7	553.5	168.23	4.290		
20,100.0	10,535.0	20,796.6	11,235.0	169.0	165.1	-167.65	-9,985.8	6.5	721.7	551.8	169.86	4.249		
20,200.0	10,535.0	20,896.6	11,235.0	170.6	166.7	-167.65	-10,085.8	7.0	721.7	550.2	171.48	4.208		
20,300.0	10,535.0	20,996.6	11,235.0	172.2	168.3	-167.65	-10,185.8	7.6	721.7	548.6	173.11	4.169		
20,400.0	10,535.0	21,096.6	11,235.0	173.9	169.9	-167.65	-10,285.8	8.2	721.7	546.9	174.74	4.130		
20,500.0	10,535.0	21,196.6	11,235.0	175.5	171.5	-167.65	-10,385.8	8.7	721.7	545.3	176.37	4.092		
20,600.0	10,535.0	21,130.6	11,235.0	177.1	173.1	-167.65	-10,485.8	9.3	721.7	543.7	178.00	4.054		
20,700.0	10,535.0	21,396.6	11,235.0	177.1	173.1	-167.65	-10,585.8	9.9	721.7	542.1	179.63	4.034		
20,800.0	10,535.0	21,496.6	11,235.0	180.3	174.7	-167.65	-10,685.8	10.4	721.7	540.4	181.27	3.981		
20,000.0	10,555.0	21,490.0	11,233.0	100.5	170.5	-107.03	-10,003.0	10.4	121.1	340.4	101.21	3.301		
20,900.0	10,535.0	21,596.6	11,235.0	181.9	178.0	-167.65	-10,785.8	11.0	721.7	538.8	182.90	3.946		
21,000.0	10,535.0	21,696.6	11,235.0	183.6	179.6	-167.65	-10,885.7	11.6	721.7	537.2	184.54	3.911		
21,100.0	10,535.0	21,796.6	11,235.0	185.2	181.2	-167.65	-10,985.7	12.1	721.7	535.5	186.17	3.876		
21,107.7	10,535.0	21,804.4	11,235.0	185.3	181.3	-167.65	-10,993.5	12.2	721.7	535.4	186.30	3.874		
21,173.3	10,535.0	21,868.8	11,235.0	186.4	182.3	-167.65	-11,057.9	12.6	721.7	534.3	187.35	3.852		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

							- OWB - PWP						Offset Site Error:	0.0 usf
Survey Pro		-MWD								Rule Assi	gned:		Offset Well Error:	0.0 usf
Refei Measured	rence Vertical	Off Measured	set Vertical	Semi I Reference	Major Axis Offset	Highside	Offset Wellbo		Dis Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
0.0	0.0	0.0	0.0	0.0	0.0	-90.46	-2.3	-285.1	285.2	(,	(,			
100.0	100.0	91.0	91.0	0.3	0.2	-90.46	-2.3	-285.1	285.1	284.6	0.48	594.853		
200.0	200.0	191.0	191.0	0.6	0.6	-90.46	-2.3	-285.1	285.1	283.9	1.19	240.277		
300.0	300.0	291.0	291.0	1.0	0.9	-90.46	-2.3	-285.1	285.1	283.2	1.90	149.778		
400.0	400.0	391.0	391.0	1.3	1.3	-90.46	-2.3	-285.1	285.1	282.5	2.62	108.799		
500.0	500.0	491.0	491.0	1.7	1.7	-90.46	-2.3	-285.1	285.1	281.8	3.34	85.426		
600.0	600.0	591.0	591.0	2.0	2.0	-90.46	-2.3	-285.1	285.1	281.0	4.05	70.320		
700.0	700.0	691.0	691.0	2.4	2.4	-90.46	-2.3	-285.1	285.1	280.3	4.77	59.753		
800.0	800.0	791.0	791.0	2.8	2.7	-90.46	-2.3	-285.1	285.1	279.6	5.49	51.948		
900.0	900.0	891.0	891.0	3.1	3.1	-90.46	-2.3	-285.1	285.1	278.9	6.21	45.946		
1,000.0	1,000.0	991.0	991.0	3.5	3.4	-90.46	-2.3	-285.1	285.1	278.2	6.92	41.187		
1,100.0	1,100.0	1,091.0	1,091.0	3.8	3.8	-90.46	-2.3	-285.1	285.1	277.5	7.64	37.321		
1,200.0	1,200.0	1,191.0	1,191.0	4.2	4.2	-90.46	-2.3	-285.1	285.1	276.7	8.36	34.119		
1,300.0	1,300.0	1,291.0	1,291.0	4.6	4.5	-90.46	-2.3	-285.1	285.1	276.0	9.07	31.423		
1,400.0	1,400.0	1,391.0	1,391.0	4.9	4.9	-90.46	-2.3	-285.1	285.1	275.3	9.79	29.122		
1,500.0	1,500.0	1,491.0	1,491.0	5.3	5.2	-90.46	-2.3	-285.1	285.1	274.6	10.51	27.135		
1,600.0	1,600.0	1,591.0	1,591.0	5.6	5.6	-90.46	-2.3	-285.1	285.1	273.9	11.22	25.401		
1,700.0	1,700.0	1,691.0	1,691.0	6.0	6.0	-90.46	-2.3	-285.1	285.1	273.2	11.94	23.876		
1,800.0	1,800.0	1,791.0	1,791.0	6.3	6.3	-90.46	-2.3	-285.1	285.1	272.4	12.66	22.524		
1,900.0	1,900.0	1,891.0	1,891.0	6.7	6.7	-90.46	-2.3	-285.1	285.1	271.7	13.37	21.317		
2,000.0	2,000.0	1,991.0	1,991.0	7.1	7.0	-90.46	-2.3	-285.1	285.1	271.0	14.09	20.232 CC	, ES	
2,100.0	2,100.0	2,083.4	2,083.4	7.4	7.4	-90.56	-2.8	-286.2	286.3	271.5	14.77	19.390		
2,200.0	2,200.0	2,175.4	2,175.3	7.8	7.7	-90.89	-4.5	-290.0	290.4	275.0	15.42	18.836		
2,300.0	2,300.0	2,274.6	2,274.3	8.1	8.0	-91.35	-7.0	-295.5	296.1	280.0	16.11	18.379		
2,400.0	2,400.0	2,374.4	2,373.9	8.5	8.3	-91.80	-9.5	-301.1	301.7	284.9	16.80	17.956		
2,500.0	2,500.0	2,474.2	2,473.5	8.9	8.7	-92.23	-11.9	-306.7	307.4	289.9	17.50	17.564		
2,600.0	2,600.0	2,574.0	2,573.2	9.2	9.0	-92.65	-14.4	-312.3	313.1	294.9	18.20	17.202		
2,700.0	2,700.0	2,673.8	2,672.8	9.6	9.4	-93.05	-16.9	-317.8	318.8	299.9	18.90	16.866		
2,800.0	2,800.0	2,773.6	2,772.4	9.9	9.7	-93.44	-19.4	-323.4	324.5	304.9	19.60	16.554		
2,900.0	2,900.0	2,873.5	2,872.0	10.3	10.1	-93.81	-21.9	-329.0	330.3	309.9	20.31	16.263		
3,000.0	3,000.0	2,973.3	2,971.7	10.6	10.4	-94.17	-24.4	-334.6	336.0	315.0	21.01	15.992		
3,100.0	3,100.0	3,073.1	3,071.3	11.0	10.8	-94.52	-26.9	-340.1	341.8	320.0	21.72	15.737		
3,200.0	3,200.0	3,172.9	3,170.9	11.4	11.1	-94.86	-29.4	-345.7	347.5	325.1	22.42	15.499		
3,300.0	3,300.0	3,272.7	3,270.5	11.7	11.5	-95.19	-31.9	-351.3	353.3	330.2	23.13	15.275		
3,400.0	3,400.0	3,372.5	3,370.2	12.1	11.8	-95.50	-34.4	-356.9	359.1	335.3	23.84	15.065		
3,500.0	3,500.0	3,472.3	3,469.8	12.4	12.2	-95.81	-36.9	-362.4	364.9	340.4	24.55	14.867		
3,600.0	3,600.0	3,572.1	3,569.4	12.8	12.6	-96.11	-39.4	-368.0	370.7	345.5	25.26	14.680		
3,700.0	3,700.0	3,672.0	3,669.0	13.2	12.9	-96.39	-41.9	-373.6	376.6	350.6	25.96	14.503		
3,800.0	3,800.0	3,771.8	3,768.7	13.5	13.3	-96.67	-44.4	-379.2	382.4	355.7	26.67	14.335		
3,900.0	3,900.0	3,871.6	3,868.3	13.9	13.6	-96.94	-46.9	-384.7	388.2	360.9	27.39	14.177		
4,000.0	4,000.0	3,971.4	3,967.9	14.2	14.0	-97.21	-49.3	-390.3	394.1	366.0	28.10	14.026		
4,100.0	4,100.0	4,071.3	4,067.6	14.6	14.4	42.59	-51.8	-395.9	398.7	369.9	28.79	13.847		
4,139.8	4,139.7	4,111.0	4,107.3	14.7	14.5	42.64	-52.8	-398.1	399.8	370.7	29.06	13.756		
4,200.0	4,199.9	4,171.2	4,167.4	14.9	14.7	42.77	-54.3	-401.5	401.1	371.7	29.47	13.611		
4,300.0	4,299.8	4,271.2	4,267.2	15.2	15.1	42.99	-56.8	-407.1	403.4	373.3	30.16	13.378		
4,400.0	4,399.6	4,371.2	4,366.9	15.6	15.5	43.20	-59.3	-412.6	405.7	374.9	30.84	13.155		
4,500.0	4,499.5	4,471.1	4,466.7	15.9	15.8	43.41	-61.8	-418.2	408.0	376.5	31.53	12.941		
4,600.0	4,599.4	4,571.1	4,566.5	16.2	16.2	43.62	-64.3	-423.8	410.3	378.1	32.22	12.735		
4,700.0	4,699.3	4,671.1	4,666.3	16.6	16.5	43.83	-66.8	-429.4	412.6	379.7	32.91	12.538		
4,800.0	4,799.2	4,771.0	4,766.0	16.9	16.9	44.04	-69.3	-435.0	414.9	381.3	33.60	12.348		
4,900.0	4,899.0	4,871.0	4,865.8	17.2	17.3	44.24	-71.8	-440.6	417.2	382.9	34.29	12.166		
		4,970.9	4,965.6	17.6	17.6	44.44	-74.3	-446.1	419.5	384.5	34.99	11.990		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Oliset De	esign:IVIC	JKAN PR	OJECT -	WORAN	9 FED C	UM 603H -	- OWB - PWP	U					Offset Site Error:	0.0 usft
Survey Prog Refer	rence	MWD Off			Major Axis		Offset Wellb	ore Centre		Rule Assid			Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)		Warning	
5,100.0	5,098.8	5,070.9	5,065.4	17.9	18.0	44.64	-76.8	-451.7	421.8	386.2	35.69	11.821		
5,200.0	5,198.7	5,170.9	5,165.1	18.3	18.4	44.84	-79.3	-457.3	424.2	387.8	36.38	11.659		
5,300.0	5,298.6	5,270.8	5,264.9	18.6	18.7	45.03	-81.8	-462.9	426.5	389.4	37.08	11.502		
5,400.0	5,398.4	5,370.8	5,364.7	18.9	19.1	45.22	-84.3	-468.5	428.8	391.1	37.78	11.350		
5,500.0	5,498.3	5,470.8	5,464.5	19.3	19.5	45.41	-86.8	-474.1	431.2	392.7	38.48	11.204		
5,600.0	5,598.2	5,570.7	5,564.2	19.6	19.8	45.60	-89.3	-479.6	433.5	394.3	39.19	11.063		
5,700.0	5,698.1	5,670.7	5,664.0	20.0	20.2	45.79	-91.8	-485.2	435.9	396.0	39.89	10.927		
5,800.0	5,798.0	5,770.6	5,763.8	20.3	20.6	45.97	-94.3	-490.8	438.2	397.6	40.59	10.796		
5,900.0	5,897.8	5,870.6	5,863.6	20.7	20.9	46.15	-96.8	-496.4	440.6	399.3	41.30	10.669		
6,000.0	5,997.7	5,970.6	5,963.3	21.0	21.3	46.33	-99.3	-502.0	443.0	401.0	42.00	10.546		
6,100.0	6,097.6	6,070.5	6,063.1	21.4	21.7	46.51	-101.8	-507.6	445.3	402.6	42.71	10.427		
6,200.0	6,197.5	6,170.5	6,162.9	21.7	22.0	46.69	-104.3	-513.1	447.7	404.3	43.42	10.311		
6,300.0	6,297.4	6,270.5	6,262.7	22.1	22.4	46.86	-106.8	-518.7	450.1	406.0	44.13	10.200		
6,400.0	6,397.3	6,370.4	6,362.4	22.4	22.8	47.03	-109.3	-524.3	452.5	407.6	44.84	10.091		
6,500.0	6,497.1	6,470.4	6,462.2	22.8	23.2	47.21	-111.8	-529.9	454.8	409.3	45.55	9.987		
6,600.0	6,597.0	6,570.3	6,562.0	23.1	23.5	47.37	-114.3	-535.5	457.2	411.0	46.26	9.885		
6,700.0	6,696.9	6,670.3	6,661.8	23.5	23.9	47.54	-116.8	-541.1	459.6	412.7	46.97	9.786		
6,800.0	6,796.8	6,770.3	6,761.5	23.8	24.3	47.71	-119.3	-546.6	462.0	414.3	47.68	9.690		
6,900.0	6,896.7	6,870.2	6,861.3	24.2	24.6	47.87	-121.8	-552.2	464.4	416.0	48.39	9.597		
7,000.0	6,996.5	6,970.2	6,961.1	24.5	25.0	48.03	-124.3	-557.8	466.8	417.7	49.10	9.507		
7,100.0	7,096.4	7,070.2	7,060.9	24.9	25.4	48.19	-126.8	-563.4	469.2	419.4	49.82	9.419		
7,200.0	7,196.3	7,170.1	7,160.6	25.2	25.7	48.35	-129.2	-569.0	471.6	421.1	50.53	9.334		
7,300.0	7,296.2	7,270.1	7,260.4	25.6	26.1	48.51	-131.7	-574.6	474.1	422.8	51.24	9.251		
7,400.0	7,396.1	7,370.0	7,360.2	25.9	26.5	48.66	-134.2	-580.1	476.5	424.5	51.96	9.170		
7,500.0	7,495.9	7,470.0	7,460.0	26.3	26.8	48.82	-136.7	-585.7	478.9	426.2	52.67	9.092		
7,600.0	7,595.8	7,570.0	7,559.7	26.7	27.2	48.97	-139.2	-591.3	481.3	427.9	53.39	9.015		
7,700.0	7,695.7	7,669.9	7,659.5	27.0	27.6	49.12	-141.7	-596.9	483.8	429.7	54.11	8.941		
7,800.0	7,795.6	7,769.9	7,759.3	27.4	28.0	49.27	-144.2	-602.5	486.2	431.4	54.82	8.868		
7,900.0	7,895.5	7,869.9	7,859.1	27.7	28.3	49.42	-146.7	-608.1	488.6	433.1	55.54	8.798		
8,000.0	7,995.4	7,969.8	7,958.9	28.1	28.7	49.57	-149.2	-613.6	491.1	434.8	56.26	8.729		
8,100.0	8,095.2	8,069.8	8,058.6	28.4	29.1	49.71	-151.7	-619.2	493.5	436.5	56.98	8.662		
8,200.0	8,195.1	8,169.7	8,158.4	28.8	29.4	49.85	-154.2	-624.8	496.0	438.3	57.69	8.596		
8,300.0	8,295.0	8,269.7	8,258.2	29.2	29.8	50.00	-156.7	-630.4	498.4	440.0	58.41	8.533		
8,400.0	8,394.9	8,369.7	8,358.0	29.5	30.2	50.14	-159.2	-636.0	500.9	441.7	59.13	8.470		
8,500.0	8,494.8	8,469.6	8,457.7	29.9	30.5	50.28	-161.7	-641.6	503.3	443.5	59.85	8.409		
8,600.0	8,594.6	8,569.6	8,557.5	30.2	30.9	50.42	-164.2	-647.1	505.8	445.2	60.57	8.350		
8,700.0	8,694.5	8,669.6	8,657.3	30.6	31.3	50.55	-166.7	-652.7	508.2	446.9	61.29	8.292		
8,800.0	8,794.4	8,769.5	8,757.1	30.9	31.7	50.69	-169.2	-658.3	510.7	448.7	62.01	8.236		
8,900.0	8,894.3	8,869.5	8,856.8	31.3	32.0	50.82	-171.7	-663.9	513.2	450.4	62.73	8.180		
9,000.0	8,994.2	8,969.4	8,956.6	31.7	32.4	50.95	-174.2	-669.5	515.6	452.2	63.45	8.126		
9,100.0	9,094.0	9,069.4	9,056.4	32.0	32.8	51.09	-176.7	-675.1	518.1	453.9	64.17	8.074		
9,200.0	9,193.9	9,169.4	9,156.2	32.4	33.1	51.22	-179.2	-680.6	520.6	455.7	64.89	8.022		
9,300.0	9,293.8	9,269.3	9,255.9	32.7	33.5	51.35	-181.7	-686.2	523.0	457.4	65.62	7.971		
9,400.0	9,393.7	9,369.3	9,355.7	33.1	33.9	51.47	-184.2	-691.8	525.5	459.2	66.34	7.922		
9,500.0	9,493.6	9,469.3	9,455.5	33.5	34.2	51.60	-186.7	-697.4	528.0	461.0	67.06	7.874		
9,600.0	9,593.4	9,569.2	9,555.3	33.8	34.6	51.73	-189.2	-703.0	530.5	462.7	67.78	7.827		
9,700.0	9,693.3	9,669.2	9,655.0	34.2	35.0	51.85	-191.7	-708.6	533.0	464.5	68.50	7.780		
9,800.0	9,793.2	9,769.1	9,754.8	34.5	35.4	51.97	-194.2	-714.1	535.5	466.2	69.23	7.735		
9,900.0	9,893.1	9,869.1	9,854.6	34.9	35.7	52.10	-196.7	-719.7	538.0	468.0	69.95	7.691		
10,000.0	9,993.0	9,969.1	9,954.4	35.3	36.1	52.22	-199.2	-725.3	540.5	469.8	70.67	7.647		
10,082.6	10,075.5	10,051.7	10,036.8	35.6	36.4	52.32	-201.2	-729.9	542.5	471.2	71.27	7.612		
10,100.0	10,092.8	10,069.0	10,054.1	35.6	36.5	69.43	-201.7	-730.9	543.0	471.6	71.40	7.605		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Database: Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Jiiset D	esigii.W					J 00011	OWB - PWP	•					Offset Site Error:	0.0 us
urvey Pro		MWD					055 (185			Rule Assi	gned:		Offset Well Error:	0.0 us
Refe Measured	rence Vertical	Offs Measured		Semi N Reference	Major Axis Offset	Highside	Offset Wellb	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)			
10,125.0	10,117.7	10,093.9	10,079.0	35.7	36.6	78.70	-202.3	-732.3	543.7	472.1	71.58	7.595		
10,150.0	10,142.4	10,118.7	10,103.7	35.8	36.7	82.96	-202.9	-733.7	544.5	472.7	71.77	7.586		
10,175.0	10,166.9	10,143.3	10,128.3	35.9	36.7	85.55	-203.5	-735.0	545.3	473.4	71.96	7.578		
10,200.0	10,191.0	10,167.6	10,152.5	36.0	36.8	87.42	-204.1	-736.4	546.3	474.2	72.16	7.571		
10,225.0	10,214.8	10,191.6	10,176.5	36.1	36.9	88.96	-204.7	-737.7	547.5	475.1	72.35	7.567		
10,250.0	10,238.2	10,215.2	10,200.0	36.2	37.0	90.31	-205.3	-739.1	548.9	476.3	72.55	7.565 SF		
10,275.0	10,261.1	10,238.3	10,223.1	36.3	37.1	91.56	-205.9	-740.4	550.5	477.7	72.75	7.567		
10,300.0	10,283.4	10,260.9	10,245.7	36.4	37.2	92.74	-206.5	-741.6	552.4	479.5	72.96	7.572		
10,325.0	10,305.1	10,282.9	10,267.6	36.5	37.3	93.86	-207.0	-742.8	554.7	481.6	73.16	7.582		
10,350.0	10,326.1	10,304.3	10,288.9	36.6	37.3	94.94	-207.5	-744.0	557.5	484.1	73.37	7.599		
10,375.0	10,346.4	10,324.9	10,309.5	36.7	37.4	95.96	-208.1	-745.2	560.7	487.2	73.57	7.621		
10,400.0	10,365.9	10,344.8	10,329.4	36.8	37.5	96.91	-208.6	-746.3	564.5	490.8	73.78	7.652		
10,425.0	10,384.5	10,363.9	10,348.4	36.9	37.6	97.77	-209.0	-747.4	569.0	495.0	73.99	7.690		
10,450.0	10,402.3	10,382.0	10,366.6	37.0	37.6	98.54	-209.5	-748.4	574.1	499.9	74.19	7.738		
10,475.0	10,419.1	10,399.3	10,383.8	37.1	37.7	99.19	-209.9	-749.3	579.9	505.5	74.39	7.795		
10,500.0	10,434.9	10,415.6	10,400.1	37.2	37.8	99.71	-210.3	-750.3	586.5	511.9	74.59	7.863		
10,525.0	10,449.7	10,430.9	10,415.3	37.3	37.8	100.07	-210.7	-751.1	594.0	519.2	74.79	7.942		
10,550.0	10,463.4	10,445.1	10,429.5	37.4	37.9	100.27	-211.1	-751.9	602.3	527.3	74.97	8.033		
10,575.0	10,476.0	10,458.2	10,442.6	37.6	37.9	100.28	-211.4	-752.6	611.4	536.2	75.15	8.135		
10,600.0	10,487.5	10,470.2	10,454.6	37.7	38.0	100.09	-211.7	-753.3	621.4	546.1	75.33	8.249		
10,625.0	10,497.8	10,481.1	10,465.4	37.8	38.0	99.68	-212.0	-753.9	632.3	556.8	75.49	8.376		
10,650.0	10,506.8	10,490.7	10,475.0	37.9	38.0	99.04	-212.2	-754.5	644.0	568.4	75.64	8.514		
10,675.0	10,514.7	10,499.1	10,483.4	38.0	38.1	98.15	-212.4	-754.9	656.6	580.8	75.79	8.664		
10,700.0	10,521.3	10,506.3	10,490.6	38.1	38.1	96.99	-212.6	-755.3	670.0	594.1	75.92	8.825		
10,725.0	10,526.6	10,512.2	10,496.5	38.3	38.1	95.56	-212.7	-755.7	684.1	608.1	76.03	8.997		
10,750.0	10,530.6	10,516.9	10,501.1	38.4	38.1	93.85	-212.8	-755.9	698.9	622.8	76.14	9.180		
10,775.0	10,533.3	10,520.2	10,504.5	38.5	38.1	91.84	-212.9	-756.1	714.4	638.2	76.23	9.371		
10,800.0	10,534.8	10,522.3	10,506.5	38.6	38.1	89.55	-213.0	-756.2	730.4	654.1	76.31	9.572		
10,814.9	10,535.0	10,522.9	10,507.1	38.7	38.2	88.05	-213.0	-756.3	740.2	663.9	76.35	9.695		
10,900.0	10,535.0	10,525.0	10,509.2	39.1	38.2	88.26	-213.1	-756.4	799.3	722.8	76.55	10.442		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Part			MMD								Dula 4 - 1			Offset Site Error:	0.0 usf
Page	Refer	ence	Off		Semi N	lajor Axis		Offset Wellb	ore Centre		ance	gned:		Offset Well Error:	0.0 us
1000 1000 1000 1000 1000 1000 1000 100	leasured Depth (usft)	Depth	Depth	Depth			Toolface			Centres	Ellipses	Separation		Warning	
1000 2000 2000 2000 2000 2000 100 100 140 60 3019 2475 3004 3885 120 324 120 324 120 325 3	0.0				0.0										
1000 3000	100.0		96.0	96.0	0.3	0.2	-140.66	-301.9	-247.5	390.4			793.767		
1400 1400 1400 1400 1400 1400 17 1400 17 1400 1400 17 1400 1400 147 1400 1400 147 1400 1															
5000 5000 466.0 460.0 1.7 1.7 -140.66 -301.9 -247.5 390.4 387.0 3.38 116.55f 6000 500.0 596.0 596.0 2.2 2.0 -140.66 -301.9 -247.5 390.4 385.6 3.79 81.516 8000 8000 766.0 786.0 28.2 2.7 -140.66 -301.9 -247.5 390.4 385.6 3.51 70.02 10.00 10.00 384.2 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.5 3.5 1.46.06 -301.9 -247.5 390.4 382.7 6.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3			296.0		1.0	1.0									
000.0 000.0 506.0 506.0 2.0 2.0 2.0 140.06 -301.9 -247.5 390.4 386.3 4.07 95.867	400.0	400.0	396.0				-140.66	-301.9		390.4	387.8	2.64	147.969		
1000 1000	500.0	500.0	496.0	496.0	1.7	1.7	-140.66	-301.9	-247.5	390.4	387.0	3.36	116.351		
	600.0	600.0	596.0	596.0	2.0	2.0	-140.66	-301.9	-247.5	390.4	386.3	4.07	95.867		
9000 9000 9860 9860 131 31 410,666 3019 247.5 390.4 381.2 6.22 627.3 11000 1,1000 1,006 0 1,006 0 1,006 0 3.8 3.8 3.8 140.66 3019 247.5 390.4 382.7 7.66 50.985 12000 1,2000 1,2000 1,206 0 1,206 0 4.2 4.2 142 140.66 3019 247.5 390.4 382.0 8.37 46.80 1,2000 1,000 1,200 1,206 0 1,206 0 4.0 4.5 140.66 3019 247.5 390.4 381.0 9.9 4294 1,4000 1,400 1,306 0 1,306 0 1,306 0 4.9 4.9 140.66 3019 247.5 390.4 381.0 3.9 10.52 37083 1,1000 1,400 1,306 0 1,306 0 1,306 0 4.9 4.9 140.66 301.9 247.5 390.4 381.0 10.52 37083 1,1000 1,400	700.0	700.0	696.0	696.0	2.4	2.4	-140.66	-301.9	-247.5	390.4	385.6	4.79	81.516		
1,000	800.0	800.0	796.0	796.0	2.8	2.7	-140.66	-301.9	-247.5	390.4	384.9	5.51	70.902		
1.1000	900.0	900.0	896.0	896.0	3.1	3.1	-140.66	-301.9	-247.5	390.4	384.2	6.22	62.733		
12000 1,2000 1,196.0 1,196.0 1,196.0 1,206.0 4.2 4.2 -140.66 -301.9 -247.5 300.4 381.3 80.9 81.3 8,004 1,400.0	1,000.0	1,000.0	996.0	996.0	3.5	3.5	-140.66	-301.9	-247.5	390.4	383.5	6.94	56.253		
13000 1,3000 1,3200 1,3200 1,3200 1,3200 1,3200 1,3200 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3400 1,3500 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,5600 1,6	1,100.0	1,100.0	1,096.0	1,096.0	3.8	3.8	-140.66	-301.9	-247.5	390.4	382.7	7.66	50.985		
13000 1,3000 1,3200 1,3200 1,3200 1,3200 1,3200 1,3200 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3300 1,3400 1,3500 1,3600 1,3600 1,3600 1,3600 1,3600 1,3600 1,5600 1,6					4.2	4.2				390.4	382.0	8.37			
1400.0 1,400.0 1,396.0 1,396.0 1,396.0 5.6 5.6 5.6 1,40.66 301.9 247.5 390.4 379.9 10.52 37.093 1,500.0 1,500.0 1,500.0 1,500.0 1,506.0 1,506.0 5.6 5.6 1,40.66 301.9 247.5 390.4 379.9 10.52 37.093 1,700.0 1															
1,500.0 1,500.0 1,500.0 1,500.0 1,500.0 1,500.0 5.3 5.3 1,40.06 -301.9 -247.5 390.4 379.9 10.52 37.093 1,500.0 1,500.0 1,500.0 1,500.0 1,500.0 5.6 5.6 1,40.66 301.9 -247.5 390.4 379.4 112.4 34.727 1,770.0 1,700.0 1,700.0 1,500.0 1	1,400.0										380.6				
1,700.0 1,700.	1,500.0	1,500.0	1,496.0	1,496.0	5.3	5.3	-140.66	-301.9	-247.5	390.4	379.9	10.52	37.093		
1,700.0 1,700.	1.600.0	1.600.0	1.596.0	1.596.0	5.6	5.6	-140.66	-301.9	-247.5	390.4	379.2	11.24	34.727		
1,900.0															
2,000															
2,000															
2,2000 2,2004 2,2164 2,2161 7,8 7,8 1,41,52 301,2 2,334,3 365,2 369,6 16,58 24,733 2,300,0 2,302,0 2,323,0 2,323,0 2,322,3 8,1 8,2 -142,60 300,2 229,5 378,9 362,6 16,29 23,256 2,600,0 2,600,0 2,621,9 2,520,2 8,9 8,9 -144,95 298,4 -209,3 365,3 347,6 17,71 20,626 2,600,0 2,600,0 2,621,4 2,619,2 9,2 9,3 -146,19 -297,4 -199,2 365,3 347,6 17,71 20,626 2,600,0 2,600,0 2,621,4 2,619,2 9,2 9,3 146,19 -297,4 -199,2 385,3 19,86 147,41 18,408 2,800,0 2,800,0 2,819,8 2,916,1 10,3 10,0 -148,80 -292,5 -178,0 346,2 326,3 19,86 17,430 3,000,0 3,000,3	2,000.0				7.1	7.0			-247.5		376.3				
2,2000 2,2004 2,2164 2,2161 7,8 7,8 1,41,52 301,2 2,334,3 365,2 369,6 16,58 24,733 2,300,0 2,302,0 2,323,0 2,323,0 2,322,3 8,1 8,2 -142,60 300,2 229,5 378,9 362,6 16,29 23,256 2,600,0 2,600,0 2,621,9 2,520,2 8,9 8,9 -144,95 298,4 -209,3 365,3 347,6 17,71 20,626 2,600,0 2,600,0 2,621,4 2,619,2 9,2 9,3 -146,19 -297,4 -199,2 365,3 347,6 17,71 20,626 2,600,0 2,600,0 2,621,4 2,619,2 9,2 9,3 146,19 -297,4 -199,2 385,3 19,86 147,41 18,408 2,800,0 2,800,0 2,819,8 2,916,1 10,3 10,0 -148,80 -292,5 -178,0 346,2 326,3 19,86 17,430 3,000,0 3,000,3	2.100.0	2.100.0	2.106.1	2.106.1	7.4	7.4	-140.86	-301.7	-245.5	389.1	374.3	14.85	26.205		
2,300.0 2,303.0 2,322.3 8,1 8,2 -142.60 -300.2 -229.5 378,9 362.6 16.29 23.256 2,400.0 2,402.5 2,421.3 8,5 8,5 -143.75 -299.3 -219.4 372.0 355.0 17.70 21.884 2,600.0 2,501.0 2,521.9 2,520.2 8,9 -144.95 -298.4 -209.3 365.3 347.6 17.71 20626 2,600.0 2,621.4 2,619.2 9.2 9.3 -146.19 -297.4 -199.2 358.7 340.3 18.42 19.471 2,700.0 2,700.9 2,718.1 9.6 9.6 -147.47 -296.5 -189.1 352.4 333.2 19.14 18.40 2,900.0 2,900.0 2,919.8 2,916.1 10.3 10.3 -15.18 -294.6 -168.9 340.2 319.6 20.58 16.527 3,000.0 3,000.3 3,118.8 3,114.0 11.0 11.1 -155.0 -292.7															
2,400.0 2,422.5 2,421.3 8.5 8.5 -143.75 -299.3 -219.4 372.0 355.0 17.00 21.884 2,500.0 2,500.0 2,521.9 2,520.2 8.9 8.9 -144.95 -298.4 -209.3 365.3 347.6 17.71 20.626 2,600.0 2,600.0 2,621.4 2,619.2 92 9.3 -146.19 -297.4 -199.2 358.7 340.3 18.42 194.11 2,600.0 2,800.0 2,820.4 2,817.1 9.9 10.0 -148.80 -295.5 -189.1 362.4 333.2 19.14 18.40 2,900.0 2,900.0 2,916.1 10.3 10.3 -150.18 -294.6 -168.9 340.2 319.6 20.58 165.27 3,100.0 3,100.0 3,118.8 3,114.0 11.0 11.1 -155.07 -292.7 -148.7 328.8 306.8 22.03 14.923 3,200.0 3,200.3 3,218.3 3,212.9 11.4 <td></td>															
2,500.0 2,500.0 2,521.9 2,520.2 8.9 8.9 -144.95 -298.4 -209.3 365.3 347.6 17.71 20.626 2,600.0 2,600.0 2,621.4 2,619.2 9.2 9.3 -146.19 -297.4 -199.2 358.7 340.3 18.42 19.41 2,700.0 2,700.0 2,720.9 2,718.1 9.6 9.6 -147.47 -296.5 -189.1 352.4 333.2 19.14 18.408 2,900.0 2,919.8 2,916.1 10.3 10.3 150.18 -294.6 -168.9 340.2 319.6 20.58 16.527 3,000.0 3,000.0 3,019.3 3,015.0 10.6 10.7 -151.60 -293.7 -158.8 334.4 313.1 21.31 15.693 3,000.0 3,118.8 3,114.0 11.1 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 </td <td></td>															
2,700.0 2,720.9 2,718.1 9.6 -147.47 -296.5 -189.1 352.4 333.2 19.14 18.408 2,800.0 2,800.0 2,998.2 2,916.1 10.3 10.3 150.18 -294.6 -168.9 340.2 319.6 20.58 17.430 2,900.0 2,991.8 2,916.1 10.3 10.3 150.18 -294.6 -168.9 340.2 319.6 20.58 16.527 3,000.0 3,001.9 3,015.0 10.6 10.7 -151.60 -293.7 -158.8 334.4 313.1 21.31 15.693 3,100.0 3,118.8 3,114.0 11.0 11.1 -153.07 -292.7 -148.7 328.8 306.8 22.03 14.923 3,200.0 3,201.3 3,212.9 11.4 11.4 -156.60 -291.8 -138.6 323.4 300.7 22.76 14.210 3,000.0 3,317.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,600.0 3,616.7 </td <td>2,500.0</td> <td></td>	2,500.0														
2,800.0 2,800.0 2,800.4 2,817.1 9.9 10.0 -148.80 -295.5 -179.0 346.2 326.3 19.86 17.430 2,900.0 2,900.0 2,999.8 2,916.1 10.3 -150.18 -294.6 -168.9 340.2 319.6 20.58 16527 3,000.0 3,000.0 3,019.3 3,015.0 10.6 10.7 -151.60 -293.7 -148.7 328.8 306.8 22.03 14.923 3,000.0 3,200.0 3,218.3 3,212.9 11.4 11.4 -154.60 -291.8 -138.6 323.4 300.7 22.76 14.210 3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,600.0 3,600.0 3,616.2 3,608.8 12.4 12.6 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.9 -08.2 274.0	2,600.0	2,600.0	2,621.4	2,619.2	9.2	9.3	-146.19	-297.4	-199.2	358.7	340.3	18.42	19.471		
2,900.0 2,990.0 2,919.8 2,916.1 10.3 10.3 -150.18 -294.6 -168.9 340.2 319.6 20.58 16.527 3,000.0 3,009.3 3,015.0 10.6 10.7 -151.60 -293.7 -188.8 334.4 313.1 21.31 15.693 3,100.0 3,100.0 3,100.0 3,101.8 3,114.0 11.1 11.4 -154.60 -291.8 -138.6 323.4 300.7 22.7 14.210 3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,616.2	2,700.0	2,700.0	2,720.9	2,718.1	9.6	9.6	-147.47	-296.5	-189.1	352.4	333.2	19.14	18.408		
3,000.0 3,000.0 3,019.3 3,015.0 10.6 10.7 -151.60 -293.7 -158.8 334.4 313.1 21.31 15.693 3,100.0 3,100.0 3,118.8 3,114.0 11.0 11.1 -153.07 -292.7 -148.7 328.8 306.8 22.03 14.923 3,200.0 3,200.0 3,218.3 3,212.9 11.4 11.4 -154.60 -291.8 138.6 323.4 300.7 22.76 14.210 3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -288.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 30.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,110.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 249.5 30.80 8.884 4,400.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,500.0 4,699.3 4,707.5 4,694.4 16.6 17. 44.37 -278.6 27.7 12.8 262.2 26.6 32.94 7.880 4,600.0 4,699.3 4,707.5 4,694.4 16.6 17. 44.37 -278.6 27.7 12.8 262.2 26.6 32.94 7.880 4,600.0 4,699.4 4,606.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	2,800.0	2,800.0	2,820.4	2,817.1	9.9	10.0	-148.80	-295.5	-179.0	346.2	326.3	19.86	17.430		
3,100.0 3,100.0 3,118.8 3,114.0 11.0 11.1 -153.07 -292.7 -148.7 328.8 306.8 22.03 14.923 3,200.0 3,200.0 3,218.3 3,212.9 11.4 11.4 -154.60 -291.8 138.6 323.4 300.7 22.76 14.210 3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,500.0 3,600.0 3,600.0 3,600.0 3,600.0 3,600.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 4,103.4 14.6 14.8 -30.74 -283.3 47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 255.8 29.66 9.556 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 288.3 236.6 231.3 32.23 8,179 4,600.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	2,900.0	2,900.0	2,919.8	2,916.1	10.3	10.3	-150.18	-294.6	-168.9	340.2	319.6	20.58	16.527		
3,200.0 3,200.0 3,218.3 3,212.9 11.4 11.4 -154.60 -291.8 -138.6 323.4 300.7 22.76 14.210 3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,399.6 4,410.5 4,398.9 15.6 16.0 38.60 -280.5 -17.4 268.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,000.0	3,000.0	3,019.3	3,015.0	10.6	10.7	-151.60	-293.7	-158.8	334.4	313.1	21.31	15.693		
3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 26.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 22.6 33.65 7.815 4,600.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,100.0	3,100.0	3,118.8	3,114.0	11.0	11.1	-153.07	-292.7	-148.7	328.8	306.8	22.03	14.923		
3,300.0 3,300.0 3,317.8 3,311.9 11.7 11.8 -156.17 -290.8 -128.4 318.3 294.8 23.49 13.550 3,400.0 3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 26.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 22.6 33.65 7.815 4,600.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,200.0		3,218.3			11.4			-138.6		300.7				
3,400.0 3,400.0 3,417.2 3,410.8 12.1 12.2 -157.79 -289.9 -118.3 313.5 289.2 24.23 12.940 3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 43.6 285.4 259.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 23.6 231.3 32.23 8.179 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,500.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 226.6 32.94 7.880 4,700.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,300.0														
3,500.0 3,500.0 3,516.7 3,509.8 12.4 12.6 -159.47 -288.9 -108.2 308.9 283.9 24.96 12.374 3,600.0 3,600.0 3,616.2 3,608.8 12.8 12.9 -161.19 -288.0 -98.1 304.5 278.8 25.70 11.851 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 30.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,599.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383															
3,700.0 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,500.0	3,500.0	3,516.7	3,509.8	12.4	12.6	-159.47	-288.9	-108.2	308.9	283.9	24.96	12.374		
3,700.0 3,700.0 3,700.0 3,715.7 3,707.7 13.2 13.3 -162.95 -287.1 -88.0 300.5 274.0 26.43 11.368 3,800.0 3,800.0 3,815.1 3,806.7 13.5 13.7 -164.77 -286.1 -77.9 296.7 269.6 27.17 10.920 3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,600.0	3,600.0	3,616.2	3,608.8	12.8	12.9	-161.19	-288.0	-98.1	304.5	278.8	25.70	11.851		
3,900.0 3,900.0 3,914.6 3,905.6 13.9 14.1 -166.63 -285.2 -67.8 293.3 265.4 27.91 10.508 4,000.0 4,000.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,599.5 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383		3,700.0	3,715.7	3,707.7	13.2	13.3	-162.95	-287.1	-88.0	300.5	274.0	26.43			
4,000.0 4,001.0 4,014.1 4,004.6 14.2 14.4 -168.53 -284.2 -57.7 290.2 261.5 28.65 10.127 4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,000.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6	3,800.0	3,800.0	3,815.1	3,806.7	13.5	13.7	-164.77	-286.1	-77.9	296.7	269.6	27.17	10.920		
4,100.0 4,100.0 4,113.4 4,103.4 14.6 14.8 -30.74 -283.3 -47.6 285.9 256.5 29.38 9.730 4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	3,900.0	3,900.0	3,914.6	3,905.6	13.9	14.1	-166.63	-285.2	-67.8	293.3	265.4	27.91	10.508		
4,139.8 4,139.7 4,152.8 4,142.6 14.7 15.0 -31.72 -282.9 -43.6 283.4 253.8 29.66 9.556 4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 2	4,000.0	4,000.0	4,014.1	4,004.6	14.2	14.4	-168.53	-284.2	-57.7	290.2	261.5	28.65	10.127		
4,200.0 4,199.9 4,212.5 4,201.9 14.9 15.2 -33.25 -282.4 -37.5 279.6 249.5 30.09 9.292 4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,000.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 21	4,100.0														
4,300.0 4,299.8 4,311.5 4,300.4 15.2 15.6 -35.87 -281.4 -27.5 273.6 242.8 30.80 8.884 4,000.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,139.8								-43.6		253.8				
4,400.0 4,399.6 4,410.5 4,398.9 15.6 16.0 -38.60 -280.5 -17.4 268.3 236.8 31.51 8.513 4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,200.0	4,199.9	4,212.5	4,201.9	14.9	15.2	-33.25	-282.4	-37.5	279.6	249.5	30.09	9.292		
4,500.0 4,499.5 4,509.5 4,497.4 15.9 16.3 -41.44 -279.5 -7.3 263.6 231.3 32.23 8.179 4,600.0 4,599.4 4,608.5 4,595.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,300.0														
4,600.0 4,599.4 4,608.5 4,599.9 16.2 16.7 -44.37 -278.6 2.7 259.5 226.6 32.94 7.880 4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,400.0	4,399.6	4,410.5	4,398.9	15.6	16.0	-38.60	-280.5	-17.4	268.3	236.8	31.51	8.513		
4,700.0 4,699.3 4,707.5 4,694.4 16.6 17.1 -47.38 -277.7 12.8 256.2 222.6 33.65 7.615 4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,500.0														
4,800.0 4,799.2 4,806.5 4,792.9 16.9 17.5 -50.46 -276.7 22.8 253.7 219.3 34.36 7.383	4,600.0														
	4,700.0														
4,900.0 4,899.0 4,905.5 4,891.3 17.2 17.9 -53.59 -275.8 32.9 251.8 216.8 35.07 7.182	4,800.0														
	4,900.0	4,899.0	4,905.5	4,891.3	17.2	17.9	-53.59	-275.8	32.9	251.8	216.8	35.07	7.182		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

