Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

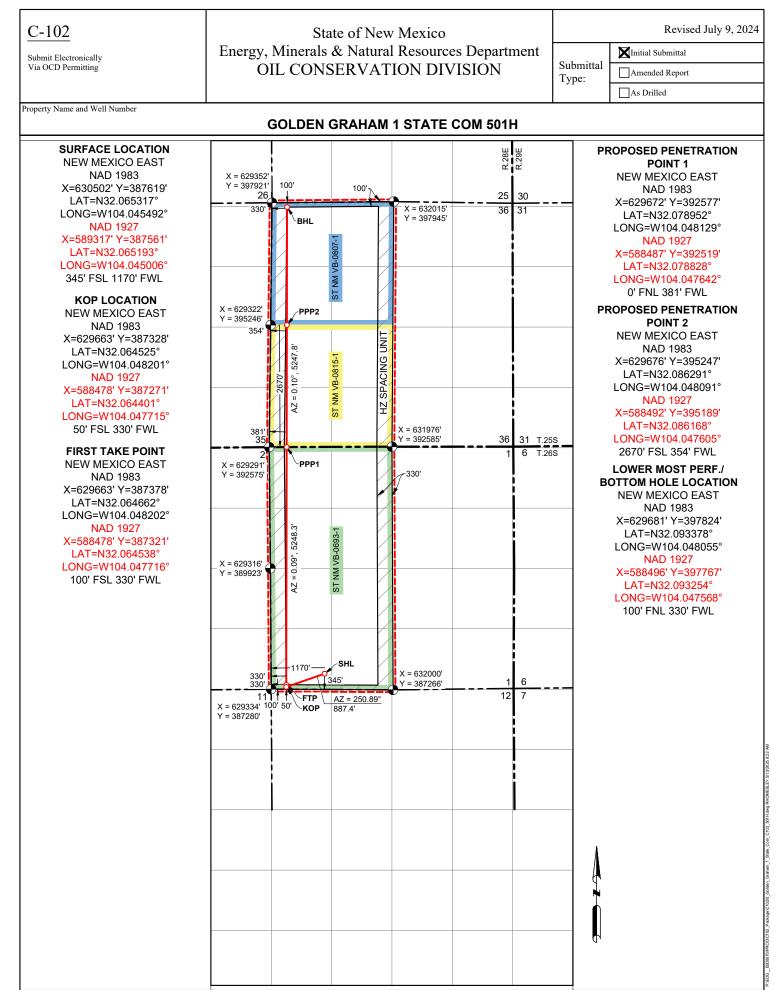
Page 1 of 72

.

Form C-101 August 1, 2011 Permit 390662

APPLICATION FOR PERMIT TO	DRILL RE-ENTER	IGBACK OR	

	EOG RESOURCES INC 2. OGRID Number 7377										
	9 Champions Driv							3. AF	Pl Number		
Midl	land, TX 79706							-	30-015-5691	9	
4. Property Cod	le	-	5. Property Name					6. W	ell No.		
322	721		GOLDEN	I GRAHAM 1 STATE COM	M 501H						
				7. Surfac	e Location						
UL - Lot	Section	Township	Range		eet From	N/S Line	Feet From		E/W Line	County	
М	1	26S	28	E M	345	S		1170	W	Eddy	
				8. Proposed Bot	tom Hole Loca	tion					
UL - Lot	Section	Township	Range		Feet From	N/S Line	Feet From	n	E/W Line	County	
D	36	25	5 2	28E D	100	N		330	W	Eddy	
				9. Pool II	nformation						
RED BLUFF;I	BONE SPRING, SC	JUTH							51010		
				Additional W	ell Information						
11. Work Type		12. Well Type		13. Cable/Rotary		14. Lease Type	1	5. Ground	Level Elevation		
	v Well	_	,		State		:	2937			
16. Multiple		17. Proposed		18. Formation		19. Contractor	2	•	Spud Date		
N		18	648	Bone Spring					6/9/2025		
Depth to Groun	d water			Distance from nearest fresh	water well		D	istance to	nearest surface wate	r	
🛛 We will be u	using a closed-loo	p svstem in lie	u of lined pits								
	0		•	21. Proposed Casing	and Comont	Program					
Туре	Hole Size	Casing	Size	Casing Weight/ft	Setting		Sacks	of Cemen	1	Estimated TOC	
Surf	13	10.7		40.5	· · ·			60		0	
Int1	9.875	8.62	5	32	2897			340		0	
Prod	7.875	6		24.5		7780		1390		2447	
Prod	6.75	5.5		20	186	48	1	1390 2447			
				Casing/Cement Progra	m: Additional	Comments					
				22. Proposed Blowo	ut Prevention	Program					
	Туре			Working Pressure		Test Press	ure		Man	ufacturer	
	Double Ram			5000		3000					
					-						
		mation given ab	ove is true and co	mplete to the best of my		0	OIL CONSE	RVATION	DIVISION		
knowledge an		d with 19 15 14		nd/or 19.15.14.9 (B) NMAC							
X, if applicab		a with 15.15.14		10/01 13.13.14.3 (D) NMAC							
,											
Signature:											
Printed Name:	Electronical	ly filed by Kristi	na Agee		Approved By:	Jeffrey Har					
Title:	0	ulatory Adminis			Title:	Petroleum	Specialist I				
Email Address:	_ *	ee@eogresou			Approved Date				Expiration Date: 6/2	6/2027	
Date:	6/25/2025		Phone: 432	-686-6996	Conditions of	Approval Attache	d				


Received by OCD: 6/25/2025 9:03:33 AM

•

C-102							Revised.						
Submit Electronic	ally		Energ	w Mina		ew Mexico	es Department		Initial Submitta				
Via OCD Permitt					ONSERVA		1	Submittal	Amended Report	t			
					OI (OLIC) I	IIION DI		Туре:	As Drilled				
Property Name and	Well Number												
					DEN GRAHA								
			ELL LO	CATIO	ON AND A		CREAGE DEDICATION PLAT						
API Number 30-015-50	2010	Pool Code	7323	32		Pool Name	Tgf 'Dnwhh='Dqpg''Ur tkpi .''Uqwj						
Property Code		Property Na					8 1		Well Number				
	322721			GC	DLDEN GRA	HAM 1 STA			-	01H			
OGRID No.	77	Operator N	ame						Ground Level E				
Surface Owner:		Tribal Fede	ral		EUG RES	Mineral Owner	: XState Fee Tribal	Federal	2	937'			
					Surfa	ce Location							
UL or Lot No.	Section					Feet from the E/W	Latitude	I	ongitude	County			
М	1 26 S 28 E			345 FSL	1170 FWL	N 32.065317°	W 10	4.045492°	EDDY				
	·	I					t From Surface	·					
UL or Lot No.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W	Latitude		ongitude	County			
D	36	25 S	28 E		100 FNL	330 FWL	N 32.093378°	W 10	4.048055°	EDDY			
Dedicated Acres	Infill or Defin	ing Well Defin	ing Well API			Overlapping Sp	bacing Unit (Y/N)	Consolidate	d Code				
640	INFIL	_L		PENDI	NG		Y		С				
Order Numbers	PEND	ING COM	/ AGREE	EMENT				s are under Commo	n Ownership:	es 🗌 No			
	0 <i>i</i>		P	T I		f Point (KOF Feet from the E/W			x 2 1				
UL or lot no.	Section 1	Township 26 S	Range 28 E	Lot	50 FSL	330 FWL	Latitude N 32.064525°		Longitude 4.048201°	County EDDY			
IVI	I	20.3	20 E			ce Point (FTI		4.040201	EDDT				
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W							
М	1	26 S	28 E		100 FSL	330 FWL	30 FWL N 32.064662° W 10			EDDY			
		I			Last Tak	ke Point (LTI	P)						
UL or lot no.	Section	Township	Range	Lot	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County			
D	36	25 S	28 E		100 FNL	330 FWL	N 32.093378°	W 10	4.048055°	EDDY			
Unitized Area or Ar	rea of Uniform Int			Spacing V	Unity Type Hori:	zontal Vertical	Ground I	Floor Elevation	2962'				
	OR CERTIF					SUDVEN	VODS CEDTIEICA	FION					
OPERATO	KUEKIIF	ICATION				SURVE	YORS CERTIFICA	IION					
I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief; and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order herefore entered by the division. If this well is a horizontal well, I further certify that this organization has received The consent of a teast one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division. Kaula MMC annell. 2713: 14247													
Kayla	McCi	onnell	1 Date	27	713; 14247		Seal of Professional Surveyor	Date					
	ÖEEQP	P GNN	Luie			notes of ac is true and	ertify that the well locat stual surveys made by m correct to the best of	ie or under my my belief.	supervision, and				
MC[NCa	aOEEQP	P GNNB	GQI TO	GUQWI	EGUEQO	Certificate Nu	LL L. MCDONAL	D, N.M. P.I					
E-mail Address						Ceruncate Nu	29821 Date of	M	AY 3, 2025	-			

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 6/25/2025 9:03:33 AM

Relative Bearing Singling 28, 202 distances for in the second of the New Mexico State Plane Coordinate System, East Zone, NAD 83-2011 (EPOCH 2010) framework, as derived by OPUS Solution. The elevations shown hereon are based on NAVD 88.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT COMMENTS

Operator Name a EOG	nd Address: RESOURCES INC [7377]	API Number: 30-015-56919						
	Champions Drive nd, TX 79706	Well: GOLDEN GRAHAM 1 STATE COM #501H						
Created By		Comment Date						
jeffrey.harrison	jeffrey.harrison Out of compliance with Rule 19.15.5.9 Financial Compliance. Resubmit when Rule 19.15.5.9 Compliant.							
jeffrey.harrison	effrey.harrison Permit Application contains variance requests and multiple design options. In reviewing subsequent submittals for this well, please be sure to review the entire application for information that may be needed for processing and reporting.							

Form APD Comments

Permit 390662

Page 4 of 72

.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

PERMIT CONDITIONS OF APPROVAL

Operator Name a	nd Address:	API Number:								
EOG	RESOURCES INC [7377]	30-015-56919								
5509	Champions Drive	Well:								
Midlar	nd, TX 79706	GOLDEN GRAHAM 1 STATE COM #501H								
OCD Reviewer	Condition									
jeffrey.harrison	Notify the OCD 24 hours prior to casing & cement.									
jeffrey.harrison	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.									
jeffrey.harrison	File As Drilled C-102 and a directional Survey with C-104 completion packet.									
jeffrey.harrison	Once the well is spud, to prevent ground water contamination through whole or partial confresh water zone or zones and shall immediately set in cement the water protection string									
jeffrey.harrison	Cement is required to circulate on both surface and intermediate1 strings of casing.									
jeffrey.harrison	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that	string of casing.								
jeffrey.harrison										
jeffrey.harrison	Administrative order required for non-standard spacing unit prior to production.									
jeffrey.harrison	Surface casing shall be set a minimum of 25' into the Rustler Anhydrite, above the salt, a encountered set casing at least 25 ft. above the salt.	and below usable fresh water and cemented to the surface. If salt is								
ieffrev.harrison	Any string of casing where cement is not circulated requires a minimum of 200' of tiebac	ck into the previous casing string.								

jeffrey.harrison Any string of casing where cement is not circulated requires a minimum of 200' of tieback into the previous casing string.

Form APD Conditions

Permit 390662

Page 5 of 72

Seog resources

EOG Batch Casing

Pad Name: Golden Graham 1 State Com SHALLOW SHL: Section 1, Township 26-S, Range 28-E, EDDY County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API #	Sur	face	Intermediate		Production	
wen ivanie	AI I #	MD	TVD	MD	TVD	MD	TVD
Golden Graham 1 Fed Com #504H	30-025-****	300	300	2,974	2,772	18,730	8,246
Golden Graham 1 Fed Com #582H	30-025-****	300	300	2,878	2,772	19,391	8,990
Golden Graham 1 State Com #501H	30-025-****	300	300	2,897	2,772	18,648	8,246
Golden Graham 1 State Com #502H	30-025-****	300	300	2,779	2,772	18,558	8,246
Golden Graham 1 State Com #503H	30-025-****	300	300	2,948	2,772	18,714	8,246
Golden Graham 1 State Com #581H	30-025-****	300	300	2,803	2,772	19,329	8,990
Golden Graham 1 State Com #591H	30-025-****	300	300	2,820	2,772	19,331	8,990

•

Variances r

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG BLM Variance 5a -Alternate Shallow Casing Designs' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Sł	Shallow Design Boundary Conditions										
	Deepest	Deepest	Max Inc	Max DLS							
	MD (ft)	TVD (ft)	(deg)	(°/100usft)							
Surface	2030	2030	0	0							
Intermediate	7793	5650	40	8							
Production	28578	12000	90	25							

Shallow Design A

		noom						
Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

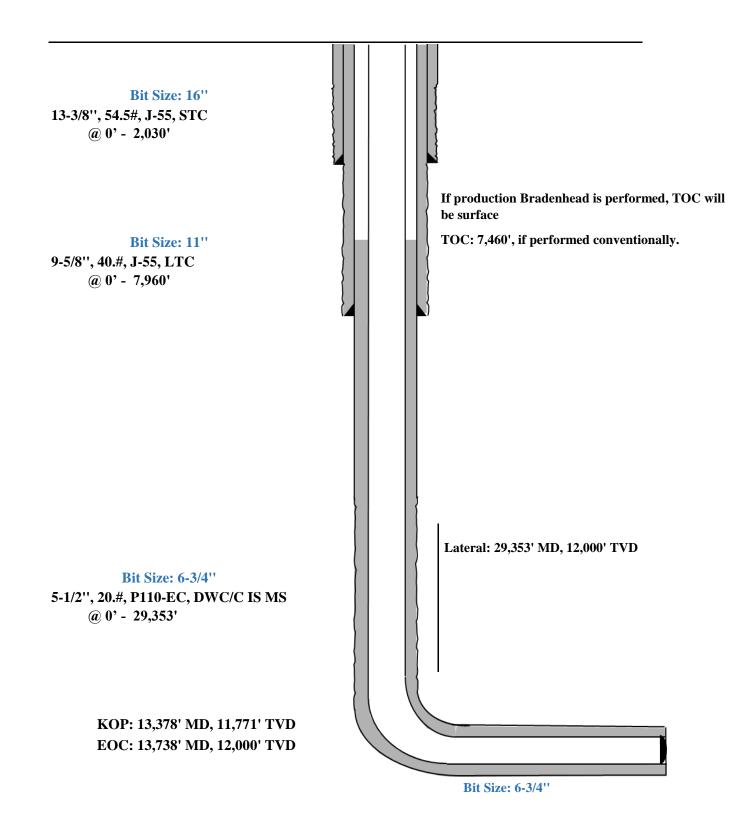
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Siding Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

