U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Sundry Print Repor
Well Name: STEEL GUITAR 35-26 FED COM	Well Location: T26S / R29E / SEC 26 / NENW /	County or Parish/State:
Well Number: 412H	Type of Well: OTHER	Allottee or Tribe Name:
Lease Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
US Well Number: 3001549850	Well Status: Approved Application for Permit to Drill	Operator: WPX ENERGY PERMIAN LLC

Notice of Intent

Sundry ID: 2750525

Type of Submission: Notice of Intent

Date Sundry Submitted: 09/17/2023

Date proposed operation will begin: 09/11/2023

Type of Action: APD Change Time Sundry Submitted: 07:13

Procedure Description: WPX ENERGY PERMIAN LLC respectfully requests to move the SHL/BHL and have a name change on the subject well. WPX also request updates to each drill string and a break test variance for the subject well. Please see attached revised C102, Drill plan, directional plan, and variance request. Permitted SHL: NENW, 26-26S-29E, 449 FNL & 2036 FWL Proposed SHL: NENW, 26-26S-29E, 434 FNL & 1897 FWL Permitted BHL: LOT 10, 35-26S-29E, 50 FSL & 1890 FWL Proposed BHL: LOT 10, 35-26S-29E, 1799 FNL & 1470 FWL Permitted Well name: STEEL GUITAR 35 26 29 FEDERAL COM 412H Proposed Well name: STEEL GUITAR 35-26 FED COM 412H

NOI Attachments

Procedure Description

WA018351003_STEEL_GUITAR_35_26_FED_COM_412H_WL_R1_SIGNED_20230917070957.pdf

STEEL_GUITAR_35_26_FED_COM_412H_20230915190423.pdf

STEEL_GUITAR_35_26_FED_COM_412H_Directional_Plan_09_11_23_20230915190423.pdf

8.625in_32lb_P110EC_SPRINT_FJ_09.16.2022_20230915190342.pdf

break_test_variance_BOP_20230915190340.pdf

5.5in_x_20.00lb_P110EC_DWC_C_IS_PLUS___5_23_2023_20230915190341.pdf

10.750_45.50lb_J55_BTC_SC_BLP_Devon_20230915190340.pdf

R	eceived by OCD: 10/6/2023 12:33:57 PM Well Name: STEEL GUITAR 35-26 FED COM	Well Location: T26S / R29E / SEC 26 / NENW /	County or Parish/State: Page 2 of 34
	Well Number: 412H	Type of Well: OTHER	Allottee or Tribe Name:
	Lease Number: NMNM19609	Unit or CA Name:	Unit or CA Number:
	US Well Number: 3001549850	Well Status: Approved Application for Permit to Drill	Operator: WPX ENERGY PERMIAN LLC

Conditions of Approval

Additional

26_26_29_C_Sundry_ID_2750525_Steel_Guitar_35_26_29_Fed_Com_412H_20230919100750.pdf

Steel_Guitar_35_26_29_Fed_Com_412H_Dr_COA_Sundry_ID_2750525_20230919100750.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: CHELSEY GREEN

Name: WPX ENERGY PERMIAN LLC

Title: Regulatory Compliance Professional

Street Address: 333 West Sheridan Avenue

City: Oklahoma City

Phone: (405) 228-8595

Email address: Chelsey.Green@dvn.com

Field

Representative Name: Street Address: City:

State:

State: OK

Phone:

Email address:

BLM Point of Contact

BLM POC Name: CHRISTOPHER WALLS BLM POC Phone: 5752342234 Disposition: Approved Signature: Chris Walls Signed on: SEP 11, 2023 01:52 PM

Zip:

BLM POC Title: Petroleum Engineer

BLM POC Email Address: cwalls@blm.gov

Disposition Date: 09/29/2023

Received by OCD: 10/6/2023 12:33:57 PM

eceived by OCD. 10/0/20	43 14.33.37 1 MI			Tuge 5 0j
Form 3160-5 (June 2019)	UNITED STAT DEPARTMENT OF THE BUREAU OF LAND MA	EINTERIOR	ON	RM APPROVED 1B No. 1004-0137 es: October 31, 2021
Do not use		PORTS ON WELLS s to drill or to re-enter an (APD) for such proposals.	6. If Indian, Allottee or	Tribe Name
SUBI	IIT IN TRIPLICATE - Other ins	structions on page 2	7. If Unit of CA/Agreen	nent, Name and/or No.
1. Type of Well	Gas Well Other		8. Well Name and No.	
2. Name of Operator			9. API Well No.	
3a. Address		3b. Phone No. (include area code)	10. Field and Pool or Ex	ploratory Area
4. Location of Well (Footage, Section 2014)	ec., T.,R.,M., or Survey Description)))	11. Country or Parish, S	tate
1	2. CHECK THE APPROPRIATE	BOX(ES) TO INDICATE NATURE OF	F NOTICE, REPORT OR OTHE	ER DATA
TYPE OF SUBMISSION		TYPE (OF ACTION	
Notice of Intent	Acidize Alter Casing	Deepen Hydraulic Fracturing	Production (Start/Resume) Reclamation	Water Shut-Off Well Integrity
Subsequent Report	Casing Repair Change Plans	New Construction	Recomplete Temporarily Abandon	Other
Final Abandonment Noti		= - =	Water Disposal	
the proposal is to deepen din the Bond under which the w completion of the involved	ectionally or recomplete horizon ork will be perfonned or provide operations. If the operation result ent Notices must be filed only af	pertinent details, including estimated sta tally, give subsurface locations and meas the Bond No. on file with BLM/BIA. Re s in a multiple completion or recompletion ter all requirements, including reclamation	aured and true vertical depths of equired subsequent reports must on in a new interval, a Form 316	all pertinent markers and zones. Attach be filed within 30 days following 0-4 must be filed once testing has been

14. I hereby certify that the foregoing is true and correct. Name (<i>Printed/Typed</i>)		
Т	itle	
Signature D	ate	
THE SPACE FOR FEDEF	AL OR STATE OFI	CE USE
Approved by		
	Title	Date
Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.		
Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any pany false, fictitious or fraudulent statements or representations as to any matter within it		ally to make to any department or agency of the United States

(Instructions on page 2)

.

