

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Sundry Print Reports

Well Name: JRU APACHE FEDERAL

COM

Well Location: T22S / R30E / SEC 13 /

SESE / 32.385829 / -103.828569

County or Parish/State: EDDY /

NM

Well Number: 803H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM89051

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001555766

Operator: XTO PERMIAN OPERATING

LLC

Notice of Intent

Sundry ID: 2827473

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 12/13/2024 Time Sundry Submitted: 12:49

Date proposed operation will begin: 12/27/2024

Procedure Description: JRU APACHE FEDERAL COM 803H APD ID# 10400085389 SUNDRY LANGUAGE XTO Permian Operating, LLC. respectfully requests approval to make the following changes to the approved APD. Changes to include name of the well, SHL, KOP, FTP, LTP, BHL, casing design, cement program, mud circulation system and proposed total depth. The API number for this well is 30-015-55766. The well name is changing from "JRU APACHE FEDERAL COM 803H" to "JAMES RANCH UNIT APACHE 803H" FROM: TO: SHL: 356' FSL & 921' FEL OF SECTION 13-T22S-R30E 476' FSL & 963' FEL OF SECTION 13-T22S-R30E KOP: 356' FSL & 921' FEL OF SECTION 13-T22S-R30E 2096' FSL & 330' FEL OF SECTION 13-T22S-R30E FTP: 2310' FSL & 330' FEL OF SECTION 13-T22S-R30E 2096' FSL & 330' FEL OF SECTION 14-T22S-R30E LTP: 2310' FSL & 100' FWL OF SECTION 14-T22S-R30E 2096' FSL & 50' FWL OF SECTION 14-T22S-R30E 2096' FSL & 50' FWL OF SECTION 14-T22S-R30E The proposed total depth is changing from 21443' MD/10409' TVD to 21180.35' MD/10906' TVD. There will be no changes required to the facilities/surface usage that was approved along with the APD. See attached drilling program for the updated casing design, cement program and the mud circulation system.

NOI Attachments

Procedure Description

Sundry_Attachments___James_Ranch_Unit_Apache_803H_20250228154843.pdf

eived by OCD: 4/4/2025 7:29:12 AM Well Name: JRU APACHE FEDERAL

COM

Well Location: T22S / R30E / SEC 13 /

SESE / 32.385829 / -103.828569

County or Parish/State: Page 2 of

Well Number: 803H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM89051

Unit or CA Name:

Unit or CA Number:

US Well Number: 3001555766

Operator: XTO PERMIAN OPERATING

Conditions of Approval

Additional

James Ranch Unit Apache 803H COA 20250329153948.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: SRINIVAS LAGHUVARAPU Signed on: FEB 28, 2025 03:51 PM

Name: XTO PERMIAN OPERATING LLC

Title: REGULATORY ANALYST

Street Address: 22777 SPRINGWOODS VILLAGE PARKWAY

City: SPRING State: TX

Phone: (720) 539-1673

Email address: SRINIVAS.N.LAGHUVARAPU@EXXONMOBIL.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Title: Petroleum Engineer

BLM POC Phone: 5752342234 BLM POC Email Address: cwalls@blm.gov

Disposition: Approved Disposition Date: 04/03/2025

Signature: Chris Walls

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUR	EAU OF LAND MAN	5. Lease Serial No.				
Do not use this t	NOTICES AND REPO form for proposals t Use Form 3160-3 (A	6. If Indian, Allottee or Tribe Name				
SUBMIT IN	TRIPLICATE - Other instru	7. If Unit of CA/Agreement,	, Name and/or No.			
1. Type of Well		8. Well Name and No.				
Oil Well Gas V	Vell Other	9. API Well No.				
		2h Dhana Na <i>(inclus</i>	do anos codo		ratory Area	
3a. Address		3b. Phone No. (inclu	ae area coae ₎	10. Pieta and Foot of Exploi	atory Area	
4. Location of Well (Footage, Sec., T., F	R.,M., or Survey Description))		11. Country or Parish, State		
12. CHE	CK THE APPROPRIATE B	OX(ES) TO INDICAT	ΓE NATURE	OF NOTICE, REPORT OR O	THER DATA	
TYPE OF SUBMISSION			TYP	E OF ACTION		
Notice of Intent	Acidize	Deepen		Production (Start/Resume		
	Alter Casing	Hydraulic 1		Reclamation	Well Integrity	
Subsequent Report	Casing Repair	New Const		Recomplete	Other	
	Change Plans	Plug and A	bandon	Temporarily Abandon		
Final Abandonment Notice	Convert to Injection	Plug Back		Water Disposal		
is ready for final inspection.) 14. I hereby certify that the foregoing is	strue and correct. Name (Pr	inted/Tyned)				
14. I hereby certify that the foregoing is	true and correct. Name (Pri	intea/Typea) Title				
		Title				
Signature		Date	;			
	THE SPACE	FOR FEDERA	L OR STA	ATE OFICE USE		
Approved by						
			Title		Date	
Conditions of approval, if any, are attackerify that the applicant holds legal or which would entitle the applicant to con-	equitable title to those rights		Office			
Title 18 U.S.C Section 1001 and Title 4	3 U.S.C Section 1212, make	it a crime for any per	son knowingl	y and willfully to make to any	department or agency of the	e United States

any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

KOP: 356' FSL & 921' FEL OF SECTION 13-T22S-R30E 2096' FSL & 330' FEL OF SECTION 13-T22S-R30E FTP: 2310' FSL & 330' FEL OF SECTION 13-T22S-R30E 2096' FSL & 330' FEL OF SECTION 13-T22S-R30E LTP: 2310' FSL & 100' FWL OF SECTION 14-T22S-R30E 2096 FSL & 100' FWL OF SECTION 14-T22S-R30E BHL: 2310' FSL & 50' FWL OF SECTION 14-T22S-R30E

The proposed total depth is changing from 21443 MD/10409 TVD to 21180.35 MD/10906 TVD.

There will be no changes required to the facilities/surface usage that was approved along with the APD.

See attached drilling program for the updated casing design, cement program and the mud circulation system.

Location of Well

0. SHL: SESE / 356 FSL / 921 FEL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.385829 / LONG: -103.828569 (TVD: 0 feet, MD: 0 feet)

PPP: NWSW / 2313 FSL / 0 FWL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.391224 / LONG: -103.842892 (TVD: 10443 feet, MD: 16400 feet)

PPP: NESW / 2312 FSL / 1335 FWL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.391217 / LONG: -103.838566 (TVD: 10452 feet, MD: 15100 feet)

PPP: NESE / 2310 FSL / 330 FEL / TWSP: 22S / RANGE: 30E / SECTION: 13 / LAT: 32.391197 / LONG: -103.826651 (TVD: 10479 feet, MD: 11125 feet)

BHL: NWSW / 2310 FSL / 50 FWL / TWSP: 22S / RANGE: 30E / SECTION: 14 / LAT: 32.391251 / LONG: -103.86008 (TVD: 10409 feet, MD: 21443 feet)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	XTO
LEASE NO.:	NMNM89051
LOCATION:	Sec.13, T.22 S, R 30 E
COUNTY:	Eddy County, New Mexico
WELL NAME & NO.:	James Ranch Unit Apache 803H
SURFACE HOLE FOOTAGE:	416'/S & 962'/E
BOTTOM HOLE FOOTAGE:	1568'/S & 50'/W

Previously known as JRU Apache Fed Com 803H _. Changes approved through engineering via Sundry 2827473_ on _3-29-2025____. Any previous COAs not addressed within the updated COAs still apply.

COA

H_2S	•	No	0				
Potash /	None	Secretary	⊙ R-111-Q	Open Annulus			
WIPP	4-Stri	ng Design: Engineered W	eak Point	☑ WIPP			
Cave / Karst	• Low	Medium	C High	Critical			
Wellhead	Conventional	Multibowl	O Both	Diverter			
Cementing	Primary Squeeze	☐ Cont. Squeeze	EchoMeter	□ DV Tool			
Special Req	☐ Capitan Reef	Water Disposal	▼ COM	Unit			
Waste Prev.	© Self-Certification	C Waste Min. Plan	Vaste Min. Plan • APD Submitted pr				
Additional	▼ Flex Hose	Casing Clearance	☐ Pilot Hole	Break Testing			
Language	Four-String	Offline Cementing	☐ Fluid-Filled				

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

APD is within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the updated order.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 700 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch 1st Intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, or potash.

- 3. The minimum required fill of cement behind the **7-5/8** inch **2nd Intermediate** casing is: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.
 - a. **First stage:** Operator will cement with intent to reach the top of the **Brushy Canyon** at 7803'.
 - b. Second stage: Operator will perform bradenhead squeeze and top-out. Cement should tie-back 500 feet into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, or potash.

Operator has proposed to pump down Intermediate 1 X Intermediate 2 annulus after primary cementing stage. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the Intermediate 1 casing to tieback requirements listed above after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

❖ A monitored open annulus will be incorporated during completion by leaving the Intermediate Casing x Production Casing annulus un-cemented and monitored inside the Intermediate String. Operator must follow monitoring requirements listed within R-111-Q. Tieback requirements shall be met within 180 days.

Operator has proposed to pump down **intermediate x production** annulus post completion. Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus OR operator shall run a CBL from TD of the production casing to surface after the second stage BH to verify TOC. Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry during second stage bradenhead when running Echo-meter if cement is required to surface. Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

Operator has proposed an open annulus completion in R-111-Q. Operator shall provide a method of verification pre-completion top of cement. Submit results to the BLM. Pressure monitoring device and Pressure Safety Valves must be installed at surface on both the intermediate annulus and the production annulus for the life of the well.

<u>In the event of a casing failure during completion, the operator must contact the BLM at (575-706-2779) and (575-361-2822 Eddy County).</u>

- a. Second stage above DV tool: Cement should tie-back 500 feet into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- **❖** A monitored open annulus will be incorporated during completion by leaving the Intermediate Casing x Production Casing annulus un-cemented and monitored inside the Intermediate String. Operator must follow monitoring requirements listed within R-111-Q. Tieback requirements shall be met within **180 days.**
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 500 feet into the previous casing but not higher than USGS Marker Bed No. 126. Operator must verify top of cement per R-111-Q requirements. Operator shall provide method of verification. Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 1. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

WIPP Requirements

The proposed surface well or bottom hole is located within 330 feet of the WIPP Land Withdrawal Area boundary. As a result, the operator is required to submit daily drilling reports, logs and deviation survey information to the Bureau of Land Management Engineering Department and the U.S. Department of Energy per requirements of the Joint Powers Agreement until a total vertical depth of 7,000 feet is reached. These reports will have at a minimum, the depth of any excess mud returns (brine flows), the rate of penetration and a clearly marked section showing the deviation for each 500-foot interval. Operator may be required to do more frequent deviation surveys based on the daily information submitted and may be required to take other corrective measures. Information will also be provided to the New Mexico Oil Conservation Division after drilling activities have been completed. Upon completion of the well, the operator shall submit a complete directional survey. Any future entry into the well for purposes of completing additional drilling will require supplemental information.

Any oil and gas well operator drilling within one mile of the WIPP Boundary must notify WIPP as soon as possible if any of the following conditions are encountered during oil and gas operations: R-111-Q Amendment - Notification to Operators (Potash)

- a) Indication of any well collision event,
- b) Suspected well fluid flow (oil, gas, or produced water) outside of casing,
- c) Sustained annulus pressure between the 1st intermediate and next innermost casing string in excess of 500 psi above the baseline pressure of the well, or above 1500 psi total,
- d) Increasing pressure buildup rates (psi/day) across multiple successive bleed-off cycles on the annulus between the 1st intermediate and next innermost casing during well production, or
- e) Sustained losses in excess of 50% through the salt formation during drilling.

The operator can email the required information to <u>OilGasReports@wipp.ws</u>. Attached files must not be greater than 20 MB. Call WIPP Tech Support at 575-234-7422, during the hours 7:00am to 4:30pm, if there are any issues sending to this address.

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per **43 CFR 3172**.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure. Offline cementing for the production section is not approved.

Engineer may elect to vary this language. Speak with Chris about implementing changes and whether that change seems reasonable.

