Form 3160-3 (June 2015) UNITED STATES	2			OMB No.	PPROVED 1004-0137 uary 31, 2018			
DEPARTMENT OF THE I BUREAU OF LAND MAN	NTERIO			5. Lease Serial No.				
APPLICATION FOR PERMIT TO D	RILL OF	REENTER		6. If Indian, Allotee or	r Tribe Name			
1a. Type of work: DRILL	EENTER			7. If Unit or CA Agree	ement, Name and No			
	ther ingle Zone	Multiple Zone		8. Lease Name and W	Yell No.			
2. Name of Operator				9. API Well No.				
3a. Address	3b. Phone	No. (include area cod	le)	30-025-54847 10. Field and Pool, or	Exploratory			
 4. Location of Well (<i>Report location clearly and in accordance</i> of At surface At proposed prod. zone 	with any Sta	te requirements.*)		11. Sec., T. R. M. or E	Blk. and Survey or Ar			
14. Distance in miles and direction from nearest town or post off	ìce*			12. County or Parish	13. State			
 15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No of	acres in lease	17. Spaci	ing Unit dedicated to this well				
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propos	sed Depth	20. BLM	/BIA Bond No. in file				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approx	ximate date work will	start*	23. Estimated duration	n			
	24. Atta	achments						
The following, completed in accordance with the requirements o (as applicable)	f Onshore O	il and Gas Order No. 1	l, and the I	Hydraulic Fracturing rul	e per 43 CFR 3162.3			
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	e operation	ns unless covered by an e	existing bond on file (
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office				rmation and/or plans as n	nay be requested by th			
25. Signature	Nam	ne (Printed/Typed)		Γ	Date			
Title								
Approved by (Signature)	Nam	ne (Printed/Typed)		I	Date			
Title	Offi	ce						
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds lega	l or equitable title to th	nose rights	in the subject lease whi	ch would entitle the			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements					y department or agen			
			0.210					

(Continued on page 2)

.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

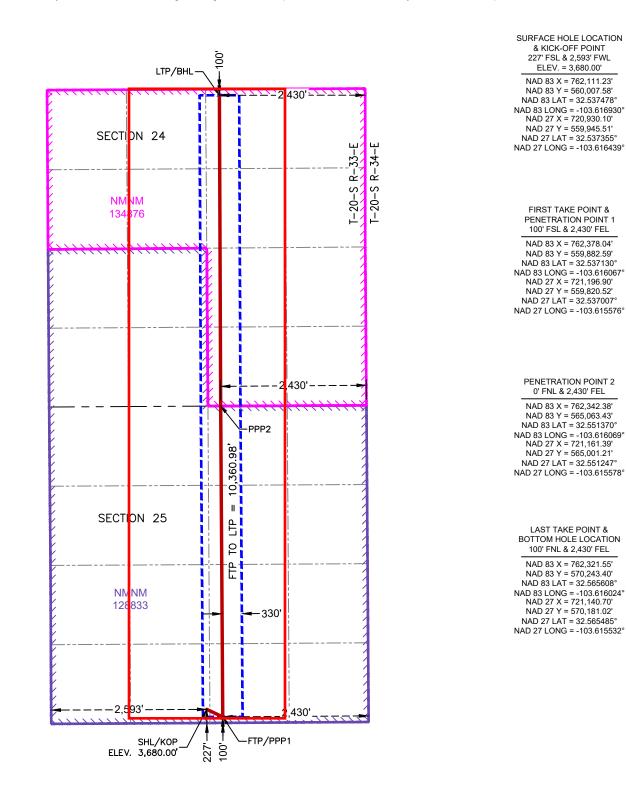
0. SHL: SESW / 227 FSL / 2593 FWL / TWSP: 20S / RANGE: 33E / SECTION: 25 / LAT: 32.537478 / LONG: -103.61693 (TVD: 0 feet, MD: 0 feet) PPP: SWSE / 100 FSL / 2430 FEL / TWSP: 20S / RANGE: 33E / SECTION: 25 / LAT: 32.53713 / LONG: -103.616067 (TVD: 10880 feet, MD: 11200 feet) BHL: NWNE / 100 FNL / 2430 FEL / TWSP: 20S / RANGE: 33E / SECTION: 24 / LAT: 32.565608 / LONG: -103.616024 (TVD: 10880 feet, MD: 21059 feet)

BLM Point of Contact

Name: JANET D ESTES Title: ADJUDICATOR Phone: (575) 234-6233 Email: JESTES@BLM.GOV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.


Received by OCD: 7/17/2025 5:12:41 PM

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division. <u>Released to Imaging: 7/22/2025 2:06:10 PM</u>

Received by OCD: 7/17/2025 5:12:41 PM

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Permian Resources	
WELL NAME & NO.:	Eileen 25 Fed Com 173H	
LOCATION:	Sec. 36-20S-22E-NMP	
COUNTY:	Lea County, New Mexico	•

COA

H ₂ S	\odot	0	Yes	
Potash /	C None	Secretary	🖲 R-111-Q	Open Annulus
WIPP	4-String Design: Ope	n 1st Int x 2nd Annulus (ICP 2 below Relief Z	Lone) \Box WIPP
Cave / Karst	• Low	C Medium	🔘 High	Critical
Wellhead	Conventional	Multibowl	🔘 Both	C Diverter
Cementing	Primary Squeeze	🗆 Cont. Squeeze	EchoMeter	🗆 DV Tool
Special Req	Capitan Reef	🗖 Water Disposal	COM	🗖 Unit
Waste Prev.	C Self-Certification	C Waste Min. Plan	• APD Submitted p	prior to 06/10/2024
Additional	Flex Hose	Casing Clearance	Pilot Hole	Break Testing
Language	Four-String	Offline Cementing	🗖 Fluid-Filled	

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

APD is within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the updated order.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately **1660** feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. *Set depth adjusted per BLM geologist.*
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500</u>

Page 1 of 7

<u>pounds compressive strength</u>, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10-3/4 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
 - Special Capitan Reef requirements: Ensure FW based mud used across the Capitan interval
- 3. The minimum required fill of cement behind the **8-5/8** inch intermediate casing is:
 - Cement should tie-back **500 feet or 50 feet on top of the Capitan Reef, whichever is** closer to surface into the previous casing but not higher than USGS Marker Bed No. 126. <u>Operator must verify top of cement per R-111-Q requirements.</u> Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back **500 feet or 50 feet on top of the Capitan Reef, whichever is** closer to surface into the previous casing but not higher than USGS Marker Bed No. 126. <u>Operator must verify top of cement per R-111-Q requirements.</u> Submit results to the BLM. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst, Capitan Reef, or potash.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 2nd intermediate casing shoe shall be 10,000 (10M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the</u> <u>Communitization Agreement number is known, it shall also be on the sign.</u>

BOPE Break Testing Variance

- BOPE Break Testing is ONLY permitted for intervals utilizing a 5M BOPE or less. (Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.)
- BOPE Break Testing is NOT permitted to drilling the production hole section.
- Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation.
- While in transfer between wells, the BOPE shall be secured by the hydraulic carrier or cradle.
- Any well control event while drilling require notification to the BLM Petroleum Engineer (575-706-2779) prior to the commencement of any BOPE Break Testing operations.
- A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
- The BLM is to be contacted (575-689-5981 Lea County) 4 hours prior to BOPE tests.
- As a minimum, a full BOPE test shall be performed at 21-day intervals.
- In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per 43 CFR 3172.
- If in the event break testing is not utilized, then a full BOPE test would be conducted.

Offline Cementing

Contact the BLM prior to the commencement of any offline cementing procedure.

Page 3 of 7

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43** CFR 3172 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following

conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Approval Date: 03/25/2025

Received by OCD: 7/17/2025 5:12:41 PM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Page 14 of 117

04/24/2025

Operator Certification Data Report

NAME: STEPHANIE RABADUE		Signed on: 06/26/2024
Title: Regulatory Manager		
Street Address: 300 N MARIENFE	ELD ST STE 1000	
City: MIDLAND	State: TX	Zip: 79701
Phone: (432)695-1115		
Email address: STEPHANIE.RAB/	ADUE@PERMIANRES.COM	
Field		
Representative Name:		
Street Address:		
City: S	state:	Zip:
Phone:		
Email address:		

Received by OCD: 7/17/2025 5:12:41 PM

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400099303

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: EILEEN 25 FED COM

Well Type: OIL WELL

Well Number: 173H

Well Work Type: Drill

Submission Date: 07/01/2024

APD Operator: PERMIAN RESOURCES OPERATING LLC

1000

Highlighted data reflects the most recent changes Show Final Text

04/24/2025

Section 1 - General APD ID: 10400099303 **Tie to previous NOS?** Submission Date: 07/01/2024 BLM Office: Carlsbad **User:** STEPHANIE RABADUE Title: Regulatory Manager Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM128833 Lease Acres: Allotted? Surface access agreement in place? **Reservation:** Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? N

Permitting Agent? NO

Operator letter of

Operator Info

Operator Organization Name: PERMIAN RESOURCES OPERATING LLC Operator Address: 300 N MARIENFELD ST SUITE 1000 Zip: 79701 **Operator PO Box: Operator City: MIDLAND** State: TX Operator Phone: (432)695-4222 **Operator Internet Address:**

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan nam	e:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: EILEEN 25 FED COM	Well Number: 173H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: Tea	Pool Name: BONE SPRING, SOUTH

Well Name: EILEEN 25 FED COM

Well Number: 173H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL, POTASH

Is the proposed well in a Helium produ	uction area? N	Use Existing Well Pad	? Y	New surface disturbance? Y
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Nam 25 Fed	Number: 1	
Well Class: HORIZONTAL		Number of Legs: 1		
Well Work Type: Drill				
Well Type: OIL WELL				
Describe Well Type:				
Well sub-Type: DELINEATION				
Describe sub-type:				
Distance to town:	Distance to ne	arest well: 15 FT	Distanc	e to lease line: 227 FT
Reservoir well spacing assigned acres	s Measurement	: 640 Acres		
Well plat: Eileen_25_Fed_Com_173	H_C102_202406	626060924.pdf		
Well work start Date: 12/01/2024		Duration: 90 DAYS		

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NAVD88

Reference Datum: GROUND LEVEL

Mellbore SHL Leg	NS-Foot	SI NS Indicator	toot EW-Foot 3	T A EW Indicator	dswL 20S	Range 33E	55 Section	Aliquot/Lot/Tract MSA MSA	ep ratitnde 32.53747 8	- 103.6169	County	IXEM IXEM	IXAM Meridian	퍼 Lease Type	Lease Number NMMM 128833	8 Levation	0 0	0 TVD	 Will this well produce from this
#1			•	_				35310		3		CO	CO						
KOP Leg #1	227	FSL	259 3	FW L	20S	33E	25	Aliquot SESW	32.53747 8	- 103.6169 3	LEA	NEW MEXI CO		F	NMNM 128833	367 8	0	0	Y
PPP Leg #1-1	100	FSL	243 0	FEL	20S	33E	25	Aliquot SWSE	32.53713	- 103.6160 67	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 128833	- 720 2	112 00	108 80	Y

Well Name: EILEEN 25 FED COM

Well Number: 173H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this
EXIT Leg #1	100	FNL	243 0	FEL	20S	33E	24	Aliquot NWNE	32.56560 8	- 103.6160 24	LEA	NEW MEXI CO		F	NMNM 134876	- 720 2	209 00	108 80	Y
BHL Leg #1	100	FNL	243 0	FEL	20S	33E	24	Aliquot NWNE	32.56560 8	- 103.6160 24	LEA	NEW MEXI CO		F	NMNM 134876	- 720 2	210 59	108 80	Y

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical	Measured Depth	Lithologies	Mineral Resources	Producing Formatio
15265140	QUATERNARY	3678	0	0	ALLUVIUM	USEABLE WATER	N
15265141	RUSTLER	2140	1538	1538	ANHYDRITE, SANDSTONE	USEABLE WATER	N
15265142	TOP OF SALT	1838	1840	1840	SALT	POTASH	N
15265143	YATES	326	3352	3352	ANHYDRITE, SHALE	CO2, NATURAL GAS, OIL	N
15265144	CAPITAN REEF	68	3610	3610	SANDSTONE	USEABLE WATER	N
15265145	DELAWARE SAND	-2059	5737	5737	SANDSTONE	NATURAL GAS, OIL	N
15265146	BRUSHY CANYON	-2827	6505	6505	SANDSTONE	NATURAL GAS, OIL	N
15265147	BONE SPRING	-4955	8633	8633	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	N
15265139	BONE SPRING 2ND	-6499	10177	10177	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10880

Equipment: BOPE will meet all requirements for above listed system per 43 CFR 3172. BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional, tested, and will meet all requirements per 43 CFR 3172. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing of the surface x intermediate annulus without breaking the connection between the BOP & wellhead. A variance is requested to utilize a flexible choke line (flexhose) from the BOP to choke manifold.

Requesting Variance? YES

Variance request: Multibowl Wellhead, Flexhose, Breaktesting, Offline Cementing Variances. Attachments in Section 8.

Testing Procedure: Operator requests to ONLY test broken pressure seals per API Standard 53 and the attachments in Section 8. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed, b. whenever any seal subject to test pressure is broken, c.

Well Name: EILEEN 25 FED COM

Well Number: 173H

following related repairs, d. at 21-day intervals. Testing of the ram type preventer(s) and annual type preventer(s) shall be tested per 43 CFR 3172. The BOPE configuration, choke manifold layout, and accumulator system will be in compliance with 43 CFR 3172. Bleed lines will discharge 100' from wellhead in non-H2S scenarios and 150' from wellhead in H2S scenarios.

Choke Diagram Attachment:

Eileen_25_Fed_Com_5M_CM_20240626042128.pdf

BOP Diagram Attachment:

Eileen_25_Fed_Com_5M_BOP_20240626042151.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1563	0	1563	3671	2108	1563	J-55	54	BUTT	1.46	1.93	DRY	4.91	DRY	4.61
2	INTERMED IATE	12.2 5	10.75	NEW	API	N	0	3377	0	3377	3671	294	3377	J-55	45.5	BUTT	6.61	3.6	DRY	4.19	DRY	4.19
3	INTERMED IATE	9.87 5	8.625	NEW	NON API	N	0	5687	0	5687	3671	-2016	5687	HCL -80	-	OTHER - MO-FXL	4.52	1.36	DRY	1.79	DRY	1.79
4	PRODUCTI ON	7.87 5	5.5		NON API	N	0	21059	0	10880	3671	-7209	21059	P- 110		OTHER - GeoConn	1.96	2.05	DRY	2.02	DRY	2.02

Casing Attachments

Casing ID: 1 String SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Eileen_25_Fed_Com_173H_csg_20240626053443.pdf

Received by OCD: 7/17/2025 5:12:41 PM

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: EILEEN 25 FED COM

Well Number: 173H

Casing Attachments

Casing ID: 2 String INTERMEDIATE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Eileen_25_Fed_Com_173H_csg_20240626053536.pdf
Casing ID: 3 String INTERMEDIATE
Inspection Document:
Spec Document:
Eileen_25_Fed_Com_MOFXL_20240626053414.pdf
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Eileen_25_Fed_Com_173H_csg_20240626053430.pdf
Casing ID: 4 String PRODUCTION
Inspection Document:
Spec Document:
Eileen_25_Fed_Com_GeoConn_20240626053504.pdf
Tapered String Spec:
Casing Design Assumptions and Workshoot(s)
Casing Design Assumptions and Worksheet(s):
Eileen_25_Fed_Com_173H_csg_20240626053523.pdf

Section 4 - Cement

Well Name: EILEEN 25 FED COM

Well Number: 173H

String Type		Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	E	Lead		0	1563	1220	1.34	14.8	1630	50	Class C	Accelerator

INTERMEDIATE	Lead	0	2700	380	1.88	12.9	700	50	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	2700	3377	150	1.34	14.8	200	50	Class C	Retarder
INTERMEDIATE	Lead	0	4540	370	1.88	12.9	680	50	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
INTERMEDIATE	Tail	4540	5687	150	1.33	14.8	190	25	Class C	Salt
PRODUCTION	Lead	6187	1042 5	403	2.41	11.5	971	30	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
PRODUCTION	Tail	1042 5	2105 9	1391	1.73	12.5	2406	30	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with 43 CFR 3172:

Diagram of the equipment for the circulating system in accordance with 43 CFR 3172:

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Circulating Medium Table

Well Name: EILEEN 25 FED COM

Well Number: 173H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1563	SPUD MUD	8.6	9.5							
1563	3377	SALT SATURATED	10	10							
3377	5687	OTHER : Fresh Water	8.6	9.5							
5687	2105 9	OTHER : Brine, Oil Based Mud	9	10							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY,

Coring operation description for the well:

No Coring is Planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5660

Anticipated Surface Pressure: 3266

Anticipated Bottom Hole Temperature(F): 3264

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations

Eileen_25_Fed_Com_H2S_Plan_20240626043659.pdf

Well Name: EILEEN 25 FED COM

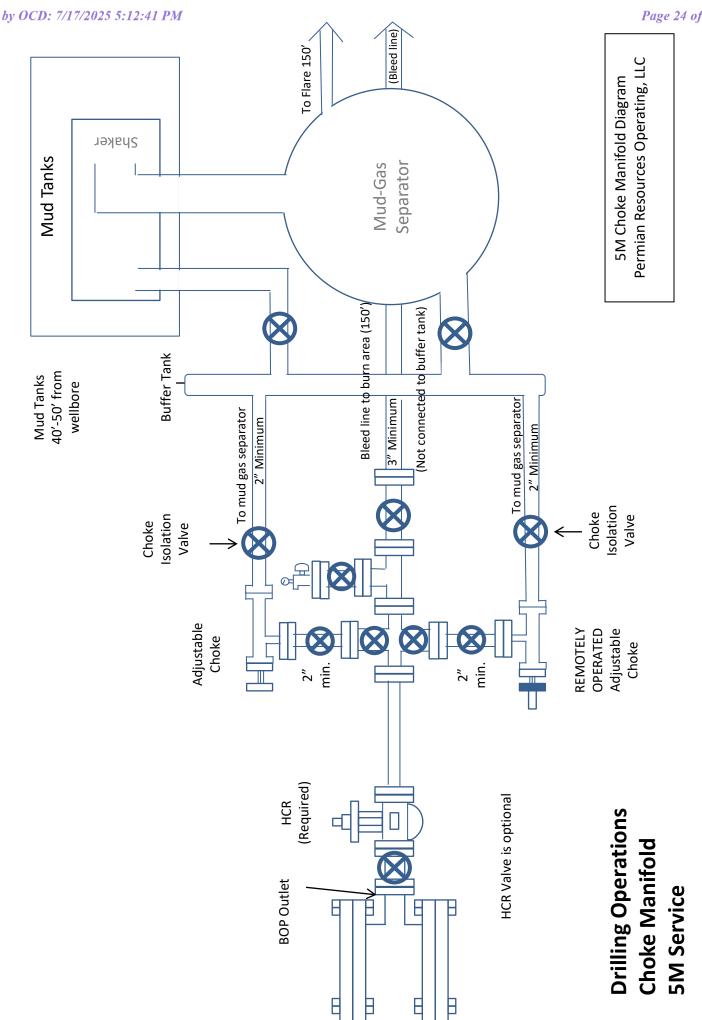
Well Number: 173H

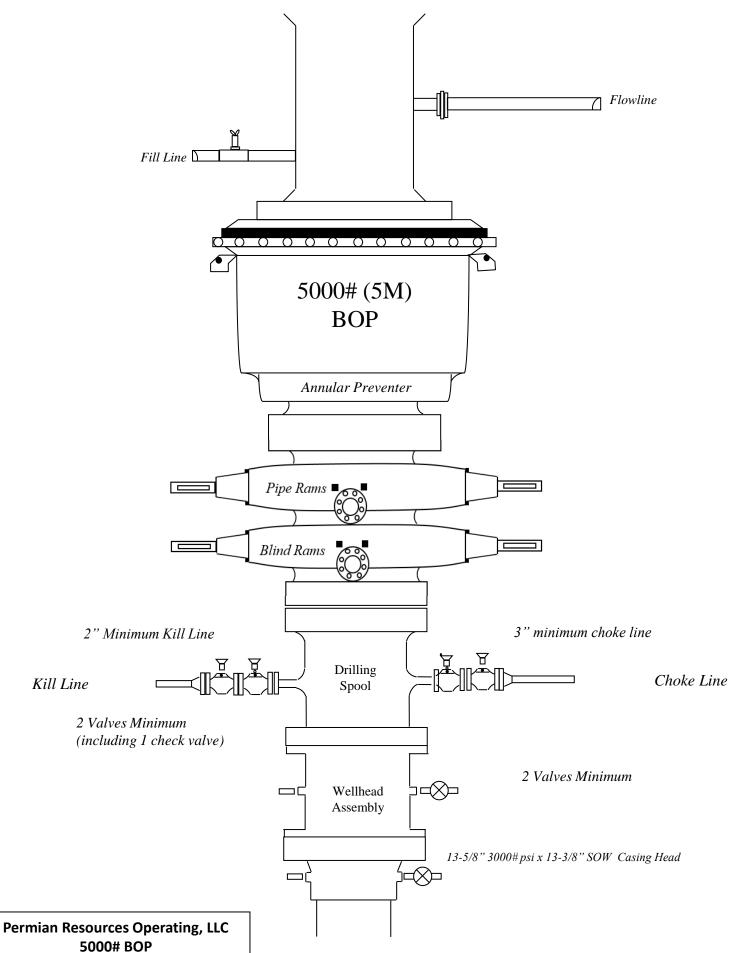
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

EILEEN_25_FED_COM_173H_DD_20240626053820.pdf EILEEN_25_FED_COM_173H_AC_20240626053820.pdf

Other proposed operations facets description:


Waste Management Plan, R-111-Q Drilling Design


Other proposed operations facets attachment:

Eileen_25_Fed_Com_NGMP_3_20240626043721.pdf Eileen_25_Fed_Com_R111Q_20240626053901.pdf Eileen_25_Fed_Com_173H_WBD_20240626054355.pdf

Other Variance attachment:

Eileen_25_Fed_Com_BOP_Break_20240626043747.pdf Eileen_25_Fed_Com_Batch_20240626043747.pdf Eileen_25_Fed_Com_FH_20240626043747.pdf Eileen_25_Fed_Com_MBS_20240626043747.pdf Eileen_25_Fed_Com_OLCV_20240626043747.pdf