Page 4 of 34

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Location of Well

0. SHL: NENW / 449 FNL / 2036 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.018579 / LONG: -103.9566037 (TVD: 0 feet, MD: 0 feet) PPP: NENW / 100 FNL / 1890 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.0195416 / LONG: -103.9570207 (TVD: 9811 feet, MD: 9850 feet) PPP: NESW / 2582 FSL / 1800 FWL / TWSP: 26S / RANGE: 29E / SECTION: 26 / LAT: 32.01279 / LONG: -103.95745 (TVD: 10109 feet, MD: 12400 feet) BHL: LOT 10 / 50 FSL / 1800 FWL / TWSP: 26S / RANGE: 29E / SECTION: 35 / LAT: 32.0002408 / LONG: -103.9581516 (TVD: 10109 feet, MD: 16970 feet)

Received by OCD: 10/6/2023 12:33:57 PM

26-26-29-C Sundry ID 2750525 Steel Guitar 35-26-29 Fed Com 412H Eddy NM19609 WPX ENERGY PERMIAN LLC 13-22fa 9-19-2023 LV.xlsm

10 3/4		surface csg in a	14 3/4	inch hole.		Design	Factors			Surface		
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	B@s	a-B	a-C	Weigl
"A"	45.50		j 55	btc	33.38	9.49	0.69	471	17	1.16	17.93	21,43
"B"			,	btc				0				0
_	wi	8.4#/g mud, 30min Sfc Csg Tes	t psig: 1 500	Tail Cmt	does not	circ to sfc.	Totals:	471				21.4
Comparison o		o Minimum Required Cerr		run onic	0000 1101		rotuis.					21,1
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Dogld				Min D
		-			-	•		Req'd				
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
14 3/4	0.5563	262	377	262	44	9.00	3077	5M				1.50
Burst Frac Grad	lient(s) for Se	gment(s) A, B = , b All > 0	.70, OK.									
												· _ ·
8 5/8		asing inside the	10 3/4		-	<u>Design</u>				Int 1		
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	B@s	a-B	a-C	Weig
"A" "B"	32.00		p 110	vam sprint fj	2.46	0.78	1.31	9,455 0	1	2.19	1.30	302,5 0
	w/	8.4#/g mud, 30min Sfc Csg Tes	it psig: 879				Totals:	9,455				302,5
	,			ded to achieve a top of	0	ft from su		471				overlap
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd				Min D
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE				Hole-C
9 7/8	0.1261	759	1556	1196	30	10.50	3259	5M				0.6
	0.1201	/ 59		1130	30	10.50		<u>Σ CuFt</u>				
							sum of sx	> CuEt				Σ%exc
			5096									
by stage % :	t yld > 1.35	183	5096 11				1259	2276				90
by stage % : Class 'C' tail cm Tail cmt			11				1259			Durald		90
by stage % : Class 'C' tail cm Tail cmt 5 1/2	c	asing inside the		0		Design Fa	1259 <u>ctors</u>	2276	D O-	Prod 1		
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment	c #/ft		11 8 5/8	Coupling	Joint	Collapse	1259 ctors Burst	2276 Length	B@s	a-B	a-C	Weig
Tail cmt 5 1/2 Segment "A"	c	asing inside the	11	Coupling dwc/c is+	Joint 3.64		1259 <u>ctors</u>	2276 Length 16,961	B@s 3		a-C 3.71	Weig 339,2
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	c #/ft	asing inside the	11 8 5/8			Collapse	1259 ctors Burst	2276 Length 16,961 0	-	a-B	-	Weig
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C"	c #/ft	asing inside the	11 8 5/8			Collapse	1259 ctors Burst	2276 Length 16,961	-	a-B	-	Weig 339,2
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B"	c #/ft	asing inside the	11 8 5/8			Collapse	1259 ctors Burst	2276 Length 16,961 0	-	a-B	-	Weig 339,2 0
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C"	#/ft 20.00	asing inside the	11 8 5/8 p 110	dwc/c is+		Collapse	1259 ctors Burst	2276 Length 16,961 0 0	-	a-B	-	Weig 339,2 0 0 0
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C"	#/ft 20.00	asing inside the Grade '8.4#/g mud, 30min Sfc Csg Tes	11 8 5/8 p 110 tt psig: 2,203	dwc/c is+		Collapse	1259 ctors Burst 2.63 Totals:	2276 Length 16,961 0 0 0	-	a-B	3.71	Weig 339,2 0 0 0 339,2
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C"	#/ft 20.00	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement	11 8 5/8 p 110 	dwc/c is+ 0 ded to achieve a top of	3.64 9255	Collapse 2.21 ft from su	1259 Ctors Burst 2.63 Totals: rface or a	2276 Length 16,961 0 0 16,961 200	-	a-B	3.71	Weig 339,2 0 0 339,2 overlap
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole	#/ft 20.00 w/ Annular	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	11 8 5/8 p 110 tr psig: 2,203 volume(s) are intence 1 Stage	dwc/c is+ 0 ded to achieve a top of Min	3.64 9255 1 Stage	Collapse 2.21 ft from su Drilling	1259 ctors Burst 2.63 Totals: rface or a Calc	2276 Length 16,961 0 0 16,961 200 Req'd	-	a-B	3.71	Weig 339,2 0 0 339,2 overlap Min D
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size	#/ft 20.00 w/ Annular Volume	asing inside the Grade '8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intenc 1 Stage CuFt Cmt	dwc/c is+ 0 ded to achieve a top of Min Cu Ft	3.64 9255 1 Stage % Excess	Collapse 2.21 ft from su Drilling Mud Wt	1259 Ctors Burst 2.63 Totals: rface or a	2276 Length 16,961 0 0 16,961 200	-	a-B	3.71	Weig 339,2 0 0 339,2 overlap Min D Hole-C
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8	#/ft 20.00 /// Annular Volume 0.1733	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage	11 8 5/8 p 110 tr psig: 2,203 volume(s) are intence 1 Stage	dwc/c is+ 0 ded to achieve a top of Min	3.64 9255 1 Stage	Collapse 2.21 ft from su Drilling	1259 ctors Burst 2.63 Totals: rface or a Calc	2276 Length 16,961 0 0 16,961 200 Req'd	-	a-B	3.71	Weig 339,2 0 0 339,2 overlap Min D Hole-C
5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm	#/ft 20.00 /// Annular Volume 0.1733	asing inside the Grade '8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intenc 1 Stage CuFt Cmt	dwc/c is+ 0 ded to achieve a top of Min Cu Ft	3.64 9255 1 Stage % Excess	Collapse 2.21 ft from su Drilling Mud Wt	1259 ctors Burst 2.63 Totals: rface or a Calc	2276 Length 16,961 0 0 16,961 200 Req'd	-	a-B	3.71	339,2 0 0 339,2 overlap Min D Hole-C
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A	#/ft 20.00 /// Annular Volume 0.1733	asing inside the Grade '8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794	dwc/c is+ 0 ded to achieve a top of Min Cu Ft	3.64 9255 1 Stage % Excess	Collapse 2.21 ft from su Drilling Mud Wt 10.50	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP	2276 Length 16,961 0 0 16,961 200 Req'd	3	a-B 4.41	3.71	Weig 339,2 0 0
by stage % : Class 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm	(0,000) #/ft 20.00 w/ Annular Volume 0.1733 t yld > 1.35	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intenc 1 Stage CuFt Cmt	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336	3.64 9255 1 Stage % Excess 34	Collapse 2.21 ft from su Drilling Mud Wt 10.50 Design	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71 ing>	Weig 339,2 0 0 339,2 overlap Min D Hole-C 1.11
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment	#/ft 20.00 /// Annular Volume 0.1733	asing inside the Grade '8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling	3.64 9255 1 Stage % Excess	Collapse 2.21 ft from su Drilling Mud Wt 10.50	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71	Weig 339,2 0 0 339,2 overlap Min D Hole-C 1.1!
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A"	(0,000) #/ft 20.00 w/ Annular Volume 0.1733 t yld > 1.35	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00	3.64 9255 1 Stage % Excess 34	Collapse 2.21 ft from su Drilling Mud Wt 10.50 Design	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71 ing>	Weig 339,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment	(0,000) #/ft 20.00 w/ Annular Volume 0.1733 t yld > 1.35	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling	3.64 9255 1 Stage % Excess 34	Collapse 2.21 ft from su Drilling Mud Wt 10.50 Design	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71 ing>	Weig 339,2 0 0 339,2 overlap Min E Hole-C 1.1
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A"	minical definition of the second sec	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794 5 1/2	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00	3.64 9255 1 Stage % Excess 34	Collapse 2.21 ft from su Drilling Mud Wt 10.50 Design	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71 ing>	Weig 339,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A"	minical definition of the second sec	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade 8.4#/g mud, 30min Sfc Csg Tes	11 8 5/8 p 110 tt psig: 2,203 volume(s) are intence 1 Stage CuFt Cmt 1794 5 1/2 tt psig:	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00	3.64 9255 1 Stage % Excess 34	Collapse 2.21 ft from su Drilling Mud Wt 10.50 Design	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors Burst Totals:	2276 Length 16,961 0 0 16,961 200 Req'd BOPE	3	a-B 4.41	3.71 ing> a-C	Weig 339,2,339,2,0 0 0 0 339,2,2 339,2,2 339,2,2 339,2,2 339,2,2 339,2,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
by stage % : Class 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 Class 'C' tail cm #N/A 0 Segment "A"	minical definition of the second sec	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade 8.4#/g mud, 30min Sfc Csg Tes Cmt vol c	11 8 5/8 p 110 at psig: 2,203 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 at psig: calc below includes t	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00	3.64 9255 1 Stage % Excess 34 #N/A	Collapse 2.21 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors Burst Totals:	2276 Length 16,961 0 0 16,961 200 Req'd BOPE Length 0 0 0 WN/A	3	a-B 4.41	3.71 ing> a-C	Weig 339,2 0 0 0 0 339,2 339,2 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
by stage % : ilass 'C' tail cm Tail cmt 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 ilass 'C' tail cm #N/A 0 Segment "A" "B" Hole	#/ft 20.00 w/ Annular Volume 0.1733 tyld > 1.35 #/ft #/ft w/ Annular	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade 8.4#/g mud, 30min Sfc Csg Tes Cmt vol c 1 Stage	11 8 5/8 p 110 at psig: 2,203 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 t psig: alc below includes t 1 Stage	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00 0.00 his csg, TOC intended Min	3.64 9255 1 Stage % Excess 34 #N/A 1 Stage	Collapse 2.21 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su Drilling	1259 ctors Burst 2.63 Totals: rface or a Calc MASP Factors Burst Totals: rface or a Calc	2276 Length 16,961 0 0 16,961 200 Req'd BOPE Length 0 0 0 #N/A Req'd	3	a-B 4.41	3.71 ing> a-C	Weig 339,2,3 0 0 0 339,2 0 0 0 339,2 0 0 0 1,1 Hole-C Hole-C 1,1 Hole-C 1,1 H
y stage % : lass 'C' tail cm 5 1/2 Segment "A" "B" "C" "D" Hole Size 7 7/8 lass 'C' tail cm #N/A 0 Segment "A" "B"	مر #/ft 20.00 /////////////////////////////////	asing inside the Grade 8.4#/g mud, 30min Sfc Csg Tes The cement 1 Stage Cmt Sx 1097 Grade 8.4#/g mud, 30min Sfc Csg Tes Cmt vol c	11 8 5/8 p 110 at psig: 2,203 volume(s) are intend 1 Stage CuFt Cmt 1794 5 1/2 at psig: calc below includes t	dwc/c is+ 0 ded to achieve a top of Min Cu Ft 1336 Coupling 0.00 0.00 his csg, TOC intended	3.64 9255 1 Stage % Excess 34 #N/A	Collapse 2.21 ft from su Drilling Mud Wt 10.50 <u>Design</u> Collapse ft from su	1259 Ctors Burst 2.63 Totals: rface or a Calc MASP Factors Burst Totals: rface or a	2276 Length 16,961 0 0 16,961 200 Req'd BOPE Length 0 0 0 0	3	a-B 4.41	3.71 ing> a-C	Weig 339,3 0 0 0 339,3 0 verla 1.1 1.1 1.1 Weig 0 0 0 0 0 0 0 0 0 0 0