		MA/D											Offset Site Error:	0.0 usf
urvey Pro Refe	gram: 0- rence	-MWD Off:	set	Semi M	lajor Axis		Offset Wellbe	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 us
leasured Depth (usft)		Measured Depth (usft)		Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)		Between Ellipses (usft)	Minimum Separation (usft)		Warning	
5,081.9	5,080.7	5,085.6	5,070.5	17.9	18.5	-59.37	-274.1	51.2	250.5	214.2	36.34	6.893 CC		
5,100.0	5,098.8	5,103.5	5,088.3	17.9	18.6	-59.95	-273.9	53.0	250.5	214.1	36.47	6.870		
5,200.0	5,198.7	5,202.5	5,186.8	18.3	19.0	-63.13	-273.0	63.1	251.1	213.9	37.17	6.755 ES		
5,300.0	5,298.6	5,301.5	5,285.3	18.6	19.4	-66.28	-272.1	73.1	252.4	214.5	37.86	6.666		
5,400.0	5,398.4	5,400.5	5,383.8	18.9	19.8	-69.40	-271.1	83.2	254.5	215.9	38.55	6.601		
5,500.0	5,498.3	5,499.5	5,482.3	19.3	20.1	-72.46	-270.2	93.3	257.3	218.1	39.24	6.558		
5,600.0	5,598.2	5,598.5	5,580.8	19.6	20.5	-75.44	-269.2	103.3	260.9	221.0	39.92	6.535		
5,700.0	5,698.1	5,697.5	5,679.3	20.0	20.9	-78.34	-268.3	113.4	265.2	224.6	40.61	6.531 SF		
5,800.0	5,798.0	5,796.5	5,777.7	20.3	21.3	-81.14	-267.4	123.4	270.1	228.9	41.29	6.543		
5,900.0 6,000.0	5,897.8 5,997.7	5,895.6 5,994.6	5,876.2 5,974.7	20.7 21.0	21.7 22.1	-83.83 -86.41	-266.4 -265.5	133.5 143.6	275.7 281.9	233.7 239.2	41.97 42.65	6.569 6.609		
6,100.0	6,097.6	6,093.6	6,073.2	21.4	22.4	-88.88	-264.6	153.6	288.6	245.3	43.33	6.661		
6,200.0	6,197.5	6,192.6	6,171.7	21.7	22.8	-91.24 03.48	-263.6 263.7	163.7	295.8	251.8	44.01 44.69	6.722		
6,300.0 6,400.0	6,297.4 6,397.3	6,291.6 6,390.6	6,270.2 6,368.7	22.1 22.4	23.2 23.6	-93.48 -95.61	-262.7 -261.7	173.7 183.8	303.6 311.7	258.9 266.3	44.69 45.37	6.793 6.870		
6,500.0	6,497.1	6,489.6	6,467.2	22.8	24.0	-97.63	-260.8	193.9	320.3	274.2	46.05	6.955		
6,600.0	6,597.0	6,588.6	6,565.6	23.1	24.4	-99.54	-259.9	203.9	329.2	282.5	46.74	7.044		
6,700.0	6,696.9	6,687.6	6,664.1	23.5	24.7	-101.35	-258.9	214.0	338.5	291.1	47.42	7.139		
6,800.0	6,796.8	6,786.6	6,762.6	23.8	25.1	-103.06	-258.0	224.1	348.2	300.0	48.11	7.237		
6,900.0	6,896.7	6,885.6	6,861.1	24.2	25.5	-104.68	-257.1	234.1	358.1	309.3	48.80	7.338		
7,000.0	6,996.5	6,984.6	6,959.6	24.5	25.9	-106.21	-256.1	244.2	368.2	318.8	49.49	7.441		
7,100.0	7,096.4	7,083.6	7,058.1	24.9	26.3	-107.66	-255.2	254.2	378.7	328.5	50.18	7.547		
7,200.0	7,196.3	7,182.6	7,156.6	25.2	26.7	-109.04	-254.2	264.3	389.3	338.5	50.87	7.653		
7,300.0	7,296.2	7,281.6	7,255.1	25.6	27.1	-110.33	-253.3	274.4	400.2	348.7	51.57	7.761		
7,400.0	7,396.1	7,380.6	7,353.6	25.9	27.4	-111.56	-252.4	284.4	411.3	359.0	52.26	7.870		
7,500.0	7,495.9	7,479.6	7,452.0	26.3	27.8	-112.73	-251.4	294.5	422.5	369.6	52.96	7.978		
7,600.0	7,595.8	7,578.6	7,550.5	26.7	28.2	-113.84	-250.5	304.5	433.9	380.3	53.66	8.087		
7,700.0	7,695.7	7,677.6	7,649.0	27.0	28.6	-114.88	-249.6	314.6	445.5	391.1	54.36	8.196		
7,800.0	7,795.6	7,776.6	7,747.5	27.4	29.0	-115.88	-248.6	324.7	457.2	402.2	55.06	8.304		
7,900.0	7,895.5	7,875.7	7,846.0	27.7	29.4	-116.82	-247.7	334.7	469.0	413.3	55.76	8.412		
8,000.0	7,995.4	7,974.7	7,944.5	28.1	29.8	-117.72	-246.7	344.8	481.0	424.5	56.46	8.519		
8,100.0	8,095.2	8,073.7	8,043.0	28.4	30.1	-118.58	-245.8	354.8	493.1	435.9	57.17	8.625		
8,200.0	8,195.1	8,172.7	8,141.5	28.8	30.5	-119.39	-244.9	364.9	505.2	447.4	57.87	8.730		
8,300.0	8,295.0	8,271.7	8,239.9	29.2	30.9	-120.17	-243.9	375.0	517.5	458.9	58.58	8.835		
8,400.0	8,394.9	8,370.7	8,338.4	29.5	31.3	-120.91	-243.0	385.0	529.9	470.6	59.28	8.938		
8,500.0	8,494.8	8,469.7	8,436.9	29.9	31.7	-121.62	-242.1	395.1	542.3	482.3	59.99	9.040		
8,600.0	8,594.6	8,568.7	8,535.4	30.2	32.1	-122.29	-241.1	405.1	554.8	494.1	60.70	9.141		
8,700.0	8,694.5	8,667.7	8,633.9	30.6	32.5	-122.94	-240.2	415.2	567.4	506.0	61.41	9.240		
8,800.0	8,794.4	8,766.7	8,732.4	30.9	32.8	-123.56	-239.2	425.3	580.1	517.9	62.11	9.339		
8,900.0	8,894.3	8,865.7	8,830.9	31.3	33.2	-124.15	-238.3	435.3	592.8	530.0	62.82	9.436		
9,000.0	8,994.2	8,964.7	8,929.4	31.7	33.6	-124.71	-237.4	445.4	605.6	542.0	63.53	9.531		
9,100.0	9,094.0	9,063.7	9,027.8	32.0	34.0	-125.26	-236.4	455.5	618.4	554.2	64.25	9.626		
9,200.0	9,193.9	9,162.7	9,126.3	32.4	34.4	-125.78	-235.5	465.5	631.3	566.3	64.96	9.719		
9,300.0	9,293.8	9,261.7	9,224.8	32.7	34.8	-126.28	-234.6	475.6	644.2	578.6	65.67	9.810		
9,400.0 9,500.0	9,393.7 9,493.6	9,360.7 9,459.7	9,323.3 9,421.8	33.1 33.5	35.2 35.6	-126.76 -127.22	-233.6 -232.7	485.6 495.7	657.2 670.2	590.8 603.1	66.38 67.09	9.901 9.990		
9,600.0	9,593.4	9,558.7	9,520.3	33.8	35.9	-127.66	-231.7	505.8	683.3	615.5	67.81	10.077		
9,700.0	9,693.3	9,657.7	9,618.8	34.2	36.3	-128.09	-230.8	515.8	696.4	627.9	68.52	10.164		
9,800.0	9,793.2	9,756.8	9,717.3	34.5	36.7	-128.50	-229.9	525.9	709.6	640.3	69.24	10.249		
9,900.0	9,893.1	9,855.8	9,815.8	34.9	37.1	-128.90	-228.9	535.9	722.8	652.8	69.95	10.332		
10,000.0	9,993.0	9,954.8	9,914.2	35.3	37.5	-129.28	-228.0	546.0	736.0	665.3	70.67	10.415		
10,082.6	10,075.5	10,036.6	9,995.6	35.6	37.8	-129.59	-227.2	554.3	746.9	675.7	71.26	10.482		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset D	esign: ^{M0}	ORAN PR	OJECT -	MORAN !	FED C	OM 604H	- OWB - PWP	0					Offset Site Error:	0.0 usft
Survey Pro	gram: 0- rence	MWD Off s	ent	Somi N	laior Axis		Offset Wellbo	ara Cantra	Die	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
10,100.0	10,092.8	10,053.7	10,012.7	35.6	37.9	-112.28	-227.1	556.1	749.2	677.8	71.38	10.496		
10,125.0	10,117.7	10,078.4	10,037.2	35.7	38.0	-102.94	-226.8	558.6	752.5	680.9	71.56	10.516		
10,150.0	10,142.4	10,102.8	10,061.5	35.8	38.1	-98.82	-226.6	561.0	755.8	684.0	71.74	10.535		
10,175.0	10,166.9	10,127.0	10,085.6	35.9	38.2	-96.58	-226.4	563.5	759.1	687.1	71.92	10.555		
10,200.0	10,191.0	10,150.9	10,109.4	36.0	38.3	-95.24	-226.1	565.9	762.4	690.3	72.10	10.574		
10,225.0	10,214.8	10,174.5	10,132.8	36.1	38.3	-94.42	-225.9	568.3	765.7	693.4	72.27	10.595		
10,250.0	10,238.2	10,197.6	10,155.8	36.2	38.4	-93.93	-225.7	570.7	769.1	696.7	72.45	10.616		
10,275.0	10,261.1	10,220.2	10,178.3	36.3	38.5	-93.66	-225.5	573.0	772.6	700.0	72.62	10.638		
10,300.0	10,283.4	10,242.2	10,200.2	36.4	38.6	-93.55	-225.3	575.2	776.2	703.4	72.80	10.663		
10,325.0	10,305.1	10,263.6	10,221.5	36.5	38.7	-93.54	-225.1	577.4	780.1	707.1	72.97	10.690		
10,350.0	10,326.1	10,284.3	10,242.1	36.6	38.8	-93.62	-224.9	579.5	784.1	710.9	73.14	10.720		
10,375.0	10,346.4	10,304.3	10,262.0	36.7	38.9	-93.73	-224.7	581.5	788.4	715.1	73.31	10.754		
10,400.0	10,365.9	10,323.5	10,281.1	36.8	38.9	-93.87	-224.5	583.5	792.9	719.5	73.48	10.792		
10,425.0	10,384.5	10,341.9	10,299.3	36.9	39.0	-94.00	-224.3	585.3	797.9	724.2	73.64	10.834		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

_		1.01A/D											Offset Site Error:	0.0 usf
urvey Pro	gram: 0- rence	MWD Off:	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assig	gned:		Offset Well Error:	0.0 us
Depth (usft)		Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	-90.47	-2.6	-320.1	320.2					
100.0	100.0	90.0	90.0	0.3	0.2	-90.47	-2.6	-320.1	320.1	319.6	0.48	671.376		
200.0	200.0	190.0	190.0	0.6	0.6	-90.47	-2.6	-320.1	320.1	318.9	1.18	270.585		
300.0	300.0	290.0	290.0	1.0	0.9	-90.47	-2.6	-320.1	320.1	318.2	1.90	168.478		
400.0	400.0	390.0	390.0	1.3	1.3	-90.47	-2.6	-320.1	320.1	317.5	2.62	122.319		
500.0	500.0	490.0	490.0	1.7	1.6	-90.47	-2.6	-320.1	320.1	316.8	3.33	96.014		
600.0	600.0	590.0	590.0	2.0	2.0	-90.47	-2.6	-320.1	320.1	316.0	4.05	79.020		
700.0	700.0	690.0	690.0	2.4	2.4	-90.47	-2.6	-320.1	320.1	315.3	4.77	67.138		
800.0	0.008	790.0	790.0	2.8	2.7	-90.47	-2.6	-320.1	320.1	314.6	5.48	58.362		
900.0	900.0	890.0	890.0	3.1	3.1	-90.47	-2.6	-320.1	320.1	313.9	6.20	51.615		
1,000.0	1,000.0	990.0	990.0	3.5	3.4	-90.47	-2.6	-320.1	320.1	313.2	6.92	46.266		
1,100.0	1,100.0	1,090.0	1,090.0	3.8	3.8	-90.47	-2.6	-320.1	320.1	312.5	7.64	41.922		
1,200.0	1,200.0	1,190.0	1,190.0	4.2	4.2	-90.47	-2.6	-320.1	320.1	311.7	8.35	38.323		
1,300.0	1,300.0	1,290.0	1,290.0	4.6	4.5	-90.47	-2.6	-320.1	320.1	311.0	9.07	35.294		
1,400.0	1,400.0	1,390.0	1,390.0	4.9	4.9	-90.47	-2.6	-320.1	320.1	310.3	9.79	32.708		
1,500.0	1,500.0	1,490.0	1,490.0	5.3	5.2	-90.47	-2.6	-320.1	320.1	309.6	10.50	30.475		
1 600 0	1 600 0	1 500 0	1 500 0	5.6	5.6	-90.47	0.6	220.4	200.4	308.9	11.22	20 520		
1,600.0	1,600.0	1,590.0	1,590.0				-2.6	-320.1	320.1			28.528		
1,700.0	1,700.0	1,690.0	1,690.0	6.0	6.0	-90.47	-2.6	-320.1	320.1	308.2	11.94	26.815		
1,800.0	1,800.0	1,790.0	1,790.0	6.3	6.3	-90.47	-2.6	-320.1	320.1	307.4	12.65	25.296		
1,900.0 2,000.0	1,900.0 2,000.0	1,890.0 1,990.0	1,890.0 1,990.0	6.7 7.1	6.7 7.0	-90.47 -90.47	-2.6 -2.6	-320.1 -320.1	320.1 320.1	306.7 306.0	13.37 14.09	23.939 22.721 CC	: FS	
2,000.0	2,000.0	1,990.0	1,550.0	7.1	7.0	-30.47	-2.0	-520.1	320.1	300.0	14.03	22.721 00	,, LG	
2,100.0	2,100.0	2,081.0	2,080.9	7.4	7.3	-90.48	-2.7	-321.2	321.4	306.6	14.76	21.773		
2,200.0	2,200.0	2,170.8	2,170.7	7.8	7.7	-90.53	-3.0	-325.1	325.7	310.3	15.41	21.141		
2,300.0	2,300.0	2,260.2	2,259.9	8.1	8.0	-90.62	-3.6	-331.8	333.2	317.2	16.04	20.775		
2,400.0	2,400.0	2,349.2	2,348.3	8.5	8.3	-90.74	-4.4	-341.3	343.8	327.2	16.66	20.642		
2,500.0	2,500.0	2,444.3	2,442.6	8.9	8.6	-90.88	-5.4	-353.7	356.9	339.6	17.32	20.609		
2,600.0	2,600.0	2,543.4	2,540.8	9.2	9.0	-91.02	-6.5	-366.8	370.2	352.1	18.02	20.547		
2,700.0	2,700.0	2,642.5	2,639.1	9.6	9.3	-91.15	-7.6	-380.0	383.4	364.7	18.72	20.489		
2,800.0	2,800.0	2,741.6	2,737.3	9.9	9.7	-91.28	-8.8	-393.1	396.7	377.3	19.42	20.433		
2,900.0	2,900.0	2,840.7	2,835.5	10.3	10.1	-91.39	-9.9	-406.3	410.0	389.9	20.12	20.379		
3,000.0	3,000.0	2,939.8	2,933.8	10.6	10.4	-91.50	-11.0	-419.4	423.3	402.5	20.82	20.328		
3,100.0	3,100.0	3,039.0	3,032.0	11.0	10.8	-91.60	-12.1	-432.5	436.6	415.1	21.53	20.279		
3,200.0	3,200.0	3,138.1	3,130.2	11.4	11.2	-91.60 -91.69	-13.2	-432.3 -445.7	449.9	427.6	22.24	20.279		
3,300.0	3,300.0	3,136.1	3,130.2	11.4	11.6	-91.09 -91.78	-13.2	-445.7 -458.8	463.2	440.2	22.24	20.232		
3,400.0	3,400.0	3,336.3	3,326.7	12.1	12.0	-91.76 -91.87	-14.3 -15.4	-456.6 -472.0	476.5	452.8	23.65	20.167		
3,500.0	3,500.0	3,435.4	3,424.9	12.4	12.3	-91.95	-16.5	-485.1	489.8	465.4	24.36	20.143		
3,600.0	3,600.0	3,534.5	3,523.1	12.8	12.7	-92.02	-17.6	-498.3	503.0	478.0	25.07	20.063		
3,700.0	3,700.0	3,633.6	3,621.4	13.2	13.1	-92.10	-18.7	-511.4	516.3	490.6	25.79	20.025		
3,800.0	3,800.0	3,732.7	3,719.6	13.5	13.5	-92.16	-19.8	-524.6	529.6	503.1	26.50	19.989		
3,900.0	3,900.0	3,831.8	3,817.8	13.9	13.9	-92.23	-20.9	-537.7	542.9	515.7	27.21	19.954		
4,000.0	4,000.0	3,931.0	3,916.0	14.2	14.3	-92.29	-22.0	-550.8	556.2	528.3	27.92	19.920		
4,100.0	4,100.0	4,030.2	4,014.4	14.6	14.7	47.54	-23.2	-564.0	568.4	539.7	28.62	19.858		
4,139.8	4,139.7	4,069.8	4,053.6	14.7	14.8	47.58	-23.6	-569.3	572.5	543.6	28.89	19.816		
4,200.0	4,199.9	4,129.6	4,113.0	14.9	15.1	47.76	-24.3	-577.2	578.6	549.3	29.30	19.743		
4,300.0	4,299.8	4,229.1	4,211.5	15.2	15.5	48.05	-25.4	-590.4	588.6	558.6	29.99	19.626		
4,400.0	4,399.6	4,328.5	4,310.1	15.6	15.9	48.33	-26.5	-603.6	598.7	568.0	30.68	19.513		
											e ·			
4,500.0	4,499.5	4,428.0	4,408.7	15.9	16.3	48.60	-27.6	-616.8	608.8	577.4	31.37	19.404		
4,600.0	4,599.4	4,527.4	4,507.2	16.2	16.7	48.86	-28.7	-630.0	618.9	586.8	32.07	19.299		
4,700.0	4,699.3	4,626.9	4,605.8	16.6	17.1	49.12	-29.8	-643.1	629.0	596.2	32.76	19.198		
4,800.0	4,799.2	4,726.3	4,704.4	16.9	17.5	49.36	-30.9	-656.3	639.1	605.6	33.46	19.100		
4,900.0	4,899.0	4,825.8	4,802.9	17.2	17.9	49.60	-32.0	-669.5	649.2	615.1	34.16	19.006		
5,000.0	4,998.9	4,925.2	4,901.5	17.6	18.3	49.83	-33.2	-682.7	659.3	624.5	34.86	18.915		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset De	esign: ^{M0}	DRAN PRO	OJECT -	MORAN	9 FED C	OM 702H -	OWB - PWP	0					Offset Site Error:	0.0 usft
Survey Prog Refer Measured Depth (usft)		MWD Offs Measured Depth (usft)	set Vertical Depth (usft)	Semi M Reference (usft)	Major Axis Offset (usft)	Highside Toolface (°)	Offset Wellb +N/-S (usft)	ore Centre +E/-W (usft)	Dis Between Centres (usft)	Rule Assignance Between Ellipses (usft)	-	Separation Factor	Offset Well Error: Warning	0.0 usft
5,100.0	5,098.8	5,024.7	5,000.1	17.9	18.7	50.05	-34.3	-695.9	669.5	633.9	35.56	18.827		
5,200.0	5,198.7	5,124.1	5,098.6	18.3	19.1	50.27	-35.4	-709.1	679.7	643.4	36.26	18.742		
5,300.0	5,298.6	5,223.6	5,197.2	18.6	19.5	50.48	-36.5	-722.3	689.8	652.9	36.97	18.660		
5,400.0	5,398.4	5,323.0	5,295.8	18.9	19.9	50.68	-37.6	-735.5	700.0	662.3	37.67	18.581		
5,500.0	5,498.3	5,422.5	5,394.3	19.3	20.3	50.88	-38.7	-748.7	710.2	671.8	38.38	18.504		
5,600.0	5,598.2	5,521.9	5,492.9	19.6	20.7	51.08	-39.8	-761.9	720.4	681.3	39.09	18.430		
5,700.0	5,698.1	5,621.4	5,591.4	20.0	21.1	51.26	-40.9	-775.0	730.6	690.8	39.80	18.358		
5,800.0	5,798.0	5,720.8	5,690.0	20.3	21.5	51.45	-42.0	-788.2	740.8	700.3	40.51	18.288		
5,900.0	5,897.8	5,820.3	5,788.6	20.7	21.9	51.62	-43.2	-801.4	751.0	709.8	41.22	18.220		
6,000.0	5,997.7	5,919.7	5,887.1	21.0	22.3	51.80	-44.3	-814.6	761.2	719.3	41.93	18.155		
6,100.0	6,097.6	6,019.2	5,985.7	21.4	22.7	51.96	-45.4	-827.8	771.4	728.8	42.64	18.091		
6,200.0	6,197.5	6,118.6	6,084.3	21.7	23.2	52.13	-46.5	-841.0	781.7	738.3	43.36	18.029		
6,300.0	6,297.4	6,218.1	6,182.8	22.1	23.6	52.29	-47.6	-854.2	791.9	747.9	44.07	17.969 SF		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at

