Form 3160-3 (June 2015) UNITED STATES DEPARTMENT OF THE I	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018 5. Lease Serial No.						
BUREAU OF LAND MANA					NMNM82904		
APPLICATION FOR PERMIT TO D	RILL O	RF	REENTER		6. If Indian, Allotee	or Tribe	Name
	EENTER				7. If Unit or CA Agr	eement,	Name and No.
	ther	_	_		8. Lease Name and	Well No.	
1c. Type of Completion: Hydraulic Fracturing Si	c. Type of Completion: Hydraulic Fracturing Single Zone 🖌 Multiple Zone						COM
	2211						
2. Name of Operator					22H 9. API Well No.		
OXY USA INCORPORATED						15-56	6795
3a. Address P.O. BOX 1002, TUPMAN, CA 93276-1002	3b. Phon (661) 76		o. (include area code 046	2)	10. Field and Pool, o COTTON DRAW/E	1	2
4. Location of Well (Report location clearly and in accordance	with any St	tate i	requirements.*)		11. Sec., T. R. M. or		l Survey or Area
At surface NENW / 294 FNL / 1822 FWL / LAT 32.238	3076 / LC	DNG	-103.8197628		SEC 7/T24S/R31E	/NMP	
At proposed prod. zone LOT 1 / 20 FNL / 1235 FWL / LA	AT 32.268	120	2 / LONG -103.82	16456			
14. Distance in miles and direction from nearest town or post off 17 miles	ìce*				12. County or Parish EDDY	1	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 20 feet 16.			res in lease	ing Unit dedicated to this well			
 18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 30 feet 		······································			//BIA Bond No. in file SB000226		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3470 feet		22. Approximate date work will start* 04/07/2025			23. Estimated duration45 days		
	24. At	ttacł	nments		1		
The following, completed in accordance with the requirements o (as applicable)	f Onshore	Oil a	and Gas Order No. 1	, and the H	Iydraulic Fracturing r	ule per 4	3 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 					is unless covered by ar	n existing	bond on file (see
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office		the	 Operator certific Such other site sp BLM. 		mation and/or plans as	may be 1	requested by the
25. Signature (Electronic Submission)			(Printed/Typed) MATHEW / Ph: (7	Date 04/24/2024		2024	
Title REGULATORY SPECIALIST	·						
Approved by (Signature) (Electronic Submission)			(Printed/Typed) LAYTON / Ph: (57	75) 234-59	959	Date 04/28/2	2025
Title Assistant Field Manager Lands & Minerals		fice Irlsb	ad Field Office				
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds leg	gal o	r equitable title to th	ose rights	in the subject lease w	hich wou	ld entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements						any depar	rtment or agency

*(Instructions on page 2)

.

(Continued on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

0. SHL: NENW / 294 FNL / 1822 FWL / TWSP: 24S / RANGE: 31E / SECTION: 7 / LAT: 32.2383076 / LONG: -103.8197628 (TVD: 0 feet, MD: 0 feet) PPP: LOT 7 / 0 FSL / 1235 FWL / TWSP: 24S / RANGE: 31E / SECTION: 6 / LAT: 32.2391163 / LONG: -103.821662 (TVD: 8600 feet, MD: 8786 feet) PPP: LOT 4 / 0 FSL / 1233 FWL / TWSP: 23S / RANGE: 31E / SECTION: 31 / LAT: 32.2536523 / LONG: -103.8216537 (TVD: 8700 feet, MD: 14086 feet) PPP: LOT 7 / 100 FSL / 1235 FWL / TWSP: 24S / RANGE: 31E / SECTION: 6 / LAT: 32.2393912 / LONG: -103.8216618 (TVD: 8700 feet, MD: 9076 feet) BHL: LOT 1 / 20 FNL / 1235 FWL / TWSP: 23S / RANGE: 31E / SECTION: 31 / LAT: 32.2681202 / LONG: -103.8216456 (TVD: 8700 feet, MD: 19351 feet)

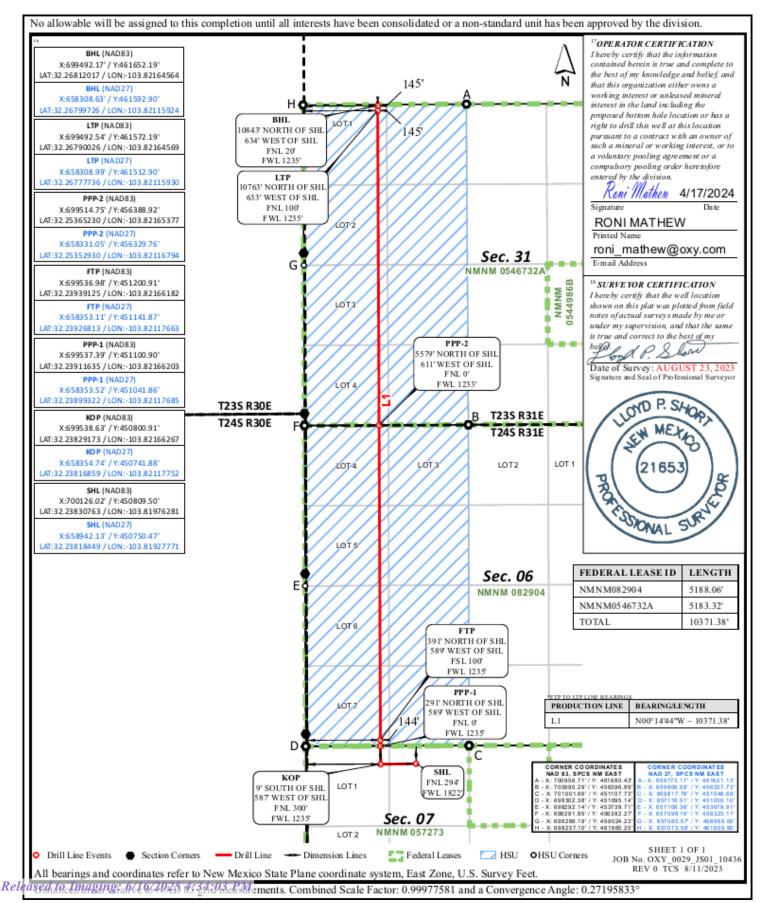
BLM Point of Contact

Name: TENILLE C MOLINA Title: Land Law Examiner Phone: (575) 234-2224 Email: TCMOLINA@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

<u>C-10</u>	<u>)2</u>		2025 8:51:30 AM State of Nev Energy, Minerals & Natura OIL CONSERVAT					ent		Page 5 Revised July 9, 2024		
	t Electronica D Permitting			OIL	CONSERVITI		51010	S	ubmittal	☑ Initial Su	bmittal	
									ype:		1	
					WELL LOCAT	ION INFORM	IATION			□ As Drille	d	
API Ni	umber		Pool Code									
30-01	⁵⁻⁵⁶⁷⁹⁵		13367						AVV;	BONE	SPRING	
Proper 329887	ty Code		Property N	^{ame} NU	IGGET 6	6_31 F	ED (COM		Well Number	er	
OGRII 16696					Y USA I					Ground Lev 3470'	el Elevation	
		State □ Fee □				-	Owner: 🗆 S	State 🗆 Fee 🗆 T	ribal 🗹 I			
UL	Section	Township	Range	Lot	Surfa Ft. from N/S	rce Location	/W	Latitude	L	ongitude	County	
Ĉ	7	24S	31E	Lot	294 FNI			32.238307		e	EDDY	
<u> </u>		210				Hole Location						
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/	W/W	Latitude	L	ongitude	County	
L1	31	23S	31E		20 FNL	1235	FWL	32.268120	017 -10	03.82164564	EDDY	
n ::				D <i>C</i> :	VVV 11 + DV					a 1		
655	ited Acres	Infill or Def	ining Well	-	g Well API	N N	ig Spacing	< /	onsolidati /A	on Code		
	Numbers.			00 01		Well setbacks are under Common Ownership: □Yes □No						
					V 1 0							
UL	Section	Township	Range	Lot	Ft. from N/S	ff Point (KOP) Ft. from E/		Latitude	L	ongitude	County	
L1	7	24S	31E		300 FNI	1235	FWL	32.238292	173 -10	03.82166267	EDDY	
	-	-			First Ta	ke Point (FTP)					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/		Latitude		ongitude	County	
L7	6	24S	31E		100 FSI			32.239116	535 -10	03.82166203	EDDY	
UL	Section	Township	Range	Lot	Last Ta Ft. from N/S	ke Point (LTP Ft. from E/	/	Latitude	L	ongitude	County	
Ľ1	31	23S	31E	200	100 FNI			32.267900		-	-	
		200					<u> </u>					
Unitize	ed Area or A	rea of Uniform	Interest	Spacing	Unit Type 🖬 Horiz	ontal 🗆 Vertic	al	Ground F	floor Elev	vation:		
OPER	ATOR CER	FIFICATIONS				SURVEYOR	CERTIFIC	CATIONS				
		e information cor lief, and, if the we			iplete to the best of						m field notes of actual	
organiz	ation either ov	vns a working inte d bottom hole loce	erest or unleased	l mineral inte	rest in the land	surveys made b my belief.	L	er my supervision, a	ina that th	e same is true an	d correct to the best of	
location	i pursuant to a	contract with an	owner of a work	ting interest o	or unleased mineral		I hereby certi shown on this	fy that the well location : plat was plotted from fiel	ld			
	, or to a volun by the division		ement or a comp	ulsory poolin	g order heretofore		under my sup	al surveysmade by me or ervision, and that the sam rrect to the bes <u>t of</u> my	ie			
					has received the		beter. Log	P. Show				
in each	tract (in the ta	rget pool or form	ation) in which a	any part of th	e well's completed		Date of Sur Signature and	vey: AUGUST 23, 202 Seal of Professional Survey	23 Nor			
interval	will be locate	d or obtained a co	ompulsory poolii 5/1/202		the division.		.0	O P. SHOO				
Signatur	<u>/////////////////////////////////////</u>	umen	5/1/202 Date	20		Signature and S	11/	W METO	∖⊫			
0						-		21653				
-	DNI MATH Name					Certificate Num	RA	J\$	– וןי			
Printed 1						Certificate Null	101		/ 11			
	mathew	@oxy.com				Certificate Null	A.S.	21653 go	/			


Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

.

Received by OCD: 5/1/2025 8:51:30 AM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA INCORPORATED
WELL NAME & NO.:	NUGGET 6 31 FED COM 22H
LOCATION:	Section 7, T.24 S., R.31 E.
COUNTY:	Eddy County, New Mexico

COA

H2S	• Yes	O No	
Potash	○ None	 Secretary 	© R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	○ None	• Flex Hose	O Other
Wellhead	Conventional	Multibowl	© Both
Wellhead Variance	O Diverter		
Other	□4 String	Capitan Reef	WIPP
Other	□ Fluid Filled	🗆 Pilot Hole	□ Open Annulus
Cementing	□ Contingency	□ EchoMeter	Primary Cement
	Cement Squeeze		Squeeze
Special Requirements	🗆 Water Disposal	COM	🗆 Unit
Special Requirements	□ Batch Sundry		
Special Requirements	Break Testing	☑ Offline	\Box Casing
Variance		Cementing	Clearance

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated AT SPUD. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

NOTE: WELL APPROVED FOR DESIGNS A1 AND A2. REVIEW CEMENT VOLUMES TO ACHIEVE TIE BACKS LISTED BELOW. WELL IN SECRETARY POTASH BUT IS CLOSE TO R111Q BOUNDARY. PLEASE MAINTAIN WELL VERTICAL TILL PAST SALT INTERVAL AS PROPOSED IN DIRECTIONAL PLAN.

A1:

- 1. The **10-3/4** inch surface casing shall be set at approximately **869** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- The 7-5/8 inch intermediate casing shall be set at approximately 8075 feet. KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified
- In <u>Secretary Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 10-3/4" X 7-5/8" annulus. <u>Operator must top</u> <u>out cement after the bradenhead squeeze and verify cement to surface. Operator</u> <u>can also check TOC with Echo-meter. CBL must be run from TD of the 7-5/8"</u> <u>casing to surface if confidence is lacking on the quality of the bradenhead squeeze</u> <u>cement job. Submit results to BLM.</u>

If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified.

Bradenhead squeeze in the production interval is only as an edge case remediation measure and is NOT approved in this COA. If production cement job experiences losses and a bradenhead squeeze is needed for tie-back, BLM Engineering should be notified prior to job with volumes and planned wellbore schematic. CBL will be needed when this occurs.

3. The **5-1/2** inch production casing shall be set at approximately **19,351** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

<u>A2:</u>

- 1. The **13-3/8** inch surface casing shall be set at approximately **869** feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Approval Date: 04/28/2025

 The 7-5/8 inch intermediate casing shall be set at approximately 8075 feet. KEEP CASING 1/2 FULL FOR COLLAPSE SF. PRESSURE TEST NEEDS EXTERNAL PRESSURE REVIEW AS WELL. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2 (Bradenhead):

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- c. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon
- d. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified
- 3. The **5-1/2** inch production casing shall be set at approximately **19,351** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:

Option 1 (Single Stage):

• Cement should tie-back at least **500 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 3500 (70% Working Pressure) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in Onshore Order 1 and 2.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

(Note: For a minimum 5M BOPE or less (Utilizing a 10M BOPE system) BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.

- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Offline cementing OK for surface and intermediate intervals. Notify the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM_NM_CFO_DrillingNotifications@BLM.GOV**; (575) 361-2822

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.

a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

- b. When the operator proposes to set surface casing with Spudder Rig
 - i.Notify the BLM when moving in and removing the Spudder Rig.
 - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii.BOP/BOPE test to be conducted per **43** CFR **3172** as soon as 2^{nd} Rig is rigged up on well.

Page 6 of 9

Approval Date: 04/28/2025

2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

Approval Date: 04/28/2025

+

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.