Steel Guitar 35-26-29 Fed Com 412H

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

WELL NAME & NO.:	Steel Guitar 35-26 Fed Com 412H
SURFACE HOLE FOOTAGE:	434'/N & 1897'/W
BOTTOM HOLE FOOTAGE	1799'/N & 1470'/W
ATS/API ID:	3001549850
APD ID:	10400063002
Sundry ID:	2750525

COA

H2S	Yes 🔽		
Potash	None 🔽		
Cave/Karst Potential	Medium 🔽		
Cave/Karst Potential	Critical		
Variance	C None	🖸 Flex Hose	C Other
Wellhead	Conventional and Multibow	/I ▼	
Other	4 String	Capitan Reef	WIPP
		None 🝷	
Other	Pilot Hole	Open Annulus	
	None 🔻		
Cementing	Contingency Squeeze	Echo-Meter	Primary Cement
	None 🔫	Int 1 🗾	Squeeze
			None 🚽
Special	□ Water	COM	🗖 Unit
Requirements	Disposal/Injection		
Special	Batch Sundry		
Requirements			
Special	Break Testing	□ Offline	\Box Casing
Requirements		Cementing	Clearance
Variance			

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet **43 CFR part 3170 Subpart 3176** requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 10-3/4 inch surface casing shall be set at approximately 471 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. The surface hole shall be 14 3/4 inch in diameter.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. First stage: Operator will cement with intent to reach the top of the **Brushy** Canyon at 5096' (759 sxs Class H/C+ additives).
- b. Second stage:
 - Operator will perform bradenhead squeeze and top-out. Cement to surface. If cement does not reach surface, the appropriate BLM office shall be notified. (Squeeze 500 sxs Class C) Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator has proposed to pump down 10-3/4" X 8-5/8" annulus after primary cementing stage. <u>Operator must run Echo-meter to verify Cement Slurry/Fluid top in the annulus Or operator shall run a CBL from TD of the 8-5/8" casing to surface after the second stage BH to verify TOC.</u>

Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out. Operator must run one CBL per Well Pad.

If cement does not reach surface, the next casing string must come to surface.

Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.