Database: Offset TVD Reference: Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

ffset D													Offset Site Error:	0.0 us
rvey Pro Refe	gram: 0- rence	·MWD Off	set	Semi N	lajor Axis		Offset Wellb	ore Centre	Dis	Rule Assi	gned:		Offset Well Error:	0.0 us
easured Depth (usft)		Measured Depth (usft)		Reference (usft)		Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)		Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	-90.46	-2.0	-250.1	250.2					
100.0	100.0	92.0	92.0	0.3	0.2	-90.46	-2.0	-250.1	250.1	249.6	0.48	519.126		
200.0	200.0	192.0	192.0	0.6	0.6	-90.46	-2.0	-250.1	250.1	248.9	1.19	210.152		
300.0	300.0	292.0	292.0	1.0	0.9	-90.46	-2.0	-250.1	250.1	248.2	1.91	131.148		
400.0	400.0	392.0	392.0	1.3	1.3	-90.46	-2.0	-250.1	250.1	247.5	2.62	95.315		
500.0	500.0	492.0	492.0	1.7	1.7	-90.46	-2.0	-250.1	250.1	246.8	3.34	74.861		
600.0	600.0	592.0	592.0	2.0	2.0	-90.46	-2.0	-250.1	250.1	246.1	4.06	61.635		
700.0	700.0	692.0	692.0	2.4	2.4	-90.46	-2.0	-250.1	250.1	245.3	4.77	52.380		
800.0	0.008	792.0	792.0	2.8	2.7	-90.46	-2.0	-250.1	250.1	244.6	5.49	45.542		
900.0	900.0	892.0	892.0	3.1	3.1	-90.46	-2.0	-250.1	250.1	243.9	6.21	40.283		
1,000.0	1,000.0	992.0	992.0	3.5	3.4	-90.46	-2.0	-250.1	250.1	243.2	6.93	36.113		
1,100.0	1,100.0	1,092.0	1,092.0	3.8	3.8	-90.46	-2.0	-250.1	250.1	242.5	7.64	32.725		
1,200.0	1,200.0	1,192.0	1,192.0	4.2	4.2	-90.46	-2.0	-250.1	250.1	241.7	8.36	29.919		
1,300.0	1,300.0	1,292.0	1,292.0	4.6	4.5	-90.46	-2.0	-250.1	250.1	241.0	9.08	27.556		
1,400.0	1,400.0	1,392.0	1,392.0	4.9	4.9	-90.46	-2.0	-250.1	250.1	240.3	9.79	25.538		
1,500.0	1,500.0	1,492.0	1,492.0	5.3	5.2	-90.46	-2.0	-250.1	250.1	239.6	10.51	23.796		
1,600.0	1,600.0	1,592.0	1,592.0	5.6	5.6	-90.46	-2.0	-250.1	250.1	238.9	11.23	22.277		
1,700.0	1,700.0	1,692.0	1,692.0	6.0	6.0	-90.46	-2.0	-250.1	250.1	238.2	11.94	20.940		
1,800.0	1,800.0	1,792.0	1,792.0	6.3	6.3	-90.46	-2.0	-250.1	250.1	237.4	12.66	19.754		
1,900.0	1,900.0	1,892.0	1,892.0	6.7	6.7	-90.46	-2.0	-250.1	250.1	236.7	13.38	18.695		
2,000.0	2,000.0	1,992.0	1,992.0	7.1	7.0	-90.46	-2.0	-250.1	250.1	236.0	14.10	17.744		
2,100.0	2,100.0	2,097.2	2,097.1	7.4	7.4	-90.59	-2.6	-248.8	248.8	234.0	14.81	16.799		
2,200.0	2,200.0	2,197.1	2,197.1	7.8	7.7	-90.81	-3.5	-246.7	246.8	231.3	15.51	15.915		
2,300.0	2,300.0	2,297.1	2,297.0	8.1	8.1	-91.02	-4.4	-244.6	244.7	228.5	16.20	15.104		
2,400.0	2,400.0	2,397.1	2,397.0	8.5	8.4	-91.24	-5.3	-242.5	242.6	225.7	16.90	14.359		
2,500.0	2,500.0	2,497.0	2,496.9	8.9	8.7	-91.47	-6.2	-240.5	240.6	223.0	17.60	13.672		
2,600.0	2,600.0	2,597.0	2,596.9	9.2	9.1	-91.69	-7.0	-238.4	238.5	220.2	18.30	13.037		
2,700.0	2,700.0	2,697.0	2,696.8	9.6	9.4	-91.93	-7.9	-236.3	236.5	217.5	19.00	12.448		
2,800.0	2,800.0	2,797.0	2,796.8	9.9	9.8	-92.16	-8.8	-234.2	234.5	214.8	19.70	11.900		
2,900.0	2,900.0	2,896.9	2,896.7	10.3	10.1	-92.40	-9.7	-232.2	232.4	212.0	20.41	11.390		
3,000.0	3,000.0	2,996.9	2,996.7	10.6	10.5	-92.65	-10.6	-230.1	230.4	209.3	21.11	10.913		
3,100.0	3,100.0	3,096.9	3,096.6	11.0	10.8	-92.89	-11.5	-228.0	228.4	206.5	21.82	10.467		
3,200.0	3,200.0	3,196.9	3,196.6	11.4	11.2	-93.15	-12.4	-225.9	226.3	203.8	22.52	10.049		
3,300.0	3,300.0	3,296.8	3,296.5	11.7	11.5	-93.40	-13.3	-223.9	224.3	201.1	23.23	9.656		
3,400.0	3,400.0	3,396.8	3,396.5	12.1	11.9	-93.67	-14.2	-221.8	222.3	198.4	23.94	9.286		
3,500.0	3,500.0	3,496.8	3,496.4	12.4	12.2	-93.93	-15.1	-219.7	220.3	195.6	24.65	8.938		
3,600.0	3,600.0	3,596.8	3,596.4	12.8	12.6	-94.21	-16.0	-217.7	218.3	192.9	25.36	8.609		
3,700.0	3,700.0	3,696.7	3,696.3	13.2	12.9	-94.48	-16.9	-215.6	216.3	190.2	26.07	8.298		
3,800.0	3,800.0	3,796.7	3,796.3	13.5	13.3	-94.76	-17.8	-213.5	214.3	187.5	26.78	8.003		
3,900.0	3,900.0	3,896.7	3,896.2	13.9	13.6	-95.05	-18.7	-211.4	212.3	184.8	27.49	7.724		
4,000.0	4,000.0	3,996.7	3,996.2	14.2	14.0	-95.35	-19.6	-209.4	210.3	182.1	28.20	7.459		
4,100.0	4,100.0	4,096.6	4,096.1	14.6	14.3	44.68	-20.5	-207.3	207.1	178.2	28.89	7.168		
4,139.8	4,139.7	4,136.3	4,135.8	14.7	14.5	44.92	-20.8	-206.5	205.1	176.0	29.16	7.034		
4,200.0	4,199.9	4,196.4	4,195.9	14.9	14.7	45.32	-21.4	-205.2	201.8	172.3	29.57	6.826		
4,300.0	4,299.8	4,296.3	4,295.7	15.2	15.0	46.02	-22.3	-203.1	196.4	166.2	30.25	6.494		
4,400.0	4,399.6	4,396.1	4,395.5	15.6	15.4	46.77	-23.2	-201.1	191.1	160.1	30.93	6.177		
4,500.0	4,499.5	4,495.9	4,495.3	15.9	15.8	47.55	-24.1	-199.0	185.7	154.1	31.61	5.874		
4,600.0	4,599.4	4,595.7	4,595.1	16.2	16.1	48.38	-25.0	-196.9	180.4	148.1	32.30	5.586		
4,700.0	4,699.3	4,695.6	4,694.9	16.6	16.5	49.26	-25.8	-194.9	175.1	142.2	32.99	5.310		
4,800.0	4,799.2	4,795.4	4,794.7	16.9	16.8	50.20	-26.7	-192.8	169.9	136.2	33.67	5.046		
4,900.0	4,899.0	4,895.2	4,894.5	17.2	17.2	51.19	-27.6	-190.7	164.7	130.4	34.36	4.794		
5,000.0	4,998.9	4,995.0	4,994.3	17.6	17.5	52.25	-28.5	-188.7	159.6	124.6	35.06	4.553		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

	Joigin		OJECT -	MORAN	9 FED C	OM 704H	- OWB - PWP(J					Offset Site Error:	0.0 usf
Survey Prog	gram: 0-	MWD								Rule Assi	gned:		Offset Well Error:	0.0 usft
Refer Measured		Off Measured			Major Axis Offset	Highside	Offset Wellbo		Dis Between	tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor	· ·	
5,100.0	5,098.8	5,094.9	5,094.1	17.9	17.9	53.38	-29.4	-186.6	154.5	118.8	35.75	4.323		
5,200.0	5,198.7	5,194.7	5,193.9	18.3	18.2	54.58	-30.3	-184.5	149.5	113.1	36.44	4.104		
5,300.0	5,298.6	5,294.5	5,293.7	18.6	18.6	55.86	-31.2	-182.4	144.6	107.5	37.14	3.894		
5,400.0	5,398.4	5,394.3	5,393.5	18.9	19.0	57.24	-32.1	-180.4	139.8	101.9	37.83	3.694		
5,500.0	5,498.3	5,494.2	5,493.3	19.3	19.3	58.71	-33.0	-178.3	135.0	96.5	38.53	3.504		
5,600.0	5,598.2	5,594.0	5,593.1	19.6	19.7	60.30	-33.9	-176.2	130.3	91.1	39.23	3.322		
5,700.0	5,698.1	5,693.8	5,692.9	20.0	20.0	61.99	-34.8	-174.2	125.8	85.8	39.93	3.150		
5,800.0	5,798.0	5,793.6	5,792.7	20.3	20.4	63.81	-35.7	-172.1	121.3	80.7	40.63	2.986		
5,900.0	5,897.8	5,893.5	5,892.5	20.7	20.7	65.77	-36.6	-170.0	117.0	75.7	41.33	2.831		
6,000.0	5,997.7	5,993.3	5,992.3	21.0	21.1	67.88	-37.5	-167.9	112.8	70.8	42.03	2.684		
6,100.0	6,097.6	6,093.1	6,092.1	21.4	21.4	70.14	-38.4	-165.9	108.8	66.1	42.74	2.546		
6,200.0	6,197.5	6,192.9	6,191.9	21.7	21.8	72.58	-39.3	-163.8	105.0	61.6	43.44	2.417		
6,300.0	6,297.4	6,292.7	6,291.7	22.1	22.2	75.19	-40.2	-161.7	101.4	57.2	44.15	2.296		
6,400.0	6,397.3	6,392.6	6,391.5	22.4	22.5	77.98	-41.1	-159.7	98.0	53.1	44.86	2.185		
6,500.0	6,497.1	6,492.4	6,491.3	22.8	22.9	80.97	-41.9	-157.6	94.9	49.3	45.57	2.082		
6,600.0	6,597.0	6,592.2	6,591.1	23.1	23.2	84.16	-42.8	-155.5	92.0	45.7	46.28	1.988		
6,700.0	6,696.9	6,692.0	6,690.9	23.5	23.6	87.53	-43.7	-153.5	89.4	42.4	46.99	1.903		
6,800.0	6,796.8	6,791.9	6,790.7	23.8	23.9	91.09	-44.6	-151.4	87.2	39.5	47.70	1.828		
6,900.0	6,896.7	6,891.7	6,890.5	24.2	24.3	94.83	-45.5	-149.3	85.3	36.9	48.41	1.762		
7,000.0	6,996.5	6,991.5	6,990.3	24.5	24.7	98.71	-46.4	-147.2	83.8	34.7	49.12	1.706		
7,100.0	7,096.4	7,091.3	7,090.0	24.9	25.0	102.72	-47.3	-145.2	82.7	32.9	49.83	1.660		
7,200.0	7,196.3	7,191.2	7,189.8	25.2	25.4	106.81	-48.2	-143.1	82.0	31.5	50.55	1.623		
7,300.0	7,296.2	7,291.0	7,289.6	25.6	25.7	110.95	-49.1	-141.0	81.8	30.5	51.26	1.595		
7,310.6	7,306.7	7,301.5	7,300.2	25.6	25.8	111.39	-49.2	-140.8	81.8	30.4	51.33	1.593 CC		
7,400.0	7,396.1	7,390.8	7,389.4	25.9	26.1	115.10	-50.0	-139.0	81.9	30.0	51.97	1.577		
7,500.0	7,495.9	7,490.6	7,489.2	26.3	26.5	119.21	-50.9	-136.9	82.5	29.8	52.68	1.567 ES		
7,600.0	7,595.8	7,590.5	7,589.0	26.7	26.8	123.23	-51.8	-134.8	83.5	30.2	53.39	1.565 SF		
7,700.0	7,695.7	7,690.3	7,688.8	27.0	27.2	127.15	-52.7	-132.8	85.0	30.9	54.10	1.571		
7,800.0	7,795.6	7,790.1	7,788.6	27.4	27.5	130.91	-53.6	-130.7	86.8	32.0	54.80	1.583		
7,900.0	7,895.5	7,889.9	7,888.4	27.7	27.9	134.51	-54.5	-128.6	88.9	33.4	55.51	1.602		
8,000.0	7,995.4	7,989.8	7,988.2	28.1	28.2	137.93	-55.4	-126.5	91.4	35.2	56.22	1.626		
8,100.0	8,095.2	8,089.6	8,088.0	28.4	28.6	141.16	-56.3	-124.5	94.2	37.3	56.92	1.655		
8,200.0	8,195.1	8,189.4	8,187.8	28.8	29.0	144.19	-57.2	-122.4	97.3	39.7	57.63	1.689		
8,300.0	8,295.0	8,289.2	8,287.6	29.2	29.3	147.02	-58.0	-120.3	100.6	42.3	58.34	1.725		
8,400.0	8,394.9	8,389.0	8,387.4	29.5	29.7	149.67	-58.9	-118.3	104.2	45.2	59.04	1.765		
8,500.0	8,494.8	8,488.9	8,487.2	29.9	30.0	152.14	-59.8	-116.2	108.0	48.3	59.75	1.808		
8,600.0	8,594.6	8,588.7	8,587.0	30.2	30.4	154.44	-60.7	-114.1	112.0	51.5	60.46	1.852		
8,700.0	8,694.5	8,688.5	8,686.8	30.6	30.7	156.58	-61.6	-112.0	116.1	54.9	61.16	1.898		
8,800.0	8,794.4	8,788.3	8,786.6	30.9	31.1	158.57	-62.5	-110.0	120.4	58.5	61.87	1.946		
8,900.0	8,894.3	8,888.2	8,886.4	31.3	31.5	160.42	-63.4	-107.9	124.8	62.2	62.58	1.994		
9,000.0	8,994.2	8,988.0	8,986.2	31.7	31.8	162.14	-64.3	-105.8	129.3	66.1	63.29	2.044		
9,100.0	9,094.0	9,087.8	9,086.0	32.0	32.2	163.74	-65.2	-103.8	134.0	70.0	64.00	2.094		
9,200.0	9,193.9	9,187.6	9,185.8	32.4	32.5	165.24	-66.1	-101.7	138.7	74.0	64.70	2.144		
9,300.0	9,293.8	9,287.5	9,285.6	32.7	32.9	166.64	-67.0	-99.6	143.6	78.2	65.41	2.195		
9,400.0	9,393.7	9,387.3	9,385.4	33.1	33.3	167.94	-67.9	-97.6	148.5	82.4	66.12	2.246		
9,500.0	9,493.6	9,487.1	9,485.2	33.5	33.6	169.16	-68.8	-95.5	153.5	86.7	66.83	2.297		
9,600.0	9,593.4	9,586.9	9,585.0	33.8	34.0	170.30	-69.7	-93.4	158.5	91.0	67.54	2.347		
9,700.0	9,693.3	9,686.8	9,684.8	34.2	34.3	171.38	-70.6	-91.3	163.7	95.4	68.26	2.398		
9,800.0	9,793.2	9,786.6	9,784.6	34.5	34.7	172.38	-71.5	-89.3	168.8	99.9	68.97	2.448		
9,900.0	9,893.1	9,886.4	9,884.4	34.9	35.1	173.33	-72.4	-87.2	174.0	104.4	69.68	2.498		
10,000.0	9,993.0	9,986.2	9,984.2	35.3	35.4	174.22	-73.2	-85.1	179.3	108.9	70.39	2.547		
10,082.6	10,075.5	10,068.7	10,066.7	35.6	35.7	174.92	-74.0	-83.4	183.7	112.7	70.98	2.588		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

	,	ORAN PR											Offset Site Error:	0.0 usf
rvey Pro	gram: 0-	MWD					055 (144 111			Rule Assig	gned:		Offset Well Error:	0.0 usf
Refei leasured	rence Vertical	Off: Measured		Reference	Major Axis Offset	Highside	Offset Wellb	ore Centre		tance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)		•	
10,100.0	10,092.8	10,086.0	10,084.0	35.6	35.8	-167.80	-74.1	-83.1	184.8	113.7	71.10	2.600		
10,125.0	10,117.7	10,110.9	10,108.8	35.7	35.9	-158.53	-74.4	-82.5	187.4	116.2	71.28	2.630		
10,150.0	10,142.4	10,135.6	10,133.5	35.8	35.9	-154.56	-74.6	-82.0	191.1	119.6	71.46	2.674		
10,175.0	10,166.9	10,160.1	10,158.0	35.9	36.0	-152.50	-74.8	-81.5	195.8	124.2	71.63	2.734		
10,200.0	10,191.0	10,184.3	10,182.2	36.0	36.1	-151.38	-75.0	-81.0	201.6	129.8	71.81	2.808		
10,225.0	10,214.8	10,208.1	10,206.1	36.1	36.2	-150.79	-75.2	-80.5	208.5	136.5	71.98	2.896		
0,250.0	10,238.2	10,231.6	10,229.5	36.2	36.3	-150.53	-75.4	-80.0	216.4	144.2	72.15	2.999		
10,275.0	10,261.1	10,254.5	10,252.4	36.3	36.4	-150.47	-75.7	-79.6	225.4	153.1	72.31	3.117		
10,300.0	10,283.4	10,276.9	10,274.8	36.4	36.5	-150.53	-75.9	-79.1	235.5	163.1	72.47	3.250		
10,325.0	10,305.1	10,298.7	10,296.6	36.5	36.5	-150.66	-76.0	-78.7	246.7	174.1	72.62	3.397		
10,350.0	10,326.1	10,319.8	10,317.7	36.6	36.6	-150.81	-76.2	-78.2	259.0	186.2	72.77	3.559		
10,375.0	10,346.4	10,340.2	10,338.1	36.7	36.7	-150.94	-76.4	-77.8	272.3	199.4	72.92	3.735		
10,400.0	10,365.9	10,359.9	10,357.7	36.8	36.8	-151.03	-76.6	-77.4	286.7	213.7	73.05	3.925		
10,425.0	10,384.5	10,378.6	10,376.5	36.9	36.8	-151.03	-76.8	-77.0	302.1	228.9	73.18	4.128		
10,450.0	10,402.3	10,396.5	10,394.4	37.0	36.9	-150.93	-76.9	-76.6	318.5	245.2	73.30	4.345		
10,475.0	10,419.1	10,413.5	10,411.4	37.1	36.9	-150.70	-77.1	-76.3	335.8	262.4	73.42	4.574		
10,500.0	10,434.9	10,429.5	10,427.3	37.2	37.0	-150.32	-77.2	-75.9	354.0	280.5	73.52	4.815		
10,525.0	10,449.7	10,444.4	10,442.3	37.3	37.1	-149.74	-77.4	-75.6	373.0	299.4	73.62	5.067		
10,550.0	10,463.4	10,458.3	10,456.2	37.4	37.1	-148.93	-77.5	-75.3	392.9	319.2	73.71	5.330		
10,575.0	10,476.0	10,471.1	10,469.0	37.6	37.2	-147.83	-77.6	-75.1	413.5	339.7	73.79	5.603		
10,600.0	10,487.5	10,482.8	10,480.6	37.7	37.2	-146.37	-77.7	-74.8	434.7	360.9	73.87	5.886		
10,625.0	10,497.8	10,493.2	10,491.1	37.8	37.2	-144.47	-77.8	-74.6	456.6	382.7	73.93	6.177		
10,650.0	10,506.8	10,502.5	10,500.3	37.9	37.3	-141.99	-77.9	-74.4	479.1	405.1	73.98	6.475		
10,675.0	10,514.7	10,510.6	10,508.4	38.0	37.3	-138.75	-77.9	-74.3	502.0	428.0	74.03	6.781		
10,700.0	10,521.3	10,517.4	10,515.2	38.1	37.3	-134.50	-78.0	-74.1	525.4	451.3	74.07	7.093		
10,725.0	10,526.6	10,522.9	10,520.7	38.3	37.3	-128.88	-78.1	-74.0	549.1	475.0	74.10	7.410		
10,750.0	10,530.6	10,527.1	10,525.0	38.4	37.4	-121.44	-78.1	-73.9	573.1	499.0	74.13	7.732		
10,775.0	10,533.3	10,530.1	10,527.9	38.5	37.4	-111.72	-78.1	-73.9	597.4	523.2	74.14	8.057		
10,800.0	10,534.8	10,531.8	10,529.6	38.6	37.4	-99.53	-78.1	-73.8	621.7	547.6	74.15	8.385		
10,814.9	10,535.0	10,532.1	10,530.0	38.7	37.4	-91.30	-78.1	-73.8	636.3	562.1	74.15	8.581		
10,900.0	10,535.0	10,532.9	10,530.7	39.1	37.4	-91.64	-78.1	-73.8	719.8	645.7	74.16	9.706		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

KB @ 3794.0usft

Survey Calculation Method: Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft

Grid

Minimum Curvature

							805H - OWB -						Offset Site Error:	0.0 usf
Survey Prog Refer	gram: 0- rence	MWD Off:	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dist	Rule Assig	-		Offset Well Error:	0.0 us
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	3.0	3.0	0.0	0.0	179.53	-299.7	2.4	299.8					
100.0	100.0	103.0	103.0	0.3	0.3	179.53	-299.7	2.4	299.8	299.2	0.51	584.766		
200.0	200.0	203.0	203.0	0.6	0.6	179.53	-299.7	2.4	299.8	298.5	1.23	243.795		
300.0	300.0	303.0	303.0	1.0	1.0	179.53	-299.7	2.4	299.8	297.8	1.95	153.999		
400.0	400.0	403.0	403.0	1.3	1.3	179.53	-299.7	2.4	299.8	297.1	2.66	112.546		
500.0	500.0	503.0	503.0	1.7	1.7	179.53	-299.7	2.4	299.8	296.4	3.38	88.676		
600.0	600.0	603.0	603.0	2.0	2.1	179.53	-299.7	2.4	299.8	295.7	4.10	73.160		
700.0	700.0	703.0	703.0	2.4	2.4	179.53	-299.7	2.4	299.8	294.9	4.81	62.265		
800.0	800.0	803.0	803.0	2.8	2.8	179.53	-299.7	2.4	299.8	294.2	5.53	54.194		
900.0	900.0	903.0	903.0	3.1	3.1	179.53	-299.7	2.4	299.8	293.5	6.25	47.976		
1,000.0	1,000.0	1,003.0	1,003.0	3.5	3.5	179.53	-299.7	2.4	299.8	292.8	6.97	43.037		
1,100.0	1,100.0	1,103.0	1,103.0	3.8	3.8	179.53	-299.7	2.4	299.8	292.1	7.68	39.021		
1,200.0	1,200.0	1,203.0	1,203.0	4.2	4.2	179.53	-299.7	2.4	299.8	291.4	8.40	35.690		
1,300.0	1,300.0	1,303.0	1,303.0	4.6	4.6	179.53	-299.7	2.4	299.8	290.6	9.12	32.883		
1,400.0	1,400.0	1,403.0	1,403.0	4.9	4.9	179.53	-299.7	2.4	299.8	289.9	9.83	30.485		
1,500.0	1,500.0	1,503.0	1,503.0	5.3	5.3	179.53	-299.7	2.4	299.8	289.2	10.55	28.414		
1,600.0	1,600.0	1,603.0	1,603.0	5.6	5.6	179.53	-299.7	2.4	299.8	288.5	11.27	26.606		
1,700.0	1,700.0	1,703.0	1,703.0	6.0	6.0	179.53	-299.7	2.4	299.8	287.8	11.98	25.014		
1,800.0	1,800.0	1,803.0	1,803.0	6.3	6.4	179.53	-299.7	2.4	299.8	287.1	12.70	23.602		
1,900.0 1,965.6	1,900.0 1,965.6	1,903.0 1,968.6	1,903.0 1,968.6	6.7 6.9	6.7 6.9	179.53 179.53	-299.7 -299.7	2.4 2.4	299.8 299.8	286.3 285.9	13.42 13.89	22.341 21.584		
2,000.0	2,000.0	2,002.9	2,002.9	7.1	7.1	179.53	-299.8	2.4	299.8	285.6	14.13	21.209		
2,100.0	2,100.0	2,100.0	2,100.0	7.1	7.1	179.85	-300.3	0.8	300.4	285.5	14.13	20.256		
2,100.0	2,200.0	2,100.0	2,100.0	7.4	7.7	-179.27	-302.0	-3.8	302.1	286.6	15.51	19.484		
2,300.0	2,300.0	2,193.9	2,291.3	8.1	8.1	-177.84	-304.8	-11.5	305.2	289.1	16.19	18.858		
2,400.0	2,400.0	2,387.1	2,385.9	8.5	8.4	-175.91	-308.6	-22.1	309.9	293.0	16.86	18.376		
2,500.0	2,500.0	2,481.5	2,479.2	8.9	8.7	-173.54	-313.5	-35.5	316.4	298.9	17.54	18.042		
2,600.0	2,600.0	2,579.0	2,575.3	9.2	9.1	-170.86	-319.3	-51.4	324.5	306.3	18.23	17.800		
2,700.0	2,700.0	2,677.5	2,672.3	9.6	9.4	-168.28	-325.1	-67.5	333.4	314.5	18.94	17.605		
2,800.0	2,800.0	2,776.0	2,769.3	9.9	9.8	-165.83	-330.9	-83.5	342.9	323.3	19.65	17.454		
2,900.0	2,900.0	2,874.5	2,866.3	10.3	10.2	-163.52	-336.7	-99.6	353.1	332.7	20.36	17.342		
3,000.0	3,000.0	2,973.0	2,963.2	10.6	10.6	-161.34	-342.6	-115.7	363.7	342.7	21.07	17.262		
3,100.0	3,100.0	3,071.4	3,060.2	11.0	11.0	-159.28	-348.4	-131.8	374.9	353.1	21.79	17.209		
3,200.0	3,200.0	3,169.9	3,157.2	11.4	11.4	-157.34	-354.2	-147.8	386.5	364.0	22.50	17.180		
3,300.0	3,300.0	3,268.6	3,254.4	11.7	11.8	-155.52	-360.0	-164.0	398.6	375.4	23.22	17.169		
3,400.0	3,400.0	3,378.5	3,363.0	12.1	12.2	-153.82	-365.8	-179.9	409.6	385.6	24.02	17.051		
3,500.0	3,500.0	3,489.5	3,473.3	12.4	12.6	-152.59	-370.2	-192.0	418.1	393.2	24.82	16.845		
3,600.0	3,600.0	3,601.4	3,584.8	12.8	13.1	-151.80	-373.1	-200.1	423.8	398.2	25.60	16.556		
3,700.0	3,700.0	3,713.8	3,697.1	13.2	13.5	-151.42	-374.6	-204.1	426.6	400.3	26.35	16.190		
3,800.0	3,800.0	3,819.7	3,803.0	13.5	13.8	-151.37	-374.7	-204.5	426.9	399.9	27.07	15.770		
3,900.0	3,900.0	3,919.7	3,903.0	13.9	14.2	-151.37	-374.7	-204.5	426.9	399.2	27.78	15.370		
4,000.0	4,000.0	4,019.7	4,003.0	14.2	14.5	-151.37	-374.7	-204.5	426.9	398.5	28.48	14.988		
4,100.0	4,100.0	4,119.7	4,103.0	14.6	14.8	-11.48	-374.7	-204.5	425.2	396.1	29.18	14.575		
4,139.8	4,139.7	4,159.4	4,142.7	14.7	15.0	-11.53	-374.7	-204.5	423.6	394.2	29.44	14.386		
4,200.0	4,199.9	4,219.6	4,202.9	14.9	15.2	-11.61	-374.7	-204.5	420.7	390.9	29.85	14.093		
4,300.0	4,299.8	4,319.5	4,302.8	15.2	15.5	-11.75	-374.7	-204.5	415.9	385.4	30.53	13.624		
4,400.0	4,399.6	4,419.4	4,402.6	15.6	15.9	-11.89	-374.7	-204.5	411.2	380.0	31.21	13.174		
4,500.0	4,499.5	4,519.2	4,502.5	15.9	16.2	-12.03	-374.7	-204.5	406.4	374.5	31.89	12.743		
4,600.0	4,599.4	4,619.1	4,602.4	16.2	16.6	-12.17	-374.7	-204.5	401.6	369.1	32.58	12.329		
4,700.0	4,699.3	4,719.0	4,702.3	16.6	16.9	-12.32	-374.7	-204.5	396.9	363.6	33.26	11.932		
4,800.0	4,799.2	4,818.9	4,802.2	16.9	17.3	-12.47	-374.7	-204.5	392.1	358.2	33.95	11.550		
4,900.0	4,899.0	4,918.8	4,902.0	17.2	17.6	-12.63	-374.7	-204.5	387.3	352.7	34.63	11.184		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