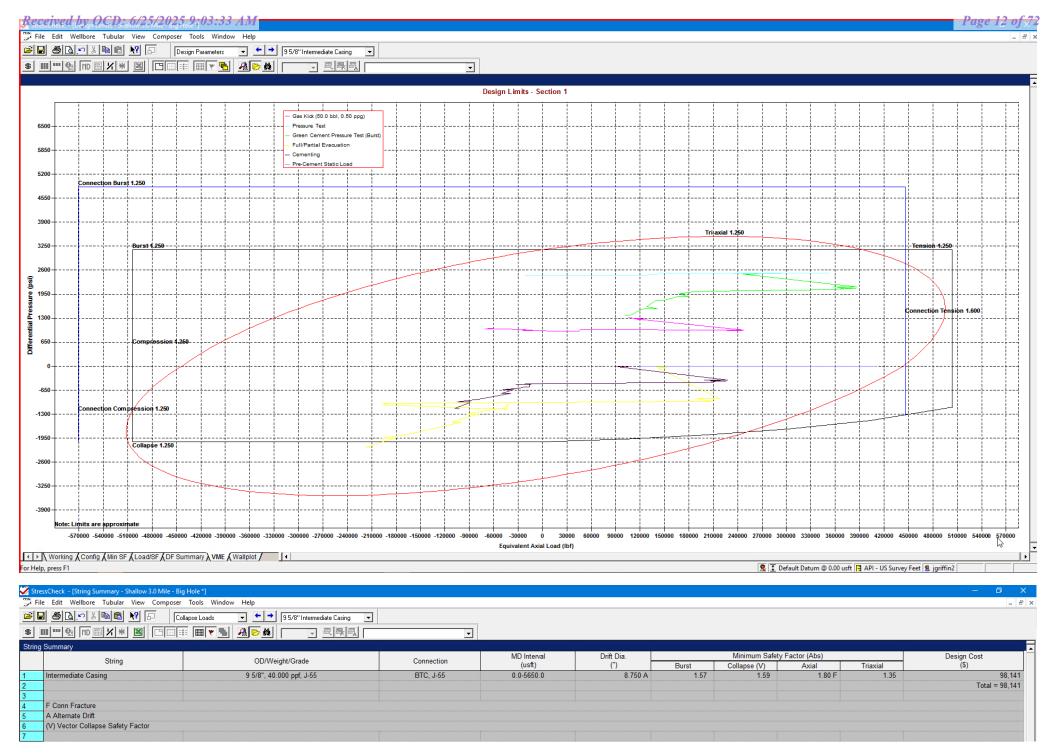

5. CEMENTING PROGRAM:

Shallow Design A

Proposed Wellbore

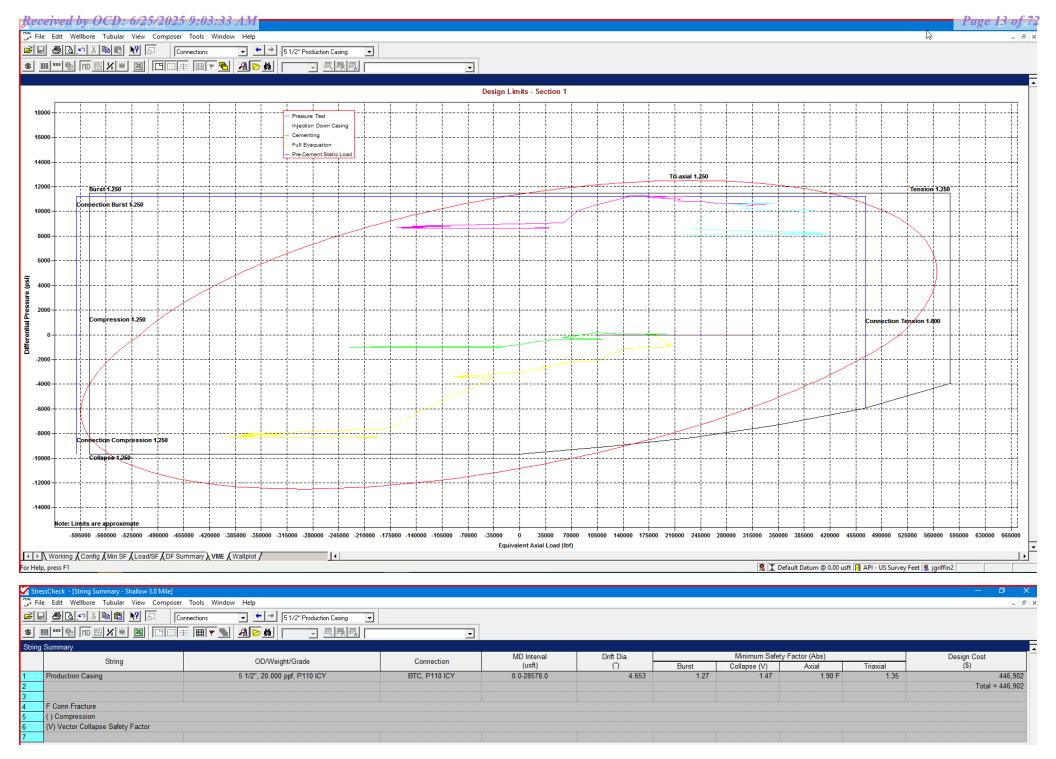
KB: 3558' GL: 3533'

Image: Second secon


	Depth (MD)		Axial Force (lbf) Equivalent Bending Stress		Bending Stress	Absolute Safety Factor				Temperature	Pressure (psi)		Addt'l Pickup To	Buckled
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
1	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
1	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
1	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
1	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
1	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
1	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
1	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
1	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
1	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
1	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
1	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
ľ	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
1	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
1	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
1	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
1	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
ľ	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
ľ														
ľ	F	Conn Fracture												
1	()	Compression												
1	(V)	Vector Collapse Safet	y Factor											

✓ ► Working Config Min SF Load/SF DF Summary VME Wallplot For Help, press F1

🤶 🛨 Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2


9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

Page 6 of 31

Seog resources

Shallow Design B

т. С										
Hole	Interv	al MD	Interval TVD		Csg					
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn		
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC		
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC		
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS		

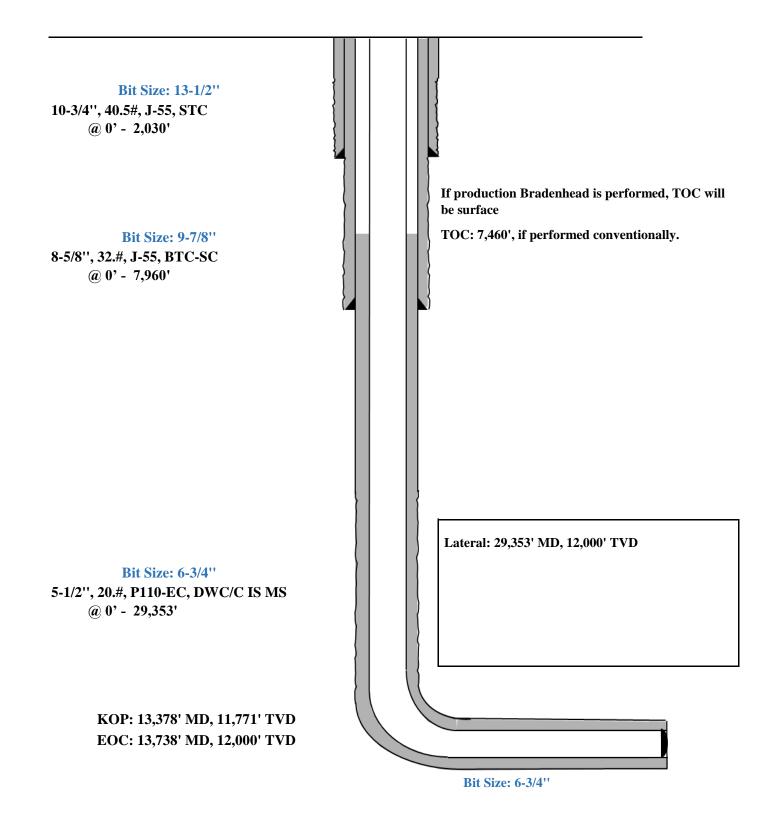
4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:


- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' ^{8-5/8''}	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{5-1/2''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

5. CEMENTING PROGRAM:

Shallow Casing Design B

Proposed Wellbore KB: 3558'

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

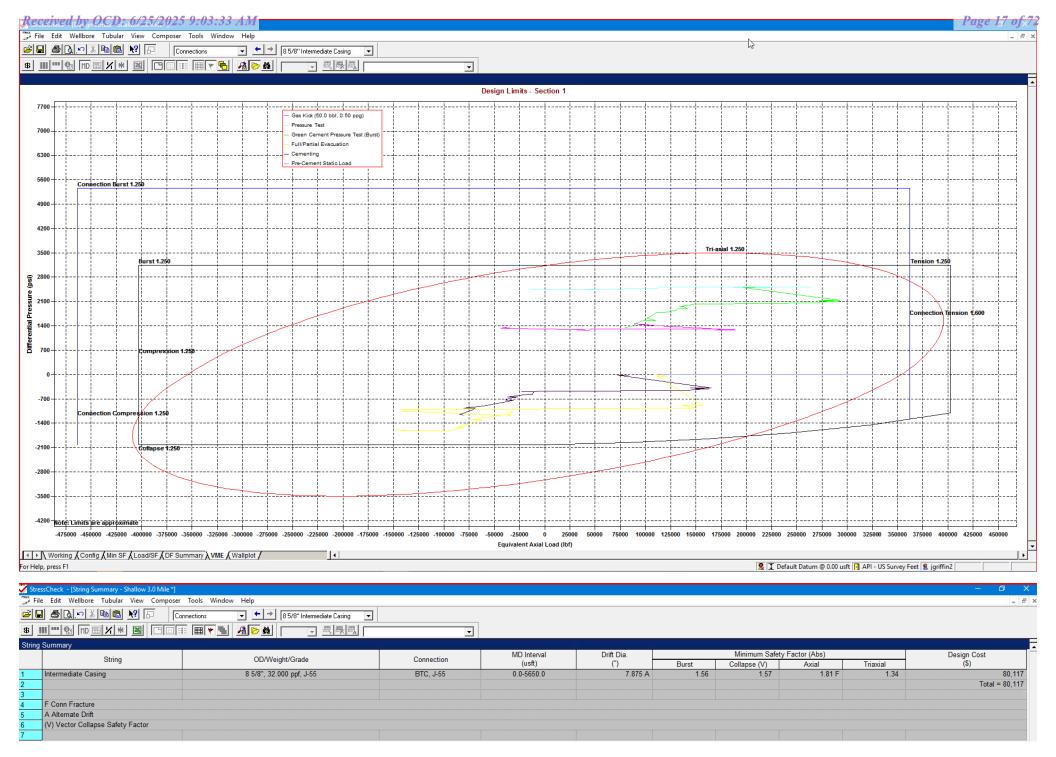
The Edit Wellbore Tubular View Composer Tools Window Help

Image: Image

Depth (MD) Axial Force (lbf)		Axial F		Equivalent	Bending Stress		Absolute S	afety Factor		Tomporaturo	Pressure	e (psi)	Addt'l Pickup To	Buckled
	(usft)	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Prevent Buck. (lbf)	Length (usft
	0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
	1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
	1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
	1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
	1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
	1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
	1950	234781	101965	244223	14517.5	1.56	1.56 1.56	N/A	2.47 F	91.30	3344.87	844.87		
	2050 2050	230871 227794	98395 98394	240694 237594	14480.4 14144.2	1.55 1.55	1.56	N/A N/A	2.51 F 2.54 F	92.23	3381.89 3381.89	881.89 881.89		
	2300	117966	90294	127818	3024.7	1.55	1.56	N/A	4.91 F	92.25	3466.13	966.13		
	2300	104686	90294 90293	114432	1573.2	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.14		
	2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
	2370	102403	86424	111200	1573.2	1.75	1.50	N/A	5.75 F	94.94	3489.29	1036.40		
	2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
	2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
	3100	76477	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11	3734.23	1293.01		
	3700	55953	42882	70509	1428.8	1.69	1.60	N/A	10.35 F	106.15	3934.24	1502.54		
	3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
	4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
	4650	26293	11655	43706	1600.1	1.63	1.60	N/A	22.03 F	114.20	4253.37	1836.86		
	4900	32619	4156	50970	3111.2	1.59	1.60	N/A	17.76 F	116.32	4337.37	1924.87		
	4900	21439	4155	39625	1889.2	1.61	1.60	N/A	27.02 F	116.32	4337.38	1924.87		
	5039	15822	26	34389	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.77	1973.48		
	5039	15822	26	34388	1726.6	1.61	1.61	N/A	36.61 F	117.49	4383.78	1973.49		
	5600	-33912	-16743	-14286	1876.7	1.57	1.61	N/A	(14.60)	122.23	4572.11	2170.78		
	5650	-30585	-18235	-10742	1350.0	1.58	1.61	N/A	(16.18)	122.66	4588.87	2188.34		
	FC	Conn Fracture												
		Compression												
	(V) \	/ector Collapse Safet	y Factor											

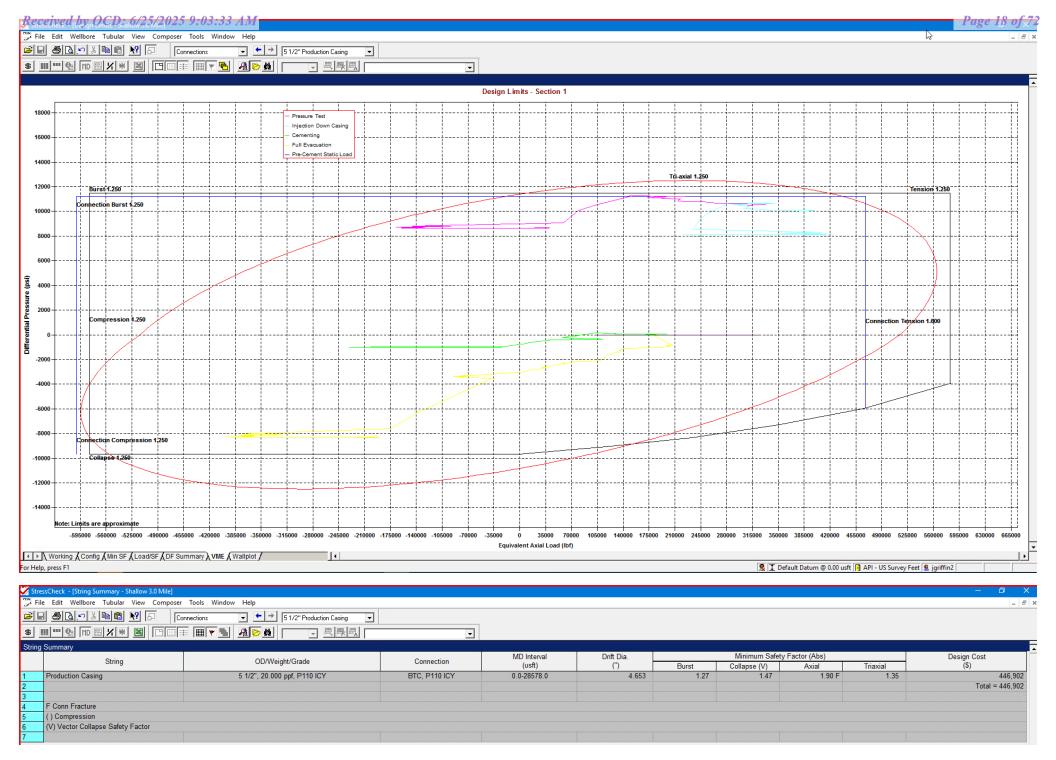
-

For Help, press F1


🙎 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 🙎 jgriffin2

Page 16 of 72

_ 8 >


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

Page 11 of 31

Shallow Design C

т. С		ROOM						
Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

4. CASING PROGRAM

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

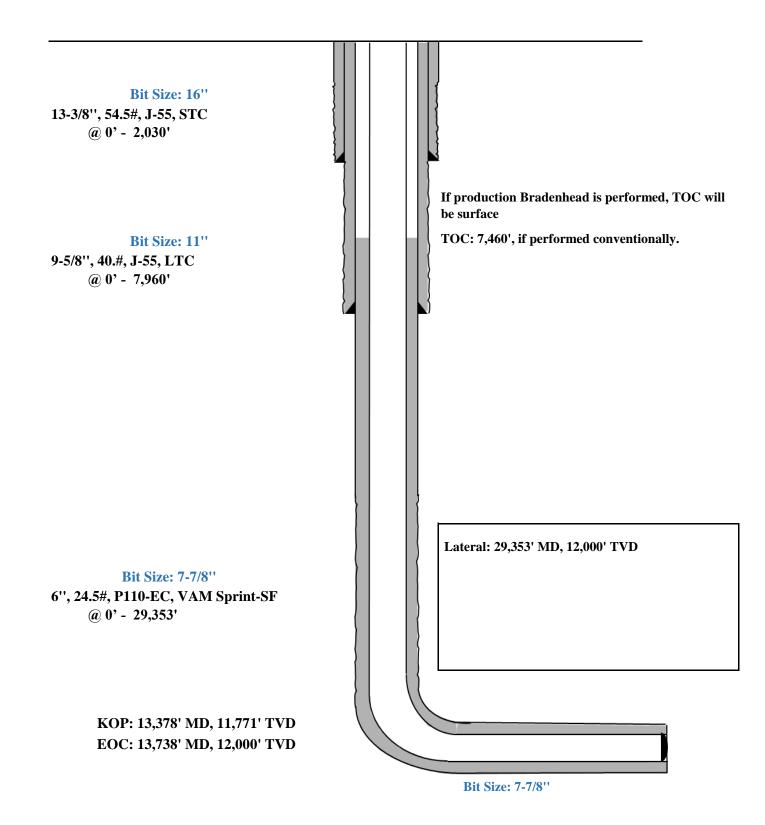
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidiny Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8''	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' _{6''}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)