2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

- i.Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- ii.If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- iii.Manufacturer representative shall install the test plug for the initial BOP test.
- iv.Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
- v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

- i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8

Page 8 of 9

Approval Date: 04/28/2025

hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v.The results of the test shall be reported to the appropriate BLM office.
- vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

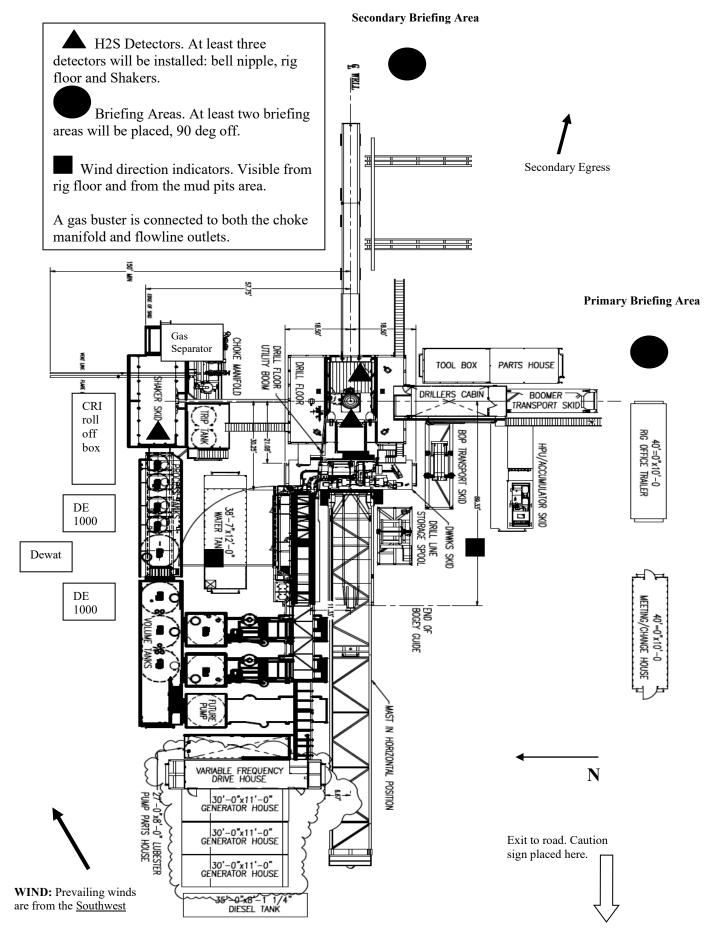
Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 4/14/2025

Approval Date: 04/28/2025



Permian Drilling Hydrogen Sulfide Drilling Operations Plan

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

•

Discussion

Implementation:	This plan with all details is to be fully implemented before drilling to <u>commence</u> .
Emergency response Procedure:	This section outlines the conditions and denotes steps to be taken in the event of an emergency.
Emergency equipment Procedure:	This section outlines the safety and emergency equipment that will be required for the drilling of this well.
Training provisions:	This section outlines the training provisions that must be adhered to prior to drilling.
Drilling emergency call lists:	Included are the telephone numbers of all persons to be contacted should an emergency exist.
Briefing:	This section deals with the briefing of all people involved in the drilling operation.
Public safety:	Public safety personnel will be made aware of any potential evacuation and any additional support needed.
Check lists:	Status check lists and procedural check lists have been included to insure adherence to the plan.
General information:	A general information section has been included to supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site

Emergency Equipment Requirements

1. <u>Well control equipment</u>

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as 43 CFR part 3170 Subpart 3172.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

Wind sock – *wind streamers*:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

- 9. <u>Designated area</u>
 - A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
 - B. There will be a designated smoking area.
 - C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:
 - 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:	1. 2. 3. 4.	On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw Check status of personnel (buddy system). Secure breathing equipment. Await orders from supervisor.
Drill site manager:	1.	Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
	3.	Determine H2S concentrations.
	4.	Assess situation and take control measures.
Tool pusher:	1.	Don escape unit Report to up nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparation of individuals to return to point of release with tool pusher drill site manager
	2	(using the buddy system).
	3.	Determine H2S concentration.
	4.	Assess situation and take control measures.
Driller:	1.	Don escape unit, shut down pumps, continue

		rotating DP.
	2.	Check monitor for point of release.
	3.	Report to nearest upwind designated safe briefing / muster area.
	4.	Check status of personnel (in an attempt to rescue, use the buddy system).
	5.	Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
	6.	Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.
Derrick man Floor man #1 Floor man #2	1.	Will remain in briefing / muster area until instructed by supervisor.
Mud engineer:	1.	Report to nearest upwind designated safe briefing / muster area.
	2.	When instructed, begin check of mud for ph and H2S level. (Garett gas train.)
Safety personnel:	1.	Mask up and check status of all personnel and secure

<u>Taking a kick</u>

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is ignited.</u>**

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1-100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by: _____ Date:

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hcn	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustib	le above 5% in air

Table i Toxicity of various gases

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	Ppm	Grains	
	-	100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

•

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

*at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

<u>Rescue</u> <u>First aid for H2S poisoning</u>

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

OXY

PRD NM DIRECTIONAL PLANS (NAD 1983) Nugget 6_31 Nugget 6_31 Fed Com 22H

Wellbore #1

Plan: Permitting Plan

Standard Planning Report

02 April, 2024

OXY Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	ENGI PRD I Nugge Nugge Wellb	HOPSPP ENGINEERING DESIGNS PRD NM DIRECTIONAL PLANS (NAD 1983) Nugget 6_31 Nugget 6_31 Fed Com 22H Wellbore #1 Permitting Plan			TVD Reference:FMD Reference:FNorth Reference:C			Well Nugget 6_31 Fed Com 22H RKB=25' @ 3495.00ft RKB=25' @ 3495.00ft Grid Minimum Curvature		
Project	PRD N	M DIRECTION	NAL PLANS (I	NAD 1983)						
Map System: Geo Datum: Map Zone:	North Ar	e Plane 1983 nerican Datum xico Eastern Z			System Da	tum:		ean Sea Level	ale factor	
Site	Nugge	t 6_31								
Site Position: From: Position Uncerta	Map ainty:	0.89 f	North Eastin t Slot F	•	698,7	99.01 usft 58.94 usft 3.200 in	Latitude: Longitude:			32.238572 -103.824183
Well	Nugget	6_31 Fed Cor	m 22H							
Well Position Position Uncerta Grid Convergen	•	0.0 2.0	00 ft Ea	orthing: asting: ellhead Eleva	ation:	450,809.50 700,126.02	usf Loi	itude: ngitude: ound Level:		32.238308 -103.819763 3,470.00 ft
Wellbore	Wellbo	ore #1								
Magnetics	Мо	del Name	Sampl	e Date	Declina (°)	tion	Dip A ('		Field Str (nT	
		HDGM_FILE		4/2/2024		6.37		59.77	47,402	.70000000
Design	Permit	ting Plan								
Audit Notes:										
Version:			Phas	ie: F	PROTOTYPE	Tie	e On Depth:		0.00	
Vertical Section	:	D	epth From (T (ft) 0.00	VD)	+N/-S (ft) 0.00	(1	:/ -W ft) .00		ection (°) 6.65	
Plan Survey Too Depth From (ft) 1 0.0	n Depti (ft	h To :) Survey	4/2/2024 r (Wellbore) ing Plan (Well	bore #1)	Tool Name B005Mc_MW		Remarks			
					MWD+HRGM	+Sag+IMSA				
Plan Sections Measured Depth Ir (ft)	nclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	TFO (°)	Target
	0.00 0.00	0.00 0.00	0.00 4,868.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00 0.00	0.00	
0.00 4,868.00 5,868.20 8,175.50 9,075.90	10.00 10.00 90.00	269.52 269.52 359.75	5,863.13 8,135.36 8,700.00	-0.72 -4.05 568.48	-87.08 -487.80 -589.84	1.00 0.00 10.00	1.00 0.00 8.88	0.00 0.00 10.02	269.52 0.00 90.23	

.

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 22H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3495.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3495.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 22H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Planned Survey

	Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
	200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
	300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
	400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
	500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
	600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
	700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
	800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
	900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1	1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1	1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
	1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
	2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,600.00	0.00	0.00	3,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1	3,700.00	0.00	0.00	3,700.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,800.00	0.00	0.00	3,800.00	0.00	0.00	0.00	0.00	0.00	0.00
	3,900.00	0.00	0.00	3,900.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,000.00	0.00	0.00	4.000.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,100.00	0.00	0.00	4,100.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,100.00	0.00	0.00	4,200.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,200.00	0.00	0.00	4,200.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,300.00	0.00		4,300.00 4,400.00	0.00	0.00	0.00		0.00	0.00
			0.00					0.00		
	4,500.00	0.00	0.00	4,500.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,600.00	0.00	0.00	4,600.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,700.00	0.00	0.00	4,700.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,800.00	0.00	0.00	4,800.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,868.00	0.00	0.00	4,868.00	0.00	0.00	0.00	0.00	0.00	0.00
	4,900.00	0.32	269.52	4,900.00	0.00	-0.09	0.00	1.00	1.00	0.00
	5,000.00	1.32	269.52	4,999.99	-0.01	-1.52	0.08	1.00	1.00	0.00
	5,100.00	2.32	269.52	5,099.94	-0.04	-4.70	0.24	1.00	1.00	0.00
	5,200.00	3.32	269.52	5,199.81	-0.08	-9.62	0.48	1.00	1.00	0.00
	5,300.00	4.32	269.52	5,299.59	-0.14	-16.28	0.82	1.00	1.00	0.00

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 22H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3495.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3495.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 22H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Planned Survey