Casing Clearance

String does not meet 0.422" clearance requirement per 43 CFR 3172. Cement tieback requirement increased 100' for Production casing tieback. Operator may contact approving engineer to discuss changing casing set depth or grade to meet clearance requirement.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2^{nd} Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR 3172.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's

- requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve

- open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

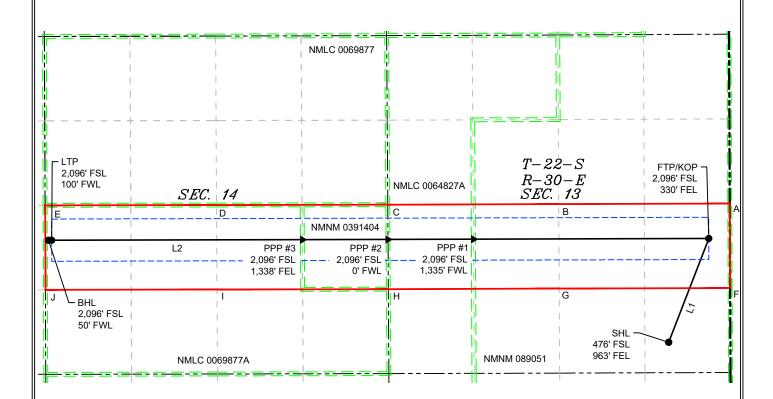
D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be

disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approved by Zota Stevens on 3/29/2025 575-234-5998 / zstevens@blm.gov

σ	
≥	
Ф.	
2	
10	
\circ	
I	
3	
80	
∞	
Щ	
\perp	
Ō	
Δ.	
A	
>	
WG/	
9	
$\stackrel{\frown}{}$	
034	
803	
∞	
- 1	
42	
٧.	
6	
Ě	
§	
>	
>	
Ö	
EDD	
- [
$\overline{\Box}$	
4	
Ö	
PAC	
\Box	
_	
Ā	
<<	
<<	
√.10 - 4	
it\.10 − A	
√.10 - 4	
nit\.10 − A	
h Unit\.10 − A	
nch Unit\.10 - ≜	
anch Unit\.10 − A	
Ranch Unit\.10 − A	
Ranch Unit\.10 − A	
anch Unit\.10 − A	
mes Ranch Unit\.10 − A	
Ranch Unit\.10 − A	
James Ranch Unit\.10 - ≜	
2 James Ranch Unit\.10 — A	
2 James Ranch Unit\.10 — A	
2 James Ranch Unit\.10 — A	
2 James Ranch Unit\.10 — A	
NM\002 James Ranch Unit\.10 - A	
NM\002 James Ranch Unit\.10 - A	
NM\002 James Ranch Unit\.10 - A	
ay — NM\002 James Ranch Unit\.10 — A	
rgy — NM\002 James Ranch Unit\.10 — A	
nergy - NM\002 James Ranch Unit\.10 - A	
rgy — NM\002 James Ranch Unit\.10 — A	
Energy - NM\002 James Ranch Unit\.10 - A	
nergy - NM\002 James Ranch Unit\.10 - A	
0 Energy — NM\002 James Ranch Unit\.10 — A	
0 Energy — NM\002 James Ranch Unit\.10 — A	
13 XTO Energy — NM\002 James Ranch Unit\.10 — A	
013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
13 XTO Energy — NM\002 James Ranch Unit\.10 — A	
013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
18.013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
:\618.013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
*P:\618.013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
:\618.013 XTO Energy — NM\002 James Ranch Unit\.10 — A	
*P:\618.013 XTO Energy — NM\002 James Ranch Unit\.10 — A	


<u>C-10</u>	2					al Resources Departmen	t		Ro	evised July, 09 2024	
	electronically D Permitting			OII	L CONVERSI	ON DIVISION					
								61 71	☐Initial Sub	mittal	
								Submital Type:	M Amended 1	Report	
									☐As Drilled		
					WELL LOCAT	ΓΙΟΝ INFORMATION					
API Nu		_	Pool Code			Pool Name					
30-015- 40295 LOS MEDANOS, BONE SPRING Property Code Property Name Well Number											
Property	y Code		Property N	ame	JAMES RAI	NCH UNIT APACHE	1		Well Number	803H	
OGRID	No.		Operator N	lame					Ground Level	Elevation	
	37307	' 5			XTO PERMIA	N OPERATING, LLO	C.		3	3,365'	
Surface	Owner: S	State Fee	Tribal 🛮 Fe	deral		Mineral Owner:	State Fee	□Tribal 🛛	Federal		
					~ •						
UL	Section	Township	Range	Lot	Ft. from N/S	E Hole Location Ft. from E/W	Latitude	I	Longitude	County	
Р	13	228	30E		476 FSL	963 FEL	32.386		103.828705	EDDY	
					7,0100	000122	52.550				
UL	Section	Town -1.:	Range	Lot	Botton Ft. from N/S	Hole Location Ft. from E/W	Latitude	1.	Congitud-	County	
		Township		Lut					Longitude	County	
L	14	22\$	30E		2,096 FSL	50 FWL	32.390	- 2003	103.860079	EDDY	
		T		1							
	ed Acres	Infill or Defi	-	Defining	g Well API	Overlapping Spacing	Unit (Y/N)	Consolidat			
32	20.00	DEFI	NING			Υ		U			
Order N	lumbers.		R-279-C			Well Setbacks are under Common Ownership: ☑ Yes ☐ No					
					Kick O	Off Point (KOP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	I	Longitude	County	
ı	13	228	30E		2,096 FSL	330 FEL	32.390	609 -	103.826652	EDDY	
UL	Section	Township	Range	Lot	Ft. from N/S	ake Point (FTP) Ft. from E/W	Latitude	Ī	Longitude	County	
ı	13	228	30E	200	2,096 FSL	330 FEL)609 -103.826652		EDDY	
•		220	JOL		·		02.000	-	100.020032	LDD1	
T.17	l a .:	T	l p	T .		ake Point (LTP)	T x .:: 1	Ι,	r - 1 - 1		
UL .	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Longitude	County	
L	14	22\$	30E		2,096 FSL	100 FWL	32.390)663 -	103.859917	EDDY	
								,			
Unitized	d Area of Are	ea of Interest		Spacing U	Jnit Type: ☑ Horiz	ontal Vertical	Grou	nd Elevation	3,365'		
	INIVITAL	VI-07 0303X									
OPERA	TOR CERTI	FICATIONS				SURVEYOR CERTIFIC	ATIONS				
I hereby	certify that i	the information	contained her	ein is true a	and complete to the	I hereby certify that the well location shown on this plat was plotted from field notes of					
that this	organization	n either owns a 1	working inter	est or unleas	directional well, sed mineral interest	actual surveys made by me or under my supervision, and that the same is true and					
at this le	ocation pursi	iant to a contrac	ct with an owr	er of a work					DILLON		
at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or a voluntary pooling agreement or a compulsory pooling order of heretofore entered by the division. If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or information) in								118	MEX.	TARIS	
						TO 23786 OO					
Q		n				1/	11/	100	8/0::-	URT	
Dri	nivas	Naveen	, 1:	2/13/202	24		///		ONAL		
Signatu	re		Date			Signature and Seal of Pro	ofessional Surv	eyor			
Srini	as Nave	en Laghuv	aranıı								
Printed		Lagilav	arapu			MARK DILLON HARP 237 Certificate Number		f Survey	12/9/2024		
		ghuvarapu(@exxonm	nobil.con	n		2460				
Email A		-									
						кт			618.01300	2.10-42	

Note: No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other then the First Take Point and Last Take Point) that is closest to any outer boundary of the tract.

Surveyor shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land in not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

LINE TABLE										
LINE	AZIMUTH	LENGTH								
L1	021 06 08.19"	1,739.21								
L2	269°50'49.38"	10,318.26								

COORDINATE TABLE														
SHL (N	SHL (NAD 83 NME) FTP/KOP (NAD 83 NME)			PPP#1	(NAD 83 NM	E)	PPP#2	(NAD 83 NM	E)	PPP #3 (NAD 83 NME)				
Y =	504,582.7	Ν	Y =	506,205.3	N	Y =	506,193.6	N	Y =	506,189.3	N	Y =	506,186.4	N
X =	697,108.0	Ε	X =	697,734.1	E	X =	694,056.9	Ε	X =	692,721.7	Е	X =	691,383.2	Е
LAT. =	32.386157	°N	LAT. =	32.390609	°N	LAT. =	32.390624	°N	LAT. =	32.390629	°N	LAT. =	32.390638	°N
LONG. =	103.828705	°W	LONG. =	103.826652	°W	LONG. =	103.838565	°W	LONG. =	103.842890	°W	LONG. =	103.847226	°W
			LTP (NAD 83 NME	Ξ)				BHL (f	NAD 83 NME	:)			
			Y =	506,177.9	Ν				Y =	506,177.8	N			
			X =	687,465.9	Ε				X =	687,415.9	Е			
			LAT. =	32.390663	°N				LAT. =	32.390663				
				103.859917	°W				LONG. =	103.860079	°W			
SHL (N	VAD 27 NME)	FTP/KO	P (NAD 27 N		PPP#1	(NAD 83 NM		PPP#2	(NAD 83 NM		PPP #3	(NAD 27 NM	
Y =	504,522.1	N	Y =	506,144.7		Y =	506,132.9		Y =	506,128.7		Y =	506,125.7	
X =	655,926.4	Ε	X =	656,552.7	E	X =	652,875.4		X =	651,540.2		X =	650,201.8	
LAT. =	32.386034	°N				LAT. =				32.390506			32.390515	
LONG. =	103.828211	°W		103.826158		LONG. =	103.838070	°W	LONG. =	103.842396	°W	LONG. =	103.846732	°W
				NAD 27 NME						NAD 27 NME				
			Y =	506,117.2					Y =	506,117.1				
			X =	646,284.5					X =	646,234.5				
			LAT. =	32.390540					LAT. =	32.390540				
			LONG. =							103.859584				
COR	RNER COOR	DIN		AD 83 NME)						NER COOR		 	AD 27 NME)	
A - Y =	506,750.2	Ν		698,061.8	Е				A - Y =	506,689.5	N		656,880.3	Ε
B-Y=	506,741.3	N	B-X=	695,389.1	Е				B-Y=	506,680.6	N		654,207.6	E
C - Y =	506,732.3	Ν	C-X=	692,717.9	Е				C - Y =	506,671.6	N		651,536.5	Ε
D - Y =	506,727.2	Ν	D-X=	690,042.0	Е				D - Y =	506,666.5	N		648,860.6	Е
E-Y=	506,721.9	Ν	E-X=	687,363.8	Ε				E-Y=	506,661.2	N		646,182.4	Е
F-Y=	505,430.3	Ν	F-X=	698,067.5	Е				F-Y=	505,369.7	N		656,886.0	Ε
G-Y=	505,421.3	Ν	G-X=	695,396.5	Ε				G-Y=	505,360.7	N		654,215.0	Е
H-Y=	505,412.6	Ν	H-X=	692,726.6	E				H-Y=	505,351.9	N		651,545.1	Е
I-Y=	505,407.3	Ν	I-X=	690,049.1	Е				I-Y=	505,346.6	N		648,867.6	Е
J-Y=	505,401.8	N	J-X=	687,369.0	Е				J-Y=	505,341.1	N	J-X=	646,187.5	Ε

KT 618.013002.10-42

DRILLING PLAN: BLM COMPLIANCE (Supplement to BLM 3160-3)

XTO Energy Inc.

JAMES RANCH UNIT APACHE 803H

Projected TD: 21180.35' MD / 10906' TVD

SHL: 476' FSL & 963' FEL , Section 13, T22S, R30E

BHL: 2096' FSL & 50' FWL , Section 14, T22S, R30E

EDDY County, NM

1. Geologic Name of Surface Formation

A. Quaternary

2. Estimated Tops of Geological Markers & Depths of Anticipated Fresh Water, Oil or Gas

Well Depth (TVD)	Water/Oil/Gas
473'	Water
773'	Water
1457'	Water
3625'	Water
3886'	Water
6394'	Water/Oil/Gas
7803'	Water
8650'	Water/Oil/Gas
9258'	Water/Oil/Gas
9874'	Water/Oil/Gas
10906'	Water/Oil/Gas
	473' 773' 1457' 3625' 3886' 6394' 7803' 8650' 9258' 9874'

^{***} Hydrocarbons @ Brushy Canyon

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water sands will be protected by setting 13.375 inch casing @ 748' (25' above the salt) and circulating cement back to surface. The salt will be isolated by setting 9.625 inch casing at 3725' and circulating cement to surface. The second intermediate will isolate from the salt down to the next casing seat by setting 7.625 inch casing at 9989.8'. A 6.75 inch curve and 6.75 inch lateral hole will be drilled to 21180.35 MD/TD and 5.5 inch production casing will be set at TD.

3. Casing Design

Hole Size	TVD	OD Csg	Weight	Grade	Collar	New/Used	SF Burst	SF Collapse	SF Tension
17.5	0' – 748'	13.375	54.5	J-55	втс	New	2.45	3.42	22.30
12.25	0' – 3725'	9.625	40	J-55	втс	New	1.59	2.43	4.23
8.75	0' – 3825'	7.625	29.7	RY P-110	Flush Joint	New	2.79	2.99	1.88
8.75	3825' – 9989.8'	7.625	29.7	HC L-80	Flush Joint	New	2.03	3.21	2.22
6.75	0' – 9889.8'	5.5	20	RY P-110	Semi-Premium / Freedom	New	1.26	2.12	2.15
6.75	9889.8' - 21180.35'	5.5	20	RY P-110	Semi-Flush / Talon	New	1.26	1.92	6.35

[·] XTO requests the option to utilize a spudder rig (Atlas Copco RD20 or Equivalent) to set and cement surface casing.

^{***} Groundwater depth 40' (per NM State Engineers Office).

Wellhead:

Permanent Wellhead

Multibowl System for 4 String desing as per attachement.

4. Cement Program

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

Surface Casing: 13.375, 54.5 New BTC, J-55 casing to be set at +/- 748'

Lead: 330 sxs EconoCem-HLTRRC (mixed at 12.9 ppg, 1.87 ft3/sx, 10.13 gal/sx water)

Tail: 300 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 250 psi 24 hr = 500 psi

1st Intermediate Casing: 9.625, 40 New BTC, J-55 casing to be set at +/- 3725'

Lead: 1540 sxs Class C (mixed at 12.9 ppg, 1.39 ft3/sx, 10.13 gal/sx water)

Tail: 130 sxs Class C + 2% CaCl (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

Top of Cement: Surface

Compressives: 12-hr = 900 psi 24 hr = 1500 psi

2nd Intermediate Casing: 7.625, 29.7 New casing to be set at +/- 9989.8'

Tail: 200 sxs Class C (mixed at 14.8 ppg, 1.35 ft3/sx, 6.39 gal/sx water)

TOC:@ 7803

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

2nd Stage

Tail: 580 sxs Class C (mixed at 14.8 ppg, 1.33 ft3/sx, 6.39 gal/sx water)

Top of Cement: 3225

Compressives: 12-hr = 900 psi 24 hr = 1150 psi

Compressives: 12-nr = 900 psi 24 nr = 1150 ps

XTO requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated (TOC:@ 7803') and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to 3225 (~500' inside 1st Intermediate csg string but below MB126 @ 1457 ').

XTO will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

XTO will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

XTO requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Production Casing: 5.5, 20 New Semi-Flush / Talon, RY P-110 casing to be set at +/- 21180.35'

Lead: 30 sxs NeoCem (mixed at 11.5 ppg, 2.69 ft3/sx, 15.00 gal/sx water) Top of Cement: 9489.8 feet Tail: 770 sxs VersaCem (mixed at 13.2 ppg, 1.51 ft3/sx, 8.38 gal/sx water) Top of Cement: 10453.32 feet

Compressives: 12-hr = 1375 psi 24 hr = 2285 psi

XTO requests the option to offline cement and remediate (if needed) surface and intermediate casing strings where batch drilling is approved and if unplanned remediation is needed. XTO will ensure well is static with no pressure on the csg annulus, as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed when applicable per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops. Offline cement operations will then be conducted after the rig is moved off the current well to the next well in the batch sequence.