5. CEMENTING PROGRAM:

Seog resources

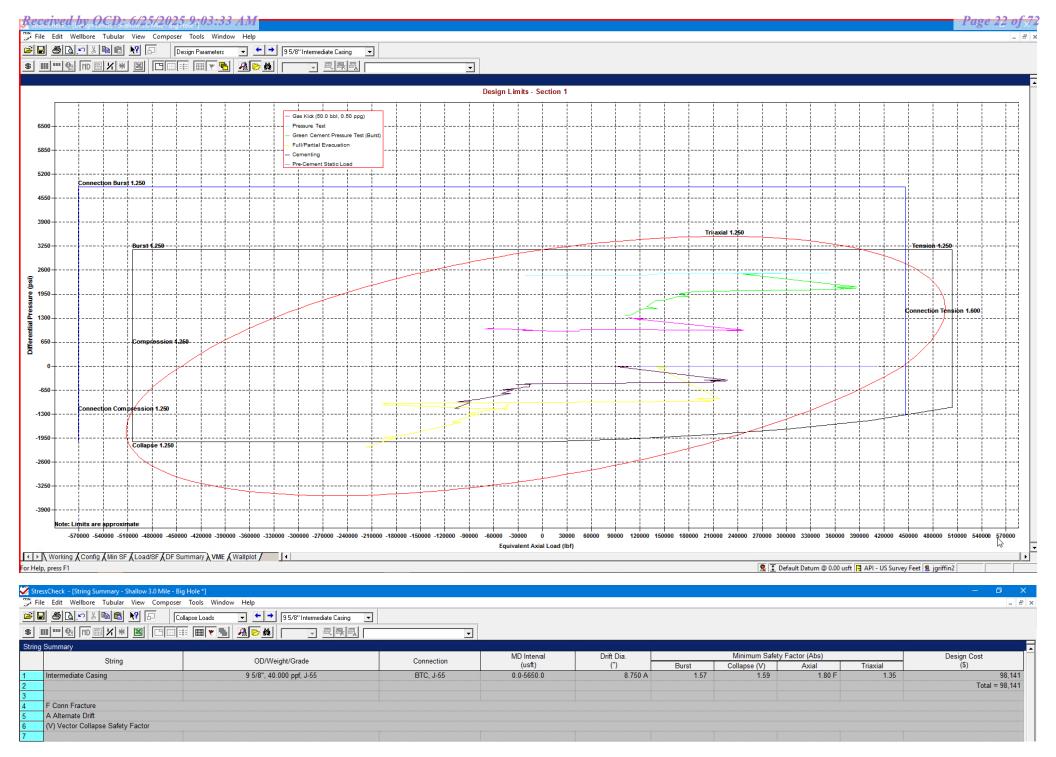
Shallow Design C

Proposed Wellbore

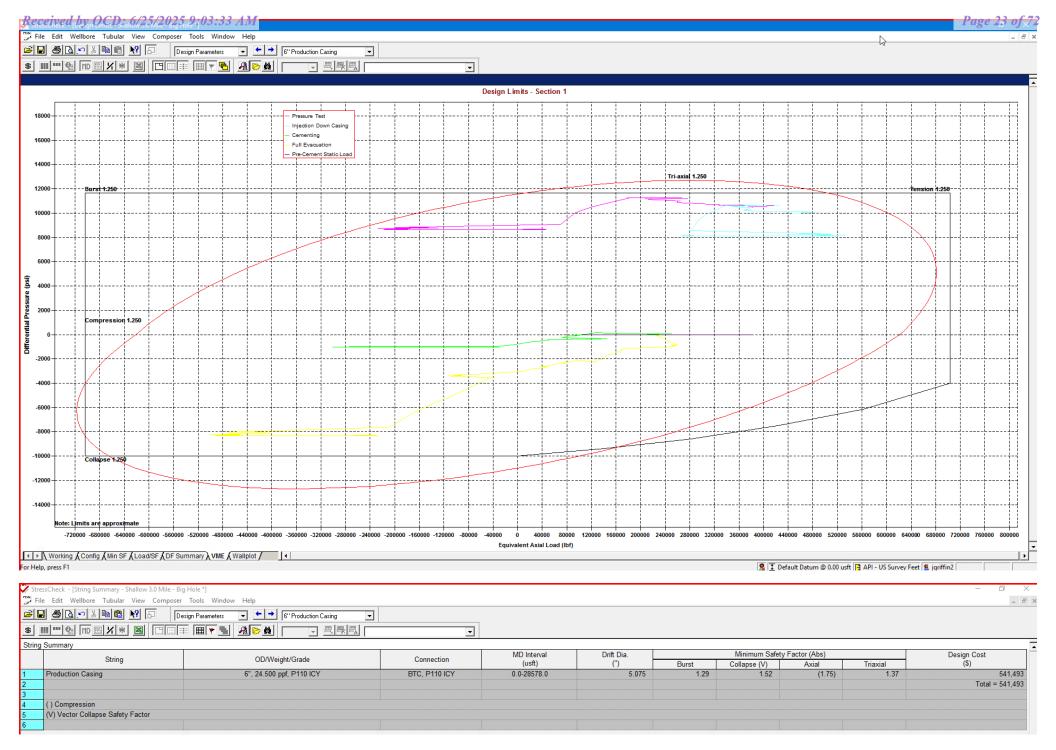
KB: 3558' GL: 3533'

Released to Imaging: 6/26/2025 10:32:24 AM

\$	A 🕞 🕷 🛛 👘		sure Test
	🚽 🔽 🥄 95/8" lr	ntermediate Casing 📃 💌	


Depth (MD		Axial F	orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressure (psi)		Addt'l Pickup To	Buckled
(usft)	"	Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usft)
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
		Conn Fracture												
		Compression												
	(V) I	Vector Collapse Safety	y Factor											

Working (Config (Min SF) Load/SF (DF Summary (VME (Wallplot) For Help, press F1


🕵 I Default Datum @ 0.00 usft 📑 API - US Survey Feet 😫 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi

*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

Seog resources

Shallow Design D

 C		noonai						
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

4. CASING PROGRAM

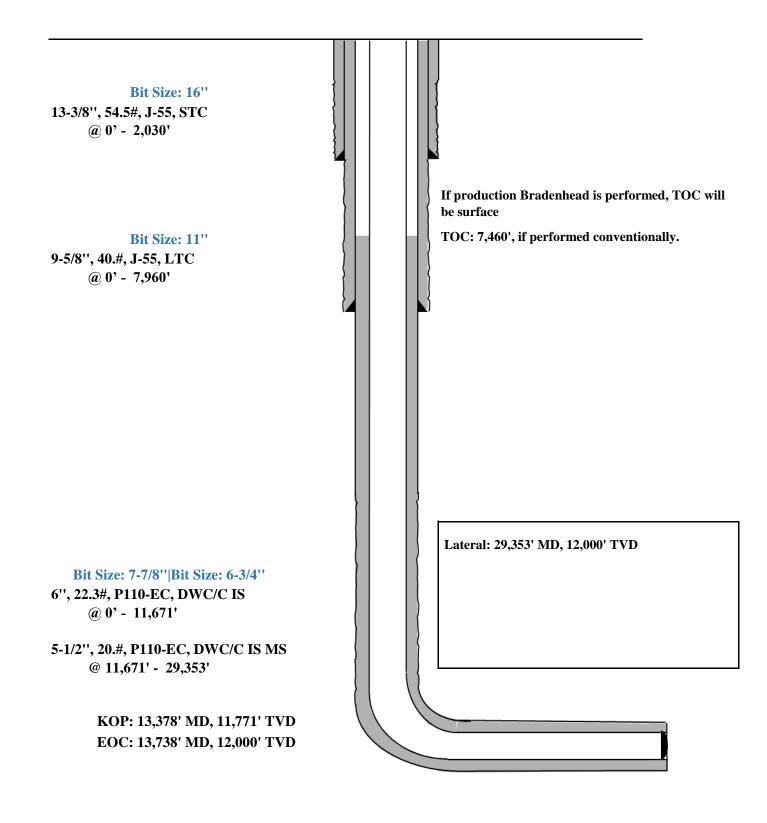
Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.


		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
2,030'	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%
				Sodium Metasilicate (TOC @ 1830')
8,050'	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC
9-5/8''				@ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6%
6''				Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of
				Brushy)

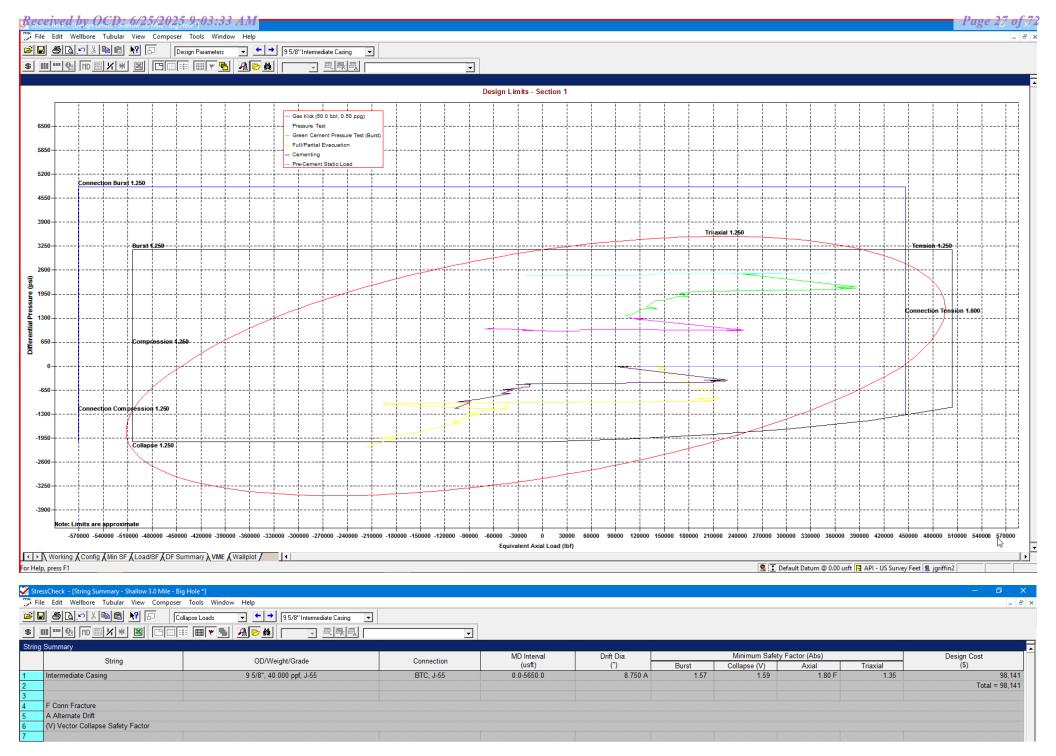
5. CEMENTING PROGRAM:

Shallow Design D

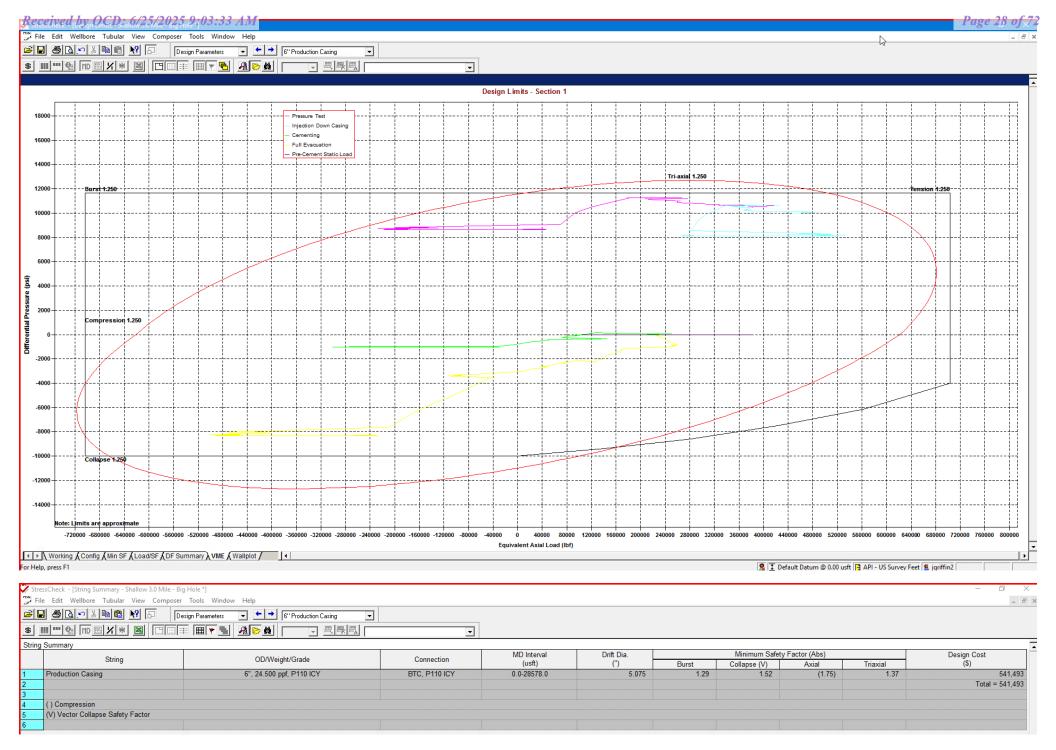
Proposed Wellbore

KB: 3558' GL: 3533'