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)	
$ \begin{bmatrix} 5,500.00 & 6.32 & 269.52 & 5.498.72 & -0.29 & -34.82 & 1.74 & 1.00 & 1.00 & 0.00 \\ 5,700.00 & 8.32 & 269.52 & 5.697.08 & -0.50 & -60.30 & 3.02 & 1.00 & 1.00 & 0.00 \\ 5,800.00 & 9.32 & 269.52 & 5.697.08 & -0.63 & -75.63 & 3.79 & 1.00 & 1.00 & 0.00 \\ 5,800.00 & 10.00 & 269.52 & 5.808.11 & -0.72 & -87.08 & 4.36 & 1.00 & 1.00 & 0.00 \\ 5,900.00 & 10.00 & 269.52 & 5.894.44 & -0.77 & -92.60 & 4.64 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 5.894.44 & -0.77 & -92.60 & 4.64 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 5.989.292 & -0.91 & -109.97 & 5.51 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6.199.89 & -1.20 & -144.70 & 7.25 & 0.00 & 0.00 & 0.00 \\ 6,200.00 & 10.00 & 269.52 & 6.288.37 & -1.34 & -162.07 & 8.12 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6.386.85 & -1.49 & -179.44 & 8.99 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6.386.85 & -1.49 & -179.44 & 8.99 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6.682.29 & -1.92 & -231.54 & 11.59 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6.682.29 & -1.92 & -231.54 & 11.59 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6.679.77 & -2.06 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 6,900.00 & 10.00 & 269.52 & 6.789.77 & -2.06 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 6,900.00 & 10.00 & 269.52 & 6.797.77 & -2.06 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 7,000.00 & 10.00 & 269.52 & 7.773.7 & -2.53 & -283.54 & 14.20 & 0.00 & 0.00 & 0.00 \\ 7,000.00 & 10.00 & 269.52 & 7.773.7 & -2.53 & -283.54 & 14.20 & 0.00 & 0.00 & 0.00 \\ 7,700.00 & 10.00 & 269.52 & 7.773.7 & -2.59 & -233.575 & 16.81 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7.765.77 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7.765.77 & -3.51 & -422.59 & 21.6 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7.765.57 & -3.51 & -422.59 & 21.6 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7.765.57 & -3.51 & -422.59 & 21.6 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7.765.57 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7$	5.400.00	5.32	269.52	5,399,24	-0.20	-24.68	1.24	1.00	1.00	0.00	
$ \begin{bmatrix} 5,600.00 & 7.32 & 269.52 & 5,598.01 & -0.39 & -46.69 & 2.34 & 1.00 & 1.00 & 0.00 \\ 5,700.00 & 8.32 & 269.52 & 5,795.90 & -0.63 & -75.63 & 3.79 & 1.00 & 1.00 & 0.00 \\ 5,808.00 & 9.32 & 269.52 & 5,795.90 & -0.63 & -75.63 & 3.79 & 1.00 & 1.00 & 0.00 \\ 5,900.00 & 10.00 & 269.52 & 5,803.13 & -0.72 & -87.08 & 4.36 & 1.00 & 1.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 5,982.42 & -0.91 & -109.97 & 5.51 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6,982.43 & -1.27 & -46.88 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6,982.37 & -1.34 & -127.34 & 6.38 & 0.00 & 0.00 & 0.00 \\ 6,200.00 & 10.00 & 269.52 & 6,189.89 & -1.20 & -144.70 & 7.25 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6,288.37 & -1.34 & -162.07 & 8.12 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6,485.33 & -1.63 & -196.81 & 9.86 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6,682.29 & -1.92 & -231.54 & 11.59 & 0.00 & 0.00 & 0.00 \\ 6,600.00 & 10.00 & 269.52 & 6,682.29 & -1.92 & -231.54 & 11.59 & 0.00 & 0.00 & 0.00 \\ 6,700.00 & 10.00 & 269.52 & 6,780.77 & -2.06 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 6,700.00 & 10.00 & 269.52 & 6,787.77 & -2.26 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 7,000.00 & 10.00 & 269.52 & 6,777.7 & -2.26 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 7,000.00 & 10.00 & 269.52 & 6,776.71 & -2.50 & -301.01 & 15.07 & 0.00 & 0.00 & 0.00 \\ 7,200.00 & 10.00 & 269.52 & 7,776.57 & -2.53 & -283.54 & 14.20 & 0.00 & 0.00 & 0.00 \\ 7,500.00 & 10.00 & 269.52 & 7,776.57 & -3.51 & -422.59 & 20.10 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600.00 &$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5,800.00	9.32	269.52	5,795.90	-0.63	-75.63	3.79	1.00	1.00	0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.868.20	10.00	269.52	5.863.13	-0.72	-87.08	4.36	1.00	1.00	0.00	
$ \begin{bmatrix} 6,000,00 & 10,00 & 269,52 & 5,92,92 & -0.91 & -109,97 & 5.51 & 0.00 & 0.00 & 0.00 \\ 6,100,00 & 10,00 & 269,52 & 6,091,40 & -1.06 & -127,34 & 6.38 & 0.00 & 0.00 & 0.00 \\ 6,200,00 & 10,00 & 269,52 & 6,189,89 & -1.20 & -144,70 & 7.25 & 0.00 & 0.00 & 0.00 \\ 6,400,00 & 10,00 & 269,52 & 6,286,37 & -1.34 & -162,07 & 8,12 & 0.00 & 0.00 & 0.00 \\ 6,500,00 & 10,00 & 269,52 & 6,386,85 & -1.49 & -179,44 & 9,96 & 0.00 & 0.00 & 0.00 \\ 6,600,00 & 10,00 & 269,52 & 6,682,33 & -1.63 & -199,81 & 9,86 & 0.00 & 0.00 & 0.00 \\ 6,600,00 & 10,00 & 269,52 & 6,682,29 & -1.92 & -231,54 & 11,59 & 0.00 & 0.00 & 0.00 \\ 6,700,00 & 10,00 & 269,52 & 6,6780,77 & -2.06 & -248,91 & 12,46 & 0.00 & 0.00 & 0.00 \\ 6,800,00 & 10,00 & 269,52 & 6,780,77 & -2.06 & -248,91 & 12,46 & 0.00 & 0.00 & 0.00 \\ 7,000,00 & 10,00 & 269,52 & 6,780,77 & -2.06 & -248,91 & 12,46 & 0.00 & 0.00 & 0.00 \\ 7,000,00 & 10,00 & 269,52 & 6,77,73 & -2.35 & -320,101 & 15.07 & 0.00 & 0.00 & 0.00 \\ 7,000,00 & 10,00 & 269,52 & 7,776,1 & -2.56 & -301,01 & 15.07 & 0.00 & 0.00 & 0.00 \\ 7,200,00 & 10,00 & 269,52 & 7,773,17 & -2.79 & -335,75 & 16.81 & 0.00 & 0.00 & 0.00 \\ 7,200,00 & 10,00 & 269,52 & 7,773,17 & -2.79 & -335,75 & 16.81 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,773,17 & -2.79 & -335,75 & 19,42 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,765,57 & -3.51 & 422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,667,09 & -3.36 & 405,22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 7,600,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 8,100,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & 0.00 & 0.00 \\ 8,000,00 & 10,00 & 269,52 & 7,665,77 & -3.51 & -422,59 & 21,16 & 0.00 & $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,200.00	10.00	209.52			-144.70	1.25		0.00		
$ \begin{bmatrix} 6,500.00 & 10.00 & 269.52 & 6,485.33 & -1.63 & -196.81 & 9.86 & 0.00 & 0.00 & 0.00 \\ 6,000.00 & 10.00 & 269.52 & 6,583.81 & -1.78 & -214.17 & 10.72 & 0.00 & 0.00 & 0.00 \\ 6,700.00 & 10.00 & 269.52 & 6,682.29 & -1.92 & -231.54 & 11.59 & 0.00 & 0.00 & 0.00 \\ 6,900.00 & 10.00 & 269.52 & 6,777 & -2.06 & -248.91 & 12.46 & 0.00 & 0.00 & 0.00 \\ 6,900.00 & 10.00 & 269.52 & 6,777 & -2.25 & -283.64 & 14.20 & 0.00 & 0.00 & 0.00 \\ 7,100.00 & 10.00 & 269.52 & 7,076.21 & -2.50 & -301.01 & 15.07 & 0.00 & 0.00 & 0.00 \\ 7,200.00 & 10.00 & 269.52 & 7,174.69 & -2.64 & -318.38 & 15.94 & 0.00 & 0.00 & 0.00 \\ 7,300.00 & 10.00 & 269.52 & 7,273.17 & -2.99 & -335.75 & 16.81 & 0.00 & 0.00 & 0.00 \\ 7,500.00 & 10.00 & 269.52 & 7,371.65 & -2.93 & -353.11 & 17.68 & 0.00 & 0.00 & 0.00 \\ 7,500.00 & 10.00 & 269.52 & 7,371.65 & -2.93 & -353.51 & 17.68 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,568.61 & -3.22 & -387.85 & 19.42 & 0.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,565.7 & -3.51 & -422.59 & 20.00 & 0.00 & 0.00 \\ 7,600.00 & 10.00 & 269.52 & 7,667.09 & -3.36 & -405.22 & 20.29 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7,667.57 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 7,900.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 8,000.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 8,000.00 & 10.00 & 269.52 & 7,665.7 & -3.51 & -422.59 & 21.16 & 0.00 & 0.00 & 0.00 \\ 8,000.00 & 10.00 & 269.52 & 8,061.01 & -3.24 & -473.80 & 24.43 & 0.00 & 0.00 & 0.00 \\ 8,000.00 & 10.00 & 269.52 & 8,065.13 & -3.56 & -499.95 & 22.03 & 0.00 & 0.00 & 0.00 \\ 8,000.00 & 10.00 & 269.52 & 8,055.13 & -3.65 & -499.56 & 251.6 & 10.00 & 1.16 & 56.54 \\ 8,300.00 & 15.89 & 321.47 & 8,257.02 & 9.25 & -509.31 & 38.96 & 10.00 & 5.60 & 38.$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,400.00	10.00	269.52	6,386.85	-1.49	-179.44	8.99	0.00	0.00	0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,500.00	10.00	269.52	6,485.33	-1.63	-196.81	9.86	0.00	0.00	0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.600.00	10.00	269.52	6.583.81	-1.78	-214.17	10.72	0.00	0.00	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.00									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7,500.00	10.00	269.52	7,470.13	-3.07	-370.48	18.55	0.00	0.00	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,600.00	10.00	269.52	7,568.61	-3.22	-387.85	19.42	0.00	0.00	0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,700.00	10.00	269.52	7,667.09	-3.36	-405.22	20.29	0.00	0.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 800 00	10.00	269 52	7 765 57	-3.51	-122 50	21 16	0.00	0.00	0.00	
8,000.00 10.00 269.52 7,962.53 -3.79 -457.32 22.90 0.00 0.00 0.00 8,100.00 10.00 269.52 8,061.01 -3.94 -474.69 23.77 0.00 0.00 0.00 8,175.50 10.00 269.52 8,135.36 -4.05 -487.80 24.43 0.00 0.00 0.00 8,200.00 10.29 283.38 8,159.48 -3.56 -492.06 25.16 10.00 1.16 56.54 8,300.00 15.89 321.47 8,257.02 9.25 -509.31 38.96 10.00 5.60 38.09 8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53											
8,100.00 10.00 269.52 8,061.01 -3.94 -474.69 23.77 0.00 0.00 0.00 8,175.50 10.00 269.52 8,135.36 -4.05 -487.80 24.43 0.00 0.00 0.00 8,200.00 10.29 283.38 8,159.48 -3.56 -492.06 25.16 10.00 1.16 56.54 8,300.00 15.89 321.47 8,257.02 9.25 -509.31 38.96 10.00 5.60 38.09 8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15											
8,175.50 10.00 269.52 8,135.36 -4.05 -487.80 24.43 0.00 0.00 0.00 8,200.00 10.29 283.38 8,159.48 -3.56 -492.06 25.16 10.00 1.16 56.54 8,300.00 15.89 321.47 8,257.02 9.25 -509.31 38.96 10.00 5.60 38.09 8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43 <td></td>											
8,200.00 10.29 283.38 8,159.48 -3.56 -492.06 25.16 10.00 1.16 56.54 8,300.00 15.89 321.47 8,257.02 9.25 -509.31 38.96 10.00 5.60 38.09 8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43											
8,300.00 15.89 321.47 8,257.02 9.25 -509.31 38.96 10.00 5.60 38.09 8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43											
8,400.00 24.44 336.92 8,350.86 39.06 -525.99 69.69 10.00 8.55 15.44 8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43											
8,500.00 33.76 344.45 8,438.18 84.97 -541.59 116.43 10.00 9.32 7.54 8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43											
8,600.00 43.36 348.99 8,516.30 145.59 -555.63 177.76 10.00 9.60 4.53 8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43											
8,700.00 53.08 352.14 8,582.86 219.07 -567.68 251.82 10.00 9.72 3.15 8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43	8,500.00				84.97						
8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43	8,600.00	43.36	348.99	8,516.30	145.59	-555.63	177.76	10.00	9.60	4.53	
8,800.00 62.86 354.57 8,635.84 303.17 -577.38 336.35 10.00 9.79 2.43	8,700.00	53.08	352.14	8,582.86	219.07	-567.68	251.82	10.00	9.72	3.15	
9,000.00 82.53 358.43 8,695.06 492.81 -588.64 526.32 10.00 9.84 1.83											
9,075.90 90.00 359.75 8,700.00 568.48 -589.84 601.93 10.00 9.85 1.75										1.75	
				,							
9,200.00 90.00 359.75 8,700.00 692.58 -590.37 725.85 0.00 0.00 0.00											
9,300.00 90.00 359.75 8,700.00 792.58 -590.80 825.71 0.00 0.00 0.00											
9,400.00 90.00 359.75 8,700.00 892.58 -591.23 925.56 0.00 0.00 0.00											
9,500.00 90.00 359.75 8,700.00 992.58 -591.66 1,025.42 0.00 0.00 0.00	9,500.00	90.00	359.75	8,700.00	992.58	-591.66	1,025.42	0.00	0.00	0.00	
9,600.00 90.00 359.75 8,700.00 1,092.58 -592.08 1,125.27 0.00 0.00 0.00											
9,700.00 90.00 359.75 8,700.00 1,192.58 -592.51 1,225.12 0.00 0.00 0.00											
9,800.00 90.00 359.75 8,700.00 1,292.58 -592.94 1,324.98 0.00 0.00 0.00	9,800.00				1,292.58			0.00			
9,900.00 90.00 359.75 8,700.00 1,392.58 -593.37 1,424.83 0.00 0.00 0.00	9,900.00	90.00	359.75	8,700.00	1,392.58	-593.37	1,424.83	0.00	0.00	0.00	
10,000.00 90.00 359.75 8,700.00 1,492.57 -593.80 1,524.68 0.00 0.00 0.00	10,000.00										
10,100.00 90.00 359.75 8,700.00 1,592.57 -594.23 1,624.54 0.00 0.00 0.00	10.100.00	90.00	359.75	8,700.00	1,592.57	-594.23	1,624.54	0.00	0.00	0.00	
10,200.00 90.00 359.75 8,700.00 1,692.57 -594.66 1,724.39 0.00 0.00 0.00											
10,300.00 90.00 359.75 8,700.00 1,792.57 -595.09 1,824.24 0.00 0.00 0.00					,						
10,400.00 90.00 359.75 8,700.00 1,892.57 -595.51 1,924.10 0.00 0.00 0.00 0.00											
10,500.00 90.00 359.75 8,700.00 1,992.57 -595.94 2,023.95 0.00 0.00 0.00 0.00											
		30.00	558.75	0,700.00	1,002.07	-535.34	2,020.00	0.00	0.00	0.00	

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6 31 Fed Com 22H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3495.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3495.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 22H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
10,600.00	90.00	359.75	8,700.00	2,092.57	-596.37	2,123.81	0.00	0.00	0.00
10,700.00	90.00	359.75	8,700.00	2,192.57	-596.80	2,223.66	0.00	0.00	0.00
10,800.00	90.00	359.75	8,700.00	2,292.57	-597.23	2,323.51	0.00	0.00	0.00
10,900.00	90.00	359.75	8,700.00	2,392.57	-597.66	2,423.37	0.00	0.00	0.00
11,000.00	90.00	359.75	8,700.00	2,492.57	-598.09	2,523.22	0.00	0.00	0.00
11,100.00	90.00 90.00	359.75 359.75	8,700.00 8,700.00	2,592.56 2,692.56	-598.52 -598.94	2,623.07 2,722.93	0.00 0.00	0.00 0.00	0.00 0.00
11,200.00			,						
11,300.00	90.00	359.75	8,700.00	2,792.56	-599.37 -599.80	2,822.78	0.00	0.00	0.00
11,400.00	90.00	359.75	8,700.00	2,892.56		2,922.64	0.00	0.00	0.00
11,500.00	90.00	359.75	8,700.00	2,992.56	-600.23	3,022.49	0.00	0.00	0.00
11,600.00	90.00	359.75	8,700.00	3,092.56	-600.66	3,122.34	0.00	0.00	0.00
11,700.00	90.00	359.75	8,700.00	3,192.56	-601.09	3,222.20	0.00	0.00	0.00
11,800.00	90.00	359.75	8,700.00	3,292.56	-601.52	3,322.05	0.00	0.00	0.00
11,900.00	90.00	359.75	8,700.00	3,392.56	-601.95	3,421.90	0.00	0.00	0.00
12,000.00	90.00	359.75	8,700.00	3,492.56	-602.37	3,521.76	0.00	0.00	0.00
12,100.00	90.00	359.75	8,700.00	3,592.56	-602.80	3,621.61	0.00	0.00	0.00
12,200.00	90.00	359.75	8,700.00	3,692.55	-603.23	3,721.46	0.00	0.00	0.00
12,300.00	90.00	359.75	8,700.00	3,792.55	-603.66	3,821.32	0.00	0.00	0.00
12,400.00	90.00	359.75	8,700.00	3,892.55	-604.09	3,921.17	0.00	0.00	0.00
12,500.00	90.00	359.75	8,700.00	3,992.55	-604.52	4,021.03	0.00	0.00	0.00
12,600.00	90.00	359.75	8,700.00	4,092.55	-604.95	4,120.88	0.00	0.00	0.00
12,700.00	90.00	359.75	8,700.00	4,192.55	-605.38	4,220.73	0.00	0.00	0.00
12,800.00	90.00	359.75	8,700.00	4,292.55	-605.80	4,320.59	0.00	0.00	0.00
12,900.00	90.00	359.75	8,700.00	4,392.55	-606.23	4,420.44	0.00	0.00	0.00
13,000.00	90.00	359.75	8,700.00	4,492.55	-606.66	4,520.29	0.00	0.00	0.00
13,100.00	90.00	359.75	8,700.00	4,592.55	-607.09	4,620.15	0.00	0.00	0.00
13,200.00	90.00	359.75	8,700.00	4,692.55	-607.52	4,720.00	0.00	0.00	0.00
13,300.00	90.00	359.75	8,700.00	4,792.54	-607.95	4,819.86	0.00	0.00	0.00
13,400.00	90.00	359.75	8,700.00	4,892.54	-608.38	4,919.71	0.00	0.00	0.00
13,500.00	90.00	359.75	8,700.00	4,992.54	-608.81	5,019.56	0.00	0.00	0.00
13,600.00	90.00	359.75	8,700.00	5,092.54	-609.23	5,119.42	0.00	0.00	0.00
13,700.00	90.00	359.75	8,700.00	5,192.54	-609.66	5,219.27	0.00	0.00	0.00
13,800.00	90.00	359.75	8,700.00	5,292.54	-610.09	5,319.12	0.00	0.00	0.00
13,900.00	90.00	359.75	8,700.00	5,392.54	-610.52	5,418.98	0.00	0.00	0.00
14,000.00	90.00	359.75	8,700.00	5,492.54	-610.95	5,518.83	0.00	0.00	0.00
14,100.00	90.00	359.75	8,700.00	5,592.54	-611.38	5,618.68	0.00	0.00	0.00
14,200.00	90.00	359.75	8,700.00	5,692.54	-611.81	5,718.54	0.00	0.00	0.00
14,300.00	90.00	359.75	8,700.00	5,792.54	-612.24	5,818.39	0.00	0.00	0.00
14,400.00	90.00	359.75	8,700.00	5,892.53	-612.66	5,918.25	0.00	0.00	0.00
14,500.00	90.00	359.75	8,700.00	5,992.53	-613.09	6,018.10	0.00	0.00	0.00
14,600.00	90.00	359.75	8,700.00	6,092.53	-613.52	6,117.95	0.00	0.00	0.00
14,700.00	90.00	359.75	8,700.00	6,192.53	-613.95	6,217.81	0.00	0.00	0.00
14,800.00	90.00	359.75	8,700.00	6,292.53	-614.38	6,317.66	0.00	0.00	0.00
14,900.00	90.00	359.75	8,700.00	6,392.53	-614.81	6,417.51	0.00	0.00	0.00
15,000.00	90.00	359.75	8,700.00	6,492.53	-615.24	6,517.37	0.00	0.00	0.00
15,100.00	90.00	359.75	8,700.00	6,592.53	-615.67	6,617.22	0.00	0.00	0.00
15,200.00	90.00	359.75	8,700.00	6,692.53	-616.09	6,717.08	0.00	0.00	0.00
15,300.00	90.00	359.75	8,700.00	6,792.53	-616.52	6,816.93	0.00	0.00	0.00
15,400.00	90.00	359.75	8,700.00	6,892.53	-616.95	6,916.78	0.00	0.00	0.00
15,500.00	90.00	359.75	8,700.00	6,992.52	-617.38	7,016.64	0.00	0.00	0.00
15,600.00	90.00	359.75	8,700.00	7,092.52	-617.81	7,116.49	0.00	0.00	0.00
15,700.00	90.00	359.75	8,700.00	7,192.52	-618.24	7,216.34	0.00	0.00	0.00
15,800.00	90.00	359.75	8,700.00	7,292.52	-618.67	7,316.20	0.00	0.00	0.00
15,900.00	90.00	359.75	8,700.00	7,392.52	-619.09	7,416.05	0.00	0.00	0.00
16,000.00	90.00	359.75	8,700.00	7,492.52	-619.52	7,515.90	0.00	0.00	0.00
L									