5. Pressure Control Equipment

Once the permanent WH is installed on the casing,	the blow out preventer	equipment (BOP) v	will consist of 5M Hydril and	10M 3-Ram
BOP.				

All BOP testing will be done by an independent service company. Operator will test as per CFR 43-3172

A variance is requested to allow use of a flex hose as the choke line from the BOP to the Choke Manifold. .

XTO requests a variance to be able to batch drill this well if necessary. In doing so, XTO will set casing and ensure that the well is cemented properly (unless approval is given for offline cementing) and the well is static. With floats holding, no pressure on the csg annulus, and the installation of a 10K TA cap as per Cactus recommendations, XTO will contact the BLM to skid the rig to drill the remaining wells on the pad. Once surface and both intermediate strings are all completed, XTO will begin drilling the production hole on each of the wells.

A break testing variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53.

6. Proposed Mud Circulation System

INTERVAL	Hole Size	Mud Type	MW Viscosit y Fluid Loss		Fluid Loss	Comments	
INTERVAL	Tiole Size	Muu Type	(ppg)	(sec/qt)	(cc)	Comments	
0' - 748'	17.5	FW/Native	8.5-9	35-40	NC	Fresh water or native water	
748' - 3725'	12.25	Sat Brine	10-10.5	30-32	NC	Fully Saturated salt across salado	
3725' to 9989.8'	8.75	BDE/OBM or FW/Brine	9-9.5	30-32	NC	Depending on well conditions	
9989.8' to 21180.35'	6.75	ОВМ	10.2-10.7	50-60	NC - 20	N/A	

The necessary mud products for weight addition and fluid loss control will be on location at all times.

Spud with fresh water/native mud. Drill out from under surface casing with saturated salt brine solution. A saturated salt brine will be used while drilling through the salt formation. Use fibrous materials as needed to control seepage and lost circulation. Pump viscous sweeps as needed for hole cleaning. Pump speed will be recorded on a daily drilling report after mudding up. A Pason or Totco will be used to detect changes in loss or gain of mud volume. A mud test will be performed every 24 hours to determine: density, viscosity, strength, filtration and pH as necessary. Use available solids controls equipment to help keep mud weight down after mud up. Rig up solids control equipment to operate as a closed loop system.

7. Auxiliary Well Control and Monitoring Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having appropriate connections will be on the rig floor at all times.
- C. H2S monitors will be on location when drilling below the 13.375 casing.

8. Logging, Coring and Testing Program

Open hole logging will not be done on this well.

9. Abnormal Pressures and Temperatures / Potential Hazards

None Anticipated. BHT of 175 to 195 F is anticipated. No H2S is expected but monitors will be in place to detect any H2S occurrences. Should these circumstances be encountered the operator and drilling contractor are prepared to take all necessary steps to ensure safety of all personnel and environment. Lost circulation could occur but is not expected to be a serious problem in this area and hole seepage will be compensated for by additions of small amounts of LCM in the drilling fluid. The maximum anticipated bottom hole pressure for this well is 5785 psi.

10. Anticipated Starting Date and Duration of Operations

Anticipated spud date will be after BLM approval. Move in operations and drilling is expected to take 40 days.

Well Plan Report - James Ranch Unit Apache 803H

Measured Depth: 21180.35 ft

Site:

TVD RKB: 10906.00 ft

Slot: James Ranch Unit
Apache 803H

Ε

Location

Cartographic New Mexico East -Reference System: NAD 27 Northing: 504522.10 ft Easting: 655926.40 ft RKB: 3397.00 ft **Ground Level:** 3365.00 ft North Reference: Grid **Convergence Angle:** 0.27 Deg

Plan SectionsJames Ranch Unit Apache 803H

Measured			TVD			Build	Turn	Dogleg
Depth	Inclination	Azimuth	RKB	Y Offset	X Offset	Rate	Rate	Rate
(ft)	(Deg)	(Deg)	(ft)	(ft)	(ft)	(Deg/100ft)	(Deg/100ft)	(Deg/100ft) Target
0.00	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00
3700.00	0.00	0.00	3700.00	0.00	-0.00	0.00	0.00	0.00
4611.50	18.23	21.11	4596.20	134.14	51.78	2.00	0.00	2.00
9252.02	18.23	21.11	9003.80	1488.46	574.52	0.00	0.00	0.00
10163.52	0.00	0.00	9900.00	1622.60	626.30	-2.00	0.00	2.00
10453.32	0.00	0.00	10189.80	1622.60	626.30	0.00	0.00	0.00
11578.32	90.00	269.85	10906.00	1620.69	-89.89	8.00	0.00	8.00
21128.84	90.00	269.85	10906.00	1595.18	-9640.38	0.00	0.00	0.00 LTP 15
21180.35	90.00	269.85	10906.00	1595.05	-9691.89	0.00	0.00	0.00 BHL 15

Position Uncertainty James Ranch Unit Apache 803H

Measured TVD Highside Lateral Vertical Magnitude Semi-major Semi-minor Tool

Depth	Inclination	Azimuth	RKB	Error	Bias	Error	Bias	Error	Bias	of Bias	Error	Error	Azimuth	Used
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(°)	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	MWD+IFR1+MS
100.000	0.000	0.000	100.000	0.700	0.000	0.350	0.000	2.300	0.000	0.000	0.751	0.220	112.264	MWD+IFR1+MS
200.000	0.000	0.000	200.000	1.112	0.000	0.861	0.000	2.310	0.000	0.000	1.259	0.627	122.711	MWD+IFR1+MS
300.000	0.000	0.000	300.000	1.497	0.000	1.271	0.000	2.325	0.000	0.000	1.698	0.986	125.469	MWD+IFR1+MS
400.000	0.000	0.000	400.000	1.871	0.000	1.658	0.000	2.347	0.000	0.000	2.108	1.344	126.713	MWD+IFR1+MS
500.000	0.000	0.000	500.000	2.240	0.000	2.034	0.000	2.374	0.000	0.000	2.503	1.701	127.419	MWD+IFR1+MS
600.000	0.000	0.000	600.000	2.607	0.000	2.405	0.000	2.407	0.000	0.000	2.888	2.059	127.873	MWD+IFR1+MS
700.000	0.000	0.000	700.000	2.971	0.000	2.773	0.000	2.444	0.000	0.000	3.267	2.417	128.190	MWD+IFR1+MS
800.000	0.000	0.000	800.000	3.334	0.000	3.138	0.000	2.485	0.000	0.000	3.642	2.775	128.423	MWD+IFR1+MS
900.000	0.000	0.000	900.000	3.696	0.000	3.502	0.000	2.531	0.000	0.000	4.014	3.133	128.602	MWD+IFR1+MS
1000.000	0.000	0.000	1000.000	4.058	0.000	3.865	0.000	2.581	0.000	0.000	4.384	3.491	128.744	MWD+IFR1+MS
1100.000	0.000	0.000	1100.000	4.419	0.000	4.228	0.000	2.634	0.000	0.000	4.752	3.849	128.859	MWD+IFR1+MS
1200.000	0.000	0.000	1200.000	4.779	0.000	4.589	0.000	2.691	0.000	0.000	5.119	4.207	128.954	MWD+IFR1+MS
1300.000	0.000	0.000	1300.000	5.140	0.000	4.950	0.000	2.751	0.000	0.000	5.484	4.565	129.034	MWD+IFR1+MS
1400.000	0.000	0.000	1400.000	5.500	0.000	5.311	0.000	2.813	0.000	0.000	5.849	4.924	129.102	MWD+IFR1+MS
1500.000	0.000	0.000	1500.000	5.860	0.000	5.672	0.000	2.878	0.000	0.000	6.213	5.282	129.161	MWD+IFR1+MS
1600.000	0.000	0.000	1600.000	6.219	0.000	6.032	0.000	2.946	0.000	0.000	6.577	5.640	129.212	MWD+IFR1+MS
1700.000	0.000	0.000	1700.000	6.579	0.000	6.392	0.000	3.015	0.000	0.000	6.939	5.999	129.257	MWD+IFR1+MS
1800.000	0.000	0.000	1800.000	6.938	0.000	6.752	0.000	3.087	0.000	0.000	7.302	6.357	129.297	MWD+IFR1+MS
1900.000	0.000	0.000	1900.000	7.298	0.000	7.112	0.000	3.161	0.000	0.000	7.664	6.715	129.333	MWD+IFR1+MS
2000.000	0.000	0.000	2000.000	7.657	0.000	7.471	0.000	3.236	0.000	0.000	8.026	7.074	129.365	MWD+IFR1+MS
2100.000	0.000	0.000	2100.000	8.016	0.000	7.831	0.000	3.313	0.000	0.000	8.387	7.432	129.394	MWD+IFR1+MS
2200.000	0.000	0.000	2200.000	8.375	0.000	8.190	0.000	3.392	0.000	0.000	8.748	7.791	129.420	MWD+IFR1+MS
2300.000	0.000	0.000	2300.000	8.734	0.000	8.550	0.000	3.472	0.000	0.000	9.109	8.149	129.444	MWD+IFR1+MS
2400.000	0.000	0.000	2400.000	9.093	0.000	8.909	0.000	3.554	0.000	0.000	9.470	8.507	129.466	MWD+IFR1+MS
2500.000	0.000	0.000	2500.000	9.452	0.000	9.268	0.000	3.637	0.000	0.000	9.831	8.866	129.486	MWD+IFR1+MS
2600.000	0.000	0.000	2600.000	9.811	0.000	9.627	0.000	3.722	0.000	0.000	10.191	9.224	129.505	MWD+IFR1+MS
2700.000	0.000	0.000	2700.000	10.170	0.000	9.986	0.000	3.808	0.000	0.000	10.552	9.583	129.522	MWD+IFR1+MS
2800.000	0.000	0.000	2800.000	10.529	0.000	10.345	0.000	3.895	0.000	0.000	10.912	9.941	129.538	MWD+IFR1+MS
2900.000	0.000	0.000	2900.000	10.888	0.000	10.705	0.000	3.984	0.000	0.000	11.272	10.299	129.552	MWD+IFR1+MS
3000.000	0.000	0.000	3000.000	11.247	0.000	11.063	0.000	4.074	0.000	0.000	11.632	10.658	129.566	MWD+IFR1+MS

Well Plan Report

Received by 20 GD: 4/4/2025 7:29:12 AM

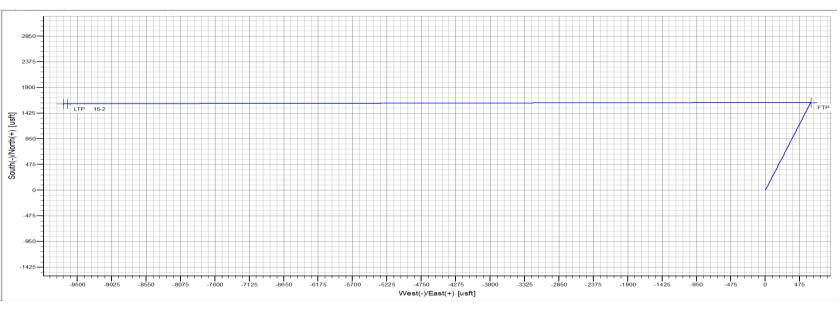
							•				
3100.000	0.000	0.000	3100.000	11.606	0.000	11.422 0.000	4.165 0.000	0.000	11.992	11.016	129.579 MWD+IFR1+MS
3200.000	0.000	0.000	3200.000	11.965	0.000	11.781 0.000	4.258 0.000	0.000	12.352	11.375	129.591 MWD+IFR1+MS
3300.000	0.000	0.000	3300.000	12.323	0.000	12.140 0.000	4.352 0.000	0.000	12.712	11.733	129.603 MWD+IFR1+MS
3400.000	0.000	0.000	3400.000	12.682	0.000	12.499 0.000	4.447 0.000	0.000	13.071	12.092	129.613 MWD+IFR1+MS
3500.000	0.000	0.000	3500.000	13.041	0.000	12.858 0.000	4.544 0.000	0.000	13.431	12.450	129.623 MWD+IFR1+MS
3600.000	0.000	0.000	3600.000	13.400	0.000	13.217 0.000	4.642 0.000	0.000	13.790	12.809	129.633 MWD+IFR1+MS
3700.000	0.000	0.000	3700.000	13.758	0.000	13.576 0.000	4.741 0.000	0.000	14.150	13.167	129.642 MWD+IFR1+MS
3800.000	2.000	21.106	3799.980	14.467	0.000	13.631 0.000	4.842 0.000	0.000	14.575	13.524	129.362 MWD+IFR1+MS
3900.000	4.000	21.106	3899.838	14.962	0.000	13.995 0.000	4.944 0.000	0.000	15.099	13.880	128.606 MWD+IFR1+MS
4000.000	6.000	21.106	3999.452	15.431	0.000	14.357 0.000	5.049 0.000	0.000	15.612	14.235	128.054 MWD+IFR1+MS
4100.000	8.000	21.106	4098.702	15.875	0.000	14.718 0.000	5.158 0.000	0.000	16.114	14.589	127.635 MWD+IFR1+MS
4200.000	10.000	21.106	4197.465	16.295	0.000	15.077 0.000	5.273 0.000	0.000	16.605	14.940	127.312 MWD+IFR1+MS
4300.000	12.000	21.106	4295.623	16.690	0.000	15.434 0.000	5.394 0.000	0.000	17.086	15.291	127.059 MWD+IFR1+MS
4400.000	14.000	21.106	4393.055	17.063	0.000	15.789 0.000	5.523 0.000	0.000	17.556	15.640	126.863 MWD+IFR1+MS
4500.000	16.000	21.106	4489.643	17.412	0.000	16.143 0.000	5.661 0.000	0.000	18.016	15.988	126.713 MWD+IFR1+MS
4600.000	18.000	21.106	4585.268	17.739	0.000	16.496 0.000	5.808 0.000	0.000	18.466	16.335	126.603 MWD+IFR1+MS
4611.497	18.230	21.106	4596.196	17.758	0.000	16.536 0.000	5.817 0.000	0.000	18.502	16.375	126.585 MWD+IFR1+MS
4700.000	18.230	21.106	4680.257	18.044	0.000	16.841 0.000	5.924 0.000	0.000	18.773	16.684	126.593 MWD+IFR1+MS
4800.000	18.230	21.106	4775.237	18.375	0.000	17.197 0.000	6.050 0.000	0.000	19.089	17.039	126.755 MWD+IFR1+MS
4900.000	18.230	21.106	4870.218	18.711	0.000	17.555 0.000	6.180 0.000	0.000	19.410	17.397	126.942 MWD+IFR1+MS
5000.000	18.230	21.106	4965.199	19.050	0.000	17.915 0.000	6.314 0.000	0.000	19.734	17.757	127.128 MWD+IFR1+MS
5100.000	18.230	21.106	5060.180	19.393	0.000	18.278 0.000	6.451 0.000	0.000	20.060	18.119	127.313 MWD+IFR1+MS
5200.000	18.230	21.106	5155.161	19.738	0.000	18.642 0.000	6.592 0.000	0.000	20.390	18.482	127.498 MWD+IFR1+MS
5300.000	18.230	21.106	5250.142	20.087	0.000	19.007 0.000	6.736 0.000	0.000	20.722	18.848	127.681 MWD+IFR1+MS
5400.000	18.230	21.106	5345.123	20.438	0.000	19.374 0.000	6.883 0.000	0.000	21.057	19.215	127.863 MWD+IFR1+MS
5500.000	18.230	21.106	5440.103	20.792	0.000	19.743 0.000	7.033 0.000	0.000	21.394	19.583	128.044 MWD+IFR1+MS
5600.000	18.230	21.106	5535.084	21.148	0.000	20.113 0.000	7.186 0.000	0.000	21.733	19.953	128.224 MWD+IFR1+MS
5700.000	18.230	21.106	5630.065	21.507	0.000	20.485 0.000	7.342 0.000	0.000	22.074	20.324	128.403 MWD+IFR1+MS
5800.000	18.230	21.106	5725.046	21.868	0.000	20.857 0.000	7.501 0.000	0.000	22.418	20.696	128.581 MWD+IFR1+MS
5900.000	18.230	21.106	5820.027	22.231	0.000	21.231 0.000	7.663 0.000	0.000	22.764	21.070	128.758 MWD+IFR1+MS
6000.000	18.230	21.106	5915.008	22.596	0.000	21.606 0.000	7.828 0.000	0.000	23.111	21.445	128.934 MWD+IFR1+MS
6100.000	18.230	21.106	6009.989	22.963	0.000	21.982 0.000	7.995 0.000	0.000	23.460	21.820	129.108 MWD+IFR1+MS
6200.000	18.230	21.106	6104.970	23.332	0.000	22.359 0.000	8.165 0.000	0.000	23.812	22.197	129.282 MWD+IFR1+MS