(usft) (u	,998.9 ,098.8 ,198.7 ,298.6 ,398.4 ,498.3 ,598.2 ,698.1 ,798.0 ,897.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	MWD Offs Measured Depth (usft) 5,018.6 5,118.5 5,218.4 5,318.3 5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2 6,317.1		Semi M Reference (usft) 17.6 17.9 18.3 18.6 18.9 19.3 19.6 20.0 20.3 20.7 21.0	Maior Axis Offset (usft) 18.0 18.3 18.7 19.0 19.4 19.7 20.1 20.4 20.8 21.1	Highside Toolface (°) -12.79 -12.95 -13.12 -13.29 -13.47 -13.65 -13.84 -14.03	Offset Wellb +N/-S (usft) -374.7 -374.7 -374.7 -374.7 -374.7 -374.7 -374.7	+E/-W (usft) -204.5 -204.5 -204.5 -204.5 -204.5 -204.5 -204.5		Rule Assig ance Between Ellipses (usft) 347.3 341.8 336.4 330.9	-	Separation Factor 10.831 10.491 10.164 9.849	Offset Well Error: Warning	0.0 usf
Depth (usft) Dept (usft) Per (usft) 5,000.0 4,8 5,000.0 5,6 5,000.0 5,5 5,100.0 5,6 5,200.0 5,1 5,300.0 5,2 5,400.0 5,3 5,500.0 5,4 5,600.0 5,5 5,700.0 5,6 5,800.0 5,7 5,900.0 5,6 6,000.0 5,5 5,900.0 5,6 6,000.0 6,3 6,200.0 6,1 6,300.0 6,2 6,200.0 6,4 6,500.0 6,5 6,700.0 6,6 6,600.0 6,5 6,700.0 6,8 6,000.0 6,7 7,000.0 7,2 7,200.0 7,1 7,300.0 7,2 7,200.0 7,4 7,500.0 7,6 7,600.0 7,5 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0 7,6 7,700.0	epth sft) .998.9 .098.8 .198.7 .298.6 .398.4 .498.3 .598.2 .698.1 .798.0 .897.8 .997.7 .097.6 .197.5 .297.4 .397.3 .497.1	Depth (usft) 5,018.6 5,118.5 5,218.4 5,318.3 5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	Depth (usft) 5,001.9 5,101.8 5,201.7 5,301.6 5,401.4 5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	(usft) 17.6 17.9 18.3 18.6 18.9 19.3 19.6 20.0 20.3 20.7	(usft) 18.0 18.3 18.7 19.0 19.4 19.7 20.1 20.4 20.8	Toolface (°) -12.79 -12.95 -13.12 -13.29 -13.47 -13.65 -13.84 -14.03	(usft) -374.7 -374.7 -374.7 -374.7 -374.7 -374.7 -374.7	-204.5 -204.5 -204.5 -204.5 -204.5	Centres (usft) 382.6 377.8 373.1 368.3	847.3 347.3 341.8 336.4	Separation (usft) 35.32 36.01 36.70	10.831 10.491 10.164	Warning	
5,100.0 5,6 5,200.0 5,1 5,300.0 5,2 5,400.0 5,3 5,500.0 5,4 5,600.0 5,5 5,700.0 5,6 5,900.0 5,7 6,000.0 5,8 6,000.0 6,6 6,200.0 6,1 6,300.0 6,2 6,500.0 6,4 6,600.0 6,6 6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,000.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,098.8 ,198.7 ,298.6 ,398.4 ,498.3 ,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,118.5 5,218.4 5,318.3 5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,101.8 5,201.7 5,301.6 5,401.4 5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	17.9 18.3 18.6 18.9 19.3 19.6 20.0 20.3 20.7	18.3 18.7 19.0 19.4 19.7 20.1 20.4 20.8	-12.95 -13.12 -13.29 -13.47 -13.65 -13.84 -14.03	-374.7 -374.7 -374.7 -374.7 -374.7	-204.5 -204.5 -204.5 -204.5	377.8 373.1 368.3	341.8 336.4	36.01 36.70	10.491 10.164		
5,200.0 5,1 5,300.0 5,2 5,400.0 5,5 5,500.0 5,4 5,600.0 5,5 5,700.0 5,6 6,000.0 5,5 6,000.0 6,6 6,000.0 6,6 6,300.0 6,2 6,400.0 6,6 6,300.0 6,2 6,400.0 6,6 6,700.0 6,6 7,000.0 6,7 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,5 7,700.0 7,6	,198.7 ,298.6 ,398.4 ,498.3 ,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,218.4 5,318.3 5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,201.7 5,301.6 5,401.4 5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	18.3 18.6 18.9 19.3 19.6 20.0 20.3 20.7	18.7 19.0 19.4 19.7 20.1 20.4 20.8	-13.12 -13.29 -13.47 -13.65 -13.84 -14.03	-374.7 -374.7 -374.7 -374.7	-204.5 -204.5 -204.5	373.1 368.3	336.4	36.70	10.164		
5,300.0 5,2 5,400.0 5,5 5,500.0 5,6 5,600.0 5,5 5,700.0 5,6 6,000.0 5,5 6,000.0 5,6 6,000.0 6,6 6,200.0 6,6 6,500.0 6,6 6,700.0 6,6 6,700.0 6,6 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,6 7,600.0 7,6 7,700.0 7,6	,298.6 ,398.4 ,498.3 ,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,318.3 5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,301.6 5,401.4 5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	18.6 18.9 19.3 19.6 20.0 20.3 20.7	19.0 19.4 19.7 20.1 20.4 20.8	-13.29 -13.47 -13.65 -13.84 -14.03	-374.7 -374.7 -374.7	-204.5 -204.5	368.3					
5,400.0 5,5 5,500.0 5,6 5,600.0 5,6 5,700.0 5,6 5,800.0 5,7 5,900.0 5,6 6,000.0 5,6 6,000.0 6,6 6,200.0 6,1 6,300.0 6,2 6,700.0 6,6 6,700.0 6,6 7,000.0 6,7 7,200.0 7,7 7,300.0 7,2 7,400.0 7,6 7,600.0 7,6 7,700.0 7,6	,398.4 ,498.3 ,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,418.2 5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,401.4 5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	18.9 19.3 19.6 20.0 20.3 20.7	19.4 19.7 20.1 20.4 20.8	-13.47 -13.65 -13.84 -14.03	-374.7 -374.7	-204.5		330.9	37.40	9.849		
5,500.0 5,4 5,600.0 5,5 5,700.0 5,6 5,800.0 5,7 5,900.0 5,6 6,000.0 5,5 6,100.0 6,6 6,200.0 6,1 6,300.0 6,6 6,000.0 6,6 6,700.0 6,6 6,000.0 6,7 7,000.0 6,8 7,100.0 7,7 7,200.0 7,7 7,300.0 7,2 7,500.0 7,6 7,600.0 7,6 7,700.0 7,6 7,700.0 7,6	,498.3 ,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,518.0 5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,501.3 5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	19.3 19.6 20.0 20.3 20.7	19.7 20.1 20.4 20.8	-13.65 -13.84 -14.03	-374.7 -374.7		363.6		37.40	0.040		
5,600.0 5,5 5,700.0 5,6 5,800.0 5,7 5,900.0 5,6 6,000.0 6,6 6,200.0 6,1 6,300.0 6,2 6,400.0 6,6 6,500.0 6,7 6,900.0 6,8 7,000.0 6,8 7,000.0 6,9 7,100.0 7,7 7,200.0 7,7 7,300.0 7,2 7,400.0 7,5 7,500.0 7,6	,598.2 ,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,617.9 5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,601.2 5,701.1 5,801.0 5,900.8 6,000.7	19.6 20.0 20.3 20.7	20.1 20.4 20.8	-13.84 -14.03	-374.7	-204.5	000.0	325.5	38.09	9.545		
5,700.0 5,6 5,800.0 5,7 5,900.0 5,8 6,000.0 5,9 6,100.0 6,0 6,200.0 6,1 6,300.0 6,2 6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,6 7,600.0 7,6 7,700.0 7,6	,698.1 ,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,717.8 5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,701.1 5,801.0 5,900.8 6,000.7	20.0 20.3 20.7	20.4 20.8	-14.03			358.8	320.1	38.78	9.252		
5,800.0 5,7 5,900.0 5,8 6,000.0 5,8 6,000.0 6,6 6,200.0 6,1 6,300.0 6,2 6,400.0 6,3 6,500.0 6,4 6,600.0 6,6 6,700.0 6,6 6,700.0 6,6 7,000.0 6,7 7,000.0 7,7 7,200.0 7,7 7,300.0 7,2 7,500.0 7,6 7,600.0 7,6 7,700.0 7,6	,798.0 ,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,817.7 5,917.6 6,017.4 6,117.3 6,217.2	5,801.0 5,900.8 6,000.7	20.3 20.7	20.8			-204.5	354.1	314.6	39.48	8.969		
5,900.0 5,6 6,000.0 5,5 6,100.0 6,6 6,200.0 6,1 6,300.0 6,2 6,400.0 6,6 6,500.0 6,6 6,700.0 6,6 6,900.0 6,7 7,000.0 7,7 7,200.0 7,7 7,300.0 7,2 7,400.0 7,5 7,500.0 7,6	,897.8 ,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	5,917.6 6,017.4 6,117.3 6,217.2	5,900.8 6,000.7	20.7			-374.7	-204.5	349.4	309.2	40.18	8.696		
6,000.0 5,6 6,100.0 6,6 6,200.0 6,1 6,300.0 6,2 6,400.0 6,5 6,500.0 6,4 6,600.0 6,5 6,700.0 6,6 6,800.0 6,7 6,900.0 7,7 7,000.0 7,7 7,300.0 7,2 7,400.0 7,5 7,500.0 7,6 7,700.0 7,6	,997.7 ,097.6 ,197.5 ,297.4 ,397.3 ,497.1	6,017.4 6,117.3 6,217.2	6,000.7		21 1	-14.23	-374.7	-204.5	344.6	303.8	40.87	8.432		
6,100.0 6,6 6,200.0 6,1 6,300.0 6,2 6,400.0 6,3 6,500.0 6,4 6,600.0 6,5 6,700.0 6,6 7,000.0 6,8 7,000.0 7,7 7,200.0 7,1 7,300.0 7,2 7,400.0 7,5 7,500.0 7,6	,097.6 ,197.5 ,297.4 ,397.3 ,497.1	6,117.3 6,217.2		21.0		-14.43	-374.7	-204.5	339.9	298.3	41.57	8.177		
6,200.0 6,1 6,300.0 6,2 6,400.0 6,3 6,500.0 6,4 6,600.0 6,6 6,700.0 6,6 6,800.0 6,7 7,000.0 6,8 7,100.0 7,7 7,200.0 7,1 7,300.0 7,2 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,197.5 ,297.4 ,397.3 ,497.1	6,217.2	6,100.6		21.5	-14.64	-374.7	-204.5	335.2	292.9	42.27	7.930		
6,300.0 6,26 6,400.0 6,3 6,500.0 6,4 6,600.0 6,6 6,700.0 6,6 6,800.0 6,7 7,000.0 6,8 7,100.0 7,7 7,200.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,297.4 ,397.3 ,497.1			21.4	21.8	-14.85	-374.7	-204.5	330.5	287.5	42.97	7.691		
6,400.0 6,5 6,500.0 6,4 6,600.0 6,5 6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,000.0 7,7 7,200.0 7,7 7,300.0 7,2 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,397.3 ,497.1 ,597.0	6,317.1	6,200.5	21.7	22.2	-15.07	-374.7	-204.5	325.8	282.1	43.67	7.460		
6,500.0 6,4 6,600.0 6,5 6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,000.0 6,8 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,5 7,500.0 7,6 7,700.0 7,6	,497.1 ,597.0		6,300.4	22.1	22.5	-15.29	-374.7	-204.5	321.1	276.7	44.37	7.236		
6,600.0 6,5 6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,000.0 6,9 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,5 7,600.0 7,5 7,700.0 7,6	,597.0	6,417.0	6,400.3	22.4	22.9	-15.53	-374.7	-204.5	316.3	271.3	45.07	7.019		
6,700.0 6,6 6,800.0 6,7 6,900.0 6,8 7,000.0 7,0 7,200.0 7,1 7,300.0 7,2 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6		6,516.9	6,500.1	22.8	23.2	-15.77	-374.7	-204.5	311.7	265.9	45.77	6.809		
6,800.0 6,7 6,900.0 6,8 7,000.0 6,9 7,100.0 7,0 7,200.0 7,7 7,300.0 7,2 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6		6,616.7	6,600.0	23.1	23.6	-16.02	-374.7	-204.5	307.0	260.5	46.47	6.605		
6,900.0 6,6 7,000.0 6,8 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,696.9	6,716.6	6,699.9	23.5	23.9	-16.27	-374.7	-204.5	302.3	255.1	47.18	6.407		
7,000.0 6,8 7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,796.8	6,816.5	6,799.8	23.8	24.3	-16.53	-374.7	-204.5	297.6	249.7	47.88	6.216		
7,100.0 7,0 7,200.0 7,1 7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,896.7	6,916.4	6,899.7	24.2	24.6	-16.80	-374.7	-204.5	292.9	244.3	48.58	6.029		
7,200.0 7,1 7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,996.5	7,016.3	6,999.5	24.5	25.0	-17.08	-374.7	-204.5	288.3	239.0	49.29	5.848		
7,200.0 7,1 7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,096.4	7,116.1	7,099.4	24.9	25.3	-17.37	-374.7	-204.5	283.6	233.6	49.99	5.673		
7,300.0 7,2 7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,196.3	7,216.0	7,199.3	25.2	25.7	-17.67	-374.7	-204.5	278.9	228.2	50.70	5.502		
7,400.0 7,3 7,500.0 7,4 7,600.0 7,5 7,700.0 7,6	,296.2	7,315.9	7,299.2	25.6	26.0	-17.98	-374.7	-204.5	274.3	222.9	51.40	5.336		
7,600.0 7,5 7,700.0 7,6	,396.1	7,415.8	7,399.1	25.9	26.4	-18.30	-374.7	-204.5	269.7	217.6	52.11	5.175		
7,700.0 7,6	,495.9	7,515.7	7,498.9	26.3	26.7	-18.63	-374.7	-204.5	265.0	212.2	52.82	5.018		
	,595.8	7,615.5	7,598.8	26.7	27.1	-18.98	-374.7	-204.5	260.4	206.9	53.53	4.865		
78000 77	,695.7	7,715.4	7,698.7	27.0	27.4	-19.33	-374.7	-204.5	255.8	201.6	54.23	4.717		
1,000.0	,795.6	7,815.3	7,798.6	27.4	27.8	-19.70	-374.7	-204.5	251.2	196.3	54.94	4.572		
7,900.0 7,8	,895.5	7,915.2	7,898.5	27.7	28.2	-20.08	-374.7	-204.5	246.6	191.0	55.65	4.432		
8,000.0 7,9	,995.4	8,015.1	7,998.4	28.1	28.5	-20.48	-374.7	-204.5	242.1	185.7	56.36	4.295		
8,100.0 8,0	,095.2	8,114.9	8,098.2	28.4	28.9	-20.89	-374.7	-204.5	237.5	180.4	57.07	4.161		
8,200.0 8,1	,195.1	8,214.8	8,198.1	28.8	29.2	-21.32	-374.7	-204.5	232.9	175.2	57.78	4.032		
8,300.0 8,2	,295.0	8,314.7	8,298.0	29.2	29.6	-21.76	-374.7	-204.5	228.4	169.9	58.49	3.905		
8,400.0 8,3	,394.9	8,414.6	8,397.9	29.5	29.9	-22.23	-374.7	-204.5	223.9	164.7	59.20	3.782		
8,500.0 8,4	,494.8	8,514.5	8,497.8	29.9	30.3	-22.71	-374.7	-204.5	219.4	159.5	59.91	3.662		
8,600.0 8,5	,594.6	8,614.4	8,597.6	30.2	30.6	-23.21	-374.7	-204.5	214.9	154.3	60.62	3.544		
8,700.0 8,6	,694.5	8,714.2	8,697.5	30.6	31.0	-23.73	-374.7	-204.5	210.4	149.1	61.34	3.430		
8,800.0 8,7	,794.4	8,814.1	8,797.4	30.9	31.3	-24.28	-374.7	-204.5	205.9	143.9	62.05	3.319		
	,894.3	8,914.0	8,897.3	31.3	31.7	-24.85	-374.7	-204.5	201.5	138.7	62.76	3.211		
9,000.0 8,9	,994.2	9,013.9	8,997.2	31.7	32.1	-25.44	-374.7	-204.5	197.1	133.6	63.48	3.105		
9,100.0 9,0	,094.0	9,113.8	9,097.0	32.0	32.4	-26.07	-374.7	-204.5	192.7	128.5	64.19	3.002		
9,185.3 9,1	,179.2	9,190.7	9,173.9	32.3	32.7	-26.60	-375.2	-204.5	189.6	124.9	64.75	2.928 CC	, ES, SF	
9,200.0 9,1	,193.9	9,200.0	9,183.3	32.4	32.7	-26.70	-375.7	-204.5	189.8	125.0	64.78	2.930		
	,293.8	9,275.0	9,257.4	32.7	33.0	-27.91	-386.4	-204.5	199.3	134.6	64.67	3.082		
9,400.0 9,3	,393.7	9,340.1	9,319.7	33.1	33.2	-29.38	-405.0	-204.4	223.0	159.7	63.36	3.520		
	,493.6	9,400.0	9,374.4	33.5	33.4	-30.84	-429.4	-204.2	259.8	198.4	61.33	4.235		
	,593.4	9,456.8	9,423.0	33.8	33.5	-32.18	-458.8	-204.1	307.7	248.4	59.28	5.190		
	,693.3	9,500.0	9,457.5	34.2	33.7	-33.11	-484.8	-203.9	365.0	308.4	56.62	6.447		
	,793.2	9,550.0	9,494.2	34.5	33.8	-34.07	-518.7	-203.7	429.7	374.6	55.12	7.797		
9,900.0 9,8	,893.1	9,582.0	9,515.7	34.9	33.9	-34.60	-542.3	-203.6	500.5	447.6	52.91	9.459		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Output errors are at

Offset TVD Reference:

Database:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset De	esign: ^{MC}	ORAN PRO	OJECT -	MORAN	9 FEDEF	RAL COM 3	805H - OWB -	PWP0					Offset Site Error:	0.0 usft
Survey Prog Refer Measured	gram: 0- ence Vertical	MWD Offs Measured	set Vertical	Semi M Reference	lajor Axis Offset	Highside	Offset Wellb		Dis Between	Rule Assignance Between	-	Separation	Offset Well Error: Warning	0.0 usft
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
10,082.6	10,075.5	9,634.8	9,547.7	35.6	34.1	-35.38	-584.3	-203.3	641.4	591.4	50.03	12.820		
10,100.0	10,092.8	9,639.2	9,550.2	35.6	34.1	-18.55	-588.0	-203.3	655.3	605.5	49.79	13.159		
10,125.0	10,117.7	9,650.0	9,556.1	35.7	34.1	-9.80	-597.0	-203.2	674.7	625.1	49.65	13.590		
10,150.0	10,142.4	9,650.0	9,556.1	35.8	34.1	-6.03	-597.0	-203.2	693.5	644.5	48.95	14.168		
10,175.0	10,166.9	9,659.5	9,561.0	35.9	34.1	-4.09	-605.1	-203.2	711.6	662.9	48.69	14.614		
10,200.0	10,191.0	9,666.6	9,564.7	36.0	34.2	-2.91	-611.2	-203.2	729.2	680.8	48.31	15.094		
10,225.0	10,214.8	9,675.0	9,568.9	36.1	34.2	-2.15	-618.5	-203.1	746.0	698.0	47.97	15.552		
10,250.0	10,238.2	9,675.0	9,568.9	36.2	34.2	-1.59	-618.5	-203.1	762.2	714.9	47.25	16.132		
10,275.0	10,261.1	9,688.8	9,575.4	36.3	34.2	-1.24	-630.6	-203.0	777.6	730.4	47.11	16.505		
10,300.0	10,283.4	9,700.0	9,580.5	36.4	34.3	-0.98	-640.6	-203.0	792.3	745.4	46.85	16.912		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset De	esign: ^M	ORAN PR	OJECT -	MORAN 9	FEDER	RAL COM 4	106H - OWB -	PWP0					Offset Site Error:	0.0 usft
Survey Prog	gram: 0-	-MWD Off	'not	Sami N	laior Avia		Offset Wellb	oro Contro	Diet	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)		Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	lajor Axis Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)		Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	3.0	3.0	0.0	0.0	173.82	-299.4	32.4	301.1	(usit)	(usit)			
100.0	100.0	103.0	103.0	0.3	0.3	173.82	-299.4	32.4	301.1	300.6	0.51	587.455		
200.0	200.0	203.0	203.0	0.6	0.6	173.82	-299.4	32.4	301.1	299.9	1.23	244.916		
300.0	300.0	303.0	303.0	1.0	1.0	173.82	-299.4	32.4	301.1	299.2	1.95	154.707		
400.0	400.0	403.0	403.0	1.3	1.3	173.82	-299.4	32.4	301.1	298.5	2.66	113.063		
500.0	500.0	503.0	503.0	1.7	1.7	173.82	-299.4	32.4	301.1	297.8	3.38	89.084		
600.0	600.0	603.0	603.0	2.0	2.1	173.82	-299.4	32.4	301.1	297.0	4.10	73.496		
700.0	700.0	703.0	703.0	2.4	2.4	173.82	-299.4	32.4	301.1	296.3	4.81	62.551		
800.0	800.0	803.0	803.0	2.8	2.8	173.82	-299.4	32.4	301.1	295.6	5.53	54.443		
900.0	900.0	903.0	903.0	3.1	3.1	173.82	-299.4	32.4	301.1	294.9	6.25	48.196		
1,000.0	1,000.0	1,003.0	1,003.0	3.5	3.5	173.82	-299.4	32.4	301.1	294.2	6.97	43.235		
1,100.0	1,100.0	1,103.0	1,103.0	3.8	3.8	173.82	-299.4	32.4	301.1	293.5	7.68	39.200		
1,200.0	1,200.0	1,203.0	1,203.0	4.2	4.2	173.82	-299.4	32.4	301.1	292.7	8.40	35.854		
1,300.0	1,300.0	1,303.0	1,303.0	4.6	4.6	173.82	-299.4	32.4	301.1	292.0	9.12	33.034		
1,400.0	1,400.0	1,403.0	1,403.0	4.9	4.9	173.82	-299.4	32.4	301.1	291.3	9.83	30.626		
1,500.0	1,500.0	1,503.0	1,503.0	5.3	5.3	173.82	-299.4	32.4	301.1	290.6	10.55	28.544		
1,600.0	1,600.0	1,603.0	1,603.0	5.6	5.6	173.82	-299.4	32.4	301.1	289.9	11.27	26.728		
1,700.0	1,700.0	1,703.0	1,703.0	6.0	6.0	173.82	-299.4	32.4	301.1	289.2	11.98	25.129		
1,800.0	1,800.0	1,803.0	1,803.0	6.3	6.4	173.82	-299.4	32.4	301.1	288.4	12.70	23.710		
1,900.0	1,900.0	1,903.0	1,903.0	6.7	6.7	173.82	-299.4	32.4	301.1	287.7	13.42	22.444 21.683 CC		
1,965.6	1,965.6	1,968.6	1,968.6	6.9	6.9	173.82	-299.4	32.4	301.1	287.2	13.89			
2,000.0	2,000.0	2,003.0	2,003.0	7.1	7.1	173.82	-299.4	32.4	301.1	287.0	14.13	21.306		
2,100.0	2,100.0	2,101.9	2,101.9	7.4	7.4	173.48	-299.4	34.2	301.3	286.5	14.84	20.306		
2,200.0	2,200.0	2,200.6	2,200.5	7.8	7.8	172.50	-299.3	39.4	301.9	286.4	15.54	19.433 ES		
2,300.0 2,400.0	2,300.0 2,400.0	2,299.6 2,399.2	2,299.1 2,398.3	8.1 8.5	8.1 8.5	170.95 169.32	-299.2 -299.1	47.7 56.4	303.0 304.4	286.8 287.5	16.24 16.94	18.662 17.967		
2,500.0	2,500.0	2,498.8	2,497.5	8.9	8.8	167.70	-299.0	65.2	306.1	288.4	17.65	17.339		
2,600.0	2,600.0	2,598.4	2,596.8	9.2	9.2	166.10	-298.9	74.0	308.0	289.6	18.36	16.772		
2,700.0	2,700.0	2,698.0	2,696.0	9.6	9.5	164.52	-298.8	82.7	310.2	291.1	19.08	16.257		
2,800.0	2,800.0	2,797.7	2,795.2	9.9	9.9	162.97	-298.7	91.5	312.5	292.7	19.79	15.791		
2,900.0	2,900.0	2,897.3	2,894.4	10.3	10.2	161.44	-298.6	100.3	315.1	294.6	20.51	15.367		
3,000.0	3,000.0	2,996.9	2,993.7	10.6	10.6	159.93	-298.5	109.0	318.0	296.7	21.22	14.982		
3,100.0	3,100.0	3,096.5	3,092.9	11.0	11.0	158.46	-298.4	117.8	321.0	299.1	21.94	14.631		
3,200.0	3,200.0	3,196.1	3,192.1	11.4	11.3	157.01	-298.3	126.6	324.3	301.6	22.66	14.311		
3,300.0	3,300.0	3,295.7	3,291.3	11.7	11.7	155.59	-298.2	135.4	327.7	304.3	23.38	14.019		
3,400.0	3,400.0	3,395.3	3,390.6	12.1	12.1	154.20	-298.1	144.1	331.4	307.3	24.09	13.753		
3,500.0	3,500.0	3,494.9	3,489.8	12.4	12.4	152.84	-298.0	152.9	335.2	310.4	24.81	13.510		
3,600.0	3,600.0	3,594.5	3,589.0	12.8	12.8	151.52	-297.9	161.7	339.3	313.7	25.53	13.288		
3,700.0	3,700.0	3,694.2	3,688.2	13.2	13.2	150.22	-297.8	170.4	343.5	317.2	26.25	13.084		
3,800.0	3,800.0	3,793.8	3,787.5	13.5	13.5	148.96	-297.8	179.2	347.9	320.9	26.97	12.898		
3,900.0	3,900.0	3,893.4	3,886.7	13.9	13.9	147.73	-297.7	188.0	352.4	324.7	27.69	12.728		
4,000.0	4,000.0	3,993.0	3,985.9	14.2	14.3	146.53	-297.6	196.7	357.1	328.7	28.41	12.572		
4,100.0	4,100.0	4,092.5	4,085.0	14.6	14.6	-74.87	-297.5	205.5	361.5	332.4	29.11	12.420		
4,139.8	4,139.7	4,132.0	4,124.4	14.7	14.8	-75.55	-297.4	209.0	363.1	333.7	29.38	12.359		
4,200.0	4,199.9	4,191.7	4,183.9	14.9	15.0	-76.67	-297.4	214.2	365.5	335.7	29.79	12.269		
4,300.0	4,299.8	4,290.9	4,282.7	15.2	15.4	-78.49	-297.3	223.0	369.8	339.3	30.47	12.134		
4,400.0	4,399.6	4,390.2	4,381.5	15.6	15.8	-80.27	-297.2	231.7	374.4	343.2	31.16	12.017		
4,500.0	4,499.5	4,489.4	4,480.4	15.9	16.1	-82.00	-297.1	240.4	379.4	347.6	31.84	11.915		
4,600.0	4,599.4	4,588.6	4,579.2	16.2	16.5	-83.69	-297.0	249.2	384.7	352.2	32.53	11.828		
4,700.0	4,699.3	4,687.8	4,678.0	16.6	16.9	-85.34	-296.9	257.9	390.4	357.2	33.21	11.755		
4,800.0	4,799.2	4,787.0	4,776.8	16.9	17.3	-86.93	-296.8	266.6	396.4	362.5	33.90	11.693		
4,900.0	4,899.0	4,886.2	4,875.7	17.2	17.6	-88.48	-296.7	275.4	402.7	368.1	34.59	11.642		

Anticollision Report

Database:

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Output errors are at

Offset TVD Reference:

KB @ 3794.0usft KB @ 3794.0usft

Well MORAN 9 FEDERAL COM 505H

Grid

Survey Calculation Method: Minimum Curvature

Jiiset D	esign:	510 (1411)	00201	WOTOWY	O'I LDLI	U IL OOM 4	.06H - OWB	1 111 0					Offset Site Error:	0.0 us
urvey Pro Refe	gram: 0- rence	MWD Off:	set	Semi M	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assig	gned:		Offset Well Error:	0.0 us
Measured Depth	Depth	Measured Depth	Vertical Depth	Reference		Highside Toolface	+N/-S	+E/-W	Centres	Between Ellipses	Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
5,000.0	4,998.9	4,985.4	4,974.5	17.6	18.0	-89.98	-296.6	284.1	409.2	374.0	35.28	11.600		
5,100.0	5,098.8	5,084.6	5,073.3	17.9	18.4	-91.43	-296.5	292.8	416.1	380.1	35.97	11.568		
5,200.0	5,198.7	5,183.9	5,172.1	18.3	18.8	-92.83	-296.4	301.6	423.2	386.5	36.66	11.544		
5,300.0	5,298.6	5,283.1	5,271.0	18.6	19.1	-94.19	-296.3	310.3	430.5	393.2	37.35	11.526		
5,400.0	5,398.4	5,382.3	5,369.8	18.9	19.5	-95.50	-296.2	319.0	438.1	400.1	38.04	11.516		
5,500.0	5,498.3	5,481.5	5,468.6	19.3	19.9	-96.77	-296.1	327.8	445.9	407.2	38.74	11.511 SF		
5,600.0	5,598.2	5,580.7	5,567.5	19.6	20.3	-97.99	-296.0	336.5	453.9	414.5	39.43	11.512		
5,700.0	5,698.1	5,679.9	5,666.3	20.0	20.6	-99.17	-295.9	345.2	462.2	422.0	40.13	11.517		
5,800.0	5,798.0	5,779.1	5,765.1	20.3	21.0	-100.31	-295.8	354.0	470.6	429.7	40.82	11.527		
5,900.0	5,897.8	5,878.3	5,863.9	20.7	21.4	-101.41	-295.7	362.7	479.2	437.6	41.52	11.540		
6,000.0	5,997.7	5,977.6	5,962.8	21.0	21.8	-102.47	-295.6	371.4	487.9	445.7	42.22	11.557		
6,100.0	6,097.6	6,076.8	6,061.6	21.4	22.1	-103.49	-295.5	380.2	496.8	453.9	42.92	11.576		
6,200.0	6,197.5	6,176.0	6,160.4	21.7	22.5	-104.48	-295.4	388.9	505.9	462.3	43.62	11.599		
6,300.0	6,297.4	6,275.2	6,259.3	22.1	22.9	-105.43	-295.3	397.6	515.1	470.8	44.32	11.624		
6,400.0	6,397.3	6,374.4	6,358.1	22.1	23.3	-105.45	-295.2	406.4	524.5	479.4	45.02	11.650		
6,500.0	6,497.1	6,473.6	6,456.9	22.4	23.6	-100.33	-295.2 -295.1	415.1	533.9	488.2	45.02	11.679		
6,600.0	6,597.0	6,572.8	6,555.7	23.1	24.0	-108.09	-295.0	423.8	543.6	497.1	46.42	11.709		
6,700.0	6,696.9	6,672.1	6,654.6	23.5	24.4	-108.91	-294.9	432.6	553.3	506.2	47.12	11.741		
6,800.0	6,796.8	6,771.3	6,753.4	23.8	24.8	-109.71	-294.8	441.3	563.1	515.3	47.83	11.774		
6,900.0	6,896.7	6,870.5	6,852.2	24.2	25.2	-110.48	-294.7	450.0	573.0	524.5	48.53	11.808		
7,000.0	6,996.5	6,969.7	6,951.1	24.5	25.5	-111.22	-294.6	458.8	583.1	533.8	49.23	11.843		
7,100.0	7,096.4	7,068.9	7,049.9	24.9	25.9	-111.94	-294.5	467.5	593.2	543.3	49.94	11.879		
7,200.0	7,196.3	7,168.1	7,148.7	25.2	26.3	-112.64	-294.4	476.2	603.4	552.8	50.64	11.915		
7,300.0	7,296.2	7,267.3	7,247.5	25.6	26.7	-113.31	-294.3	485.0	613.7	562.4	51.35	11.952		
7,400.0	7,396.1	7,366.5	7,346.4	25.9	27.0	-113.96	-294.2	493.7	624.1	572.1	52.06	11.989		
7,500.0	7,495.9	7,465.8	7,445.2	26.3	27.4	-114.58	-294.1	502.4	634.6	581.8	52.76	12.027		
7,600.0	7,595.8	7,565.0	7,544.0	26.7	27.8	-115.19	-294.0	511.2	645.1	591.7	53.47	12.065		
7,700.0	7,695.7	7,664.2	7,642.8	27.0	28.2	-115.78	-293.9	519.9	655.7	601.6	54.18	12.103		
7,800.0	7,795.6	7,763.4	7,741.7	27.4	28.6	-116.35	-293.8	528.6	666.4	611.5	54.89	12.103		
7,900.0	7,895.5	7,862.6	7,840.5	27.7	28.9	-116.90	-293.7	537.4	677.1	621.5	55.60	12.179		
8,000.0	7,095.4	7,961.8	7,040.3	28.1	29.3	-117.43	-293.7	546.1	687.9	631.6	56.31	12.179		
	0.005.0			00.4	00.7		000.0	E540	600.0	644.6				
8,100.0	8,095.2	8,061.0	8,038.2	28.4	29.7	-117.95	-293.6	554.8	698.8	641.8	57.02	12.256		
8,200.0	8,195.1	8,160.3	8,137.0	28.8	30.1	-118.45	-293.5	563.6	709.7	652.0	57.73	12.294		
8,300.0	8,295.0	8,259.5	8,235.8	29.2	30.5	-118.94	-293.4	572.3	720.7	662.2	58.44	12.332		
8,400.0	8,394.9	8,358.7	8,334.6	29.5	30.8	-119.41	-293.3	581.0	731.7	672.5	59.15	12.370		
8,500.0	8,494.8	8,457.9	8,433.5	29.9	31.2	-119.87	-293.2	589.8	742.7	682.9	59.86	12.407		
8,600.0	8,594.6	8,557.1	8,532.3	30.2	31.6	-120.32	-293.1	598.5	753.8	693.3	60.57	12.445		
8,700.0	8,694.5	8,656.3	8,631.1	30.6	32.0	-120.75	-293.0	607.2	765.0	703.7	61.29	12.482		
8,800.0	8,794.4	8,755.5	8,730.0	30.9	32.4	-121.17	-292.9	616.0	776.2	714.2	62.00	12.519		
8,900.0	8,894.3	8,854.7	8,828.8	31.3	32.7	-121.57	-292.8	624.7	787.4	724.7	62.71	12.556		
9,000.0	8,994.2	8,954.0	8,927.6	31.7	33.1	-121.97	-292.7	633.4	798.7	735.3	63.42	12.593		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

moet B	Jaigii.						OM 605H - C		. •				Offset Site Error:	0.0 usf
urvey Prog		MWD	4	0			0554 14/-111-	0	Di-	Rule Assig	gned:		Offset Well Error:	0.0 usf
Refer deasured Depth (usft)		Offs Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	lajor Axis Offset (usft)	Highside Toolface (°)	Offset Wellb +N/-S (usft)	+E/-W (usft)	Between Centres (usft)	tance Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	-90.46	-2.3	-285.1	285.4					
100.0	100.0	87.0	87.0	0.3	0.2	-90.46	-2.3	-285.1	285.1	284.6	0.48	591.842		
200.0	200.0	187.0	187.0	0.6	0.6	-90.46	-2.3	-285.1	285.1	283.9	1.19	240.277		
300.0	300.0	287.0	287.0	1.0	0.9	-90.46	-2.3	-285.1	285.1	283.2	1.90	149.778		
400.0	400.0	387.0	387.0	1.3	1.3	-90.46	-2.3	-285.1	285.1	282.5	2.62	108.799		
500.0	500.0	487.0	487.0	1.7	1.7	-90.46	-2.3	-285.1	285.1	281.8	3.34	85.426		
600.0	600.0	587.0	587.0	2.0	2.0	-90.46	-2.3	-285.1	285.1	281.0	4.05	70.320		
700.0	700.0	687.0	687.0	2.4	2.4	-90.46	-2.3	-285.1	285.1	280.3	4.77	59.753		
0.008	0.008	787.0	787.0	2.8	2.7	-90.46	-2.3	-285.1	285.1	279.6	5.49	51.948		
900.0	900.0	887.0	887.0	3.1	3.1	-90.46	-2.3	-285.1	285.1	278.9	6.21	45.946		
1,000.0	1,000.0	987.0	987.0	3.5	3.4	-90.46	-2.3	-285.1	285.1	278.2	6.92	41.187		
1,100.0	1,100.0	1,087.0	1,087.0	3.8	3.8	-90.46	-2.3	-285.1	285.1	277.5	7.64	37.321		
1,200.0	1,200.0	1,187.0	1,187.0	4.2	4.2	-90.46	-2.3	-285.1	285.1	276.7	8.36	34.119		
1,300.0	1,300.0	1,287.0	1,287.0	4.6	4.5	-90.46	-2.3	-285.1	285.1	276.0	9.07	31.423		
1,400.0	1,400.0	1,387.0	1,387.0	4.9	4.9	-90.46	-2.3	-285.1	285.1	275.3	9.79	29.122		
1,500.0	1,500.0	1,487.0	1,487.0	5.3	5.2	-90.46	-2.3	-285.1	285.1	274.6	10.51	27.135		
1,600.0	1,600.0	1,587.0	1,587.0	5.6	5.6	-90.46	-2.3	-285.1	285.1	273.9	11.22	25.401		
1,700.0	1,700.0	1,687.0	1,687.0	6.0	6.0	-90.46	-2.3	-285.1	285.1	273.2	11.94	23.876		
1,800.0	1,800.0	1,787.0	1,787.0	6.3	6.3	-90.46	-2.3	-285.1	285.1	272.4	12.66	22.524		
1,900.0	1,900.0	1,887.0	1,887.0	6.7	6.7	-90.46	-2.3	-285.1	285.1	271.7	13.37	21.317		
2,000.0	2,000.0	1,987.0	1,987.0	7.1	7.0	-90.46	-2.3	-285.1	285.1	271.0	14.09	20.232		
2,100.0	2,100.0	2,093.4	2,093.4	7.4	7.4	-90.68	-3.4	-284.0	284.1	269.3	14.81	19.179		
2,200.0	2,200.0	2,200.5	2,200.4	7.8	7.8	-91.49	-7.3	-280.2	280.6	265.1	15.51	18.087		
2,300.0	2,300.0	2,303.5	2,302.9	8.1	8.1	-92.80	-13.4	-274.2	275.0	258.8	16.21	16.968		
2,400.0	2,400.0	2,403.1	2,402.2	8.5	8.4	-94.18	-19.6	-268.1	269.3	252.4	16.90	15.933		
2,500.0	2,500.0	2,502.7	2,501.4	8.9	8.8	-95.63	-25.8	-262.1	263.7	246.1	17.60	14.986		
2,600.0	2,600.0	2,602.3	2,600.7	9.2	9.1	-97.13	-32.0	-256.0	258.3	240.0	18.30	14.117		
2,700.0	2,700.0	2,701.9	2,699.9	9.6	9.5	-98.70	-38.2	-249.9	253.2	234.1	19.00	13.321		
2,800.0	2,800.0	2,801.6	2,799.1	9.9	9.8	-100.33	-44.4	-243.8	248.2	228.4	19.71	12.589		
2,900.0	2,900.0	2,901.2	2,898.4	10.3	10.2	-102.02	-50.6	-237.8	243.4	222.9	20.42	11.917		
3,000.0	3,000.0	3,000.8	2,997.6	10.6	10.5	-103.79	-56.8	-231.7	238.8	217.7	21.14	11.298		
3,100.0	3,100.0	3,100.4	3,096.9	11.0	10.9	-105.61	-63.1	-225.6	234.5	212.6	21.85	10.730		
3,200.0	3,200.0	3,200.0	3,196.1	11.4	11.2	-107.51	-69.3	-219.5	230.4	207.8	22.57	10.208		
3,300.0	3,300.0	3,299.7	3,295.3	11.7	11.6	-109.47	-75.5	-213.5	226.6	203.3	23.29	9.728		
3,400.0	3,400.0	3,399.3	3,394.6	12.1	12.0	-111.49	-81.7	-207.4	223.0	199.0	24.01	9.287		
3,500.0	3,500.0	3,498.9	3,493.8	12.4	12.3	-113.58	-87.9	-201.3	219.8	195.0	24.74	8.884		
3,600.0	3,600.0	3,598.5	3,593.1	12.8	12.7	-115.73	-94.1	-195.3	216.8	191.4	25.47	8.514		
3,700.0	3,700.0	3,698.1	3,692.3	13.2	13.1	-117.93	-100.3	-189.2	214.2	188.0	26.19	8.177		
3,800.0	3,800.0	3,797.8	3,791.5	13.5	13.4	-120.18	-106.5	-183.1	211.9	184.9	26.92	7.870		
3,900.0	3,900.0	3,897.4	3,890.8	13.9	13.8	-122.48	-112.7	-177.0	209.9	182.2	27.65	7.590		
4,000.0	4,000.0	3,997.0	3,990.0	14.2	14.2	-124.82	-118.9	-171.0	208.3	179.9	28.38	7.337		
4,100.0	4,100.0	4,096.6	4,089.3	14.6	14.5	12.88	-125.1	-164.9	205.3	176.2	29.10	7.055		
4,139.8	4,139.7	4,136.2	4,128.7	14.7	14.7	12.02	-127.6	-162.5	203.2	173.9	29.38	6.919		
4,200.0	4,199.9	4,196.2	4,188.4	14.9	14.9	10.71	-131.3	-158.8	199.8	170.0	29.80	6.706		
4,300.0	4,299.8	4,295.7	4,287.6	15.2	15.3	8.42	-137.5	-152.8	194.4	163.9	30.50	6.375		
4,400.0	4,399.6	4,395.2	4,386.8	15.6	15.6	6.01	-143.7	-146.7	189.3	158.1	31.20	6.068		
4,500.0	4,499.5	4,494.8	4,485.9	15.9	16.0	3.47	-149.9	-140.6	184.6	152.7	31.90	5.786		
4,600.0	4,599.4	4,594.3	4,585.1	16.2	16.4	0.81	-156.1	-134.6	180.2	147.6	32.61	5.528		
4,700.0	4,699.3	4,693.9	4,684.3	16.6	16.8	-1.99	-162.3	-128.5	176.3	143.0	33.31	5.293		
4,800.0	4,799.2	4,793.4	4,783.4	16.9	17.1	-4.90	-168.5	-122.4	172.8	138.8	34.01	5.081		
4,900.0	4,899.0	4,893.0	4,882.6	17.2	17.5	-7.92	-174.7	-116.3	169.8	135.1	34.71	4.891		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

							OM 605H - C						Offset Site Error:	0.0 usf
Survey Prog Refer Measured	rence	MWD Off Measured	set Vertical	Semi M Reference	Major Axis Offset	Highside	Offset Wellb	ore Centre	Dist Between	Rule Assignance Between	gned: Minimum	Separation	Offset Well Error: Warning	0.0 us
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)		warning	
5,100.0	5,098.8	5,092.0	5,080.9	17.9	18.3	-14.25	-187.1	-104.2	165.2	129.1	36.10	4.576		
5,200.0	5,198.7	5,191.6	5,180.1	18.3	18.6	-17.52	-193.3	-98.1	163.7	126.9	36.79	4.449		
5,300.0	5,298.6	5,291.1	5,279.2	18.6	19.0	-20.85	-199.5	-92.1	162.7	125.3	37.48	4.342		
5,400.0	5,398.4	5,390.7	5,378.4	18.9	19.4	-24.20	-205.7	-86.0	162.4	124.2	38.17	4.253		
5,500.0	5,498.3	5,491.3	5,478.7	19.3	19.8	-27.45	-211.6	-80.2	162.3	123.4	38.86	4.176		
5,600.0	5,598.2	5,592.7	5,579.8	19.6	20.1	-30.23	-216.4	-75.5	161.7	122.2	39.56	4.088		
5,700.0	5,698.1	5,694.2	5,681.2	20.0	20.5	-32.53	-219.9	-72.1	160.4	120.2	40.25	3.986		
5,800.0	5,798.0	5,795.8	5,782.8	20.3	20.9	-34.37	-222.1	-70.0	158.3	117.3	40.94	3.866		
5,900.0	5,897.8	5,897.5	5,884.5	20.7	21.2	-35.77	-223.0	-69.1	155.1	113.5	41.63	3.726		
6,000.0	5,997.7	5,997.7	5,984.7	21.0	21.6	-36.86	-223.0	-69.1	151.2	108.9	42.30	3.574		
6,100.0	6,097.6	6,097.6	6,084.6	21.4	21.9	-38.00	-223.0	-69.1	147.3	104.3	42.98	3.427		
6,200.0	6,197.5	6,197.5	6,184.5	21.7	22.2	-39.20	-223.0	-69.1	143.5	99.8	43.65	3.287		
6,300.0	6,297.4	6,297.4	6,284.4	22.1	22.6	-40.46	-223.0	-69.1	139.7	95.4	44.33	3.152		
6,400.0	6,397.3	6,397.3	6,384.3	22.4	22.9	-41.79	-223.0	-69.1	136.1	91.1	45.01	3.023		
6,500.0	6,497.1	6,497.1	6,484.1	22.8	23.2	-43.20	-223.0	-69.1	132.5	86.8	45.69	2.899		
6,600.0	6,597.0	6,597.0	6,584.0	23.1	23.6	-44.68	-223.0	-69.1	128.9	82.6	46.37	2.781		
6,700.0	6,696.9	6,696.9	6,683.9	23.5	23.9	-46.25	-223.0	-69.1	125.5	78.5	47.05	2.668		
6,800.0	6,796.8	6,796.8	6,783.8	23.8	24.3	-47.90	-223.0	-69.1	122.2	74.5	47.74	2.560		
6,900.0	6,896.7	6,896.7	6,883.7	24.2	24.6	-49.64	-223.0	-69.1	119.0	70.6	48.42	2.457		
7,000.0	6,996.5	6,996.5	6,983.5	24.5	24.9	-51.47	-223.0	-69.1	115.9	66.8	49.11	2.360		
7,100.0	7,096.4	7,096.4	7,083.4	24.9	25.3	-53.41	-223.0	-69.1	112.9	63.1	49.79	2.268		
7,200.0	7,196.3	7,196.3	7,183.3	25.2	25.6	-55.45	-223.0	-69.1	110.1	59.6	50.48	2.180		
7,300.0	7,296.2	7,296.2	7,283.2	25.6	26.0	-57.59	-223.0	-69.1	107.4	56.2	51.17	2.098		
7,400.0	7,396.1	7,396.1	7,383.1	25.9	26.3	-59.84	-223.0	-69.1	104.8	53.0	51.86	2.022		
7,500.0	7,495.9	7,496.0	7,482.9	26.3	26.6	-62.19	-223.0	-69.1	102.5	49.9	52.55	1.950		
7,600.0	7,595.8	7,595.8	7,582.8	26.7	27.0	-64.66	-223.0	-69.1	100.3	47.0	53.24	1.884		
7,700.0	7,695.7	7,695.7	7,682.7	27.0	27.3	-67.23	-223.0	-69.1	98.3	44.4	53.94	1.822		
7,800.0	7,795.6	7,795.6	7,782.6	27.4	27.7	-69.89	-223.0	-69.1	96.5	41.9	54.64	1.766		
7,900.0	7,895.5	7,895.5	7,882.5	27.7	28.0	-72.66	-223.0	-69.1	94.9	39.6	55.34	1.716		
8,000.0	7,995.4	7,995.4	7,982.4	28.1	28.4	-75.50	-223.0	-69.1	93.6	37.6	56.04	1.670		
8,100.0	8,095.2	8,095.2	8,082.2	28.4	28.7	-78.43	-223.0	-69.1	92.5	35.8	56.74	1.630		
8,200.0	8,195.1	8,195.1	8,182.1	28.8	29.1	-81.41	-223.0	-69.1	91.6	34.2	57.44	1.595		
8,300.0	8,295.0	8,295.0	8,282.0	29.2	29.4	-84.44	-223.0	-69.1	91.0	32.9	58.15	1.566		
8,400.0	8,394.9	8,394.9	8,381.9	29.5	29.7	-87.51	-223.0	-69.1	90.7	31.8	58.86	1.541		
8,480.9	8,475.7	8,475.7	8,462.7	29.8	30.0	-90.00	-223.0	-69.1	90.6	31.2	59.44	1.525 CC		
8,500.0	8,494.8	8,494.8	8,481.8	29.9	30.1	-90.59	-223.0	-69.1	90.6	31.1	59.57	1.521		
8,600.0	8,594.6	8,594.6	8,581.6	30.2	30.4	-93.66	-223.0	-69.1	90.8	30.5	60.28	1.506		
8,700.0	8,694.5	8,694.5	8,681.5	30.6	30.8	-96.72	-223.0	-69.1	91.2	30.2	61.00	1.496 Lev	rel 3	
8,800.0	8,794.4	8,794.4	8,781.4	30.9	31.1	-99.73	-223.0	-69.1	91.9	30.2	61.71	1.490 Lev	rel 3, ES	
8,900.0	8,894.3	8,894.3	8,881.3	31.3	31.5	-102.70	-223.0	-69.1	92.9	30.5	62.42	1.488 Lev	el 3, SF	
9,000.0	8,994.2	8,994.2	8,981.2	31.7	31.8	-105.59	-223.0	-69.1	94.1	30.9	63.14	1.490 Lev	vel 3	
9,100.0	9,094.0	9,094.0	9,081.0	32.0	32.2	-108.41	-223.0	-69.1	95.5	31.7	63.85	1.496 Lev	vel 3	
9,200.0	9,193.9	9,193.9	9,180.9	32.4	32.5	-111.13	-223.0	-69.1	97.2	32.6	64.57	1.505		
9,300.0	9,293.8	9,293.8	9,280.8	32.7	32.9	-113.76	-223.0	-69.1	99.0	33.7	65.28	1.517		
9,400.0	9,393.7	9,393.7	9,380.7	33.1	33.2	-116.29	-223.0	-69.1	101.1	35.1	66.00	1.532		
9,500.0	9,493.6	9,493.6	9,480.6	33.5	33.6	-118.72	-223.0	-69.1	103.4	36.6	66.71	1.549		
9,600.0	9,593.4	9,593.5	9,580.4	33.8	33.9	-121.03	-223.0	-69.1	105.8	38.4	67.42	1.569		
9,700.0	9,693.3	9,693.3	9,680.3	34.2	34.3	-123.24	-223.0	-69.1	108.4	40.2	68.14	1.591		
9,800.0	9,793.2	9,793.2	9,780.2	34.5	34.6	-125.34	-223.0	-69.1	111.1	42.3	68.85	1.614		
9,900.0	9,893.1	9,893.1	9,880.1	34.9	35.0	-127.34	-223.0	-69.1	114.0	44.5	69.56	1.639		
10,000.0	9,993.0	9,993.0	9,980.0	35.3	35.3	-129.24	-223.0	-69.1	117.0	46.8	70.27	1.666		
	10,075.5	10,075.5	10,062.5	35.6	35.6	-130.73	-223.0	-69.1	119.6	48.8	70.86	1.688		

Anticollision Report

Database:

Company: **NEW MEXICO** Project: (SP) LEA

MORAN PROJECT Reference Site:

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference:

Output errors are at

Offset TVD Reference:

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Well MORAN 9 FEDERAL COM 505H

Oliset D	esigii.						OM 605H - C						Offset Site Error:	0.0 usf
urvey Pro		MWD Off		Cami I	Maior Axis		Offset Wellb	ana Camtua	Die	Rule Assig	gned:		Offset Well Error:	0.0 usf
Measured Depth	Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S (usft)	+E/-W (usft)	Between Centres	Ellipses	Minimum Separation	Separation Factor	Warning	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)			(usft) 120.2	(usft)	(usft)	4.000		
10,100.0	10,092.8	10,092.8	10,079.8	35.6	35.7	-114.00	-223.0	-69.1		49.2	70.98	1.693		
10,125.0	10,117.7	10,117.7	10,104.7	35.7	35.7 35.8	-105.91	-223.0	-69.1 -69.1	121.0	49.9 50.7	71.16	1.701		
10,150.0	10,142.4	10,142.4	10,129.4	35.8		-103.51	-223.0		122.0		71.34	1.710		
10,175.0	10,166.9	10,166.9	10,153.9	35.9	35.9	-103.42	-223.0	-69.1	123.2	51.7	71.52	1.723		
10,200.0	10,191.0	10,191.0	10,178.0	36.0	36.0	-104.59	-223.0	-69.1	124.8	53.1	71.70	1.741		
10,225.0	10,214.8	10,214.8	10,201.8	36.1	36.1	-106.57	-223.0	-69.1	127.0	55.1	71.88	1.766		
10,250.0	10,238.2	10,238.2	10,225.2	36.2	36.2	-109.07	-223.0	-69.1	129.8	57.8	72.06	1.802		
10,275.0	10,261.1	10,261.1	10,248.1	36.3	36.3	-111.89	-223.0	-69.1	133.7	61.4	72.23	1.851		
10,300.0	10,283.4	10,283.4	10,270.4	36.4	36.3	-114.86	-223.0	-69.1	138.6	66.2	72.39	1.914		
10,325.0	10,305.1	10,305.1	10,292.1	36.5	36.4	-117.86	-223.0	-69.1	144.7	72.2	72.55	1.995		
10,350.0	10,326.1	10,326.1	10,313.1	36.6	36.5	-120.75	-223.0	-69.1	152.2	79.5	72.69	2.094		
10,375.0	10,346.4	10,346.4	10,333.4	36.7	36.6	-123.45	-223.0	-69.1	161.2	88.3	72.83	2.213		
10,400.0	10,365.9	10,365.9	10,352.9	36.8	36.6	-125.90	-223.0	-69.1	171.6	98.6	72.97	2.351		
10,425.0	10,384.5	10,384.5	10,371.5	36.9	36.7	-128.04	-223.0	-69.1	183.4	110.3	73.09	2.509		
10,450.0	10,402.3	10,402.3	10,389.3	37.0	36.7	-129.85	-223.0	-69.1	196.6	123.4	73.20	2.686		
10,475.0	10,419.1	10,419.1	10,406.1	37.1	36.8	-131.31	-223.0	-69.1	211.2	137.9	73.31	2.881		
10,500.0	10,434.9	10,434.9	10,421.9	37.2	36.9	-132.40	-223.0	-69.1	227.0	153.6	73.40	3.093		
10,525.0	10,449.7	10,449.7	10,436.7	37.3	36.9	-133.11	-223.0	-69.1	244.0	170.5	73.49	3.320		
10,550.0	10,463.4	10,463.4	10,450.4	37.4	37.0	-133.41	-223.0	-69.1	262.0	188.5	73.57	3.562		
10,575.0	10,476.0	10,476.0	10,463.0	37.6	37.0	-133.27	-223.0	-69.1	281.1	207.5	73.64	3.817		
10,600.0	10,487.5	10,487.5	10,474.5	37.7	37.0	-132.64	-223.0	-69.1	301.0	227.3	73.70	4.085		
10,625.0	10,497.8	10,497.8	10,484.8	37.8	37.1	-131.47	-223.0	-69.1	321.8	248.0	73.76	4.363		
10,650.0	10,506.8	10,506.8	10,493.8	37.9	37.1	-129.67	-223.0	-69.1	343.2	269.4	73.81	4.651		
10,675.0	10,514.7	10,514.7	10,501.7	38.0	37.1	-127.10	-223.0	-69.1	365.3	291.5	73.84	4.947		
10,700.0	10,521.3	10,521.3	10,508.3	38.1	37.2	-123.60	-223.0	-69.1	387.9	314.1	73.88	5.251		
10,725.0	10,526.6	10,526.6	10,513.6	38.3	37.2	-118.97	-223.0	-69.1	411.0	337.1	73.90	5.562		
10,750.0	10,530.6	10,530.6	10,517.6	38.4	37.2	-112.96	-223.0	-69.1	434.4	360.5	73.92	5.877		
10,750.0	10,530.6	10,530.6	10,517.6	38.5	37.2 37.2	-112.96	-223.0 -223.0	-69.1 -69.1	454.4 458.2	384.2	73.92	6.197		
	-	10,533.3	10,520.3		37.2 37.2		-223.0 -223.0		482.1			6.521		
10,800.0	10,534.8			38.6 38.7	37.2 37.2	-96.16	-223.0 -223.0	-69.1 -69.1	482.1	408.2 422.5	73.93 73.93	6.714		
10,814.9 10,900.0	10,535.0 10,535.0	10,535.0 10,535.0	10,522.0 10,522.0	38.7 39.1	37.2 37.2	-90.00 -90.00	-223.0 -223.0	-69.1 -69.1	496.4 578.8	422.5 504.9	73.93 73.92	7.830		
10,800.0	10,000.0	10,000.0	10,322.0	39.1	31.2	-90.00	-223.0	-09.1	3/0.0	304.9	13.82	1.000		
11,000.0	10,535.0	10,535.0	10,522.0	39.7	37.2	-90.00	-223.0	-69.1	676.5	602.6	73.92	9.151		
11,100.0	10,535.0	10,535.0	10,522.0	40.4	37.2	-90.00	-223.0	-69.1	774.8	700.8	73.93	10.480		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method: Output errors are at

Database: Offset TVD Reference: Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

				.0020100			OM 704H - C		. •				Offset Site Error:	0.0 us
urvey Prog Refer	ence		set	Semi N	Major Axis		Offset Wellb	ore Centre		Rule Assi			Offset Well Error:	0.0 us
leasured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
0.0	0.0	0.0	0.0	0.0	0.0	-90.47	-2.6	-320.1	320.4	, ,	, ,			
100.0	100.0	86.0	86.0	0.3	0.2	-90.47	-2.6	-320.1	320.1	319.6	0.48	668.161		
200.0	200.0	186.0	186.0	0.6	0.6	-90.47	-2.6	-320.1	320.1	318.9	1.18	270.585		
300.0	300.0	286.0	286.0	1.0	0.9	-90.47	-2.6	-320.1	320.1	318.2	1.90	168.478		
400.0	400.0	386.0	386.0	1.3	1.3	-90.47	-2.6	-320.1	320.1	317.5	2.62	122.319		
500.0	500.0	486.0	486.0	1.7	1.6	-90.47	-2.6	-320.1	320.1	316.8	3.33	96.014		
600.0	600.0	586.0	586.0	2.0	2.0	-90.47	-2.6	-320.1	320.1	316.0	4.05	79.020		
700.0	700.0	686.0	686.0	2.4	2.4	-90.47	-2.6	-320.1	320.1	315.3	4.77	67.138		
800.0	800.0	786.0	786.0	2.8	2.7	-90.47	-2.6	-320.1	320.1	314.6	5.48	58.362		
900.0	900.0	886.0	886.0	3.1	3.1	-90.47	-2.6	-320.1	320.1	313.9	6.20	51.615		
1,000.0	1,000.0	986.0	986.0	3.5	3.4	-90.47	-2.6	-320.1	320.1	313.2	6.92	46.266		
1,100.0	1,100.0	1,086.0	1,086.0	3.8	3.8	-90.47	-2.6	-320.1	320.1	312.5	7.64	41.922		
1,200.0	1,200.0	1,186.0	1,186.0	4.2	4.2	-90.47	-2.6	-320.1	320.1	311.7	8.35	38.323		
1,300.0	1,300.0	1,286.0	1,286.0	4.6	4.5	-90.47	-2.6	-320.1	320.1	311.0	9.07	35.294		
1,400.0	1,400.0	1,386.0	1,386.0	4.9	4.9	-90.47	-2.6	-320.1	320.1	310.3	9.79	32.708		
1,500.0	1,500.0	1,486.0	1,486.0	5.3	5.2	-90.47	-2.6	-320.1	320.1	309.6	10.50	30.475		
1,600.0	1,600.0	1,586.0	1,586.0	5.6	5.6	-90.47	-2.6	-320.1	320.1	308.9	11.22	28.528		
1,700.0	1,700.0	1,686.0	1,686.0	6.0	6.0	-90.47	-2.6	-320.1	320.1	308.2	11.94	26.815		
1,800.0	1,800.0	1,786.0	1,786.0	6.3	6.3	-90.47	-2.6	-320.1	320.1	307.4	12.65	25.296		
1,900.0	1,900.0	1,886.0	1,886.0	6.7	6.7	-90.47	-2.6	-320.1	320.1	306.7	13.37	23.939		
2,000.0	2,000.0	1,986.0	1,986.0	7.1	7.0	-90.47	-2.6	-320.1	320.1	306.0	14.09	22.721 CC	, ES	
2,100.0	2,100.0	2,077.9	2,077.9	7.4	7.3	-90.54	-3.0	-321.1	321.2	306.4	14.76	21.757		
2,200.0	2,200.0	2,168.3	2,168.2	7.8	7.7	-90.79	-4.5	-324.7	325.2	309.8	15.41	21.100		
2,300.0	2,300.0	2,258.4	2,258.1	8.1	8.0	-91.22	-7.0	-330.8	332.1	316.1	16.04	20.698		
2,400.0	2,400.0	2,348.0	2,347.2	8.5	8.3	-91.80	-10.7	-339.6	342.0	325.3	16.66	20.521		
2,500.0	2,500.0	2,437.0	2,435.3	8.9	8.6	-92.50	-15.3	-350.8	354.8	337.5	17.27	20.546		
2,600.0	2,600.0	2,528.1	2,525.1	9.2	8.9	-93.31	-21.1	-364.8	370.5	352.6	17.89	20.710		
2,700.0	2,700.0	2,626.6	2,622.1	9.6	9.3	-94.15	-27.6	-380.6	386.9	368.3	18.58	20.826		
2,800.0	2,800.0	2,725.1	2,719.1	9.9	9.6	-94.92	-34.1	-396.4	403.5	384.2	19.27	20.934		
2,900.0	2,900.0	2,823.5	2,816.1	10.3	10.0	-95.63	-40.7	-412.2	420.1	400.1	19.97	21.035		
3,000.0	3,000.0	2,922.0	2,913.1	10.6	10.4	-96.29	-47.2	-428.0	436.8	416.1	20.67	21.129		
3,100.0	3,100.0	3,020.5	3,010.1	11.0	10.8	-96.90	-53.7	-443.8	453.5	432.1	21.37	21.218		
3,200.0	3,200.0	3,119.0	3,107.0	11.4	11.2	-97.47	-60.3	-459.6	470.3	448.2	22.08	21.301		
3,300.0	3,300.0	3,217.5	3,204.0	11.7	11.6	-98.00	-66.8	-475.4	487.1	464.3	22.78	21.380		
3,400.0	3,400.0	3,315.9	3,301.0	12.1	12.0	-98.49	-73.3	-491.3	503.9	480.4	23.49	21.454		
3,500.0	3,500.0	3,414.4	3,398.0	12.4	12.4	-98.95	-79.9	-507.1	520.8	496.6	24.20	21.524		
3,600.0	3,600.0	3,512.9	3,495.0	12.8	12.8	-99.38	-86.4	-522.9	537.7	512.8	24.91	21.590		
3,700.0	3,700.0	3,611.4	3,592.0	13.2	13.2	-99.79	-92.9	-538.7	554.7	529.0	25.62	21.653		
3,800.0	3,800.0	3,709.9	3,688.9	13.5	13.6	-100.17	-99.4	-554.5	571.6	545.3	26.33	21.713		
3,900.0	3,900.0	3,808.3	3,785.9	13.9	14.0	-100.53	-106.0	-570.3	588.6	561.6	27.04	21.769		
4,000.0	4,000.0	3,906.8	3,882.9	14.2	14.4	-100.87	-112.5	-586.1	605.6	577.9	27.75	21.823		
4,100.0	4,100.0	4,005.6	3,980.1	14.6	14.9	38.66	-119.1	-601.9	621.3	592.9	28.45	21.838		
4,139.8	4,139.7	4,044.9	4,018.9	14.7	15.0	38.56	-121.7	-608.3	626.8	598.1	28.72	21.822		
4,200.0	4,199.9	4,104.6	4,077.7	14.9	15.3	38.55	-125.6	-617.8	634.8	605.7	29.14	21.786		
4,300.0	4,299.8	4,203.7	4,175.3	15.2	15.7	38.52	-132.2	-633.7	648.1	618.2	29.83	21.726		
4,400.0	4,399.6	4,302.9	4,272.9	15.6	16.1	38.49	-138.8	-649.6	661.3	630.8	30.52	21.667		
4,500.0	4,499.5	4,402.0	4,370.5	15.9	16.5	38.46	-145.3	-665.6	674.6	643.4	31.22	21.610		
4,600.0	4,599.4	4,501.1	4,468.2	16.2	17.0	38.44	-151.9	-681.5	687.9	656.0	31.92	21.554		
4,700.0	4,699.3	4,600.2	4,565.8	16.6	17.4	38.41	-158.5	-697.4	701.2	668.5	32.61	21.498		
4,700.0	4,799.2	4,600.2	4,663.4	16.9	17.4	38.39	-165.1	-713.3	701.2	681.1	33.32	21.496		
4,900.0	4,899.0	4,798.4	4,761.0	17.2	18.3	38.37	-171.6	-729.2	714.4	693.7	34.02	21.391		
5,000.0	4,998.9	4,897.6	4,858.6	17.6	18.7	38.34	-178.2	-745.1	741.0	706.3	34.72	21.340		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at