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 22H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3495.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3495.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 22H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
16,100.00 16,200.00 16,300.00 16,400.00 16,500.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	7,592.52 7,692.52 7,792.52 7,892.52 7,992.52	-619.95 -620.38 -620.81 -621.24 -621.67	7,615.76 7,715.61 7,815.47 7,915.32 8,015.17	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
16,600.00 16,700.00 16,800.00 16,900.00 17,000.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	8,092.51 8,192.51 8,292.51 8,392.51 8,492.51	-622.10 -622.52 -622.95 -623.38 -623.81	8,115.03 8,214.88 8,314.73 8,414.59 8,514.44	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,100.00 17,200.00 17,300.00 17,400.00 17,500.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	8,592.51 8,692.51 8,792.51 8,892.51 8,992.51	-624.24 -624.67 -625.10 -625.53 -625.95	8,614.30 8,714.15 8,814.00 8,913.86 9,013.71	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
17,600.00 17,700.00 17,800.00 17,900.00 18,000.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	9,092.51 9,192.50 9,292.50 9,392.50 9,492.50	-626.38 -626.81 -627.24 -627.67 -628.10	9,113.56 9,213.42 9,313.27 9,413.12 9,512.98	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,100.00 18,200.00 18,300.00 18,400.00 18,500.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	9,592.50 9,692.50 9,792.50 9,892.50 9,992.50	-628.53 -628.96 -629.38 -629.81 -630.24	9,612.83 9,712.69 9,812.54 9,912.39 10,012.25	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
18,600.00 18,700.00 18,800.00 18,900.00 19,000.00	90.00 90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00 8,700.00	10,092.50 10,192.50 10,292.49 10,392.49 10,492.49	-630.67 -631.10 -631.53 -631.96 -632.39	10,112.10 10,211.95 10,311.81 10,411.66 10,511.52	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
19,100.00 19,200.00 19,300.00 19,350.90	90.00 90.00 90.00 90.00	359.75 359.75 359.75 359.75 359.75	8,700.00 8,700.00 8,700.00 8,700.00	10,592.49 10,692.49 10,792.49 10,843.38	-632.81 -633.24 -633.67 -633.89	10,611.37 10,711.22 10,811.08 10,861.90	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Nugget 6_31 - plan misses target o - Point	0.00 center by 58	0.00 7.49ft at 0.0	0.00 00ft MD (0.0	-8.59 0 TVD, 0.00 N	-587.43 N, 0.00 E)	450,800.91	699,538.63	32.238292	-103.821663
FTP (Nugget 6_31 Fed - plan misses target o - Point	0.00 center by 26	0.00 .82ft at 890	8,700.00 2.04ft MD (8	391.44 8674.22 TVD,	-589.08 397.30 N, -5	451,200.91 84.56 E)	699,536.98	32.239391	-103.821662
PBHL (Nugget 6_31 - plan hits target cent - Point	0.00 ter	0.00	8,700.00	10,843.38	-633.89	461,652.19	699,492.17	32.268120	-103.821646

Database:	HOPSPP	Local Co-ordinate Reference:	Well Nugget 6_31 Fed Com 22H
Company:	ENGINEERING DESIGNS	TVD Reference:	RKB=25' @ 3495.00ft
Project:	PRD NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB=25' @ 3495.00ft
Site:	Nugget 6_31	North Reference:	Grid
Well:	Nugget 6_31 Fed Com 22H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permitting Plan		

Formations

Ν	/leasured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
	552.00	552.00	RUSTLER			
	929.00	929.00	SALADO			
	2,784.00	2,784.00	CASTILE			
	4,193.00	4,193.00	DELAWARE			
	4,225.00	4,225.00	BELL CANYON			
	5,113.07	5,113.00	CHERRY CANYON			
	6,387.97	6,375.00	BRUSHY CANYON			
	8,089.84	8,051.00	BONE SPRING			

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
4,868.00	4,868.00	0.00	0.00	Build 1°/100'
5,868.20	5,863.13	-0.72	-87.08	Hold 10° Tangent
8,175.50	8,135.36	-4.05	-487.80	KOP, Build & Turn 10°/100'
9,075.90	8,700.00	568.48	-589.84	Landing Point
19,350.90	8,700.00	10,843.38	-633.89	TD at 19350.90' MD

Oxy USA Inc. - NUGGET 6_31 FED COM 22H Drill Plan

1. Geologic Formations

TVD of Target (ft):	8700	Pilot Hole Depth (ft):	
Total Measured Depth (ft):	19351	Deepest Expected Fresh Water (ft):	552

Delaware Basin

Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	552	552	
Salado	929	929	Salt
Castile	2784	2784	Salt
Delaware	4193	4193	Oil/Gas/Brine
Bell Canyon	4225	4225	Oil/Gas/Brine
Cherry Canyon	5113	5113	Oil/Gas/Brine
Brushy Canyon	6388	6375	Losses
Bone Spring	8090	8051	Oil/Gas
Bone Spring 1st			Oil/Gas
Bone Spring 2nd			Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		N	ID	T١	/D				
	Hole	From	То	From	То	Csg.	Csg Wt.		
Section	Size (in)	(ft)	(ft)	(ft)	(ft)	OD (in)	(ppf)	Grade	Conn.
Surface	14.75	0	869	0	869	10.75	45.5	J-55	BTC
Intermediate	9.875	0	8075	0	8035	7.625	26.4	L-80 HC	BTC
Production	6.75	0	19351	0	8700	5.5	20	P-110	Wedge 461

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

All Casing SF Values will meet or						
exceed those below						
SF	SF Body SF Joint					
Collapse	Burst	Tension	Tension			
1.00	1.100	1.4	1.4			

Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

	Y or N
Is casing new? If used, attach certification as required in 43 CFR 3160	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards?	Y
If not provide justification (loading assumptions, casing design criteria).	
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Y
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	Y
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (Ib/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	727	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	196	1.65	13.2	5%	6,638	Circulate	Class H+Accel., Disper., Salt
Int.	2	Intermediate 2S - Tail BH	1024	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	667	1.84	13.3	25%	7,575	Circulate	Class C+Ret.

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре	~	Tested to:	Deepest TVD Depth (ft) per Section:
		5M	Annular	\checkmark	70% of working pressure	
			Blind Ram	\checkmark		
9.875" Hole	13-5/8"	5M	Pipe Ram		250 psi / 5000 psi	8035
			Double Ram	✓	200 p317 0000 p31	
			Other*			
		5M	Annular	\checkmark	70% of working pressure	
			Blind Ram	\checkmark		8700
6.75" Hole	13-5/8"	5M	Pipe Ram		250 psi / 5000 psi	
			Double Ram	\checkmark		
			Other*			

*Specify if additional ram is utilized

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

5. Mud Program

	Depth - MD		Depth - TVD		T	Weight	Viceosity	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	869	0	869	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	869	8075	869	8035	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	8075	19351	8035	8700	Water-Based or Oil- Based Mud	8.0 - 9.6	38-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls,

What will be used to monitor the	DV/T/ND Tatas (Visual Manitaring
loss or gain of fluid?	PVT/MD Totco/Visual Monitoring

6. Logging and Testing Procedures

0							
Logg	Logging, Coring and Testing.						
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole).						
res	Stated logs run will be in the Completion Report and submitted to the BLM.						
No	Logs are planned based on well control or offset log information.						
No	Drill stem test? If yes, explain						
No	Coring? If you overlain						

No Coring? If yes, explain

Addit	tional logs planned	Interval
No	Resistivity	
No	Density	
Yes	CBL	Production string
Yes	Mud log	Bone Spring – TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?				
BH Pressure at deepest TVD	4344 psi				
Abnormal Temperature	No				
BH Temperature at deepest TVD	150°F				

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is
detected in concentrations greater than 100 ppm, the operator will comply with the provisions of 43
CFR part 3170 Subpart 3172. If Hydrogen Sulfide is encountered, measured values and formations will
be provided to the BLM.

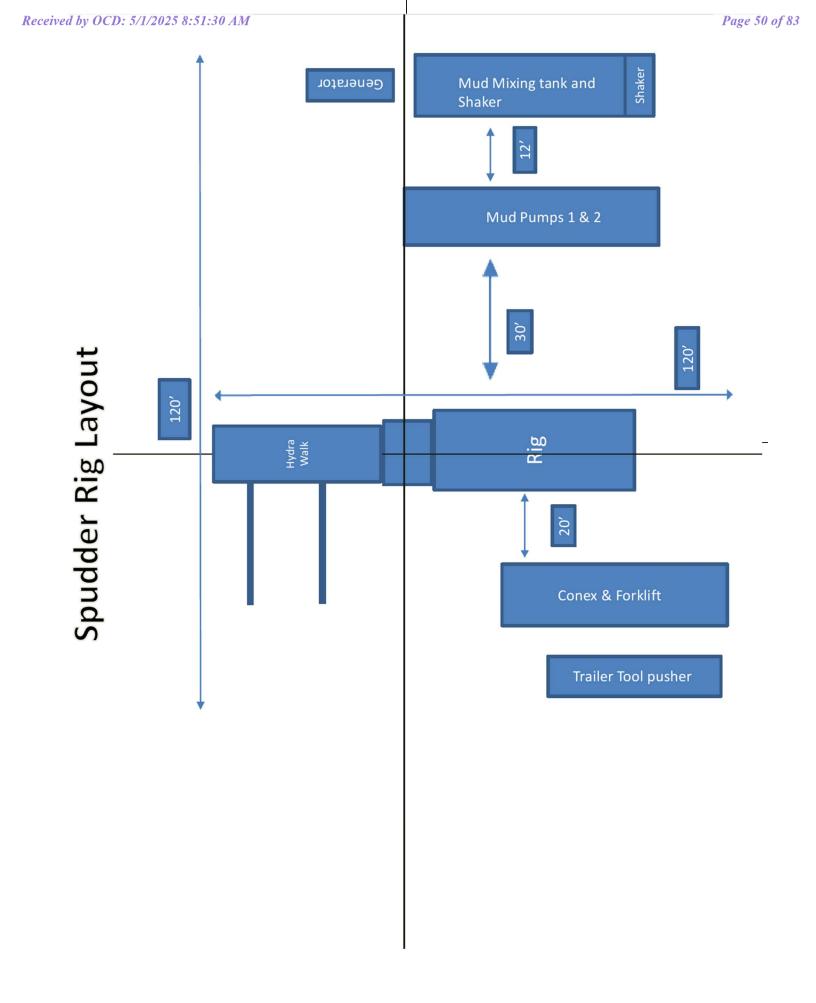
Ν	H2S is present	
Y	H2S Plan attached	

8. Other facets of operation

	Yes/No				
Will the well be drilled with a walking/skidding operation? If yes, describe.					
We plan to drill the 3 well pad in batch by section: all surface sections, intermediate	Yes				
sections and production sections. The wellhead will be secured with a night cap whenever					
the rig is not over the well.					
Will more than one drilling rig be used for drilling operations? If yes, describe.					
Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for					
this well. If the timing between rigs is such that Oxy would not be able to preset surface,					
the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the					
attached document for information on the spudder rig.					
Total Estimated Cuttings Volume: 1366 bbls					

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: <u>OXY USA Inc</u>


1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - a. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (43 CFR part 3170 Subpart 3172, all COAs and NMOCD regulations).
 - b. The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- **3.** A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - a. The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - b. The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

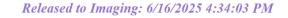
•

Oxy USA Inc. - Blanket Design Pad Document

OXY - Blanket Design A

Pad Name: SNDDNS_T24SR31E_7_2

SHL: 420' FNL 1675' FWL, Sec 7, T24S-R31E

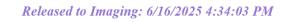

Oxy requests for the bellow wells to be approved for the two designs listed in the Blanket Design document (Blanket Design A –OXY –3S Slim v7.) The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions (directional plans attached separately for review.)

1. Blanket Design - Wells

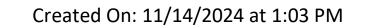
Wall Name		Sur	rface	Interm	nediate	Production	
Well Name APD #		MD	TVD	MD	TVD	MD	TVD
NUGGET 6_31 FED COM 21H	N/A - New Permit	859	859	8247	8073	19558	8700
NUGGET 6_31 FED COM 22H	N/A - New Permit	869	869	8075	8035	19351	8700
NUGGET 6_31 FED COM 23H	N/A - New Permit	876	876	8002	8002	19314	8700
NUGGET 6_31 FED COM 43H	N/A - New Permit	877	877	11460	11447	23008	12174
NUGGET 6_31 FED COM 44H	N/A - New Permit	887	887	11594	11505	23052	12175
NUGGET 6_31 FED COM 4H	N/A - New Permit	867	867	10579	10498	21847	11150
NUGGET 6_31 FED COM 5H	N/A - New Permit	883	883	10548	10511	21802	11150

2. Review Criteria Table

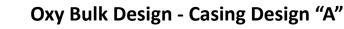
	Y or N					
Is casing new? If used, attach certification as required in 43 CFR 3160	Y					
Does casing meet API specifications? If no, attach casing specification sheet.	Y					
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y					
Does the above casing design meet or exceed BLM's minimum standards?	Y					
If not provide justification (loading assumptions, casing design criteria).	1					
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y					
the collapse pressure rating of the casing?						
Is well located within Capitan Reef?	Ν					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.						
Is well located in SOPA but not in R-111-P?	Y					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	Y					
500' into previous casing?	1					
Is well located in R-111-P and SOPA?	Ν					
If yes, are the first three strings cemented to surface?						
Is 2 nd string set 100' to 600' below the base of salt?						
Is well located in high Cave/Karst?	N					
If yes, are there two strings cemented to surface?						
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?						
Is well located in critical Cave/Karst?	N					
If yes, are there three strings cemented to surface?						