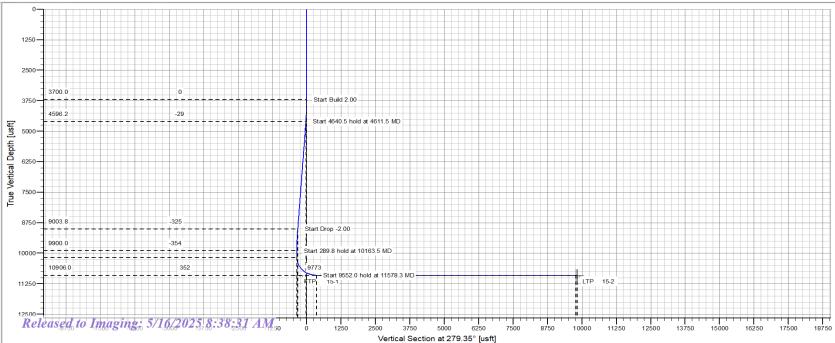
6300.000	18.230	21.106	6199.950	23.703	0.000	22.738 0.000	8.338	0.000	0.000	24.164	22.575	129.454 MWD+IFR1+MS
6400.000	18.230	21.106	6294.931	24.075	0.000	23.116 0.000	8.513	0.000	0.000	24.519	22.954	129.624 MWD+IFR1+MS
6500.000	18.230	21.106	6389.912	24.449	0.000	23.496 0.000	8.691	0.000	0.000	24.875	23.333	129.793 MWD+IFR1+MS
6600.000	18.230	21.106	6484.893	24.824	0.000	23.877 0.000	8.872	0.000	0.000	25.232	23.714	129.961 MWD+IFR1+MS
6700.000	18.230	21.106	6579.874	25.201	0.000	24.258 0.000	9.055	0.000	0.000	25.591	24.095	130.128 MWD+IFR1+MS
6800.000	18.230	21.106	6674.855	25.580	0.000	24.641 0.000	9.240	0.000	0.000	25.951	24.477	130.292 MWD+IFR1+MS
6900.000	18.230	21.106	6769.836	25.959	0.000	25.024 0.000	9.428	0.000	0.000	26.313	24.860	130.456 MWD+IFR1+MS
7000.000	18.230	21.106	6864.816	26.340	0.000	25.407 0.000	9.618	0.000	0.000	26.675	25.243	130.617 MWD+IFR1+MS
7100.000	18.230	21.106	6959.797	26.722	0.000	25.792 0.000	9.811	0.000	0.000	27.039	25.628	130.777 MWD+IFR1+MS
7200.000	18.230	21.106	7054.778	27.106	0.000	26.176 0.000	10.006	0.000	0.000	27.405	26.012	130.935 MWD+IFR1+MS
7300.000	18.230	21.106	7149.759	27.490	0.000	26.562 0.000	10.204	0.000	0.000	27.771	26.398	131.092 MWD+IFR1+MS
7400.000	18.230	21.106	7244.740	27.876	0.000	26.948 0.000	10.404	0.000	0.000	28.138	26.784	131.246 MWD+IFR1+MS
7500.000	18.230	21.106	7339.721	28.262	0.000	27.335 0.000	10.606	0.000	0.000	28.507	27.170	131.399 MWD+IFR1+MS
7600.000	18.230	21.106	7434.702	28.650	0.000	27.722 0.000	10.811	0.000	0.000	28.876	27.558	131.549 MWD+IFR1+MS
7700.000	18.230	21.106	7529.682	29.038	0.000	28.109 0.000	11.017	0.000	0.000	29.247	27.945	131.697 MWD+IFR1+MS
7800.000	18.230	21.106	7624.663	29.428	0.000	28.498 0.000	11.227	0.000	0.000	29.618	28.333	131.843 MWD+IFR1+MS
7900.000	18.230	21.106	7719.644	29.818	0.000	28.886 0.000	11.438	0.000	0.000	29.991	28.722	131.987 MWD+IFR1+MS
8000.000	18.230	21.106	7814.625	30.209	0.000	29.275 0.000	11.652	0.000	0.000	30.364	29.111	132.129 MWD+IFR1+MS
8100.000	18.230	21.106	7909.606	30.601	0.000	29.665 0.000	11.868	0.000	0.000	30.738	29.501	132.268 MWD+IFR1+MS
8200.000	18.230	21.106	8004.587	30.994	0.000	30.055 0.000	12.087	0.000	0.000	31.113	29.891	132.404 MWD+IFR1+MS
8300.000	18.230	21.106	8099.568	31.387	0.000	30.445 0.000	12.307	0.000	0.000	31.489	30.281	132.538 MWD+IFR1+MS
8400.000	18.230	21.106	8194.549	31.781	0.000	30.836 0.000	12.531	0.000	0.000	31.865	30.672	132.669 MWD+IFR1+MS
8500.000	18.230	21.106	8289.529	32.176	0.000	31.227 0.000	12.756	0.000	0.000	32.242	31.063	132.797 MWD+IFR1+MS
8600.000	18.230	21.106	8384.510	32.572	0.000	31.618 0.000	12.984	0.000	0.000	32.620	31.455	132.923 MWD+IFR1+MS
8700.000	18.230	21.106	8479.491	32.968	0.000	32.010 0.000	13.214	0.000	0.000	32.999	31.847	133.045 MWD+IFR1+MS
8800.000	18.230	21.106	8574.472	33.365	0.000	32.402 0.000	13.446	0.000	0.000	33.379	32.239	133.165 MWD+IFR1+MS
8900.000	18.230	21.106	8669.453	33.762	0.000	32.794 0.000	13.680	0.000	0.000	33.759	32.631	133.281 MWD+IFR1+MS
9000.000	18.230	21.106	8764.434	34.160	0.000	33.187 0.000	13.917	0.000	0.000	34.139	33.024	133.394 MWD+IFR1+MS
9100.000	18.230	21.106	8859.415	34.559	0.000	33.580 0.000	14.156	0.000	0.000	34.521	33.418	133.503 MWD+IFR1+MS
9200.000	18.230	21.106	8954.395	34.958	0.000	33.973 0.000	14.398	0.000	0.000	34.903	33.811	133.609 MWD+IFR1+MS
9252.019	18.230	21.106	9003.804	35.164	0.000	34.176 0.000	14.524	0.000	0.000	35.099	34.015	133.590 MWD+IFR1+MS
9300.000	17.270	21.106	9049.500	35.419	0.000	34.362 0.000	14.641	0.000	0.000	35.280	34.203	133.547 MWD+IFR1+MS
9400.000	15.270	21.106	9145.490	35.957	0.000	34.749 0.000	14.891	0.000	0.000	35.692	34.592	133.161 MWD+IFR1+MS

9500.000	13.270	21.106	9242.399	36.483	0.000	35.133	0.000	15.141	0.000	0.000	36.135	34.976	132.569 MWD+IFR1+MS	j
9600.000	11.270	21.106	9340.110	36.963	0.000	35.512	0.000	15.386	0.000	0.000	36.574	35.354	132.020 MWD+IFR1+MS	í
9700.000	9.270	21.106	9438.503	37.394	0.000	35.885	0.000	15.625	0.000	0.000	37.008	35.727	131.519 MWD+IFR1+MS	j
9800.000	7.270	21.106	9537.458	37.778	0.000	36.252	0.000	15.858	0.000	0.000	37.435	36.092	131.072 MWD+IFR1+MS	j
9900.000	5.270	21.106	9636.855	38.112	0.000	36.611	0.000	16.088	0.000	0.000	37.855	36.451	130.679 MWD+IFR1+MS	j
10000.000	3.270	21.106	9736.572	38.398	0.000	36.964	0.000	16.315	0.000	0.000	38.267	36.802	130.341 MWD+IFR1+MS	j
10100.000	1.270	21.106	9836.488	38.636	0.000	37.309	0.000	16.539	0.000	0.000	38.669	37.145	130.059 MWD+IFR1+MS	j
10163.517	0.000	0.000	9900.000	38.269	0.000	37.997	0.000	16.680	0.000	0.000	38.891	37.360	129.882 MWD+IFR1+MS	j
10200.000	0.000	0.000	9936.483	38.389	0.000	38.117	0.000	16.761	0.000	0.000	39.008	37.483	129.855 MWD+IFR1+MS	í
10300.000	0.000	0.000	10036.483	38.717	0.000	38.446	0.000	16.986	0.000	0.000	39.330	37.818	129.844 MWD+IFR1+MS	í
10400.000	0.000	0.000	10136.483	39.047	0.000	38.778	0.000	17.214	0.000	0.000	39.658	38.154	129.850 MWD+IFR1+MS	í
10453.317	0.000	0.000	10189.800	39.222	0.000	38.954	0.000	17.337	0.000	0.000	39.829	38.333	129.841 MWD+IFR1+MS	j
10500.000	3.735	269.847	10236.450	38.900	-0.000	39.366	0.000	17.445	0.000	0.000	39.975	38.494	130.017 MWD+IFR1+MS	j
10600.000	11.735	269.847	10335.460	38.895	-0.000	39.669	0.000	17.706	0.000	0.000	40.510	39.132	-38.528 MWD+IFR1+MS	j
10700.000	19.735	269.847	10431.634	38.820	-0.000	39.963	0.000	18.106	0.000	0.000	41.453	39.737	-21.225 MWD+IFR1+MS	i
10800.000	27.735	269.847	10523.102	38.215	-0.000	40.244	0.000	18.702	0.000	0.000	42.433	40.134	-12.622 MWD+IFR1+MS	j
10900.000	35.735	269.847	10608.082	37.158	-0.000	40.508	0.000	19.538	0.000	0.000	43.303	40.448	-8.329 MWD+IFR1+MS	j
11000.000	43.735	269.847	10684.921	35.759	-0.000	40.755	0.000	20.624	0.000	0.000	44.013	40.720	-5.936 MWD+IFR1+MS	j
11100.000	51.735	269.847	10752.123	34.161	-0.000	40.985	0.000	21.942	0.000	0.000	44.553	40.963	-4.530 MWD+IFR1+MS	j
11200.000	59.735	269.847	10808.380	32.539	-0.000	41.198	0.000	23.449	0.000	0.000	44.930	41.183	-3.752 MWD+IFR1+MS	j
11300.000	67.735	269.847	10852.597	31.104	-0.000	41.396	0.000	25.093	0.000	0.000	45.163	41.382	-3.461 MWD+IFR1+MS	j
11400.000	75.735	269.847	10883.913	30.079	-0.000	41.578	0.000	26.811	0.000	0.000	45.281	41.563	-3.624 MWD+IFR1+MS	j
11500.000	83.735	269.847	10901.719	29.672	-0.000	41.743	0.000	28.544	0.000	0.000	45.325	41.724	-4.254 MWD+IFR1+MS	j
11578.317	90.000	269.847	10905.997	29.446	0.000	41.857	0.000	29.446	0.000	0.000	45.337	41.830	-5.092 MWD+IFR1+MS	j
11600.000	90.000	269.847	10905.997	29.506	0.000	41.887	0.000	29.506	0.000	0.000	45.340	41.857	-5.361 MWD+IFR1+MS	j
11700.000	90.000	269.847	10905.997	29.747	0.000	42.046	0.000	29.747	0.000	0.000	45.356	42.001	-6.690 MWD+IFR1+MS	j
11800.000	90.000	269.847	10905.997	30.010	0.000	42.237	0.000	30.010	0.000	0.000	45.377	42.172	-8.190 MWD+IFR1+MS	j
11900.000	90.000	269.847	10905.997	30.292	0.000	42.457	0.000	30.292	0.000	0.000	45.404	42.366	-9.913 MWD+IFR1+MS	j
12000.000	90.000	269.847	10905.997	30.591	0.000	42.705	0.000	30.591	0.000	0.000	45.439	42.582	-11.931 MWD+IFR1+MS	j
12100.000	90.000	269.847	10905.997	30.907	0.000	42.981	0.000	30.907	0.000	0.000	45.483	42.816	-14.335 MWD+IFR1+MS	i
12200.000	90.000	269.847	10905.997	31.240	0.000	43.284	0.000	31.240	0.000	0.000	45.540	43.064	-17.246 MWD+IFR1+MS	i
12300.000	90.000	269.847	10905.997	31.588	0.000	43.614	0.000	31.588	0.000	0.000	45.616	43.322	-20.803 MWD+IFR1+MS	i
12400.000	90.000	269.847	10905.997	31.953	0.000	43.970	0.000	31.953	0.000	0.000	45.716	43.581	-25.146 MWD+IFR1+MS	j