- In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Annular which shall be tested to 3500 (70% Working Pressure) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the **8-5/8** inch intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the **10-3/4** inch surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR part 3170 Subpart 3171
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance (Approved)

- BOPE Break Testing is ONLY permitted for 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-361-2822 Eddy County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at **21**-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per Onshore Oil and Gas Order No. 2.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

\boxtimes Eddy County

EMAIL or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220,

BLM_NM_CFO_DrillingNotifications@BLM.GOV (575) 361-2822

Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per **43** CFR part **3170** Subpart **3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a

digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in 43 CFR part 3170 Subpart 3172 and API STD 53 Sec. 5.3.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after

installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR part 3170
 Subpart 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR**

part 3170 Subpart 3172.

C. DRILLING MUD

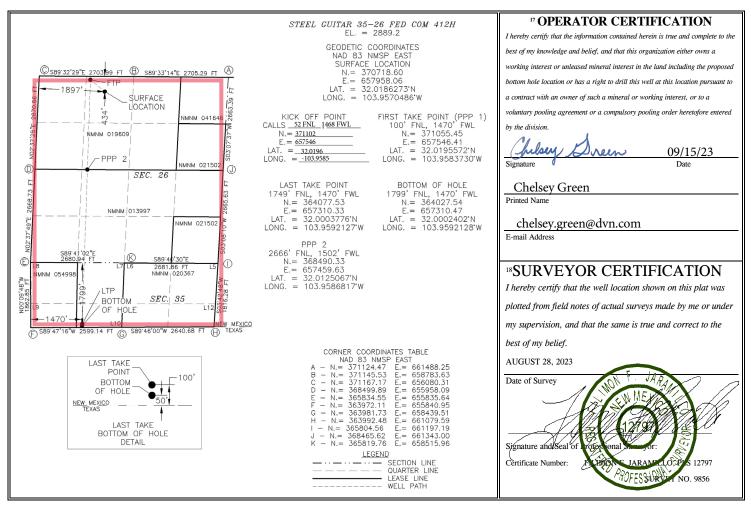
Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

LVO 9/19/2023


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

Page 17 of 34

WELL LOCATION AND ACREAGE DEDICATION PLAT Pool Code API Number Pool Name 30-015-49850 [98220] PURPLE SAGE; WOLFCAMP (GAS) ⁴ Property Code ⁵ Property Name Well Number **STEEL GUITAR 35-26 FED COM** 412H OGRID No. ³ Operator Name Elevation 246289 WPX ENERGY PERMIAN, LLC 2889.2 Surface Location UL or lot no. Lot Idn Feet from the North/South line Feet from the East/West line Section Township Range County 29 E 434 NORTH 1897 WEST С 26 26 S EDDY Bottom Hole Location If Different From Surface UL or lot no. Section Township Range Lot Idn Feet from the North/South line Feet from the East/West line County 1799 10 35 26 S 29 E NORTH 1470 WEST EDDY ¹² Dedicated Acres ¹³ Joint or Infill 14 Consolidation Code ¹⁵ Order No. 862.40

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 10/6/2023 12:33:57 PM

Х

Intent	
--------	--

API #

30-015-49850			
Operator Name:		Property Name:	Well Number
WPX ENERGY PER	MIAN, LLC	STEEL GUITAR 35-26 FED COM	412H

Kick Off Point (KOP)

UL C	Section 26	Township 26S	Range 29E	Lot	Feet 52	From N/S	Feet 1468	From E/W	County EDDY
Latitu	de				Longitude				NAD
32.0	196				-103.9585	5			83

First Take Point (FTP)

UL C	Section 26	Township 26S	Range 29E	Lot	Feet 100	From N/S NORTH	Feet 1470	From E/W	County EDDY
Latitu 32.0	^{de} 19557	2			Longitude 103.9583	3730			NAD 83

Last Take Point (LTP)

UL	Section 35	Township 26S	Range 29E	Lot 10	^{Feet} 1749	From N/S NORTH	Feet 1470	From E/W WEST	County EDDY
Latitude				Longituc	Longitude			NAD	
32.0003776				103.9592127			83		

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #		
Operator Name:	Property Name:	Well Number
	•	

KZ 06/29/2018

1. Geologic Formations

TVD of target	10013	Pilot hole depth	N/A
MD at TD:	16961	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
Rustler	386		
Salt	1261		
Base of Salt	2967		
Delaware	2967		
Cherry Canyon	4007		
Brushy Canyon	5096		
1st Bone Spring Lime	6701		
Bone Spring 1st	7627		
Bone Spring 2nd	8224		
3rd Bone Spring Lime	8687		
Bone Spring 3rd	9527		
Wolfcamp	9839		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

		Wt			Casing	Interval	Casing	Interval
Hole Size	Csg. Size	(PPF)	Grade	Conn	From (MD)	To (MD)	From (TVD)	To (TVD)
14 3/4	10 3/4	45 1/2	J-55	BTC	0	411	0	411
9 7/8	8 5/8	32	P110	Sprint FJ	0	9455	0	9455
7 7/8	5 1/2	20	P110	DWC / C-IS+	0	16961	0	10013

•All casing strings will be tested in accordance with 43 CFR 3172. Must have table for contingency casing.

3. Cementing Program

Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	262	Surf	13.2	1.44	Lead: Class C Cement + additives
Int 1	253	Surf	9	3.27	Lead: Class C Cement + additives
Int I	506	5096	13.2	1.44	Tail: Class H / C + additives
Int 1	328	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	253	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	506	5096	13.2	1.44	Tail: Class H / C + additives
Production	117	7555	9	3.27	Lead: Class H /C + additives
Froduction	980	9555	13.2	1.44	Tail: Class H / C + additives

Assuming no returns are established while drilling, Devon requests to pump a two stage cement job on the intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. The final cement top will be verified by Echo-meter. Devon will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program. Devon will report to the BLM the volume of fluid (limited to 1 bbls) used to flush intermediate casing valves following backside cementing procedures.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:
			Annular		X	50% of rated working pressure
Int 1	13-5/8"	5M		d Ram	Х	
Int 1	15 5/0	5111	1	Ram		5M
			Doub	le Ram	X	5101
			Other*			
	13-5/8"	5M	Annular (5M)		Х	50% of rated working pressure
Production			Blind Ram		Х	- 5M
Troduction		5101	Pipe Ram Double Ram			
					X	
			Other*			
			Annul	ar (5M)		
			Bline	d Ram		
			Pipe	Ram]
			Double Ram]
			Other*			
N A variance is requested for	variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to r	A variance is requested to run a 5 M annular on a 10M system					

4. Pressure Control Equipment (Three String Design)

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, C	Logging, Coring and Testing						
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the						
Х	Completion Rpeort and sbumitted to the BLM.						
	No logs are planned based on well control or offset log information.						
	Drill stem test? If yes, explain.						
	Coring? If yes, explain.						

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5467
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater than	100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encountered	measured values and formations will be provided to the BLM.
Ν	H2S is present
Y	H2S plan attached.