3. Geologic Formations


Formation	MD-RKB (ft)	TVD-RKB (ft)	Expected Fluids
Rustler	543	543	
Salado	919	919	Salt
Castile	2758	2758	Salt
Delaware	4185	4185	Oil/Gas/Brine
Bell Canyon	4215	4215	Oil/Gas/Brine
Cherry Canyon	5124	5108	Oil/Gas/Brine
Brushy Canyon	6446	6365	Losses
Bone Spring	8221	8053	Oil/Gas
Bone Spring 1st			Oil/Gas
Bone Spring 2nd			Oil/Gas
Bone Spring 3rd			Oil/Gas
Wolfcamp			Oil/Gas
Penn			Oil/Gas
Strawn			Oil/Gas

4. Cementing Program


Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (Ib/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	719	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	208	1.68	13.2	5%	6,696	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1034	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	669	1.84	13.3	25%	7,747	Circulate	Class C+Ret.

•

1. Casing Program

The designs and associated details listed in this document are the "worst case scenario" boundaries for design safety factors.

Location and lithology have NOT been accounted for in these designs; however, the designs are NOT valid for wells within KPLA Boundaries or Capitan Reef areas. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program listed below will remain the same between each design variation.

Hole will be full during casing run for well control and tensile SF.

Casing will be kept at least half full during run for these designs to meet BLM collapse SF requirement.

Design Variation "A1"

			MD	Т	'VD]			
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	14.75	0	1200	0	1200	10.75	45.5	J-55	BTC
Intermediate	9.875	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

*Curve could be in intermediate or production section

Design Variation "A2" - Option to Pivot to Design "B" for Contingency 4S

			MD		ΓVD				
Section	Hole Size (in)	From (ft)	To (ft)	From (ft)	To (ft)	Csg. OD (in)	Csg Wt. (ppf)	Grade	Conn.
Surface	17.5	0	1200	0	1200	13.375	54.5	J-55	BTC
Intermediate	12.25†	0	13111*	0	12775*	7.625	26.4	L-80 HC	BTC Axis HT
Production	6.75	0	23361	0	12775	5.5	20	P-110	Wedge 461 Sprint SF DWC/C-HT-IS

*Curve could be in intermediate or production section

⁺If 4S Contingency is not required, Oxy requests permission to transition from 12.25" to 9.875" Intermediate at some point during the hole section. Cement volumes will be updated on C103 submission.

All casing strings will be tested in accordance with 43 CFR part 3170 Subpart 3172

All Casing SF Values will meet or								
exceed those below								
SF	SF	Body SF	Joint SF					
Collapse	Burst	Tension	Tension					
1.00	1.100	1.4	1.4					

§Annular Clearance Variance Request

As per the agreement reached in the Oxy/BLM face-to-face meeting on Feb 22, 2018, Oxy requests permission to allow deviation from the 0.422" annular clearance requirement. Please see Annular Clearance Variance attachment for further details.

§Annular Clearance Variance Request may not apply to all connections used or presented.

2. Trajectory / Boundary Conditions

	MD)	TV	D		
Section	Deepest KOP (ft)	End Build (ft)	Deepest KOP (ft)	End Build (ft)	Max. Angle	Max. Planned DLS
Surface	0	1200	0	1200	5°	1°/100 ft
Intermediate	5000 (inside Cherry Canyon)	6500	4980	6390	20°	2°/100 ft
	12211	13111	12202	12775	92° ‡	12°/100 ft ‡
Production	12211 (~100' MD past ICP)	13111	12202	12775	92° ‡	12°/100 ft ‡

‡ Applies only when intermediate casing depth is deepened to landing point to match TVD of production in some areas where required to accommodate higher MWs in depleted areas.

Oxy has reviewed casing burst, collapse, and axial loadcases in Landmark StressCheck with the boundary conditions in the table above which satisfies Oxy and BLM minimum design criteria. Triaxial plots for each casing string is shown in Section 7 and intermediate load case inputs are shown in Section 8.

3. Cementing Program

NOTE: Blanket design is for technical review only. The cement volumes will be adjusted to ensure cement tops meet BLM requirements.

Design Variation "A1"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	819	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1111	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
	2*		-		40.0	500/	500' inside	<u> </u>	
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	prev csg	Circulate	Class C+Ret.

*Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Design Variation "A2"

Section	Stage	Slurry:	Sacks	Yield (ft^3/ft)	Density (lb/gal)	Excess:	тос	Placement	Description
Surface	1	Surface - Tail	1023	1.33	14.8	100%	-	Circulate	Class C+Accel.
Int.	1	Intermediate 1S - Tail	658	1.68	13.2	5%	7,206	Circulate	Class C+Ret., Disper.
Int.	2	Intermediate 2S - Tail BH	1293	1.71	13.3	25%	-	Bradenhead	Class C+Accel.
Prod.	1	Production - Tail	665	1.84	13.3	25%	11,611	Circulate	Class C+Ret.
Prod.	2*	Production - Tail BH*	TBD	1.84	13.3	50%	500' inside prev csg	Circulate	Class C+Ret.

*Only applies in scenario where planned single stage job TOC is not 500' above previous shoe as designed/programmed requiring bradenhead 2nd stage to meet requirements

Offline Cementing Request

Oxy requests a variance to cement the 9.625" and/or 7.625" intermediate casing strings offline in accordance to the approved variance, EC Tran 461365. Please see Offline Cementing Variance attachment for further details.

Bradenhead CBL Request

Oxy requests permission to adjust the CBL requirement after bradenhead cement jobs, on 7-5/8" intermediate casings, as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see Bradenhead CBL Variance attachment for further details.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP		Туре	~	Tested to:	Deepest TVD Depth (ft) per Section:
		5M		Annular	✓	70% of working pressure	
				Blind Ram	√		
9.875" Hole	13-5/8"	5M	Pipe Ram			250 psi / 5000 psi	12775**
		5101		Double Ram	✓	200 p317 0000 p31	
			Other*				
		5M		Annular	✓	100% of working pressure	
			Blind Ram		√		12775
6.75" Hole	13-5/8"	10M		Pipe Ram		250 psi / 10000 psi	
		TON		Double Ram	✓	200 psi/ 10000 psi	
			Other*				

*Specify if additional ram is utilized

**Curve could be in intermediate or production section

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per 43 CFR part 3170 Subpart 3172 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

5M Annular BOP Request

Per BLM's Memorandum No. NM-2017-008: *Decision and Rationale for a Variance Allowing the Use of a 5M Annular Preventer with a 10M BOP Stack*, Oxy requests to employ a 5M annular with a 10M BOPE stack in the pilot and lateral sections of the well and will ensure that two barriers to flow are

Formation integrity test will be performed per 43 CFR part 3170 Subpart 3172.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with 43 CFR part 3170 Subpart 3172.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Coflex hoses are in compliance with API 16C and meets inspection and testing requirements. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per 43 CFR part 3170 Subpart 3172 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached Schematics.

BOP Break Testing Request

Oxy requests permission to adjust the BOP break testing requirements as per the agreement reached in the OXY/BLM meeting on September 5, 2019. Please see BOP Break Testing Variance attachment for further details.

Hammer Union Variance

Oxy requests permission for hammer unions behind the choke to be routed to the gas buster. The hammer unions will not be subject to wellbore pressure in compliance with API STD 53.

Oxy will use Cameron ADAPT wellhead system that uses an OEC top flange connection. This connection has been fully vetted and verified by API to Spec 6A and carries an API monogram.

<u>exy</u>

5. Mud Program & Drilling Conditions

G t ¹	Depth	- MD	Depth	- TVD	Tours	Weight	1 7 .	Water
Section	From (ft)	To (ft)	From (ft)	To (ft)	Туре	(ppg)	Viscosity	Loss
Surface	0	1200	0	1200	Water-Based Mud	8.6 - 8.8	40-60	N/C
Intermediate	1200	13111*	1200	12775*	Saturated Brine-Based or Oil-Based Mud	8.0 - 10.0	35-45	N/C
Production	13111	23361	12775	12775	Water-Based or Oil- Based Mud	9.5 - 13.5	38-50	N/C

Curve could be in intermediate or production section

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

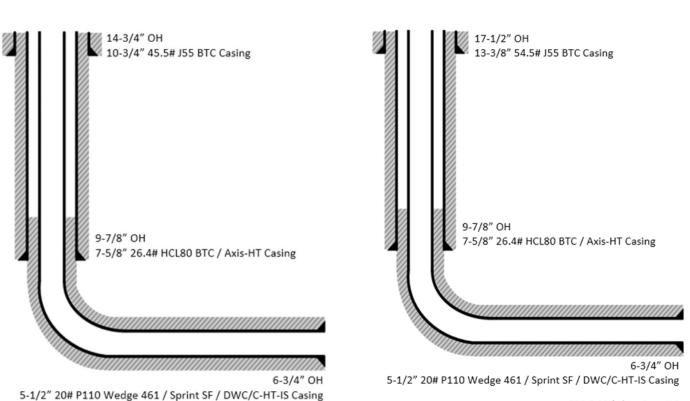
Drilling Blind Request

In the event total losses are encountered in the intermediate section, Oxy requests permission to drill blind due to depleted formations where risk of hydrocarbon kicks are unlikely.

- Oxy will first attempt to cure losses before proceeding with drilling blind
- Drilling blind will only be allowed in the Castille and formations below
- While drilling blind, will monitor backside by filling-up on connections and utilize gas monitors
- Depths at which losses occurred and attempt to cure losses with relevant details (LCM sweep info, etc.) will be documented in the drillers log and Subsequent Reports to the BLM.
- If a well control event (hydrocarbon kick) occurs while drilling blind, the BLM will be notified after the well is secured and returned to static.

What will be used to monitor the loss or gain of fluid? PVT/MD Totco/Visual Monitoring

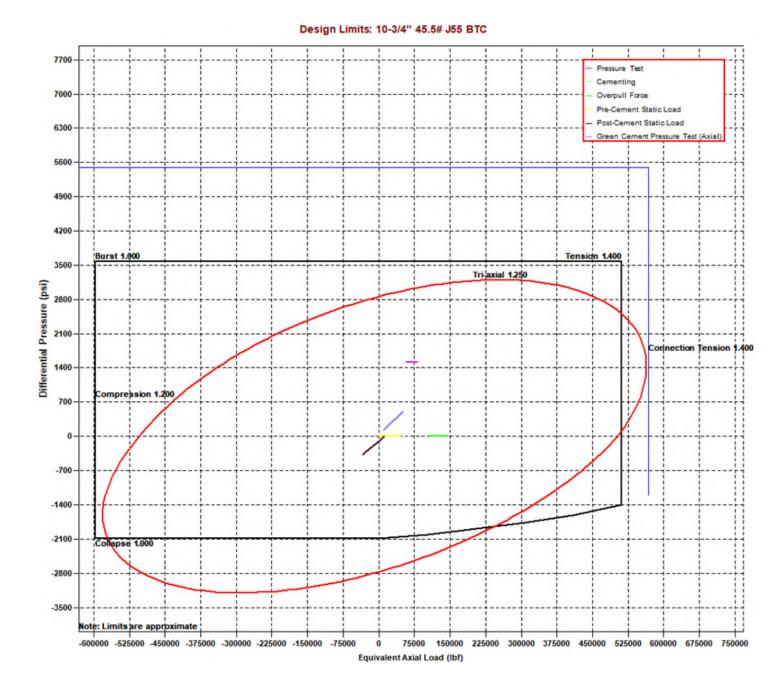
Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.



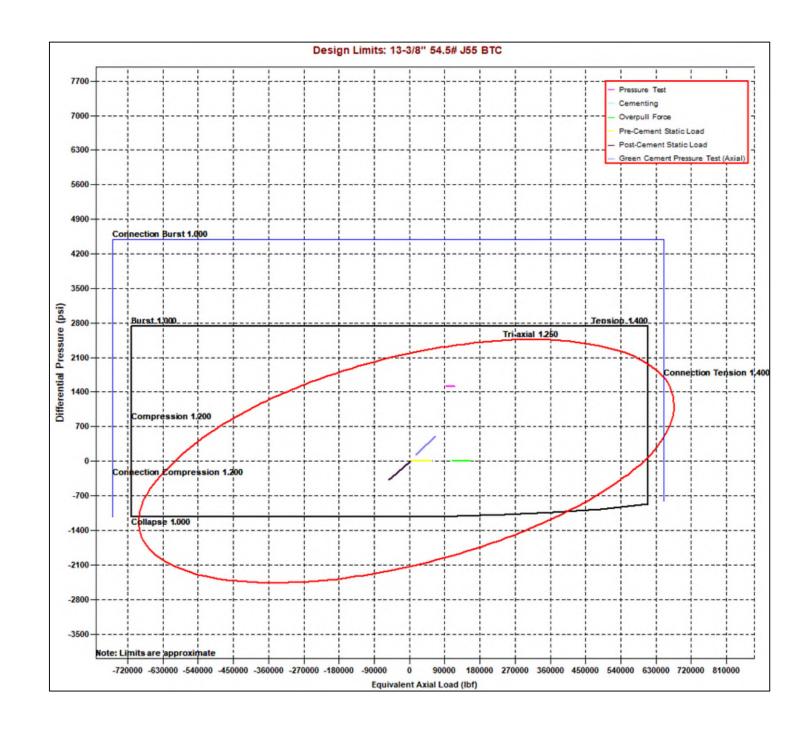
Design Variation "A2"

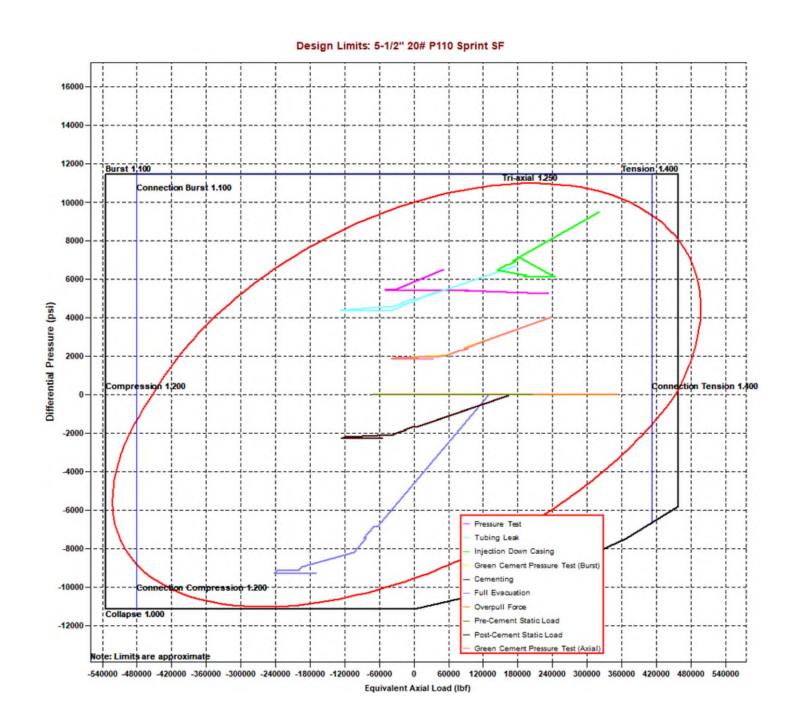
6. Wellbore Diagram(s)

Design Variation "A1"