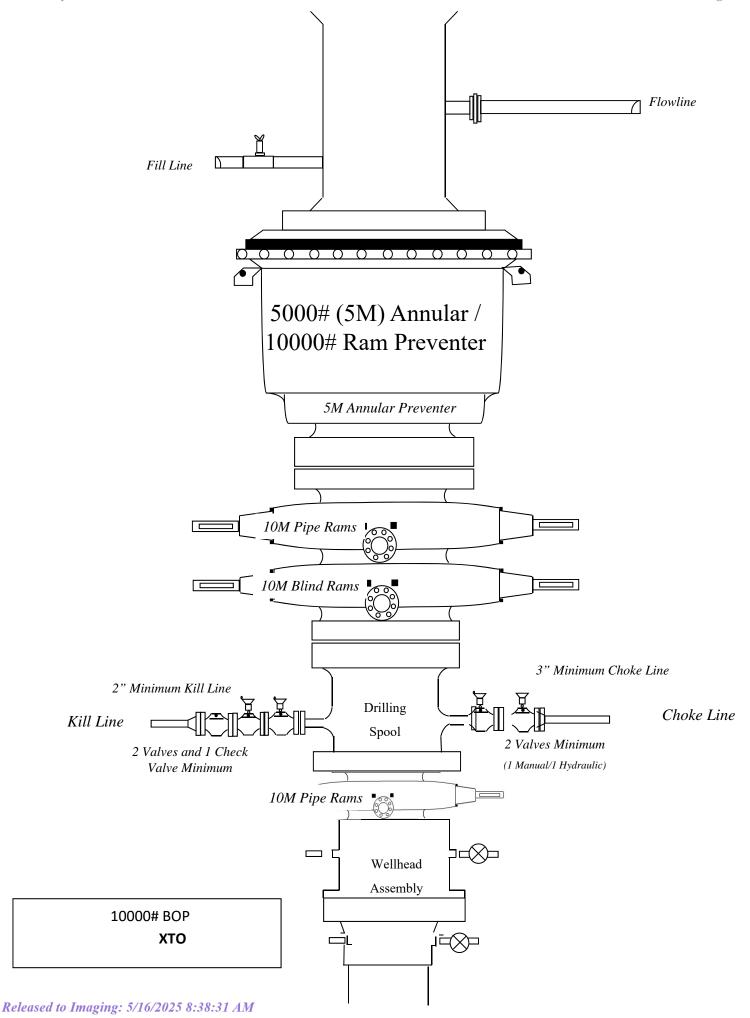
Received by 20 GD: 4/4/2025 7:29:12 AM

										•				
12500.000	90.000	269.847	10905.997	32.332	0.000	44.351	0.000	32.332	0.000	0.000	45.851	43.832	-30.347	MWD+IFR1+MS
12600.000	90.000	269.847	10905.997	32.725	0.000	44.758	0.000	32.725	0.000	0.000	46.031	44.063	-36.301	MWD+IFR1+MS
12700.000	90.000	269.847	10905.997	33.133	0.000	45.188	0.000	33.133	0.000	0.000	46.264	44.265	-42.641	MWD+IFR1+MS
12800.000	90.000	269.847	10905.997	33.553	0.000	45.642	0.000	33.553	0.000	0.000	46.556	44.433	131.179	MWD+IFR1+MS
12900.000	90.000	269.847	10905.997	33.987	0.000	46.119	0.000	33.987	0.000	0.000	46.906	44.566	125.632	MWD+IFR1+MS
13000.000	90.000	269.847	10905.997	34.433	0.000	46.618	0.000	34.433	0.000	0.000	47.306	44.671	120.942	MWD+IFR1+MS
13100.000	90.000	269.847	10905.997	34.891	0.000	47.138	0.000	34.891	0.000	0.000	47.751	44.753	117.102	MWD+IFR1+MS
13200.000	90.000	269.847	10905.997	35.361	0.000	47.679	0.000	35.361	0.000	0.000	48.234	44.819	113.994	MWD+IFR1+MS
13300.000	90.000	269.847	10905.997	35.842	0.000	48.240	0.000	35.842	0.000	0.000	48.748	44.874	111.475	MWD+IFR1+MS
13400.000	90.000	269.847	10905.997	36.333	0.000	48.821	0.000	36.333	0.000	0.000	49.292	44.919	109.415	MWD+IFR1+MS
13500.000	90.000	269.847	10905.997	36.834	0.000	49.420	0.000	36.834	0.000	0.000	49.860	44.959	107.711	MWD+IFR1+MS
13600.000	90.000	269.847	10905.997	37.345	0.000	50.037	0.000	37.345	0.000	0.000	50.452	44.994	106.285	MWD+IFR1+MS
13700.000	90.000	269.847	10905.997	37.866	0.000	50.671	0.000	37.866	0.000	0.000	51.064	45.026	105.077	MWD+IFR1+MS
13800.000	90.000	269.847	10905.997	38.395	0.000	51.322	0.000	38.395	0.000	0.000	51.697	45.055	104.042	MWD+IFR1+MS
13900.000	90.000	269.847	10905.997	38.934	0.000	51.989	0.000	38.934	0.000	0.000	52.348	45.082	103.147	MWD+IFR1+MS
14000.000	90.000	269.847	10905.997	39.480	0.000	52.671	0.000	39.480	0.000	0.000	53.016	45.108	102.364	MWD+IFR1+MS
14100.000	90.000	269.847	10905.997	40.034	0.000	53.368	0.000	40.034	0.000	0.000	53.701	45.133	101.675	MWD+IFR1+MS
14200.000	90.000	269.847	10905.997	40.596	0.000	54.080	0.000	40.596	0.000	0.000	54.401	45.158	101.063	MWD+IFR1+MS
14300.000	90.000	269.847	10905.997	41.165	0.000	54.805	0.000	41.165	0.000	0.000	55.116	45.182	100.516	MWD+IFR1+MS
14400.000	90.000	269.847	10905.997	41.742	0.000	55.543	0.000	41.742	0.000	0.000	55.845	45.205	100.023	MWD+IFR1+MS
14500.000	90.000	269.847	10905.997	42.325	0.000	56.294	0.000	42.325	0.000	0.000	56.587	45.229	99.578	MWD+IFR1+MS
14600.000	90.000	269.847	10905.997	42.914	0.000	57.057	0.000	42.914	0.000	0.000	57.342	45.252	99.173	MWD+IFR1+MS
14700.000	90.000	269.847	10905.997	43.509	0.000	57.832	0.000	43.509	0.000	0.000	58.110	45.275	98.803	MWD+IFR1+MS
14800.000	90.000	269.847	10905.997	44.111	0.000	58.618	0.000	44.111	0.000	0.000	58.889	45.299	98.464	MWD+IFR1+MS
14900.000	90.000	269.847	10905.997	44.718	0.000	59.415	0.000	44.718	0.000	0.000	59.679	45.322	98.151	MWD+IFR1+MS
15000.000	90.000	269.847	10905.997	45.331	0.000	60.222	0.000	45.331	0.000	0.000	60.480	45.346	97.862	MWD+IFR1+MS
15100.000	90.000	269.847	10905.997	45.948	0.000	61.039	0.000	45.948	0.000	0.000	61.292	45.370	97.594	MWD+IFR1+MS
15200.000	90.000	269.847	10905.997	46.571	0.000	61.866	0.000	46.571	0.000	0.000	62.113	45.395	97.345	MWD+IFR1+MS
15300.000	90.000	269.847	10905.997	47.199	0.000	62.702	0.000	47.199	0.000	0.000	62.944	45.419	97.112	MWD+IFR1+MS
15400.000	90.000	269.847	10905.997	47.831	0.000	63.546	0.000	47.831	0.000	0.000	63.783	45.444	96.895	MWD+IFR1+MS
15500.000	90.000	269.847	10905.997	48.468	0.000	64.399	0.000	48.468	0.000	0.000	64.632	45.469	96.691	MWD+IFR1+MS
15600.000	90.000	269.847	10905.997	49.109	0.000	65.261	0.000	49.109	0.000	0.000	65.488	45.495	96.499	MWD+IFR1+MS
15700.000	90.000	269.847	10905.997	49.754	0.000	66.129	0.000	49.754	0.000	0.000	66.353	45.521	96.319	MWD+IFR1+MS


15800.000	90.000	269.847	10905.997	50.403	0.000	67.006	0.000	50.403	0.000	0.000	67.225	45.548	96.149	MWD+IFR1+MS
15900.000	90.000	269.847	10905.997	51.056	0.000	67.890	0.000	51.056	0.000	0.000	68.105	45.575	95.988	MWD+IFR1+MS
16000.000	90.000	269.847	10905.997	51.713	0.000	68.780	0.000	51.713	0.000	0.000	68.992	45.602	95.835	MWD+IFR1+MS
16100.000	90.000	269.847	10905.997	52.373	0.000	69.677	0.000	52.373	0.000	0.000	69.885	45.630	95.691	MWD+IFR1+MS
16200.000	90.000	269.847	10905.997	53.037	0.000	70.581	0.000	53.037	0.000	0.000	70.786	45.658	95.554	MWD+IFR1+MS
16300.000	90.000	269.847	10905.997	53.703	0.000	71.491	0.000	53.703	0.000	0.000	71.692	45.687	95.423	MWD+IFR1+MS
16400.000	90.000	269.847	10905.997	54.373	0.000	72.406	0.000	54.373	0.000	0.000	72.605	45.716	95.299	MWD+IFR1+MS
16500.000	90.000	269.847	10905.997	55.046	0.000	73.328	0.000	55.046	0.000	0.000	73.523	45.746	95.180	MWD+IFR1+MS
16600.000	90.000	269.847	10905.997	55.722	0.000	74.255	0.000	55.722	0.000	0.000	74.447	45.776	95.067	MWD+IFR1+MS
16700.000	90.000	269.847	10905.997	56.401	0.000	75.187	0.000	56.401	0.000	0.000	75.376	45.807	94.959	MWD+IFR1+MS
16800.000	90.000	269.847	10905.997	57.083	0.000	76.124	0.000	57.083	0.000	0.000	76.311	45.838	94.855	MWD+IFR1+MS
16900.000	90.000	269.847	10905.997	57.767	0.000	77.067	0.000	57.767	0.000	0.000	77.250	45.870	94.756	MWD+IFR1+MS
17000.000	90.000	269.847	10905.997	58.453	0.000	78.014	0.000	58.453	0.000	0.000	78.194	45.902	94.660	MWD+IFR1+MS
17100.000	90.000	269.847	10905.997	59.142	0.000	78.965	0.000	59.142	0.000	0.000	79.143	45.934	94.569	MWD+IFR1+MS
17200.000	90.000	269.847	10905.997	59.834	0.000	79.921	0.000	59.834	0.000	0.000	80.097	45.968	94.481	MWD+IFR1+MS
17300.000	90.000	269.847	10905.997	60.527	0.000	80.882	0.000	60.527	0.000	0.000	81.055	46.001	94.397	MWD+IFR1+MS
17400.000	90.000	269.847	10905.997	61.223	0.000	81.846	0.000	61.223	0.000	0.000	82.016	46.035	94.315	MWD+IFR1+MS
17500.000	90.000	269.847	10905.997	61.921	0.000	82.814	0.000	61.921	0.000	0.000	82.982	46.070	94.237	MWD+IFR1+MS
17600.000	90.000	269.847	10905.997	62.621	0.000	83.786	0.000	62.621	0.000	0.000	83.952	46.105	94.161	MWD+IFR1+MS
17700.000	90.000	269.847	10905.997	63.323	0.000	84.762	0.000	63.323	0.000	0.000	84.926	46.141	94.089	MWD+IFR1+MS
17800.000	90.000	269.847	10905.997	64.027	0.000	85.741	0.000	64.027	0.000	0.000	85.903	46.177	94.018	MWD+IFR1+MS
17900.000	90.000	269.847	10905.997	64.733	0.000	86.724	0.000	64.733	0.000	0.000	86.884	46.213	93.950	MWD+IFR1+MS
18000.000	90.000	269.847	10905.997	65.441	0.000	87.710	0.000	65.441	0.000	0.000	87.868	46.251	93.885	MWD+IFR1+MS
18100.000	90.000	269.847	10905.997	66.150	0.000	88.699	0.000	66.150	0.000	0.000	88.855	46.288	93.821	MWD+IFR1+MS
18200.000	90.000	269.847	10905.997	66.861	0.000	89.692	0.000	66.861	0.000	0.000	89.846	46.326	93.760	MWD+IFR1+MS
18300.000	90.000	269.847	10905.997	67.574	0.000	90.687	0.000	67.574	0.000	0.000	90.839	46.365	93.700	MWD+IFR1+MS
18400.000	90.000	269.847	10905.997	68.288	0.000	91.686	0.000	68.288	0.000	0.000	91.836	46.404	93.642	MWD+IFR1+MS
18500.000	90.000	269.847	10905.997	69.004	0.000	92.687	0.000	69.004	0.000	0.000	92.835	46.444	93.587	MWD+IFR1+MS
18600.000	90.000	269.847	10905.997	69.721	0.000	93.691	0.000	69.721	0.000	0.000	93.837	46.484	93.532	MWD+IFR1+MS
18700.000	90.000	269.847	10905.997	70.440	0.000	94.697	0.000	70.440	0.000	0.000	94.842	46.524	93.480	MWD+IFR1+MS
18800.000	90.000	269.847	10905.997	71.160	0.000	95.706	0.000	71.160	0.000	0.000	95.849	46.566	93.429	MWD+IFR1+MS
18900.000	90.000	269.847	10905.997	71.882	0.000	96.718	0.000	71.882	0.000	0.000	96.859	46.607	93.379	MWD+IFR1+MS
19000.000	90.000	269.847	10905.997	72.604	0.000	97.732	0.000	72.604	0.000	0.000	97.871	46.649	93.331	MWD+IFR1+MS