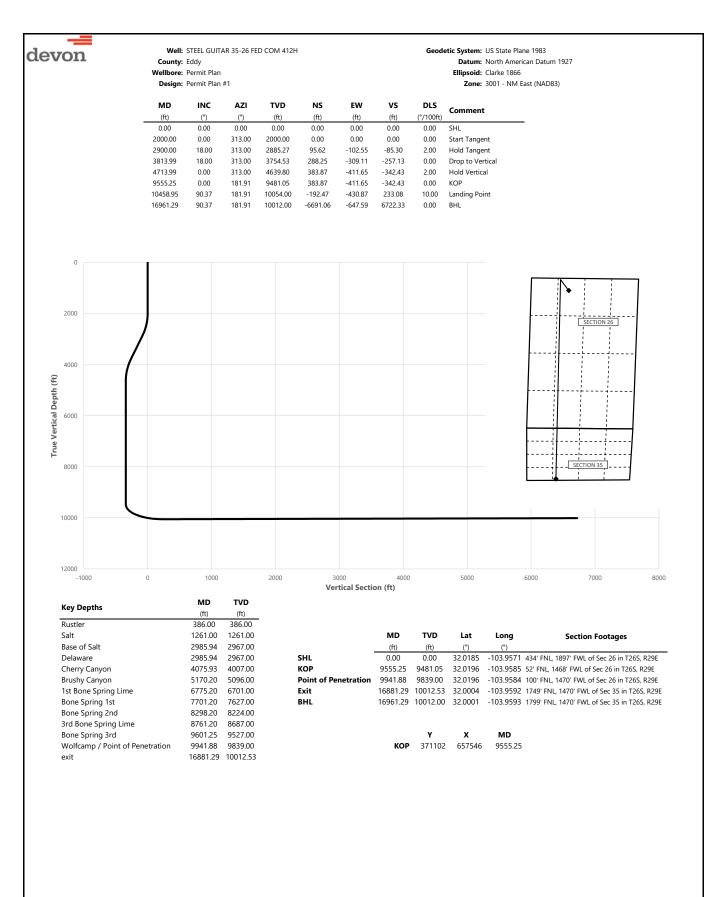
8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

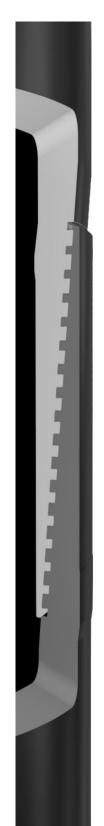
Will be pre-setting casing? Potentially


- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments


X Directional Plan Other, describe

evon	Well: STEEL GUITAR 35-26 FED COM 412H County: Eddy Wellbore: Permit Plan						Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866				
		Design:	Permit Plar	n #1					Zone: 3001 - NM East (NAD83)		
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment		
	(ft) 0.00	(°) 0.00	(°) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(ft) 0.00	(°/100ft) 0.00	SHL		
	100.00	0.00	313.00	100.00	0.00	0.00	0.00	0.00	SHE		
	200.00	0.00	313.00	200.00	0.00	0.00	0.00	0.00			
	300.00	0.00	313.00	300.00	0.00	0.00	0.00	0.00			
	386.00	0.00	313.00	386.00	0.00	0.00	0.00	0.00	Rustler		
	400.00	0.00	313.00	400.00	0.00	0.00	0.00	0.00			
	500.00	0.00	313.00	500.00	0.00	0.00	0.00	0.00			
	600.00 700.00	0.00 0.00	313.00 313.00	600.00 700.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00			
	800.00	0.00	313.00	800.00	0.00	0.00	0.00	0.00			
	900.00	0.00	313.00	900.00	0.00	0.00	0.00	0.00			
	1000.00	0.00	313.00	1000.00	0.00	0.00	0.00	0.00			
	1100.00	0.00	313.00	1100.00	0.00	0.00	0.00	0.00			
	1200.00	0.00	313.00	1200.00	0.00	0.00	0.00	0.00			
	1261.00	0.00	313.00	1261.00	0.00	0.00	0.00	0.00	Salt		
	1300.00 1400.00	0.00 0.00	313.00 313.00	1300.00 1400.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00			
	1500.00	0.00	313.00	1500.00	0.00	0.00	0.00	0.00			
	1600.00	0.00	313.00	1600.00	0.00	0.00	0.00	0.00			
	1700.00	0.00	313.00	1700.00	0.00	0.00	0.00	0.00			
	1800.00	0.00	313.00	1800.00	0.00	0.00	0.00	0.00			
	1900.00	0.00	313.00	1900.00	0.00	0.00	0.00	0.00			
	2000.00	0.00	313.00	2000.00	0.00	0.00	0.00	0.00	Start Tangent		
	2100.00 2200.00	2.00 4.00	313.00 313.00	2099.98 2199.84	1.19 4.76	-1.28 -5.10	-1.06 -4.25	2.00 2.00			
	2300.00	6.00	313.00	2299.45	10.70	-11.48	-4.25	2.00			
	2400.00	8.00	313.00	2398.70	19.01	-20.39	-16.96	2.00			
	2500.00	10.00	313.00	2497.47	29.68	-31.83	-26.48	2.00			
	2600.00	12.00	313.00	2595.62	42.69	-45.78	-38.09	2.00			
	2700.00	14.00	313.00	2693.06	58.04	-62.24	-51.77	2.00			
	2800.00	16.00	313.00	2789.64	75.69	-81.16	-67.51	2.00			
	2900.00 2985.94	18.00 18.00	313.00 313.00	2885.27 2967.00	95.62 113.74	-102.55 -121.97	-85.30 -101.46	2.00 0.00	Hold Tangent Base of Salt, Delaware		
	3000.00	18.00	313.00	2980.37	116.70	-125.15	-104.10	0.00	base of Sait, Delaware		
	3100.00	18.00	313.00	3075.48	137.77	-147.75	-122.90	0.00			
	3200.00	18.00	313.00	3170.59	158.85	-170.35	-141.70	0.00			
	3300.00	18.00	313.00	3265.69	179.92	-192.95	-160.50	0.00			
	3400.00	18.00	313.00	3360.80	201.00	-215.55	-179.30	0.00			
	3500.00 3600.00	18.00 18.00	313.00	3455.90	222.07	-238.15 -260.75	-198.10	0.00			
	3600.00	18.00	313.00 313.00	3551.01 3646.11	243.15 264.22	-283.35	-216.90 -235.70	0.00 0.00			
	3800.00	18.00	313.00	3741.22	285.30	-305.95	-254.50	0.00			
	3813.99	18.00	313.00	3754.53	288.25	-309.11	-257.13	0.00	Drop to Vertical		
	3900.00	16.28	313.00	3836.71	305.53	-327.65	-272.55	2.00			
	4000.00	14.28	313.00	3933.17	323.51	-346.92	-288.58	2.00			
	4075.93	12.76	313.00	4007.00	335.61	-359.90	-299.38	2.00	Cherry Canyon		
	4100.00 4200.00	12.28 10.28	313.00 313.00	4030.49 4128.56	339.17 352.51	-363.72 -378.02	-302.55 -314.45	2.00 2.00			
	4200.00 4300.00	8.28	313.00	4128.56	352.51	-378.02	-314.45	2.00			
	4400.00	6.28	313.00	4326.43	372.15	-399.08	-331.97	2.00			
	4500.00	4.28	313.00	4426.00	378.42	-405.81	-337.57	2.00			
	4600.00	2.28	313.00	4525.83	382.33	-410.00	-341.05	2.00			
	4700.00	0.28	313.00	4625.80	383.85	-411.63	-342.41	2.00			
	4713.99	0.00	313.00	4639.80	383.87	-411.65	-342.43	2.00	Hold Vertical		
	4800.00 4900.00	0.00 0.00	181.91 181.91	4725.80 4825.80	383.87 383.87	-411.65 -411.65	-342.43 -342.43	0.00 0.00			
	4900.00 5000.00	0.00	181.91	4925.80	383.87	-411.65	-342.43	0.00			
	5100.00	0.00	181.91	5025.80	383.87	-411.65	-342.43	0.00			
	5170.20	0.00	181.91	5096.00	383.87	-411.65	-342.43	0.00	Brushy Canyon		
	5200.00	0.00	181.91	5125.80	383.87	-411.65	-342.43	0.00			
	5300.00	0.00	181.91	5225.80	383.87	-411.65	-342.43	0.00			
	5400.00	0.00	181.91	5325.80	383.87	-411.65	-342.43	0.00			
	5500.00	0.00	181.91 181.91	5425.80	383.87	-411.65	-342.43	0.00			
	5600.00 5700.00	0.00 0.00	181.91 181.91	5525.80 5625.80	383.87 383.87	-411.65 -411.65	-342.43 -342.43	0.00 0.00			
	5800.00	0.00	181.91	5725.80	383.87	-411.65	-342.43	0.00			
	5900.00	0.00	181.91	5825.80	383.87	-411.65	-342.43	0.00			
	6000.00	0.00	181.91	5925.80	383.87	-411.65	-342.43	0.00			
	6100.00	0.00	181.91	6025.80	383.87	-411.65	-342.43	0.00			
	6200.00	0.00	181.91	6125.80	383.87	-411.65	-342.43	0.00			