File Edit Wellbore Tubular View Composer Tools Window Help

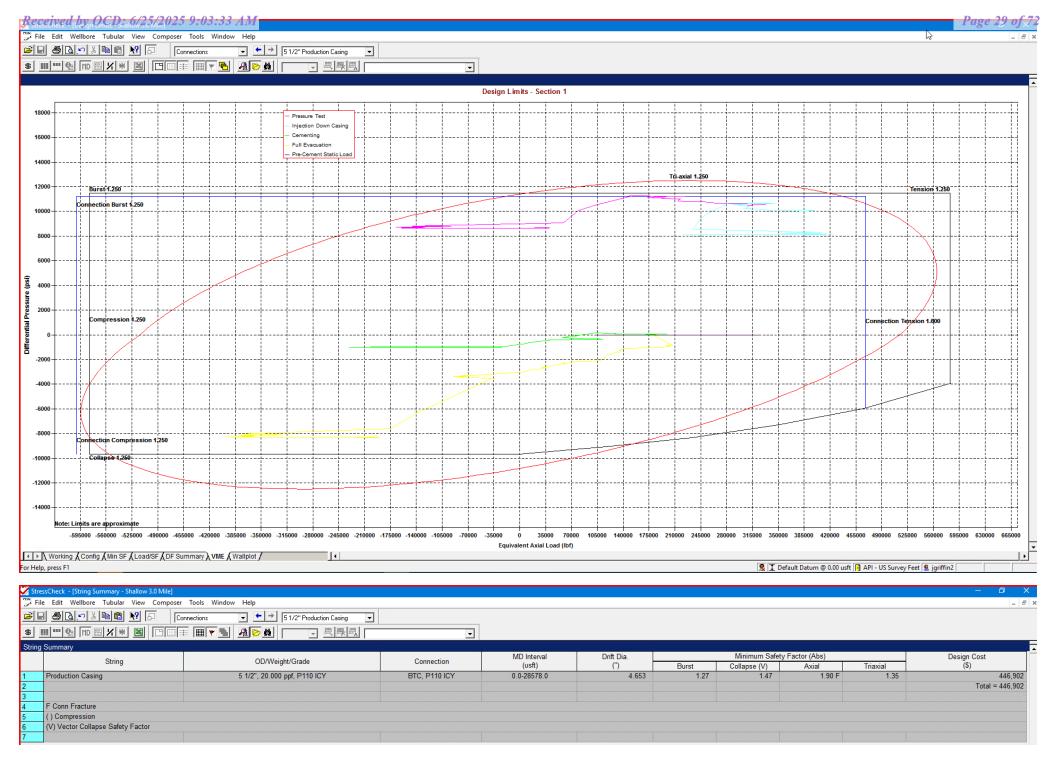

Depth	(MD)		orce (lbf)	Equivalent	Bending Stress		Absolute S	afety Factor		Temperature	Pressu	re (psi)	Addt'l Pickup To	Buckled
(usf		Apparent (w/Bending)	Actual (w/o Bending)	Axial Load (lbf)	at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	(°F)	Internal	External	Prevent Buck. (lbf)	Length (usf
	0	252987	228954	253140	2098.2	1.69	1.58	N/A	2.82 F	70.00	2500.00	0.00	N/A	N/A
	100	247735	223702	248466	2098.2	1.69	1.58	N/A	2.88 F	71.10	2543.63	43.63		
	100	234996	223701	235716	986.2	1.71	1.58	N/A	3.04 F	71.10	2543.64	43.64		
	1700	341565	139667	352253	17627.2	1.53	1.57	N/A	2.09 F	88.70	3241.64	741.64		
	1700	312979	139666	323488	15131.5	1.58	1.57	N/A	2.28 F	88.70	3241.65	741.65		
	1850	336881	132027	348440	17885.2	1.51	1.57	N/A	2.12 F	90.29	3305.05	805.05		
	1850	318549	132027	329984	16284.8	1.54	1.57	N/A	2.24 F	90.29	3305.06	805.06		
	1950	320468	127243	332475	16869.9	1.52	1.57	N/A	2.23 F	91.30	3344.87	844.87		
	1950	312802	127243	324756	16200.7	1.53	1.57	N/A	2.28 F	91.30	3344.87	844.87		
	2050	307858	122773	320295	16159.3	1.52	1.57	N/A	2.32 F	92.23	3381.89	881.89		
	2050	303560	122772	315965	15784.1	1.53	1.57	N/A	2.35 F	92.23	3381.89	881.89		
	2300	151294	112633	163658	3375.4	1.71	1.57	N/A	4.72 F	94.35	3466.13	966.13		
	2300	132741	112633	144956	1755.6	1.72	1.57	N/A	5.38 F	94.35	3466.14	966.14		
	2370	129966	109858	142452	1755.6	1.72	1.57	N/A	5.49 F	94.94	3489.28	989.28		
	2370	127909	107800	140922	1755.6	1.75	1.60	N/A	5.58 F	94.94	3489.29	1036.40		
	2700	105515	94232	119785	985.1	1.75	1.60	N/A	6.77 F	97.73	3599.97	1152.35		
	2700	111680	94231	126006	1523.4	1.75	1.60	N/A	6.39 F	97.73	3599.97	1152.35		
	3100	110766	77783	126839	2879.6	1.71	1.60	N/A	6.44 F	101.11	3734.23	1293.00		
	3100	97392	77783	113331	1712.1	1.73	1.60	N/A	7.33 F	101.11	3734.23	1293.01		
	3700	71565	53303	89806	1594.4	1.70	1.61	N/A	9.97 F	106.15	3934.24	1502.54		
	3700	60887	53302	79004	662.3	1.71	1.61	N/A	11.72 F	106.16	3934.25	1502.55		
	4650	34671	14219	56495	1785.6	1.64	1.61	N/A	20.59 F	114.20	4253.37	1836.86		
	4900	44595	4828	67626	3472.0	1.59	1.61	N/A	16.01 F	116.32	4337.37	1924.87		
	4900	28975	4828	51775	2108.2	1.62	1.61	N/A	24.64 F	116.32	4337.38	1924.87		
	5029	22103	34	45340	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.40	1969.94		
	5029	22102	33	45339	1926.8	1.61	1.61	N/A	32.30 F	117.40	4380.41	1969.95		
	5600	-45329	-21341	-20805	2094.3	1.57	1.62	N/A	(13.67)	122.23	4572.11	2170.78		
	5650	-40465	-23210	-15657	1506.5	1.58	1.62	N/A	(15.31)	122.66	4588.87	2188.34		
		onn Fracture												
	E Co													
	() Co	ompression ector Collapse Safety	/ Factor											

For Help, press F1


🙎 👤 Default Datum @ 0.00 usft 📑 API - US Survey Feet 🙎 jgriffin2

9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi



*Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

Page 22 of 31

CASING PROGRAM

1

Seog resources

Shallow Casing Design E

<u>1.</u> C	ASINGI		1					
Hole	Interv	al MD	Interva	l TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

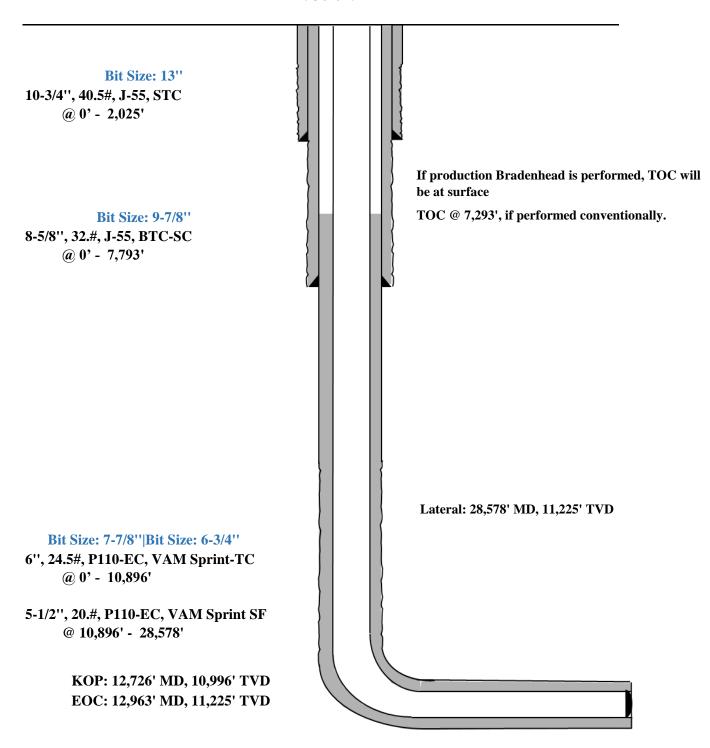
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
2,030' 10-3/4"	450	ppg 13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578' _{6"}	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')

2. CEMENTING PROGRAM:


Seog resources

Shallow Casing Design E

Proposed Wellbore	KB: 3558'
-------------------	-----------

GL: 3533'

API: 30-025-****

StressCheck - [Triaxial Results - Shallow 3.0 Mile *]

File Edit Wellbore Tubular View Composer Tools Window Help

Image: Image

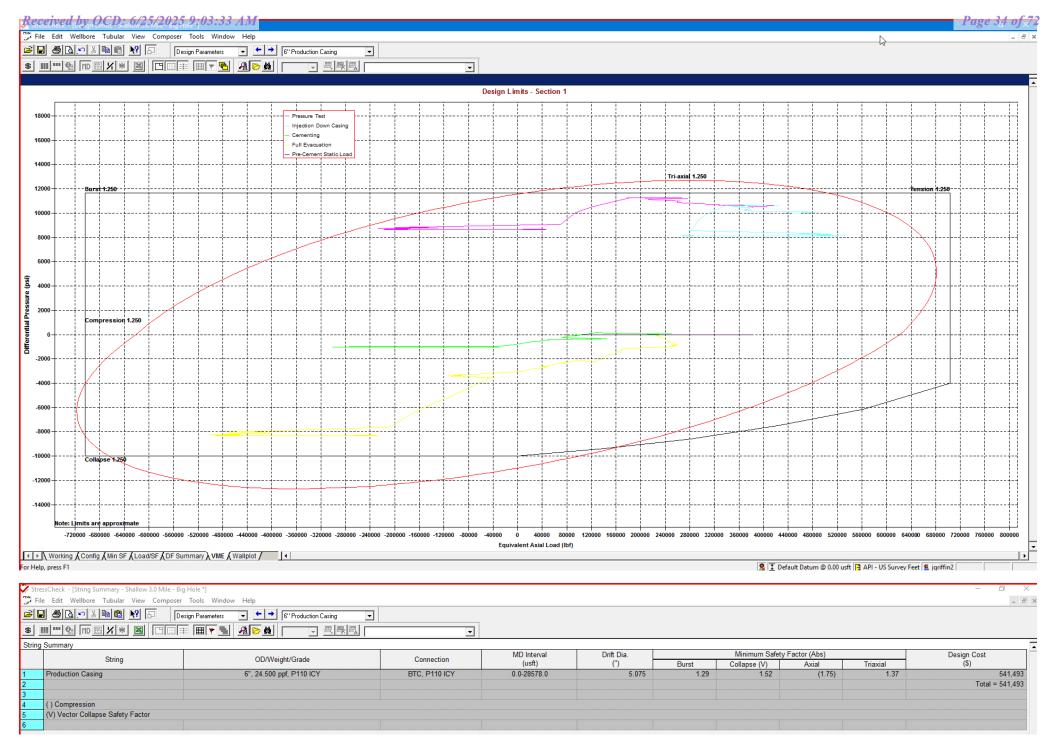
ial Results Depth (MD)		Axial F	Force (lbf)	Envirolant	Danding Oburn		Absolute S	afety Factor		Terret	Pressure	e (psi)	Addd Distance To	Dualdad
	Uepth (MD) (usft)	Apparent (w/Bending)	Actual (w/o Bending)	Equivalent Axial Load (lbf)	Bending Stress at OD (psi)	Triaxial	Burst	Collapse (V)	Axial	Temperature (°F)	Internal	External	Addt'l Pickup To Prevent Buck. (lbf)	Buckled Length (usft
	0	200426	183224	200546	1880.2	1.68	1.57	N/A	2.89 F	70.00	2500.00	0.00	N/A	N/A
	100	196229	179028	196812	1880.2	1.69	1.57	N/A	2.95 F	71.10	2543.63	43.63		
	100	187111	179027	187686	883.7	1.70	1.57	N/A	3.10 F	71.10	2543.64	43.64		
	1700	256401	111891	264835	15795.8	1.56	1.56	N/A	2.26 F	88.70	3241.64	741.64		
	1700	235940	111891	244247	13559.4	1.60	1.56	N/A	2.45 F	88.70	3241.65	741.65		
	1850	252413	105788	261533	16027.0	1.54	1.56	N/A	2.29 F	90.29	3305.05	805.05		
	1850	239292	105787	248323	14592.9	1.56	1.56	N/A	2.42 F	90.29	3305.06	805.06		
	1950	240267	101966	249748	15117.2	1.54	1.56	N/A	2.41 F	91.30	3344.87	844.87		
	1950	234781	101965	244223	14517.5	1.56	1.56	N/A	2.47 F	91.30	3344.87	844.87		
	2050	230871	98395	240694	14480.4	1.55	1.56	N/A	2.51 F	92.23	3381.89	881.89		
	2050	227794	98394	237594	14144.2	1.55	1.56	N/A	2.54 F	92.23	3381.89	881.89		
	2300	117966	90294	127818	3024.7	1.70	1.56	N/A	4.91 F	94.35	3466.13	966.13		
	2300	104686	90293	114432	1573.2	1.71	1.56	N/A	5.53 F	94.35	3466.14	966.14		
	2370	102469	88077	112431	1573.2	1.71	1.56	N/A	5.65 F	94.94	3489.28	989.28		
	2370	100817	86424	111200	1573.2	1.75	1.59	N/A	5.75 F	94.94	3489.29	1036.40		
	2700	83660	75583	95052	882.8	1.74	1.59	N/A	6.92 F	97.73	3599.97	1152.35		
	2700	88072	75583	99504	1365.1	1.74	1.59	N/A	6.58 F	97.73	3599.97	1152.35		
	3100	86049	62442	98863	2580.4	1.71	1.59	N/A	6.73 F	101.11	3734.23	1293.00		
	3100	76477 55953	62441	89195	1534.2	1.72	1.59	N/A	7.57 F	101.11 106.15	3734.23	1293.01 1502.54		
	3700		42882	70509	1428.8		1.60	N/A	10.35 F		3934.24			
	3700	48311	42881	62778	593.5	1.71	1.60	N/A	11.99 F	106.16	3934.25	1502.55		
	4000	41458	33043	56865	919.9	1.69	1.60	N/A	13.97 F	108.69	4034.82	1607.91		
	4650 4900	26293 32619	11655 4156	43706 50970	1600.1	1.63 1.59	1.60 1.60	N/A	22.03 F	114.20 116.32	4253.37	1836.86 1924.87		
	4900	21439	4155	39625	3111.2 1889.2	1.59	1.60	N/A N/A	17.76 F 27.02 F	116.32	4337.37 4337.38	1924.87		
	5039	15822	4155	39625	1726.6	1.61	1.60	N/A N/A	27.02 F 36.61 F	116.32	4383.77	1924.87		
	5039	15822	26	34389	1726.6	1.61	1.61	N/A N/A	36.61 F	117.49	4383.77	1973.48		
	5600	-33912	-16743	-14286	1720.0	1.57	1.61	N/A N/A	(14.60)	122.23	4505.70	2170.78		
	5650	-30585	-16745	-14200 -10742	1350.0	1.57	1.61	N/A N/A	(14.60) (16.18)	122.23	4572.11	2170.78		
	0000	-30305	-10233	-10742	1350.0	1.00	1.01	IN/A	(10.10)	122.00	4000.07	2100.34		
	F (Conn Fracture												
		Compression												
		Vector Collapse Safet	v Factor											
	(.)		,											