•

Metal One Corp.	MO-FXL						
	WO-FXL		CDS#	P110H	SCY		
Metal One	*1 Pipe Body: BMP P110HSC	Y MinYS125ksi	CDS#	MinYS1	25ksi		
	Min95%WT		1 1	Min959	%WT		
	Connection Data	Sheet	Date	8-Sep	5,087 kN 66.83 MPa 29.66 MPa 3th of Pipe body of Pipe body se Strength 4,300psi of S.M.Y.S.)		
	Commeters						
	Geometry	Imperia	<u>al</u>	<u>S.I.</u>			
	Pipe Body						
	Grade *1	P110HSCY					
	MinYS *1	125	ksi				
	Pipe OD (D)	8 5/8	in				
MO-FXL	Weight	32.00	lb/ft				
	Actual weight	31.10			kg/m		
	Wall Thickness (t)	0.352	in		mm		
	Pipe ID (d)	7.921	in				
	Pipe body cross section	9.149	in ²	5,902	mm ²		
	Drift Dia.	7.796	in	198.02	mm		
	-	-	-	-	-		
	Compaction						
_	Connection	0.005	-	240.00	-		
$\uparrow \longleftrightarrow$	Box OD (W)	8.625	in				
	PIN ID	7.921	in				
Box	Make up Loss	3.847	in				
criti		5.853	in ²				
area		69	%		%		
	Thread Taper	1					
5	Number of Threads		5	TPI			
Make	Performance		5	TPI	ć		
Make up loss	Performance	for Pipe Body		TPI			
up C	Performance	for Pipe Body			kN		
loss	 Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 			5,087			
Pin	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1,144	kips	5,087 66.83	MPa		
loss	Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1	1,144 9,690 4,300	kips psi psi	5,087 66.83 29.66	MPa MPa		
Pin critic	 Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 	1,144 9,690 4,300 fied Minimum YIE	kips psi psi ELD Stre	5,087 66.83 29.66 ngth of Pipe boo	MPa MPa dy		
Pin critic	 Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specific M.I.Y.P. = Minimer *1: BMP P110HSCY: MinYS 	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V	kips psi psi ELD Stre d Pressu VT, Colla	5,087 66.83 29.66 ngth of Pipe body re of Pipe body	MPa MPa ^{dy}		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio	kips psi psi ELD Stre d Pressu VT, Colla n	5,087 66.83 29.66 ngth of Pipe body re of Pipe body upse Strength 4,	MPa MPa ^{dy}		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69%	5,087 66.83 29.66 ngth of Pipe body re of Pipe body upse Strength 4, of S.M.Y.S.)	MPa MPa ^{dy}		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69%	5,087 66.83 29.66 ngth of Pipe body pse Strength 4, of S.M.Y.S.)	MPa MPa ^{dy}		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69% (70%	5,087 66.83 29.66 ngth of Pipe body re of Pipe body spse Strength 4, of S.M.Y.S.) of S.M.Y.S.)	MPa MPa dy 300psi		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips	kips psi psi d Pressu VT, Colla n (69% (69% (70%) 100% (5,087 66.83 29.66 ngth of Pipe body pse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 300psi		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69% (70%	5,087 66.83 29.66 ngth of Pipe body pse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa dy 300psi		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS* Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	1,144 9,690 4,300 fied Minimum YIE num Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips	kips psi psi d Pressu VT, Colla n (69% (69% (70%) 100% (5,087 66.83 29.66 ngth of Pipe body pse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St	MPa MPa ^{dy} 300psi		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specit M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS* Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	1,144 9,690 4,300 fied Minimum YIE um Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi	kips psi psi ELD Stre d Pressu VT, Colla n (69% (69% (70% (2	5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9	MPa MPa dy 300psi		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	1,144 9,690 4,300 fied Minimum YIE 100 Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi (0,780 psi (0,780 psi (0,780 psi (kips psi psi ELD Strei d Pressu VT, Colla n (69% (69% (70% (70% (2 2 (100% (5,087 66.83 29.66 ngth of Pipe body ipse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9	MPa MPa dy 300psi rength		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS* Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	1,144 9,690 4,300 fied Minimum YIE 100 Internal Yiek 125ksi, Min95%V for Connectio 789 kips 6,780 psi 6,780 psi 13,600 14,900	kips psi ELD Strei d Pressu VT, Colla n (69% (69% (70% (70% (2) 100% (2)	5,087 66.83 29.66 ngth of Pipe body npse Strength 4, of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200	MPa MPa dy 300psi rength N-m		
Pin critic	d Performance Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1 Note S.M.Y.S.= Specif M.I.Y.P. = Minim *1: BMP P110HSCY: MinYS' Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	1,144 9,690 4,300 fied Minimum YIE 100 Internal Yiek 125ksi, Min95%V for Connectio 789 kips 789 kips 6,780 psi (0,780 psi (0,780 psi (0,780 psi (kips psi psi ELD Strei d Pressu VT, Colla n (69% (69% (70% (70% (2 2 (100% (5,087 66.83 29.66 ngth of Pipe body ipse Strength 4, of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 9 18,400 20,200 21,900	MPa MPa dy 300psi rength N-m N-m		

•

GEOCONN-SC	Pipe Body: SeAH P110RY(SMYS1) Coupling: P110CY (SMY Connection Data Geometry Pipe Body Grade *1 SMYS	(S110ksi)	Date Rev.		6 050 P110CV				
GEOCONN-SC	Connection Data Geometry Pipe Body Grade *1 SMYS	a Sheet		29-					
GEOCONN-SC	Geometry Pipe Body Grade *1 SMYS		Rev.		Sep-21				
GEOCONN-SC	Pipe Body Grade *1 SMYS	Imper			110 ksi 139.70 mm 29.80 kg/m 9.17 mm 121.36 mm 118.19 mm 110 ksi 153.67 mm 121.09 mm 104.78 mm ² 3.874 mm ² 3.874 mm ² 3.874 mm ² s.ft. 2 2.852 kN 94.62 MPa 76.55 MPa of Nom wall S.M.Y.S. S.M.Y.S. S.M.Y.S. rength 19.700 N-m 19.000 N-m				
	Grade 11 SMYS		ial	S.	L.				
	SMYS								
		SeAH P110RY	-	SeAH P110RY					
		110	ksi		ksi				
	Pipe OD (D)	5.500	in	139.70	mm				
	Weight	20.00	lb/ft		kg/m				
L West	Wall Thickness (t)	0.361	in		mm				
In March	Pipe ID (d)	4.778	in	121.36	mm				
-Wsc1	Drift Dia.	4.653	in	118.19	mm				
D	Constanting of the second seco								
- 0	Connection		1	110	t.cl				
	Coupling SMYS	110	ksi						
b {	Coupling OD (Wsc1)	6.050	in						
8	Coupling Length (NL)	8.350	in						
8	Make up Loss	4.125	in						
8	Pipe Critical Area	5.83	in ²	3,760	mm*				
5	Box Critical Area	6.00	in ²	3,874	mm ²				
5	Thread Taper		1/16(3	(4" per ft)					
5	Number of Threads			TPI					
E .		641	KIDS	2,852	kN				
C	S.M.Y.S.	041	KIDS	2.852	kN				
3	M.I.Y.P. *1	13,720	psi						
- NL -	Collapse Strength Note S.M.Y.S.= Spec		psi psi Strength of Pipe	94.62 76.55 body	MPa				
- NL	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C	13,720 11,100 iffed Minimum YIELD 5 mum Internal Yield Pre Iksi), Min Wall Thickne Connection	psi psi Strength of Pipe ssure of Pipe bo ss of Pipe Body:	94.82 76.55 body dy 95% of Nom wall	MPa				
- NL	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength	13,720 11,100 iffed Minimum YIELD S mum Internal Yield Pre Iksi), Min Wall Thickne Connection	psi psi Strength of Pipe ssure of Pipe body ss of Pipe Body 00%	94.82 76.55 body 95% of Nom wall of S.M.Y.S.	MPa				
- NI	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C	13,720 11,100 iffied Minimum YIELD 5 mum Internal Yield Pre iksi), Min Wall Thickne connection 1	psi psi Strength of Pipe ssure of Pipe Body: 00% 00%	94.82 76.55 body 95% of Nom wall of S.M.Y.S. of S.M.Y.S.	MPa				
- N	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure	13,720 11,100 ified Minimum YIELD 9 mum Internal Yield Pre lksi), Min Wall Thickne connection 1 1	psi psi Strength of Pipe b ssure of Pipe body: ss of Pipe Body: 00% 00% of M.I.Y	94.82 76.55 body dy 95% of Nom wall of S.M.Y.S. of S.M.Y.S. P.	MPa				
TN N	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure	13,720 11,100 ified Minimum YIELD 9 mum Internal Yield Pre lksi), Min Wall Thickne connection 1 1	psi psi Strength of Pipe b ssure of Pipe bo ss of Pipe Body: 00% 00% 00% of M.I.Y 00% of Collap	94.82 76.55 body dy 95% of Nom wall of S.M.Y.S. of S.M.Y.S. P.	MPa				
	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	13,720 11,100 ified Minimum YIELD S mum Internal Yield Pre lksi), Min Wall Thickne connection 1 1 1 1	psi psi Strength of Pipe b ssure of Pipe body: ss of Pipe Body: 00% 00% 00% of M.I.Y 00% of Collap	94.82 76.55 body dy 95% of Nom wall of S.M.Y.S. of S.M.Y.S. .P. se Strength 90	MPa MPa				
	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	13,720 11,100 ified Minimum YIELD S mum Internal Yield Pre iksi), Min Wall Thickne connection 1 1 1 1 1 1 1 1 1 1 1 1 1	psi psi Strength of Pipe b ssure of Pipe body: ss of Pipe Body: 00% 00% 00% of M.I.Y 00% of Collap > ft-lb	94.82 76.55 body dy 95% of Nom wall of S.M.Y.S. of S.M.Y.S. P. se Strength 90	MPa MPa N-m				
	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	13,720 11,100 ified Minimum YIELD S mum Internal Yield Pre iksi), Min Wall Thickne connection 1 1 1 1 1 1 1 1 1 1 1 1 1	psi psi Strength of Pipe b ssure of Pipe body: ss of Pipe Body: 00% 00% 00% of M.I.Y 00% of Collap > ft-lb ft-lb	94.82 76.55 body dy 95% of Nom wall of S.M.Y.S. of S.M.Y.S. P. se Strength 90 19,700 21,900	MPa MPa N-m N-m				
	Collapse Strength Note S.M.Y.S.= Spec M.I.Y.P. = Mini *1 Pipe: SeAH P110RY (SMYS110 Performance Properties for C Min. Connection Joint Strength Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	13,720 11,100 ified Minimum YIELD S mum Internal Yield Pre iksi), Min Wall Thickne connection 1 1 1 1 1 1 1 1 1 1 1 1 1	psi psi Strength of Pipe b ssure of Pipe body: ss of Pipe Body: 00% 00% 00% of M.I.Y 00% of Collap > ft-lb	94.82 76.55 body 95% of Nom wall of S.M.Y.S. of S.M.Y.S. P. se Strength 90 19,700 21,900 24,100	MPa MPa N-m N-m N-m				

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1563	0	1563	1563	J55	54.5	BTC	1.46	1.93	Dry	4.91	Dry	4.61
Intermediate 1	12.25	10.75	0	3377	0	3377	3377	J55	45.5	BTC SCC	6.61	3.60	Dry	4.19	Dry	4.10
Intermediate 2	9.875	8.625	0	5687	0	5687	5687	HCL-80	32	MO-FXL	4.52	1.36	Dry	1.79	Dry	2.60
Production	7.875	5.5	0	21059	0	10880	21059	P110RY	20	GeoConn	1.96	2.05	Dry	2.02	Dry	2.02
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1563	0	1563	1563	J55	54.5	BTC	1.46	1.93	Dry	4.91	Dry	4.61
Intermediate 1	12.25	10.75	0	3377	0	3377	3377	J55	45.5	BTC SCC	6.61	3.60	Dry	4.19	Dry	4.10
Intermediate 2	9.875	8.625	0	5687	0	5687	5687	HCL-80	32	MO-FXL	4.52	1.36	Dry	1.79	Dry	2.60
Production	7.875	5.5	0	21059	0	10880	21059	P110RY	20	GeoConn	1.96	2.05	Dry	2.02	Dry	2.02
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1563	0	1563	1563	J55	54.5	BTC	1.46	1.93	Dry	4.91	Dry	4.61
Intermediate 1	12.25	10.75	0	3377	0	3377	3377	J55	45.5	BTC SCC	6.61	3.60	Dry	4.19	Dry	4.10
Intermediate 2	9.875	8.625	0	5687	0	5687	5687	HCL-80	32	MO-FXL	4.52	1.36	Dry	1.79	Dry	2.60
Production	7.875	5.5	0	21059	0	10880	21059	P110RY	20	GeoConn	1.96	2.05	Dry	2.02	Dry	2.02
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	17.5	13.375	0	1563	0	1563	1563	J55	54.5	BTC	1.46	1.93	Dry	4.91	Dry	4.61
Intermediate 1	12.25	10.75	0	3377	0	3377	3377	J55	45.5	BTC SCC	6.61	3.60	Dry	4.19	Dry	4.10
Intermediate 2	9.875	8.625	0	5687	0	5687	5687	HCL-80	32	MO-FXL	4.52	1.36	Dry	1.79	Dry	2.60
Production	7.875	5.5	0	21059	0	10880	21059	P110RY	20	GeoConn	1.96	2.05	Dry	2.02	Dry	2.02
								BLM Mi	n Safe	ety Factor	1.125	1		1.6		1.6

H₂S CONTINGENCY PLAN

FOR

Permian Resources Corporation Eileen 25 Fed Com CTB Lea County, New Mexico

> 06-18-2024 This plan is subject to updating

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Table of Contents

	on 1.0 – Introduction
Ι.	Purpose
	Scope & Applicability
	on 2.0 - Plan Implementation
١.	Activation Requirements
II.	Emergency Evacuation
III.	Emergency Response Activities
	on 3.0 - Potential Hazardous Conditions4
	on 4.0 - Notification of H2S Release Event6
١.	Local & State Law Enforcement
11.	General Public
III.	New Mexico Oil Conservation Division
IV.	New Mexico Environment Department
۷.	Bureau of Land Management
Sectio	on 5.0 - Emergency Contact List7
١.	Permian Resources Management Personnel
II.	Lea County Sheriff
III.	New Mexico State Highway Patrol
IV.	Fire / EMS
٧.	Lea County Hospital
VI.	Emergency Response Contractors
VII.	New Mexico Oil Conservation Division
VIII.	New Mexico Environment Department
IX.	Bureau of Land Management
Х.	Other Agencies
Sectio	on 6.0 – Drilling Location Information9-12
١.	Site Safety Information
II.	Directions to Location
III.	Plat of Location including GPS Coordinates
IV.	Routes of Ingress & Egress (MAP)
٧.	ROE Map
VI.	Residences in ROE
VII.	Public Roads in ROE
Sectio	on 7.0 – Hazard Communication
١.	Physical Characteristics of Hydrogen Sulfide Gas
١١.	Human Health Hazards / Toxicological Information
III.	Environmental Hazards
Sectio	on 8.0 - Regulatory Information15-17
١.	OSHA Information
١١.	New Mexico Oil Conservation Division & Bureau of Land Management
Sectio	on 9.0 - Training Requirements17
	on 10.0 - Personal Protective Equipment
	ndices
I.	Appendix A – H_2S SDS

II. Appendix B – SO₂ SDS

.

Section 1.0 – Introduction

I. Purpose

The purpose of this contingency plan (Plan) is to provide Permian Resources Corporation. (Permian Resources) with an organized plan of action for alerting and protecting Permian Resources employees, the general public, and any potential first responders prior to any intentional release or immediately following the accidental / unintentional release of a potentially hazardous volume / concentration of Hydrogen Sulfide Gas (H2S).

II. Scope & Applicability

This Plan applies to all planned, unplanned, uncontrolled and/or unauthorized releases of hazardous concentrations of H₂S or any associated hazardous byproducts of combustion, occurring at any Permian Resources owned or operated facilities including but not limited to: wells, flowlines, pipelines, tank batteries, production facilities, SWD facilities, compressor stations, gas processing plants, drilling / completions / workover operations, and any other applicable company owned property.

Section 2.0 - Plan Implementation

I. Activation Requirements

In accordance with the requirements of Bureau of Land Management Onshore Order #6 and NMAC 19.15.11, this Plan shall be activated in advance of any authorized, planned, unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, or SO^2 , which could potentially adversely impact the workers, general public or the environment.

II. Emergency Evacuation

In the event of an unplanned, uncontrolled, or unauthorized release of a hazardous volume / concentration of H_2S gas, the first priority is to ensure the safety of the workers and general public. Upon discovery and subsequent determination of an applicable release, which cannot be quickly mitigated, immediately by using 911, notify local authorities to begin the process of alerting the general public, evacuate any residents within the Radius of Exposure (ROE), and limit any general public or employee access to any areas within the ROE of the affected facility.

III. Emergency Response Activities

The purpose of emergency response actions is to take steps to quickly mitigate / stop the ongoing release of the hazardous source of H_2S . Upon discovery of any hazardous release, immediately notify Permian Resources management to activate the Emergency Response Team (ERT). Once Permian Resources supervision arrives and assesses the situation, a work plan identifying the proper procedures shall be developed to stop the release.

Section 3.0 - Potential Hazardous Conditions & Response Actions

During a planned or unplanned release of H₂S, there are several hazardous conditions that are presented both to employees, the general public, and emergency responders. These specific hazardous conditions are identified in the tables below.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

H2S OPERATING CONDITIONS – RESPONSE ACTIONS TO CONSIDER	✓
H ₂ S CONDITION 1: POTENTIAL DANGER TO LIFE AND HEALTH -> WARNING SIG GREEN	GN
H ₂ S concentration <10 ppm detected by location monitors	
General Actions During Condition 1	
Notify Site Supervisor / Permian Resources Person-in-Charge (PIC) of any observed increase in ambient H ₂ S concentrations	
All personnel check safety equipment is in adequate working order & store in accessible location	
Sensitize crews with safety meetings.	
Limit visitors and non-essential personnel on location	
Continuously monitor H ₂ S concentrations and check calibration of sensors	
Ensure H ₂ S scavenger is on location.	
H₂S CONDITION 2: MODERATE DANGER TO LIFE AND HEALTH → WARNING SIGN YELLOW	
H ₂ S concentration >10 ppm and < 30 ppm in atmosphere detected by location monitors:	
General Actions During Condition 2	
Sound H ₂ S alarm and/or display yellow flag.	
Account for on-site personnel	
Upon sounding of an area or personal H_2S monitor alarm when 10 ppm is reached, proceed to a safe briefing area upwind of the location immediately (see MA-4 , Figure 5-1).	
Don proper respiratory protection.	
Alert other affected personnel	
<u>If trained and safe to do so</u> undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Account for on-site personnel at safe briefing area.	
Stay in safe briefing area if not working to correct the situation.	
Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies (Appendix A) If off-site impact; notify any neighbors within Radius of Exposure (ROE), Fig 5.11	
Continuously monitor H ₂ S until readings below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	

.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

H₂S CONDITION 3: EXTREME DANGER TO LIFE AND HEALTH → WARNING SIGN RED	
> 30 ppm H ₂ S concentration in air detected by location monitors: Extreme danger to life	
General Actions During Condition 3	
Sound H ₂ S alarm and/or display red flag.	
Account for on-site personnel	
Move away from H ₂ S source and get out of the affected area.	
Proceed to designated safe briefing area; alert other affected personnel.	
Account for personnel at safe briefing area.	
If trained and safe to do so undertake measures to control source H2S discharge and eliminate possible ignition sources. Initiate Emergency Shutdown procedures as deemed necessary to correct or control the specific situation.	
Notify vehicles or situation and divert all traffic away from location.	
Permian Resources Peron-in-Charge will make appropriate community notifications.	
Red warning flag must be on display until the situation has been corrected and the Permian Resources Person-in-Charge determines it is safe to resume operations under Condition 1 .	
Notify management of the condition and action taken. If H_2S concentration is increasing and steps to correct the situation are not successful – or at any time if well control is questionable – alert all responsible parties for possible activation of the H_2S Contingency Plan. If well control at the surface is lost, determine if situation warrants igniting the well.	
If uncontrolled flow at the surface occurs, the Permian Resources PIC, with approval, if possible, from those coordinating the emergency (as specified in the site-specific H ₂ S Contingency Plan) are responsible for determining if the situation warrants igniting the flow of the uncontrolled well. This decision should be made only as a last resort and in a situation where it is obvious that human life is in danger and there is no hope of controlling the flow under prevailing conditions.	
If the flow is ignited, burning H ₂ S will be converted to sulfur dioxide (SO ₂), which is also highly toxic. Do not assume that area is safe after the flow is ignited. If the well is ignited, evacuation of the area is mandatory, because SO ₂ will remain in low-lying places under no-wind conditions.	
 Keep Site Supervisor / Permian Resources PIC informed. Notify applicable government agencies and local law enforcement (Appendix A) If off-site impact; notify any neighbors within the Radius of Exposure (ROE), see example in Figure 5-11. 	
Continuously monitor H ₂ S until readings fall below 10 ppm.	
Evacuated area shall not be re-entered except by trained and authorized personnel utilizing appropriate respiratory protection; or until "all clear" sounded by Permian Resources PIC / Site Supervisor.	
IF ABOVE ACTIONS CANNOT BE ACCOMPLISHED IN TIME TO PREVENT EXPOSURE TO THE PUBLIC	
Alert public (directly or through appropriate government agencies) who may be subject to potentially harmful exposure levels.	
Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as appropriate.	

.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Make recommendations to public officials regarding evacuating the public and assist as appropriate.	
Monitor ambient air in the area of exposure (after following abatement measures) to determine when it is safe for re-entry.	

Section 4.0 - Notification of H₂S Release Event

I. Local & State Law Enforcement

Prior to the planned / controlled release of a hazardous concentration of H_2S gas or any associated byproducts of the combustion of H_2S gas, notify local law enforcement agencies regarding the contents of this plan.

In the event of the discovery of an unplanned/uncontrolled release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, immediately notify local and/or state law enforcement agencies of the situation and ask for their assistance.

II. General Public

In the event of a planned or unplanned release of a hazardous concentration of H₂S gas or any associated byproducts of combustion, notify local law enforcement agencies and ask for their assistance in alerting the general public and limiting access to any public roads that may be impacted by such a release.

III. New Mexico Oil Conservation Division

The Permian Resources HSE Department will make any applicable notification to the New Mexico OCD regarding any release of a hazardous concentration of H₂S Gas or any associated byproducts of combustion.

IV. New Mexico Environment Department

The Permian Resources HSE Department will make any applicable notifications to the NMED regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

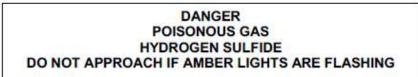
V. Bureau of Land Management

The Permian Resources Regulatory Department will make any applicable notifications to the BLM regarding any release of a hazardous concentration of H_2S gas or any associated byproducts of combustion.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Section 5.0 - Emergency Contact List

EMERGENCY CONTACT LIST				
PERMIAN RESOURCES CORPORATION.				
POSITION	NAME	OFFICE	CELL	ALT PHONE
	Opera	ations		
Production Superintendent	Rick Lawson		432.530.3188	
TX Production Superintendent	Josh Graham	432.940.3191	432.940.3191	
NM Production Superintendent	Manual Mata	432.664.0278	575.408.0216	
Drilling Manager	Jason Fitzgerald	432.315.0146	318.347.3916	
Drilling Engineer	Parker Simmons	432.400.1038	281.536.9813	
Production Manager	Levi Harris	432.219.8568	720.261.4633	
SVP Development Ops	Clayton Smith	720.499.1416	361.215.2494	
SVP Production Ops	Casey McCain	432.695.4239	432.664.6140	
·	HSE & Re	gulatory	1	
H&S Manager	Adam Hicks	720.499.2377	903.426.4556	
Regulatory Manager	Stephanie Rabadue		432.260.4388	
Environmental Manager	Montgomery Floyd	432-315-0123	432-425-8321	
HSE Consultant	Blake Wisdom		918-323-2343	
l	ocal, State, & F	ederal Agen	cies	
Lea County Sheriff		575-396-3611		911
New Mexico State Highway Patrol		505-757-2297		911
Eunice Fire / EMS		575-394-3258		911
Lea County Hospital		575-492-5000		
Secorp – Safety Contractor	Ricky Stephens		(325)-262-0707	
New Mexico Oil Conservation Division – District 1 Office – Hobbs, NM.		575-393-6161		
New Mexico Environment Department – District III Office – Hobbs, NM		575-397-6910		
New Mexico Oil Conservation Division – Hobbs, NM	24 Hour Emergency	575-393-6161		
Bureau of Land Management – Carlsbad, NM		575-706-2779		
Lea County PET Inspector		575-689-5981		
U.S. Fish & Wildlife		502-248-6911		


Section 6.0 – Drilling Location Information

I. Site Safety Information

- 1. Safe Briefing Area
 - a. There shall be two areas that will be designated as "SAFE BRIEFING AREAS". If H₂S is detected in concentrations equal to or in excess of 10 ppm all personnel not assigned emergency duties are to assemble in the designated Safe Briefing area for instructions. These two areas shall be positioned in accessible locations to facilitate the availability of self-contained breathing air devices. The briefing areas shall be positioned no less than 250' from the wellhead and in such locations that at least one briefing area will be upwind from the well at all times.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

- 2. Wind Indicators
 - a. 4 Windsocks will be installed at strategic points on the facility.
- 3. Danger Signs
 - a. A warning sign indicating the possible well conditions will be displayed at the location entrance.