Database: Offset TVD Reference: Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft

KB @ 3794.0usft Grid

Minimum Curvature

	esign:XX												Offset Site Error:	0.0 usf
urvey Pro Refe	ogram: 0- erence	MWD Off	set	Semi N	Major Axis		Offset Wellb	ore Centre	Dis	Rule Assig	gned:		Offset Well Error:	0.0 us
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)		Warning	
5,100.0	5,098.8	4,996.7	4,956.2	17.9	19.1	38.32	-184.8	-761.0	754.2	718.8	35.43	21.289		
5,200.0	5,198.7	5,095.8	5,053.8	18.3	19.6	38.30	-191.3	-776.9	767.5	731.4	36.14	21.240		
5,300.0	5,298.6	5,208.5	5,165.0	18.6	20.1	38.29	-198.5	-794.2	780.0	743.1	36.95	21.109		
5,400.0	5,398.4	5,323.4	5,278.7	18.9	20.5	38.32	-204.9	-809.7	790.6	752.8	37.77	20.930		
5,500.0	5,498.3	5,438.8	5,393.1	19.3	21.0	38.37	-210.5	-823.2	799.2	760.6	38.58	20.714		
6,400.0	6,397.3	6,430.5	6,383.3	22.4	24.5	40.00	-225.3	-859.1	798.0	752.8	45.18	17.662		
6,500.0	6,497.1	6,530.3	6,483.1	22.8	24.8	40.22	-225.3	-859.1	794.3	748.4	45.87	17.314		
6,600.0	6,597.0	6,630.2	6,583.0	23.1	25.1	40.45	-225.3	-859.1	790.6	744.0	46.57	16.977		
6,700.0	6,696.9	6,730.1	6,682.9	23.5	25.4	40.68	-225.3	-859.1	786.9	739.6	47.26	16.650		
6,800.0	6,796.8	6,830.0	6,782.8	23.8	25.8	40.91	-225.3	-859.1	783.2	735.2	47.95	16.332		
6,900.0	6,896.7	6,929.9	6,882.7	24.2	26.1	41.15	-225.3	-859.1	779.5	730.8	48.65	16.023		
7,000.0	6,996.5	7,029.7	6,982.5	24.5	26.4	41.39	-225.3	-859.1	775.8	726.5	49.34	15.723		
7,100.0	7,096.4	7,129.6	7,082.4	24.9	26.7	41.63	-225.3	-859.1	772.2	722.1	50.04	15.431		
7,200.0	7,196.3	7,229.5	7,182.3	25.2	27.1	41.87	-225.3	-859.1	768.5	717.8	50.74	15.147		
7,300.0	7,296.2	7,329.4	7,282.2	25.6	27.4	42.11	-225.3	-859.1	764.9	713.5	51.43	14.871		
7,400.0	7,396.1	7,429.3	7,382.1	25.9	27.7	42.36	-225.3	-859.1	761.3	709.2	52.13	14.603		
7,500.0	7,495.9	7,529.1	7,481.9	26.3	28.0	42.60	-225.3	-859.1	757.7	704.9	52.83	14.341		
7,600.0	7,595.8	7,629.0	7,581.8	26.7	28.4	42.86	-225.3	-859.1	754.1	700.6	53.53	14.086		
7,700.0	7,695.7	7,728.9	7,681.7	27.0	28.7	43.11	-225.3	-859.1	750.5	696.3	54.23	13.839		
7,800.0	7,795.6	7,828.8	7,781.6	27.4	29.0	43.36	-225.3	-859.1	747.0	692.0	54.94	13.597		
7,900.0	7,895.5	7,928.7	7,881.5	27.7	29.4	43.62	-225.3	-859.1	743.4	687.8	55.64	13.362		
8,000.0	7,995.4	8,028.6	7,981.4	28.1	29.7	43.88	-225.3	-859.1	739.9	683.6	56.34	13.132		
8,100.0	8,095.2	8,128.4	8,081.2	28.4	30.0	44.15	-225.3	-859.1	736.4	679.4	57.05	12.909		
8,200.0	8,195.1	8,228.3	8,181.1	28.8	30.4	44.41	-225.3	-859.1	732.9	675.2	57.75	12.691		
8,300.0	8,295.0	8,328.2	8,281.0	29.2	30.7	44.68	-225.3	-859.1	729.4	671.0	58.46	12.478		
8,400.0	8,394.9	8,428.1	8,380.9	29.5	31.0	44.95	-225.3	-859.1	726.0	666.8	59.16	12.271		
8,500.0	8,494.8	8,528.0	8,480.8	29.9	31.4	45.22	-225.3	-859.1	722.5	662.7	59.87	12.068		
8,600.0	8,594.6	8,627.8	8,580.6	30.2	31.7	45.50	-225.3	-859.1	719.1	658.5	60.58	11.871		
8,700.0	8,694.5	8,727.7	8,680.5	30.6	32.0	45.78	-225.3	-859.1	715.7	654.4	61.28	11.678		
8,800.0	8,794.4	8,827.6	8,780.4	30.9	32.4	46.06	-225.3	-859.1	712.3	650.3	61.99	11.490		
8,900.0	8,894.3	8,927.5	8,880.3	31.3	32.7	46.34	-225.3	-859.1	708.9	646.2	62.70	11.306		
9,000.0	8,994.2	9,027.4	8,980.2	31.7	33.1	46.63	-225.3	-859.1	705.5	642.1	63.41	11.127		
9,100.0	9,094.0	9,127.2	9,080.0	32.0	33.4	46.92	-225.3	-859.1	702.2	638.1	64.12	10.952		
9,200.0	9,193.9	9,227.1	9,179.9	32.4	33.7	47.21	-225.3	-859.1	698.9	634.0	64.83	10.781		
9,300.0	9,293.8	9,327.0	9,279.8	32.7	34.1	47.50	-225.3	-859.1	695.6	630.0	65.54	10.613		
9,400.0	9,393.7	9,426.9	9,379.7	33.1	34.4	47.80	-225.3	-859.1	692.3	626.0	66.25	10.450		
9,500.0	9,493.6	9,526.8	9,479.6	33.5	34.7	48.10	-225.3	-859.1	689.0	622.1	66.96	10.290		
9,600.0	9,593.4	9,626.6	9,579.4	33.8	35.1	48.40	-225.3	-859.1	685.8	618.1	67.67	10.134		
9,700.0	9,693.3	9,726.5	9,679.3	34.2	35.4	48.71	-225.3	-859.1	682.5	614.1	68.38	9.981		
9,800.0	9,793.2	9,826.4	9,779.2	34.5	35.8	49.02	-225.3	-859.1	679.3	610.2	69.10	9.831		
9,900.0	9,893.1	9,926.3	9,879.1	34.9	36.1	49.33	-225.3	-859.1	676.1	606.3	69.81	9.685		
10,000.0	9,993.0	10,026.2	9,979.0	35.3	36.5	49.65	-225.3	-859.1	673.0	602.4	70.52	9.542		
10,082.6	10,075.5	10,108.7	10,061.5	35.6	36.7	49.91	-225.3	-859.1	670.4	599.2	71.11	9.426		
10,100.0	10,092.8	10,126.0	10,078.8	35.6	36.8	67.17	-225.3	-859.1	669.8	598.6	71.24	9.402		
10,125.0	10,117.7	10,150.9	10,103.7	35.7	36.9	76.63	-225.3	-859.1	669.0	597.6	71.42	9.368		
10,150.0	10,142.4	10,175.6	10,128.4	35.8	37.0	81.07	-225.3	-859.1	668.3	596.7	71.61	9.333		
10,175.0	10,166.9	10,200.1	10,152.9	35.9	37.0	83.81	-225.3	-859.1	667.6	595.8	71.80	9.299		
10,200.0	10,191.0	10,224.2	10,177.0	36.0	37.1	85.83	-225.3	-859.1	667.0	595.1	71.99	9.266		
10,225.0	10,214.8	10,248.0	10,200.8	36.1	37.2	87.48	-225.3	-859.1	666.6	594.4	72.18	9.235		
10,250.0	10,238.2	10,271.4	10,224.2	36.2	37.3	88.93	-225.3	-859.1	666.3	593.9	72.38	9.206		
10,269.8	10,256.3	10,289.5	10,242.3	36.3	37.4	90.00	-225.3	-859.1	666.2	593.7	72.53	9.185		
10,275.0	10,261.1	10,294.3	10,247.1	36.3	37.4	90.27	-225.3	-859.1	666.2	593.6	72.58	9.180		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:**

Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

Offset D	esign: ^{XXI}	MORAN 9	FED PR	OJECTss	- MORA	N 9 FED C	COM 704H - C)WB - PW	P0				Offset Site Error:	0.0 usft
Survey Pro	gram: 0-	MWD Off	set	Semi M	Maior Axis		Offset Wellb	ore Centre	Dis	Rule Assig	ned:		Offset Well Error:	0.0 usft
Measured Depth (usft)		Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
10,300.0	10,283.4	10,316.6	10,269.4	36.4	37.4	91.53	-225.3	-859.1	666.4	593.6	72.78	9.157		
10,325.0	10,305.1	10,338.3	10,291.1	36.5	37.5	92.73	-225.3	-859.1	667.0	594.0	72.98	9.139		
10,350.0	10,326.1	10,359.3	10,312.1	36.6	37.6	93.86	-225.3	-859.1	667.9	594.7	73.18	9.126		
10,375.0	10,346.4	10,379.6	10,332.4	36.7	37.7	94.94	-225.3	-859.1	669.3	595.9	73.39	9.119 SF		
10,400.0	10,365.9	10,399.1	10,351.9	36.8	37.7	95.94	-225.3	-859.1	671.2	597.6	73.60	9.120		
10,425.0	10,384.5	10,417.7	10,370.5	36.9	37.8	96.86	-225.3	-859.1	673.7	599.9	73.80	9.128		
10,450.0	10,402.3	10,435.5	10,388.3	37.0	37.9	97.69	-225.3	-859.1	676.8	602.8	74.01	9.144		
10,475.0	10,419.1	10,452.3	10,405.1	37.1	37.9	98.40	-225.3	-859.1	680.6	606.4	74.22	9.170		
10,500.0	10,434.9	10,468.1	10,420.9	37.2	38.0	98.99	-225.3	-859.1	685.2	610.7	74.42	9.206		
10,525.0	10,449.7	10,482.9	10,435.7	37.3	38.0	99.44	-225.3	-859.1	690.5	615.9	74.62	9.253		
10,550.0	10,463.4	10,496.6	10,449.4	37.4	38.1	99.73	-225.3	-859.1	696.7	621.8	74.82	9.311		
10,575.0	10,476.0	10,509.2	10,462.0	37.6	38.1	99.85	-225.3	-859.1	703.7	628.6	75.02	9.380		
10,600.0	10,487.5	10,520.7	10,473.5	37.7	38.1	99.78	-225.3	-859.1	711.5	636.3	75.20	9.461		
10,625.0	10,497.8	10,531.0	10,483.8	37.8	38.2	99.52	-225.3	-859.1	720.3	644.9	75.38	9.554		
10,650.0	10,506.8	10,540.0	10,492.8	37.9	38.2	99.05	-225.3	-859.1	729.9	654.3	75.56	9.660		
10,675.0	10,514.7	10,547.9	10,500.7	38.0	38.2	98.36	-225.3	-859.1	740.3	664.6	75.72	9.777		
10,700.0	10,521.3	10,554.5	10,507.3	38.1	38.3	97.44	-225.3	-859.1	751.6	675.7	75.87	9.906		
10,725.0	10,526.6	10,559.8	10,512.6	38.3	38.3	96.27	-225.3	-859.1	763.6	687.6	76.01	10.046		
10,750.0	10,530.6	10,563.8	10,516.6	38.4	38.3	94.86	-225.3	-859.1	776.4	700.3	76.15	10.197		
10,775.0	10,533.3	10,566.5	10,519.3	38.5	38.3	93.19	-225.3	-859.1	789.9	713.7	76.26	10.358		

Anticollision Report

Company: NEW MEXICO Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference: Survey Calculation Method:

Output errors are at Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft

KB @ 3794.0usft Grid

Minimum Curvature

Part				FED PR	OJECISS	- MORA	N 9 FED (COM 706H - O	MR - HM	PU				Offset Site Error:	0.0 us
Page	Refe	rence	Off		Semi M			Offset Wellbo	ore Centre		tance				0.0 us
1000	Depth	Depth	Depth	Depth			Toolface			Centres	Ellipses	Separation		Warning	
1000 1000 1880 1880 2880 0.6 60.6 90.64 2.0 2.05.11 2.011 2.048 1.19 10.152 1000 2000 2880 2880 2.0 60.6 90.64 2.0 2.05.11 2.011 2.048 1.19 10.152 1000 3000 3880 3880 3880 1.3 3.0 90.64 2.0 2.011 2.011 2.012 2.475 2.02 1000 5000 4880 8880 2.0 2.0 2.046 2.0 2.051 2.051 2.051 2.048 1.19 10.152 1000 5000 5880 8880 2.0 2.0 2.046 2.0 2.051 2.051 2.051 2.051 2.051 1000 5000 7880 7880 8880 2.0 2.0 2.046 2.0 2.051 2.051 2.051 2.051 2.051 1000 5000 7880 7880 8880 2.1 2.1 2.046 2.0 2.051 2.051 2.051 2.051 2.051 1000 5000 8880 8880 3.1 3.1 90.64 2.0 2.051 2.051 2.051 2.051 2.051 1000 5000 8880 8880 3.1 3.1 90.64 2.0 2.051 2.051 2.051 2.052 4.052 1000 5000 8880 8880 3.5 3.4 90.64 2.0 2.051 2.051 2.051 2.052 4.052 1000 1.000 1.080 1.0880 3.5 3.8 3.8 90.46 2.0 2.051 2.051 2.051 2.052 4.052 1.000 1.000 1.080 1.0880 4.6 4.5 90.046 2.0 2.051 2.051 2.051 2.052 4.052 1.000 1.000 1.0880 1.0880 4.6 4.5 90.046 2.0 2.051 2.051 2.051 2.053 2.059 1.000 1.000 1.0880 1.0880 4.6 4.5 90.46 2.0 2.051 2.051 2.051 2.053 2.059 2.059 1.000 1.000 1.0880 1.0880 4.6 4.5 90.46 2.0 2.051 2.051 2.051 2.053 2.059 2.059 1.000 1.000 1.0880 1.0880 4.6 4.5 90.46 2.0 2.051 2.051 2.051 2.053 2.059 2.05		, ,									(usit)	(usit)			
											240.6	0.48	516 360		
1,000 1,000 2,00															
March Marc															
5000 5000 5880 5880 5880 20 20 20 -0046 -2.0 -2501 2501 2468 3.34 74.801															
1,000 0,00															
1,000 700,															
1,000 1,00															
1,000															
1,000 1,000 988															
1,100.0															
1,000	1,000.0	1,000.0	988.0	988.0	3.5	3.4	-90.46	-2.0	-250.1	250.1	243.2	6.93	36.113		
1,000 1,000 1,288.0 1,288.0 4.6 4.5 90.46 2.0 250.1 250.1 241.0 90.8 27.556 1,500 1,888.0 1,888.0 5.3 5.2 90.46 2.0 250.1 250.1 250.1 239.8 15.51 1,500 1,500 1,888.0 1,688.0 5.6 5.6 90.46 2.0 250.1 250.1 250.1 238.9 11.23 1,700 1,700 1,700 1,888.0 1,688.0 6.0 6.0 90.46 2.0 250.1 250.1 238.9 11.23 22.277 1,500 1,500 1,588.0 1,588.0 1,588.0 6.8 6.0 6.0 90.46 2.0 250.1 250.1 238.2 11.94 2940 1,500 1,500 1,588.0 1,588.0 6.8 6.3 6.3 90.46 2.0 250.1 250.1 231.4 12.66 19.74 1,500 1,500 1,588.0 1,588.0 7.1 7.0 90.46 2.0 250.1 250.1 231.4 12.66 19.74 1,500 1,500 1,588.0 1,588.0 7.1 7.0 90.46 2.0 250.1 250.1 231.4 12.66 19.74 2,000 2,000 1,588.0 1,988.0 7.1 7.0 90.46 2.0 250.1 250.1 230.1 14.10 17.744 2,000 2,000 2,000 2,000 1,000 7.8 7.8 7.8 90.54 2.3 248.5 230.1 230.0 14.10 17.744 2,000 2,000 2,205.1 2,205.0 7.8 7.8 7.8 90.84 3.6 242.9 243.5 220.0 15.53 15.686 2,000 2,000 2,205.1 2,205.0 7.8 7.8 90.84 3.6 242.9 243.5 220.0 15.53 15.686 2,000 2,000 2,205.1 2,205.0 7.8 7.8 90.84 3.6 242.9 243.5 220.0 15.53 15.686 2,000 2,000 2,205.1 2,205.5 2,325.5 8.9 8.9 9.9 9.9 9.9 9.9 222.4 205.5 16.77 17.77 17.78 2,500 2,500 2,200		1,100.0		1,088.0											
1,000	1,200.0	1,200.0	1,188.0	1,188.0	4.2	4.2	-90.46	-2.0	-250.1	250.1	241.7	8.36	29.919		
1,5000 1,5800 1,4880 1,4880 5.3 5.2 -90.48 -2.0 -260.1 250.1 239.6 10.51 23796 1,6000 1,7000 1,588.0 1,588.0 5.6 6.0 -90.46 -2.0 -250.1 250.1 238.2 119.4 20.94 1,8000 1,7800 1,788.0 1,788.0 6.3 -90.46 -2.0 -250.1 250.1 237.4 12.66 19.754 1,9000 1,888.0 1,888.0 6.7 6.7 -90.46 -2.0 -250.1 250.1 236.7 13.38 18.69 2,0000 2,0001 1,988.0 1,74 7.4 -90.54 -2.3 -265.1 250.1 236.0 14.10 17.74 4 -90.44 -2.0 -250.1 250.1 236.0 14.10 17.74 4 -90.48 -2.3 -265.0 250.1 251.1 17.74 17.4 -7.4 -90.48 -2.3 -265.0 28.7 233.8 18.81 <td>1,300.0</td> <td>1,300.0</td> <td>1,288.0</td> <td>1,288.0</td> <td>4.6</td> <td>4.5</td> <td>-90.46</td> <td>-2.0</td> <td>-250.1</td> <td>250.1</td> <td>241.0</td> <td>9.08</td> <td>27.556</td> <td></td> <td></td>	1,300.0	1,300.0	1,288.0	1,288.0	4.6	4.5	-90.46	-2.0	-250.1	250.1	241.0	9.08	27.556		
1,600															
1,700 0 1,700 0 1,688.0 1,688.0 6.0 -90.46 -2.0 -250.1 230.1 237.4 120.90 1,980.0 1,800.0 1,788.0 1,788.0 1,900.0 1,980.0 1,980.0 1,980.0 1,988.0 1,788.0 6.7 6.7 6.7 -90.46 -2.0 -250.1 250.1 236.7 13.38 18.695 2,000.0 2,000.0 2,080.1 1,988.0 7.1 7.0 -90.46 -2.0 -250.1 250.1 236.0 14.10 17.74 4 -90.54 -2.0 -250.1 250.0 15.0 14.10 17.74 -7.4 -90.54 -2.3 -24.29 243.5 22.0 15.53 15.686 18.2 240.00 2.00.0 2.205.1 2.205.0 7.8 4.9 4.8 -9.6 -24.29 243.5 22.0 15.5 15.686 18.2 -11.2 -203.0 230.0 230.0 230.0 230.0 24.00.5 2.8 8.6 -21.29 2.23.4 243	1,500.0	1,500.0	1,488.0	1,488.0	5.3	5.2	-90.46	-2.0	-250.1	250.1	239.6	10.51	23.796		
1,800.0 1,800.0 1,788.0 1,788.0 6.3 -90.48 -2.0 -250.1 250.1 237.4 12.66 19.754 1,900.0 1,900.0 1,888.0 1,988.0 7.1 7.0 -90.46 -2.0 -250.1 250.1 236.0 14.10 17.744 2,000.0 2,000.1 2,006.1 2,006.1 7.4 7.4 -90.54 -2.3 -248.5 248.7 233.8 14.82 16.775 2,000.0 2,205.1 2,205.0 7.8 7.8 -90.84 -36.8 -242.9 243.5 228.0 15.53 15.686 2,300.0 2,303.5 2,312.9 8.1 8.2 -91.39 -5.7 -233.4 224.8 218.5 16.21 14.482 2,400.0 2,400.0 2,623.9 2,619.5 9.2 9.3 -94.90 -16.0 -186.6 189.9 171.7 18.23 10.417 2,700.0 2,722.4 2,716.5 9.6 -96.61 -19.7 -19.9	1,600.0	1,600.0	1,588.0	1,588.0	5.6	5.6	-90.46	-2.0	-250.1	250.1	238.9	11.23	22.277		
1,900.0 1,980.0 1,888.0 1,888.0 6.7 6.7 90.46 -2.0 -250.1 250.1 236.0 14.10 17.74 2,000.0 2,000.0 2,008.1 1,988.0 7.1 7.0 -90.46 -2.0 -250.1 236.0 14.10 17.74 2,000.0 2,200.1 2,205.0 7.8 7.8 -90.84 -3.6 -242.9 243.5 228.0 155.3 156.86 2,300.0 2,313.5 2,312.9 8.1 8.2 -90.39 -5.7 -233.4 234.8 12.18.5 162.1 14.482 2,500.0 2,505.5 2,525.5 8.9 8.9 -93.47 -12.3 -203.3 206.6 189.0 17.7 18.23 10.417 2,500.0 2,500.0 2,619.5 9.2 9.3 -94.90 -16.0 -186.6 189.9 17.7 18.23 10.417 2,700.0 2,700.0 2,722.4 2,716.5 9.6 9.6 -96.87 -23.4	1,700.0	1,700.0	1,688.0	1,688.0	6.0	6.0	-90.46	-2.0	-250.1	250.1	238.2	11.94	20.940		
2,0000 2,0000 1,988.0 1,988.0 7.1 7.0 -90.46 -2.0 -250.1 250.1 236.0 14.10 17.744 2,1000 2,000 2,200.1 2,206.1 2,206.0 7.8 7.8 -90.84 -2.3 248.5 228.0 2,205.1 15.53 15.68 2,3000 2,201.5 2,312.9 8.1 8.2 -91.39 -5.7 -233.4 234.8 16.21 14.482 2,5000 2,500.1 2,419.5 8.5 8.5 -92.25 8.6 -219.9 222.4 205.5 16.87 13.179 2,5000 2,500.0 2,525.5 2,522.5 8.9 8.9 -93.47 -12.3 -203.3 206.6 189.0 17.15 11.783 2,5000 2,620.0 2,620.9 2,615.5 9.2 9.3 -94.00 -16.0 -186.6 189.9 171.7 18.23 10.417 2,7000 2,000.0 2,200.9 2,615.5 9.9 90.0	1,800.0	1,800.0	1,788.0	1,788.0	6.3	6.3	-90.46	-2.0	-250.1	250.1	237.4	12.66	19.754		
2,100.0 2,100.0 2,096.1 2,096.1 7.4 7.4 90.54 -2.3 -248.5 248.7 233.8 14.82 16.775	1,900.0	1,900.0	1,888.0	1,888.0	6.7	6.7	-90.46	-2.0	-250.1	250.1	236.7	13.38	18.695		
2,2000 2,2000 2,2051 2,2050 7,8 7,8 -90.84 -3.6 -24.9 24.35 228.0 15.53 15.686 2,300.0 2,313.5 2,313.5 8.1 8.2 -91.39 -5.7 -233.4 234.8 218.5 16.21 14.482 2,400.0 2,421.0 2,419.5 8.5 8.5 -92.25 -8.6 -219.9 222.4 205.5 16.27 13.179 2,500.0 2,500.0 2,525.5 2,522.5 8.9 8.9 -99.47 -12.3 -203.3 206.6 189.0 17.53 11.783 2,500.0 2,500.0 2,619.9 9.6 -96.61 -19.7 -160.9 173.4 154.4 18.93 9.157 2,800.0 2,800.0 2,819.5 9.9 10.0 -98.67 -23.4 -153.2 157.0 137.4 19.65 7.94 2,900.0 2,919.4 2,910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9	2,000.0	2,000.0	1,988.0	1,988.0	7.1	7.0	-90.46	-2.0	-250.1	250.1	236.0	14.10	17.744		
2,300.0 2,300.0 2,313.5 2,312.9 8.1 8.2 -91.39 5.7 -233.4 234.8 218.5 16.21 14.482 2,400.0 2,400.0 2,421.0 2,419.5 8.5 8.5 92.25 8.6 -219.9 22.24 205.5 16.87 13.179 2,500.0 2,520.5 2,525.5 8.9 8.9 -94.7 -12.3 -203.3 206.6 188.0 17.53 11.783 2,600.0 2,623.9 2,619.5 9.2 9.3 -94.90 -16.0 -186.6 189.9 171.7 18.23 10.417 2,700.0 2,722.4 2,716.5 9.6 9.6 -96.61 -19.7 -169.9 173.4 156.5 7.994 19.910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9 120.6 20.36 6.921 3,000.0 3,000.0 3,100.3 3,104.4 11.0 11.2 -104.3 -30.7 -119.8 15.2 104.1 21.09 5.935	2,100.0	2,100.0	2,096.1	2,096.1	7.4	7.4	-90.54	-2.3	-248.5	248.7	233.8	14.82	16.775		
2,400.0 2,420.0 2,421.0 2,491.5 8.5 8.5 -92.25 -8.6 -219.9 222.4 205.5 16.87 13.179 2,500.0 2,525.5 2,522.5 8.9 8.9 -93.47 -12.3 -203.3 206.6 188.9 171.7 18.23 10.417 2,600.0 2,600.0 2,623.9 2,619.5 9.2 9.3 -94.90 -16.0 -186.6 188.9 171.7 18.23 10.417 2,600.0 2,800.0 2,2801.5 9.9 10.0 -96.61 -19.7 -169.9 173.4 154.4 18.93 9.157 2,900.0 2,919.4 2,910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9 120.6 20.36 6.921 3,000.0 3,000.0 3,017.9 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5.935 3,000.0 3,310.3 3,20.3 3,20.3 3,20.3 <td< td=""><td>2,200.0</td><td>2,200.0</td><td>2,205.1</td><td>2,205.0</td><td>7.8</td><td>7.8</td><td>-90.84</td><td>-3.6</td><td>-242.9</td><td>243.5</td><td>228.0</td><td>15.53</td><td>15.686</td><td></td><td></td></td<>	2,200.0	2,200.0	2,205.1	2,205.0	7.8	7.8	-90.84	-3.6	-242.9	243.5	228.0	15.53	15.686		
2,500.0 2,500.0 2,525.5 2,522.5 8.9 8.9 -93.47 -12.3 -203.3 206.6 189.0 17.53 11.783 2,600.0 2,620.9 2,619.5 9.2 9.3 -94.90 -16.0 -18.6 189.9 171.7 18.23 10.417 2,700.0 2,722.4 2,716.5 9.6 9.6 -96.61 -19.7 -169.9 173.4 154.4 18.93 9.157 2,900.0 2,290.9 2,813.5 9.9 10.0 -96.67 -23.4 -153.2 157.0 137.4 19.65 7.994 2,900.0 2,900.0 3,000.0 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 126.2 104.1 21.09 5.935 3,000.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.8 5.034 3,200.0 3,200.3 3,313.3 3,288.4 11.7 12.0 +120.95 -41.	2,300.0	2,300.0	2,313.5	2,312.9	8.1	8.2	-91.39	-5.7	-233.4	234.8	218.5	16.21	14.482		
2,600.0 2,603.0 2,623.9 2,619.5 9.2 9.3 -94.90 -16.0 -186.6 189.9 171.7 18.23 10.417 2,700.0 2,700.0 2,722.4 2,716.5 9.6 9.6 -96.61 -19.7 -169.9 173.4 154.4 18.03 9.157 2,800.0 2,900.0 2,919.4 2,910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9 120.6 20.36 6.921 3,000.0 3,000.0 3,017.9 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5.935 3,100.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,241.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,313.3 3,298.4 12.1 12.4 -	2,400.0	2,400.0	2,421.0	2,419.5	8.5	8.5	-92.25	-8.6	-219.9	222.4	205.5	16.87	13.179		
2,700.0 2,722.4 2,716.5 9.6 9.6 -96.61 -19.7 -189.9 173.4 154.4 18.93 9.167 2,800.0 2,800.0 2,800.0 2,919.4 2,910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9 120.6 6.921 3,000.0 3,000.0 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5.935 3,100.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,201.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,213.3 3,298.4 11.7 12.0 -12.05 41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,601.3 3,601.3 3,601.3 3,601.3 3,601.3 3,61.3 3,61.3 3,61.3 <	2,500.0	2,500.0	2,525.5	2,522.5	8.9	8.9	-93.47	-12.3	-203.3	206.6	189.0	17.53	11.783		
2,800.0 2,800.0 2,800.0 2,800.9 2,813.5 9.9 10.0 -98.67 -23.4 -153.2 157.0 137.4 19.65 7.994 2,900.0 2,909.0 2,991.4 2,910.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 210.9 5.935 3,100.0 3,100.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,200.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,300.0 3,313.3 3,298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,401.8 3,395.4 12.1 12.4 -13.064 -45.5 -53.0 70.2 46.0 24.25 2.896 3,600.3 3,605.3 3,633.3 13.0 1	2,600.0	2,600.0	2,623.9	2,619.5	9.2	9.3	-94.90	-16.0	-186.6	189.9	171.7	18.23	10.417		
2,900.0 2,900.0 2,919.4 2,910.5 10.3 10.4 -101.21 -27.1 -136.5 140.9 120.6 20.36 6,921 3,000.0 3,000.0 3,017.9 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5,935 3,100.0 3,100.0 3,116.3 3,004.4 11.0 -108.47 -34.4 -103.1 109.9 88.1 21.84 5,034 3,200.0 3,200.0 3,214.8 3,201.4 11.4 11.6 -119.8 -69.7 81.9 58.5 23.40 3,501 3,400.0 3,401.3 3,594.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,600.0 3,600.0 3,608.7 3,589.4 12.8 143.5 -143.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,600.0 3,605.3 3,685.3 3,633.3 13.0 13.4 -167.56	2,700.0	2,700.0	2,722.4	2,716.5	9.6	9.6	-96.61	-19.7	-169.9	173.4	154.4	18.93	9.157		
3,000.0 3,000.0 3,017.9 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5.935 3,100.0 3,100.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,200.0 3,214.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,300.0 3,313.3 3,298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.4 12.8 -143.57 -49.2 -36.3 61.3 36.1 25.13 2.438 3,600.0 3,600.0 3,608.7 3,589.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,653.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC. ES 3,700.0 3,700.0 3,700.0 3,700.2 3,808.4 12.1 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -22.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,100.0 4,10		2,800.0	2,820.9	2,813.5	9.9	10.0	-98.67	-23.4	-153.2	157.0	137.4		7.994		
3,000.0 3,000.0 3,017.9 3,007.5 10.6 10.8 -104.39 -30.7 -119.8 125.2 104.1 21.09 5.935 3,100.0 3,100.0 3,116.3 3,104.4 11.0 11.2 -108.47 -34.4 -103.1 109.9 88.1 21.84 5.034 3,200.0 3,200.0 3,214.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,300.0 3,313.3 3,298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.4 12.8 -143.57 -49.2 -36.3 61.3 36.1 25.13 2.438 3,600.0 3,600.0 3,608.7 3,589.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,653.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC. ES 3,700.0 3,700.0 3,700.0 3,700.2 3,808.4 12.1 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -22.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,100.0 4,10	2,900.0	2,900.0	2,919.4	2,910.5	10.3	10.4	-101.21	-27.1	-136.5	140.9	120.6	20.36	6.921		
3,200.0 3,200.0 3,214.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,300.0 3,313.3 3.298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,139.8 4,139.7 4,140.0 4,172.5 14.7 15.5 85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,999.8 4,297.0 4,267.1 15.2 16.1 95.73 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.5 5.596 4,700.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 180.4 33.61 6.485		3,000.0	3,017.9		10.6	10.8	-104.39	-30.7	-119.8		104.1		5.935		
3,200.0 3,200.0 3,214.8 3,201.4 11.4 11.6 -113.80 -38.1 -86.4 95.4 72.8 22.60 4.219 3,300.0 3,300.0 3,313.3 3.298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,139.8 4,139.7 4,140.0 4,172.5 14.7 15.5 85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,999.8 4,297.0 4,267.1 15.2 16.1 95.73 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.5 5.596 4,700.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 180.4 33.61 6.485	3.100.0	3.100.0	3.116.3	3.104.4	11.0	11.2	-108.47	-34.4	-103.1	109.9	88.1	21.84	5.034		
3,300.0 3,300.0 3,313.3 3,298.4 11.7 12.0 -120.95 -41.8 -69.7 81.9 58.5 23.40 3.501 3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.4 12.8 -143.57 -49.2 -36.3 61.3 36.1 25.13 2.438 3,600.0 3,600.7 3,589.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
3,400.0 3,400.0 3,411.8 3,395.4 12.1 12.4 -130.64 -45.5 -53.0 70.2 46.0 24.25 2.896 3,500.0 3,500.0 3,510.3 3,492.4 12.4 12.8 -143.57 -49.2 -36.3 61.3 36.1 25.13 2.438 3,600.0 3,600.0 3,608.7 3,589.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,645.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,700.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
3,500.0 3,500.0 3,510.3 3,492.4 12.4 12.8 -143.57 -49.2 -36.3 61.3 36.1 25.13 2.438 3,600.0 3,600.0 3,608.7 3,589.4 12.8 13.2 -159.66 -52.8 -19.6 56.4 30.4 26.00 2.169 3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
3,645.3 3,645.3 3,653.3 3,633.3 13.0 13.4 -167.56 -54.5 -12.0 55.8 29.5 26.36 2.118 CC, ES 3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485	3,600.0	3,600.0	3,608.7	3,589.4	12.8	13.2	-159.66	-52.8	-19.6	56.4	30.4	26.00	2,169		
3,700.0 3,700.0 3,707.2 3,686.4 13.2 13.6 -177.07 -56.5 -2.9 56.6 29.9 26.75 2.117 SF 3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,000.0 4,000.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3,745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485														. ES	
3,800.0 3,800.0 3,805.7 3,783.3 13.5 14.0 167.08 -60.2 13.8 62.0 34.6 27.37 2.263 3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
3,900.0 3,900.0 3,904.2 3,880.3 13.9 14.5 154.48 -63.9 30.5 71.2 43.3 27.95 2.548 4,000.0 4,000.0 4,002.7 3,977.3 14.2 14.9 145.06 -67.6 47.2 83.1 54.6 28.53 2.913 4,100.0 4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25															
4,100.0 4,101.0 4,074.1 14.6 15.3 -82.68 -71.3 63.9 96.5 67.4 29.12 3.313 4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25	4.000.0	4,000.0	4,002.7	3,977.3	14.2	14.9	145.06	-67.6	47.2	83.1	54.6	28.53	2,913		
4,139.8 4,139.7 4,140.0 4,112.5 14.7 15.5 -85.68 -72.7 70.5 102.1 72.8 29.34 3.481 4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2<															
4,200.0 4,199.9 4,199.0 4,170.6 14.9 15.7 -89.98 -74.9 80.5 111.2 81.5 29.69 3.745 4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184															
4,300.0 4,299.8 4,297.0 4,267.1 15.2 16.1 -95.73 -78.6 97.1 127.3 97.0 30.30 4.202 4,400.0 4,399.6 4,394.9 4,363.6 15.6 16.6 -100.17 -82.3 113.7 144.4 113.5 30.93 4.670 4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
4,500.0 4,499.5 4,492.9 4,460.1 15.9 17.0 -103.67 -85.9 130.3 162.2 130.7 31.59 5.136 4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5.596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485	4 400 0	4 300 A	4 304 0	4 363 6	15.6	16.6	-100 17	-823	113 7	1/1//	112 5	30 03	4 670		
4,600.0 4,599.4 4,590.9 4,556.6 16.2 17.4 -106.47 -89.6 147.0 180.5 148.3 32.25 5,596 4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
4,700.0 4,699.3 4,688.8 4,653.1 16.6 17.8 -108.75 -93.3 163.6 199.1 166.2 32.93 6.047 4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
4,800.0 4,799.2 4,786.8 4,749.5 16.9 18.3 -110.64 -96.9 180.2 218.0 184.4 33.61 6.485															
			•												
	4,900.0	4,899.0	4,884.8	4,846.0	17.2	18.7	-112.23	-100.6	196.8	237.0	202.7	34.30	6.911		