For Help, press F1

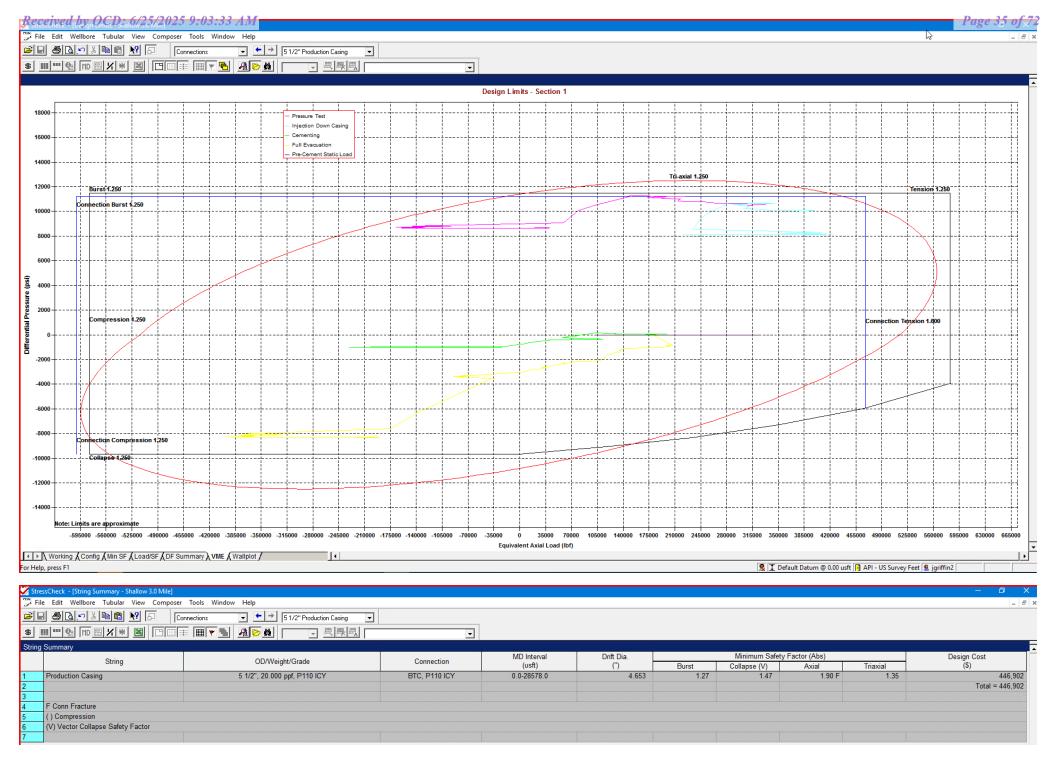
🙎 I Default Datum @ 0.00 usft 🖪 API - US Survey Feet 😫 jgriffin2

Page 32 of 72

_ 8 >


8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi External Profile based off Pore Pressure: 2188 psi


*Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

*Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

*Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Released to Imaging: 6/26/2025 10:32:24 AM

Page 28 of 31

🎖 eog resources

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Shallow Casing Design 501H

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

.

Pipe Body and API Connections Performance Data Received by OCD: 6/25/2025 9:03:33 AM 13.375 54.50/0.380 J55

Page 39 of 72 PDF

New Search »

a Back to Previous List

USC O Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000		-	-	psi
Maximum Yield Strength	80,000			-	psi
Minimum Tensile Strength	75,000			-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	7	-		in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-			lbs/ft
Plain End Weight	52.79			-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1, <mark>1</mark> 30		1,130	psi
Minimum Internal Yield Pressure	2,740	2,740		2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	=	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	n
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-		3,860	ft-lbs
Released to Imaging: 6/26/2025 10:32:24 AM Maximum Make-Up Torque	-	-		6,430	ft-lbs

Pipe Body and API Connections Performance Data Received by OCD: 6/25/2025 9:03:33 AM 9.625 40.00/0.395 J55

Page 40 of 72 PDF

New Search »

« Back to Previous List

USC O Metric

6/8/2015 10:23:27 AM					
Mechanical Properties	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-		psi
Minimum Tensile Strength	75,000			-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395		77.N		in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		lbs/ft
Plain End Weight	38.97	-		-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-	-		1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque	1122	-	3 <mark>,</mark> 900	3,390	ft-Ibs
Released to Imaging: 6/26/2025 10:32:24 AM Maximum Make-Up Torque	-	-	6,500	5,650	ft-lbs

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Date: 12/03/2019 Time: 06:19:27 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

Connection performance properties are based on nominal pipe body and connection dimensions.
 DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
 DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages.

Pipe Body and ABI Connections Performance Data

10.750 40.50/0.350 J55

New Search » « Back to Previous List

USC 🔵 Metric

6/8/2015 10:14:05 AM

6/8/2015 10:14:05 AM Mechanical Properties	Ptpe	BTC	LTC	STC	
Mechanical Properties	ripe	BIC	LIC	SIC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	BTC	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength		700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss		4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Released to Imaging: 6/26/2025 10:32:24 AM Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

						APT 5CT, TUIT EU. CONNECTION Data Sheet				
O.D. (in)		b/ft)	WALL	(in)	GR/	ADE	*API DRIFT	(in)	RBW	/ %
8.625	Nominal: Plain End:	32.00 31.13	0.35	2	Jť	55	7.796		87.	5
	Material Propert	ies (PE)				F	Pipe Body D	Data (F	PE)	
	Pipe						Geome	etry		
Minimum	Yield Strength:	55	ksi		Nomin	al ID:			7.92 i	nch
Maximum	Yield Strength:	80	ksi		Nomin	al Area	:		9.149 j	n ²
Minimum	Tensile Strength:	75	ksi		*Speci	ial/Alt. [Drift:		7.875 i	nch
	Coupling	J					Performa	ance		
Minimum	Yield Strength:	55	ksi		Pipe B	Body Yie	eld Strength:	:	503 k	kips
Maximum	Yield Strength:	80	ksi				istance:		2,530 p	osi
Maximani						Viold Dr				
	Tensile Strength:	75	ksi		Internal (API His	storical)	essure.		3,930 p	osi
	API Connection	n Data	ksi			storical)		on To		osi
		n Data .625"	ksi			storical) AF	PI Connectio		rque	osi
Minimum	API Connection Coupling OD: 9	n Data .625"				storical) AF	PI Connectio STC Torque		rque	osi 4,6
Minimum STC Inter	API Connection Coupling OD: 9 STC Perform	n Data .625" ance 3,930			(API Hi	storical) AF	PI Connectio STC Torque	ə (ft-lb	rque os)	
Minimum STC Inter	API Connection Coupling OD: 9 STC Perform nal Pressure:	n Data .625" ance 3,930 372	psi		(API Hi	storical) AF 2,793	PI Connectio STC Torque	e (ft-lb 3,724	rque os) Max:	
Minimum STC Inter STC Joint	API Connection Coupling OD: 9 STC Perform nal Pressure: t Strength:	n Data .625" ance 3,930 372	psi kips		(API Hi	storical) AF 2,793	PI Connection STC Torque Opti: 3 LTC Torque	e (ft-lb 3,724	rque os) Max:	4,6
Minimum STC Inter STC Joint LTC Inter	API Connection Coupling OD: 9 STC Perform nal Pressure: Strength: LTC Perform	n Data .625" ance 3,930 372 ance 3,930	psi kips		(API Hi	storical) AF 2,793	PI Connection STC Torque Opti: 3 LTC Torque	e (ft-lb 3,724 e (ft-lb	rque os) Max: os)	
Minimum STC Inter STC Joint LTC Inter LTC Joint	API Connection Coupling OD: 9 STC Performs nal Pressure: t Strength: LTC Performs nal Pressure:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips		(API Hi	storical) AF 2,793 3,130	PI Connection STC Torque Opti: 3 LTC Torque	e (ft-lb 3,724 e (ft-lb 4,174	rque os) Max: os) Max:	4,6
Minimum STC Inter STC Joint LTC Inter LTC Joint SC-BTC I	API Connection Coupling OD: 9 STC Performation and Pressure: t Strength: LTC Performation nal Pressure: Strength:	n Data .625" ance 3,930 372 ance 3,930 417	psi kips psi kips 9.125"		(API Hit	storical) AF 2,793 3,130	Pl Connection STC Torque Opti: 3 LTC Torque Opti: 4	e (ft-lk 3,724 e (ft-lk 4,174 e (ft-lk	rque os) Max: os) Max:	4,6

**If above API connections do not suit your needs, VAM® premium connections are available up to

100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Rev 3, 7/30/2021

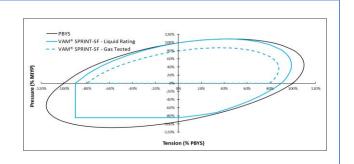
S S2L2 DA 7.875 W/O# SLN # PO# MADE IN USA FT LB

VALLOUREC STAR 8.625 32# J55

Issued on: 10 Feb. 2021 by Wesley Ott

OD	Weight (lb/ft)	Wall Th.	Grade	API Drift:	Connection
6 in.	Nominal: 24.50	0.400 in.	P110EC	5.075 in.	VAM [®] SPRINT-SF
	Plain End: 23.95				

PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi


CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANC		
Tensile Yield Strength	801	klb
Compression Resistance	801	klb
Internal Yield Pressure	14,580	psi
Collapse Resistance	12,500	psi
Max. Structural Bending	83	°/100ft
Max. Bending with ISO/API Sealability	30	°/100ft

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

* 87.5% RBW

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Connection Data Sheet

OD (in.)	WEIGHT (lbs./ft.)	WALL (in.)	GRADE	API DRIFT (in.)	RBW%	CONNECTION
6.000	Nominal: 22.30	0.360	VST P110EC	5.155	92.5	DWC/C-IS
	Plain End: 21 70			•		-

PIPE PROPE	RTIES	
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMA	NCES	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE V	ALUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

Need Help? Contact: <u>tech.support@vam-usa.com</u> Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02 Date: 07/30/2020

Time: 07:50:47 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates us advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

1. DWC connections are available with a seal ring (SR) option.

2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.

3. Connection performance properties are based on nominal pipe body and connection dimensions.

4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.

5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.

6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.

7. Bending efficiency is equal to the compression efficiency.

8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.

9. Connection yield torque is not to be exceeded.

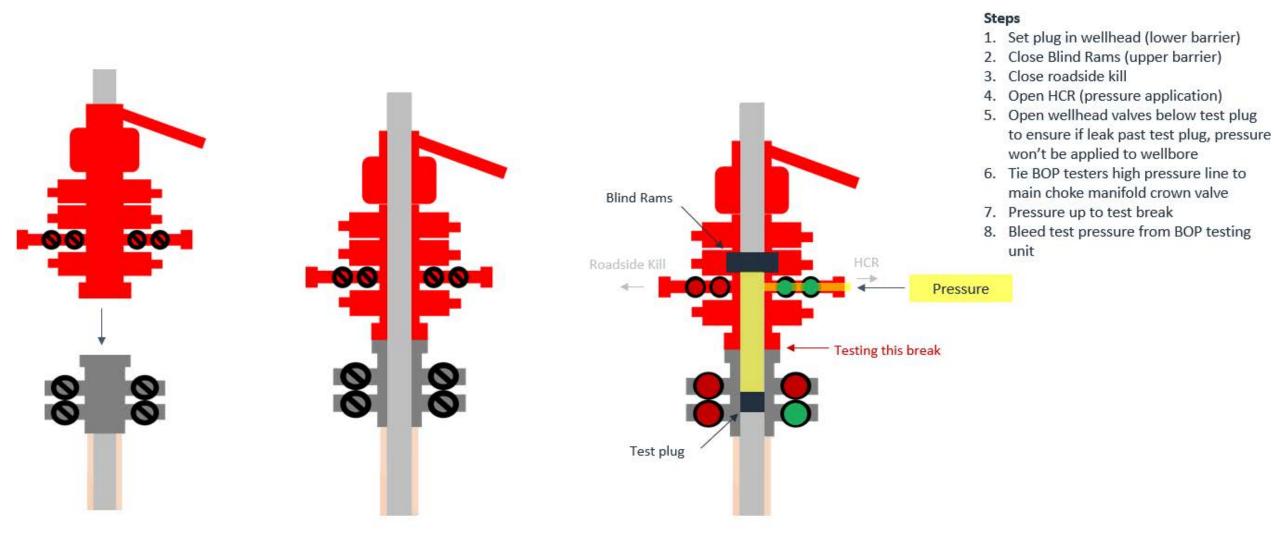
10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.

11. DWC connections will accommodate API standard drift diameters.

12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

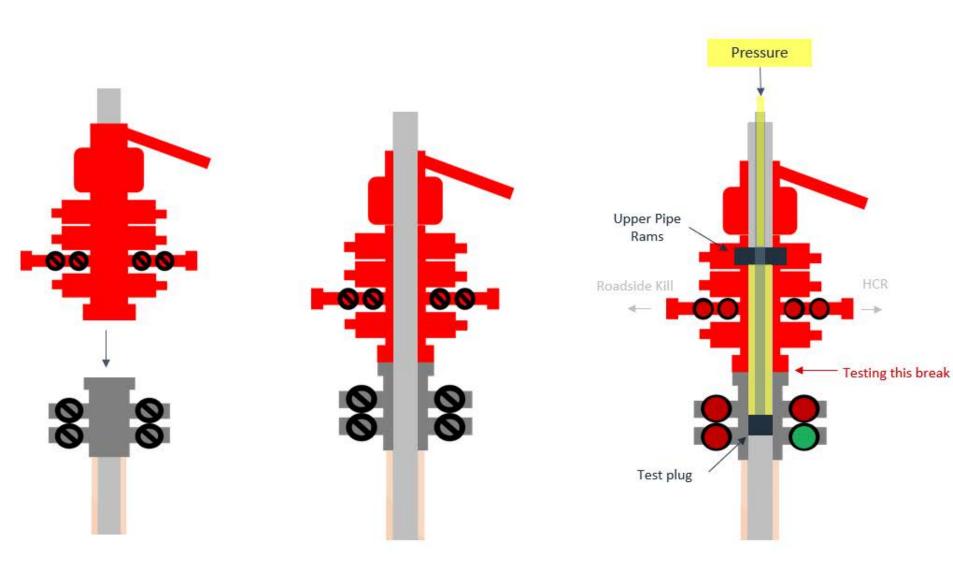
Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.



Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:


- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular **à** during each full BOPE test
 - Upper Pipe Rams **à** On trip ins where FIT required
 - Blind Rams **à** Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (HCR valve)

Break Test Diagram (Test Joint)

Steps

- 1. Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Seog resources

Golden Graham 1 State Com #501H **EDDY County, New Mexico** 345' FSL KB: 2962' **Proposed Wellbore** 1170' FWL GL: 2937' Section 1 T-26-S, R-28-E API: 30-025-**** Bit Size: 13" 10-3/4", 40.5#, J-55, STC (a) 0' - 300' MD (a) 0' - 300' TVD If production Bradenhead is performed, TOC will be at surface TOC @ 2,447', if performed conventionally. Bit Size: 9-7/8" 8-5/8", 32.#, J-55, BTC-SC @ 0' - 2,897' MD @ 0' - 2,772' TVD Bit Size: 7-7/8"|Bit Size: 6-3/4" 6", 24.5#, P110-EC, VAM Sprint-TC (a) 0' - 7,780' MD (a) 0' - 7,669' TVD 5-1/2", 20.#, P110-EC, VAM Sprint SF @ 7,780' - 18,648' MD @ 7,669' - 8,246' TVD Lateral: 18,648' MD, 8,246' TVD BH Location: 100' FNL & 330' FWL Sec. 36 T-25-S R-28-E KOP: 7,880' MD, 7,769' TVD EOC: 8,630' MD, 8,246' TVD

Seog resources

Permit Information:

Well Name: Golden Graham 1 State Com 501H

Location: SHL: 345' FSL & 1170' FWL, Section 1, T-26-S, R-28-E, EDDY Co., N.M. BHL: 100' FNL & 330' FWL, Section 36, T-25-S, R-28-E, EDDY Co., N.M.