4. H₂S Detectors and Alarms

- a. Continuous monitoring type H_2S detectors, capable of sensing a minimum of 5ppm H_2S in air will be located centrally located at the tanks, heater treater, and combustor. Continuous monitoring type SO_2 detector will also be located at the combustor. The automatic H_2S alarm/flashing light will be located at the site entrance and in front of tank battery.
- 5. Safety Trailer
 - a. A safety trailer equipped with an emergency cascade breathing air system with 2 ea. Work/escape packs, a stretcher, 2 OSHA approved full body harnesses, and a 20# Class ABC fire extinguisher shall be available at the site in close proximity to the safe briefing area. The cascade system shall be able to be deployed to the drill floor when needed to provide safe breathing air to the workers as needed.
- 6. Well Control Equipment
 - a. The location shall have a flare line to a remote automatic ignitor and back up flare gun, placed 150' from the wellhead.
 - b. The location shall be equipped with a remotely operated choke system and a mud gas separator.

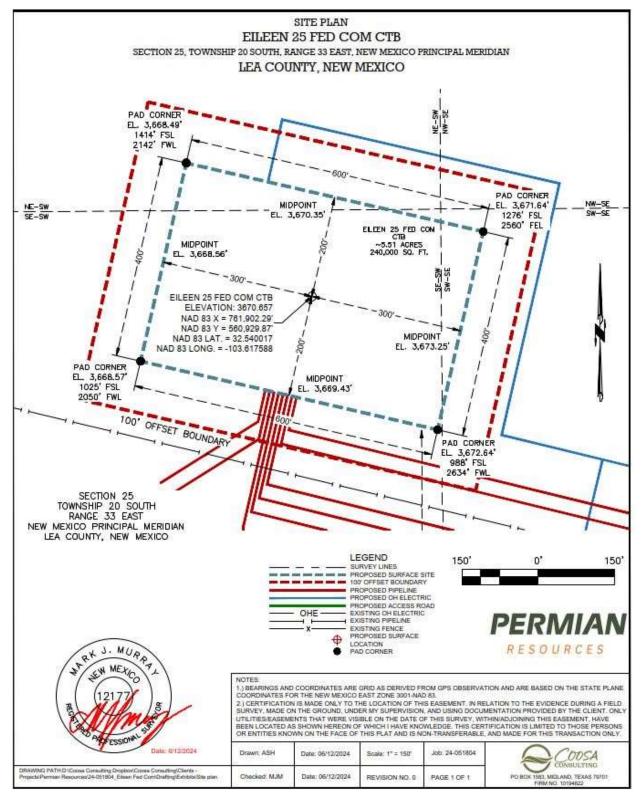
7. Mud Program

- a. Company shall have a mud program that contains sufficient weight and additives to control H_2S .
- 8. Metallurgy
 - a. All drill strings, casing, tubing, wellhead, BOP, spools, kill lines, choke manifold and lines, and valves shall be suitable for anticipated H₂S volume and pressure.
- 9. Communication
 - a. The location shall be equipped with a means of effective communication such as a cell phones, intercoms, satellite phones or landlines.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

II. Directions to Location

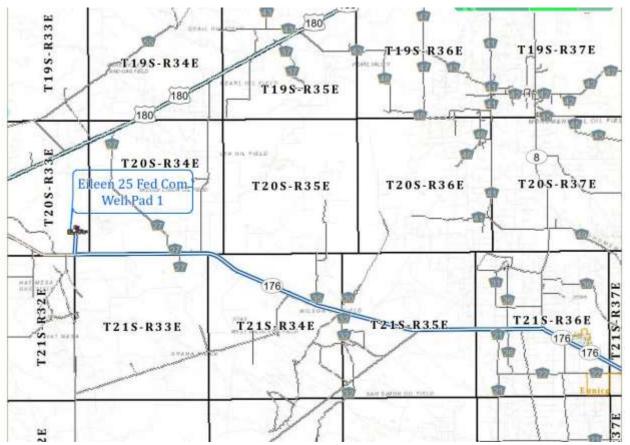
FROM THE INTERSECTION OF NM-207 AND NM-176 IN EUNICE, NEW MEXICO


1. MOVE WEST ON NM-176 APPROX. 29 MILES.

2. TURN RIGHT ONTO LEASE ROAD AND MOVE NORTH APPROX.1 MILE.

3. TURN RIGHT AND MOVE EAST APPROX. 1000 FEET.

4. TUNR LEFT AND MOVE NORTH APPROX. 1200 FEET.


Plat of Location

Page 41 of 117

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

1. Routes of Ingress & Egress (MAP)

2. Residences in proximity to the 3000' Radius of Exposure (ROE) (MAP)

There are no residences or public gathering places with the 3000' ROE, 100 PPM, 300 PPM, or 500 PPM ROE.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Map of 3000' ROE Perimeter

100 PPM, 300 PPM, & 500 PPM Max ROE under worst case scenario

Enter H₂S in PPM	1500	
Enter Gas flow in mcf/day (maximum worst case conditions)	2500	
500 ppm radius of exposure (public road)	<u>105</u>	feet
300 ppm radius of exposure	<u>146</u>	feet
100 ppm radius of exposure (public area)	<u>230</u>	feet

- Location NAD 83 GPS Coordinates Lat: 32.540017, Long: -103.617588
- **3.** Public Roads in proximity of the Radius of Exposure (ROE)

There are no public roads that would be within the 500 PPM ROE. The closest public road is New Mexico Hwy 176, which is 1.2 miles from the location.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Section 7.0 – Hazard Communication

I. Physical Characteristics of Hydrogen Sulfide Gas

Hydrogen sulfide (H₂S) is a colorless, poisonous gas that is soluble in water. It can be present in crude oils, condensates, natural gas and wastewater streams.

 H_2S is heavier than air with a vapor density of 1.189 (air = 1.0); however, H_2S is most often mixed with other gases. These mixtures of H_2S and other gases can be heavier or lighter than air. If the H_2S -containing mixture is heavier, it can collect in low areas such as ditches, ravines, firewalls, and pits; in storage tanks; and in areas of poor ventilation. Please see physical properties in **Table 7.0**.

With H₂S the sense of smell is rapidly lost allowing lethal concentrations to be accumulated without warning. The toxicity of hydrogen sulfide at varying concentrations is indicated in the **Table 7.1**.

Warning: Do not use the mouth-to-mouth method if a victim ingested or inhaled hydrogen sulfide. Give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.

Properties of H2S	Description
Vapor Density > 1 = 1.189 Air = 1	 H2S gas is slightly heavier than air, which can cause it to settle in low places and build in concentration. Produced as a mixture with other gases associated with oil and gas production.
Flammable Range 4.3%-46% 43000 ppm – 460000 ppm	 H2S can be extremely flammable / explosive when these concentrations are reached by volume in air.

Table 7.0. Physical Properties of H₂S

Although H₂S is primarily a respiratory hazard, it is also flammable and forms an explosive mixture at concentrations of 4.3%–46.0% (40,000ppm – 460,000 ppm) by volume in air.

H₂S can be encountered when:

- Venting and draining equipment.
- Opening equipment (separators, pumps, and tanks).
- Opening piping connections ("line breaking").
- Gauging and sampling storage tanks.
- Entering confined spaces.
- Working around wastewater pits, skimmers, and treatment facilities.
- II. Human Health Hazards Toxicological Information

Table 7.1. Hazards & Toxicity

Concentration	Symptoms/Effects
(ppm)	

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

0.00011-0.00033 ppm	Typical background concentrations
0.01-1.5 ppm	Odor threshold (when rotten egg smell is first noticeable to some). Odor becomes more offensive at 3-5 ppm. Above 30 ppm, odor described as sweet or sickeningly sweet.
2-5 ppm	Prolonged exposure may cause nausea, tearing of the eyes, headaches or loss of sleep. Airway problems (bronchial constriction) in some asthma patients.
20 ppm	Possible fatigue, loss of appetite, headache, irritability, poor memory, dizziness.
50-100 ppm	Slight conjunctivitis ("gas eye") and respiratory tract irritation after 1 hour. May cause digestive upset and loss of appetite.
100 ppm	Coughing, eye irritation, loss of smell after 2-15 minutes (olfactory fatigue). Altered breathing, drowsiness after 15-30 minutes. Throat irritation after 1 hour. Gradual increase in severity of symptoms over several hours. Death may occur after 48 hours.
100-150 ppm	Loss of smell (olfactory fatigue or paralysis).
200-300 ppm	Marked conjunctivitis and respiratory tract irritation after 1 hour. Pulmonary edema may occur from prolonged exposure.
500-700 ppm	Staggering, collapse in 5 minutes. Serious damage to the eyes in 30 minutes. Death after 30-60 minutes.
700-1000 ppm	Rapid unconsciousness, "knockdown" or immediate collapse within 1 to 2 breaths, breathing stops, death within minutes.
1000-2000 ppm	Nearly instant death

III. Environmental Hazards

H₂S and its associated byproducts from combustion presents a serious environmental hazard. Sulphur Dioxide SO₂ is produced as a constituent of flaring H₂S Gas and can present hazards associated, which are similar to H₂S. Although SO₂ is heavier than air, it will be picked up by a breeze and carried downwind at elevated temperatures. Since Sulfur Dioxide is extremely irritating to the eyes and mucous membranes of the upper respiratory tract, it has exceptionally good warning powers in this respect. The following table indicates the toxic nature of the gas. Please see the attached SDS in Appendix B for reference.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

SULFUR DIOXIDE TOXICITY				
Concentration		Effects		
%SO ₂	PPM			
0.0005	3 to 5	Pungent odor-normally a person can detect SO ₂ in this range.		
0.0012	12	2 Throat irritation, coughing, and constriction of the chest tearing and smarting of eyes.		
0.15	150	So irritating that it can only be endured for a few minutes.		
0.05	500	Causes a sense of suffocation, even with first breath.		

Section 8.0 - Regulatory Information

I. OSHA & NIOSH Information

II. Table 8.0. OSHA & NIOSH H₂S Information

PEL, IDLH, TLV	Description	
NIOSH PEL 10 PPM	 PEL is the Permissible Exposure Limit that an employee may be exposed up to 8 hr / day. 	
OSHA General Industry Ceiling PEL – 20 PPM	 The maximum exposure limit, which cannot be exceeded for any length of time. 	
IDLH 100 PPM	 Immediately Dangerous to Life and Health 	
Permian Resources PEL 10 PPM	 Permian Resources Policy Regarding H2S for employee safety 	

III. New Mexico OCD & BLM – H₂S Concentration Threshold Requirements

New Mexico NMAC 19.15.11 and Onshore Order #6 identify two Radii of Exposure (ROE) that identify potential danger to the public and require additional compliance measures. Permian Resources is required to install safety devices, establish safety procedures and develop a written H₂S contingency plan for sites where the H₂S concentrations are as follows.

H₂S Radius of Exposure	Description	Control and Equipment Requirements
100 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 100ppm	 ROE > 50-ft and includes any part of a "public area" (residence, school, business, etc., or any area that can be expected to be populated). ROE > 3,000-ft
500 ppm	Distance from a release to where the H ₂ S concentration in the air will dilute below 500ppm	ROE > 50-ft and includes any part of a public road (public roads are tax supported roads or any road used for public access or use)

Calculating H₂S Radius of Exposure

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

The ROE of an H₂S release is calculated to determine if a potentially hazardous volume of H₂S gas at 100 or 500 parts per million (ppm) is within a regulated distance requiring further action. If information about the concentration of H₂S and the potential gas release volume is known, the location of the Muster Areas will be set, and safety measures will be implemented based on the calculated radius of exposure (ROE). NMAC 19.15.11 – Hydrogen Sulfide Safety defines the ROE as the radius constructed with the gas's point of escape as its center and its length calculated by the following Pasquill-Gifford equations:

To determine the extent of the **<u>100 ppm ROE</u>**:

 $x = [(1.589) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

To determine the extent of the **<u>500 ppm ROE</u>**:

 $x = [(0.4546) \text{ (mole fraction H}_2S)(Q)]^{(.6258)}$.

Table 8.2. Calculating H2S Radius of Exposure

ROE Variable	Description	
X =	ROE in feet	
Q =	Max volume of gas released determined to be released in cubic feet per day (ft ³ /d) normalized to standard temperature and pressure, 60°F and 14.65 psia	
Mole fraction H ₂ S =	Mole fraction of H ₂ S in the gaseous mixture released.	

The volume used as the escape rate in determining the ROE is specified in the rule as follows:

- The maximum daily volume rate of gas containing H₂S handled by that system element for which the ROE is calculated.
- For existing gas wells, the current adjusted open-flow rate, or the operator's estimate of the well's capacity to flow against zero back-pressure at the wellhead.

New Mexico Oil Conservation Division & BLM Site Requirements under NMAC 19.15.11 & Onshore Order #6

- Two cleared areas will be designated as Safe Briefing Areas. During an emergency, personnel will assemble in one of these areas for instructions from the Permian Resources Person-in-Charge. Prevailing wind direction should be considered in locating the briefing areas 200' or more on either side of the well head. One area should offset the other at an angle of 45° to 90° with respect to prevailing wind direction to allow for wind shifts during the work period.
- In the event of either an intentional or accidental releases of hydrogen sulfide, safeguards to protect the general public from the harmful effects of hydrogen sulfide must be in place for operations. A summary of the provisions in each of three H₂S ROE cases is included in **Table 8.3**.
 - **CASE 1 -**100 ppm ROE < 50'
 - **CASE 2** 100 ppm ROE is 50' or greater, but < 3000' and does not penetrate public area.
 - **CASE 3** -100 ppm ROE is 50' or greater and penetrates a public area or 500 ppm ROE includes a public road. Also if 100 ppm ROE > 3000' regardless of public area.

Table 8.3. NMAC 19.15.11 Compliance Requirements Drilling & Production

NMAC 19.15.11 & BLM COMPLIANCE REQUIREMENTS - DRILLING & PRODUCTION

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

PROVISION	CASE 1	CASE 2	CASE 3
H ₂ S Concentration Test	X	X	X
Н-9	X	Х	X
Training	X	Х	X
District Office Notification	X	Х	X
Drill Stem Tests Restricted	X*	X*	X
BOP Test	X*	X*	X
Materials		Х	X
Warning and Marker		Х	X
Security		X	X
Contingency Plan			X
Control and Equipment Safety			Х
Monitors		X**	X**
Mud (ph Control or Scavenger)			X*
Wind Indicators		X**	X
Protective Breathing Equipment		X**	X
Choke Manifold, Secondary Remote Control, and Mud-Gas Separator			X
Flare Stacks			X*

Section 9.0 - Training Requirements

Training

The following elements are considered a minimum level of training for personnel assigned to operations who may encounter H₂S as part of routine or maintenance work.

- The hazards, characteristics, and properties of hydrogen sulfide (H₂S) and (SO₂).
- Sources of H₂S and SO₂.
- Proper use of H₂S and SO₂ detection methods used at the workplace.
- Recognition of, and proper response to, the warning signals initiated by H₂S and SO₂ detection systems in use at the workplace.
- Symptoms of H₂S exposure; symptoms of SO₂ exposure
- Rescue techniques and first aid to victims of H₂S and SO₂ exposure.
- Proper use and maintenance of breathing equipment for working in H₂S and SO₂ atmospheres, as appropriate theory and hands-on practice, with demonstrated proficiency (29 *CFR* Part 1910.134).
- Workplace practices and relevant maintenance procedures that have been established to protect personnel from the hazards of H₂S and SO₂.
- Wind direction awareness and routes of egress.
- Confined space and enclosed facility entry procedures (if applicable).
- Emergency response procedures that have been developed for the facility or operations.
- Locations and use of safety equipment.
- Locations of safe briefing areas.

Refresher training will be conducted annually.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Section 10.0 - Personal Protective Equipment

I. <u>Personal H₂S Monitors</u>

All personnel engaged in planned or unplanned work activity to mitigate the release of a hazardous concentration of H₂S shall have on their person a personal H2S monitor.

- II. Fixed H₂S Detection and Alarms
 - 4 channel H₂S monitor
 - 4 wireless H₂S monitors
 - H₂S alarm system (Audible/Red strobe)
 - Personal gas monitor for each person on location
 - Gas sample tubes

III. Flame Resistant Clothing

All personnel engaged in planned or unplanned work activity associated with this Plan shall have on the appropriate level of FRC clothing.

IV. <u>Respiratory Protection</u>

The following respiratory protection equipment shall be available at each drilling location.

- Working cascade system available on rig floor and pit system & 750' of air line hose
- Four (4) breathing air manifolds
- Four (4) 30-minute rescue packs
- Five (5) work/Escape units
- Five (5) escape units
- One (1) filler hose for the work/escape/rescue units

Supplied air (airline or SCBA) respiratory protection against hydrogen sulfide exposure is required in the following situations:

- When routine or maintenance work tasks involve exposure to H₂S concentrations of 10 ppm or greater.
- When a fixed location area monitor alarms, and re-entry to the work area is required to complete a job.
- When confined spaces are to be entered without knowledge of H₂S levels present, or if initial measurements are to be taken of H₂S levels.
- During rescue of employees suspected of H₂S overexposure.
- For specific tasks identified with significant exposure potential and outlined in local program guidelines.
- All respiratory equipment for hydrogen sulfide must be of the supplied-air type, equipped with pressure-demand regulators and operated in the pressure-demand mode only. This is the only type of respiratory protection recommended for hydrogen sulfide application. Equipment should be approved by NIOSH/MSHA or other recognized national authority as required. If airline units are used, a five-minute egress bottle should also be carried.
- Gas masks or other air-purifying respirators MUST NEVER BE USED FOR HYDROGEN SULFIDE due to the poor warning properties of the gas.
- Use of respiratory protection should be accompanied by a written respiratory protection program.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Appendix A H₂S SDS

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardosa Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Sug Supersedes: 10-15-2013

SECTION 1: Identification	
Product form	: Substance
Name	: Hydrogen sulfide
CAS No	: 7783-06-4
Formula	: H25
Other means of identification	Hydrogen sulfide
Product group	: Core Products
1.2. Recommended use and restricti	DOS DO USE
Recommended uses and restrictions	1 Industrial use the
and the second second second second second second	Use as directed
1.3. Supplier	
Praxai: Canada inc. 1200 – 1 City Centre Drive Mississauga - Canada L5B 1M2 T 1-905-803-1600 - F 1-905-803-1682 www.praxair.ca	
1.4. Emergency telephone number	
Emergency number	: 1-800-383-0042 Call emergency number 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier or Praxair sales representative.
SECTION 2: Hazard Identification	
2.1. Classification of the substance of	
GHS-CA classification	
Flam. Gas 1 H220 Liquefied gas H280 Acute Tox. 2 (Inhalation: gas) H330 STOT SE 3 H335	
2.2. GHS Label elements, including p	precautionary statements
GHS-CA labelling	
Hazard pictograms	
Signal word	GH802 GH804 GH806 GH807 : DANGER
Hazard statements	: EXTREMELY FLAMMABLE GAS CONTAINS GAS UNDER PRESSURE; MAY EXPLODE IF HEATED FATAL IF INHALED MAY CAUSE RESPIRATORY IRRITATION MAY FORM EXPLOSIVE MIXTURES WITH AIR SYMPTOMS MAY BE DELAYED EXTENDED EXPOSURE TO GAS REDUCES THE ABILITY TO SMELL SULFIDES
Precautionary statements	Do not handle until all safety precautions have been read and understood Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking
	soair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure t
	If any version of this document after it has been downloaded or removed from our website.
EN (English)	SDS ID (E-4611

EN (English)