TOC @ 500' Above Prev. CSG

TOC @ 500' Above Prev. CSG


7. Landmark StressCheck Screenshots – Triaxial Output



Design Limits: 7-5/8" 26.4# HC-L80 BTC 12000 Lost Returns with Water 10500 Gas Hidk (50.0 bbl, 0.50 ppg) Pressure Test Green Cement Pressure Test (Burst) Connection Burst 1.100. 9000 Lost Returns with Mud Drop Cementing Overpull Force 7500 Pre-Cement Static Load Post-Cement Static Load en Cement Pressure Test (Arial 6000 Burst 1.100 Tension 1.400 Differential Pressure (psi) 4500 3000 ction ension 1400 1500 ompression 1.200 0 -1500 -3000 ion Compression 1.200 Co -4500 Collapse 1.000 -6000 Note: Limits are approximate -540000 -480000 -420000 -360000 -300000 -240000 -180000 -120000 -60000 120000 180000 240000 300000 360000 420000 480000 540000 600000 60000 0 Equivalent Axial Load (lbf)

8. Landmark StressCheck Screenshots – Inputs for Intermediate CSG Load Cases

Burst Load Cases

General	
	-
Burst Loads Data	
Drilling Load:	Lost Returns with Water
Fracture at Shoe (MD= 13111.00 ft):	10591 psi
Mud/Water Interface, MD:	0.00 ft
Mud Weight	11.28 ppg
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Gas Kick Profile
Influx Depth, MD:	23361.00 ft
Kick Volume:	50.0 bbl
Kick Intensity	0.50 ppg
Maximum Mud Weight:	13.50 ppg
Kick Gas Gravity:	0.55 (0.1159 psi/ft @ 182 °F & 9291 psi)
Fracture at Shoe (MD= 13111.00 ft):	10591 psi
Drill Pipe OD:	5.000 in
Collar OD:	5.500 in
Collar Length:	200.00 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Pressure Test
Test Pressure:	3120 psi
Mud Weight:	10.00 ppg
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Green Cement Pressure Test
Test Pressure:	2000 psi
Mud Weight at Shoe:	10.00 ppg
TOC, MD:	25.00 ft
Lead Slurry Density:	13.30 ppg
Tail Slurry Density:	13.30 ppg
Tail Slurry Length:	5906.00 ft
Displacement Fluid Density:	10.00 ppg
Float Collar Depth, MD:	12800.00 ft
External Pressure:	Fluid Gradients (w/ Pore Pressure)
TOC, MD:	25.00 ft
Prior Shoe, MD:	1200.00 ft
Mud Weight Above TOC:	10.00 ppg
Fluid Gradient Below TOC:	8.33 ppg
Wellhead Pressure:	13 psi
Pore Pressure In Open Hole:	Yes

Collapse Load Cases

General ▼ ★ → 7 5/8" Intermediate Casing ▼	
	•
Collapse Loads Data	
Drilling Load:	Cementing
Mud Weight at Shoe:	10.00 ppg
TOC, MD:	25.00 ft
Lead Slurry Density:	13.30 ppg
Tail Slurry Density:	13.30 ppg
Tail Slurry Length:	5906.00 ft
Displacement Fluid Density:	10.00 ppg
Float Collar Depth, MD:	12800.00 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
Drilling Load:	Lost Returns with Mud Drop
Lost Returns Depth, MD:	13110.89 ft
Pore Pressure at Lost Returns Depth:	8183 psi
Pore Pressure Gradient at Lost Returns Depth:	12.33 ppg
Mud Weight:	13.50 ppg
Mud Drop Level, MD:	1106.39 ft
Assigned External Pressure:	Fluid Gradients (w/ Pore Pressure)
External Pressure:	Fluid Gradients (w/ Pore Pressure)
TOC, MD:	25.00 ft
Prior Shoe, MD:	1200.00 ft
Fluid Gradient Above TOC:	10.00 ppg
Fluid Gradient Below TOC:	10.00 ppg
Wellhead Pressure:	13 psi
Pore Pressure In Open Hole Below TOC:	No

Axial Load Cases

General	
	•
Axial Loads Data	
Overpull Force:	100000 lbf
Pre-Cement Static Load:	Yes
Pickup Force:	0 lbf
Post-Cement Static Load:	Yes
Green Cement Pressure Test:	2000 psi
Service Loads:	Yes

9. Landmark StressCheck Screenshot – Int. Casing Triaxial Results Table (Pressure Test)

			11	<u> </u>		Intermediate C								
1	1 •••• 🔁 MD 🕅	X * 🗵			b	- 🖳	🖳 🔜 Pre	ssure Test		•				
Tr	axial Results	Autial E	Force (lbf)	F () ()	0 1		Absolute C	afety Factor			Pressu	(
	Depth (MD)		Actual	Equivalent Axial Load	Bending Stress		Absolute S			Temperature	Pressu	re (psi)	Addt'l Pickup To	Buckle
	(ft)	Apparent (w/Bending)	(w/o Bending)	(lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length
28	12300	-142410	-17423	-94936	16622.5	1.79	2.10	N/A	(4.09)	178	9505	6732		
29	12400	-149639	-24652	-100590	16622.5	1.87	2.25	N/A	(3.89)	179	9555	6970		
30	12400	-149640	-24653	-100591	16622.5	1.87	2.25	N/A	(3.89)	179	9555	6970		
31	12500	-156448	-31461	-105919	16622.5	1.95	2.42	N/A	(3.72)	180	9603	7193		
32	12500	-156449	-31462	-105920	16622.5	1.95	2.42	N/A	(3.72)	180	9603	7193		
33	12550	-159630	-34643	-108410	16622.5	1.99	2.50	N/A	(3.64)	180	9625	7298		
34	12550	-159631	-34644	-108411	16622.5	1.99	2.50	N/A	(3.64)	180	9625	7298		
35		-162630	-37643	-110759	16622.5	2.03	2.59	N/A	(3.58)	180	9646	7396		
36	12600	-162631	-37644	-110760	16622.5	2.03	2.59	N/A	(3.58)	180	9646	7396		
37	12650	-165426	-40439	-112949	16622.5	2.07	2.67	N/A	(3.52)	181	9665	7488		
38	12650	-165427	-40440	-112950	16622.5	2.07	2.67	N/A	(3.52)	181	9665	7488		
39	12700	-167997	-43010	-114963	16622.5	2.10	2.76	N/A	(3.46)	181	9683	7573		
40	12700	-167998	-43011	-114963	16622.5	2.10	2.76	N/A	(3.46)	181	9683	7573		
41	12750	-170322	-45335	-116784	16622.5	2.13	2.84	N/A	(3.41)	181	9699	7649		
42	12750	-170323	-45336	-116785	16622.5	2.13	2.84	N/A	(3.41)	181	9699	7649		
43	12800	-172385	-47398	-118401	16622.5	2.16	2.91	N/A	(3.37)	181	9714	7717		
44		-172386	-47399	-118401	16622.5	2.16	2.91	N/A	(3.37)	181	9714	7717		
45		-174169	-49183	-119799	16622.5	2.19	2.98	N/A	(3.34)	182	9726	7775		
46	12850	-174170	-49183	-119800	16622.5	2.19	2.98	N/A	(3.34)	182	9726	7775		
47	12900	-175662	-50675	-120969	16622.5	2.21	3.04	N/A	(3.31)	182	9736	7824		
48		-176851	-51864	-121901	16622.5	2.23	3.09	N/A	(3.29)	182	9745	7863		
49		-177727	-52740	-122588	16622.5	2.24	3.13	N/A	(3.27)	182	9751	7892		
50	13000	-177728	-52741	-122588	16622.5	2.24	3.13	N/A	(3.27)	182	9751	7892		
51	13050	-178285	-53298	-123025	16622.5	2.25	3.15	N/A	(3.26)	182	9755	7910		
52	13111	-178527	-53540	-123214	16622.5	2.25	3.16	N/A	(3.26)	182	9756	7918		

Internal Pressure = Surface Pressure + Hydrostatic = 9756 psi External Pressure = Fluid Gradient w/ Pore Pressure = 7918 psi Burst SF = 3.16

NOTE: Specific load case inputs for the pressure test can be seen in **Section 8** above. The test pressure does not exceed 70% of the minimum internal yield.

10. Intermediate Non-API Casing Spec Sheet

Technical Data Sheet

7 5/8" 26.40 lbs/ft. L80HC - Axis HT

Meci	hanical	Properties	
Minimum Yield Strength	psi.	80,000	
Maximum Yield Strength	psi.	95,000	
Minimum Tensile Strength	psi.	95,000	
	Dimer	nsions	
		Pipe	AXIS HT
Outside Diameter	in.	7.625	8.500
Wall Thickness	in.	0.328	-
Inside Diameter	in.	6.969	-
Standard Drift	in.	6.844	6.844
Alternate Drift	in.	-	-
Plain End Weight	lbs/ft.	-	-
Nominal Linear Weight	lbs/ft.	26.40	-
	Perfor	mance	
		Pipe	AXIS HT
Minimum Collapse Pressure	psi.	4,320	-
Minimum Internal Yield Pressure	psi.	6,020	6,020
Minimum Pipe Body Yield Strength	lbs.	602 x 1,000	-
Joint Strength	lbs.	-	635 x 1,000
Ma	ake-Up	Torques	
		Pipe	AXIS HT
Optimum Make-Up Torque	ft/lbs.	-	8,000
Maximum Operational Torque	ft/lbs.	-	25,000

Disclaimer: The content of this Technical Data Sheet is for general information only and does not guarantee performance and/or accuracy, which can only be determined by a professional expert with the specific installation and operation parameters. Information printed or downloaded may not be current and no longer in control by Axis Pipe and Tube. Anyone using the information herein does so at his or her own risk. To verify that you have the latest technical information, please contact Axis Pipe and Tube Technical Sales +1 (979) 599-7600, www.axispipeandtube.com

.

Oxy Bulk Design - Casing Design "A"

11. Production Non-API Casing Spec Sheets

TenarisHyc 461 [®] MS	dril Wedg		Body:	nd: Pale Green 2nd Band: Pa and: - 3rd Band: Pa	ite Ile Green
Outside Diameter	5.500 in.	Wall Thickness	0.361 in.	Grade	P110-IC1
Min. Wall Thickness	87.50 %	Pipe Body Drift	API Standard	Туре	Casing
Connection OD Option	MS				
Pipe Body Data					
Geometry				Performance	
lominal OD	5.500 in.	Wall Thickness	0.361 in.	Body Yield Strength	729 x1000 I
Nominal Weight	20 lb/ft	Plain End Weight	19.83 lb/ft	Min. Internal Yield Pressure	14,360 ps
Drift	4.653 in.	OD Tolerance	API	SMYS	125,000 ps
Nominal ID	4.778 in.			Collapse Pressure	12,300 ps
Connection Data					
Geometry		Performance		Make-Up Torques	
Connection OD	6.050 in.	Tension Efficiency	100 %	Minimum	17,000 ft-lt
Coupling Length	7.714 in.	Joint Yield Strength	729 x1000 lb	Optimum	18,000 ft-lt
Connection ID	4.778 in.	Internal Pressure Capacity	14,360 psi	Maximum	21,600 ft-lb
Make-up Loss	3.775 in.	Compression Efficiency	100 %	Operation Limit Torques	
Threads per inch	3.40	Compression Strength	729 x1000 lb		42,000,6 1
Connection OD Option	Ms	Max. Allowable Bending	104 °/100 ft	Operating Torque	43,000 ft-lt
		External Pressure Capacity	12,300 psi	Yield Torque	51,000 ft-lt
		Coupling Face Load	273,000 lb	Buck-On	
				Minimum	21.600 ft-lt

Wedge 4410°-5.5 in. - 0.304 / 0.415 / 0.476 in. Wedge 4410°-5.5 in. - 0.304 / 0.415 / 0.476 in. Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version In October 2019, TenarisHydril Wedge XP® 2.0 was renamed TenarisHydril Wedge 461™. Product dimensions and properties remain identical and both connections are fully interchargeable interchangeable

For the lastest performance data, always visit our website: www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information —if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of anykind for anyloss, damage or injuryresulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2021. All rights reserved.

Generated on May 21, 2024

CONNECTION DATA SHEET

OD: 5.500 in.	Grade: P110
Weight: 20.00 lb/ft	Drift: 4.653 in. (API)
Wall Th.: 0.361 in.	

VAM[®] SPRINT-SF

Semi-Flush

PIPE BODY PROPERTIES

Nominal OD	5.500 ir	n.
Nominal ID	4.778 ir	n.
Nominal Wall Thickness	0.361 ir	ı.
Minimum Wall Thickness	87.5 %	5
Nominal Weight (API)	20.00 lk	o/ft
Plain End Weight	19.83 <i>lk</i>	o/ft
Drift	4.653 ir	ı.
Grade Type	API 5CT	
Minimum Yield Strength	110 <i>k</i>	si
Maximum Yield Strength	140 k	si
Minimum Ultimate Tensile Strength	125 <i>k</i>	si
Pipe Body Yield Strength	641 k	lb
Internal Yield Pressure	12,640 p	si
Collapse Pressure	11,100 p	si

CONNECTION PROPERTIES -

Connection Type	Semi-Pr	emium Integral
Nominal Connection OD	5.783	in.
Nominal Connection ID	4.718	in.
Make-up Loss	5.965	in.
Tension Efficiency	90	% Pipe Body
Compression Efficiency	90	% Pipe Body
Internal Pressure Efficiency	100	% Pipe Body
External Pressure Efficiency	100	% Pipe Body

JOINT PERFORMANCES

Tension Strength	577	klb
Compression Strength	577	klb
Internal Pressure Resistance	12,640	psi
External Pressure Resistance	11,100	psi
Maximum Bending, Structural	78	°/100 ft
Maximum Bending, with Sealability(1)	30	°/100 ft

to contact us

(1) Sealability rating demonstrated as per API RP 5C5 / ISO 13679

Make-up Torque (ft-lb) 20,000 MIN 22,500 OPTI 25,000 MAX

Torque with Sealability (ft-lb)

Locked Flank Torque (ft-lb)

4,500 MIN 15,750 MAX

(2) MTS: Maximum Torque with Sealability.