Casing Program:

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	300	0	300	10-3/4"	40.5#	J-55	STC
9-7/8"	0	2,897	0	2,772	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	7,780	0	7,669	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	7,780	18,648	7,669	8,246	5-1/2"	20#	P110-EC	VAM Sprint SF

**For highlighted rows above, variance is requested to run entire string of either or casing string above due to availablility.

Cement Pro	gram:			
Depth MD	No. Sacks	Wt. ppg	Yld Ft3/sk	Slurry Description
2001	120	13.5	1.73	Class C/H + additives (TOC @ Surface)
300'	40	14.8	1.34	Class C/H + additives
2,897'	240	12.7	1.11	Tail: Class C/H + additives + expansion additives (TOC @ 2000')
2,897	100	14.8	1.5	Lead: Class C/H + additives (TOC @ Surface)
18,648'	1280	13.2	1.52	Tail: Class C/H + additives (TOC @ 7,880')
	810	10.5	3.21	Lead: Class C/H + additives (TOC @ 2,447')

Mud Program:

Section	Depth	Туре	Weight (ppg)	Viscosity	Water Loss
Surface	0 - 300'	Fresh - Gel	8.6-9.2	28-34	N/c
Intermediate	300'-2,330'	Brine	9.0-10.5	28-34	N/c
Production	2,330' – 18,648' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

Golden Graham 1 State Com #501H

TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

 19.15.16.10 Casing AND TUBING REQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Seog resources

Golden Graham 1 State Com #501H

Hydrogen Sulfide Plan Summary

A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.

B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.

- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator

■ Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher

■ H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.

b. A colored condition flag will be on display, reflecting the current condition at the site at the time.

c. Two wind socks will be placed in strategic locations, visible from all angles.

Golden Graham 1 State Com #501H

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

seog resources

Golden Graham 1 State Com #501H Emergency Assistance Telephone List

PUBLIC SAFETY:		911 of
Lea County Sheriff's Department		(575) 396-3611
Rod Coffman		
Fire Department:		
Carlsbad		(575) 885-3125
Artesia		(575) 746-5050
Hospitals:		
Carlsbad		(575) 887-4121
Artesia		(575) 748-3333
Hobbs		(575) 392-1979
Dept. of Public Safety/Carlsbad		(575) 748-9718
Highway Department		(575) 885-3281
New Mexico Oil Conservation		(575) 476-3440
NMOCD Inspection Group - South		(575) 626-0830
U.S. Dept. of Labor		(575) 887-1174
EOG Resources, Inc.		
EOG / Midland	Office	(432) 686-3600
Company Drilling Consultants:		
David Dominque	Cell	(985) 518-5839
Mike Vann	Cell	(817) 980-5507
Drilling Engineer		
Stephen Davis	Cell	(432) 235-9789
Matt Day	Cell	(432) 296-4456
Drilling Manager		
Branden Keener	Office	(432) 686-3752
	Cell	(210) 294-3729
Drilling Superintendent		
Steve Kelly	Office	(432) 686-3706
	Cell	(210) 416-7894
H&P Drilling		
H&P Drilling	Office	(432) 563-5757
H&P 651 Drilling Rig	Rig	(903) 509-7131
	-	
Tool Pusher:		
Johnathan Craig	Cell	(817) 760-6374
Brad Garrett		
Safety:		
Brian Chandler (HSE Manager)	Office	(432) 686-3695
	Cell	(817) 239-0251

eog resources

Golden Graham 1 State Com #501H

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Castile Base of Salt	981' 2,227'
Lamar	2,722'
Bell Canyon	2,743'
Cherry Canyon	3,595'
Brushy Canyon Bone Spring Lime	5,185' 6,429'
Leonard (Avalon) Shale	6,509'
1st Bone Spring Sand	7,342'
2nd Bone Spring Shale	7,578'
2nd Bone Spring Sand	8,033'
3rd Bone Spring Carb	8,534'
3rd Bone Spring Sand	9,125'
TD	8,246'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0 - 50' Fresh Water
Lamar	2,722' Oil
Cherry Canyon	3,595' Oil
Brushy Canyon	5,185' Oil
Bone Spring Lime	6,429' Oil
Leonard (Avalon) Shale	6,509' Oil
1st Bone Spring Sand	7,342' Oil
2nd Bone Spring Shale	7,578' Oil
2nd Bone Spring Sand	8,033' Oil

Midland

Eddy County, NM (NAD 83 NME) Golden Graham 1 State Com #501H

OH

Plan: Plan #0.1 RT

Standard Planning Report

15 May, 2025

Cogic							
Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Eddy County, N Golden Graham #501H OH Plan #0.1 RT		,	TVD Referen MD Reference North Reference	e:	Well #501H kb = 26' @ 296 kb = 26' @ 296 Grid Minimum Curva	33.0usft
Project	Eddy County, NM	1 (NAD 83 N	ME)				
Geo Datum:	US State Plane 19 North American Da New Mexico Easte	atum 1983		System Datun	n:	Mean Sea Level	
Site	Golden Graham	1 State Com					
Site Position: From: Position Uncertainty:	Мар	0.0 usft	Northing: Easting: Slot Radius:	630,03	4.00 usft Latitud 1.00 usft Longitu 3/16 "		32° 3' 53.919 N 104° 2' 49.246 W
Well	#501H						
Well Position Position Uncertainty	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Wellhead Elev		387,619.00 usft 630,502.00 usft usft	Latitude: Longitude: Ground Level:	32° 3' 55.143 N 104° 2' 43.768 W 2,937.0 usft
Grid Convergence:		0.15°					
Wellbore	ОН						
Magnetics	Model Name		Sample Date	Declinatio (°)	n	Dip Angle (°)	Field Strength (nT)
	IGRF2	2025	5/15/2025		6.46	59.55	46,897.39694592
Design	Plan #0.1 RT						
Audit Notes: Version:			Phase:	PLAN	Tie On Dep	oth:	0.0
Vertical Section:		(u	rom (TVD) Isft)	+N/-S (usft)	+E/-W (usft)		rection (°)
		().0	0.0	0.0	3	355.40
Plan Survey Tool Pro	gram D)ate 5/15/2	2025				
Depth From (usft)	Depth To (usft) Su	rvey (Wellbo	ore)	Tool Name	Rema	arks	
1 0.0	18,648.1 Pla	an #0.1 RT (1	OH)	EOG MWD+IFR ⁻ MWD + IFR1	1		

Database:	PEDMB	Local Co-ordinate Reference:	Well #501H
Company:	Midland	TVD Reference:	kb = 26' @ 2963.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2963.0usft
Site:	Golden Graham 1 State Com	North Reference:	Grid
Well:	#501H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Plan Sections

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,572.6	15.45	250.87	1,563.2	-33.9	-97.8	2.00	2.00	0.00	250.87	
4,128.5	15.45	250.87	4,026.8	-257.1	-741.2	0.00	0.00	0.00	0.00	
4,901.0	0.00	0.00	4,790.0	-291.0	-839.0	2.00	-2.00	0.00	180.00	
7,879.5	0.00	0.00	7,768.5	-291.0	-839.0	0.00	0.00	0.00	0.00	KOP(Golden Grahar
8,100.0	26.46	0.00	7,981.2	-241.0	-839.0	12.00	12.00	0.00	0.00	FTP(Golden Graham
8,629.5	90.00	0.10	8,245.9	186.5	-838.5	12.00	12.00	0.02	0.11	
13,401.1	90.00	0.10	8,246.0	4,958.0	-830.0	0.00	0.00	0.00	0.00	Fed Perf 1(Golden G
16,071.1	90.00	0.07	8,246.0	7,628.0	-826.0	0.00	0.00	0.00	-87.49	Fed Perf 2(Golden G
18,648.1	90.00	0.15	8,246.0	10,205.0	-821.0	0.00	0.00	0.00	90.97	PBHL(Golden Graha

5/15/2025 2:09:23PM

Database:	PEDMB	Local Co-ordinate Reference:	Well #501H
Company:	Midland	TVD Reference:	kb = 26' @ 2963.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2963.0usft
Site:	Golden Graham 1 State Com	North Reference:	Grid
Well:	#501H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	2.00	250.87	900.0	-0.6	-1.6	-0.4	2.00	2.00	0.00
1,000.0	4.00	250.87	999.8	-2.3	-6.6	-1.8	2.00	2.00	0.00
1,100.0	6.00	250.87	1,099.5	-5.1	-14.8	-3.9	2.00	2.00	0.00
1,200.0	8.00	250.87	1,198.7	-9.1	-26.3	-7.0	2.00	2.00	0.00
1,300.0	10.00	250.87	1,297.5	-14.3	-41.1	-10.9	2.00	2.00	0.00
1,400.0	12.00	250.87	1,395.6	-20.5	-59.1	-15.7	2.00	2.00	0.00
1,500.0	14.00	250.87	1,493.1	-27.9	-80.4	-21.3	2.00	2.00	0.00
1,572.6	15.45	250.87	1,563.2	-33.9	-97.8	-26.0	2.00	2.00	0.00
1,600.0	15.45	250.87	1,589.7	-36.3	-104.7	-27.8	0.00	0.00	0.00
1,700.0	15.45	250.87	1,686.1	-45.1	-129.9	-34.5	0.00	0.00	0.00
1,800.0	15.45	250.87	1,782.4	-53.8	-155.1	-41.2	0.00	0.00	0.00
1.900.0	15.45	250.87	1,878.8	-62.5	-180.2	-47.9	0.00	0.00	0.00
2,000.0	15.45	250.87	1,975.2	-71.2	-205.4	-54.5	0.00	0.00	0.00
2,100.0	15.45	250.87	2,071.6	-80.0	-230.6	-61.2	0.00	0.00	0.00
2,200.0	15.45	250.87	2,168.0	-88.7	-255.8	-67.9	0.00	0.00	0.00
2,300.0	15.45	250.87	2,264.4	-97.4	-280.9	-74.6	0.00	0.00	0.00
2,400.0	15.45	250.87	2,360.8	-106.2	-306.1	-81.3	0.00	0.00	0.00
2,500.0	15.45	250.87	2,300.8	-114.9	-331.3	-88.0	0.00	0.00	0.00
2,600.0	15.45	250.87	2,553.5	-123.6	-356.4	-94.6	0.00	0.00	0.00
2,700.0	15.45	250.87	2,649.9	-132.4	-381.6	-101.3	0.00	0.00	0.00
2,800.0	15.45	250.87	2,746.3	-141.1	-406.8	-108.0	0.00	0.00	0.00
2,900.0		250.87	2,842.7	-149.8	-432.0	-114.7	0.00	0.00	0.00
3,000.0	15.45 15.45	250.87	2,842.7 2,939.1	-149.6	-432.0 -457.1	-114.7 -121.4	0.00	0.00	0.00
3,100.0	15.45	250.87	3,035.5	-167.3	-482.3	-121.4	0.00	0.00	0.00
3,200.0	15.45	250.87	3,131.8	-176.0	-507.5	-120.1	0.00	0.00	0.00
3,300.0	15.45	250.87	3,228.2	-184.7	-532.6	-134.7	0.00	0.00	0.00
3,400.0	15.45	250.87	3,324.6	-193.5	-557.8	-148.1	0.00	0.00	0.00
3,500.0	15.45 15.45	250.87 250.87	3,421.0	-202.2 -210.9	-583.0 -608.2	-154.8 -161.5	0.00 0.00	0.00 0.00	0.00
3,600.0 3.700.0	15.45 15.45	250.87 250.87	3,517.4 3,613.8	-210.9 -219.7	-608.2	-161.5 -168.2	0.00	0.00	0.00 0.00
3,700.0 3,800.0	15.45 15.45	250.87 250.87	3,613.8	-219.7 -228.4	-633.3 -658.5	-168.2 -174.9	0.00	0.00	0.00
3,900.0	15.45	250.87 250.87	3,806.5	-237.1	-683.7	-181.5	0.00	0.00	0.00
4,000.0 4,100.0	15.45 15.45		3,902.9 3,999.3	-245.9 -254.6	-708.8	-188.2	0.00	0.00	0.00 0.00
4,100.0	15.45 15.45	250.87 250.87	3,999.3 4,026.8	-254.6 -257.1	-734.0 -741.2	-194.9 -196.8	0.00 0.00	0.00 0.00	0.00
4,128.5 4,200.0	15.45	250.87 250.87	4,026.8 4,095.9	-257.1 -263.0	-741.2 -758.4	-196.8 -201.4	2.00	-2.00	0.00
4,300.0	12.02	250.87	4,193.4	-270.4	-779.6	-207.0	2.00	-2.00	0.00
4,400.0	10.02	250.87	4,291.5	-276.7	-797.7	-211.8	2.00	-2.00	0.00
4,500.0	8.02	250.87	4,390.3	-281.8	-812.5	-215.8	2.00	-2.00	0.00
4,600.0	6.02	250.87	4,489.5	-285.8	-824.1	-218.8	2.00	-2.00	0.00
4,700.0	4.02	250.87	4,589.1	-288.7	-832.3	-221.0	2.00	-2.00	0.00
4,800.0	2.02	250.87	4,689.0	-290.4	-837.3	-222.3	2.00	-2.00	0.00
4,901.0	0.00	0.00	4,790.0	-291.0	-839.0	-222.8	2.00	-2.00	0.00
5,000.0	0.00	0.00	4,889.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,100.0	0.00	0.00	4,989.0	-291.0	-839.0	-222.8	0.00	0.00	0.00