on		County: Wellbore:			D COM 412H				Geodetic System: US State Plane 1983 Datum: North American Datum 1927 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	
-	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	Comment
	6300.00	0.00	181.91	6225.80	383.87	-411.65	-342.43	0.00	
	6400.00	0.00	181.91	6325.80	383.87	-411.65	-342.43	0.00	
	6500.00	0.00	181.91	6425.80	383.87	-411.65	-342.43	0.00	
	6600.00	0.00	181.91	6525.80	383.87	-411.65	-342.43	0.00	
	6700.00	0.00	181.91	6625.80	383.87	-411.65	-342.43	0.00	1.1 Deves Contractions
	6775.20	0.00	181.91	6701.00	383.87	-411.65	-342.43	0.00	1st Bone Spring Lime
	6800.00	0.00	181.91	6725.80	383.87	-411.65	-342.43	0.00	
	6900.00 7000.00	0.00 0.00	181.91 181.91	6825.80 6925.80	383.87 383.87	-411.65 -411.65	-342.43 -342.43	0.00 0.00	
	7100.00	0.00	181.91	7025.80	383.87	-411.65	-342.43	0.00	
	7200.00	0.00	181.91	7125.80	383.87	-411.65	-342.43	0.00	
	7300.00	0.00	181.91	7225.80	383.87	-411.65	-342.43	0.00	
	7400.00	0.00	181.91	7325.80	383.87	-411.65	-342.43	0.00	
	7500.00	0.00	181.91	7425.80	383.87	-411.65	-342.43	0.00	
	7600.00	0.00	181.91	7525.80	383.87	-411.65	-342.43	0.00	
	7700.00	0.00	181.91	7625.80	383.87	-411.65	-342.43	0.00	
	7701.20	0.00	181.91	7627.00	383.87	-411.65	-342.43	0.00	Bone Spring 1st
	7800.00	0.00	181.91	7725.80	383.87	-411.65	-342.43	0.00	
	7900.00	0.00	181.91	7825.80	383.87	-411.65	-342.43	0.00	
	8000.00	0.00	181.91	7925.80	383.87	-411.65	-342.43	0.00	
	8100.00	0.00	181.91	8025.80	383.87	-411.65	-342.43	0.00	
	8200.00	0.00	181.91	8125.80	383.87	-411.65	-342.43	0.00	
	8298.20	0.00	181.91	8224.00	383.87	-411.65	-342.43	0.00	Bone Spring 2nd
	8300.00	0.00	181.91	8225.80	383.87	-411.65	-342.43	0.00	
	8400.00	0.00	181.91	8325.80	383.87	-411.65	-342.43	0.00	
	8500.00	0.00	181.91	8425.80	383.87	-411.65	-342.43	0.00	
	8600.00	0.00	181.91	8525.80	383.87	-411.65	-342.43	0.00	
	8700.00	0.00	181.91	8625.80	383.87	-411.65	-342.43	0.00	
	8761.20 8800.00	0.00	181.91	8687.00	383.87	-411.65	-342.43	0.00 0.00	3rd Bone Spring Lime
	8900.00	0.00 0.00	181.91 181.91	8725.80 8825.80	383.87 383.87	-411.65 -411.65	-342.43 -342.43	0.00	
	9000.00	0.00	181.91	8925.80	383.87	-411.65	-342.43	0.00	
	9100.00	0.00	181.91	9025.80	383.87	-411.65	-342.43	0.00	
	9200.00	0.00	181.91	9125.80	383.87	-411.65	-342.43	0.00	
	9300.00	0.00	181.91	9225.80	383.87	-411.65	-342.43	0.00	
	9400.00	0.00	181.91	9325.80	383.87	-411.65	-342.43	0.00	
	9500.00	0.00	181.91	9425.80	383.87	-411.65	-342.43	0.00	
	9555.25	0.00	181.91	9481.05	383.87	-411.65	-342.43	0.00	КОР
	9600.00	4.47	181.91	9525.76	382.13	-411.71	-340.69	10.00	
	9601.25	4.60	181.91	9527.00	382.03	-411.71	-340.59	10.00	Bone Spring 3rd
	9700.00	14.47	181.91	9624.27	365.70	-412.26	-324.28	10.00	1 5
	9800.00	24.47	181.91	9718.43	332.42	-413.37	-291.05	10.00	
	9900.00	34.47	181.91	9805.37	283.30	-415.01	-242.01	10.00	
	9941.88	38.66	181.91	9839.00	258.37	-415.84	-217.11	10.00	Wolfcamp / Point of Penetration
	10000.00	44.47	181.91	9882.47	219.84	-417.12	-178.64	10.00	
	10100.00	54.47	181.91	9947.36	143.97	-419.65	-102.87	10.00	
	10200.00	64.47	181.91	9998.09	57.99	-422.52	-17.01	10.00	
	10300.00	74.47	181.91	10033.11	-35.49	-425.64	76.33	10.00	
	10400.00	84.47	181.91	10051.35	-133.63	-428.91	174.33	10.00	
	10458.95	90.37	181.91	10054.00	-192.47	-430.87	233.08	10.00	Landing Point
	10500.00	90.37	181.91	10053.73	-233.49	-432.24	274.04	0.00	
	10600.00	90.37	181.91	10053.09	-333.43	-435.57	373.84	0.00	
	10700.00	90.37	181.91	10052.44	-433.37	-438.91	473.64	0.00	
	10800.00	90.37	181.91	10051.80	-533.32	-442.24	573.44	0.00	
	10900.00	90.37	181.91	10051.15	-633.26	-445.57	673.24	0.00	
	11000.00	90.37	181.91	10050.51	-733.20	-448.90	773.04	0.00	
	11100.00	90.37	181.91	10049.86	-833.14	-452.24	872.84	0.00	
	11200.00	90.37	181.91	10049.21	-933.09	-455.57	972.63	0.00	
	11300.00	90.37	181.91	10048.57	-1033.03	-458.90	1072.43	0.00	
	11400.00	90.37	181.91	10047.92	-1132.97	-462.23	1172.23	0.00	
	11500.00	90.37	181.91	10047.28	-1232.91	-465.57	1272.03	0.00	
	11600.00	90.37	181.91	10046.63		-468.90	1371.83	0.00	
	11700.00	90.37 90.37	181.91 181.91		-1432.80	-472.23 -475.57	1471.63 1571.43	0.00	
	11800.00 11900.00	90.37 90.37	181.91 181.91	10045.34 10044.69		-475.57 -478.90	1571.43 1671.22	0.00 0.00	
	12000.00	90.37 90.37	181.91	10044.69		-478.90 -482.23	1671.22	0.00	
	12000.00	90.37 90.37	181.91	10044.03		-482.25 -485.56	1870.82	0.00	
	12100.00	90.37 90.37	181.91	10043.40	-1832.57	-485.56 -488.90	1970.62	0.00	
	12200.00	90.37 90.37	181.91	10042.76	-2032.45	-488.90	2070.42	0.00	
	12400.00	90.37	181.91		-2132.40	-495.56	2170.22	0.00	