36,000 MTS

BOOST YOUR EFFICIENCY, REDUCE COSTS AND ENSURE 100% WELL INTEGRITY WITH VAM[®] FIELD SERVICE

ation available on this Site (Information') is offered for general information. It is supposed to be correct at the time of publishing on the Site but is not intended to constitute professional advice and is provided 'as is'. Val uarantee the completeness and accuracy of this Information. Under no circumstances will Vallource be liable for damage, liability of any kind, or any loss or injury that may result from the credibility given to this Informat e Information may be amended, corrected, at any time by Vallourev without warning. Valloure's products and services are subject to Vallourer's The Information by be amended, corrected, and/or supplemented at any by Vallourec without warning. standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services. does not guarantee the completeness and accur its use. The Information may be amended, corre nted at any tin

Min. Tensile Strength 135 ksi Yield Strength 729 kb Utimate Strength 787 kb Min. Internal Yield Pressure 14,360 psi Collapse Pressure 12,090 psi Yield Strength 649 kb Parting Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 psi External Pressure 12,360 psi Min. Internal Yield Pressure 12,360 psi Min. Shoulder Torque 13,660 ft Maximur Uniaxial Bend Rating 91,7 '1/100 ft Maximur Uniaxial Bend Rating 91,7 '1/100 ft Reference String Length w 1.4 Design Factor 22,890 ft.							2				
5.500 Nominal: 20.00 Plain End: 19.83 0.361 ±VST P110MY 4.653 87.5 DWC/C-HT-IS Image: Constant C								C	onnec	tion Data S	heet
Plain End: 19.83 PIPE PROPERTIES Nominal O 5.500 In Nominal D 4.778 In Nominal Vaa 6.582 sgin Grade Type Art 778 In Min Yeld Steregth 125 In Min Testils Steregth 135 Iss Counted Toron 6.050 Max Yeld Steregth 728 Kell Kell Steregth 98.15% of Dotted Toron Vield Steregth 728 Kell Kell Steregth 98.15% of Dotted Toron Nominal Toron Nominal Toron Nominal Toron Nominal Toron Nominal Toron Nominal Toron Nom Mare Ustart Toron Nominal Toro	OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)		GRADE			API DRIFT (in.)	RBW%	CONNECTIO	N
Nominal 00 5 500 in Nominal 10 4.778 in Nominal 10 4.778 in Connection 70pe Semi-Premum T Connection 00 (nom) 6.650 Connection 00 (nom) 4.776 Min. Yetal Strength 125 kis Min. Yetal Strength 126 coupting Length 9.250 Min. Tension Efficiency 88.15% of point 140 kis Congents Deficiency 88.15% of point 140 kis filternal Pressure Efficiency 88.15% of point 140 kis filternal Pressure Efficiency 100.05% of point 140 kis filternal Pressure Efficiency filternal Pressure Efficiency filternal Pressure Efficiency filternal Pre	5.500		0.361	4	‡VST P110	MY		4.653	87.5	DWC/C-HT-I	S
Nominal D 4.778 in Nominal Value 4.778 in Nominal Value 5.828 sg.in Crade Type AP15 Comection ID (nom) 4.778 Min. Yeld Strength 125 ks Comection ID (nom) 4.778 Min. Yeld Strength 125 ks Comection ID (nom) 6.650 Min. Transile Strength 135 ks Comection ID (nom) 6.650 Vield Strength 729 kb Comection ID (nom) 6.650 Min. Tensile Strength 729 kb Compression Efficiency 88.1% dp Vield Strength 649 kb Compression Efficiency 86.0% dp Vield Strength 649 kb Min. Make-up torque 16.600 10 Vield Strength 649 kb Min. Make-up torque 16.800 10 Min. Internal Yield Pressure 12.380 pa Min. Shoulder Torque 18.80 11 Min. Internal Yield Pressure 12.380 pa Min. Shoulder Torque 18.80 11 Martennal Yield Pressure 12.2	PIPE PROPERTIES	;				co	ONNEC	TION PROPERTIES			
Nominal D 4.778 in, Nominal Vea 5.828 s (n) Arried Type AP JEC Gomedion D(nom) 4.778 Min. Yeld Strength 125 Min. Yeld Strength 125 Min. Yeld Strength 135 Min. Ternish Strength 135 Min. Ternish Strength 727 Yeld Strength 728 Ved Strength 787 Min. Ternish Strength 787 Min. Hernal Yield Pressure 14,860 Colupte Pressure 12,000 Colupte Pressure 12,000 Convection OD (nom) 6.660 Convection OD (nom) 6.660 Utimate Strength 787 Min. Internal Yield Pressure 16.600 Convection Rating 644 Min. Make-up torque 16.600 Min. Make-up torque 16.800 Min. Make-up torque 16.800 Min. Make-up torque 16.800 Comperational Torque Resistance 12.090 Max. Deta Turn 0.200 Max. Treta String Length w 1.4 Design Factor 22.	Nominal OD			5,500	in.	Co	nnection	Туре		Semi-Pr	emium T&C
Nominal Area 5.8.3 sign Grade Type AP16CT Grade Type AP16CT Min Yets Beregin 125 Min. Testins Beregin 140 Min. Testins Beregin 136 Vial Strength 729 Vial Strength 729 Vial Strength 729 Vial Strength 729 Min. Testins Beregin 729 Vial Strength 729 Min. Internal Yield Pressure 14,360 Compression Efficiency 88.0% of p Itamed Strength 100.0% of p Compression Reficiency 100.0% of p Compression Reficiency 100.0% of p Compression Reficiency 100.0% of p Vial Strength 649 kb Max. Make-up torque 16.600 1 Max. Make-up torque 16.800 1 Max. Make-up torque 18.60 1 Max. Make-up torque 18.60 1 Max. Make-up torque 18.60 1 Max. Make-up torque 18.280 1 Max. Make-up torque						Co	nnection	OD (nom)		6.050	in
Grade Type API SCT Make-Up Loss 4.125 Min. Yead Strength 125 kes Gender Type 4.125 Min. Yead Strength 135 kes Gender Type 9.250 Min. Tensis Strength 135 kes Gender Type 9.81% dp Vield Strength 727 kbb Gendersson Efficiency 9.81% dp Min. Internal Yield Pressure 14.360 pm 6.81% dp CONNECTION PERFORMANCES FIELD TORQUE VALUES FIELD TORQUE VALUES Vield Strength 6.800 dp Yield Strength 649 kbb Min. Make-up torque 16.600 dp Optimize Load 729 kbb Min. Make-up torque 16.800 dp Vield Strength 649 kbb Min. Make-up torque 16.800 dp Min. Themal Yield Pressure 12.300 pm Min. Make-up torque 18.300 dp Min. Make-up torque 16.800 Min. Shoulder Torque 18.300 dp Make-up torque 12.800 min. Shoulder Torque 18.300 dp <td< td=""><td>Nominal Area</td><td></td><td></td><td>5.828</td><td>sq.in.</td><td></td><td></td><td></td><td></td><td>4.778</td><td>in</td></td<>	Nominal Area			5.828	sq.in.					4.778	in
Max. Yeid Strength 140 kes Min. Tesis Strength 135 kes Min. Tesis Strength 729 kb Criccal Cross Section 5.828 spatial Utimate Strength 787 kb Internal Pressure Efficiency 88.0% of p Collapse Pressure 12.090 pati Internal Pressure Efficiency 86.1% of p Convectorion PERFORMANCES FIELD TORQUE VALUES Nin. Make-up torque 16.600 m Yead Strength 649 kb Opt. Make-up torque 16.600 m Min. Tensar Perssure Efficiency 10.0% of p P Min. Make-up torque 16.600 m Vaid Strength 649 kb Min. Make-up torque 16.600 m Min. Make-up torque 16.600 m Vaid Strength 641 kb Min. Make-up torque 18.000 m Min. Shoulder Torque 18.000 m Maximu Unisability Min. Make-up torque 13.200 m Maximu Unisability Min. Make-up torque 13.200 m Maximu Unisability Min. Make-up torque 13.200 m Maximum Unisability Min. Makeup torque 13.200 m	Grade Type					Ma	ike-Up Lo	SS		4.125	in
Min. Tensiki Strength 135 ka Yeld Strength 723 kb Unimate Strength 723 kb Min. Internal Yield Pressure 14,360 pai Collappee Pressure 12,090 pai CONNECTION PERFORMANCES FIELD TORQUE VALUES Yield Strength 649 kb Parting Load 723 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 pai Min. Mache-up torque 16,600 f Maximum Unixitial Ben Rating 91.7 '100 ft Maximum Unixitial Ben Rating 91.7 '100 ft Reference String Length w 1.4 Design Factor 22,890 ft *1 Maximum Operational Torque and Maximum Torsional Value only valid with Vallource P110MY Material. *110MY - Coupling Min Yield Strength is 110ks and Coupling Max Yield is 125ksi. *VST = Vallource Star as the mill source for the pipe, "P110CC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications and are subject to change without notice. Cetain connection specifications and are subject to change. Properties	Min. Yield Strength			125	ksi	Co	upling Le	ngth		9.250	in
Yeld Strength 729 kb Utimed Strength 787 kb Min. Internal Yield Pessure 12,090 pai CONNECTION PERFORMANCES FIELD TOROUE VALUES Yeld Strength 649 kb Parting Load 723 kb Compression Rating 644 kb Min. Make-up torque 16,600 f Optimizer Compression Rating 644 kb Min. Internal Yield Pressure 12,380 pai Min. Strength 644 kb Optimizer Compression Rating 91,7 '100 tf Max. Make-up torque 16,600 f Max. Make-up torque 18,300 f Max. Shoulder Torque 18,300 f Max. Shoulder Torque 18,300 f Max. Shoulder Torque 23,800 f Max. Shoulder Torque 23,800 f Maximum Operational Torque and Maximum Torsional Value only valid with Vallource CH10WY Material. f * P110WY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. f "VST = Vallource Star as the mill source for the pipe,	Max. Yield Strength			140	ksi	Crit	tical Cros	s Section		5.828	sq.in
Ultimate Strength 787 kb Min. Internal Yield Pressure 14,360 pain Collapse Pressure 12,090 pain Collapse Pressure 100.0% of p Collapse Pressure 12,090 pain Collapse Pressure 12,090 pain Collapse Pressure 12,090 pain Parting Load 723 kb Compression Raing 641 kb Min. Internal Yield Pressure 12,090 pain Min. Internal Yield Pressure Resistance 12,090 pain Min. Internal Yield Pressure Resistance 12,090 pain Maxmum Uniaxial Bend Rating 91.7 '1/100 tt Max Shoulder Torque 13,280 of Max Long Pain 12,890 ft * Validurec Stars as the mill source for the pipe, "P110EC" is the grade name." New Help? Contact: tech.support@vamusa.com * Voll Cortect Stars as the mill source for the pipe, "P110EC" is the grade name." Need Help? Contact: tech.support@vamusa.com * Voll Help? Contact: tech.support@vamusa.com Ftel Contact: tech.support@vamusa.com * Connection specifications within the control of VAM USA were correct	Min. Tensile Strength			135	ksi	Ter	nsion Effi	ciency		89.1%	of pipe
Min. Internal Yield Pressure 13.80 per Collapse Pressure 12.090 per Collapse Pressure 12.090 per CONNECTION PERFORMANCES FIELD TORQUE VALUES Yield Strength 649 kbb Compression Rating 641 kbb Compression Rating 641 kbb Min. Make-up torque 19.300 16 Max. Make-up torque 19.300 17 Max. Shoulder Torque 13.800 16 Max. Make-up torque 23.800 17 Max. Make-up torque 23.800 16 Max. Date-up torque 23.800	Yield Strength			729	klb	Co	mpressio	n Efficiency		88.0%	of pipe
Collapse Pressure 12,090 ps CONNECTION PERFORMANCES FIELD TORQUE VALUES Yield Strength 649 kb Paring Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 psi Maximum Vield Pressure Resistance 12,090 psi Maximum Uniaxial Bend Rating 91.7 '100.1t Maximum Uniaxial Bend Rating 91.7 '100.1t Yead Turn 0.200 Tu Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. * * P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. * *VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@wam.us.com Need Help? Contact: tech.support@wam.us.com The chain control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications and are subject to change without notice. Certain connection specifications are subject to change without notice. Certain connection specifications are subject to change. Propeties of mill proprietary grades should be VAM USA or its affiliates at user's sole risk, without fability for los, damage or injury resulting from the use thereof, and on an "AS IS"" basis without warranty or represe	Ultimate Strength			787	klb	Inte	ernal Pres	ssure Efficiency		86.1%	of pipe
CONNECTION PERFORMANCES FIELD TORQUE VALUES Vield Strength 649 kb Ompression Rating 641 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 pai Max. Make-up torque 16,600 19,300 Max. Make-up torque 19,300 10 Max. Make-up torque 19,300 10 Max. Make-up torque 19,300 10 Max. Shoulder Torque 2,800 10 Max. Deta Turn 0,200 Tur YMed Strength is 110ksi and Coupling Max Yield is 125ksi. 11 *YST = Vallource Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam.uss.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change. Properties of mill properties of the pipe. Mechanical properties of mill properties or mill publications and are subject to change. Properties or mill publications	Min. Internal Yield Press	ure		14,360	psi	Ext	ternal Pre	ssure Efficiency		100.0%	of pipe
Yield Strength 649 kb Praining Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 psi Maximum Unisuala Bend Rating 91,7 '/100 Reference String Length w 1.4 Design Factor 22,890 rt. * 1 Max. Make-up torque 13,280 * 1 Max. Make-up torque 13,280 * 1 Max. Make-up torque 13,280 Max. Dudder Torque 13,280 ft * Maximum Unisuala Bend Rating 91,7<'/td> '/100 Max. Shouder Torque 23,800 ft * 1 Maxe Up torque 26,180 ft Maxe Up torque 26,180 ft * 1 Max. Make-up torque 10,100 Max. Make-up torque 23,800 ft * 1 Maxe Up torque 10,100 Max. Make-up torque 11,800 ft * 1 Maxe Up torque 11,800 Maxee Up torque 11,800 ft * 1 Maxee Up torque 12,800 ft Maxee Up torque 11,800 ft * 1	Collapse Pressure			12,090	psi						
Paring Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 pai External Pressure Resistance 12,090 pai Maximum Uniaxial Bend Rating 91.7 */100 ft Reference String Length w 1.4 Design Factor 22.890 ft. * thadimum Operational Torque and Maximum Torsional Value only valid with Vallource P110MY Material. * * P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. * *'VST = Vallource Star as the mill source for the pipe, "P110EC" is the grade name" Neechanical properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications and are subject to change. Properties of mill proprietary pipe grades should be confirmed with the mill. Users are advised to obtain current connection specifications and are subject to change. Properties of null properties of mill proprietary pipe grades were obtained from mill publications on an "AS IS" basis without warranty or mercentations of any wind, whether express or impled, including without limitable be responsible for any indirect, special, incidental, puntive, exemplary or consequential bass or damage (including without limitation, loss of fuse pine. So forevenue, prof or anticipated profit, however caused or anising, and whether such	CONNECTION PER					FIE	ELD TO	RQUEVALUES			
Parting Load 729 kb Compression Rating 641 kb Min. Internal Yield Pressure 12,360 pei Maximum Uniaxial Bend Rating 91.7 °/100 ft Reference String Length w 1.4 Design Factor 22,890 ft. * Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. * P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. ************************************											
Compression Rating 641 kb Min. Internal Yield Pressure 12,360 pai External Pressure Resistance 12,090 pai Maximum Univalis Bend Rating 91.7 '1/00 ft Maximum Univalis Bend Rating 91.7 '1/100 ft Maximum Univalis Bend Rating 91.7 '1/100 ft Maximum Univalis Bend Rating 22,890 ft * Maximum Univalis Bend Rating 23,800 ft * Maximum Univalis Collega Torque 13,280 ft * Maximum Univalis Bend Rating 0.200 Tu * Maximum Univalis Maximum Univalis 0.200 Tu * Maximum Univalis Maximum Univalis 0.200 Tu * Maximum Univalis Maximum Univalis 0.200 Tu * Maximum Univalis Maximum Univalis <td< td=""><td>Yield Strength</td><td></td><td></td><td>649</td><td>klb</td><td>Mir</td><td>n. Make-u</td><td>ip torque</td><td></td><td>16,600</td><td>ft.lt</td></td<>	Yield Strength			649	klb	Mir	n. Make-u	ip torque		16,600	ft.lt
Min. Internal Yield Pressure esistance 12,360 psi Maximum Uniaxial Bend Rating 91.7 °/100 ft Maximum Uniaxial Bend Rating 91.7 °/100 ft Max. Shoulder Torque 13,280 ft Max. Delta Turn 0,200 Tu Max.	Parting Load			729	klb	Op	ti. Make-u	up torque		17,950	ft.ll
External Pressure Resistance 12,090 pai Maximum Uniaxial Bend Rating 91.7 */100 ft Reference String Length w 1.4 Design Factor 22,890 ft. Max. Shoulder Torque 13,280 ft Max. Delta Turn 0,200 Tu Maximum Operational Torque and Maximum Torsional Value only valid with Valiourec P110MY Material. t Maximum Operational Torque and Maximum Torsional Value only valid with Valiourec P110MY Material. t Maximum Operational Torque and Maximum Torsional Value only valid with Valiourec P110MY Material. t P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. "VST = Valiourec Star as the mill source for the pipe, "P110EC" is the grade name." Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and are subject to change. Properties of mill proprietary or representation of any kind, whether express or implied, including without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any injuricet, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	Compression Rating			641	klb	Ma	x. Make-u	up torque		19,300	ft.lt
Maximum Uniaxial Bend Rating 91.7 */100 ft Reference String Length w 1.4 Design Factor 22,890 ft Max. Delta Turn 0.200 Tu *Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. * *P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. * VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications and are subject to change. Properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application Nul information is provided by VAM USA or its affiliates at user's sole risk, without fiability for loss, damage or injury resulting from the use thereof; and on an "*AS IS"* basis without varranty or merchantability, fitness for purpose or completeness. This document and its contents are subject to change (including without Imitation, loss of use, loss of any indirect, special, incidental, incidental, incidental, incidental, incidental, incidental, incidental, indivedental, exemplary or consequential loss or damage (including witho					psi	Mir	n. Should	er Torque			ft.lt
Reference String Length w 1.4 Design Factor 22,890 ft.											ft.l
tMaximum Torsional Value (MTV) 26,180 f tMaximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. F		0									Turns
Maximum Operational Torque and Maximum Torsional Value only valid with Vallourec P110MY Material. P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are subject to change without notice. Certain connection specifications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS" basis without warranty or representation of any kind, whether express or impled, including without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS" basis without warranty or merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	Reference String Length	w 1.4 Design Factor		22,890	ft.						ft.l
* P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. "VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, filness for purpose or completeness. This document and its contents are subject to change without Initiation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such						TW	aximum	Iorsional value (MTV)		20,100	ft.l
* P110MY - Coupling Min Yield Strength is 110ksi and Coupling Max Yield is 125ksi. "VST = Vallourec Star as the mill source for the pipe, "P110EC" is the grade name" Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, filness for purpose or completeness. This document and its contents are subject to change without Initiation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	† Maximum Operatio	onal Torque and Maximu	m Torsional Value o	nly valid wi	ith Valloure	c P110	OMY Mat	terial.			
Need Help? Contact: tech.support@vam-usa.com For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications a dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "*AS IS*" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential bss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	‡ P110MY - Coupling	Min Yield Strength is 110	ksi and Coupling Max	Yield is 12	5ksi.						
For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s). Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS" basis without warranty or representation of any kind, whether express or impled, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates of result of any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	"VST = Vallourec Star	as the mill source for the	pipe, "P110EC" is the	grade name	e"						
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications a dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fintess for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	Need Help? Contact:	tech.support@vam-usa.c	om								
dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application. All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof, and on an "*AS IS"* basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without motice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	For detailed informa	tion on performance pro	operties, refer to DW	C Connect	ion Data No	otes on	n followi	ing page(s).			
All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an ""AS IS"" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	dependent on the me	chanical properties of the	pipe. Mechanical prop	erties of mil	I proprietary	pipe g	rades w	ere obtained from mill	publications an	d are subject to change. Pr	roperties
warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such	or mar proprietary gra-		Vitit the fifth. Osers are		obtain curre	in com	inection a	pecifications and veni	y pipe meenam	cal properties for each app	noation.
	warranty or represent and its contents are s	ation of any kind, whether ubject to change without n	express or implied, in otice. In no event sha	cluding with II VAM USA	out limitation or its affilia	n any w tes be i	arranty responsi	of merchantability, fitne ible for any indirect, sp	ess for purpose ecial, incidenta	or completeness. This doe I, punitive, exemplary or	cument