5/15/2025 2:09:23PM

Database:	PEDMB	Local Co-ordinate Reference:	Well #501H
Company:	Midland	TVD Reference:	kb = 26' @ 2963.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2963.0usft
Site:	Golden Graham 1 State Com	North Reference:	Grid
Well:	#501H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	0.00	0.00	5,089.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,300.0	0.00	0.00	5,189.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,400.0	0.00	0.00	5,289.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,500.0	0.00	0.00	5,389.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,600.0	0.00	0.00	5,489.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,700.0	0.00	0.00	5,589.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,800.0	0.00	0.00	5,689.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
5,900.0	0.00	0.00	5,789.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,000.0	0.00	0.00	5,889.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,100.0	0.00	0.00	5,989.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,200.0	0.00	0.00	6,089.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,300.0	0.00	0.00	6,189.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,400.0	0.00	0.00	6,289.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,500.0	0.00	0.00	6,389.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,600.0	0.00	0.00	6,489.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,700.0	0.00	0.00	6,589.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,800.0	0.00	0.00	6,689.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
6,900.0	0.00	0.00	6,789.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,000.0	0.00	0.00	6,889.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,100.0	0.00	0.00	6,989.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,200.0	0.00	0.00	7,089.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,300.0	0.00	0.00	7,189.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,400.0	0.00	0.00	7,289.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,500.0	0.00	0.00	7,389.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,600.0	0.00	0.00	7,489.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,700.0	0.00	0.00	7,589.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,800.0	0.00	0.00	7,689.0	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,879.5	0.00	0.00	7,768.5	-291.0	-839.0	-222.8	0.00	0.00	0.00
7,900.0	2.46	0.00	7,789.0	-290.6	-839.0	-222.3	12.00	12.00	0.00
7,925.0	5.46	0.00	7,813.9	-288.8	-839.0	-220.6	12.00	12.00	0.00
7,950.0	8.46	0.00	7,838.7	-285.8	-839.0	-217.6	12.00	12.00	0.00
7,975.0	11.46	0.00	7,863.3	-281.5	-839.0	-213.3	12.00	12.00	0.00
8,000.0	14.46	0.00	7,887.7	-275.9	-839.0	-207.7	12.00	12.00	0.00
8,025.0	17.46	0.00	7,911.7	-269.0	-839.0	-200.9	12.00	12.00	0.00
8,050.0	20.46	0.00	7,935.4	-260.9	-839.0	-192.8	12.00	12.00	0.00
8,075.0	23.46	0.00	7,958.5	-251.5	-839.0	-183.5	12.00	12.00	0.00
8,100.0	26.46	0.00	7,981.2	-241.0	-839.0	-172.9	12.00	12.00	0.00
8,125.0	29.46	0.01	8,003.3	-229.3	-839.0	-161.3	12.00	12.00	0.05
8,150.0	32.46	0.02	8,024.7	-216.4	-839.0	-148.4	12.00	12.00	0.04
8,175.0	35.46	0.03	8,045.5	-202.5	-839.0	-134.5	12.00	12.00	0.03
8,200.0	38.46	0.04	8,065.4	-187.4	-839.0	-119.5	12.00	12.00	0.03
8,225.0	41.46	0.04	8,084.6	-171.4	-839.0	-103.5	12.00	12.00	0.03
8,250.0	44.46	0.04	8,102.9	-154.3	-839.0	-86.6	12.00	12.00	0.03
8,275.0	47.46	0.06	8,120.3	-136.4	-838.9	-68.7	12.00	12.00	0.02
8,300.0	50.46	0.06	8,136.7	-117.5	-838.9	-49.9	12.00	12.00	0.02
8,325.0	53.46	0.06	8,152.1	-97.8	-838.9	-30.2	12.00	12.00	0.02
8,350.0	56.46	0.07	8,166.4	-77.4	-838.9	-9.8	12.00	12.00	0.02
8,375.0	59.46	0.07	8,179.7	-56.2	-838.8	11.3	12.00	12.00	0.01
8,400.0	62.46	0.08	8,191.8	-34.3	-838.8	33.1	12.00	12.00	0.01
8,425.0	65.46	0.08	8,202.8	-11.9	-838.8	55.4	12.00	12.00	0.01
8,450.0	68.46	0.08	8,212.6	11.1	-838.8	78.4	12.00	12.00	0.01
8,475.0	71.46	0.08	8,221.2	34.6	-838.7	101.8	12.00	12.00	0.01
8,500.0	74.46	0.09	8,228.5	58.5	-838.7	125.6	12.00	12.00	0.01
8,525.0	77.46	0.09	8,234.5	82.8	-838.6	149.8	12.00	12.00	0.01

5/15/2025 2:09:23PM

Page 5

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #501H
Dalabase.	FLOWD	Local Co-orumate Reference.	
Company:	Midland	TVD Reference:	kb = 26' @ 2963.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2963.0usft
Site:	Golden Graham 1 State Com	North Reference:	Grid
Well:	#501H	Survey Calculation Method:	Minimum Curvature
Wellbore:	ОН		
Design:	Plan #0.1 RT		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,550.0	80.46	0.09	8,239.3	107.3	-838.6	174.2	12.00	12.00	0.01
8,575.0	83.46	0.10	8,242.8	132.1	-838.6	198.9	12.00	12.00	0.01
8,600.0	86.46	0.10	8,245.0	157.0	-838.5	223.7	12.00	12.00	0.01
8,625.0	89.46	0.10	8,245.9	181.9	-838.5	248.6	12.00	12.00	0.01
8,629.5	90.00	0.10	8,245.9	186.5	-838.5	253.1	12.00	12.00	0.01
8,700.0	90.00	0.10	8,245.9	256.9	-838.3	323.3	0.00	0.00	0.00
8,800.0	90.00	0.10	8,245.9	356.9	-838.2	423.0	0.00	0.00	0.00
8,900.0	90.00	0.10	8,245.9	456.9	-838.0	522.7	0.00	0.00	0.00
9,000.0	90.00	0.10	8,245.9	556.9	-837.8	622.3	0.00	0.00	0.00
9,100.0	90.00	0.10	8,245.9	656.9	-837.6	722.0	0.00	0.00	0.00
9,200.0	90.00	0.10	8,245.9	756.9	-837.5	821.7	0.00	0.00	0.00
9,300.0	90.00	0.10	8,245.9	856.9	-837.3	921.3	0.00	0.00	0.00
9,400.0	90.00	0.10	8,246.0	956.9	-837.1	1,021.0	0.00	0.00	0.00
9,500.0	90.00	0.10	8,246.0	1,056.9	-836.9	1,120.7	0.00	0.00	0.00
9,600.0	90.00	0.10	8,246.0	1,156.9	-836.8	1,220.3	0.00	0.00	0.00
9,700.0	90.00	0.10	8,246.0	1,256.9	-836.6	1,320.0	0.00	0.00	0.00
9,800.0	90.00	0.10	8,246.0	1,356.9	-836.4	1,419.6	0.00	0.00	0.00
9,900.0	90.00	0.10	8,246.0	1,456.9	-836.2	1,519.3	0.00	0.00	0.00
10,000.0	90.00	0.10	8,246.0	1,556.9	-836.0	1,619.0	0.00	0.00	0.00
10,100.0	90.00	0.10	8,246.0	1,656.9	-835.9	1,718.6	0.00	0.00	0.00
10,200.0	90.00	0.10	8,246.0	1,756.9	-835.7	1,818.3	0.00	0.00	0.00
10,300.0	90.00	0.10	8,246.0	1,856.9	-835.5	1,918.0	0.00	0.00	0.00
10,400.0	90.00	0.10	8,246.0	1.956.9	-835.3	2,017.6	0.00	0.00	0.00
10,500.0	90.00	0.10	8,246.0	2,056.9	-835.2	2,017.0	0.00	0.00	0.00
10,500.0	90.00	0.10	8,246.0	2,050.9	-835.0	2,117.3	0.00	0.00	0.00
	90.00			2,150.9	-834.8	2,217.0	0.00	0.00	0.00
10,700.0 10,800.0	90.00	0.10	8,246.0	2,256.9		2,316.6	0.00	0.00	0.00
10,000.0	90.00	0.10	8,246.0	2,350.9	-834.6	2,410.5	0.00	0.00	0.00
10,900.0	90.00	0.10	8,246.0	2,456.9	-834.4	2,515.9	0.00	0.00	0.00
11,000.0	90.00	0.10	8,246.0	2,556.9	-834.3	2,615.6	0.00	0.00	0.00
11,100.0	90.00	0.10	8,246.0	2,656.9	-834.1	2,715.3	0.00	0.00	0.00
11,200.0	90.00	0.10	8,246.0	2,756.9	-833.9	2,814.9	0.00	0.00	0.00
11,300.0	90.00	0.10	8,246.0	2,856.9	-833.7	2,914.6	0.00	0.00	0.00
11,400.0	90.00	0.10	8,246.0	2,956.9	-833.6	3,014.3	0.00	0.00	0.00
11,500.0	90.00	0.10	8,246.0	3,056.9	-833.4	3,113.9	0.00	0.00	0.00
11,600.0	90.00	0.10	8,246.0	3,156.9	-833.2	3,213.6	0.00	0.00	0.00
11,700.0	90.00	0.10	8,246.0	3,256.9	-833.0	3,313.3	0.00	0.00	0.00
11,800.0	90.00	0.10	8,246.0	3,356.9	-832.8	3,412.9	0.00	0.00	0.00
11,900.0	90.00	0.10	8,246.0	3,456.9	-832.7	3,512.6	0.00	0.00	0.00
12,000.0	90.00	0.10	8,246.0	3,556.9	-832.5	3,612.2	0.00	0.00	0.00
12,000.0	90.00	0.10	8,246.0	3,656.9	-832.3	3,012.2	0.00	0.00	0.00
12,100.0	90.00	0.10	8,246.0	3,756.9	-832.1	3,811.6	0.00	0.00	0.00
12,200.0	90.00	0.10	8,240.0 8,246.0	3,856.9	-832.0	3,911.2	0.00	0.00	0.00
12,400.0	90.00	0.10	8,246.0	3,956.9	-831.8	4,010.9	0.00	0.00	0.00
12,500.0	90.00	0.10	8,246.0	4,056.9	-831.6	4,110.6	0.00	0.00	0.00
12,600.0	90.00	0.10	8,246.0	4,156.9	-831.4	4,210.2	0.00	0.00	0.00
12,700.0	90.00	0.10	8,246.0	4,256.9	-831.2	4,309.9	0.00	0.00	0.00
12,800.0	90.00	0.10	8,246.0	4,356.9	-831.1	4,409.5	0.00	0.00	0.00
12,900.0	90.00	0.10	8,246.0	4,456.9	-830.9	4,509.2	0.00	0.00	0.00
13,000.0	90.00	0.10	8,246.0	4,556.9	-830.7	4,608.9	0.00	0.00	0.00
13,100.0	90.00	0.10	8,246.0	4,656.9	-830.5	4,708.5	0.00	0.00	0.00
13,200.0	90.00	0.10	8,246.0	4,756.9	-830.4	4,808.2	0.00	0.00	0.00
13,300.0	90.00	0.10	8,246.0	4,856.9	-830.2	4,907.9	0.00	0.00	0.00
13,401.1	90.00	0.10	8.246.0	4,958.0	-830.0	5,008.6	0.00	0.00	0.00
13,500.0	90.00	0.10	8,246.0	5,056.9	-829.8	5,107.2	0.00	0.00	0.00

5/15/2025 2:09:23PM

Page 6

COMPASS 5000.16 Build 100

.

Database:	PEDMB	Local Co-ordinate Reference:	Well #501H
Company:	Midland	TVD Reference:	kb = 26' @ 2963.0usft
Project:	Eddy County, NM (NAD 83 NME)	MD Reference:	kb = 26' @ 2963.0usft
Site:	Golden Graham 1 State Com	North Reference:	Grid
Well:	#501H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OH		
Design:	Plan #0.1 RT		

Planned Survey

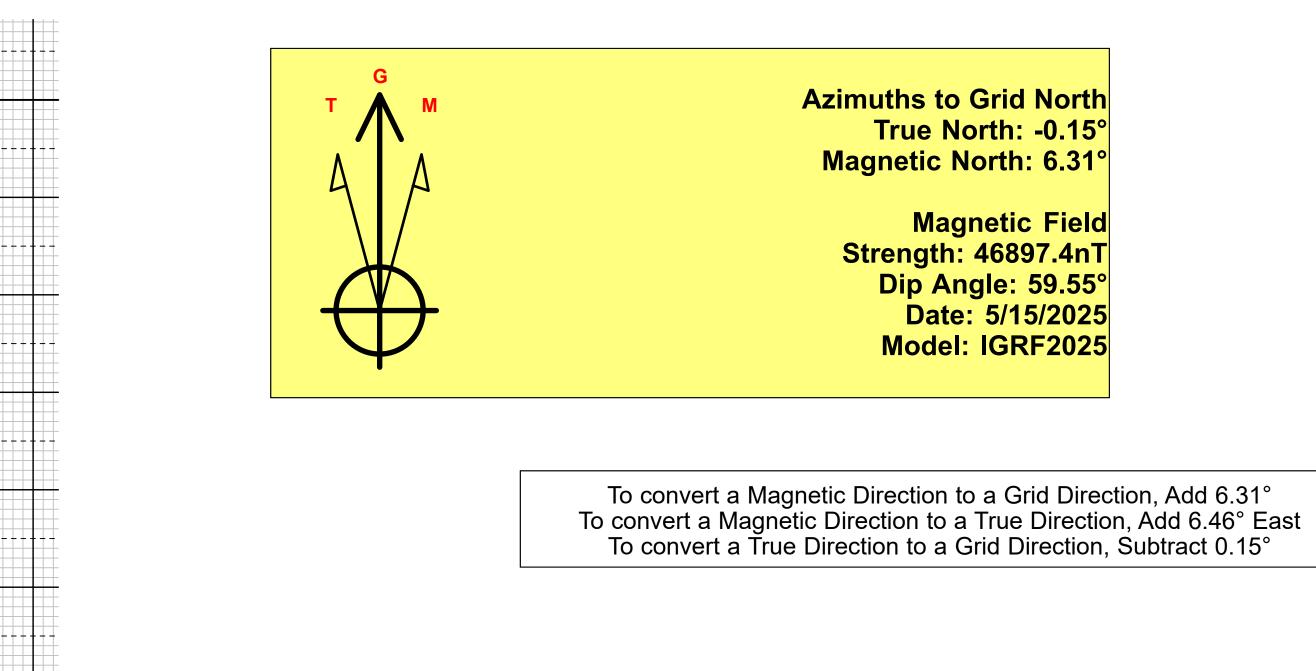
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,600.0	90.00	0.10	8,246.0	5,156.9	-829.7	5,206.9	0.00	0.00	0.00
13,700.0	90.00	0.10	8,246.0	5,256.9	-829.5	5,306.5	0.00	0.00	0.00
13,800.0	90.00	0.10	8,246.0	5,356.9	-829.3	5,406.2	0.00	0.00	0.00
13,900.0	90.00	0.10	8,246.0	5,456.9	-829.1	5,505.9	0.00	0.00	0.00
14,000.0	90.00	0.09	8,246.0	5,556.9	-829.0	5,605.5	0.00	0.00	0.00
14,100.0	90.00	0.09	8,246.0	5,656.9	-828.8	5,705.2	0.00	0.00	0.00
14,200.0	90.00	0.09	8,246.0	5,756.9	-828.6	5,804.8	0.00	0.00	0.00
14,300.0	90.00	0.09	8,246.0	5,856.9	-828.5	5,904.5	0.00	0.00	0.00
14,400.0	90.00	0.09	8,246.0	5,956.9	-828.3	6,004.2	0.00	0.00	0.00
14,500.0	90.00	0.09	8,246.0	6,056.9	-828.2	6,103.8	0.00	0.00	0.00
14,600.0	90.00	0.09	8,246.0	6,156.9	-828.0	6,203.5	0.00	0.00	0.00
14,700.0	90.00		8,246.0	6,256.9	-827.9	6,303.2	0.00	0.00	0.00
		0.09							
14,800.0	90.00	0.09	8,246.0	6,356.9	-827.7	6,402.8	0.00	0.00	0.00
14,900.0	90.00	0.08	8,246.0	6,456.9	-827.6	6,502.5	0.00	0.00	0.00
15,000.0	90.00	0.08	8,246.0	6,556.9	-827.4	6,602.2	0.00	0.00	0.00
15,100.0	90.00	0.08	8,246.0	6,656.9	-827.3	6,701.8	0.00	0.00	0.00
15,200.0	90.00	0.08	8,246.0	6,756.9	-827.1	6,801.5	0.00	0.00	0.00
15,300.0	90.00	0.08	8,246.0	6,856.9	-827.0	6,901.2	0.00	0.00	0.00
				,					
15,400.0	90.00	0.08	8,246.0	6,956.9	-826.9	7,000.8	0.00	0.00	0.00
15,500.0	90.00	0.08	8,246.0	7,056.9	-826.7	7,100.5	0.00	0.00	0.00
15,600.0	90.00	0.08	8,246.0	7,156.9	-826.6	7,200.2	0.00	0.00	0.00
15,700.0	90.00	0.07	8,246.0	7,256.9	-826.5	7,299.8	0.00	0.00	0.00
15,800.0	90.00	0.07	8,246.0	7,356.9	-826.3	7,399.5	0.00	0.00	0.00
45 000 0	00.00	0.07	0.040.0	7 450 0	000.0	7 400 0	0.00	0.00	0.00
15,900.0	90.00	0.07	8,246.0	7,456.9	-826.2	7,499.2	0.00	0.00	0.00
16,000.0	90.00	0.07	8,246.0	7,556.9	-826.1	7,598.8	0.00	0.00	0.00
16,071.1	90.00	0.07	8,246.0	7,628.0	-826.0	7,669.7	0.00	0.00	0.00
16,100.0	90.00	0.07	8,246.0	7,656.9	-826.0	7,698.5	0.00	0.00	0.00
16,200.0	90.00	0.07	8,246.0	7,756.9	-825.8	7,798.2	0.00	0.00	0.00
16,300.0	90.00	0.08	8,246.0	7,856.9	-825.7	7,897.8	0.00	0.00	0.00
16,400.0	90.00	0.08	8,246.0	7,956.9	-825.6	7,997.5	0.00	0.00	0.00
16,500.0	90.00	0.08	8,246.0	8,056.9	-825.4	8,097.2	0.00	0.00	0.00
16,600.0	90.00	0.09	8,246.0	8,156.9	-825.3	8,196.8	0.00	0.00	0.00
16,700.0	90.00	0.09	8,246.0	8,256.9	-825.1	8,296.5	0.00	0.00	0.00
10,700.0	30.00				-020.1				
16,800.0	90.00	0.09	8,246.0	8,356.9	-825.0	8,396.2	0.00	0.00	0.00
16,900.0	90.00	0.10	8,246.0	8,456.9	-824.8	8,495.8	0.00	0.00	0.00
17,000.0	90.00	0.10	8,246.0	8,556.9	-824.6	8,595.5	0.00	0.00	0.00
17,100.0	90.00	0.10	8,246.0	8,656.9	-824.4	8,695.2	0.00	0.00	0.00
17,200.0	90.00	0.11	8,246.0	8,756.9	-824.3	8,794.8	0.00	0.00	0.00
17 200 0	00.00	0.11	8 346 0	9 956 0	001 4	8 901 F	0.00	0.00	0.00
17,300.0	90.00	0.11	8,246.0	8,856.9	-824.1	8,894.5	0.00	0.00	
17,400.0	90.00	0.11	8,246.0	8,956.9	-823.9	8,994.2	0.00	0.00	0.00
17,500.0	90.00	0.12	8,246.0	9,056.9	-823.7	9,093.8	0.00	0.00	0.00
17,600.0	90.00	0.12	8,246.0	9,156.9	-823.5	9,193.5	0.00	0.00	0.00
17,700.0	90.00	0.12	8,246.0	9,256.9	-823.3	9,293.1	0.00	0.00	0.00
17,800.0	90.00	0.13	8,246.0	9,356.9	-823.1	9,392.8	0.00	0.00	0.00
17,900.0	90.00	0.13	8,246.0	9,456.9	-822.8	9,492.5	0.00	0.00	0.00
18,000.0	90.00	0.13	8,246.0	9,556.9	-822.6	9,592.1	0.00	0.00	0.00
18,100.0	90.00	0.13	8,246.0	9,656.9	-822.4	9,691.8	0.00	0.00	0.00
18,200.0	90.00	0.13	8,246.0	9,050.9 9,756.9	-822.1	9,791.4	0.00	0.00	0.00
10,200.0	90.00	0.14	0,240.0	9,100.9	-022.1	5,191.4	0.00	0.00	0.00
18,300.0	90.00	0.14	8,246.0	9,856.9	-821.9	9,891.1	0.00	0.00	0.00
18,400.0	90.00	0.14	8,246.0	9,956.9	-821.6	9,990.8	0.00	0.00	0.00
18,500.0	90.00	0.15	8,246.0	10,056.9	-821.4	10,090.4	0.00	0.00	0.00
18,600.0	90.00	0.15	8,246.0	10,156.9	-821.1	10,190.1	0.00	0.00	0.00
18,648.1	90.00	0.15	8,246.0	10,205.0	-821.0	10,238.0	0.00	0.00	0.00