SDS ID : E-4611

109

an Rosquercos Corneration	ЦС	Contingonar	Dlan	Los County Now M
an Resources Corporation		Contingency		Lea County, New M
	Elleel	n 25 Fed Cor	nCIB	
PRAXAIR	strongent in the construction is	et E-4611 Products Regulation (F		
	Date of issue: 10-15-1979	Revision date: 08	-10-2016 Supersed	is: 10-15-2013
	Avoid release Wear protect protection Leaking gas In case of lae Store locked Dispbase of cr Protect from Close valve a Do not open When returni	e only outdoors or in to the environmen ive gloves, protectiv fire: Do not extingui akage, eliminate all i up ontents/container in sunlight when ambi- ifter each use and v valve until connecte ng cylinder, install is	e clothing, eye protectio sh, unless leak can be s gnition sources accordance with contair ant temperature exceed:	er Supplier/owner instructions 52°C (125°F) 3 for use
2.3. Other hazards				
Other hazards not contributing to the	: Contact with	liquid may cause co	ld burns/frostbite.	
classification				
2.4. Unknown acute toxicity (C	iHS-CA)			
	iHS-CA)			
2.4. Unknown acute toxicity (G	1141397	ents		
2.4. Unknown acute toxicity (C No data available	1141397	ents		
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/Int	1141397	ents % (Vol.)	Common Name (symonyms)
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1. Substances	formation on ingredie		Hydrogen sulfide (H2	synonyms) S) / Hydrogen sulphide / Sulfur hydride / Olhydrogen sulphide / Hydrogensulfide
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen suffice (Main constituent)	formation on ingredie CAS No.	% (Vol.)	Hydrogen sulfide (H2	S) / Hydrogen sulphide / Sulfur hydride /
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1. Substances Name Hydrogen suffice (Main constituent) 3.2. Mixtures	formation on ingredie CAS No.	% (Vol.)	Hydrogen sulfide (H2	S) / Hydrogen sulphide / Sulfur hydride /
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen sulfide (Main construent) 3.2. Mixtures Not applicable	CAS No. (CAS No. (CAS No! 7783-06-4	% (Vol.)	Hydrogen sulfide (H2	S) / Hydrogen sulphide / Sulfur hydride /
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen sulfide (Man construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure	CAS No. (CAS No. (CAS No! 7783-06-4 TES	% (Vol.)	Hydrogen sulfide (H2	S) / Hydrogen sulphide / Sulfur hydride /
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen suffide (Man construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure	CAS No. (CAS No! 7783-06-4 (CAS No! 7783-06-4 res asures	% (Vol.) 100	Hydrogen sulfide (H2 Sulfureted hydrogen	S) / Hydrogen sulphide / Suffur hydride / Dihydrogen sulphide / Hydrogensutfide
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1. Substances Name Hydrogen suffice (Main construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure Ain Description of first aid me First-aid measures after inhalation	CAS No. ICAS No. ICAS No; 7783-06-4 ICAS No; 7783-06-4 ICAS No; 7783-06-4 ICAS No; 7783-06-4 ICAS No; 7783-06-4 ICAS No; ICAS NO;	% (Vol.) 100 esh air and keep at respiration. If breath	Hydrogen sulfide (H2 Sulfuneted hydrogen rest in a position comfor ing is difficult, trained p	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, prisonnel should give oxygen. Call a
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen suffide (Man construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure 4.1. Description of first aid measure	CAS No. (CAS No! 7783-06-4 (CAS No! 7783-06-4 (CAS No! 7783-06-4 (CAS No! 7783-06-4) (CAS No! 7783-06-4 (CAS No! 7783-06-4 (CA	% (Vol.) 100 esh air and keep at respiration. If breath ay cause frostbite. Frot to exceed 105°F in skin warming for a eaffected area, in eaffecte	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained p- or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur	S) / Hydrogen sulphide / Suffur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbite area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1. Substances Name Hydrogen suffice (Main construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure Ain Description of first aid me First-aid measures after inhalation	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-06-	% (Vol.) 100 esh air and keep at respiration. If breat ay cause frostbite. F no to exceed 105°F in skin warming for : ne affected area, in ater. Seek medical o flush eyes thorough e eyebalis to ensure	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur case of massive exposu valuation and treatment ly with water for at least	S) / Hydrogen sulphide / Suffur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbite area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen sulfide (Man construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after skin contact	CAS No. (CAS No. (CAS No) 7783-06-4 (CAS No) 7783-06-4 (CAS No) 7783-06-4 (CAS No) 7783-06-4 (CAS No) 7783-06-4 (CAS No) (CAS NO)	% (Vol.) 100 esh air and keep at respiration. If breat ay cause frostbite. F not to exceed 105°F in skin warming for : ne affected area. In ater. Seek medical e flush eyes thorough e eyebalis to ensure jist immediately.	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur case of massive exposu valuation and treatment ly with water for at least	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbile area with tare should be tolerable to normal fill normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen suffice Hydrogen suffice Man construent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-0	K (Vol.) 100 esh air and keep at respiration. If breath ay cause frostbite. F not to exceed 105°F in skin warming for a eatfected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure list immediately. not considered a pot	Hydrogen sulfide (H2 Sulfuneted hydrogen rest in a position comfor ing is difficult, trained p- or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur case of massive exposu valuation and treatment ly with water for at least t that all surfaces are flu	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbile area with tare should be tolerable to normal fill normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/int 3.1 Substances Name Hydrogen suffice Hydrogen suffice Man construent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-0	K (Vol.) 100 esh air and keep at respiration. If breath ay cause frostbite. F not to exceed 105°F in skin warming for a eatfected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure list immediately. not considered a pot	Hydrogen sulfide (H2 Sulfuneted hydrogen rest in a position comfor ing is difficult, trained p- or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur case of massive exposu valuation and treatment ly with water for at least t that all surfaces are flu	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbile area with tare should be tolerable to normal fill normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffide (Man constluent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure A1. Description of first aid me First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2 Most important symptome No additional information available	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-06) (CAS No: 7783-06) (CAS No: 7783-06) (C	K (Vol.) 100 esh air and keep at respiration. If breath ay cause frostbite. F not to exceed 105°F in skin warming for a eaffected area. In eaffected area. In ter. Seek medical a flush eyes thorough e eyeballs to ensure gist immediately. wot considered a pot elayed)	Hydrogen sulfide (H2 Sulfuneted hydrogen rest in a position comfor ing is difficult, trained p- or exposure to liquid, im (41°C). Water tempera at least 15 minutes or ur case of massive exposu valuation and treatment ly with water for at least t that all surfaces are flu	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbile area with tare should be tolerable to normal fill normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffide (Man constluent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure A1. Description of first aid me First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2 Most important symptome No additional information available	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-078-6) (CAS No: 7783-078-6) (CAS No: 7783-0	% (Vol.) 100 esh air and keep at respiration. If breatt ay cause frostbite. F not to exceed 105°F in skin warming for a eaffected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure gist immediately. not considered a pot played) If necessary	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or un case of massive exposu valuation and treatment y with water for at least that all surfaces are flu ential route of exposure.	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, ersonnel should give oxygen. Call a mediately warm frostbile area with tare should be tolerable to normal fill normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffice Hydrogen suffice Hydrogen suffice Man construent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure Not applicable SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2 Most important symptome No additional information available 4.3 Immediate medical attents	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-078-6) (CAS No: 7783-078-6) (CAS No: 7783-0	% (Vol.) 100 esh air and keep at respiration. If breatt ay cause frostbite. F not to exceed 105°F in skin warming for a eaffected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure gist immediately. not considered a pot played) If necessary	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or un case of massive exposu valuation and treatment y with water for at least that all surfaces are flu ential route of exposure.	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, arsonnel should give oxygen. Call a mediately warm frostbile area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffice Hydrogen suffice Hydrogen suffice Man construent) 3.2 Mixtures Not applicable SECTION 4: First-aid measure Not applicable SECTION 4: First-aid measure First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2 Most important symptome No additional information available 4.3 Immediate medical attents	CAS No. (CAS No. (CAS No: 7783-06-4 (CAS No: 7783-06-4 (CAS No: 7783-06-4) (CAS No: 7783-06) (CAS No: 7783-06) (CAS No: 7783-06) (C	% (Vol.) 100 esh air and keep at respiration. If breatt ay cause frostbite. F not to exceed 105°F in skin warming for a eaffected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure gist immediately. not considered a pot played) If necessary	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or un case of massive exposu valuation and treatment y with water for at least that all surfaces are flu ential route of exposure.	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, arsonnel should give oxygen. Call a mediately warm frostbile area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffice Hen construent 3.2 Mixtures Not applicable SECTION 4: First-aid measure Not applicable SECTION 4: First-aid measure A1. Description of first aid me First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptome No additional information available 4.3. Immediate medical attents	CAS No. (CAS No. (CAS No! 7783-06-4 (CAS No! 7783-06-4 (CAS No! 7783-06-4) (CAS NO! 7783-06) (CAS NO! 7783-06) (CAS NO! 7783-06) (C	% (Vol.) 100 esh air and keep at respiration. If breatt ay cause frostbite. F not to exceed 105°F in skin warming for a eaffected area. In ater. Seek medicale flush eyes thorough e eyeballs to ensure gist immediately. not considered a pot played) If necessary	Hydrogen sulfide (H2 Sulfureted hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or un case of massive exposu valuation and treatment y with water for at least that all surfaces are flu ential route of exposure.	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, arsonnel should give oxygen. Call a mediately warm frostbile area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an
2.4. Unknown acute toxicity (C No data available SECTION 3: Composition/inf 3.1 Substances Name Hydrogen suffice (Man construent) 3.2. Mixtures Not applicable SECTION 4: First-aid measure Not applicable SECTION 4: First-aid measure A1. Description of first aid me First-aid measures after inhalation First-aid measures after eye contact First-aid measures after eye contact First-aid measures after ingestion 4.2. Most important symptome No additional information available 4.3. Immediate medical attentio Other medical advice or treatment SECTION 5: Fire-fighting me	CAS No. (CAS No. (CAS No.) (CAS No! 7783-06-4 (CAS No! 7783-06-4 (CAS No! 7783-06-4) (CAS NO! 7783-078-6) (CAS NO! 7783-078-6) (CAS	% (Vol.) 100 esh air and keep at respiration. If breat ay cause frostbite. F not to exceed 105°F in skin warming for : ne affected area, in ater. Seek medical a flush eyes thorough e eyebalis to ensure jist immediately. not considered a pot elayed) if necessary cal assistance. Treat de, Dry chemical, W	Hydrogen sulfide (H2 Sulfureled hydrogen rest in a position comfor ing is difficult, trained pi or exposure to liquid, im (41°C). Water tempera at least 15 minutes or un case of massive exposure valuation and treatment by with water for at least to that all surfaces are flu ential route of exposure.	S) / Hydrogen sulphide / Sulfur hydride / Othydrogen sulphide / Hydrogensulfide table for breathing. If not breathing, arsonnel should give oxygen. Call a mediately warm frostbile area with ture should be tolerable to normal til normal coloring and sensation have re, remove clothing while showering as soon as possible. 15 minutes. Hold the eyelids open and shed thoroughly. Contact an

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

2/9

•

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

	21000	Hy
PRA	XAI	R Saf

Hydrogen sulfide Safety Data Sheet E-4611 eccording to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

5.3. Specific hazards arising from the h			
Fire hazard	EXTREMELY FLAMMABLE GAS. If venting or leaking gas catches fire, do not extinguish flames. Flammable vapors may spread from leak, creating an explosive reignition hazard. Vapors can be ignited by pilot lights, other flames, smoking, sparks, heaters, electrical equipment, static discharge, or other ignition sources at locations distant from product handling point. Explosive atmospheres may linger. Before entering an area, especially a confined area, check the atmosphere with an appropriate device.		
Explosion hazard	: EXTREMELY FLAMMABLE GAS. Forms explosive mixtures with air and oxidizing agents.		
Reactivity	: No reactivity hazard other than the effects described in sub-sections below.		
Reactivity in case of fire	: No reactivity hazard other than the effects described in sub-sections below.		
5.4. Special protective equipment and p	recautions for fire-lighters		
Firefighting instructions	: DANGER! Toxic, flammable liquefied gas		
	Evacuate all personnel from the danger area. Use self-contained breathing apparatus (SCBA) and protective clothing. Immediately cool containers with water from maximum distance. Stop flow of gas if safe to do so, while continuing cooling water spray. Remove ignition sources if safe to do so. Remove containers from area of fire if safe to do so. On-site fire brigades must comply with their provincial and local fire code regulations.		
Special protective equipment for fire fighters	Standard protective clothing and equipment (Self Contained Breathing Apparatus) for fire fighters.		
Other information	 Containers are equipped with a pressure relief device. (Exceptions may exist where authorized by TC.). 		
SECTION 6: Accidental release mea	isures		
6.1. Personal precautions, protective ed	quipment and emergency procedures		
General measures	DANGER! Toxic, flammable liquefied gas. Forms explosive mixtures with air and oxidizing agents. Immediately evacuate all personnel from danger area. Use self-contained breathing apparatus where needed. Remove all sources of ignition if safe to do so. Reduce vapors with fog or fine water spray, taking care not to spread liquid with water. Shut off flow if safe to do so Ventilate area or move container to a well-ventilated area. Flammable vapors may spread from leak and could explode if reignited by sparks or flames. Explosive atmospheres may linger. Before entering area, especially confined areas, check atmosphere with an appropriate device.		
6.2. Methods and materials for container	nent and cleaning up		
Methods for cleaning up	Try to stop release. Reduce vapour with fog or fine water spray. Prevent waste from contaminating the surrounding environment. Prevent soil and water pollution. Dispose of content/s/container in accordance with local/regional/national/international regulations. Contact supplier for any special requirements,		
6.3. Reference to other sections			
For further information refer to section 8: Ex	posure controls/personal protection		
SECTION 7: Handling and storage			
7.1. Precautions for safe handling			
Precautions for safe handling	: Leak-check system with scapy water; never use a flame		
	All piped systems and associated equipment must be grounded		
	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. Use only non-sparking tools. Use only explosion-proof equipment		
	Wear leather safety gloves and safety shoes when handling cylinders. Protect cylinders from physical damage; do not drag, roll, slide or drop. While moving cylinder, always keep in place removable valve cover. Never attempt to lift a cylinder by its cap; the cap is intended solely to protect the valve. When moving cylinders, even for short distances, use a cart (trolley, hand truck, etc.) designed to transport cylinders. Never insert an object (e.g., wrench, screwdriver, pr bar) into cap openings; doing so may damage the valve and cause a leak. Use an adjustable strap wrench to remove over-tight or rusted caps. Slowly open the valve. If the valve is hard to open, discontinue use and contact your supplier. Close the container valve after each use; keep closed even when empty. Never apply flame or localized heat directly to any part of the container. High temperatures may damage the container and could cause the pressure relief		

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

3/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Hydrogen sulfide

according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

7.2.	Conditions for safe storage, inc	torage, including any incompatibilities		
Storag	e conditions	Store only where temperature will not exceed 125°F (52°C). Post "No Smoking/No Open Flames" signs in storage and use areas. There must be no sources of ignition. Separate packages and protect against potential fire and/or explosion damage following appropriate codes and requirements (e.g. NFPA 30, NFPA 55, NFPA 70, and/or NFPA 221 in the U.S.) or according to requirements determined by the Authority Having Jurisdiction (AHJ). Always secure containers upright to keep them from falling or being knocked over. Install valve protection cap, if provided, firmly in place by hand when the container is not in use. Store full and empty containers separately. Use a first-in, first-out inventory system to prevent storing ful containers for long periods. For other precautions in using this product, see section 16		
		OTHER PRECAUTIONS FOR HANDLING, STORAGE, AND USE: When handling product		

under pressure, use piping and equipment adequately designed to withstand the pressures to be encountered. Never work on a pressurized system. Use a back flow preventive device in the piping. Gases can cause rapid suffocation because of oxygen deficiency; store and use with adequate ventilation. If a leak occurs, close the container valve and blow down the system in a safe and environmentally correct manner in compliance with all international, federal/national, state/provincial, and local laws; then repair the leak. Never place a container where it may become part of an electrical circuit.

SECTION	8: Exposure controls/personal protect	ion
1404	A MARK AND A	

Hydrogen sulfide (7783-06-	4)		
USA - ACGIH	ACGIH TLV-TWA (ppm)	1 ppm	
USA - ACGIH	ACGIH TLV-STEL (ppm)	5 ppm	
USA - OSHA	OSHA PEL (Ceiling) (ppm)	20 ppm	
Canada (Quebec)	VECD (mg/m ³)	21 mg/m ³	
Canada (Quebec)	VECD (ppm)	15 ppm	
Canada (Quebec)	VEMP (mg/m*)	14 mg/m³	
Canada (Quebec)	VEMP (ppm)	10 ppm	
Alberta	OEL Ceiling (mg/m ³)	21 mg/m ^a	
Alberta	OEL Ceiling (ppm)	15 ppm	
Alberta	OEL TWA (mg/m ³)	14 mg/m ^a	
Alberta	OEL TWA (ppm)	10 ppm	
British Columbia	OEL Celling (ppm)	10 ppm	
Manitoba	OEL STEL (ppm)	5 ppm	
Manitoba	OEL TWA (ppm)	1 ppm	
New Brunswick	OEL STEL (mg/m²)	21 mg/m ³	
New Brunswick	OEL STEL (ppm)	15 ppm	
New Brunswick	OEL TWA (mg/m ^o)	14 mg/m ^a	
New Brunswick	OEL TWA (ppm)	10 ppm	
New Foundland & Labrador	OEL STEL (ppm)	5 ppm	
New Foundland & Labrador	OEL TWA (ppm)	1 ppm	
Nova Scotia	OEL STEL (ppm)	5 ppm	
Nova Scotia	OEL TWA (ppm)	1 ppm	
Nunavut	OEL Ceiling (mg/m²)	28 mg/m*	
Nunavut	OEL Ceiling (ppm)	20 ppm	
Nunavut	OEL STEL (mg/m²)	21 mg/m ^a	
Nunavut	OEL STEL (ppm)	15 ppm	
Nunavut	OEL TWA (mg/m ^a)	14 mg/m ³	
Nunavut	OEL TWA (ppm)	10 ppm	
Northwest Territories	OEL STEL (ppm)	15 ppm	

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

4/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Hydrogen sulfide

Safety Data Sheet E-4611 according to the Hazardous Products Regulation (February 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Hydrogen sulfide (7783-0	16-4)		
Northwest Territories	OEL TWA (ppm)	10 ppm	
Ontario	OEL STEL (ppm)	15 ppm	
Ontario	OEL TWA (ppm)	10 ppm.	
Prince Edward Island	OEL STEL (ppm)	5 ppm	
Prince Edward Island	OEL TWA (ppm)	1 ppm	
Québec	VECD (mg/m ²)	21 mg/m ³	
Québec	VECD (ppm)	15 ppm	
Québec	VEMP (mg/m ^a)	14 mg/m ²	
Quebec	VEMP (ppm)	10 ppm	
Saskatchewan	OEL STEL (ppm)	15 ppm	
Saskatchewan	OEL TWA (ppm)	10 ppm	
Yukon	OEL STEL (mg/m²)	27 mg/m ^a	
Yukon	OEL STEL (ppm)	15 ppm	
Yukon	OEL TWA (mg/m²)	15 mg/m ^a	
Yukan	OEL TWA (ppm)	10 ppm	

8.2. Appropriate engineering controls

Appropriate engineering controls

: Use corrosion-resistant equipment. Use an explosion-proof local exhaust system. Local exhaust and general ventilation must be adequate to meet exposure standards. MECHANICAL (GENERAL): **Inadequate - Use only in a closed system**. Use explosion proof equipment and lighting.

8.3. Individual protection measu	resiPersonal protective equipment
Personal protective equipment	: Safety glasses. Face shield. Gloves.
Hand protection	: Wear work gloves when handling containers. Wear heavy rubber gloves where contact with product may occur.
Eye protection	Wear goggles and a face shield when transfilling or breaking transfer connections. Select in accordance with the current CSA standard 294.3, "Industrial Eye and Face Protection", and any provincial regulations, local bylaws or guidelines.
Respiratory protection	: Respiratory protection: Use respirable fume respirator or air supplied respirator when working in confined space or where local exhaust or ventilation does not keep exposure below TLV. Select in accordance with provincial regulations, local bylaws or guidelines. Selection should be based on the current CSA standard Z94.4, "Selection, Care, and Use of Respirators." Respirators should also be approved by NIOSH and MSHA. For emergencies or instances with unknown exposure levels, use a self-contained breathing apparatus (SCBA).
Thermal hazard protection	: Wear cold insulating gloves when transfilling or breaking transfer connections. Standard EN 511 - Cold insulating gloves.
Other information	Other protection: Safety shoes for general handling at customer sites. Metatarsal shoes and cufflees trousers for cylinder handling at packaging and filling plants. Select in accordance with the current CSA standard Z195, "Protective Foot Wear", and any provincial regulations, local bylaws or guidelines. For working with flammable and oxidizing materials, consider the use of flame resistant anti-static safety clothing.
SECTION 9: Physical and cher	nical properties
9.1 Information on basic physic	al and chemical properties
Physical state	: Gas
Appearance	: Colorless gas, Colorless liquid at low temperature or under high pressure.

 Molecular mass
 : 34 g/mol

 Colour
 : Colourless.

 Odour
 : Odour can persist. Poor warning properties at low concentrations. Rotten eggs.

 Odour threshold
 : Odour threshold is subjective and inadequate to warn of overexposure.

This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

5/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Hydrogen sulfide

	 according to the Hazardous Products Regulation (February 11, 2015) End of the Vision of	
D.	Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013	
рН	: Not applicable.	
pH solution	: No data available	
Relative evaporation rate (butylacetate=1	I) : No data available	
Relative evaporation rate (ether=1)	: Not applicable.	
Melting point	: -86 °C	
Freezing point	: -82.9 °C	
Boiling point	: -60.3 °C	
Flash point	: Not applicable.	
Critical temperature	: 100.4 °C	
Auto-ignition temperature	: 260 °C	
Decomposition temperature	: No data available	
Vapour pressure	: 1880 kPa	
Vapour pressure at 50 °C	: No data available	
Critical pressure	: 8940 kPa	
Relative vapour density at 20 °C	: >#	
Relative density	: No data available	
Relative density of saturated gas/air mixts	ure : No data available	
Density	: No data available	
Relative gas density	: 1.2	
Solubility	: Water: 3980 mg/l	
Log Pow	: Not applicable.	
Log Kow	: Not applicable.	
viscosity, kinematic	: Not applicable.	
Viscosity, dynamic	: Not applicable.	
Viscosity, kinematic (calculated value) (40	0 °C) : No data available	
Explosive properties	: Not applicable.	
Oxidizing properties	: None.	
Flammability (solid, gas)		
	4.3 - 46 vol %	
9.2. Other information		
Gas group	: Liquefied gas	

orees (mining) (mining)	ground level
SECTION 10: Stability and reac	livity
10.1. Reactivity	
Reactivity	: No reactivity hazard other than the effects described in sub-sections below.
Chemical stability	: Stable under normal conditions.
Possibility of hazardous reactions	: May react violently with oxidants. Can form explosive mixture with air.
Conditions to avoid	: Avoid moisture in installation systems. Keep away from heat/sparks/open flames/hot surfaces - No smoking.
Incompatible materials	: Ammonia. Bases. Bromine pentafluoride. Chlorine trifluoride. chromium trioxide. (and heat). Copper. (powdered). Fluorine. Lead. Lead oxide. Mercury. Nitric acid. Nitrogen trifluoride. nitrogen sulfide. Organic compounds. Oxidizing agents. Oxygen difluoride. Rubber. Sodium. (and moisture). Water.
Hazardous decomposition products	: Thermal decomposition may produce : Sulfur, Hydrogen.
SECTION 11: Toxicological info	rmation
11.1. Information on toxicological e	ffects
Acute toxicity (oral)	: Not classified
Acute toxicity (dermal)	: Not classified

: Gas/vapour heavier than air. May accumulate in confined spaces, particularly at or below

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

Additional information

SDS ID : E-4611

6/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Hydrogen sulfide Safety Data Sheet E-4611 according to the Hazardous Products Regulation (Pebruary 11, 2015) Date of issue: 10-15-1979 Revision date: 08-10-2016 Supersedes: 10-15-2013

Acute toxicity (inhalation)	: Inhalation:gas: FATAL IF INHALED.	
Hydrogen sulfide (\f)7783-06-4		
LC50 inhalation rat (mg/l)	0.99 mg/l (Exposure time: 1 h)	
LC50 inhalation rat (ppm)	356 ppm/4h	
ATE CA (gases)	356.0000000 ppmv/4h	
ATE CA (vapours)	0.9900000 mg/V4h	
ATE CA (dust,mist)	0.99000000 mg/l/4h	
Skin corrosion/irritation	: Not classified	
	pH: Not applicable.	
Serious eye damage/irritation	: Not classified	
	pH: Not applicable.	
Respiratory or skin sensitization	: Not classified	
Germ cell mutagenicity	: Not classified	
Carcinogenicity	: Not classified	
Reproductive toxicity	: Not classified	
Specific target organ toxicity (single exposure)	: MAY CAUSE RESPIRATORY IRRITATION.	
Specific target organ toxicity (repeated exposure)	: Not classified	
Aspiration hazard	: Not classified	

12.1. Toxicity	
Ecology - general	: VERY TOXIC TO AQUATIC LIFE.
Hydrogen sulfide (7783-06-4)	
LC50 fish 1	0.0448 mg/l (Exposure time: 96 h - Species: Lepomis macrochirus (flow-through))
LC50 fish 2	0.016 mg/l (Exposure time: 96 h - Species: Pimephales promelas [flow-through])
12.2. Persistence and degrad	ability
Hydrogen sulfide (7783-06-4)	
Persistence and degradability	Not applicable for inorganic gases.
12.3. Bioaccumulative potent	at
Hydrogen sulfide (7783-06-4)	
BCF fish 1	(no bioaccumulation expected)
Log Pow	Not applicable.
Log Kow	Not applicable.
Bioaccumulative potential	No data available.
12.4. Mobility in soil	
Hydrogen sulfide (7783-06-4)	
Mobility in soil	No data available.
Log Pow	Not applicable.
Log Kow	Not applicable.
Ecology - soil	Because of its high volatility, the product is unlikely to cause ground or water pollution
12.5. Other adverse effects	
Other adverse effects	: May cause pH changes in aqueous ecological systems.
Effect on the ozone layer	: None
Effect on global warming	: No known effects from this product

This document is only controlled while on the Praxeir Canada Inc. website and a copy of this controlled version is available for download. Praxeir cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

7/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

SECTION 13: Disposal consideratio	ns
	Provide the state of a
Waste disposal recommendations	: Do not attempt to dispose of residual or unused quantities. Return container to supplier.
SECTION 14: Transport information	
14.1. Basic shipping description	
n accordance with TDG	
TDG	
JN-No. (TDG)	UN1053
IDG Primary Hazard Classes	: 2.3 - Class 2.3 - Toxic Gas.
TDG Subsidiary Classes	2.1
Proper shipping name	: HYDROGEN SULPHIDE
ERAP Index	: 500
Explosive Limit and Limited Quantity Index Passenger Carrying Ship Index	: 0 : Forbidden
Passenger Carrying Road Vehicle or Passenger Carrying Railway Vehicle Index	
14.3. Air and sea transport	
MDG	
JN-No. (IMDG)	: 1053
Proper Shipping Name (IMDG)	: HYDROGEN SULPHIDE
Class (IMDG)	: 2 - Gases
MFAG-No	117
ATA	
JN-No. (IATA)	: 1053
Proper Shipping Name (IATA) Class (IATA)	: Hydrogen sulphide : 2
and the second	
SECTION 15: Regulatory informatio	n;
15.1. National regulations	
Hydrogen sulfide (7783-06-4) Listed on the Canadian DSL (Domestic Substa	and a state of the
Dated on the Canadian Dol. (Domestic octors	indes Lesi)
15.2. International regulations	
Hydrogen sulfide (7783-06-4)	
Listed on the AICS (Australian Inventory of Ch Listed on IECSC (Inventory of Existing Chemic	emical Substances) cal Substances Produced or Imported in China)
Listed on the EEC inventory EINECS (Europea	an Inventory of Existing Commercial Chemical Substances)
Listed on the Japanese ENCS (Existing & New Listed on the Korean ECL (Existing Chemicals	
Listed on NZIoC (New Zealand Inventory of Ch	
Listed on PICCS (Philippines Inventory of Che Listed on the United States TSCA (Toxic Subs	
Listed on INSQ (Mexican national Inventory of	
SECTION 16: Other information	
Date of issue	: 15/10/1979
Revision date	: 10/08/2016
Supersedes	: 15/10/2013
ndication of changes:	
Training advice	 Users of breathing apparatus must be trained. Ensure operators understand the toxicity haza Ensure operators understand the flammability hazard.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

SDS Canada (GHS) - Praxair

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

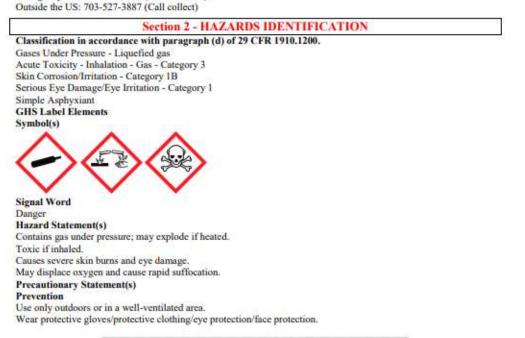
This document is only controlled while on the Praxair Canada Inc. website and a copy of this controlled version is available for download. Praxair cannot assure the integrity or accuracy of any version of this document after it has been downloaded or removed from our website.