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
 - Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas
 - 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

03/04/2024 08:36:50 PM

Page 5

	E	Stat nergy, Minerals a	te of New Mex and Natural Res		ent	Subr Via	nit Electronically E-permitting
		1220 \$	onservation Di South St. Franc ta Fe, NM 87:	cis Dr.			
	N	ATURAL G	AS MANA(GEMENT PI	LAN		
This Natural Gas Manag	ement Plan m	ust be submitted w	ith each Applicat	ion for Permit to I	Drill (APD) for a new o	r recompleted well.
			<u>1 – Plan De</u> ffective May 25,				
I. Operator: OXY US	A INC.		OGRID: 16	696		Date:9/	2 6/ 2 3
II. Type: 🗹 Original 🗆] Amendment	due to □ 19.15.27	.9.D(6)(a) NMA	C □ 19.15.27.9.D(6)(b) NM/	AC □ Other.	
f Other, please describe	:						
II. Well(s): Provide the recompleted from a since the recompleted from a					wells prope	osed to be dr	illed or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticip Gas MC		Anticipated roduced Water BBL/D
SEE ATTACHED							
V. Central Delivery Po V. Anticipated Schedul proposed to be recomple	e: Provide the	following informa	tion for each new	or recompleted w	vell or set c		7.9(D)(1) NMAC] osed to be drilled or
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial Flow Back Date	First Production Date
SEE ATTACHED							
VI. Separation Equipm VII. Operational Pract Subsection A through F	t ices: Attac	h a complete desc		-	-		
VIII. Best Managemen luring active and planne	t Practices: 6	Attach a comple	te description of	Operator's best n	nanagemer	nt practices to	o minimize venting

•

Page 6

<u>Section 2 – Enhanced Plan</u> EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Page 7

Page 74 of 83

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \square Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

Received by OCD: 5/1/2025 8:51:30 AM

Page 8

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

<u> Roni Mathew</u> Signature:

Printed Name: Roni Mathew

Title: Regulatory Advisor

E-mail Address: roni_mathew@oxy.com

Date: 04/17/2024

Phone: 713-215-7827

OIL CONSERVATION DIVISION

(Only applicable when submitted as a standalone form)

Approved By:

Title:

Approval Date:

Conditions of Approval:

III. Well(s)

Well Name	API	WELL LOCATION (ULSTR)	Footages	ANTICIPATED OIL BBL/D	ANTICIPATED GAS MCF/D	ANTICIPATED PROD WATER BBL/D
NUGGET 6_31 FEDERAL COM 21H	Pending	C-7-24S-31E	294 FNL 1792 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 22H	Pending	C-7-24S-31E	294 FNL 1822 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 23H	Pending	C-7-24S-31E	294 FNL 1852 FWL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 24H	Pending	O-6-24S-31E	1264 FSL 1513 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 25H	Pending	O-6-24S-31E	1264 FSL 1482 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 26H	Pending	O-6-24S-31E	1263 FSL 1453 FEL	1475	6885	4162
NUGGET 6_31 FEDERAL COM 41H	Pending	N-6-24S-31E	768 FSL 1445 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 42H	Pending	N-6-24S-31E	768 FSL 1505 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 43H	Pending	C-7-24S-31E	419 FNL 1702 FWL	786	5950	3835
NUGGET 6_31 FEDERAL COM 44H	Pending	C-7-24S-31E	419 FNL 1762 FWL	786	5950	3835

Page 77 of 83

V. Anticipated Schedule

Well Name	ΑΡΙ	Spud Date	TD Reached Date	Completion Commencement Date	Initial Flow Back Date	First Production Date
NUGGET 6_31 FEDERAL COM 21H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 22H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 23H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 24H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 25H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 26H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 41H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 42H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 43H	Pending	TBD	TBD	TBD	TBD	TBD
NUGGET 6_31 FEDERAL COM 44H	Pending	TBD	TBD	TBD	TBD	TBD

Page 78 of 83

Central Delivery Point Name: Sand Dunes South Corridor 18 CTB

Part VI. Separation Equipment

Operator will size the flowback separator to handle 11,000 Bbls of fluid and 6-10MMscfd which is more than the expected peak rates for these wells. Each separator is rated to 1440psig, and pressure control valves and automated communication will cause the wells to shut in in the event of an upset at the facility, therefore no gas will be flared on pad during an upset. Current Oxy practices avoid use of flare or venting on pad, therefore if there is an upset or emergency condition at the facility, the wells will immediately shut down, and reassume production once the condition has cleared.

Page 79 of 83

VII. Operational Practices

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, where a gas transporter system is in place. The gas produced from production facility is dedicated to Enterprise Field Services, LLC ("Enterprise") and is connected to Enterprise low/high pressure gathering system located in Eddy County, New Mexico. OXY USA INC. ("OXY") provides (periodically) to Enterprise a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, OXY and Enterprise have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at Enterprise's Processing Plant located in Sec. 36, Twn. 24S, Rng. 30E, Eddy County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

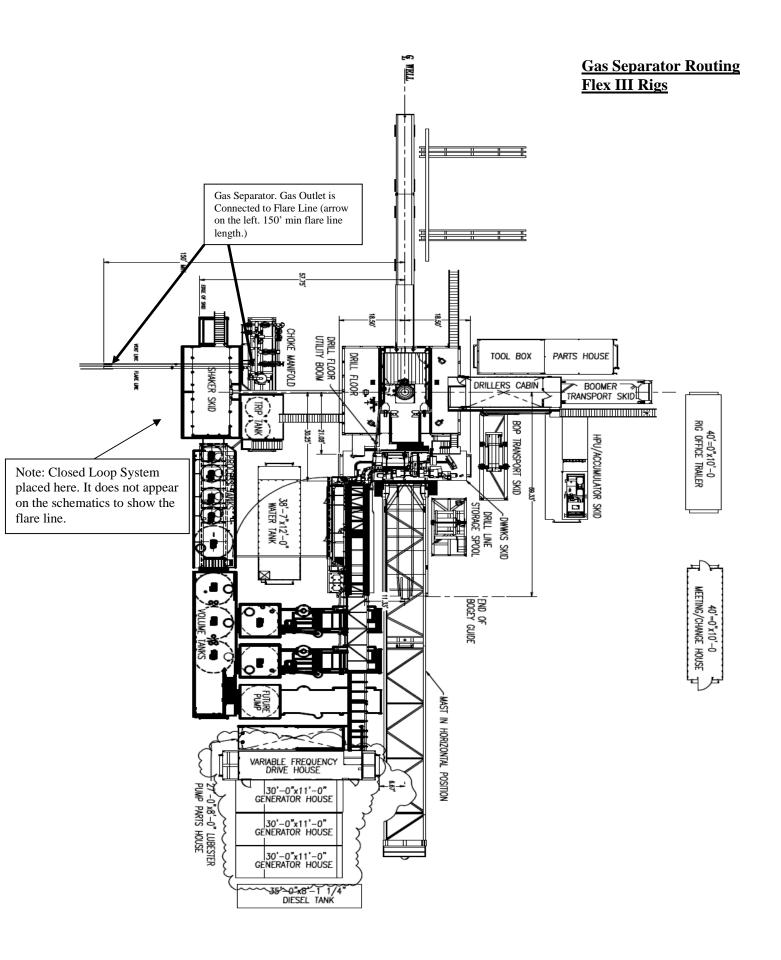
After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on Enterprise system at that time. Based on current information, it is OXY's belief the system can take this gas upon completion of the well(s).

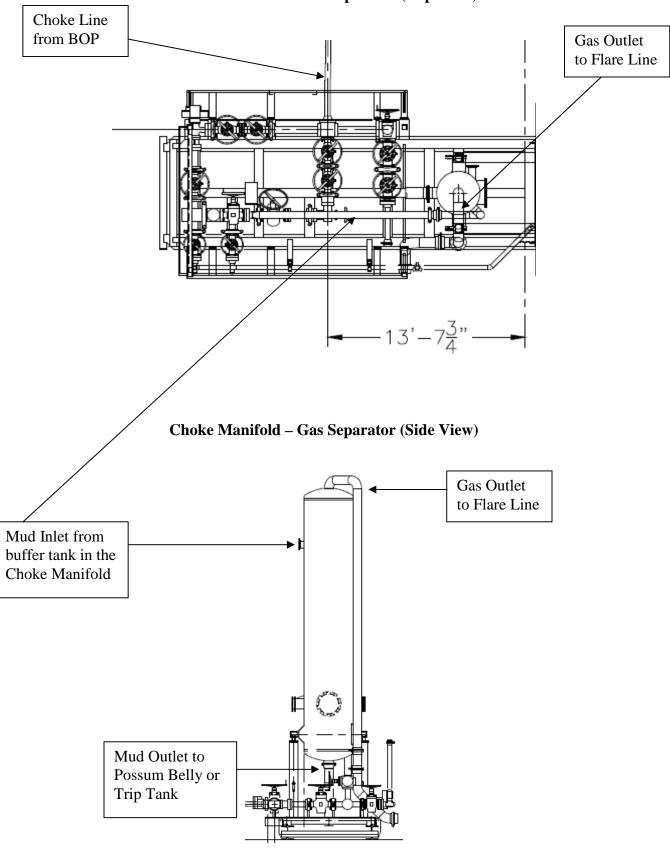
Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

VIII. Best Management Practices

Alternatives to Reduce Flaring Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

Power Generation – On lease


Only a portion of gas is consumed operating the generator, remainder of gas will be flared


Compressed Natural Gas - On lease

Gas flared would be minimal, but might be uneconomical to operate when gas volume declines

NGL Removal – On lease

Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
OXY USA INC	16696
P.O. Box 4294	Action Number:
Houston, TX 772104294	457478
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
ronimathew	Cement is required to circulate on both surface and intermediate1 strings of casing.	5/1/2025
ronimathew	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	5/1/2025
ward.rikala	Notify the OCD 24 hours prior to casing & cement.	6/16/2025
ward.rikala	File As Drilled C-102 and a directional Survey with C-104 completion packet.	6/16/2025
ward.rikala	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	6/16/2025
ward.rikala	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	6/16/2025

CONDITIONS

Page 83 of 83

Action 457478