5/15/2025 2:09:23PM

Database: Company: Project: Site: Well: Wellbore: Design:	PEDMB Midland Eddy County Golden Graha #501H OH Plan #0.1 RT	am 1 State C	,		TVD Refere MD Referen North Refer	ice:	kb = 26' (kb = 26' (Grid	Well #501H kb = 26' @ 2963.0usft kb = 26' @ 2963.0usft Grid Minimum Curvature			
Design Targets											
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude		
KOP(Golden Graham 1 - plan hits target ce - Point		0.00	7,768.5	-291.0	-839.0	387,328.00	629,663.00	32° 3' 52.285 N	104° 2' 53.527 W		
FTP(Golden Graham 1 - plan hits target ce - Point		0.00	7,981.2	-241.0	-839.0	387,378.00	629,663.00	32° 3' 52.780 N	104° 2' 53.526 W		
Fed Perf 2(Golden Gra - plan hits target ce - Point		0.00	8,246.0	7,628.0	-826.0	395,247.00	629,676.00	32° 5' 10.653 N	104° 2' 53.133 W		
PBHL(Golden Graham - plan hits target ce - Point		0.00	8,246.0	10,205.0	-821.0	397,824.00	629,681.00	32° 5' 36.155 N	104° 2' 52.996 W		
Fed Perf 1(Golden Gra - plan hits target ce - Point		0.00	8,246.0	4,958.0	-830.0	392,577.00	629,672.00	32° 4' 44.230 N	104° 2' 53.262 W		

leog resources

Eddy County, NM (NAD 83 NME)


Golden Graham 1 State Com #501H

Plan #0.1 RT

PROJECT DETAILS: Eddy County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 Zone: New Mexico Eastern Zone System Datum: Mean Sea Level

	-1750	-1400	-1050	West -700	(-)/East(+) -350	0 3	50	700	1050
								+-	
10150									
					G	olden Graham	1 State C		lan #
								+-+-+ ++++-+	
9800									
9450									
9100									
8750									
8400									
8050									
	 	ı ı '							+
7700									
			· · · · · · · · · · · · · · · · · · ·						+ ·
		I I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
7350									++++

250-

500-

750-

1000-

1250-

1500-

1750

2000-

2250-

2500

2750

3000-

3250-

3500-

3750

Vertical Depth 0005

์ **ค**ุ 4250

4500-

4750-

5000-

5250

5500-

5750

6000-

6250-

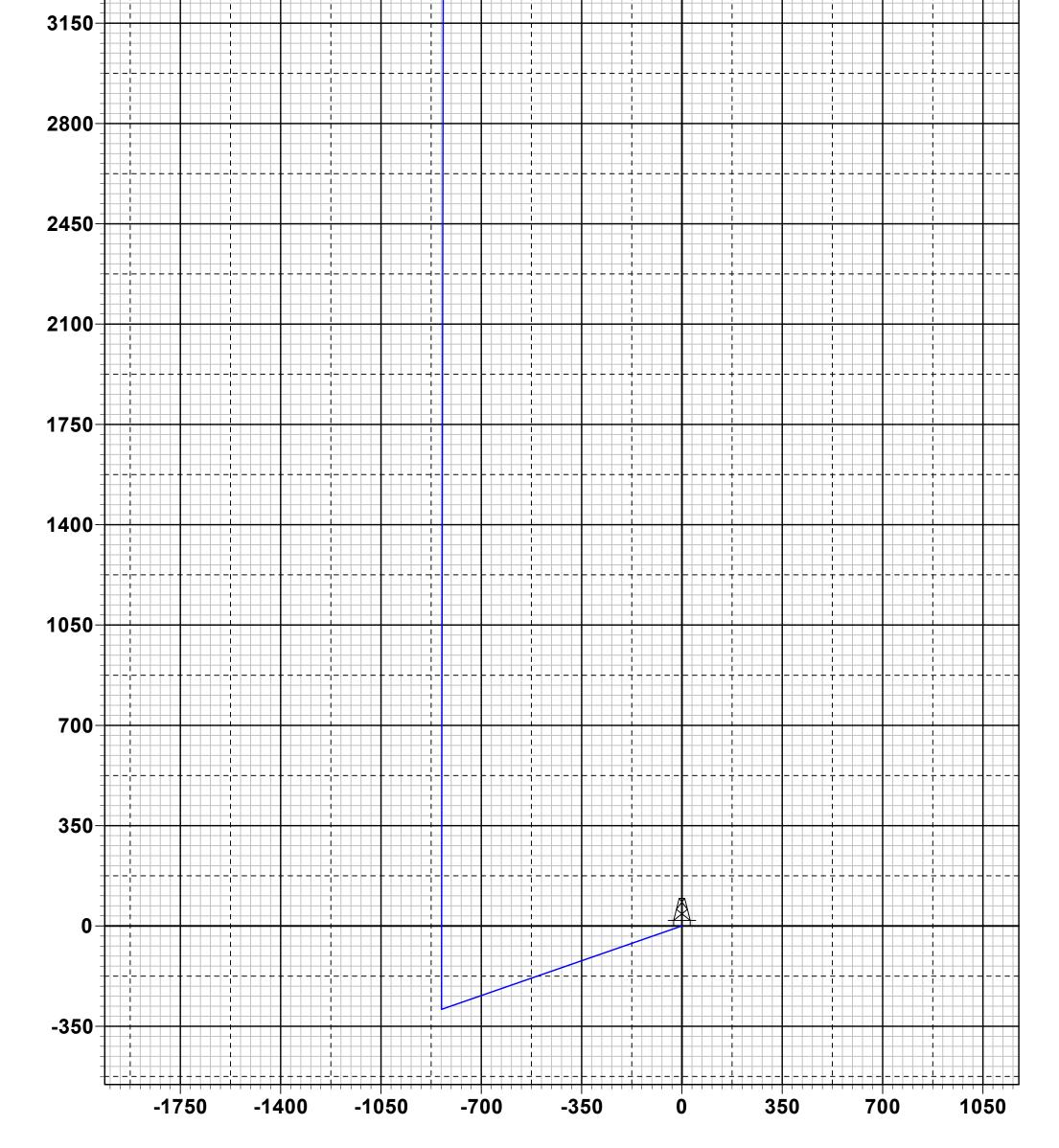
6500-

6750

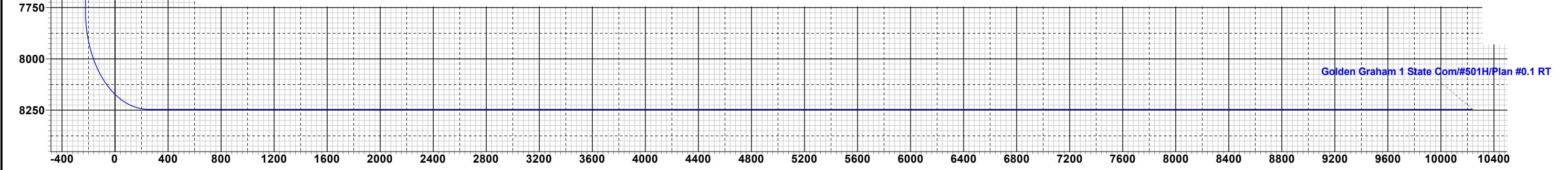
7000-

7250-

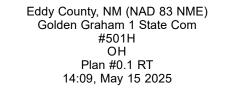
7500-


- - - - -

Azimuths to Grid North True North: -0.15° Magnetic North: 6.31° **Magnetic Field**


Strength: 46897.4nT Dip Angle: 59.55° Date: 5/15/2025 Model: IGRF2025

					WF	ELL DETAIL				
									37.0	
						kb = 26'	@ 2963.0			
				Northing 387619.0		Easting 630502.00		_atittude 3' 55.143 N	Longitude 104° 2' 43.768 V	V
							SECT	ION DETA	AILS	
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	800.0	0.00	0.00	800.0	0.0	0.0	0.00	0.00	0.0	
3	1572.6	15.45	250.87	1563.2	-33.9	-97.8	2.00	250.87	-26.0	
4	4128.5	15.45	250.87	4026.8	-257.1	-741.2	0.00	0.00	-196.8	
5	4901.0	0.00	0.00	4790.0	-291.0	-839.0	2.00	180.00	-222.8	
6	7879.5	0.00	0.00	7768.5	-291.0	-839.0	0.00	0.00	-222.8	KOP(Golden Graham 1 State Com #501H)
7	8100.0	26.46	0.00	7981.2	-241.0	-839.0	12.00	0.00	-172.9	FTP(Golden Graham 1 State Com #501H)
8	8629.5	90.00	0.10	8245.9	186.5	-838.5	12.00	0.11	253.1	
9	13401.1	90.00	0.10	8246.0	4958.0	-830.0	0.00	0.00	5008.6	Fed Perf 1(Golden Graham 1 State Com #501H)
10	16071.1	90.00	0.07	8246.0	7628.0	-826.0	0.00	-87.49	7669.7	Fed Perf 2(Golden Graham 1 State Com #501H)
11	18648.1	90.00	0.15	8246.0	10205.0	-821.0	0.00	90.97	10238.0	PBHL(Golden Graham 1 State Com #501H)


7000-- ┾ ╄ ┿ ┿ ・ . – – – 6650----1 ---+---· _ _ _ _ _ _ _ 6300-------------- - - + - - -- - - - - - -5950----+-- - - - - -5600---+--+++ 5250-(+) (4900-ທ 4550-4200-3850-++ - + + - + ++++-3500-. _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _

West(-)/East(+)

Vertical Section at 355.40°

Re	ceived by	OCD:	6/25/2025	9:03:33 AM
----	-----------	------	-----------	------------

eived by OCD: 6/25/202	25 9:03:33 AM	1						Page 67
	E	Stat nergy, Minerals a	e of New Mex nd Natural Res		ent		Subr Via I	nit Electronically E-permitting
		1220 S	nservation D South St. Fran ta Fe, NM 87	cis Dr.				
	Ν	ATURAL GA	AS MANA	GEMENT P	LAN			
This Natural Gas Manag	gement Plan m	ust be submitted wi	ith each Applica	tion for Permit to	Drill (A	PD) for a	new or	recompleted well.
			<u>1 – Plan D</u> fective May 25					
I. Operator:EOG	Resources, Inc	OGRII	D: 7377		Da	ate: 05/1	9/2025	5
II. Type: ⊠ Origina Other.	l 🗆 Amendm	ent due to \Box 19.15	.27.9.D(6)(a) N	MAC 🗆 19.15.27.	9.D(6)(b) NMAC		
If Other, please describe	:							
III. Well(s): Provide the be recompleted from a s					wells pi	coposed to) be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated Anticipated MCF/D Produced Water BBL/D		
GOLDEN GRAHAM 1 STATE COM 501H		M-1-26S-28E	345' FSL & 1170' FWL	+/- 1000	+/- 35	+/- 3500 +/- 3000		
 IV. Central Delivery P NMAC] V. Anticipated Schedu or proposed to be recom 	ule: Provide th	e following inform	ation for each n	ew or recompleted	well or			
Well Name	API	Spud Date	TD Reached Date	Completion Commencement	1	Initial I Back I		First Production Date
GOLDEN GRAHAM 1 STATE COM 501H		06/01/25	06/26/25	09/1/25		10/1/25		10/15/25
VI. Separation Equipm VII. Operational Pract Subsection A through F VIII. Best Managemen during active and planne	tices: ⊠ Attac of 19.15.27.8 nt Practices: [ch a complete descr NMAC. ⊠ Attach a comple	ription of the ac	tions Operator wi	ll take t	o comply	with t	he requirements of

.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

I Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in		

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

□ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 \boxtimes Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. \Box Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. \Box Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (**h**) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell					
Printed Name: KAYLA MCCONNELL					
Title: Regulatory Specialist					
E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM					
Date: 05/19/2025					
Phone: (432) 265-6804					
OIL CONSERVATION DIVISION					
(Only applicable when submitted as a standalone form)					
Approved By:					
Title:					
Approval Date:					
Conditions of Approval:					

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
 All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.