Anticollision Report

Company: **NEW MEXICO** Project: (SP) LEA

Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Grid

Survey Calculation Method: Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft KB @ 3794.0usft

Minimum Curvature

P		MMD								Dula As 1			Offset Site Error:	0.0
	rence	MWD Off s			lajor Axis		Offset Wellb	ore Centre	Dis	Rule Assig	•		Offset Well Error:	0.0 usf
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
5,000.0	4,998.9	4,982.8	4,942.5	17.6	19.1	-113.59	-104.2	213.4	256.2	221.2	34.99	7.323		
5,100.0	5,098.8	5,080.7	5,039.0	17.9	19.5	-114.75	-107.9	230.0	275.6	239.9	35.69	7.722		
5,200.0	5,198.7	5,178.7	5,135.5	18.3	20.0	-115.77	-111.6	246.6	295.0	258.6	36.38	8.107		
5,300.0	5,298.6	5,276.7	5,232.0	18.6	20.4	-116.65	-115.2	263.2	314.5	277.4	37.08	8.480		
5,400.0	5,398.4	5,374.6	5,328.4	18.9	20.8	-117.44	-118.9	279.9	334.1	296.3	37.79	8.840		
5,500.0	5,498.3	5,472.6	5,424.9	19.3	21.3	-118.14	-122.6	296.5	353.7	315.2	38.49	9.188		
5,600.0	5,598.2	5,570.6	5,521.4	19.6	21.7	-118.76	-126.2	313.1	373.3	334.1	39.20	9.525		
5,700.0	5,698.1	5,668.6	5,617.9	20.0	22.1	-119.32	-129.9	329.7	393.0	353.1	39.90	9.850		
5,800.0	5,798.0	5,766.5	5,714.4	20.3	22.6	-119.83	-133.6	346.3	412.8	372.2	40.61	10.164		
5,900.0	5,897.8	5,864.5	5,810.9	20.7	23.0	-120.29	-137.2	362.9	432.5	391.2	41.32	10.468		
6,000.0	5,997.7	5,962.5	5,907.3	21.0	23.4	-120.71	-140.9	379.5	452.3	410.3	42.03	10.762		
6,100.0	6,097.6	6,060.4	6,003.8	21.4	23.9	-121.10	-144.6	396.1	472.1	429.4	42.74	11.046		
6,200.0	6,197.5	6,158.4	6,100.3	21.7	24.3	-121.45	-148.2	412.8	491.9	448.5	43.45	11.321		
6,300.0	6,297.4	6,256.4	6,196.8	22.1	24.7	-121.78	-151.9	429.4	511.8	467.6	44.17	11.588		
6,400.0	6,397.3	6,354.4	6,293.3	22.4	25.2	-122.08	-155.6	446.0	531.6	486.8	44.88	11.846		
6,500.0	6,497.1	6,452.3	6,389.7	22.8	25.6	-122.36	-159.2	462.6	551.5	505.9	45.60	12.096		
6,600.0	6,597.0	6,550.3	6,486.2	23.1	26.0	-122.63	-162.9	479.2	571.4	525.1	46.31	12.338		
6,700.0	6,696.9	6,648.3	6,582.7	23.5	26.5	-122.87	-166.6	495.8	591.3	544.3	47.03	12.573		
6,800.0	6,796.8	6,746.2	6,679.2	23.8	26.9	-123.10	-170.2	512.4	611.2	563.5	47.74	12.801		
6,900.0	6,896.7	6,844.2	6,775.7	24.2	27.4	-123.31	-173.9	529.1	631.1	582.7	48.46	13.023		
7,000.0	6,996.5	6,942.2	6,872.2	24.5	27.8	-123.51	-177.6	545.7	651.0	601.9	49.18	13.238		
7,100.0	7,096.4	7,040.2	6,968.6	24.9	28.2	-123.70	-181.2	562.3	671.0	621.1	49.90	13.446		
7,200.0	7,196.3	7,138.1	7,065.1	25.2	28.7	-123.88	-184.9	578.9	690.9	640.3	50.62	13.649		
7,300.0	7,296.2	7,236.1	7,161.6	25.6	29.1	-124.05	-188.5	595.5	710.8	659.5	51.34	13.846		
7,400.0	7,396.1	7,334.1	7,258.1	25.9	29.5	-124.21	-192.2	612.1	730.8	678.7	52.06	14.037		
7,500.0	7,495.9	7,432.0	7,354.6	26.3	30.0	-124.36	-195.9	628.7	750.7	698.0	52.78	14.224		
7,600.0	7,595.8	7,539.5	7,460.5	26.7	30.5	-124.52	-199.8	646.5	770.3	716.7	53.60	14.373		
7,700.0	7,695.7	7,653.2	7,572.9	27.0	31.0	-124.70	-203.5	663.4	788.1	733.6	54.45	14.473		

Anticollision Report

NEW MEXICO Company: Project: (SP) LEA

Reference Site: MORAN PROJECT Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft Reference Wellbore OWB Reference Design: PWP0

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method: Output errors are at

Database:

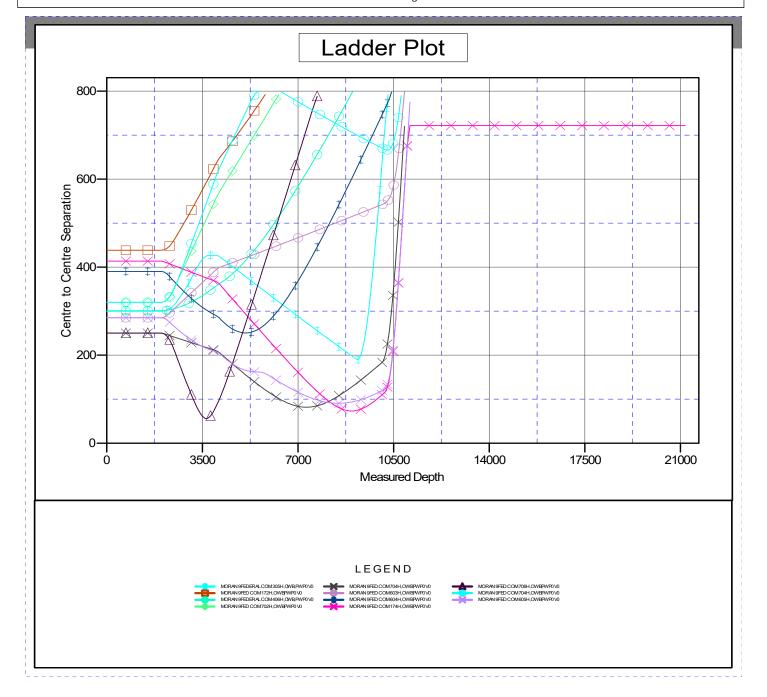
Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H

KB @ 3794.0usft

KB @ 3794.0usft

Grid


Minimum Curvature

2.00 sigma Compass Offset Datum

Reference Depths are relative to KB @ 3794.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: MORAN 9 FEDERAL COM 505H Coordinate System is US State Plane 1983, New Mexico Eastern Zone

Grid Convergence at Surface is: 0.35°

Anticollision Report

Company: NEW MEXICO
Project: (SP) LEA
Reference Site: MORAN PROJECT

Site Error: 0.0 usft

Reference Well: MORAN 9 FEDERAL COM 505H

Well Error: 0.0 usft
Reference Wellbore OWB
Reference Design: PWP0

Local Co-ordinate Reference:

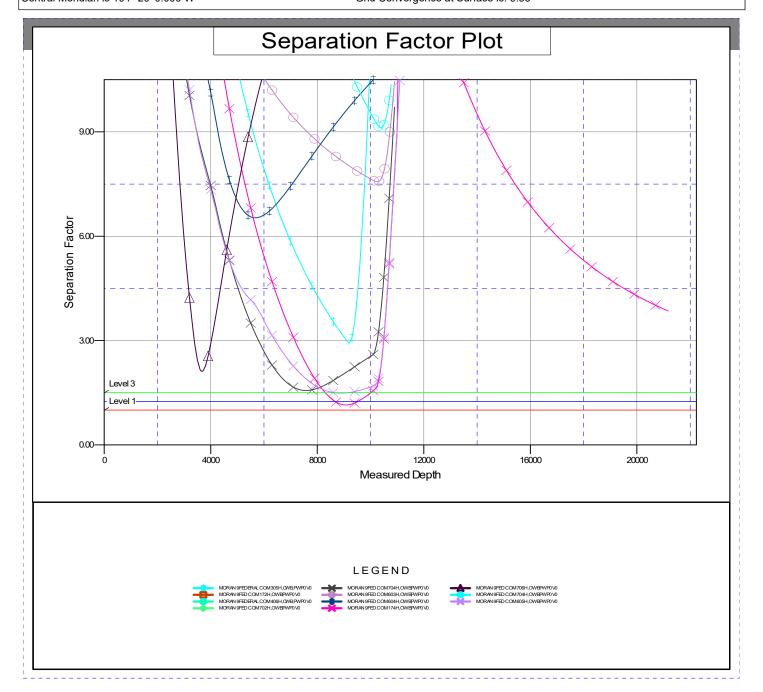
TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:
Output errors are at

Database:

Offset TVD Reference:

Well MORAN 9 FEDERAL COM 505H


KB @ 3794.0usft KB @ 3794.0usft

Grid

Minimum Curvature

2.00 sigma
Compass
Offset Datum

Reference Depths are relative to KB @ 3794.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: MORAN 9 FEDERAL COM 505H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.35°

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation

Moran 9 Fed Com 305H, 406H, 505H, 506H

Lea County, New Mexico

07-02-2024
This plan is subject to updating

Permian Resources Corporation H₂S Contingency Plan Moran 9 Fed Com 305H, 406H, 505H, 506H

Lea County, New Mexico

Table of Contents

Section	1 1.0 – Introduction 3
I.	Purpose
II.	Scope & Applicability
Section	n 2.0 - Plan Implementation3
I.	Activation Requirements
II.	Emergency Evacuation
III.	Emergency Response Activities
	1 3.0 - Potential Hazardous Conditions4
Section	1 4.0 - Notification of H2S Release Event6
I.	Local & State Law Enforcement
II.	General Public
III.	New Mexico Oil Conservation Division
IV.	New Mexico Environment Department
V.	Bureau of Land Management
Section	n 5.0 - Emergency Contact List7
l.	Permian Resources Management Personnel
II.	Lea County Sheriff
III.	New Mexico State Highway Patrol
IV.	Fire / EMS
V.	Lea County Hospital
VI.	Emergency Response Contractors
VII.	New Mexico Oil Conservation Division
VIII.	New Mexico Environment Department
IX.	Bureau of Land Management
Χ.	Other Agencies
Section	n 6.0 – Drilling Location Information9-12
l.	Site Safety Information
II.	Directions to Location
III.	Plat of Location including GPS Coordinates
IV.	Routes of Ingress & Egress (MAP)
V.	ROE Map
VI.	Residences in ROE
VII.	Public Roads in ROE
Section	n 7.0 – Hazard Communication13-15
l.	Physical Characteristics of Hydrogen Sulfide Gas
II.	Human Health Hazards / Toxicological Information
III.	Environmental Hazards
Section	n 8.0 - Regulatory Information15-17
l.	OSHA Information
II.	New Mexico Oil Conservation Division & Bureau of Land Management
Section	n 9.0 - Training Requirements17
Section	10.0 - Personal Protective Equipment18
Appen	
l.	Appendix A − H ₂ S SDS
II.	Appendix B – SO ₂ SDS
Section	n 1.0 – Introduction

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H_2S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H₂S gas, or SO², which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions are identified in the tables below.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER	✓
H ₂ S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH → WARNING SI GREEN	GN
H₂S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H ₂ S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H ₂ S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H ₂ S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4, Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
<u>If trained and safe to do so</u> undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

H ₂ S CONDITION 3: EXTREME DANGER TO LIFE AND HEALTH → WARNING SIGN RED	
$> 30 \ ppm \ H_2S$ concentration in air detected by location monitors: Extreme danger to life	
General Actions During Condition 3	
Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Move away from H ₂ S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1.	
Notify management of the condition and action taken. If H_2S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H_2S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	0
If uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H ₂ S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	0
If the flow is ignited, burning H ₂ S will be converted to sulfur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) If off-site impact; notify any neighbors within the Radius of Exposure (ROE), see example in Figure 5-11.	
Continuously monitor H ₂ S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
IF ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	
Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	
Make recommendations to public officials regarding evacuating the public and assist as appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H_2S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H_2S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H_2S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Section 5.0 - Emergency Contact List

EMERGENCY CONTACT LIST				
PERMIAN RESOURCES CORPORATION.				
POSITION	NAME	OFFICE	CELL	ALT PHONE
Operations				
Production Superintendent	Rick Lawson		432.530.3188	
TX Production Superintendent	Josh Graham	432.940.3191	432.940.3191	
NM Production Superintendent	Manual Mata	432.664.0278	575.408.0216	
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916	
Drilling Engineer	Parker Simmons	432.400.1038	281.536.9813	
Production Manager	Levi Harris	432.219.8568	720.261.4633	
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494	
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140	
HSE & Regulatory				
H&S Manager	Adam Hicks	720.499.2377	903.426.4556	
Regulatory Manager	Stephanie Rabadue		432.260.4388	
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321	
HSE Consultant	Blake Wisdom		918-323-2343	
Local, State, & Federal Agencies				
Lea County Sheriff		575-396-3611		911
New Mexico State Highway Patrol		505-757-2297		911
Eunice Fire / EMS		575-394-3258		911
Lea County Hospital		575-492-5000		
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707	
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161		
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910		
New Mexico Oil Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161		
Bureau of Land Management – Carlsbad, NM		575-706-2779		
Lea County PET Inspector		575-689-5981		
U.S. Fish & Wildlife		502-248-6911		

Section 6.0 – Drilling Location Information

I. Site Safety Information

1. Safe Briefing Area

a. There shall be two areas that will be designated as "SAFE BRIEFING AREAs". If H_2S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

2. Wind Indicators

a. 4 Windsocks will be installed at strategic points on the facility.

3. Danger Signs

a. A warning sign indicating the possible well conditions will be displayed at the location entrance

DANGER POISONOUS GAS HYDROGEN SULFIDE DO NOT APPROACH IF AMBER LIGHTS ARE FLASHING

4. H₂S Detectors and Alarms

a. Continuous monitoring type H_2S detectors, capable of sensing a minimum of 5ppm H_2S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO_2 detector will also be located at the combustor. The automatic H_2S alarm/flashing light will be located at the site entrance and in front of tank battery.

5. <u>Safety Trailer</u>

a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.

6. Well Control Equipment

- a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
- b. The location shall be equipped with a remotely operated choke system and a mud gas separator.

7. Mud Program

a. Company shall have a mud program that contains sufficient weight and additives to control H_2S .

8. Metallurgy

a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.

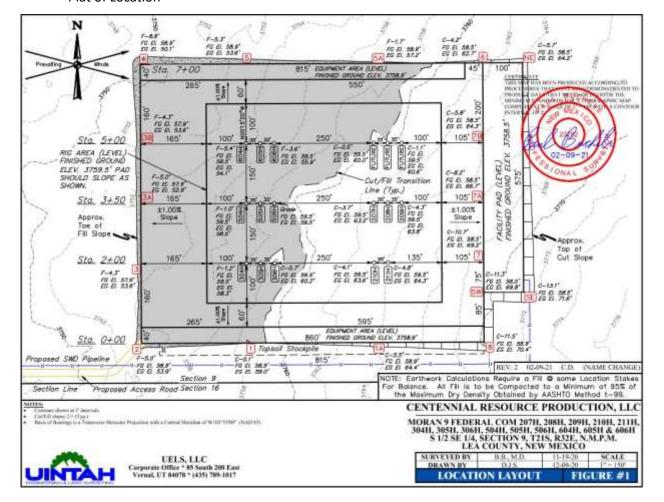
9. Communication

a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

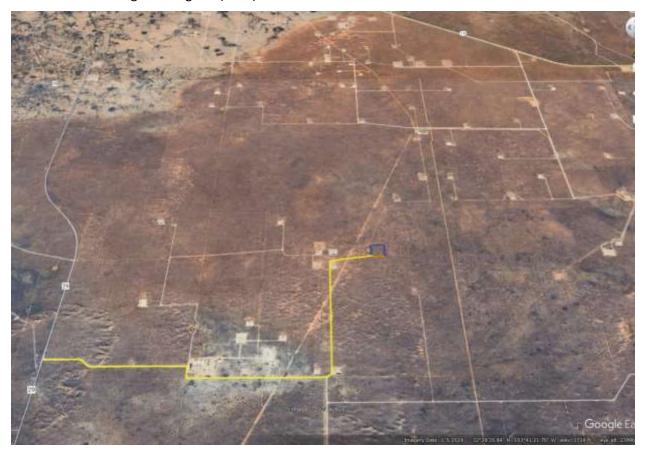
II. Directions to Location

PROCEED IN A EASTERLY, THEN NORTHEASTERLY, THEN SOUTHEASTERLY, THEN NORTHEASTERLY DIRECTION FROM CARLSBAD, NEW MEXICO ALONG US-185/US-62 APPROXIMATELY 31.2 MILES TO THE JUNCTION OF THIS ROAD AND CAMPBELL ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY, THEN SOUTHEASTERLY, THEN SOUTHERLY, THEN SOUTHEASTERLY, THEN SOUTHERLY DIRECTION APPROXIMATELY 5.8 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE EAST: TURN LEFT AND PROCEED IN AN EASTERLY DIRECTION APPROXIMATELY 1.1 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE NORTH; TURN LEFT AND PROCEED IN A NORTHERLY, THEN WESTERLY DIRECTION APPROXIMATELY 0.8 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE NORTH: TURN RIGHT AND PROCEED IN A NORTHERLY DIRECTION APPROXIMATELY 0.4 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE TURN RIGHT AND PROCEED IN AN EASTERLY DIRECTION EAST: APPROXIMATELY 0.9 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE SOUTH; TURN RIGHT AND PROCEED IN A SOUTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 0.4 MILES TO THE JUNCTION OF THIS ROAD AND AN EXISTING ROAD TO THE NORTH; TURN LEFT AND PROCEED IN A NORTHERLY, THEN EASTERLY DIRECTION APPROXIMATELY 0.1 MILES TO THE BEGINNING OF THE PROPOSED ACCESS FOR THE MORAN 9 FED COM 101H, 102H, 103H, 301H & 302H WELL PAD TO THE NORTHEAST; FOLLOW ROAD FLAGS IN A NORTHEASTERLY DIRECTION APPROXIMATELY 725' TO THE BEGINNING OF THE PROPOSED ACCESS FOR THE MORAN 9 FED COM 501H, 502H, 503H, 601H, 602H, 603H, 701H & 702H WELL PAD TO THE NORTHEAST; FOLLOW ROAD FLAGS IN A NORTHEASTERLY DIRECTION APPROXIMATELY 727' TO THE BEGINNING OF THE PROPOSED ACCESS FOR THE MORAN FED COM 104H, 105H, 106H & 303H WELL PAD TO THE NORTHEAST; FOLLOW ROAD FLAGS IN A NORTHEASTERLY DIRECTION


Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

APPROXIMATELY 402' TO THE BEGINNING OF THE PROPOSED ACCESS TO THE NORTHEAST; FOLLOW ROAD FLAGS IN A NORTHEASTERLY, THEN EASTERLY, THEN SOUTHERLY, THEN EASTERLY, THEN NORTHEASTERLY DIRECTION APPROXIMATELY 2,701' TO THE PROPOSED LOCATION.

TOTAL DISTANCE FROM CARLSBAD, NEW MEXICO TO THE PROPOSED WELL LOCATION IS APPROXIMATELY 41.5 MILES.


Permian Resources Corporation	H₂S Contingency Plan Moran 9 Fed Com 305H, 406H, 505H,	Lea County, New Mexico
	506H	

Plat of Location

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

1. Routes of Ingress & Egress (MAP)

2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H₂S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

- Location NAD 83 GPS Coordinates Lat: 32.486851, Long: -103.674459
- 3. Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico Road 29, which is 2.8 miles from the location.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Section 7.0 - Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H_2S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0.**

With H_2S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1.**

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Table 7.0. Physical Properties of H₂S

Properties of H2S	Description
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production.
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air.

Although H_2S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%-46.0% (40,000ppm -460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Table 7.1. Hazards & Toxicity

Table 7.1. Hazarus & I	·
Concentration	Symptoms/Effects
(ppm)	
0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes
	more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly
	sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of
	sleep. Airway problems (bronchial constriction) in some asthma patients.
20 000	Descible fatigue less of appetite bandache invitability page proposed dissipace
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May
30 <u>2</u> 30 pp	cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered
	breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual
	increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema
	may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death
	after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths,
, , , , , , , , , , , , , , , , , , ,	breathing stops, death within minutes.
1000 2000	
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

 H_2S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO_2 is produced as a constituent of flaring H_2S Gas and can present hazards associated, which are

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

similar to H_2S . Although SO_2 is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

SULFUR DIOXIDE TOXICITY			
Concentration		Effects	
%SO ₂	PPM		
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.	
0.0012	12	Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.	
0.15	150	So irritating that it can only be endured for a few minutes.	
0.05	500	Causes a sense of suffocation, even with first breath.	

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description		
NIOSH PEL 10 PPM	PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day.		
OSHA General Industry Ceiling PEL – 20 PPM	The maximum exposure limit, which cannot be exceeded for any length of time.		
IDLH 100 PPM	■ Immediately Dangerous to Life and Health		
Permian Resources PEL 10 PPM	Permian Resources Policy Regarding H2S for employee safety		

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H_2S contingency plan for sites where the H_2S concentrations are as follows.

Table 8.1. Calculating H₂S Radius of Exposure

H ₂ S Radius of Exposure	Description	Control and Equipment Requirements
100 ppm	Distance from a release to where the H₂S concentration in the air will dilute below 100ppm	ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated).

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico	
	Moran 9 Fed Com 305H, 406H, 505H,		
	506H		

		ROE > 3,000-ft
500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

The ROE of an H_2S release is calculated to determine if a potentially hazardous volume of H_2S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H_2S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **100 ppm ROE**:

 $x = [(1.589) \text{ (mole fraction } H_2S)(Q)]^{(.6258)}.$

To determine the extent of the **500 ppm ROE**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}.$

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description		
X =	ROE in feet		
Q =	Max volume of gas released determined to be released in cubic feet per day (ft³/d) normalized to standard temperature and pressure, 60°F and 14.65 psia		
Mole fraction H₂S =	Mole fraction of H ₂ S in the gaseous mixture released.		

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - o **CASE 1** -100 ppm ROE < 50'
 - CASE 2 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
 - CASE 3 -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

Table 8.3. NMAC 19.15.11 Compliance Requirements Drilling & Production

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS - DRILLING & PRODUCTION			
PROVISION	CASE 1	CASE 2	CASE 3
H ₂ S Concentration Test	X	X	X
H-9	X	X	X
Training	X	X	X
District Office Notification	X	X	X
Drill Stem Tests Restricted	X*	X*	X
BOP Test	X*	X*	X
Materials		X	X
Warning and Marker		X	X
Security		X	X
Contingency Plan			X
Control and Equipment Safety			X
Monitors		X**	X**
Mud (ph Control or Scavenger)			X*
Wind Indicators		X**	X
Protective Breathing Equipment		X**	X
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X
Flare Stacks			X*

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H_2S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 CFR Part 1910.134).

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.
- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Section 10.0 - Personal Protective Equipment

I. Personal H₂S Monitors

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes

III. Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. Respiratory Protection

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.
- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Permian Resources Corporation H₂S Contingency Plan Lea County, New Mexico Moran 9 Fed Com 305H, 406H, 505H, 506H

> Appendix A H₂S SDS

Hydrogen sulfide

Safety Data Sheet E-4611

n (February 11, 2015)

Date of Issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

SECTION 1: Identification

1.1. Product identifier

Product form Substance Name Hydrogen sulfide CAS No 7783-06-4 HZS Formula

Other means of identification Hydrogen sulfide Core Products Product group

1.2. Recommended use and restrictions on use

Industrial use Recommended uses and restrictions Use as directed

1,3, Supplier

Praxair Canada inc. 1200 - 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-1682 www.praxair.ca

1.4. Emergency telephone number

Emergency number : 1-800-363-0042

Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product.

For routine information, contact your supplier or Praxair sales representative.

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

GHS-CA classification

Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) STOT SE 3 H330 H335

GHS Label elements, including precautionary statements

GHS-CA labelling

Hazard pictograms

Signal word

Precautionary statements

: DANGER

Hazard statements

EXTREMELY FLAMMABLE GAS
CONTAINS GAS UNDER PRESSURE; MAY EXPLODE IF HEATED FATAL IF INHALED

MAY CAUSE RESPIRATORY IRRITATION MAY FORM EXPLOSIVE MIXTURES WITH AIR SYMPTOMS MAY BE DELAYED

EXTENDED EXPOSURE TO GAS REDUCES THE ABILITY TO SMELL SULFIDES

Do not handle until all safety precautions have been read and understood Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking

This document is only controlled white on the Prioric Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website. EN (English) 8D8 ID . E-4611

1/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

PRAXAIR Safety Data Sheet E-4611

Hydrogen sulfide

ccording to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Do not breathe gas

Use and store only outdoors or in a well-ventilated area

Avoid release to the environment

Wear protective gloves, protective clothing, eye protection, respiratory protection, and/or face

Leaking gas fire: Do not extinguish, unless leak can be stopped safely

In case of leakage, eliminate all ignition sources

Store locked up

Dispose of contents/container in accordance with container Supplier/owner instructions

Protect from sunlight when ambient temperature exceeds 52°C (125°F)

Close valve after each use and when empty

Do not open valve until connected to equipment prepared for use

When returning cylinder, install leak tight valve outlet cap or plug

Do not depend on odour to detect the presence of gas

2.3. Other hazards

Other hazards not contributing to the classification

: Contact with liquid may cause cold burns/frostbite.