1		County: Wellbore:			O COM 412H				Geodetic System: US State Plane 1983 Datum: North American Datum 192 Ellipsoid: Clarke 1866 Zone: 3001 - NM East (NAD83)
	MD	INC	AZI	TVD	NS	EW	vs	DLS	Comment
_	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(ft)	(°/100ft)	
	12500.00	90.37	181.91	10040.82	-2232.34	-498.89	2270.02	0.00	
	12600.00	90.37	181.91	10040.17	-2332.28	-502.23	2369.81	0.00	
	12700.00	90.37	181.91	10039.53	-2432.22	-505.56	2469.61	0.00	
	12800.00	90.37	181.91	10038.88	-2532.16	-508.89	2569.41	0.00	
	12900.00	90.37	181.91	10038.24	-2632.11	-512.22	2669.21	0.00	
	13000.00	90.37	181.91	10037.59	-2732.05	-515.56	2769.01	0.00	
	13100.00	90.37	181.91	10036.94	-2831.99	-518.89	2868.81	0.00	
	13200.00	90.37	181.91	10036.30	-2931.93	-522.22	2968.61	0.00	
	13300.00	90.37	181.91	10035.65	-3031.88	-525.55	3068.40	0.00	
	13400.00	90.37	181.91	10035.01	-3131.82	-528.89	3168.20	0.00	
	13500.00	90.37	181.91	10034.36	-3231.76	-532.22	3268.00	0.00	
	13600.00	90.37	181.91	10033.72	-3331.70	-535.55	3367.80	0.00	
	13700.00	90.37	181.91	10033.07	-3431.65	-538.89	3467.60	0.00	
	13800.00	90.37	181.91	10032.42	-3531.59	-542.22	3567.40	0.00	
	13900.00	90.37	181.91		-3631.53	-545.55	3667.20	0.00	
	14000.00	90.37	181.91	10031.13	-3731.47	-548.88	3766.99	0.00	
	14100.00	90.37	181.91	10030.49	-3831.42	-552.22	3866.79	0.00	
	14200.00	90.37	181.91	10029.84	-3931.36	-555.55	3966.59	0.00	
	14300.00	90.37	181.91	10029.20	-4031.30	-558.88	4066.39	0.00	
	14400.00	90.37	181.91	10028.55	-4131.24	-562.21	4166.19	0.00	
	14500.00	90.37	181.91	10027.90	-4231.18	-565.55	4265.99	0.00	
	14600.00 14700.00	90.37	181.91	10027.26	-4331.13 -4431.07	-568.88	4365.79	0.00 0.00	
		90.37	181.91	10026.61		-572.21	4465.58		
	14800.00 14900.00	90.37	181.91	10025.97 10025.32	-4531.01 -4630.95	-575.54	4565.38 4665.18	0.00 0.00	
	14900.00	90.37 90.37	181.91 181.91	10023.32	-4030.95	-578.88 -582.21	4764.98	0.00	
	15100.00	90.37 90.37	181.91	10024.07	-4830.84	-585.54	4864.78	0.00	
	15200.00	90.37	181.91	10024.03	-4930.78	-588.87	4964.58	0.00	
	15200.00	90.37	181.91	10023.38	-5030.72	-592.21	4904.38 5064.38	0.00	
	15400.00	90.37	181.91	10022.09	-5130.67	-595.54	5164.17	0.00	
	15500.00	90.37	181.91	10022.09	-5230.61	-598.87	5263.97	0.00	
	15600.00	90.37	181.91	10020.80	-5330.55	-602.20	5363.77	0.00	
	15700.00	90.37	181.91	10020.00	-5430.49	-605.54	5463.57	0.00	
	15800.00	90.37	181.91	10020.13	-5530.44	-608.87	5563.37	0.00	
	15900.00	90.37	181.91	10018.86	-5630.38	-612.20	5663.17	0.00	
	16000.00	90.37	181.91	10018.22	-5730.32	-615.54	5762.97	0.00	
	16100.00	90.37	181.91	10017.57	-5830.26	-618.87	5862.76	0.00	
	16200.00	90.37	181.91	10016.93	-5930.21	-622.20	5962.56	0.00	
	16300.00	90.37	181.91	10016.28	-6030.15	-625.53	6062.36	0.00	
	16400.00	90.37	181.91	10015.63	-6130.09	-628.87	6162.16	0.00	
	16500.00	90.37	181.91	10013.05	-6230.03	-632.20	6261.96	0.00	
	16600.00	90.37	181.91	10014.33	-6329.97	-635.53	6361.76	0.00	
	16700.00	90.37	181.91	10013.70	-6429.92	-638.86	6461.56	0.00	
	16800.00	90.37	181.91	10013.05	-6529.86	-642.20	6561.35	0.00	
	16881.29	90.37	181.91	10012.53	-6611.11	-644.91	6642.49	0.00	exit
	16900.00	90.37	181.91	10012.40	-6629.80	-645.53	6661.15	0.00	
	16961.29	90.37	181.91	10012.00	-6691.06	-647.59	6722.33	0.00	BHL

ssued on: 16 Sep	. 2022 by L	ogan Van Gorp	

et

Connection VAM[®] SPRINT-FJ

HI	GH	ER	то	RQ	UE	VE	RSI	ON	

Min. Ultimate Tensile Strength

	Co	nnection	Data	a Sheet

Alt. Drift:

00	weight (ID/IL)	aacuu uu		Grade	Alt. Dilit.	
8 5/8 in.	Nominal: 32.00	0.352 ir	າ.	P110EC	7.875 in.	
	Plain End: 31.13					
	PIPE PROPERTIES				CONNECTIO	N PROP
Nominal OD		8.625	in.	Connection Type		
Nominal ID		7.921	in.	Connection OD (no	om):	
Nominal Cross Section	Area	9.149	sqin.	Connection ID (no	m):	
Grade Type		Hig	h Yield	Make-Up Loss		
Min. Yield Strength		125	ksi	Critical Cross Sect	ion	
Max. Yield Strength		140	ksi	Tension Efficiency		

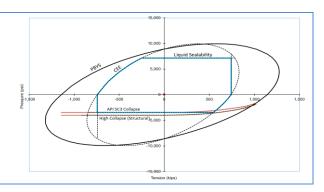
135

ksi

Wall Th

Grade

CONNECTION PRO	PERTIES	
Connection Type	Semi-Premium Inte	egral Flush
Connection OD (nom):	8.665	in.
Connection ID (nom):	7.954	in.
Make-Up Loss	2.614	in.
Critical Cross Section	5.978	sqin.
Tension Efficiency	65.0	% of pipe
Compression Efficiency	65.0	% of pipe
Internal Pressure Efficiency	80.0	% of pipe
External Pressure Efficiency	100	% of pipe


CONNECTION PERFORMANCES		
Tensile Yield Strength	744	klb
Compression Resistance	744	klb
Max. Internal Pressure	7,150	psi
Structural Collapse Resistance	4,000	psi
Max. Structural Bending	41	°/100ft
Max. Bending with Sealability	10	°/100ft

Waight (lb /ft)

TORQUE VALUE	s	
Min. Make-up torque	23,000	ft.lb
Opt. Make-up torque	25,500	ft.lb
Max. Make-up torque	28,000	ft.lb
Max. Torque with Sealability (MTS)	48,000	ft.lb

* 87.5% RBW

VAM® SPRINT-FJ is a semi-premium flush connection designed for shale applications, where maximum clearance and high tension capacity are required for intermediate casing strings.

Do you need help on this product? - Remember no one knows VAM[®] like VAM[®]

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Section 2 - Blowout Preventer Testing Procedure

Variance Request

Devon Energy requests to only test BOP connection breaks after drilling out of surface casing and while skidding between wells which conforms to API Standard 53 and industry standards. This test will include the Top Pipe Rams, HCR, Kill Line Check Valve, QDC (quick disconnect to wellhead) and Shell of the 10M BOPE to 5M for 10 minutes. If a break to the flex hose that runs to the choke manifold is required due to repositioning from a skid, the HCR will remain open during the shell test to include that additional break. The variance only pertains to intermediate hole-sections and no deeper than the Bone Springs Formation where 5M BOP tests are required. The initial BOP test will follow OOGO2.III.A.2.i, and subsequent tests following a skid will only test connections that are broken. The annular preventer will be tested to 100% working pressure. This variance will meet or exceed OOGO2.III.A.2.i per the following: Devon Energy will perform a full BOP test per OOGO2.III.A.2.i before drilling out of the intermediate casing string(s) and starting the production hole, before starting any hole section that requires a 10M test, before the expiration of the allotted 14-days for 5M intermediate batch drilling or when the drilling rig is fully mobilized to a new well pad, whichever is sooner. We will utilize a 200' TVD tolerance between intermediate shoes as the cutoff for a full BOP test. The BLM will be contacted 4hrs prior to a BOPE test. The BLM will be notified if and when a well control event is encountered. Break test will be a 14 day interval and not a 30 day full BOPE test interval. If in the event break testing is not utilized, then a full BOPE test would be conducted.

1. Well Control Response:

1. Primary barrier remains fluid

2. In the event of an influx due to being underbalanced and after a realized gain or flow, the order of closing BOPE is as follows:

- a) Annular first
- b) If annular were to not hold, Upper pipe rams second (which were tested on the skid BOP test)
- c) If the Upper Pipe Rams were to not hold, Lower Pipe Rams would be third

Connection Data Sheet

OD (in.)	WEIGHT (Ibs./ft.)	WALL (in.)	GRADE	DRIFT (in.)	RBW%	CONNECTION
5.500	Nominal: 20.00 Plain End: 19.83	0.361	VST P110 EC	4.653	87.5	DWC/C-IS PLUS

PIPE PROPERTIES

Nominal OD	5.500	in.
Nominal ID	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT; Vallourec Sourced Material Only	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi
High Collapse	12,090	psi

CONNECTION PROPERTIES

Connection Type	Semi-Premium T&C	
Connection OD (nom)	6.300	in.
Connection ID (nom)	4.778	in.
Make-Up Loss	4.125	in.
Coupling Length	9.250	in.
Critical Cross Section	5.828	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

CONNECTION PERFORMANCES 729 klb Yield Strength Parting Load 787 klb **Compression Rating** 729 klb Min. Internal Yield 14,360 psi *High Collapse* 12,090 psi Maximum Uniaxial Bend Rating 104.2 °/100 ft Ref String Length w 1.4 Design Factor 26,040 ft

FIELD TORQUE VALUES		
Min. Make-up Torque	16,600	ft.lbs
Opti. Make-up Torque	17,850	ft.lbs
Max. Make-up Torque	19,100	ft.lbs
Min. Shoulder Torque	1,660	ft.lbs
Max. Shoulder Torque	13,280	ft.lbs
Max. Delta Turn	0.200	Turns
+Max Operational Torque	24,300	ft.lbs
+Maximum Torsional Value (MTV)	26,730	ft.lbs

+Maximum Operational Torque and Maximum Torsional Value Only Valid with Vallourec P110EC Material

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234 VAM USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support E-mail: <u>tech.support@vam-usa.com</u>

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

05/23/2023 4:11 PM

ł

<u>10-3/4"</u>	<u>45.50#</u>	<u>0.400"</u>	<u>J-55</u>	
Dimensions ((Nominal)			
Outside Diameter Wall Inside Diameter Drift Weight, T&C Weight, PE			10.750 0.400 9.950 9.875 45.500 44.260	in. in. in. Ibs/ft Ibs/ft
<u>Performance</u>	e Properties			
Collapse			2090	psi
Internal Yield Pres	sure at Minimum Yield			
	PE		3580	psi
	STC		3580	psi
	ВТС		3580	psi
Yield Strength, Pip	e Body		715	1000 lbs
Joint Strength				
	STC		493	1000 lbs
	BTC		796	1000 lbs
	BTC Special Clearance (11.25" OD Cplg)	506	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	273282
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Work was performed without OCD approval.	7/22/2025

CONDITIONS

Page 34 of 34

Action 273282