EN (English)

SDS ID : E-4611

9/9

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	


 SO_2SDS

Safety Data Sheet

Material Name: SULFUR DIOXIDE
Section 1 - PRODUCT AND COMPANY IDENTIFICATION

Material Name SULFUR DIOXIDE Synonyms MTG MSDS 80; SULFUROUS ACID ANHYDRIDE; SULFUROUS OXIDE; SULPHUR DIOXIDE; SULFUROUS ANHYDRIDE; FERMENTICIDE LIQUID; SULFUR DIOXIDE(SO2); SULFUR OXIDE; SULFUR OXIDE(SO2) **Chemical Family** inorganic, gas **Product Description** Classification determined in accordance with Compressed Gas Association standards. **Product Use** Industrial and Specialty Gas Applications. **Restrictions on Use** None known. Details of the supplier of the safety data sheet MATHESON TRI-GAS, INC. 3 Mountainview Road Warren, NJ 07059 General Information: 1-800-416-2505 Emergency #: 1-800-424-9300 (CHEMTREC)

Page 1 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

Wash thoroughly after handling. Do not breathe dusts or mists. Response IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Immediately call a POISON CENTER or doctor. Specific treatment (see label). Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up. Protect from sunlight. Disposal Dispose of contents/container in accordance with local/regional/national/international regulations. Other Hazards

Contact with liquified gas may cause frostbite.

CAS	Component Name	Percent
7446-09-5	Sulfur dioxide	100.0

Inhalation

IF INHALED: Remove person to fresh air and keep at rest in a position comfortable for breathing. Get immediate medical attention.

Skin

IF ON SKIN (or hair): Remove/take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. If frostbite or freezing occur, immediately flush with plenty of lukewarm water (105-115°F; 41-46°C). If warm water is not available, gently wrap affected parts in blankets. DO NOT induce vomiting. Get immediate medical attention.

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical attention.

Ingestion

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. Get immediate medical attention.

Most Important Symptoms/Effects

Acute

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Delayed

- No information on significant adverse effects.
- Indication of any immediate medical attention and special treatment needed

Note to Physicians

For inhalation, consider oxygen.

Page 2 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Treat symptomatically and supportively.

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

al Name: SULI	FUR DIOXIDE	SDS ID: MAT
	Section 5 - F	TRE FIGHTING MEASURES
Unsuitable Exti None known. Special Hazard Negligible fire h Hazardous Com sulfur oxides Fire Fighting M Move container is out. Stay away Special Protecti	Media uishing Media regular dry chemical, Large fir inguishing Media s Arising from the Chemical azard. abustion Products leasures from fire area if it can be done y from the ends of tanks. Keep ive Equipment and Precautic tive fire fighting gear includin	es: Use regular foam or flood with fine water spray. without risk. Cool containers with water spray until well after the fire unnecessary people away, isolate hazard area and deny entry.
		DENTAL RELEASE MEASURES
Keep unnecessar Ventilate closed Reduce vapors v Environmental	spaces before entering. Evacu with water spray. Do not get wa	area and deny entry. Stay upwind and keep out of low areas. ation radius: 150 feet. Stop leak if possible without personal risk.
resoluterease to		HANDLING AND STORAGE
handling. Use or protection/face p drink or smoke v Conditions for 3 Store in a well-v Store locked up. Protect from sun Store and handle outside or in a du Incompatible M	es, on skin, or on clothing. Do aly outdoors or in a well-ventil protection. Contaminated work when using this product. Keep Safe Storage, Including any I entilated place. Keep containe light. in accordance with all current etached building. Keep separat laterials	
	ection 8 - EXPOSURE (CONTROLS / PERSONAL PROTECTION
Component Exp	and the second	
Sulfur dioxide	7446-09-5	
ACGIH:	0.25 ppm STEL	

Page 3 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

NIOSH:	2 ppm TWA ; 5 mg/m3 TWA
	5 ppm STEL ; 13 mg/m3 STEL
	100 ppm IDLH
OSHA (US):	5 ppm TWA ; 13 mg/m3 TWA
Mexico:	0.25 ppm STEL [PPT-CT]

ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI)

There are no biological limit values for any of this product's components.

Engineering Controls

Provide local exhaust or process enclosure ventilation system. Ensure compliance with applicable exposure limits.

Individual Protection Measures, such as Personal Protective Equipment

Eye/face protection

Wear splash resistant safety goggles with a faceshield. Contact lenses should not be worn. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin Protection

Wear appropriate chemical resistant clothing. Wear chemical resistant clothing to prevent skin contact.

Respiratory Protection

Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other

positive-pressure mode.

Glove Recommendations

Wear appropriate chemical resistant gloves.

Sect	ion 9 - PHYSICAL A	AND CHEMICAL PROPERT	TIES
Appearance	colorless gas	Physical State	gas
Odor	irritating odor	Color	colorless
Odor Threshold	3 - 5 ppm	рН	(Acidic in solution)
Melting Point	-73 °C (-99 °F)	Boiling Point	-10 °C (14 °F)
Boiling Point Range	Not available	Freezing point	Not available
Evaporation Rate	>1 (Butyl acetate = 1)	Flammability (solid, gas)	Not available
Autoignition Temperature	Not available	Flash Point	(Not flammable)
Lower Explosive Limit	Not available	Decomposition temperature	Not available
Upper Explosive Limit	Not available	Vapor Pressure	2432 mmHg @ 20 ℃
Vapor Density (air=1)	2.26	Specific Gravity (water=1)	1.462 at -10 °C

Page 4 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

SDS ID: MAT22290

Water Solubility			
1970 Barris (1970)	22.8% (@0°C)	Partition coefficient: n- octanol/water	Not available
Viscosity	Not available	Kinematic viscosity	Not available
Solubility (Other)	Not available	Density	Not available
Physical Form	liquified gas	Molecular Formula	S-02
Molecular Weight	64.06		
Solvent Solubility Soluble alcohol, acetic acid, sulfi	aric acid, ether, chloroform	n, Benzene, sulfuryl chloride, nitrob	enzenes, Toluene, acetone
	Section 10 - STAI	BILITY AND REACTIVITY	Y
Possibility of Hazardou			
Will not polymerize. Conditions to Avoid Minimize contact with m Incompatible Materials	aaterial. Containers may ru s rials, halogens, metal carbi ion products	pture or explode if exposed to heat. de, metal oxides, metals, oxidizing	materials, peroxides, reducir
Will not polymerize. Conditions to Avoid Minimize contact with m Incompatible Materials bases, combustible mater agents Hazardous decompositi	aaterial. Containers may ru rials, halogens, metal carbi ion products Section 11 - TOXIC		materials, peroxides, reducir

Page 5 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

Safety Data Sheet

SDS ID: MAT22290

 Delayed Effects

 No information on significant adverse effects.

 Irritation/Corrosivity Data

 respiratory tract burns, skin burns, eye burns

 Respiratory Sensitization

 No data available.

 Dermal Sensitization

 No data available.

 Component Carcinogenicity

 Sulfur dioxide
 7446-09-5

 ACGIH:
 A4 - Not Classifiable as a Human Carcinogen

 IARC:
 Monograph 54 [1992] (Group 3 (not classifiable))

Toxic if inhaled, frostbite, suffocation, respiratory tract burns, skin burns, eye burns

Germ Cell Mutagenicity No data available. Tumorigenic Data No data available Reproductive Toxicity No data available. Specific Target Organ Toxicity - Single Exposure No target organs identified. Specific Target Organ Toxicity - Repeated Exposure No target organs identified. Aspiration hazard Not applicable. Medical Conditions Aggravated by Exposure respiratory disorders

Section 12 - ECOLOGICAL INFORMATION

Component Analysis - Aquatic Toxicity No LOLI ecotoxicity data are available for this product's components. Persistence and Degradability No data available. Bioaccumulative Potential No data available. Mobility No data available.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Methods

Dispose of contents/container in accordance with local/regional/national/international regulations. Component Waste Numbers

The U.S. EPA has not published waste numbers for this product's components.

Section 14 - TRANSPORT INFORMATION

US DOT Information:

Shipping Name: SULFUR DIOXIDE

Page 6 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

Hazard Class: 2.3 UN/NA #: UN1079 Required Label(s): 2.3

IMDG Information: Shipping Name: SULPHUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

TDG Information: Shipping Name: SULFUR DIOXIDE Hazard Class: 2.3 UN#: UN1079 Required Label(s): 2.3

International Bulk Chemical Code

This material does not contain any chemicals required by the IBC Code to be identified as dangerous chemicals in bulk.

Section 15 - REGULATORY INFORMATION

U.S. Federal Regulations

This material contains one or more of the following chemicals required to be identified under SARA Section 302 (40 CFR 355 Appendix A), SARA Section 313 (40 CFR 372.65), CERCLA (40 CFR 302.4), TSCA 12(b), and/or require an OSHA process safety plan.

Sulfur dioxide	7446-09-5
SARA 302:	500 lb TPQ
OSHA (safety):	1000 lb TQ (Liquid)
SARA 304:	500 lb EPCRA RQ

SARA Section 311/312 (40 CFR 370 Subparts B and C) reporting categories

Gas Under Pressure; Acute toxicity; Skin Corrosion/Irritation; Serious Eye Damage/Eye Irritation; Simple Asphyxiant

U.S. State Regulations

The following components appear on one or more of the following state hazardous substances lists:

Component	CAS	CA	MA	MN	NJ	PA
Sulfur dioxide	7446-09-5	Yes	Yes	Yes	Yes	Yes

California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)

This product can expose you to chemicals including Sulfur dioxide, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Page 7 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

Permian Resources Corporation	H ₂ S Contingency Plan	Lea County, New Mexico
	Eileen 25 Fed Com CTB	

Material Name: SULFUR DIOXIDE

Sulfur dioxide	7446-09-5
Repro/Dev. Tox	developmental toxicity, 7/29/2011

Component Analysis - Inventory Sulfur dioxide (7446-09-5)

US	CA	AU	CN	EU	JP - ENCS	JP - ISHL	KR KECI - Annex 1	KR KECI - Annex 2
Yes	DSL	Yes	Yes	EIN	Yes	Yes	Yes	No

KR - REACH CCA	MX	NZ	PH	TH-TECI	TW, CN	VN (Draft)
No	Yes	Yes	Yes	Yes	Yes	Yes

Section 16 - OTHER INFORMATION

NFPA Ratings

Health: 3 Fire: 0 Instability: 0

Hazard Scale: 0 = Minimal 1 = Slight 2 = Moderate 3 = Serious 4 = Severe

Summary of Changes

SDS update: 02/10/2016

Key / Legend

ACGIH - American Conference of Governmental Industrial Hygienists; ADR - European Road Transport; AU -Australia; BOD - Biochemical Oxygen Demand; C - Celsius; CA - Canada; CA/MA/MN/NJ/PA -California/Massachusetts/Minnesota/New Jersey/Pennsylvania*; CAS - Chemical Abstracts Service; CERCLA -Comprehensive Environmental Response, Compensation, and Liability Act; CFR - Code of Federal Regulations (US); CLP - Classification, Labelling, and Packaging; CN - China; CPR - Controlled Products Regulations; DFG -Deutsche Forschungsgemeinschaft; DOT - Department of Transportation; DSD - Dangerous Substance Directive; DSL - Domestic Substances List; EC - European Commission; EEC - European Economic Community; EIN -European Inventory of (Existing Commercial Chemical Substances); EINECS - European Inventory of Existing Commercial Chemical Substances; ENCS - Japan Existing and New Chemical Substance Inventory; EPA -Environmental Protection Agency; EU - European Union; F - Fahrenheit; F - Background (for Venezuela Biological Exposure Indices); IARC - International Agency for Research on Cancer; IATA - International Air Transport Association; ICAO - International Civil Aviation Organization; IDL - Ingredient Disclosure List; IDLH -Immediately Dangerous to Life and Health; IMDG - International Maritime Dangerous Goods; ISHL - Japan Industrial Safety and Health Law; IUCLID - International Uniform Chemical Information Database; JP - Japan; Kow - Octanol/water partition coefficient; KR KECI Annex 1 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL); KR KECl Annex 2 - Korea Existing Chemicals Inventory (KECI) / Korea Existing Chemicals List (KECL), KR - Korea; LD50/LC50 - Lethal Dose/ Lethal Concentration; KR REACH CCA - Korea Registration and Evaluation of Chemical Substances Chemical Control Act; LEL - Lower Explosive Limit; LLV - Level Limit Value; LOLI - List Of LIsts™ - ChemADVISOR's Regulatory Database; MAK - Maximum Concentration Value in the Workplace; MEL - Maximum Exposure Limits; MX - Mexico; Ne- Non-specific; NFPA - National Fire Protection Agency; NIOSH - National Institute for Occupational Safety and Health; NJTSR - New Jersey Trade Secret Registry; Nq - Non-quantitative; NSL - Non-Domestic Substance List (Canada); NTP -National Toxicology Program; NZ - New Zealand; OSHA - Occupational Safety and Health Administration; PEL-Permissible Exposure Limit; PH - Philippines; RCRA - Resource Conservation and Recovery Act; REACH-Registration, Evaluation, Authorisation, and restriction of Chemicals; RID - European Rail Transport; SARA -Superfund Amendments and Reauthorization Act; Sc - Semi-quantitative; STEL - Short-term Exposure Limit;

Page 8 of 9

Issue date: 2021-01-30 Revision 8.0

Print date: 2021-01-30

SDS ID: MAT22290

NEW MEXICO

(SP) LEA EILEEN 25 FED COM EILEEN 25 FED COM 173H - Slot 173H

OWB

Plan: PWP0

Standard Planning Report - Geographic

14 June, 2024

Received by OCD: 7/17/2025 5:12:41 PM

Centennial Resource Development

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	(SP) L EILEE	MEXICO .EA :N 25 FED COI :N 25 FED COI			TVD Refere MD Refere North Refe	nce:		Well EILEEN 25 FED COM 173H - Slot 173H KB @ 3708.0usft KB @ 3708.0usft Grid Minimum Curvature		
Project	(SP) LE	EA								
Map System: Geo Datum: Map Zone:	North An	e Plane 1983 nerican Datum xico Eastern Zo			System Dat	um:	М	ean Sea Level		
Site	EILEEN	N 25 FED CON	1							
Site Position: From: Position Uncertair	Map nty:	0.0	Northi Eastin usft Slot Ra	g:	760,1	19.85 usft 98.17 usft 3-3/16 "	Latitude: Longitude:			32° 32' 15.169 N 103° 37' 23.293 W
Well	EILEEN	25 FED COM	173H - Slot 17	3H						
Well Position Position Uncertain Grid Convergence	-	0	.0 usft Ea	rthing: sting: Ilhead Elevat	ion:	560,007.58 762,111.23	usft Lor	itude: ngitude: bund Level:		32° 32' 14.921 N 103° 37' 0.948 W 3,678.0 usft
Wellbore	OWB									
Magnetics	Мо	del Name	Sample	e Date	Declinat (°)	lion	Dip A ('	Angle °)		itrength IT)
		IGRF200510	1	2/31/2009		7.79		60.52	48,9	75.67005849
Design	PWP0									
Audit Notes:										
Version:			Phase		PROTOTYPE		On Depth:		0.0	
Vertical Section:		C	0epth From (TV (usft)	'D)	+N/-S (usft)		/-W sft)	Di	irection (°)	
			0.0		0.0	0	.0		1.18	
Plan Survey Tool Depth From (usft) 1 C	Deptl (us	n To	6/14/2024 (Wellbore) (OWB)		Tool Name MWD OWSG_Rev2_	_MWD - Stand	Remarks			
Plan Sections										
Measured Depth In (usft)	clination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0 2,000.0 2,500.0	0.00 0.00 10.00	0.00 0.00 115.10	0.0 2,000.0 2,497.5	0.0 0.0 -18.5	0.0 0.0 39.4	0.00 0.00 2.00	0.00 0.00 2.00	0.00 0.00	0.00 0.00 115.10	
3,695.5 4,195.5 10,425.7	10.00 0.00 0.00	115.10 0.00 0.00	3,674.8 4,172.2 10,402.5	-106.5 -125.0 -125.0	227.4 266.8 266.8	0.00 2.00 0.00	0.00 -2.00 0.00	0.00 0.00	0.00 180.00 0.00	
11,175.7 21,059.2	90.00 90.00	359.69 359.69	10,880.0 10,880.0	352.5 10,235.8	264.2 210.3	12.00 0.00	12.00 0.00		359.69 0.00	LTP E25FC 173H

6/14/2024 8:19:10AM

Released to Imaging: 7/22/2025 2:06:10 PM

Centennial Resource Development

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
. ,						. ,	. ,		-
0.0 100.0		0.00 0.00	0.0 100.0	0.0 0.0	0.0 0.0	560,007.58 560,007.58	762,111.23 762,111.23	32° 32' 14.921 N 32° 32' 14.921 N	103° 37' 0.948 W 103° 37' 0.948 W
200.0		0.00	200.0	0.0	0.0	560,007.58	762,111.23	32 32 14.921 N 32° 32' 14.921 N	103 37 0.948 W
300.0		0.00	200.0 300.0	0.0	0.0	560,007.58	762,111.23	32 32 14.921 N 32° 32' 14.921 N	103 37 0.948 W
400.0		0.00	300.0 400.0	0.0	0.0	560,007.58	762,111.23	32 32 14.921 N 32° 32' 14.921 N	103 37 0.948 W 103° 37' 0.948 W
500.0		0.00	400.0 500.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
600.0		0.00	600.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
700.0		0.00	700.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
800.0		0.00	800.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
900.0		0.00	900.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,000.0		0.00	1,000.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,100.0		0.00	1,100.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,800.0		0.00	1,800.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
1,900.0		0.00	1,900.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	560,007.58	762,111.23	32° 32' 14.921 N	103° 37' 0.948 W
Start Bu									
2,100.0		115.10	2,100.0	-0.7	1.6	560,006.84	762,112.81	32° 32' 14.914 N	103° 37' 0.929 W
2,200.0		115.10	2,199.8	-3.0	6.3	560,004.62	762,117.55	32° 32' 14.891 N	103° 37' 0.874 W
2,300.0		115.10	2,299.5	-6.7	14.2	560,000.92	762,125.44	32° 32' 14.854 N	103° 37' 0.782 W
2,400.0		115.10	2,398.7	-11.8	25.2	559,995.76	762,136.47	32° 32' 14.802 N	103° 37' 0.654 W
2,500.0		115.10	2,497.5	-18.5	39.4	559,989.12	762,150.64	32° 32' 14.736 N	103° 37' 0.489 W
2,600.0	95.5 hold at 25 10.00	115.10	2,595.9	-25.8	55.1	559,981.75	762,166.36	32° 32' 14.662 N	103° 37' 0.305 W
2,000.0		115.10	2,595.9	-25.8	70.9	559,974.39	762,182.09	32° 32' 14.588 N	103° 37' 0.303 W
2,800.0		115.10	2,094.4	-40.6	86.6	559,967.02	762,197.81	32° 32' 14.514 N	103° 36' 59.939 W
2,900.0		115.10	2,891.4	-47.9	102.3	559,959.65	762,213.54	32° 32' 14.440 N	103° 36' 59.756 W
3,000.0		115.10	2,989.9	-55.3	118.0	559,952.29	762,229.26	32° 32' 14.366 N	103° 36' 59.573 W
3,100.0		115.10	3,088.3	-62.7	133.8	559,944.92	762,244.99	32° 32' 14.292 N	103° 36' 59.390 W
3,200.0		115.10	3,186.8	-70.0	149.5	559,937.55	762,260.71	32° 32' 14.218 N	103° 36' 59.207 W
3,300.0		115.10	3,285.3	-77.4	165.2	559,930.19	762,276.44	32° 32' 14.144 N	103° 36' 59.024 W
3,400.0		115.10	3,383.8	-84.8	180.9	559,922.82	762,292.16	32° 32' 14.070 N	103° 36' 58.841 W
3,500.0	10.00	115.10	3,482.3	-92.1	196.7	559,915.45	762,307.89	32° 32' 13.996 N	103° 36' 58.658 W
3,600.0	10.00	115.10	3,580.8	-99.5	212.4	559,908.09	762,323.61	32° 32' 13.922 N	103° 36' 58.474 W
3,695.5	10.00	115.10	3,674.8	-106.5	227.4	559,901.06	762,338.62	32° 32' 13.852 N	103° 36' 58.300 W
Start Dro	op -2.00								
3,700.0		115.10	3,679.2	-106.9	228.1	559,900.72	762,339.33	32° 32' 13.848 N	103° 36' 58.291 W
3,800.0		115.10	3,778.0	-113.4	242.1	559,894.15	762,353.36	32° 32' 13.782 N	103° 36' 58.128 W
3,900.0		115.10	3,877.3	-118.5	253.0	559,889.05	762,364.25	32° 32' 13.731 N	103° 36' 58.001 W
4,000.0		115.10	3,976.9	-122.2	260.8	559,885.42	762,372.00	32° 32' 13.695 N	103° 36' 57.911 W
4,100.0		115.10	4,076.8	-124.3	265.4	559,883.27	762,376.60	32° 32' 13.673 N	103° 36' 57.857 W
4,195.5		0.00	4,172.2	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
	30.3 hold at 41		1 170 0	405.0	000.0	550 000 50	700 070 07	208 201 40 202 11	4008 001 57 044 14
4,200.0		0.00	4,176.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
4,300.0		0.00	4,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
4,400.0		0.00	4,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
4,500.0		0.00	4,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
4,600.0 4,700.0		0.00 0.00	4,576.8 4,676.8	-125.0 -125.0	266.8 266.8	559,882.59 559,882.59	762,378.04 762,378.04	32° 32' 13.666 N 32° 32' 13.666 N	103° 36' 57.841 W 103° 36' 57.841 W
4,700.0	0.00	0.00	4,070.0	-120.0	200.0	559,002.59	102,310.04	JZ JZ 13.000 N	103 30 37.041 W

6/14/2024 8:19:10AM

Released to Imaging: 7/22/2025 2:06:10 PM

Centennial Resource Development

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
		0.00							-
4,800.0			4,776.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N 32° 32' 13.666 N	103° 36' 57.841 W
4,900.0 5,000.0		0.00	4,876.8	-125.0 -125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,000.0		0.00 0.00	4,976.8 5,076.8	-125.0 -125.0	266.8 266.8	559,882.59 559,882.59	762,378.04 762,378.04	32° 32' 13.666 N	103° 36' 57.841 W 103° 36' 57.841 W
5,200.0		0.00	5,076.8 5,176.8	-125.0 -125.0	266.8	559,882.59 559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,300.0		0.00	5,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,400.0		0.00	5,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,500.0		0.00	5,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,600.0		0.00	5,576.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,700.0		0.00	5,676.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,800.0		0.00	5,776.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
5,900.0		0.00	5,876.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,000.0		0.00	5,976.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,100.0		0.00	6,076.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,200.0		0.00	6,176.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,300.0		0.00	6,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,400.0		0.00	6,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,500.0		0.00	6,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,600.0		0.00	6,576.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,700.0		0.00	6,676.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,800.0		0.00	6,776.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
6,900.0		0.00	6,876.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,000.0		0.00	6,976.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,100.0	0.00	0.00	7,076.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,200.0	0.00	0.00	7,176.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,300.0	0.00	0.00	7,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,400.0	0.00	0.00	7,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,500.0	0.00	0.00	7,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,600.0	0.00	0.00	7,576.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,700.0	0.00	0.00	7,676.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,800.0	0.00	0.00	7,776.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
7,900.0		0.00	7,876.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,000.0	0.00	0.00	7,976.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,100.0	0.00	0.00	8,076.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,200.0		0.00	8,176.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,300.0		0.00	8,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,400.0		0.00	8,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,500.0		0.00	8,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,600.0		0.00	8,576.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,700.0		0.00	8,676.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,800.0		0.00	8,776.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
8,900.0		0.00	8,876.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,000.0		0.00	8,976.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,100.0		0.00	9,076.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,200.0		0.00	9,176.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,300.0		0.00	9,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,400.0		0.00	9,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,500.0		0.00	9,476.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,600.0		0.00	9,576.8 0,676.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,700.0		0.00	9,676.8 0,776.8	-125.0	266.8	559,882.59 559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
9,800.0		0.00	9,776.8 0 876 8	-125.0 125.0	266.8	,	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W 103° 36' 57.841 W
9,900.0 10,000.0		0.00 0.00	9,876.8 9,976.8	-125.0 -125.0	266.8 266.8	559,882.59 559,882.59	762,378.04 762,378.04	32° 32' 13.666 N 32° 32' 13.666 N	103 36 57.841 W 103° 36' 57.841 W
10,000.0				-125.0 -125.0			762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
10,100.0		0.00 0.00	10,076.8 10,176.8	-125.0 -125.0	266.8 266.8	559,882.59 559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
10,200.0	0.00	0.00	10,170.0	-120.0	200.0	000,002.00	102,010.04	02 02 10.000 N	100 00 07.041 W