									=					
19100.000	90.000	269.847	10905.997	73.329	0.000	98.748	0.000	73.329	0.000	0.000	98.886	46.692	93.284	MWD+IFR1+MS
19200.000	90.000	269.847	10905.997	74.054	0.000	99.766	0.000	74.054	0.000	0.000	99.903	46.735	93.238	MWD+IFR1+MS
19300.000	90.000	269.847	10905.997	74.780	0.000	100.787	0.000	74.780	0.000	0.000	100.922	46.779	93.194	MWD+IFR1+MS
19400.000	90.000	269.847	10905.997	75.508	0.000	101.810	0.000	75.508	0.000	0.000	101.944	46.823	93.151	MWD+IFR1+MS
19500.000	90.000	269.847	10905.997	76.237	0.000	102.835	0.000	76.237	0.000	0.000	102.967	46.867	93.109	MWD+IFR1+MS
19600.000	90.000	269.847	10905.997	76.967	0.000	103.862	0.000	76.967	0.000	0.000	103.992	46.913	93.068	MWD+IFR1+MS
19700.000	90.000	269.847	10905.997	77.698	0.000	104.890	0.000	77.698	0.000	0.000	105.020	46.958	93.028	MWD+IFR1+MS
19800.000	90.000	269.847	10905.997	78.430	0.000	105.921	0.000	78.430	0.000	0.000	106.049	47.004	92.989	MWD+IFR1+MS
19900.000	90.000	269.847	10905.997	79.163	0.000	106.954	0.000	79.163	0.000	0.000	107.080	47.051	92.951	MWD+IFR1+MS
20000.000	90.000	269.847	10905.997	79.897	0.000	107.988	0.000	79.897	0.000	0.000	108.113	47.098	92.914	MWD+IFR1+MS
20100.000	90.000	269.847	10905.997	80.632	0.000	109.024	0.000	80.632	0.000	0.000	109.148	47.146	92.878	MWD+IFR1+MS
20200.000	90.000	269.847	10905.997	81.368	0.000	110.061	0.000	81.368	0.000	0.000	110.184	47.194	92.843	MWD+IFR1+MS
20300.000	90.000	269.847	10905.997	82.104	0.000	111.101	0.000	82.104	0.000	0.000	111.222	47.242	92.808	MWD+IFR1+MS
20400.000	90.000	269.847	10905.997	82.842	0.000	112.142	0.000	82.842	0.000	0.000	112.262	47.291	92.775	MWD+IFR1+MS
20500.000	90.000	269.847	10905.997	83.581	0.000	113.184	0.000	83.581	0.000	0.000	113.303	47.341	92.742	MWD+IFR1+MS
20600.000	90.000	269.847	10905.997	84.320	0.000	114.228	0.000	84.320	0.000	0.000	114.346	47.391	92.710	MWD+IFR1+MS
20700.000	90.000	269.847	10905.997	85.060	0.000	115.273	0.000	85.060	0.000	0.000	115.390	47.441	92.678	MWD+IFR1+MS
20800.000	90.000	269.847	10905.997	85.801	0.000	116.320	0.000	85.801	0.000	0.000	116.436	47.492	92.648	MWD+IFR1+MS
20900.000	90.000	269.847	10905.997	86.543	0.000	117.368	0.000	86.543	0.000	0.000	117.483	47.544	92.618	MWD+IFR1+MS
21000.000	90.000	269.847	10905.997	87.285	0.000	118.418	0.000	87.285	0.000	0.000	118.531	47.596	92.588	MWD+IFR1+MS
21100.000	90.000	269.847	10905.997	88.029	0.000	119.468	0.000	88.029	0.000	0.000	119.581	47.648	92.559	MWD+IFR1+MS
21128.837	90.000	269.847	10905.997	88.243	0.000	119.771	0.000	88.243	0.000	0.000	119.883	47.663	92.551	MWD+IFR1+MS
21180.349	90.000	269.847	10905.997	88.625	0.000	120.312	0.000	88.625	0.000	0.000	120.424	47.691	92.537	MWD+IFR1+MS

Plan Targets	James Ranch Unit Apache 803H


	Measured Depth	Grid Northing	Grid Easting	TVD MSL	Target Shape
Target Name	(ft)	(ft)	(ft)	(ft)	
FTP 15	11297.26	506144.70	656552.70	7509.00	CIRCLE
LTP 15	21130.36	506117.20	646284.50	7509.00	CIRCLE
BHL 15	21180.40	506117.10	646234.50	7509.00	CIRCLE

JAMES RANCH UNIT APACHE 803H

<u>Formation</u>	TVDSS (feet)	MD TVD (feet)
Alluvium	surface	surface
Rustler	2,924'	473'
Salado/Top of Salt	2,624'	773'
MB 126	1,940'	
Castile Anhydrite 1 Top	880'	2,517'
Castile Anhydrite 1 Base	455'	2,942'
Castile Anhydrite 2 Top	219'	3,178'
Castile Anhydrite 2 Base	124'	3,273'
Base Salt	-228'	3,625'
Delaw ar e/Lam ar	-489'	3,886'
Bell Canyon	-530'	3,927'
Cherry Canyon	-1,635'	5,032'
Brushy Canyon Ss.	-2,997'	6,394'
Bone Spring Lm.	-4,406'	7,803'
Avalon Ss.	-4,471'	7,868'
Upper Avalon Carb.	-4,694'	8,091'
Upper Avalon Sh.	-4,779'	8,176'
Middle Avalon Carb.	-4,923'	8,320'
Lw. Avalon Sh.	-4,997'	8,394'
First Bone Spring Carb.	-5,253'	8,650'
First Bone Spring Ss.	-5,424'	8,821'
Second Bone Spring Carb.	-5,861'	9,258'
Second Bone Spring A Ss.	-6,130'	9,527'
Second Bone Spring A/B Carb.	-6,294'	9,691'
Second Bone Spring B Ss.	-6,343'	9,740'
Third Bone Spring Carb.	-6,477'	9,874'
Harkey Ss.	-6,687'	10,084'
Third Bone Spring Shale	-6,782'	10,179'
Third Bone Spring Ss.	-7,163'	10,560'
Third Bone Spring Ss Red Hills	-7,479'	10,876'
Landing Point	-7,509'	10,906'
Horizontal TD	-7,400'	10,797'
Wolfcamp Shale	-7,621'	11,018'
Wolfcamp X Ss.	-7,526'	10,923'

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

11/8/2023 1:08:50 PM

all) P110 RY USS-FREEDOM HTQ $^{ m exttt{R}}$

MECHANICAL PROPERTIES	Pipe	USS-FREEDOM HTQ [®]	
Minimum Yield Strength	110,000		psi
Maximum Yield Strength	125,000		psi
Minimum Tensile Strength	125,000		psi
IMENSIONS	Pipe	USS-FREEDOM HTQ [®]	
Outside Diameter	5.500	6.300	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.778	in.
Standard Drift	4.653	4.653	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	20.00		lb/ft
Plain End Weight	19.83		lb/ft
CTION AREA	Pipe	USS-FREEDOM HTQ [®]	
Critical Area	5.828	5.828	sq. in.
loint Efficiency		100.0	%
RFORMANCE	Pipe	USS-FREEDOM HTQ®	
Minimum Collapse Pressure	11,100	11,100	psi
Minimum Internal Yield Pressure	12,640	12,640	psi
Minimum Pipe Body Yield Strength	641,000		lb
Joint Strength		641,000	lb
Compression Rating		641,000	lb
Reference Length [4]		21,370	ft
Maximum Uniaxial Bend Rating [2]		91.7	deg/100 ft
AKE-UP DATA	Pipe	USS-FREEDOM HTQ [®]	
Make-Up Loss		4.13	in.
Minimum Make-Up Torque [3]		15,000	ft-lb
Maximum Make-Up Torque [3]		21,000	ft-lb
Maximum Operating Torque[3]		29,500	ft-lb

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 3. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 4. Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

11/29/2021 4·16·04 PM

U. S. Steel Tubular Products 5.500" 20.00lb/ft (0.361" Wall)

P110 RY USS-TALON HTQ™ RD

MECHANICAL PROPERTIES	Pipe	USS-TALON HTQ™ RD		[6]
Minimum Yield Strength	110,000		psi	
Maximum Yield Strength	125,000		psi	
Minimum Tensile Strength	125,000		psi	
DIMENSIONS	Pipe	USS-TALON HTQ™ RD		
Outside Diameter	5.500	5.900	in.	
Wall Thickness	0.361		in.	
Inside Diameter	4.778	4.778	in.	
Standard Drift	4.653	4.653	in.	
Alternate Drift			in.	
Nominal Linear Weight, T&C	20.00		lb/ft	
Plain End Weight	19.83		lb/ft	
SECTION AREA	Pipe	USS-TALON HTQ™ RD		
Critical Area	5.828	5.828	sq. in.	
Joint Efficiency		100.0	%	[2]
PERFORMANCE	Pipe	USS-TALON HTQ™ RD		
Minimum Collapse Pressure	11,100	11,100	psi	
Minimum Internal Yield Pressure	12,640	12,640	psi	
Minimum Pipe Body Yield Strength	641,000		lb	
Joint Strength		641,000	lb	
Compression Rating		641,000	lb	
Reference Length		21,370	ft	[5]
Maximum Uniaxial Bend Rating		91.7	deg/100 ft	[3]
MAKE-UP DATA	Pipe	USS-TALON HTQ™ RD		
Make-Up Loss		5.58	in.	
Minimum Make-Up Torque		17,000	ft-lb	[4]
Maximum Make-Up Torque		20,000	ft-lb	[4]
Maximum Operating Torque		39,500	ft-lb	[4]

Notes

- 1. Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2. Joint efficiencies are calculated by dividing the connection critical area by the pipe body area.
- Uniaxial bend rating shown is structural only.
- 4. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5. Reference length is calculated by Joint Strength divided by Nominal Linear Weight, T&C with a 1.5 Safety factor.
- Coupling must meet minimum mechanical properties of the pipe.

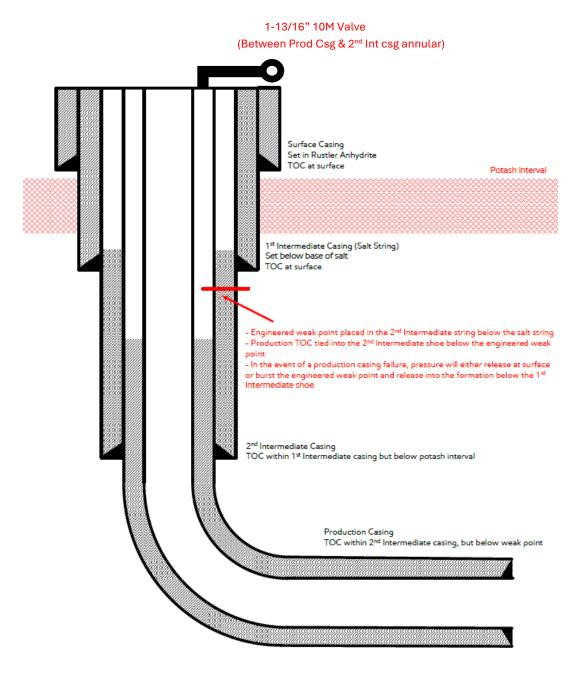
Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

ALL DIMENSIONS APPROXIMA

CACTUS WELLHEAD LLC


With 13-5/8" 10M x 7-1/16" 15M CTH-DBLHPS-SB Tubing Head And Drilling & Skid Configurations

	XTO ENERGY IN	С			
	DELAWARE BASIN				
DRAWN	VJK	31MAF			
APPRV					

SDT-3301 DRAWING NO.

FORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, SCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSLY UTHORIZED BY CACTUS WELLHEAD, LLC.

(20") x 13-3/8" x 9-5/8" x 7-5/8" x 5-1/2" MBU-4T-CFL-R-DBLO

[Figure F] 4 String – 2nd Intermediate casing engineered weak point

Update May 2024:

XTO is aware of R-111-Q update and will comply with these requirements including (but not limited to):

- 1) Alignment with KPLA requirements per schematic below, with engineering weak point casing design and utilizing new casing that meets API standards.
- 2) Contingency plans in place to divert fluids away from salt interval in event of production casing failure.
- 3) Intermediate 2 casing will consist of a primary cement job with TOC at the top of the Brushy Canyon formation within the Delaware Mountain Group.
 - a. Bradenhead squeeze to be completed after primary cement job to tie back TOC to intermediate 1 "Salt string" & below Marker Bed 126 "Potash Interval".
- 4) Production cement to be tied back no less than 500' inside previous casing shoe (intermediate 2 casing) and below the engineered weak point.