2.4. Unknown acute toxicity (GHS-CA)

No data available

SECTION 3: Composition/information on ingredients

Substances

Name	CAS No.	% (Vol.)	Common Name (synonyms)
Hydrogen suffide (Main constituent)	(CAS No.) 7783-06-4	100	Hydrogen sulfide (H2S) / Hydrogen sulphide / Sulfur hydride / Sulfureted hydrogen / Dihydrogen sulphide / Hydrogensulfide

3.2. Mixtures

Not applicable

SECTION 4: First-aid measures

4.1. Description of first aid measures

First-aid measures after inhalation

- : Remove to fresh air and keep at rest in a position comfortable for breathing. If not breathing, give artificial respiration. If breathing is difficult, trained personnel should give oxygen. Call a physician.
- First-aid measures after skin contact
- : The liquid may cause frostbite. For exposure to liquid, immediately warm frostbite area with warm water not to exceed 105°F (41°C). Water temperature should be tolerable to normal skin. Maintain skin warming for at least 15 minutes or until normal coloring and sensation have returned to the affected area. In case of massive exposure, remove clothing while showering with warm water. Seek medical evaluation and treatment as soon as possible.

First-aid measures after eye contact

: Immediately flush eyes thoroughly with water for at least 15 minutes. Hold the eyelids open and away from the eyeballis to ensure that all surfaces are flushed thoroughly. Contact an ophthalmologist immediately.

First-aid measures after ingestion

: Ingestion is not considered a potential route of exposure.

4.2. Most important symptoms and effects (acute and delayed)

No additional information available

Immediate medical attention and special treatment, if necessary

Other medical advice or treatment

: Obtain medical assistance. Treat with corticosteroid spray as soon as possible after inhalation.

SECTION 5: Fire-fighting measures

Suitable extinguishing media

Suitable extinguishing media

: Carbon dioxide, Dry chemical, Water spray or fog. Use extinguishing media appropriate for surrounding fire

5.2. Unsuitable extinguishing media

No additional information available

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 2/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

coording to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

5.3. Specific hazards arising from the hazardous product

Fire hazard

EXTREMELY FLAMMABLE GAS. If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard. Vapors can be ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharge, or other ignition sources at locations distant from product handling point. Explosive atmospheres may linger. Before entering an area, especially a confined area, check the atmosphere with an appropriate device.

Explosion hazard : EXTREMELY FLAMMABLE GAS. Forms explosive mixtures with air and oxidizing agents.

Reactivity : No reactivity hazard other than the effects described in sub-sections below. Reactivity in case of fire : No reactivity hazard other than the effects described in sub-sections below.

5.4. Special protective equipment and precautions for fire-fighters

Firefighting instructions

: DANGER! Toxic, flammable liquefied gas

Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective clothing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fire if safe to do so. On-site fire brigades must comply with their provincial and local fire code regulations.

Special protective equipment for fire fighters

Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire

Other information

Containers are equipped with a pressure relief device. (Exceptions may exist where authorized

by TC.).

SECTION 6: Accidental release measures

Personal precautions, protective equi ncy proc

General measures

DANGER! Toxic, flammable liquefied gas . Forms explosive mixtures with air and oxidizing agents. Immediately evacuate all personnel from danger area. Use self-contained breathing apparatus where needed. Remove all sources of ignition if safe to do so. Reduce vapors with fog or fine water spray, taking care not to spread liquid with water. Shut off flow if safe to do so. Ventilate area or move container to a well-ventilated area. Flammable vapors may spread from leak and could explode if reignited by sparks or flames. Explosive atmospheres may linger. Before entering area, especially confined areas, check atmosphere with an appropriate device.

6.2. Methods and materials for containment and cleaning up

Methods for cleaning up

: Try to stop release. Reduce vapour with fog or fine water spray. Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution. Dispose of contents/container in accordance with local/regional/national/international regulations. Contact supplier for any special requirements.

Reference to other sections

For further information refer to section 8: Exposure controls/personal protection

SECTION 7: Handling and storage

Precautions for safe handling

Precautions for safe handling

: Leak-check system with soapy water; never use a flame

All piped systems and associated equipment must be grounded

Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only non-sparking tools. Use only explosion-proof equipment

Wear leather safety gloves and safety shoes when handling cylinders. Protect cylinders from physical damage; do not drag, roll, slide or drop. While moving cylinder, always keep in place removable valve cover. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Never insert an object (e.g., wrench, screwdriver, pry bar) into cap openings; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. Slowly open the valve. If the valve is hard to open, discontinue use and contact your supplier. Close the container valve after each use: keep closed even when empty. Never apply flame or localized heat directly to any part of the container. High temperatures may damage the container and could cause the pressure relief device to fail prematurely, venting the container contents. For other precautions in using this product, see section 16.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 3/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions

: Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g., NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing full containers for long periods. For other precautions in using this product, see section 16

OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

Hydrogen sulfide (7783-06-4	1)		
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm	
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm	
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm	
Canada (Quebec)	VECD (mg/m²)	21 mg/m³	
Canada (Quebec)	VECD (ppm)	15 ppm	
Canada (Quebec)	VEMP (mg/m²)	14 mg/m³	
Canada (Quebec)	VEMP (ppm)	10 ppm	
Alberta	OEL Celling (mg/m³)	21 mg/m³	
Alberta	OEL Ceiling (ppm)	15 ppm	
Alberta	OEL TWA (mg/m³)	14 mg/m³	
Alberta	OEL TWA (ppm)	10 ppm	
British Columbia	OEL Celling (ppm)	10 ppm	
Manitoba	OEL STEL (ppm)	5 ppm	
Manitoba	OEL TWA (ppm)	1 ppm	
New Brunswick	OEL STEL (mg/m²)	21 mg/m³	
New Brunswick	OEL STEL (ppm)	15 ppm	
New Brunswick	OEL TWA (mg/m²)	14 mg/m³	
New Brunswick	OEL TWA (ppm)	10 ppm	
New Foundland & Labrador	OEL STEL (ppm)	5 ppm	
New Foundland & Labrador	OEL TWA (ppm)	1 ppm	
Nova Scotia	OEL STEL (ppm)	5 ppm	
Nova Scotia	OEL TWA (ppm)	1 ppm	
Nunavut	OEL Ceiling (mg/m²)	28 mg/m²	
Nunavut	OEL Ceiling (ppm)	20 ppm	
Nunavut	OEL STEL (mg/m²)	21 mg/m³	
Nunavut	OEL STEL (ppm)	15 ppm	
Nunavut	OEL TWA (mg/m²)	14 mg/m³	
Nunavut	OEL TWA (ppm)	10 ppm	
Northwest Territories	OEL STEL (ppm)	15 ppm	

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity of accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 4/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

ccording to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (7783-0	06-4)		
Northwest Territories	OEL TWA (ppm)	10 ppm	
Ontario	OEL STEL (ppm)	15 ppm	
Ontario	OEL TWA (ppm)	10 ppm	
Prince Edward Island	OEL STEL (ppm)	5 ppm	
Prince Edward Island	OEL TWA (ppm)	1 ppm	
Québec	VECD (mg/m²)	21 mg/m ³	
Québec	VECD (ppm)	15 ppm	
Québec	VEMP (mg/m²)	14 mg/m²	
Québec	VEMP (ppm)	10 ppm	
Saskatchewan	OEL STEL (ppm)	15 ppm	
Saskatchewan	OEL TWA (ppm)	10 ppm	
Yukon	OEL STEL (mg/m²)	27 mg/m²	
Yukon	OEL STEL (ppm)	15 ppm	
Yukon	OEL TWA (mg/m²)	15 mg/m²	
Yukan	OEL TWA (ppm)	10 ppm	

8.2. Appropriate engineering controls

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): Inadequate - Use only in a closed system. Use explosion proof equipment and lighting.

8.3. Individual protection measures/Personal protective equipment

Personal protective equipment

: Safety glasses. Face shield. Gloves.

Hand protection : Wear work gloves when handling containers. Wear heavy rubber gloves where contact with product may occur.

Eye protection

Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard Z94.3, "Industrial Eye and Face Protection", and

any provincial regulations, local bylaws or guidelines, Respiratory protection

Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators." Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with

unknown exposure levels, use a self-contained breathing apparatus (SCBA).

; Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN Thermal hazard protection

511 - Cold insulating gloves.

: Other protection : Safety shoes for general handling at customer sites. Metatarsal shoes and Other information

cuffless trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state

: Gas

Appearance : Colorless gas, Colorless liquid at low temperature or under high pressure.

Molecular mass : 34 a/mol Colour : Colourless.

Odour : Odour can persist. Poor warning properties at low concentrations. Rotten eggs.

Odour threshold : Odour threshold is subjective and inadequate to warn of overexposure.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 5/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

PRAXAIR

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

pH : Not applicable: pH solution : No data available : No data available Relative evaporation rate (butylacetate=1) Relative evaporation rate (ether=1) : Not applicable. Melting point : -86 °C : -82.9 °C Freezing point **Boiling** point : -60.3 °C : Not applicable. Flash point Critical temperature : 100.4 °C 260 °C Auto-ignition temperature Decomposition temperature : No data available : 1880 kPa Vapour pressure Vapour pressure at 50 °C : No data available 8940 kPa Critical pressure Relative vapour density at 20 °C 5.28 Relative density : No data available Relative density of saturated gas/air mixture : No data available : No data available Density Relative gas density : 1.2 Solubility : Water: 3980 mg/l Log Pow : Not applicable. Log Kow : Not applicable. Viscosity, kinematic : Not applicable. : Not applicable. Viscosity, dynamic Viscosity, kinematic (calculated value) (40 °C) : No data available Explosive properties : Not applicable. Oxidizing properties : None. Flammability (solid, gas) 4.3 - 46 vol %

Other information

: Liquefied gas Gas group

Additional information : Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below

ground level

SECTION 10: Stability and reactivity

10.1. Reactivity

Reactivity : No reactivity hazard other than the effects described in sub-sections below.

Chemical stability : Stable under normal conditions.

Possibility of hazardous reactions : May react violently with oxidants. Can form explosive mixture with air. Conditions to avoid

: Avoid moisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces. No smoking.

Incompatible materials : Ammonia, Bases, Bromine pentafluoride, Chlorine trifluoride, chromium trioxide, (and heat). Copper, (powdered), Fluorine, Lead, Lead oxide, Mercury, Nitric acid, Nitrogen trifluoride

nitrogen sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. (and moisture). Water.

Hazardous decomposition products : Thermal decomposition may produce : Sulfur. Hydrogen.

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity (oral) : Not classified Acute toxicity (dermal) : Not classified

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 6/9

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

PRAXAIR Safety Data Sheet E-4611

Acute toxicity (inhalation)

Serious eye damage/irritation

Respiratory or skin sensitization

Hydrogen sulfide

according to the Hazardous Products Regulation (February 11, 2015)

Inhalation gas: FATAL IF INHALED

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (\f)7783-06-4		
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)	
LC50 inhalation rat (ppm)	356 ppm/4h	
ATE CA (gases)	356.00000000 ppmv/4h	
ATE CA (vapours)	0.99000000 mg/l/4h	
ATE CA (dust,mist)	0.99000000 mg/l/4h	

Skin corrosion/irritation : Not classified

> pH: Not applicable. : Not classified pH: Not applicable. : Not classified

: Not classified Germ cell mutagenicity : Not classified Carcinogenicity Reproductive toxicity : Not classified

Specific target organ toxicity (single exposure) : MAY CAUSE RESPIRATORY IRRITATION.

Specific target organ toxicity (repeated : Not classified

exposure)

Aspiration hazard : Not classified

	ogical information
12.1. Toxicity	
Ecology - general	: VERY TOXIC TO AQUATIC LIFE.

LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus [flow-through])
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales prometas [flow-through])

12.2. Persistence and degradability

Hydrogen sulfide (7783-06-4)	
Persistence and degradability	Not applicable for inorganic gases.

12.3. Bioaccumulative potential

Hydrogen sulfide (7783-06-4)	
BCF fish 1	(no bioaccumulation expected)
Log Pow	Not applicable.
Log Kow	Not applicable.
Bioaccumulative potential	No data available,

12.4. Mobility in soil

Hydrogen sulfide (7783-06-4)	
Mobility in soil	No data available.
Log Pow	Not applicable.
Log Kow	Not applicable.
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution.

12.5. Other adverse effects

Other adverse effects : May cause pH changes in aqueous ecological systems.

None Effect on the gzone laver

Effect on global warming : No known effects from this product

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English) SDS ID : E-4611 7/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

PRAXAIR

Hydrogen sulfide

Safety Data Sheet E-4611

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

SECTION 13: Disposal considerations

13.1. Disposal methods

Waste disposal recommendations : Do not attempt to dispose of residual or unused quantities. Return container to supplier.

SECTION 14: Transport information

Basic shipping description

In accordance with TDG

TDG

UN-No. (TDG) : UN1053

TDG Primary Hazard Classes : 2.3 - Class 2.3 - Toxic Gas.

TDG Subsidiary Classes : 2.1

Proper shipping name : HYDROGEN SULPHIDE

ERAP Index : 500 Explosive Limit and Limited Quantity Index : 0 : Forbidden Passenger Carrying Ship Index Passenger Carrying Road Vehicle or Passenger : Forbidden

Carrying Railway Vehicle Index

14.3. Air and sea transport

IMDG

UN-No. (IMDG) : 1053

Proper Shipping Name (IMDG) : HYDROGEN SULPHIDE

Class (IMDG) 2 - Gases MFAG-No : 117 IATA

UN-No. (IATA) : 1053 Proper Shipping Name (IATA)

: Hydrogen sulphide Class (IATA)

SECTION 15: Regulatory information

15.1. National regulations

Hydrogen sulfide (7783-06-4)

Listed on the Canadian DSL (Domestic Substances List)

15.2. International regulations

Hydrogen sulfide (7783-06-4)

Listed on the AICS (Australian Inventory of Chemical Substances)

Listed on IECSC (Inventory of Existing Chemical Substances Produced or Imported in China)

Listed on the EEC inventory EINECS (European Inventory of Existing Commercial Chemical Substances) Listed on the Japanese ENCS (Existing & New Chemical Substances) inventory

Listed on the Korean ECL (Existing Chemicals List)

Listed on NZIoC (New Zealand Inventory of Chemicals)

Listed on PICCS (Philippines Inventory of Chemicals and Chemical Substances) Listed on the United States TSCA (Toxic Substances Control Act) inventory

Listed on INSQ (Mexican national Inventory of Chemical Substances)

SECTION 16: Other information

Date of issue 15/10/1979 Revision date : 10/08/2016 15/10/2013 Supersedes

Indication of changes:

Training advice : Users of breathing apparatus must be trained. Ensure operators understand the toxicity hazard.

Ensure operators understand the flammability hazard.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website

EN (English) SDS ID : E-4611 8/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

according to the Hazardous Products Regulation (February 11, 2015)

Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Other information

When you mix two or more chemicals, you can create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture Consult an industrial hygienist or other trained person when you evaluate the end product. Before using any plastics, confirm their compatibility with this product

Praxair asks users of this product to study this SDS and become aware of the product hazards and safety information. To promote safe use of this product, a user should (1) notify employees, agents, and contractors of the information in this SDS and of any other known product hazards and safety information, (2) furnish this information to each purchaser of the product, and (3) ask each purchaser to notify its employees and customers of the product hazards and safety information

The opinions expressed herein are those of qualified experts within Praxair Canada Inc. We believe that the information contained herein is current as of the date of this Safety Data Sheet. Since the use of this information and the conditions of use are not within the control of Praxair Canada Inc, it is the user's obligation to determine the conditions of safe use of the product. Praxair Canada Inc, SDSs are furnished on sale or delivery by Praxair Canada Inc, or the independent distributors and suppliers who package and sell our products. To obtain current SDSs for these products, contact your Praxair sales representative, local distributor, or supplier, or download from www.praxair.ca. If you have questions regarding Praxair SDSs, would like the document number and date of the latest SDS, or would like the names of the Praxair suppliers in your area, phone or write Praxair Canada Inc. (Phone: 1-888-257-5149; Address: Praxair Canada Inc, 1 City Centre Drive, Suite 1200, Mississauga, Ontario, L5B 1M2).

PRAXAIR and the Flowing Airstream design are trademarks or registered trademarks of Praxair Technology, Inc. in the United States and/or other countries.

NFPA health hazard

: 4 - Very short exposure could cause death or serious residual injury even though prompt medical attention was given.

NEPA fire hazard

: 4 - Will rapidly or completely vaporize at normal pressure and temperature, or is readily dispersed in air and will burn

readily.

NFPA reactivity

: 0 - Normally stable, even under fire exposure conditions,

and are not reactive with water.

HMIS III Rating

Health Flammability

: 2 Moderate Hazard - Temporary or minor injury may occur

: 4 Severe Hazard - Flammable gases, or very volatile flammable liquids with flash points below 73 F, and boiling points below 100 F. Materials may ignite spontaneously with air. (Class IA)

Physical

: 2 Moderate Hazard - Materials that are unstable and may undergo violent chemical changes at normal temperature and pressure with low risk for explosion. Materials may react violently with water or form peroxides upon exposure to air.

SDS Canada (GHS) - Praxair

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. If should not therefore be construed as guaranteeing any specific property of the product.

Permian Resources Corporation H₂S Contingency Plan Lea County, New Mexico Moran 9 Fed Com 305H, 406H, 505H, 506H

Appendix B SO₂ SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Section 1 - PRODUCT AND COMPANY IDENTIFICATION

Material Name

SULFUR DIOXIDE

Synonyms

MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXIDE; SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR OXIDE;

SULFUR OXIDE(SO2) Chemical Family

inorganie, gas

morganic, gas

Product Description

Classification determined in accordance with Compressed Gas Association standards.

Product Use

Industrial and Specialty Gas Applications.

Restrictions on Use

None known.

Details of the supplier of the safety data sheet

MATHESON TRI-GAS, INC.

3 Mountainview Road

Warren, NJ 07059

General Information: 1-800-416-2505 Emergency #: 1-800-424-9300 (CHEMTREC) Outside the US: 703-527-3887 (Call collect)

Section 2 - HAZARDS IDENTIFICATION

Classification in accordance with paragraph (d) of 29 CFR 1910.1200.

Gases Under Pressure - Liquefied gas

Acute Toxicity - Inhalation - Gas - Category 3

Skin Corrosion/Irritation - Category 1B

Serious Eye Damage/Eye Irritation - Category 1

Simple Asphyxiant

GHS Label Elements

Symbol(s)

Signal Word

Danger

Hazard Statement(s)

Contains gas under pressure; may explode if heated.

Toxic if inhaled.

Causes severe skin burns and eye damage.

May displace oxygen and cause rapid suffocation.

Precautionary Statement(s)

Prevention

Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

Page 1 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Wash thoroughly after handling. Do not breathe dusts or mists.

Response

IF INHALED: Remove person to fresh air and keep comfortable for breathing.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.

Continue rinsing

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower.

Wash contaminated clothing before reuse.

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

Immediately call a POISON CENTER or doctor.

Specific treatment (see label).

Storage

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Protect from sunlight.

Disposal

Dispose of contents/container in accordance with local/regional/national/international regulations.

Other Hazards

Contact with liquified gas may cause frostbite.

CAS	Component Name	Percent
7446-09-5	Sulfur dioxide	100.0

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention.

Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

No information on significant adverse effects.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically and supportively.

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE SDS ID: MAT22290

Section 5 - FIRE FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media

carbon dioxide, regular dry chemical, Large fires: Use regular foam or flood with fine water spray.

Unsuitable Extinguishing Media

None known.

Special Hazards Arising from the Chemical

Negligible fire hazard.

Hazardous Combustion Products

sulfur oxides

Fire Fighting Measures

Move container from fire area if it can be done without risk. Cool containers with water spray until well after the fire is out. Stay away from the ends of tanks. Keep unnecessary people away, isolate hazard area and deny entry.

Special Protective Equipment and Precautions for Firefighters

Wear full protective fire fighting gear including self contained breathing apparatus (SCBA) for protection against possible exposure.

Section 6 - ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

Wear personal protective clothing and equipment, see Section 8.

Methods and Materials for Containment and Cleaning Up

Keep unnecessary people away, isolate hazard area and deny entry. Stay upwind and keep out of low areas. Ventilate closed spaces before entering. Evacuation radius: 150 feet. Stop leak if possible without personal risk. Reduce vapors with water spray. Do not get water directly on material.

Environmental Precautions

Avoid release to the environment.

Section 7 - HANDLING AND STORAGE

Precautions for Safe Handling

Do not get in eyes, on skin, or on clothing. Do not breathe gas, fumes, vapor, or spray. Wash hands thoroughly after handling. Use only outdoors or in a well-ventilated area. Wear protective gloves/protective clothing/eye protection/face protection. Contaminated work clothing should not be allowed out of the workplace. Do not eat, drink or smoke when using this product. Keep only in original container. Avoid release to the environment.

Conditions for Safe Storage, Including any Incompatibilities

Store in a well-ventilated place. Keep container tightly closed.

Store locked up.

Protect from sunlight.

Store and handle in accordance with all current regulations and standards. Protect from physical damage. Store outside or in a detached building. Keep separated from incompatible substances.

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Component Exposure Limits			
Sulfur dioxide	7446-09-5		
ACGIH:	0.25 ppm STEL		

Page 3 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA; 5 mg/m3 TWA
	5 ppm STEL; 13 mg/m3 STEL
	100 ppm IDLH
OSHA (US):	5 ppm TWA; 13 mg/m3 TWA
Mexico:	0.25 ppm STEL [PPT-CT]

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)

There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits.

Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact.

Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Sect	ion 9 - PHYSICAL A	AND CHEMICAL PROPERT	TIES
Appearance	colorless gas	Physical State	gas
Odor	irritating odor	Color	colorless
Odor Threshold	3 - 5 ppm	pH	(Acidic in solution)
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)
Boiling Point Range	Not available	Freezing point	Not available
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available
Autoignition Temperature	Not available	Flash Point	(Not flammable)
Lower Explosive Limit	Not available	Decomposition temperature	Not available
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 °C
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C

Page 4 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

22.8 % (@ 0 ℃)	Partition coefficient: n- octanol/water	Not available
Not available	Kinematic viscosity	Not available
Not available	Density	Not available
liquified gas	Molecular Formula	S-02
64.06		
	Not available Not available liquified gas	Not available Consity

Solvent Solubility

Soluble

alcohol, acetic acid, sulfuric acid, ether, chloroform, Benzene, sulfuryl chloride, nitrobenzenes, Toluene, acetone

Section 10 - STABILITY AND REACTIVITY

Reactivity

No reactivity hazard is expected.

Chemical Stability

Stable at normal temperatures and pressure.

Possibility of Hazardous Reactions

Will not polymerize.

Conditions to Avoid

Minimize contact with material. Containers may rupture or explode if exposed to heat.

Incompatible Materials

bases, combustible materials, halogens, metal carbide, metal oxides, metals, oxidizing materials, peroxides, reducing agents

Hazardous decomposition products

oxides of sulfur

Section 11 - TOXICOLOGICAL INFORMATION

Information on Likely Routes of Exposure

Inhalation

Toxic if inhaled. Causes damage to respiratory system, burns, difficulty breathing

Skin Contact

skin burns

Eye Contact

eye burns

Ingestion

burns, nausea, vomiting, diarrhea, stomach pain

Acute and Chronic Toxicity

Component Analysis - LD50/LC50

The components of this material have been reviewed in various sources and the following selected endpoints are published:

Sulfur dioxide (7446-09-5)

Inhalation LC50 Rat 965 - 1168 ppm 4 h

Product Toxicity Data

Acute Toxicity Estimate

No data available.

Immediate Effects

Page 5 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed Effects

No information on significant adverse effects.

Irritation/Corrosivity Data

respiratory tract burns, skin burns, eye burns

Respiratory Sensitization

No data available.

Dermal Sensitization

No data available.

Component Carcinogenicity

Sulfur dioxide	7446-09-5
ACGIH:	A4 - Not Classifiable as a Human Carcinogen
IARC:	Monograph 54 [1992] (Group 3 (not classifiable))

Germ Cell Mutagenicity

No data available.

Tumorigenic Data

No data available

Reproductive Toxicity

No data available.

Specific Target Organ Toxicity - Single Exposure

No target organs identified.

Specific Target Organ Toxicity - Repeated Exposure

No target organs identified,

Aspiration hazard

Not applicable.

Medical Conditions Aggravated by Exposure

respiratory disorders

Section 12 - ECOLOGICAL INFORMATION

Component Analysis - Aquatic Toxicity

No LOLI ecotoxicity data are available for this product's components.

Persistence and Degradability

No data available.

Bioaccumulative Potential

No data available.

Mobility

No data available.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of contents/container in accordance with local/regional/national/international regulations.

Component Waste Numbers

The U.S. EPA has not published waste numbers for this product's components.

Section 14 - TRANSPORT INFORMATION

US DOT Information:

Shipping Name: SULFUR DIOXIDE

Page 6 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3

IMDG Information:

Shipping Name: SULPHUR DIOXIDE

Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

TDG Information:

Shipping Name: SULFUR DIOXIDE

Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

International Bulk Chemical Code

This material does not contain any chemicals required by the IBC Code to be identified as dangerous chemicals in bulk.

Section 15 - REGULATORY INFORMATION

U.S. Federal Regulations

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), CERCLA (40 CFR 302.4), TSCA 12(b), and/or require an OSHA process safety plan.

Sulfur dioxide	7446-09-5
SARA 302:	500 lb TPQ
OSHA (safety):	1000 lb TQ (Liquid)
SARA 304:	500 lb EPCRA RQ

SARA Section 311/312 (40 CFR 370 Subparts B and C) reporting categories

Gas Under Pressure; Acute toxicity; Skin Corrosion/Irritation; Serious Eye Damage/Eye Irritation; Simple Asphyxiant

U.S. State Regulations

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA
Sulfur dioxide	7446-09-5	Yes	Yes	Yes	Yes	Yes

California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)

This product can expose you to chemicals including Sulfur dioxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Page 7 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Permian Resources Corporation	H₂S Contingency Plan	Lea County, New Mexico
	Moran 9 Fed Com 305H, 406H, 505H,	
	506H	

Safety Data Sheet

Material Name: SULFUR DIOXIDE

Sulfur dioxide 7446-09-5

Repro/Dev. Tox developmental toxicity , 7/29/2011

Component Analysis - Inventory Sulfur dioxide (7446-09-5)

US	CA	AU	CN	EU	JP - ENCS	JP - ISHL	KR KECI - Annex 1	KR KECI - Annex 2
Yes	DSL	Yes	Yes	EIN	Yes	Yes	Yes	No

KR - REACH CCA	MX	NZ	PH	TH-TECI	TW, CN	VN (Draft)
No	Yes	Yes	Yes	Yes	Yes	Yes

Section 16 - OTHER INFORMATION

NFPA Ratings

Health: 3 Fire: 0 Instability: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

Summary of Changes SDS update: 02/10/2016

Key / Legend

ACGIH - American Conference of Governmental Industrial Hygienists; ADR - European Road Transport; AU -Australia; BOD - Biochemical Oxygen Demand; C - Celsius; CA - Canada; CA/MA/MN/NJ/PA -California/Massachusetts/Minnesota/New Jersey/Pennsylvania*; CAS - Chemical Abstracts Service; CERCLA -Comprehensive Environmental Response, Compensation, and Liability Act; CFR - Code of Federal Regulations (US); CLP - Classification, Labelling, and Packaging; CN - China; CPR - Controlled Products Regulations; DFG -Deutsche Forschungsgemeinschaft; DOT - Department of Transportation; DSD - Dangerous Substance Directive; DSL - Domestic Substances List; EC - European Commission; EEC - European Economic Community; EIN -European Inventory of (Existing Commercial Chemical Substances); EINECS - European Inventory of Existing Commercial Chemical Substances; ENCS - Japan Existing and New Chemical Substance Inventory; EPA -Environmental Protection Agency; EU - European Union; F - Fahrenheit; F - Background (for Venezuela Biological Exposure Indices); IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; ICAO - International Civil Aviation Organization; IDL - Ingredient Disclosure List; IDLH -Immediately Dangerous to Life and Health; IMDG - International Maritime Dangerous Goods; ISHL - Japan Industrial Safety and Health Law; IUCLID - International Uniform Chemical Information Database; JP - Japan; Kow - Octanol/water partition coefficient; KR KECI Annex 1 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL): KR KECl Annex 2 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL), KR - Korea; LD50/LC50 - Lethal Dose/ Lethal Concentration; KR REACH CCA Korea Registration and Evaluation of Chemical Substances Chemical Control Act; LEL - Lower Explosive Limit; LLV - Level Limit Value; LOLI - List Of LIsts™ - ChemADVISOR's Regulatory Database; MAK - Maximum Concentration Value in the Workplace; MEL - Maximum Exposure Limits; MX - Mexico; Ne- Non-specific; NFPA National Fire Protection Agency; NIOSH - National Institute for Occupational Safety and Health; NJTSR - New Jersey Trade Secret Registry; Nq - Non-quantitative; NSL - Non-Domestic Substance List (Canada); NTP -National Toxicology Program; NZ - New Zealand; OSHA - Occupational Safety and Health Administration; PEL-Permissible Exposure Limit; PH - Philippines; RCRA - Resource Conservation and Recovery Act; REACH-Registration, Evaluation, Authorisation, and restriction of Chemicals; RID - European Rail Transport; SARA -Superfund Amendments and Reauthorization Act; Sc - Semi-quantitative; STEL - Short-term Exposure Limit;

Page 8 of 9 Issue date: 2021-01-30 Revision 8.0 Print date: 2021-01-30

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: MORAN 9 FEDERAL COM Well Number: 505H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit? NO

Reserve pit length (ft.) Res

Reserve pit width (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit depth (ft.)

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? N

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary

Are you requesting any Ancillary Facilities?: N

Ancillary Facilities

Comments:

Section 9 - Well Site

Well Site Layout Diagram:

1_Moran_Shallow_Well_Pad_D_Site_Plan_20240712135212.pdf

Moran_9_FED_COM_505H_RL_20240712163917.pdf

Comments: Rig Plat Diagrams: There are two (2) new and one (1) existing multi-well pads being utilized for the Moran 9 Federal Com project. The proposed and existing pads will allow enough space for cuts and fills, topsoil storage, and storm water control and sizes are approximations based on these needs. Interim

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 438953

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	438953
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
clevans	Cement is required to circulate on both surface and intermediate1 strings of casing.	3/4/2025
clevans	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	3/4/2025
pkautz	File As Drilled C-102 and a directional Survey with C-104 completion packet.	3/11/2025
pkautz	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	3/11/2025
pkautz	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	3/11/2025
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.	4/4/2025
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.	4/4/2025
matthew.gomez	Administrative order required for non-standard spacing unit prior to production.	4/21/2025
matthew.gomez	This well is within the Capitan Reef. The first intermediate casing string shall be sat and cemented back to surface immediately above the Capitan Reef. The second intermediate string shall be set and cemented back to surface immediately below the base of the Capitan Reef.	4/22/2025
matthew.gomez	Brine water shall not be used in the Capitan Reef. Only fresh water shall be utilized until the Capitan Reef is cased and cemented.	4/22/2025
matthew.gomez	Must comply with all R-111-Q requirements.	4/22/2025