6/14/2024 8:19:10AM

Released to Imaging: 7/22/2025 2:06:10 PM

COMPASS 5000.17 Build 03

Centennial Resource Development

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
10,300.0	0.00	0.00	10,276.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
10,400.0	0.00	0.00	10,376.8	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
10,425.7	0.00	0.00	10,402.5	-125.0	266.8	559,882.59	762,378.04	32° 32' 13.666 N	103° 36' 57.841 W
	S 12.00 TFO 3		10,100,0	101.1		550 000 04	700 070 00		
10,450.0	2.91	359.69	10,426.8	-124.4 -122.5	266.8 266.8	559,883.21	762,378.03 762,378.02	32° 32' 13.673 N 32° 32' 13.692 N	103° 36' 57.841 W 103° 36' 57.841 W
10,475.0 10,500.0	5.91 8.91	359.69 359.69	10,451.7 10,476.5	-122.5	266.8	559,885.13 559,888.36	762,378.02	32° 32' 13.723 N	103° 36' 57.841 W
10,525.0	11.91	359.69	10,501.1	-114.7	266.8	559,892.87	762,377.98	32° 32' 13.768 N	103° 36' 57.841 W
10,550.0	14.91	359.69	10,525.4	-108.9	266.7	559,898.67	762,377.95	32° 32' 13.826 N	103° 36' 57.840 W
10,575.0	17.91	359.69	10,549.3	-101.8	266.7	559,905.74	762,377.91	32° 32' 13.895 N	103° 36' 57.840 W
10,600.0	20.91	359.69	10,572.9	-93.5	266.6	559,914.04	762,377.87	32° 32' 13.978 N	103° 36' 57.840 W
10,625.0	23.91	359.69	10,596.0	-84.0	266.6	559,923.57	762,377.81	32° 32' 14.072 N	103° 36' 57.840 W
10,650.0	26.91	359.69	10,618.6	-73.3	266.5	559,934.30	762,377.76	32° 32' 14.178 N	103° 36' 57.840 W
10,675.0	29.91	359.69	10,640.6	-61.4	266.5	559,946.19	762,377.69	32° 32' 14.296 N	103° 36' 57.840 W
10,700.0	32.91	359.69	10,661.9	-48.4	266.4	559,959.22	762,377.62	32° 32' 14.425 N	103° 36' 57.840 W
10,725.0	35.91	359.69	10,682.6	-34.2	266.3	559,973.35	762,377.54	32° 32' 14.564 N	103° 36' 57.839 W
10,750.0	38.91	359.69	10,702.4	-19.0	266.2	559,988.54	762,377.46	32° 32' 14.715 N	103° 36' 57.839 W
10,775.0	41.91	359.69	10,721.4	-2.8	266.1	560,004.74	762,377.37	32° 32' 14.875 N	103° 36' 57.839 W
10,800.0	44.91	359.69	10,739.6	14.3	266.1	560,021.92	762,377.28	32° 32' 15.045 N	103° 36' 57.839 W
10,825.0	47.91	359.69 359.69	10,756.8	32.4	266.0	560,040.03 560,059.01	762,377.18	32° 32' 15.224 N	103° 36' 57.838 W
10,850.0 10,875.0	50.91 53.91	359.69 359.69	10,773.1 10,788.3	51.4 71.2	265.8 265.7	560,059.01	762,377.08 762,376.97	32° 32' 15.412 N 32° 32' 15.608 N	103° 36' 57.838 W 103° 36' 57.838 W
10,900.0	56.91	359.69	10,788.5	91.8	265.6	560,099.40	762,376.85	32° 32' 15.812 N	103° 36' 57.837 W
10,925.0	59.91	359.69	10,815.6	113.1	265.5	560,120.69	762,376.74	32° 32' 16.022 N	103° 36' 57.837 W
10,950.0	62.91	359.69	10,827.6	135.1	265.4	560,142.64	762,376.62	32° 32' 16.240 N	103° 36' 57.837 W
10,975.0	65.91	359.69	10,838.4	157.6	265.3	560,165.18	762,376.50	32° 32' 16.463 N	103° 36' 57.836 W
11,000.0	68.91	359.69	10,848.0	180.7	265.1	560,188.26	762,376.37	32° 32' 16.691 N	103° 36' 57.836 W
11,025.0	71.91	359.69	10,856.4	204.2	265.0	560,211.81	762,376.24	32° 32' 16.924 N	103° 36' 57.836 W
11,050.0	74.91	359.69	10,863.5	228.2	264.9	560,235.77	762,376.11	32° 32' 17.161 N	103° 36' 57.835 W
11,075.0	77.91	359.69	10,869.4	252.5	264.8	560,260.07	762,375.98	32° 32' 17.402 N	103° 36' 57.835 W
11,100.0	80.91	359.69	10,874.0	277.1	264.6	560,284.64	762,375.84	32° 32' 17.645 N	103° 36' 57.835 W
11,125.0	83.91	359.69	10,877.3	301.8	264.5	560,309.42	762,375.71	32° 32' 17.890 N	103° 36' 57.834 W
11,150.0	86.91	359.69	10,879.3	326.7	264.3	560,334.33	762,375.57	32° 32' 18.136 N	103° 36' 57.834 W
11,175.7	90.00	359.69	10,880.0	352.5	264.2	560,360.05	762,375.43	32° 32' 18.391 N	103° 36' 57.834 W
	33.5 hold at 11		10,000,0	070 7	004.4	500 004 00	700 075 00	00% 001 40 004 N	4008 001 57 000 144
11,200.0	90.00	359.69	10,880.0	376.7 476.7	264.1 263.5	560,384.32	762,375.30 762,374.76	32° 32' 18.631 N	103° 36' 57.833 W 103° 36' 57.832 W
11,300.0 11,400.0	90.00 90.00	359.69 359.69	10,880.0 10,880.0	476.7 576.7	263.5	560,484.32 560,584.32	762,374.76	32° 32' 19.621 N 32° 32' 20.610 N	103° 36' 57.832 W
11,500.0	90.00	359.69	10,880.0	676.7	262.4	560,684.31	762,373.67	32° 32' 20.010 N 32° 32' 21.600 N	103° 36' 57.829 W
11,600.0	90.00	359.69	10,880.0	776.7	261.9	560,784.31	762,373.12	32° 32' 22.589 N	103° 36' 57.827 W
11,700.0	90.00	359.69	10,880.0	876.7	261.3	560,884.31	762,372.58	32° 32' 23.579 N	103° 36' 57.826 W
11,800.0	90.00	359.69	10,880.0	976.7	260.8	560,984.31	762,372.03	32° 32' 24.568 N	103° 36' 57.824 W
11,900.0	90.00	359.69	10,880.0	1,076.7	260.3	561,084.31	762,371.48	32° 32' 25.558 N	103° 36' 57.823 W
12,000.0	90.00	359.69	10,880.0	1,176.7	259.7	561,184.31	762,370.94	32° 32' 26.547 N	103° 36' 57.821 W
12,100.0	90.00	359.69	10,880.0	1,276.7	259.2	561,284.31	762,370.39	32° 32' 27.537 N	103° 36' 57.820 W
12,200.0	90.00	359.69	10,880.0	1,376.7	258.6	561,384.30	762,369.85	32° 32' 28.526 N	103° 36' 57.818 W
12,300.0	90.00	359.69	10,880.0	1,476.7	258.1	561,484.30	762,369.30	32° 32' 29.516 N	103° 36' 57.817 W
12,400.0	90.00	359.69	10,880.0	1,576.7	257.5	561,584.30	762,368.76	32° 32' 30.505 N	103° 36' 57.815 W
12,500.0	90.00	359.69	10,880.0	1,676.7	257.0	561,684.30	762,368.21	32° 32' 31.495 N	103° 36' 57.814 W
12,600.0	90.00	359.69	10,880.0	1,776.7	256.4	561,784.30	762,367.67	32° 32' 32.484 N	103° 36' 57.812 W
12,700.0	90.00	359.69	10,880.0	1,876.7	255.9	561,884.30	762,367.12	32° 32' 33.474 N	103° 36' 57.811 W
12,800.0 12,900.0	90.00 90.00	359.69 359.69	10,880.0	1,976.7 2,076.7	255.4 254.8	561,984.30 562,084.29	762,366.58 762,366.03	32° 32' 34.463 N 32° 32' 35.453 N	103° 36' 57.809 W 103° 36' 57.808 W
12,900.0	90.00 90.00	359.69 359.69	10,880.0 10,880.0	2,076.7 2,176.7	254.8 254.3	562,084.29 562,184.29	762,365.49	32 32 35.453 N 32° 32' 36.442 N	103° 36' 57.808 W
13,000.0	30.00	559.09	10,000.0	2,170.7	204.0	302,104.23	102,303.43	JZ JZ JU.442 N	100 00 07.000 W

6/14/2024 8:19:10AM

Released to Imaging: 7/22/2025 2:06:10 PM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measu Dep	oth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(usi	п)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
	,100.0	90.00	359.69	10,880.0	2,276.7	253.7	562,284.29	762,364.94	32° 32' 37.432 N	103° 36' 57.805 W
	,200.0	90.00	359.69	10,880.0	2,376.7	253.2	562,384.29	762,364.40	32° 32' 38.421 N	103° 36' 57.803 W
	,300.0	90.00	359.69	10,880.0	2,476.7	252.6	562,484.29	762,363.85	32° 32' 39.411 N	103° 36' 57.802 W
	,400.0	90.00	359.69	10,880.0	2,576.7	252.1	562,584.29	762,363.31	32° 32' 40.400 N	103° 36' 57.800 W
	,500.0	90.00	359.69	10,880.0	2,676.7	251.5	562,684.28	762,362.76	32° 32' 41.390 N	103° 36' 57.799 W
	,600.0	90.00	359.69	10,880.0	2,776.7	251.0	562,784.28	762,362.22	32° 32' 42.379 N	103° 36' 57.797 W
	,700.0	90.00	359.69	10,880.0	2,876.7	250.4	562,884.28	762,361.67	32° 32' 43.369 N	103° 36' 57.796 W
	,800.0	90.00	359.69	10,880.0	2,976.7	249.9	562,984.28	762,361.13	32° 32' 44.358 N	103° 36' 57.794 W
	,900.0	90.00	359.69	10,880.0	3,076.7	249.4	563,084.28	762,360.58	32° 32' 45.348 N	103° 36' 57.793 W
	,000.0	90.00	359.69	10,880.0	3,176.7	248.8	563,184.28	762,360.04	32° 32' 46.337 N	103° 36' 57.791 W
	,100.0	90.00	359.69 359.69	10,880.0	3,276.7	248.3	563,284.28	762,359.49	32° 32' 47.327 N	103° 36' 57.790 W
	,200.0 ,300.0	90.00 90.00	359.69 359.69	10,880.0 10,880.0	3,376.7 3,476.7	247.7 247.2	563,384.27 563,484.27	762,358.94 762,358.40	32° 32' 48.316 N 32° 32' 49.306 N	103° 36' 57.788 W 103° 36' 57.787 W
	,300.0	90.00	359.69	10,880.0	3,576.7	247.2	563,584.27	762,357.85	32° 32' 49.300 N 32° 32' 50.295 N	103° 36' 57.785 W
	,400.0	90.00	359.69	10,880.0	3,676.7	246.0	563,684.27	762,357.31	32° 32' 50.295 N 32° 32' 51.285 N	103° 36' 57.784 W
	,600.0	90.00	359.69	10,880.0	3,776.7	240.1	563,784.27	762,356.76	32° 32' 52.274 N	103° 36' 57.782 W
	,700.0	90.00	359.69	10,880.0	3,876.7	245.0	563,884.27	762,356.22	32° 32' 53.264 N	103° 36' 57.781 W
	,800.0	90.00	359.69	10,880.0	3,976.7	244.4	563,984.27	762,355.67	32° 32' 54.253 N	103° 36' 57.779 W
	,900.0	90.00	359.69	10,880.0	4,076.7	243.9	564,084.26	762,355.13	32° 32' 55.243 N	103° 36' 57.778 W
	,000.0	90.00	359.69	10,880.0	4,176.7	243.4	564,184.26	762,354.58	32° 32' 56.232 N	103° 36' 57.776 W
	,100.0	90.00	359.69	10,880.0	4,276.7	242.8	564,284.26	762,354.04	32° 32' 57.222 N	103° 36' 57.775 W
	,200.0	90.00	359.69	10,880.0	4,376.7	242.3	564,384.26	762,353.49	32° 32' 58.211 N	103° 36' 57.773 W
	,300.0	90.00	359.69	10,880.0	4,476.7	241.7	564,484.26	762,352.95	32° 32' 59.201 N	103° 36' 57.772 W
	,400.0	90.00	359.69	10,880.0	4,576.7	241.2	564,584.26	762,352.40	32° 33' 0.190 N	103° 36' 57.770 W
	,500.0	90.00	359.69	10,880.0	4,676.7	240.6	564,684.26	762,351.86	32° 33' 1.180 N	103° 36' 57.769 W
15,	,600.0	90.00	359.69	10,880.0	4,776.7	240.1	564,784.25	762,351.31	32° 33' 2.169 N	103° 36' 57.767 W
15,	,700.0	90.00	359.69	10,880.0	4,876.7	239.5	564,884.25	762,350.77	32° 33' 3.159 N	103° 36' 57.766 W
15,	,800.0	90.00	359.69	10,880.0	4,976.7	239.0	564,984.25	762,350.22	32° 33' 4.148 N	103° 36' 57.764 W
15,	,880.0	90.00	359.69	10,880.0	5,056.6	238.6	565,064.22	762,349.79	32° 33' 4.939 N	103° 36' 57.763 W
N	MNM 13	34876 Entry a	t 15880.0 MD							
15,	,900.0	90.00	359.69	10,880.0	5,076.7	238.4	565,084.25	762,349.68	32° 33' 5.138 N	103° 36' 57.763 W
16,	,000.0	90.00	359.69	10,880.0	5,176.7	237.9	565,184.25	762,349.13	32° 33' 6.127 N	103° 36' 57.761 W
16,	,100.0	90.00	359.69	10,880.0	5,276.7	237.4	565,284.25	762,348.59	32° 33' 7.117 N	103° 36' 57.760 W
	,200.0	90.00	359.69	10,880.0	5,376.7	236.8	565,384.24	762,348.04	32° 33' 8.106 N	103° 36' 57.758 W
	,300.0	90.00	359.69	10,880.0	5,476.7	236.3	565,484.24	762,347.50	32° 33' 9.096 N	103° 36' 57.757 W
	,400.0	90.00	359.69	10,880.0	5,576.7	235.7	565,584.24	762,346.95	32° 33' 10.085 N	103° 36' 57.755 W
	,500.0	90.00	359.69	10,880.0	5,676.7	235.2	565,684.24	762,346.40	32° 33' 11.075 N	103° 36' 57.754 W
	,600.0	90.00	359.69	10,880.0	5,776.7	234.6	565,784.24	762,345.86	32° 33' 12.064 N	103° 36' 57.752 W
	,700.0	90.00	359.69	10,880.0	5,876.7	234.1	565,884.24	762,345.31	32° 33' 13.054 N	103° 36' 57.751 W
	,800.0	90.00	359.69	10,880.0	5,976.7	233.5	565,984.24	762,344.77	32° 33' 14.043 N	103° 36' 57.749 W
	,900.0	90.00	359.69	10,880.0	6,076.7	233.0	566,084.23	762,344.22	32° 33' 15.033 N	103° 36' 57.748 W
	,000.0	90.00	359.69	10,880.0	6,176.7	232.5	566,184.23	762,343.68	32° 33' 16.022 N	103° 36' 57.746 W
	,100.0	90.00	359.69	10,880.0	6,276.6	231.9	566,284.23	762,343.13	32° 33' 17.012 N	103° 36' 57.745 W
	,200.0 ,300.0	90.00	359.69	10,880.0	6,376.6	231.4	566,384.23	762,342.59	32° 33' 18.001 N 32° 33' 18.991 N	103° 36' 57.743 W
,	,300.0	90.00 90.00	359.69 359.69	10,880.0 10,880.0	6,476.6 6,576.6	230.8 230.3	566,484.23 566,584.23	762,342.04 762,341.50	32° 33' 19.980 N	103° 36' 57.742 W 103° 36' 57.740 W
	,400.0	90.00 90.00	359.69 359.69	10,880.0	6,676.6 6,676.6	230.3	566,684.23	762,341.50	32° 33' 20.970 N	103° 36' 57.740 W
	,500.0	90.00	359.69	10,880.0	6,776.6	229.7	566,784.22	762,340.41	32° 33' 21.959 N	103° 36' 57.737 W
,	,700.0	90.00	359.69	10,880.0	6,876.6	228.6	566,884.22	762,339.86	32° 33' 22.949 N	103° 36' 57.736 W
	,800.0	90.00	359.69	10,880.0	6,976.6	228.1	566,984.22	762,339.32	32° 33' 23.938 N	103° 36' 57.734 W
	,900.0	90.00	359.69	10,880.0	7,076.6	227.5	567,084.22	762,338.77	32° 33' 24.928 N	103° 36' 57.733 W
	,000.0	90.00	359.69	10,880.0	7,176.6	227.0	567,184.22	762,338.23	32° 33' 25.917 N	103° 36' 57.731 W
	,100.0	90.00	359.69	10,880.0	7,276.6	226.5	567,284.22	762,337.68	32° 33' 26.907 N	103° 36' 57.730 W
	,200.0	90.00	359.69	10,880.0	7,376.6	225.9	567,384.21	762,337.14	32° 33' 27.896 N	103° 36' 57.728 W

6/14/2024 8:19:10AM

Released to Imaging: 7/22/2025 2:06:10 PM

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
18,300.0	90.00	359.69	10,880.0	7,476.6	225.4	567,484.21	762,336.59	32° 33' 28.886 N	103° 36' 57.727 W
18,400.0	90.00	359.69	10,880.0	7,576.6	224.8	567,584.21	762,336.05	32° 33' 29.875 N	103° 36' 57.725 W
18,500.0	90.00	359.69	10,880.0	7,676.6	224.3	567,684.21	762,335.50	32° 33' 30.865 N	103° 36' 57.724 W
18,600.0	90.00	359.69	10,880.0	7,776.6	223.7	567,784.21	762,334.96	32° 33' 31.854 N	103° 36' 57.722 W
18,700.0	90.00	359.69	10,880.0	7,876.6	223.2	567,884.21	762,334.41	32° 33' 32.844 N	103° 36' 57.721 W
18,800.0	90.00	359.69	10,880.0	7,976.6	222.6	567,984.21	762,333.86	32° 33' 33.833 N	103° 36' 57.719 W
18,900.0	90.00	359.69	10,880.0	8,076.6	222.1	568,084.20	762,333.32	32° 33' 34.823 N	103° 36' 57.718 W
19,000.0	90.00	359.69	10,880.0	8,176.6	221.5	568,184.20	762,332.77	32° 33' 35.812 N	103° 36' 57.716 W
19,100.0	90.00	359.69	10,880.0	8,276.6	221.0	568,284.20	762,332.23	32° 33' 36.802 N	103° 36' 57.715 W
19,200.0	90.00	359.69	10,880.0	8,376.6	220.5	568,384.20	762,331.68	32° 33' 37.791 N	103° 36' 57.713 W
19,300.0	90.00	359.69	10,880.0	8,476.6	219.9	568,484.20	762,331.14	32° 33' 38.781 N	103° 36' 57.712 W
19,400.0	90.00	359.69	10,880.0	8,576.6	219.4	568,584.20	762,330.59	32° 33' 39.770 N	103° 36' 57.710 W
19,500.0	90.00	359.69	10,880.0	8,676.6	218.8	568,684.20	762,330.05	32° 33' 40.760 N	103° 36' 57.709 W
19,600.0	90.00	359.69	10,880.0	8,776.6	218.3	568,784.19	762,329.50	32° 33' 41.749 N	103° 36' 57.707 W
19,700.0	90.00	359.69	10,880.0	8,876.6	217.7	568,884.19	762,328.96	32° 33' 42.738 N	103° 36' 57.706 W
19,800.0	90.00	359.69	10,880.0	8,976.6	217.2	568,984.19	762,328.41	32° 33' 43.728 N	103° 36' 57.704 W
19,900.0	90.00	359.69	10,880.0	9,076.6	216.6	569,084.19	762,327.87	32° 33' 44.717 N	103° 36' 57.703 W
20,000.0	90.00	359.69	10,880.0	9,176.6	216.1	569,184.19	762,327.32	32° 33' 45.707 N	103° 36' 57.701 W
20,100.0	90.00	359.69	10,880.0	9,276.6	215.5	569,284.19	762,326.78	32° 33' 46.696 N	103° 36' 57.700 W
20,200.0	90.00	359.69	10,880.0	9,376.6	215.0	569,384.19	762,326.23	32° 33' 47.686 N	103° 36' 57.698 W
20,300.0	90.00	359.69	10,880.0	9,476.6	214.5	569,484.18	762,325.69	32° 33' 48.675 N	103° 36' 57.697 W
20,400.0	90.00	359.69	10,880.0	9,576.6	213.9	569,584.18	762,325.14	32° 33' 49.665 N	103° 36' 57.695 W
20,500.0	90.00	359.69	10,880.0	9,676.6	213.4	569,684.18	762,324.60	32° 33' 50.654 N	103° 36' 57.694 W
20,600.0	90.00	359.69	10,880.0	9,776.6	212.8	569,784.18	762,324.05	32° 33' 51.644 N	103° 36' 57.692 W
20,700.0	90.00	359.69	10,880.0	9,876.6	212.3	569,884.18	762,323.51	32° 33' 52.633 N	103° 36' 57.691 W
20,800.0	90.00	359.69	10,880.0	9,976.6	211.7	569,984.18	762,322.96	32° 33' 53.623 N	103° 36' 57.689 W
20,900.0	90.00	359.69	10,880.0	10,076.6	211.2	570,084.17	762,322.42	32° 33' 54.612 N	103° 36' 57.688 W
21,000.0	90.00	359.69	10,880.0	10,176.6	210.6	570,184.17	762,321.87	32° 33' 55.602 N	103° 36' 57.686 W
21,059.2	90.00	359.69	10,880.0	10,235.8	210.3	570,243.40	762,321.55	32° 33' 56.188 N	103° 36' 57.685 W
TD at 210	059.2								

Design Targets Target Name - hit/miss target Dip Angle Dip Dir. TVD +N/-S +E/-W Northing Easting - Shape (usft) (usft) (°) (°) (usft) (usft) (usft) Longitude Latitude 0.00 FTP E25FC 173H 0.00 10,880.0 559,882.59 762,378.04 32° 32' 13.666 N 103° 36' 57.841 W -125.0 266.8 - plan misses target center by 197.8usft at 10800.0usft MD (10739.6 TVD, 14.3 N, 266.1 E) - Point LTP E25FC 173H 0.00 0.00 10,880.0 10,235.8 210.3 570,243.40 762,321.55 32° 33' 56.188 N 103° 36' 57.685 W - plan hits target center - Point

Planning Report - Geographic

Database:	Compass	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Company:	NEW MEXICO	TVD Reference:	KB @ 3708.0usft
Project:	(SP) LEA	MD Reference:	KB @ 3708.0usft
Site:	EILEEN 25 FED COM	North Reference:	Grid
Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	PWP0		

Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
2,000.0	2,000.0	0.0	0.0	Start Build 2.00
2,500.0	2,497.5	-18.5	39.4	Start 1195.5 hold at 2500.0 MD
3,695.5	3,674.8	-106.5	227.4	Start Drop -2.00
4,195.5	4,172.2	-125.0	266.8	Start 6230.3 hold at 4195.5 MD
10,425.7	10,402.5	-125.0	266.8	Start DLS 12.00 TFO 359.69
11,175.7	10,880.0	352.5	264.2	Start 9883.5 hold at 11175.7 MD
15,880.0	10,880.0	5,056.6	238.6	NMNM 134876 Entry at 15880.0 MD
21,059.2	10,880.0	10,235.8	210.3	TD at 21059.2

NEW MEXICO

(SP) LEA EILEEN 25 FED COM EILEEN 25 FED COM 173H

OWB PWP0

Anticollision Report

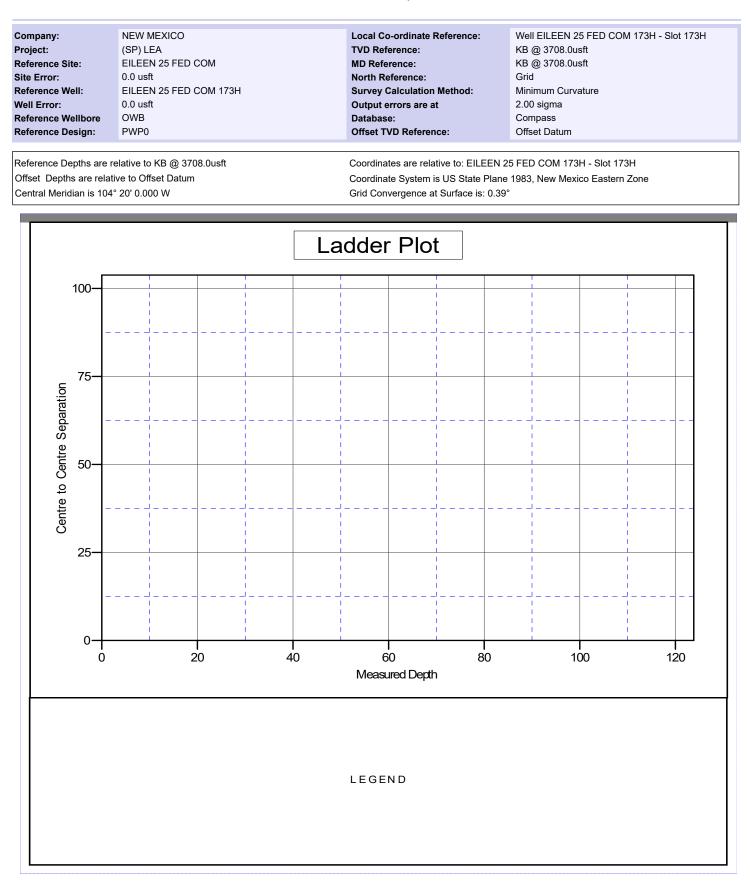
14 June, 2024

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H		
Project:	(SP) LEA	TVD Reference:	KB @ 3708.0usft		
Reference Site:	EILEEN 25 FED COM	MD Reference:	KB @ 3708.0usft		
Site Error:	0.0 usft	North Reference:	Grid		
Reference Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature		
Well Error:	0.0 usft	Output errors are at	2.00 sigma		
Reference Wellbore	OWB	Database:	Compass		
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum		
Reference	PWP0				
Filter type:	NO GLOBAL FILTER: Using user defined selection	a & filtering criteria			
	Stations	0	ISCWSA		
Interpolation Method:					
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D		
Results Limited by:	Maximum centre distance of 1,000.0usft	Error Surface:	Pedal Curve		

Survey Tool Program	Date 6/14/2024	
Warning Levels Evaluated at:	2.00 Sigma	Casing Method: Not applied
•	,	

ourvey room rogram		Dute of theory		
From	То			
(usft)	(usft)	Survey (Wellbore)	Tool Name	Description
0.0	21,059	.2 PWP0 (OWB)	MWD	OWSG_Rev2_ MWD - Standard


Summary							
	Reference		Offset Distance				
Site Name Offset Well - Wellbore	- Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning
EILEEN 25 FED COM							
EILEEN 25 FED COM							Out of range Out of range

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

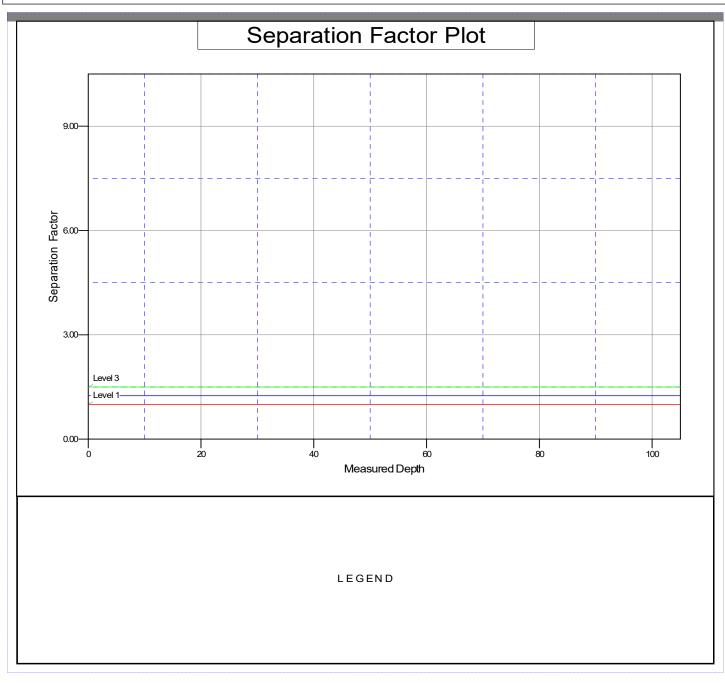
Received by OCD: 7/17/2025 5:12:41 PM

Centennial Resource Development

Anticollision Report

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Released to Imaging: 7/22/2025 2:06:10 PM


Received by OCD: 7/17/2025 5:12:41 PM

Centennial Resource Development

Anticollision Report

Company:		NEW MEXICO	Local Co-ordinate Reference:	Well EILEEN 25 FED COM 173H - Slot 173H
Project:		(SP) LEA	TVD Reference:	KB @ 3708.0usft
Reference	Site:	EILEEN 25 FED COM	MD Reference:	KB @ 3708.0usft
Site Error:		0.0 usft	North Reference:	Grid
Reference	Well:	EILEEN 25 FED COM 173H	Survey Calculation Method:	Minimum Curvature
Well Error:	:	0.0 usft	Output errors are at	2.00 sigma
Reference	Wellbore	OWB	Database:	Compass
Reference	Design:	PWP0	Offset TVD Reference:	Offset Datum

Reference Depths are relative to KB @ 3708.0usft Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: EILEEN 25 FED COM 173H - Slot 173H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.39°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

•

	st be submitted w <u>Section</u>	ith each Applica	GEMENT PI	LAN			
nt Plan mu	Section		ion for Permit to F				
				Drill (APD) for	a new o	r recompleted well.	
		<u> I </u>	<u>escription</u> 2021				
sources	<u>Operating, Ll</u>	<u>_C</u> ogrid:	3 <u>7216</u> 5	Date	:: <u>06 /</u>	<u>19/202</u> 4	
nendment o	lue to 🗆 19.15.27	.9.D(6)(a) NMA	C 🗆 19.15.27.9.D(6)(b) NMAC [] Other.		
				vells proposed	to be dri	illed or proposed to	
API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D	Р	Anticipated Produced Water BBL/D	
dheet							
rovide the	following informa	tion for each nev				27.9(D)(1) NMAC]	
API	Spud Date	TD Reached Date				First Production Date	
lsheet							
: ঐ Attach 9.15.27.8 №	n a complete desc NMAC. I Attach a comple	ription of the ac	tions Operator will	l take to compl	y with t	the requirements of	
	International and the set of the	nendment due to □ 19.15.27 lowing information for each e well pad or connected to a conneconnected to a connected to a connected to	nendment due to \Box 19.15.27.9.D(6)(a) NMAG lowing information for each new or recomple e well pad or connected to a central delivery p API ULSTR Footages dheet Name: EILEEN CTB SESW rovide the following information for each new from a single well pad or connected to a central API Spud Date TD Reached Date Isheet Image: Image: Image: Attach a complete description of how Ope Image: Attach a complete description of the act 9.15.27.8 NMAC. Tractices:	lowing information for each new or recompleted well or set of vertice well pad or connected to a central delivery point. API ULSTR Footages Anticipated Oil BBL/D dheet	nendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ lowing information for each new or recompleted well or set of wells proposed e well pad or connected to a central delivery point. API ULSTR Footages Anticipated Oil BBL/D Anticipated Gas MCF/D dheet	nendment due to □ 19.15.27.9.D(6)(a) NMAC □ 19.15.27.9.D(6)(b) NMAC □ Other. lowing information for each new or recompleted well or set of wells proposed to be dre well pad or connected to a central delivery point. API ULSTR Footages Anticipated Anticipated Glaeet	

Page 6

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

Dependence of the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \Box Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \Box will \Box will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

 \Box Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality: \Box Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

Page 7

<u>Section 3 - Certifications</u> <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

 $\overleftarrow{\mathsf{A}}$ Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or

 \Box Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. *If Operator checks this box, Operator will select one of the following:*

Well Shut-In. 🛛 Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or

Venting and Flaring Plan. A Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including:

- (a) power generation on lease;
- (b) power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- (e) reinjection for underground storage;
- (f) reinjection for temporary storage;
- (g) reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

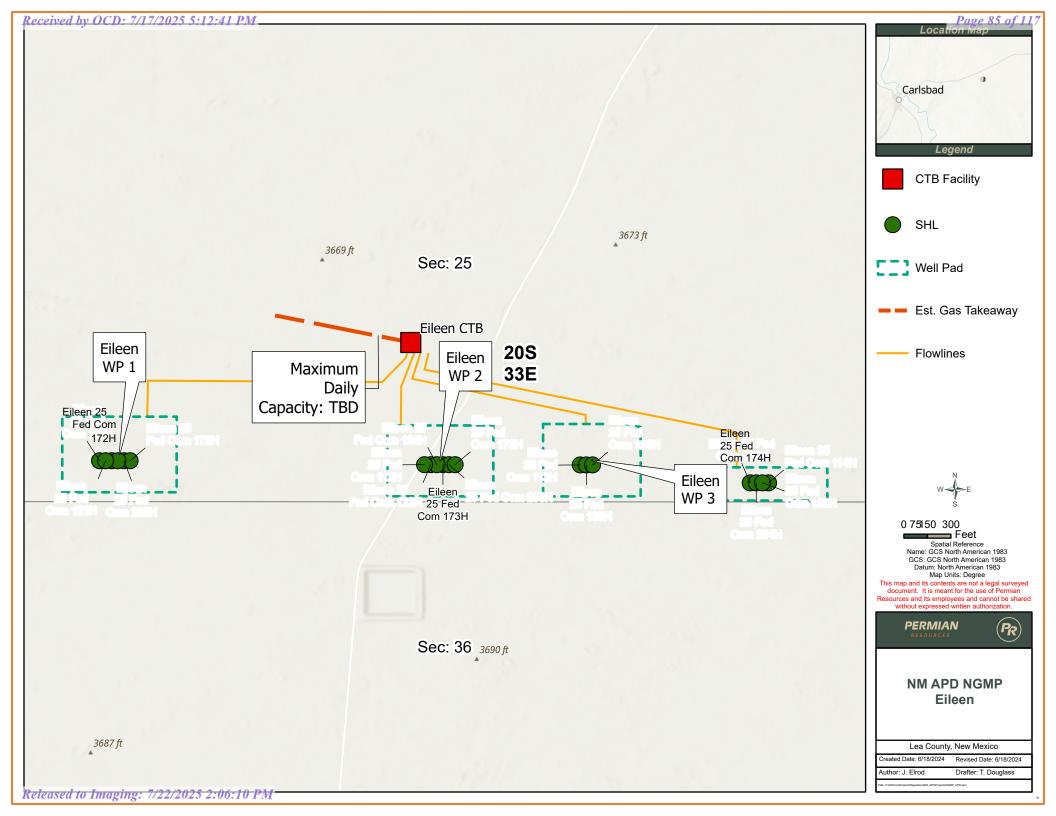
Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

(a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or

(b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.

2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.


Received by OCD: 7/17/2025 5:12:41 PM

Page 8

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Jernifer Elros					
Printed Name: JENNIFER ELROD					
Title: SR. REGULATORY ANALYST					
E-mail Address: jennifer.elrod@permianres.com					
Date: 6/19/2024					
Phone: 940-452-6214					
OIL CONSERVATION DIVISION					
(Only applicable when submitted as a standalone form)					
Approved By:					
Approved By: Title:					
Title:					
Title: Approval Date:					
Title: Approval Date:					
Title: Approval Date:					

WELL NAME	API	UL/SECT/T/R	FOOTAGES	ANTICIPATED OIL BBL/D	ANTICIPATED GAS MCF/D	ANTICIPATED WATER BBL/D
EILEEN 25 FED COM 172H		M-25-20S-33E		1225	1142	1272
EILEEN 25 FED COM 173H		N-25-20S-33E		1225	1142	1272
EILEEN 25 FED COM 174H		P-25-20S-33E		1225	1142	1272
WELL NAME	API	SPUD	TD	COMPLETION DATE	FLOW BACK DATE	FIRST PRODUCTION
EILEEN 25 FED COM 172H		11-Jan-25	1-May-25	1-Jul-25	1-Aug-25	1-Aug-25
EILEEN 25 FED COM 173H		11-Jan-25	1-May-25	1-Jul-25	1-Aug-25	1-Aug-25
EILEEN 25 FED COM 174H		11-Jan-25	1-May-25	1-Jul-25	1-Aug-25	1-Aug-25

Permian Resources Operating, LLC (372165)

Natural Gas Management Plan Descriptions

VI. Separation Equipment:

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations. Our goal is to maintain 5 minutes of retention time in the test vessel and 20 minutes in the heater treater at peak production rates. The gas produced is routed from the separator to the gas sales line.

VII. Operational Practices:

Drilling

During Permian's drilling operations it is uncommon for venting or flaring to occur. If flaring is needed due to safety concerns, gas will be routed to a flare and volumes will be estimated.

Flowback

During completion/recompletion flowback operations, after separation flowback begins and as soon as it is technically feasible, Permian routes gas though a permanent separator and the controlled facility where the gas is either sold or flared through a high-pressure flare if needed.

Production

Per 19.15.27.8.D, Permian's facilities are designed to minimize waste. Our produced gas will only be vented or flared in an emergency or malfunction situation, except as allowed for normal operations noted in 19.15.27.8.D(2) & (4). All gas that is flared is metered. All gas that may be vented will be estimated.

Performance Standards

Permian utilizes a production forecast from our Reservoir Engineering team to appropriately size each permanent, 3-phase separator and heater treater utilized for production operations.

All of Permian's permanent storage tanks associated with production operations which are routed to a flare or control device are equipped with an automatic gauging system.

All of Permian's flare stacks, both currently installed and for future installation, are:

- 1) Appropriately sized and designed to ensure proper combustion efficiency.
- 2) Equipped with an automatic ignitor or continuous pilot.
- 3) Anchored and located at least 100 feet from the well and storage tanks.

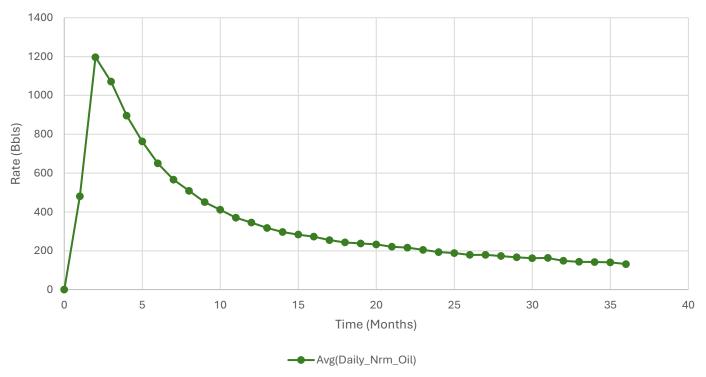
Permian's field operations and HSE teams have implemented an AVO inspection schedule that adheres to the requirements of 19.15.27.8.E(5).

All of our operations and facilities are designed to minimize waste. We routinely employ the following methods and practices:

- Closed-loop systems
- Enclosed and properly sized tanks

Page 87 of 117

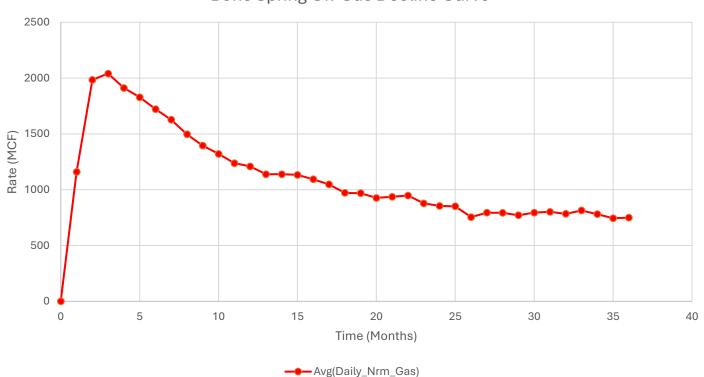
- Vapor recovery units to maximize recovery of low-pressure gas streams and potential unauthorized emissions
- Low-emitting or electric engines whenever practical
- Combustors and flare stacks in the event of a malfunction or emergency
- Routine facility inspections to identify leaking components, functioning control devices, such as flares and combustors, and repair / replacement of malfunctioning components where applicable


Measurement or estimation

Permian measures or estimates the volumes of natural gas vented, flared and/or beneficially used for all of our drilling, completing and producing wells. We utilize accepted industry standards and methodology which can be independently verified. Annual GOR testing is completed on our wells and will be submitted as required by the OCD. None of our equipment is designed to allow diversion around metering elements except during inspection, maintenance and repair operations.

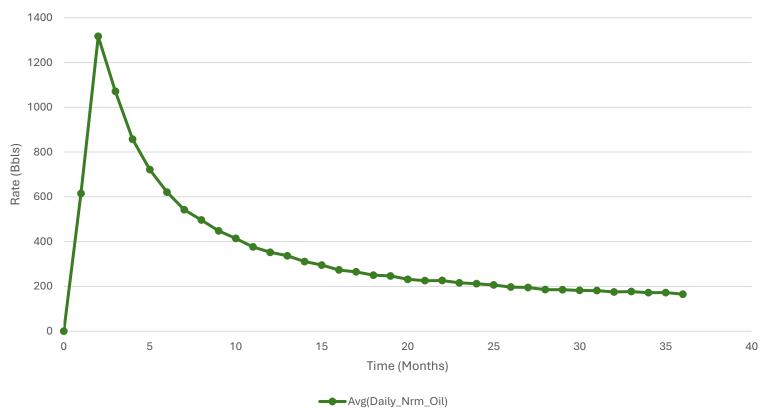
VIII. Best Management Practices:

Permian utilizes the following BMPs to minimize venting during active and planned maintenance activities:


- Use a closed-loop process wherever possible during planned maintenance activities, such as blowdowns, liquid removal, and work over operations.
- Employ low-emitting or electric engines for equipment, such as compressors
- Adhere to a strict preventative maintenance program which includes routine facility inspections, identification of component malfunctions, and repairing or replacing components such as hatches, seals, valves, etc. where applicable
- Utilize vapor recovery units (VRU's) to maximize recovery of volumes of low-pressure gas streams and potential unauthorized emissions
- Route low pressure gas and emissions streams to a combustion device to prevent venting where necessary

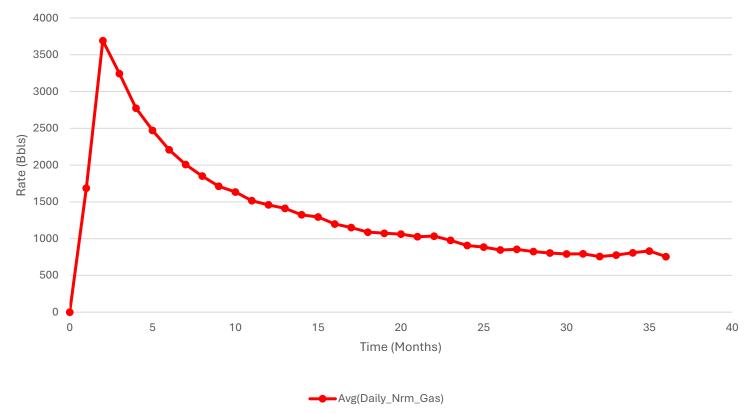
Bone Spring Oil Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.


Released to Imaging: 7/22/2025 2:06:10 PM

Bone Spring Oil-Gas Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.


Released to Imaging: 7/22/2025 2:06:10 PM

Wolfcamp Oil Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

Page 90 of 117

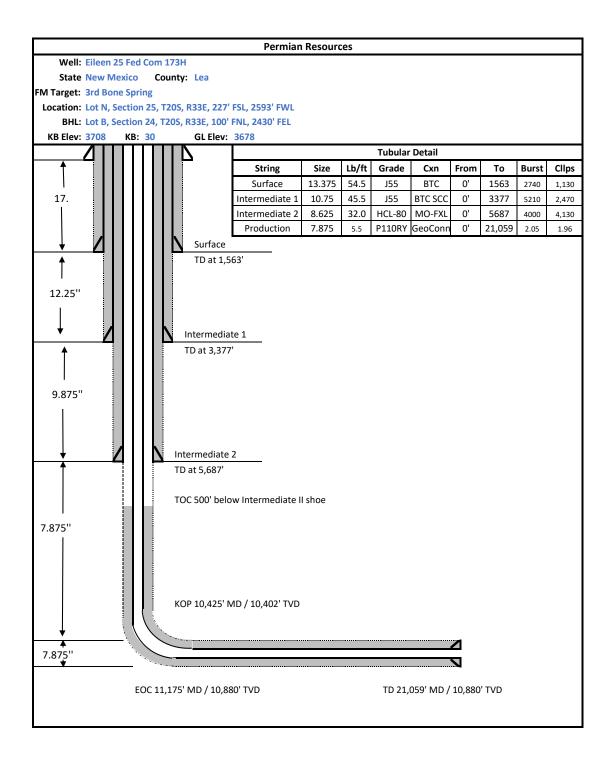
Wolfcamp Oil-Gas Decline Curve

- 1. Represented curve is generic based on 3-Years available information for the Bone Spring formation and may not be representative of forecasted production or actual volumes.
- 2. Decline curves are based on an average 10,000ft lateral length. Multiple factors may influence production and decline curves, including but not limited to: lateral length and completion type.

Released to Imaging: 7/22/2025 2:06:10 PM

Permian Resources requests the below wellbore design in conjunction with R-111-Q.

The WBD below depicts the cement design required for R-111-Q.


The annulus between the production and intermediate casing strings shall be actively monitored for pressure during hydraulic fracturing operations. If pressure communication is observed, indicating a possible production casing failure, hydraulic fracturing operations must immediately cease, and source of the pressure increase shall be investigated. During hydraulic fracturing operations, a pressure relief valve or appropriate venting system shall be installed to relieve pressure in the event of a production casing failure. The opening pressure of any pressure relief valves must be set below 50% of the intermediate casing burst rating. If the well design features an uncemented intermediate casing shoe (for example as shown in Exhibit B, Figure B) and the well approaches to within ¼ mile of an offset well drilling, completing or producing from the Delaware Mountain Group, then the pressure relief valve opening pressure shall be set no more than 1000 psi and at no time shall the pressure on the annulus be allowed to exceed 1000 psi. This requirement can be waived by the offset well operator.

Production cement will be 500' below the 2nd intermediate shoe with 0% excess leaving the DMG un-cemented as a pressure relief zone.

Bradenhead operations will be performed within 180 days of completing hydraulic fracturing operations, tying back cement at least 500' inside the 2nd intermediate shoe but below Marker Bed 126.