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: X10 PERMIAN OPERATING, LLC	OGRID: 3/30/5	Date: 08/19/2024	
II. Type: ⊠ Original □ Amendment due to □ 19.15.27	7.9.D(6)(a) NMAC □ 19.1	5.27.9.D(6)(b) NMAC □ Other.	
If Other, please describe:			

III. Well(s): Provide the following information for each new or recompleted well or set of wells proposed to be drilled or proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	ULSTR	Footages	Anticipated	3 yr	Anticipated	3 yr	Anticipated	3 yr
				Oil BBL/D	Anticipated	Gas	anticipated	Produced	anticipated
					decline	MCF/D	decline Gas	Water	decline
					Oil BBL/D		MCF/D	BBL/D	Water
									BBL/D
James Ranch					100		1500		200
Unit Apache			507 FSL,						
149H	TBD	13 22S 30E	864 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			477 FSL,						
150H	TBD	13 22S 30E	863 FEL	600		2500		5000	
James Ranch			1524		100		1500		200
Unit Apache			FNL, 829						
142H	TBD	24 22S 30E	FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2228 FSL,						
135H	TBD	24 22S 30E	871 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2227 FSL,						
136H	TBD	24 22S 30E	971 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2257 FSL,						
137H	TBD	24 22S 30E	971 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2167 FSL,						
138H	TBD	24 22S 30E	971 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2258 FSL,						
139H	TBD	24 22S 30E	871 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2288 FSL,						
140H	TBD	24 22S 30E	871 FEL	600		2500		5000	
James Ranch					100		1500		200
Unit Apache			2197 FSL,						
141H	TBD	24 22S 30E	971 FEL	600		2500		5000	

James Ranch					100		1500		200
Unit Apache			419 FSL,		100		1500		200
131H	TBD	24 22S 30E	890 FEL	600		2500		5000	
James Ranch			200 EGI		100		1500		200
Unit Apache 132H	TBD	24 22S 30E	389 FSL, 889 FEL	600		2500		5000	
James Ranch	IBD	24 223 30E	009 FEL	000	100	2300	1500	3000	200
Unit Apache			359 FSL,				1300		200
133H	TBD	24 22S 30E	889 FEL	600		2500		5000	
James Ranch			222 537		100		1500		200
Unit Apache 134H	TBD	24 22S 30E	329 FSL, 889 FEL	600		2500		5000	
James Ranch	IDD	24 223 30E		000	200	2300	1400	3000	400
Unit Apache		13 22S 30E	2576 FSL, 867 FEL				1		
111H	TBD		80/ FEL	2000		5000		7000	
James Ranch		12 220 205	2516 FSL,		200		1400		400
Unit Apache 112H	TBD	13 22S 30E	868 FEL	2000		5000		7000	
James Ranch	IDD			2000	200	3000	1400	7000	400
Unit Apache		13 22S 30E	416 FSL,		200		1.00		100
113H	TBD		962 FEL	2000		5000		7000	
James Ranch			350 FNL,		200		1400		400
Unit Apache 114H	TBD	24 22S 30E	949 FEL	2000		5000		7000	
James Ranch	עמו			2000	200	3000	1400	7000	400
Unit Apache		24 22S 30E	408 FNL,		200		1400		400
115H	TBD		848 FEL	2000		5000		7000	
James Ranch			2577 FSL,		100		1300		400
Unit Apache 701H	TDD	13 22S 30E	967 FEL	1000		2000		4500	
James Ranch	TBD			1000	100	2000	1300	4500	400
Unit Apache		13 22S 30E	2517 FSL,		100		1300		400
702H	TBD		968 FEL	1000		2000		4500	
James Ranch			2486 FSL,		100		1300		400
Unit Apache 703H	TDD	13 22S 30E	868 FEL	1000		2000		4500	
James Ranch	TBD			1000	100	2000	1300	4500	400
Unit Apache		13 22S 30E	2547 FSL,		100		1300		400
704H	TBD		967 FEL	1000		2000		4500	
James Ranch			2487 FSL,		100		1300		400
Unit Apache 705H	TBD	13 22S 30E	968 FEL	1000		2000		4500	
James Ranch	עמו			1000	100	2000	1300	4300	400
Unit Apache		13 22S 30E	2456 FSL,		100		1500		400
706H	TBD		869 FEL	1000		2000		4500	
James Ranch			320 FNL,		100		1300		400
Unit Apache	TDD	24 22S 30E	950 FEL	1000		2000		4500	
707H James Ranch	TBD			1000	100	2000	1300	4500	400
Unit Apache		24 22S 30E	380 FNL,						100
708H	TBD		949 FEL	1000		2000		4500	
James Ranch			348 FNL,		100		1300		400
Unit Apache	TDD	24 22S 30E	849 FEL	1000		2000		4500	
709H James Ranch	TBD			1000	100	2000	1300	4500	400
Unit Apache		24 22S 30E	410 FNL,		100		1300		700
710H	TBD		948 FEL	1000		2000		4500	
James Ranch			318 FNL,		100		1300		400
Unit Apache	TDD	24 22S 30E	850 FEL	1000		2000	1	4500	
711H James Ranch	TBD			1000	100	2000	1000	4500	300
Unit Apache		13 22S 30E	2546 FSL,		100		1000		300
801H	TBD		867 FEL	2000		6000		7000	
James Ranch			446 FSL,		100		1000		300
Unit Apache	TDD	13 22S 30E	963 FEL	2000		6000		7000	
802H	TBD	<u> </u>		2000	_1	6000	1	7000	

James Ranch			476 FSL,		100		1000		300
Unit Apache 803H	TBD	13 22S 30E	963 FEL	2000		6000		7000	
James Ranch			378 FNL,		100		1000		300
Unit Apache 804H	TBD	24 22S 30E	849 FEL	2000		6000		7000	
James Ranch	TDD		2457 FGI	2000	200	0000	1100	7000	500
Unit Apache		13 22S 30E	2457 FSL, 969 FEL						
901H James Ranch	TBD		,0,122	2000	200	5000	1100	8000	500
Unit Apache		13 22S 30E	506 FSL,		200		1100		300
902H	TBD		964 FEL	2000		5000		8000	
James Ranch Unit Apache		13 22S 30E	386 FSL,		200		1100		500
903H	TBD	13 223 30E	962 FEL	2000		5000		8000	
James Ranch			440 FNL,		200		1100		500
Unit Apache 904H	TBD	24 22S 30E	948 FEL	2000		5000		8000	
James Ranch	TDD		2287 FSL,	2000	200	2000	1100	0000	500
Unit Apache	TDD	24 22S 30E	971 FEL	2000		5000		2000	
906H James Ranch	TBD TBD			2000	100	5000	1000	8000	300
Unit Apache	155		909 FEL,		100		1000		300
805H		24 22S 30E	1526 FNL	2000		6000		7000	
James Ranch Unit Apache	TBD		909 FEL,		200		1400		400
116H		24 22S 30E	1556 FNL	2000		5000		7000	
James Ranch	TBD	24 22S 30E			200		1100		500
Unit Apache 905H			908 FEL, 1616 FNL	2000		5000		8000	
James Ranch	TBD	24 22S 30E	1010 FNL	2000	100	3000	1000	8000	300
Unit Apache			906 FEL,						
806H	TDD	24.225.205	1646 FNL	2000		6000		7000	
James Ranch Unit Apache	TBD	24 22S 30E	907 FEL,		200		1400		400
117H			1676 FNL	2000		5000		7000	
James Ranch	TBD	24 22S 30E			200		1100		500
Unit Apache 907H			930 FEL, 389 FSL	2000		5000		8000	
James Ranch	TBD	24 22S 30E	307 FSL	2000	100	5000	1000	0000	300
Unit Apache			929 FEL,						
James Ranch	TBD	24 22S 30E	359 FSL	2000	100	6000	1000	7000	200
Unit Apache	ממו	24 228 30E	929 FEL,		100		1000		300
808H			329 FSL	2000		6000		7000	

IV. Central Delivery Point Name: Longhorn Compressor Station [See 19.15.27.9(D)(1) NMAC]

V. Anticipated Schedule: Provide the following information for each new or recompleted well or set of wells proposed to be drilled or

proposed to be recompleted from a single well pad or connected to a central delivery point.

Well Name	API	Spud Date	TD Reached	Completion	Initial Flow	First Production
			Date	Commencement Date	Back Date	Date
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 149H	TBD					
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 150H	TBD					
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 142H	TBD					
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 135H	TBD					
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 136H	TBD					
James Ranch Unit		TBD	TBD	TBD	TBD	TBD
Apache 137H	TBD					

James Ranch Unit Apache 138H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 139H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 140H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 141H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 131H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 132H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 133H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 134H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 111H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 112H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 113H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 114H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 115H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 701H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 702H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 703H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 704H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 705H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 706H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 707H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 708H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 709H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 710H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 711H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 801H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 802H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 803H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 804H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 901H James Ranch Unit	TBD	TBD	TBD	TBD	TBD	TBD
Apache 902H James Ranch Unit	TBD TBD	TBD	TBD	TBD	TBD	TBD
Apache 903H James Ranch Unit Apache 904H	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Unit Apache 906H	TBD	TBD	TBD	TBD	TBD	TBD
11pacific 70011	עמז	1	I	l	1	

James Ranch Apache 805H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 116H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 905H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 806H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 117H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 907H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 807H	Unit	TBD	TBD	TBD	TBD	TBD	TBD
James Ranch Apache 808H	Unit	TBD	TBD	TBD	TBD	TBD	TBD

VI. Separation Equipment:

Attach a complete description of how Operator will size separation equipment to optimize gas capture.

VII. Operational Practices:

Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices:

Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

☑ Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system [☐ will ☐ will not have ca	apacity to gather 100% of the	ne anticipated natural gas
production volume from the well prior to the date of first	t production.		

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment.	or portion.	, of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by	the new w	ell(s).

┙ィ	Attacl	ı (Operator'	s p	lan to	manage	product	ion ir	resp	onse 1	to t	he i	ncreased	line	pressure

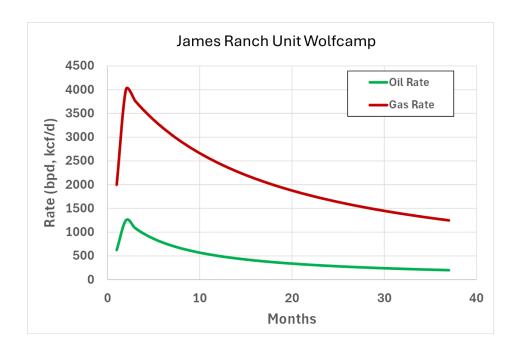
XIV.	. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information pr	rovided in
Section	on 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific in	formation
for wl	hich confidentiality is asserted and the basis for such assertion.	

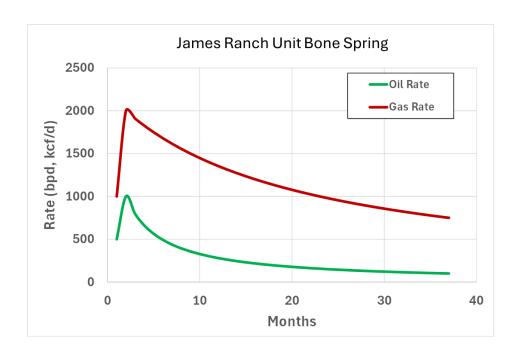
Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) power generation for grid; **(b)** compression on lease; (c) liquids removal on lease; (d) reinjection for underground storage; (e) reinjection for temporary storage; **(f)**

- reinjection for enhanced oil recovery; **(g)**
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.


Section 4 - Notices


- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	LPAL .
Printed Name:	Adrian Baker
Title:	Environmental and Regulatory Advisor
E-mail Address	adrian.baker@exxonmobil.com
Date:	9/26/24
Phone:	4322363808
	OIL CONSERVATION DIVISION (Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of A	pproval:

JRU Decline Curves – Wolfcamp and Bone Spring

VI. Separation Equipment:

XTO Permian Operating LLC. utilizes a "stage separation" process in which oil and gas separation is carried out through a series of separators operating at successively reduced pressures. Hydrocarbon liquids are produced into a high-pressure inlet separator, then carried through one or more lower pressure separation vessels before entering the storage tanks. The purpose of this separation process is to attain maximum recovery of liquid hydrocarbons from the fluids and allow maximum capture of produced gas into the sales pipeline. XTO utilizes a series of Low-Pressure Compression units to capture gas off the staged separation and send it to the sales pipeline. This process minimizes the amount of flash gas that enters the end-stage storage tanks that is subsequently vented or flared.

VII. Operational Practices

XTO Permian Operating LLC will employ best management practices and control technologies to maximize the recovery and minimize waste of natural gas through venting and flaring.

- During drilling operations, XTO will utilize flares to capture and control natural gas, where technically feasible. If flaring is deemed technically in-feasible, XTO will employ best management practices to minimize or reduce venting to the extent possible.
- During completions operations, XTO will utilize Green Completion methods to capture gas produced during well completions that is otherwise vented or flared. If capture is technically infeasible, flares will be used to control flow back fluids entering into frac tanks during initial flowback. Upon indication of first measurable hydrocarbon volumes, XTO Permian Operating LLCwill turn operations to onsite separation vessels and flow to the gathering pipeline.
- During production operations, XTO Permian Operating LLC will take every practical effort to minimize waste of natural gas through venting and flaring by:
 - Designing and constructing facilities in a manner consistent to achieve maximum capture and control of hydrocarbon liquids & produced gas
 - Utilizing a closed-loop capture system to collect, and route produced gas to sales line via low pressure compression, or to a flare/combustor
 - Flaring in lieu of venting, where technically feasible
 - Utilizing auto-ignitors or continuous pilots, with thermocouples connected to Scada, to quickly detect and resolve issues related to malfunctioning flares/combustors
 - Employ the use of automatic tank gauging to minimize storage tank venting during loading events
 - Installing air-driven or electric-driven pneumatics & combustion engines, where technically feasible to minimize venting to the atmosphere
 - Confirm equipment is properly maintained and repaired through a preventative maintenance and repair program to ensure equipment meets all manufacturer specifications

• Conduct and document AVO inspections on the frequency set forth in Part 27 to detect and repair any onsite leaks as quickly and efficiently as is feasible.

VIII. Best Management Practices during Maintenance

XTO Permian Operating LLC. will utilize best management practices to minimize venting during active and planned maintenance activities. XTO is operating under guidance that production facilities permitted under NOI permits have no provisions to allow high pressure flaring and high-pressure flaring is only allowed in disruption scenarios so long as the duration is less than eight hours. When technically feasible, flaring during maintenance activities will be utilized in lieu of venting to the atmosphere. XTO will work with third-party operators during scheduled maintenance of downstream pipeline or processing plants to address those events ahead of time to minimize venting. Actions considered include identifying alternative capture approaches or planning to temporarily reduce production or shut in the well to address these circumstances.