4-String Design – Open 1st Int x Production Casing (ICP 2 above relief zone) Surface Casing Set in Rustler Anhydrite TOC at surface Potesh Interval 1st Intermediate Casing (Salt String) Set below base of salt TOC at surface 2nd Intermediate Casing Set below the salt string TOC at surface Delaware Mountain Group / Brushy Canyon Relief Zones - Open 1st Intermediate x Production annulus to monitor during completion - In the event of a production casing failure, pressure will either release at surface or release into the open Delaware Mountain Group formation - Post completion, a bradenhead squeeze will be performed to tie back the 2^{rd} Intermediate x Production casing annulus TOC into the 2^{rd} Intermediate shoe but below the base of potash interval Production Casing

[Figure E] 4 String – Uncemented Annulus between 2nd Intermediate and Production Casing Strings

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.


Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in <u>\$\$ 3172.6</u> through <u>3172.12</u>. All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s).". Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

Supporting Documentation

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

		Pressure Test	-High Pressure**	
Component to be Pressure Tested	Pressure Test—Low Pressure** psig (MPa)	Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket	
Annular preventer*	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annutar RWP, whichever is lower.	
Fixed pipe, variable bore, blind, and BSR preventers∞ 250 to 350 (1.72 to 2.41)		RWP of ram preventer or wellhead system, whichever is lower	ITP	
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2 41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP	
Choke manifold—upstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP	
Choke manifold—downstream of chokes*	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or M whichever is lower	ASP for the well program,	
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program		
 Annular(s) and VBR(s) shall be pre- For pad drilling operations, moving pressure-controlling connections For surface offshore operations, th 	during the evaluation period. The p issure tested on the largest and sm: from one wellhead to another within when the integray of a pressure set is non BOPs shall be pressure test land operations, the ram BOPs sha	ressure shall not decrease below the allest OD drill pipe to be used in well the 21 days, pressure testing is req al is broken. ted with the ram locks engaged and ill be pressure tested with the ram loc	program. uired for pressure-containing an the closing and locking pressur	

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.

Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

Procedures

1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.

2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.

a)A full BOP test will be conducted on the first well on the pad.

b)The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.

c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

d) A full BOP test will be required prior to drilling any production hole.

3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.

a) Between the HCV valve and choke line connection

b)Between the BOP quick connect and the wellhead

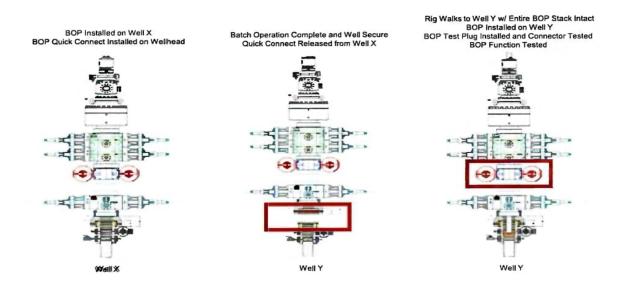
4) The BOP is then lifted and removed from the wellhead by a hydraulic system.

5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.

6) The connections mentioned in 3a and 3b will then be reconnected.

7) Install test plug into the wellhead using test joint or drill pipe.

8) A shell test is performed against the upper pipe rams testing the two breaks.


9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).

10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.

11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.

12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

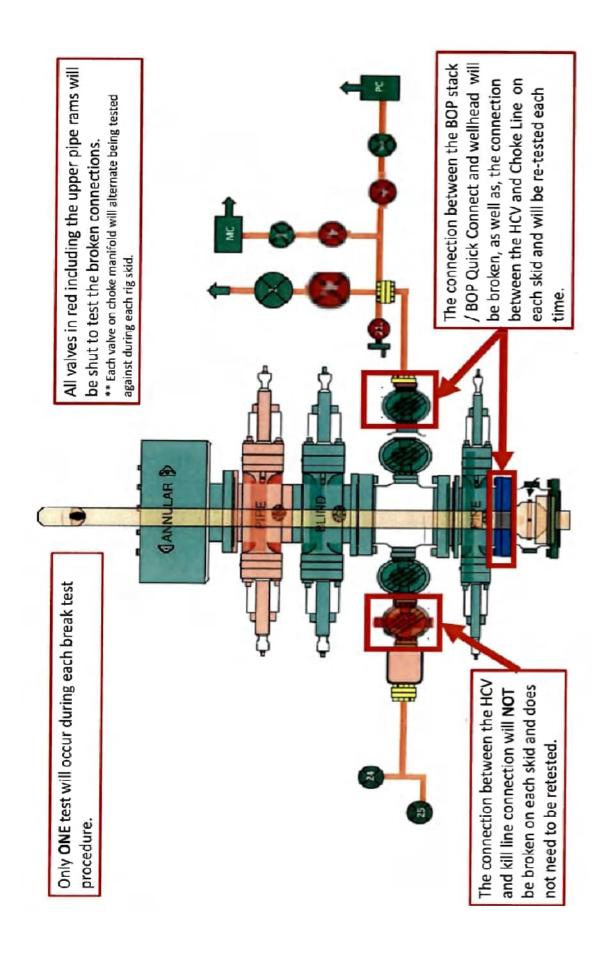
Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control

event occurs prior to the commencement of a BOPE Break Testing operation.


Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

1) After a full BOP test is conducted on the first well on the pad.

2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.

3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.

4) A full BOP test will be required prior to drilling the production hole.

Permian Resources Multi-Well Pad Batch Drilling Procedure

<u>Surface Casing</u> - PR intends to Batch set all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

- 1. Drill Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
- 2. Run and land planned surface casing see Illustration 1-1 Below to depth approved in APD.
- 3. Set packoff and test to 5k psi
- 4. Offline Cement
- 5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
- 6. Skid Rig to adjacent well to drill Surface hole.
- 7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater not to exceed 70% casing burst.

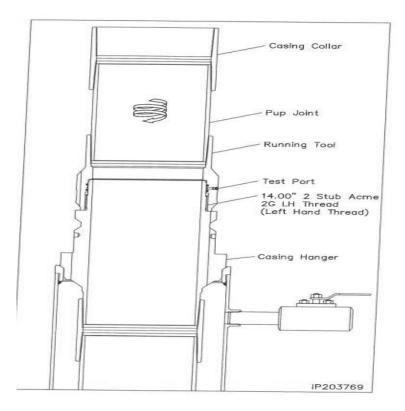


Illustration 1-1

<u>Intermediate Casing</u> – PR intends to Batch set all intermediate casing strings to a depth approved in the APD. Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior to testing BOPE, and prior to running/cementing all casing strings.

- 1. Rig will remove the nightcap and install and test BOPE.
- 2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 3. Install wear bushing then drill out surface casing shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
- 4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
- 5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
- 6. Cement casing to surface with floats holding.
- 7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
- 8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
- 9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
- 10. Install nightcap skid rig to adjacent well to drill Intermediate hole.

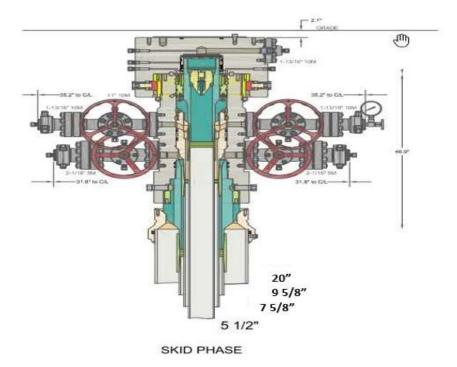


Illustration 2-2

<u>Production Casing</u> – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

- 1. Drilling Rig will remove the nightcap and install and test BOPE.
- 2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
- 3. Drill Vertical hole to KOP Trip out for Curve BHA.
- 4. Drill Curve, landing in production interval Trip for Lateral BHA.
- 5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
- 6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
- 7. Cement Production string with floats holding.
- 8. Run in with wash tool and wash wellhead area install pack-off and test void to 5,000psi for 15 minutes.
- 9. Install BPV in Production mandrel hanger Nipple down BOPE and install nightcap.
- 10. Test nightcap void to 5,000 psi for 30 minutes per illustration 2-2
- 11. Skid rig to adjacent well on pad to drill production hole.

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX. 77086 PHONE: +1 (281) 602-4100 FAX: +1 (281) 602-4147 EMAIL: gesna.quality@gates.com WEB: www.gates.com/oilandgas

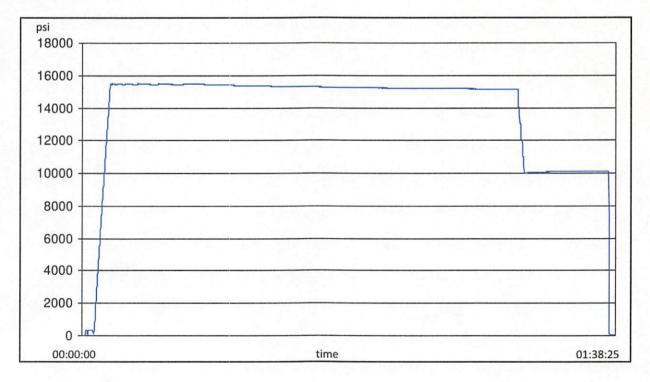
CERTIFICATE OF CONFORMANCE

This is to verify that the items detailed below meet the requirements of the Customer's Purchase Order referenced herein, and are in Conformance with applicable specifications, and that Records of Required Tests are on file and subject to examination. The following items were inspected and hydrostatically tested at **Gates Engineering & Services North America** facilities in Houston, TX, USA.

CUSTOMER:	HELMERICH & PAYNE INTERNATIONAL DRILLING CO.
CUSTOMER P.O.#:	740414061 (SN: 62429 - 88061537)
CUSTOMER P/N:	SN: 62429 - 88061537
PART DESCRIPTION:	INSPECT AND RETEST CUSTOMER HOSE 3IN X 16FT CHOKE & KILL ASSEMBLY C/W 3-1/16 FLANGES BX154 SS INLAID RING GROOVE EACH END
SALES ORDER #:	525826
QUANTITY:	1
SERIAL #:	62429 H3-012523-17

	F. CISNEROS-	
SIGNATURE:	T. UDITOIOJ=	
TITLE:	QUALITY ASSURANCE	
DATE:	1/26/2023	

Received by OCD: 7/17/2025 5:12:41 PM


H3-12183

test REPORT

CUSTOMER			TEST OBJECT		
Company:		H & PAYNE	Serial number:	H3-0125	23-17
	INTERNAT	IONAL DRILLING CO.	Lot number:		
Production description:	SN62429		Description:	SN62429	9
Sales order #:	525826				
Customer reference:			Hose ID:	3.0 CK03	3 16C 10K
			Part number:		
TEST INFORMATION					
Test procedure:	GTS-04-053		Fitting 1:	3.0 x 3-1	/16 10K
Test pressure:	15000.00	psi	Part number:		
Test pressure hold:	3600.00	sec	Description:		
Work pressure:	10000.00	psi			
Work pressure hold:	900.00	sec	Fitting 2:	3.0 x 3-1	/16 10K
Length difference:	0.00	%	Part number:		
Length difference:	0.00	inch	Description:		
Visual check:			Length:	16	feet
Pressure test result:	PASS				
Length measurement result	t:				

Test operator:

Martin

Filename: D:\Certificates\Report_012523-H3-012523-17.pdf

H3-12183

1/25/2023 2:59:32 PM

TEST REPORT

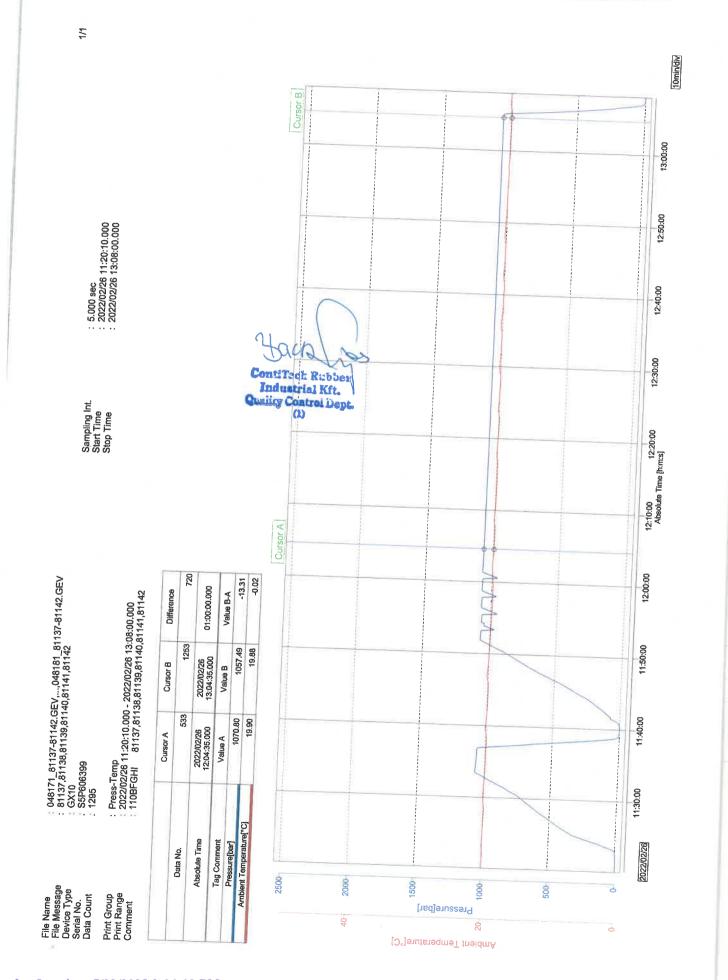
GAUGE TRACEABILITY

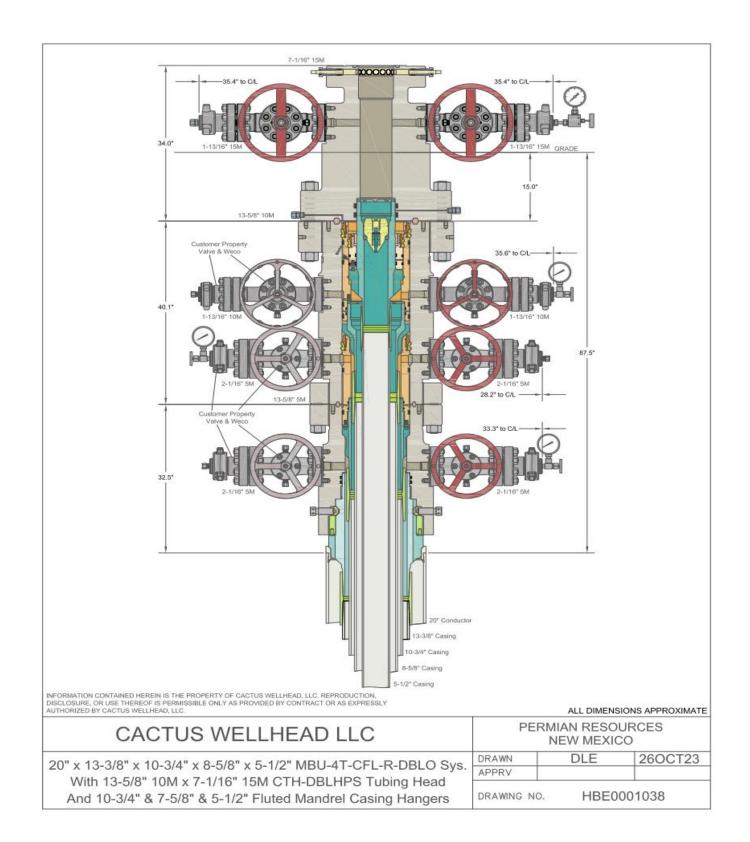
Description	Serial number	Calibration date	Calibration due date
S-25-A-W	110AQA15	2022-03-09	2023-03-09
S-25-A-W	110CBWVV	2022-03-09	2023-03-09
Comment			

Filename: D:\Certificates\Report_012523-H3-012523-17.pdf

Received by OCD: 7/17/2025 5:12:41 PM

CONTITECH RUBBER	No: QC-	DB-062 / 2022
	Page:	16 / 131

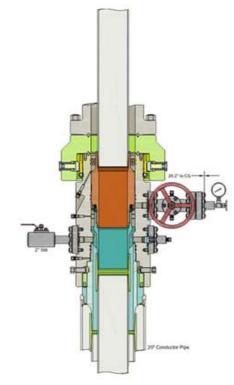

ContlTech


CUSTOMER:	ContiTecl	n Oil & N	nity ac	the second se				4-	0400	105
Supplier's name: Con	titech Rubber					C.O. N°			01624	
	1386035	1		1	r's addre	ss: Bu		ti út 10.		28 Szeg
			OSE TYPE: 3" ID Choke & Kill Hos					Hose		
HOSE SERIAL Nº:	81142		INAL / AC	CTUAL L	ENGTH:		7,	92 m / 7	',90 m	
W.P. 69,0 MPa		osi T.P.	103,5	MPa	1500)O psi	Durati	on:	60	
Pressure test with water a ambient temperature	41	See at	ttachm	ent (1	page)					
COUPLINGS 1	Гуре		Serial No	,		Quality			Heat	N°
3" coupling w	/ith		4411		A	ISI 413	0		6865	
3 1/16" 10K API b.w.	Flange end				A	ISI 413	0		04379	95
3" coupling w	rith		4428		A	ISI 4130	D		6862	6
3 1/16" 10K API Swivel	Flange end				AISI 4130			04174	3	
			AISI 4130		0 54538					
Hub					A	ISI 4130)		54538	3
Not Designed For W	Vell Testing						: 16C	3 rd Edi operatu	tion -	- FSL:
Hub Not Designed For V Fire Rated Il metal parts are flawless E CERTIFY THAT THE ABO ISPECTED AND PRESSURE TATEMENT OF CONFORMIT anditions and specifications of coordance with the reference asign requirements. This declar	VE HOSE HAS BI TESTED AS ABO TY: We hereby of the above Cust d standards, other aration of conformit	EEN MANU	the above er and the standards under the	e items/eq at these it and species sole resp	AF CORDANC ESULT. uipment s ems/equip cifications onsibility o	PI Spec	C 16C Ten THE TEI	RMS OF TI	tion - Ire rat	- FSL: te: "B ER

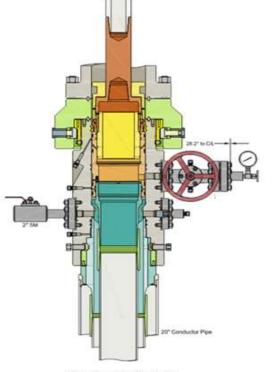
Received by OCD: 7/17/2025 5:12:41 PM

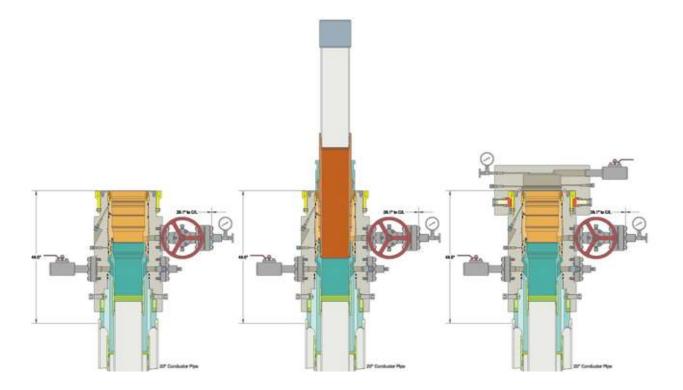
CONTITECH RUBBER	No: QC-DB-062 / 2022
Industrial Kft.	Page: 17 / 131

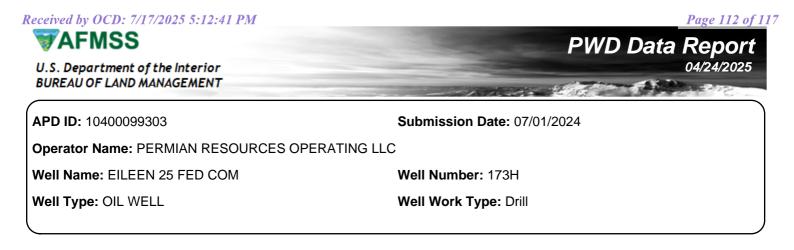
)



Permian Resources Offline Cementing Procedure Surface & Intermediate Casing


- 1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
- 2. Run and casing to Depth.
- 3. Land casing with mandrel.
- 4. Circulate 1.5 csg capacity.
- 5. Flow test Confirm well is static and floats are holding.
- 6. Set Annular packoff and pressure test. Test to 5k.
- 7. Nipple down BOP and install cap flange.
- 8. Skid rig to next well on pad
- 9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
- 10. Install offline cement tool.
- 11. Rig up cementers.
- 12. Circulate bottoms up with cement truck
- 13. Commence planned cement job, take returns through the annulus wellhead valve
- 14. After plug is bumped confirm floats hold and well is static
- 15. Rig down cementers and equipment
- 16. Install night cap with pressure gauge to monitor.


Intermediate


Run 7 5/8" Casing Land Casing on 7 5/8" Mandrel Hanger Cement 7 5/8" Casing Retrieve Running Tool

Run 9 5/8" Packoff Test Upper and Lower Seals Engage Lockring Retrieve Running Tool

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined

Would you like to utilize Lined Pit PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit Pit liner description: **Pit liner manufacturers** Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule Lined pit reclamation description: Lined pit reclamation Leak detection system description: Leak detection system

PWD disturbance (acres):

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: EILEEN 25 FED COM

Well Number: 173H

Lined pit Monitor description:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit Monitor

Lined pit bond amount:

Additional bond information

Section 3 - Unlined

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule

Unlined pit reclamation description:

Unlined pit reclamation

Unlined pit Monitor description:

Unlined pit Monitor

Do you propose to put the produced water to beneficial use?

Beneficial use user

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic

State

Unlined Produced Water Pit Estimated

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: EILEEN 25 FED COM

Well Number: 173H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information

Section 4 -

Would you like to utilize Injection PWD options? N

Produced Water Disposal (PWD) Location:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

PWD surface owner:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection

Underground Injection Control (UIC) Permit?

UIC Permit

Section 5 - Surface

Would you like to utilize Surface Discharge PWD options? N

Produced Water Disposal (PWD) Location: **PWD** surface owner: **PWD** disturbance (acres): Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 -

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

PWD disturbance (acres):

Injection well name:

Injection well API number:

Operator Name: PERMIAN RESOURCES OPERATING LLC

Well Name: EILEEN 25 FED COM

Well Number: 173H

Page 115 of 117

Other PWD type description:

Other PWD type

Have other regulatory requirements been met?

Other regulatory requirements

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400099303 **Operator Name: PERMIAN RESOURCES OPERATING LLC** Well Name: EILEEN 25 FED COM

Well Type: OIL WELL

Submission Date: 07/01/2024

Well Number: 173H Well Work Type: Drill Highlighted data reflects the most recent changes Show Final Text

Bond Info Data

Bond

Federal/Indian APD: FED

BLM Bond number: NMB001841

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

04/24/2025

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Page 117 of 117

Action 486288

CONDITIONS

Operator:	OGRID:
Permian Resources Operating, LLC	372165
300 N. Marienfeld St Ste 1000	Action Number:
Midland, TX 79701	486288
	Action Type:
	[C-101] BLM - Federal/Indian Land Lease (Form 3160-3)

CONDITIONS

Created By	Condition	Condition Date
clevans	Cement is required to circulate on both surface and intermediate1 strings of casing.	7/17/2025
clevans	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.	7/17/2025
matthew.gomez	Notify the OCD 24 hours prior to casing & cement.	7/22/2025
matthew.gomez	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.	7/22/2025
matthew.gomez	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.	7/22/2025
matthew.gomez	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.	7/22/2025
matthew.gomez	File As Drilled C-102 and a directional Survey with C-104 completion packet.	7/22/2025
matthew.gomez	This well is within the Capitan Reef. The first intermediate casing string shall be sat and cemented back to surface immediately above the Capitan Reef. The second intermediate string shall be set and cemented back to surface immediately below the base of the Capitan Reef.	7/22/2025
matthew.gomez	Brine water shall not be used in the Capitan Reef. Only freshwater based mud shall be utilized until the Capitan Reef is cased and cemented.	7/22/2025
matthew.gomez	This well is proposed to be within the R-111-Q defined boundary. Operator must follow all procedures and requirements listed within the order.	7/22/2025