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE)

XTO Energy requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Onshore Oil and Gas Order CFR Title 43 Part 3170, Drilling Operations, Sections III.A.2.i.iv.B states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. CFR Title 43 Part 3170 states, "Some situation may exist either on a well-by-well basis or field-wide basis whereby it is commonly accepted practice to vary a particular minimum standard(s) established in this order. This situation can be resolved by requesting a variance...". XTO Energy feels the break testing the BOPE is such a situation. Therefore, as per CFR Title 43 Part 3170, XTO Energy submits this request for the variance.

Supporting Documentation

CFR Title 43 Part 3170 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time there have been significant changes in drilling technology. BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since CFR Title 43 Part 3170 was originally released. The XTO Energy drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

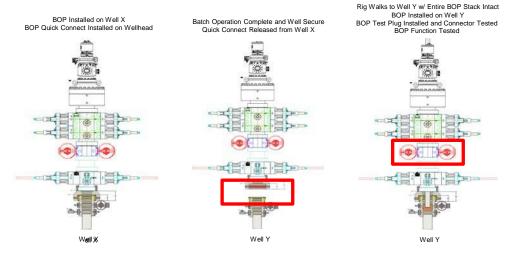
American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. CFR Title 43 Part 3170recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

Table C.4—Initial Pressure Testing, Surface BOP Stacks Pressure Test—High Pressure [∞]								
Component to be Pressure Tested	Pressure Test—Low Pressure ^{ac} psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket					
Annular preventerb	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.					
Fixed pipe, variable bore, blind, and BSR preventers ^{bd}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP					
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP					
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP					
Choke manifold—downstream of chokes* 250 to 350 (1.72 to 2.41) RWP of valve(s), line(s), or MASP for whichever is lower								
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program						
Annular(s) and VBR(s) shall be pre For pad drilling operations, moving	during the evaluation period. The person to the same tested on the largest and sm	oressure shall not decrease below the allest OD drill pipe to be used in well n the 21 days, pressure testing is req	program.					

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

XTO Energy feels break testing and our current procedures meet the intent of CFR Title 43 Part 317 Oand often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. XTO Energy's internal standards requires complete BOPE tests more often than that of CFR Title 43 Part 3170 (Every 21 days). In addition to function testing the annular, pipe rams and blind rams after

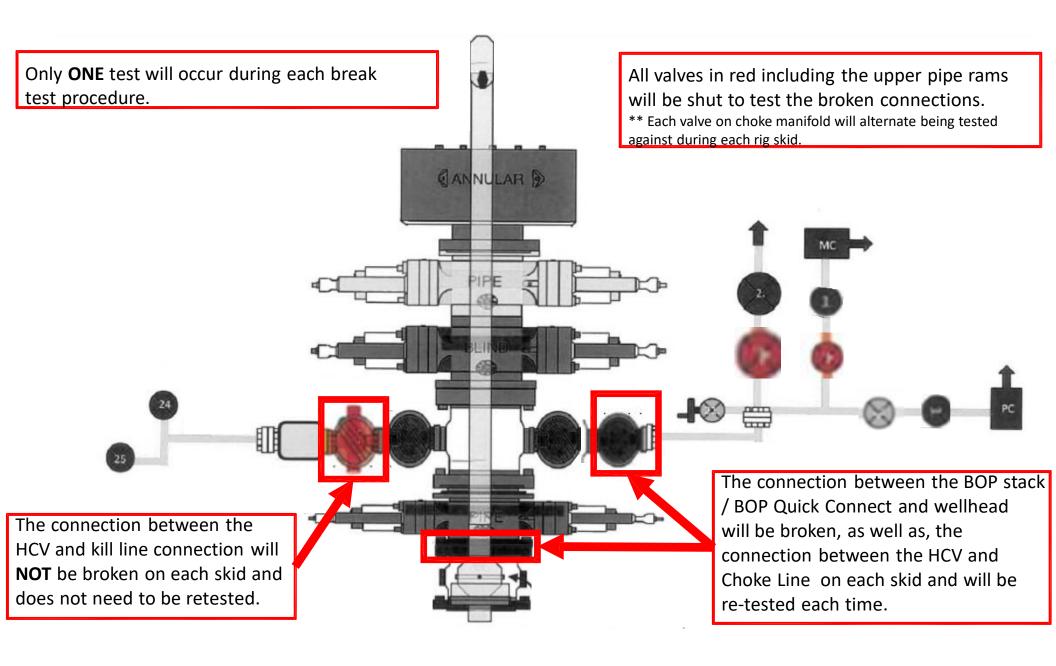

each BOP nipple up, XTO Energy performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of the CFR Title 43 Part 3170.

Procedures

- XTO Energy will use this document for our break testing plan for New Mexico Delaware basin.
 The summary below will be referenced in the APD or Sundry Notice and receive approval prior
 to implementing this variance.
- 2. XTO Energy will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a. A full BOP test will be conducted on the first well on the pad.
 - b. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
 - i. Our Lower WC targets set the intermediate casing shoe no deeper than the Wolfcamp B.
 - ii. Our Upper WC targets set the intermediate casing shoe shallower than the Wolfcamp B.
 - c. A Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d. A full BOP test will be required prior to drilling any production hole.
- 3. After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a. Between the HCV valve and choke line connection
 - b. Between the BOP quick connect and the wellhead
- 4. The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5. After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6. The connections mentioned in 3a and 3b will then be reconnected.
- 7. Install test plug into the wellhead using test joint or drill pipe.
- 8. A shell test is performed against the upper pipe rams testing the two breaks.
- 9. The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10. Function test will be performed on the following components: lower pipe rams, blind rams, and annular.

- 11. For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12. A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations


Summary

A variance is requested to **ONLY** test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operation, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on discussions with the BLM on February 27th 2020 and the supporting documentation submitted to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

- 1. After a full BOP test is conducted on the first well on the pad.
- 2. The first intermediate hole section drilled on the pad will be the deepest. All of the remaining hole sections will be the same depth or shallower.
- 3. Full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4. Full BOP test will be required prior to drilling the production hole.

GATES ENGINEERING & SERVICES NORTH AMERICA

7603 Prairie Oak Dr.

Houston, TX. 77086

PHONE: +1 (281) 602-4100

FAX: +1 (281) 602-4147

EMAIL: gesna.quality@gates.com

WEB: www.gates.com/oilandgas

NEW CHOKE HOSE

INSTAUED 02-10-2024

CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CUSTOMER:	
-----------	--

NABORS DRILLING TECHNOLOGIES USA DBA NABORS DRILLING USA

CUSTOMER P.O.#:

15582803 (TAG NABORS PO #15582803 SN 74621 ASSET 66-1531)

CUSTOMER P/N:

IMR RETEST SN 74621 ASSET #66-1531

PART DESCRIPTION:

RETEST OF CUSTOMER 3" X 45 FT 16C CHOKE & KILL HOSE ASSEMBLY C/W 4 1/16" 10K

FLANGES

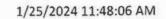
SALES ORDER #:

529480

QUANTITY:

1

SERIAL #:


74621 H3-012524-1

SIGNATURE: 7. CUSTUS G

TITLE: QUALITY ASSURANCE

DATE: 1/25/2024

H3-15/16

TEST REPORT

CUSTOMER

Company:

Nabors Industries Inc.

TEST OBJECT

Serial number: H3-012524-1

Lot number:

Production description:

74621/66-1531

Description:

74621/66-1531

Sales order #:

529480

Hose ID:

3" 16C CK

Customer reference: FG1213

Part number:

TEST INFORMATION

Test procedure:

GTS-04-053

Fitting 1:

Test pressure:

15000.00 3600.00

Part number:

3.0 x 4-1/16 10K

45

Test pressure hold: Work pressure:

10000.00

Description:

Fitting 2:

3.0 x 4-1/16 10K

Work pressure hold: Length difference:

900.00 0.00

sec %

psi

sec

psi

Part number: Description:

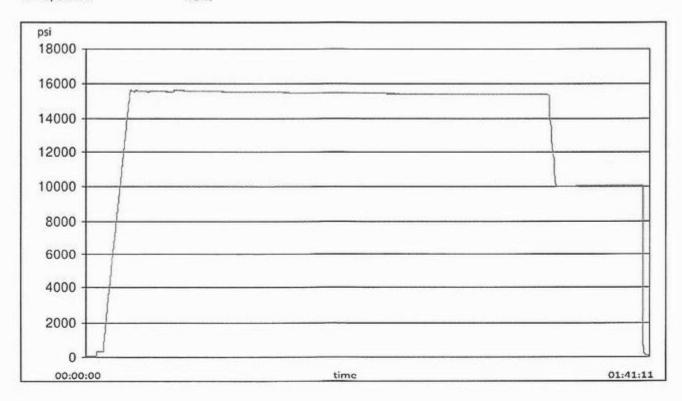
Length difference:

0.00

inch

Length:

feet


Visual check: Pressure test result:

PASS

Length measurement result:

Test operator:

Travis

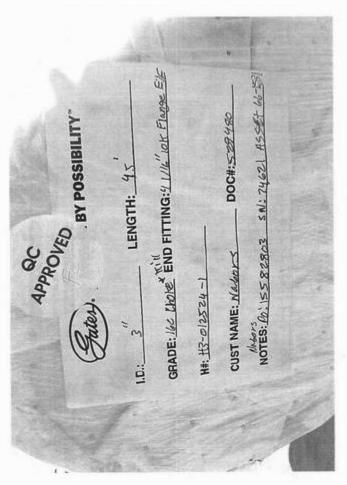

H3-15/16

1/25/2024 11:48:06 AM

TEST REPORT


GAUGE TRACEABILITY

Serial number	Calibration date	Calibration due date
110D3PHO	2023-06-06	2024-06-06
110IQWDG	2023-05-16	2024-05-16
	110D3PHO	110D3PHO 2023-06-06



Released to Imaging: 5/16/2025 8:38:31 AM

Released to Imaging: 5/16/2025 8:38:31 AM

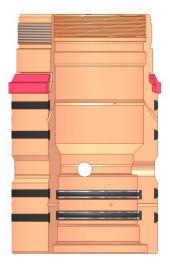
XTO respectfully requests approval to utilize a spudder rig to pre-set surface casing.

Description of Operations:

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wing valves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling Operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be notified 24 hours before the larger rig moves back on the pre-set locations
- 7. XTO will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, XTO will secure the wellhead area by placing a guard rail around the cellar area.

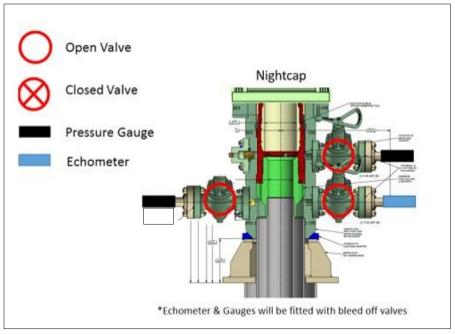
XTO Permian Operating, LLC Offline Cementing Variance Request

XTO requests the option to cement the surface and intermediate casing strings offline as a prudent batch drilling efficiency of acreage development.


1. Cement Program

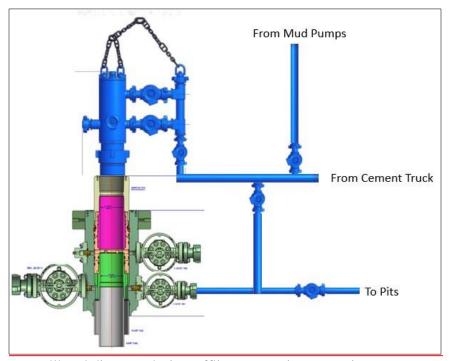
No changes to the cement program will take place for offline cementing.

2. Offline Cementing Procedure


The operational sequence will be as follows. If a well control event occurs, the BLM will be contacted for approval prior to conducting offline cementing operations.

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment (float collar and shoe)
- 2. Land casing with mandrel
- 3. Fill pipe with kill weight fluid, do not circulate through floats and confirm well is static
- 4. Set annular packoff shown below and pressure test to confirm integrity of the seal. Pressure ratings of wellhead components and valves is 5,000 psi.
- 5. After confirmation of both annular barriers and internal barriers, nipple down BOP and install cap flange.
 - a. If any barrier fails to test, the BOP stack will not be nippled down until after the cement job is completed with cement 500ft above the highest formation capable of flow with kill weight mud above or after it has achieved 50-psi compressive strength if kill weight fluid cannot be verified.

Annular packoff with both external and internal seals


XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during skidding operations

- 6. Skid rig to next well on pad.
- 7. Confirm well is static before removing cap flange, flange will not be removed and offline cementing operations will not commence until well is under control. If well is not static, casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing or nippling up for further remediation.
 - a. Well Control Plan
 - i. The Drillers Method will be the primary well control method to regain control of the wellbore prior to cementing, if wellbore conditions do not permit the drillers method other methods of well control may be used
 - ii. Rig pumps or a 3rd party pump will be tied into the upper casing valve to pump down the casing ID
 - iii. A high pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - iv. Once influx is circulated out of the hole, kill weight mud will be circulated
 - v. Well will be confirmed static
 - vi. Once confirmed static, cap flange will be removed to allow for offline cementing operations to commence
- 8. Install offline cement tool
- 9. Rig up cement equipment

XTO Permian Operating, LLC Offline Cementing Variance Request

Wellhead diagram during offline cementing operations

- 10. Circulate bottoms up with cement truck
 - a. If gas is present on bottoms up, well will be shut in and returns rerouted through gas buster to handle entrained gas
 - b. Max anticipated time before circulating with cement truck is 6 hrs
- 11. Perform cement job taking returns from the annulus wellhead valve
- 12. Confirm well is static and floats are holding after cement job
- 13. Remove cement equipment, offline cement tools and install night cap with pressure gauge for monitoring.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 448711

CONDITIONS

Operator:	OGRID:
XTO PERMIAN OPERATING LLC.	373075
6401 HOLIDAY HILL ROAD	Action Number:
MIDLAND, TX 79707	448711
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By		Condition Date	
ward.rikala	ward.rikala Operator must comply with all of the R-111-Q requirements.		
ward.rikala	Any previous COA's not addressed within the updated COA's still apply.	5/16/2025	