Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory

Signature: Printed Name:

Email Address:

Title:

Date:

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division https://www.emnrd.nm.gov/ocd/contact-us 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 401698

5509 0	RESOURCES IN Champions Drive											
Midlan	nampions Drive									7377		
	d, TX 79706	е							3. AF	PI Number 30-025-553	179	
	u, 17(10100	5. Pr	operty Name						6. W	ell No.	,,,,	
31963	4	5	MAMBA 30	STATE	COM				0	720H		
					7. Surfa	ce Location						
JL - Lot	Section	Township	Range		Lot Idn	Feet From	N/S Line		From	E/W Line	Coun	ty
0	30	24S	33	BE	0	247		S	1849	E		Lea
					8. Proposed Bo	ttom Hole Loca	ntion					
JL - Lot	Section	Township	Range		Lot Idn	Feet From	N/S Line	Feet		E/W Line	Coun	,
N	30	24S	33	E	N	100		S	1314	W		Lea
					9. Pool	Information						
VC-025 G-09 S	2433361;UPPER	WOLFCAMP								9	8092	
					Additional V	Vell Information	1					
1. Work Type		12. Well Type		13. Ca	ble/Rotary		14. Lease Typ	е	15. Ground	Level Elevation		
New W	/ell	OIL				State			3547			
6. Multiple		17. Proposed Dep		18. Formation			19. Contractor 20. Spud Date					
N 23659 Depth to Ground water			Bone Spring Distance from nearest fresh water well				11/14/2024 nearest surface wa	tor				
reptil to Glound w	vater			Distant	Se ilolli llealest llesi	i water well			Distance to	nearest surface wa	tei	
We will be usi	ng a closed-loo	p system in lieu of	lined pits									
				21.	Proposed Casin	g and Cement	Program					
Туре	Hole Size	Casing Size			g Weight/ft		Depth	Sa	icks of Cemen	t	Estimate	d TOC
Surf	13	10.75		4	40.5	12	71		390		0	
Int1	9.875	8.625			38.5		435		1960		0	
Prod	7.875	6			22.3		535	1820			0	
Prod	6.75	5.5			20	230	659		1820		0	
				Casin	ng/Cement Progra	am: Additional	Comments					
OG respectfull	y requests the o	ption to use the ca	sing and cemer					e NMOCD w	ill be notified	d of EOG's election	on at spud	
				22.	Proposed Blowd	out Prevention	Program					
Туре			Working Pressure			Test Pressure			Manufacturer			
	Double Ram			50	000		(3000				
•	,	nation given above	is true and com	iplete t	o the best of my			OIL CON	ISERVATION	DIVISION		
nowledge and		andaining DEAC	والمتالية والمستعددات		d 4 - 4b 1 - 4! -	_						
h = == h : = = = = + ! f : 4	nai no additives	containing PEAS of	memicais will be	e adde	u to the completion	n						
hereby certify t												
or recompletion	of this well.	l with 19.15.14.9 (A	.) NMΔC ⊠and	l/or 19	15 14 9 (B) NMA(,						

Jeffrey Harrison

10/24/2025

Petroleum Specialist III

Expiration Date: 10/24/2027

Approved By:

Approved Date:

Conditions of Approval Attached

Title:

Electronically filed by Kristina Agee

Kristina_agee@eogresources.com

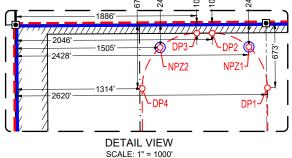
Phone: 432-686-6996

Senior Regulatory Administrator

10/23/2025

<u>C-102</u>					State of New	v Mexico l Resources	Denartment		Revise	ed July 9, 2024
Submit Electronic Via OCD Permitt				/		ION DIVIS	1		Initial Submittal	
								Submittal	1 -	
								Type:	As Drilled	
		V	/ELL.L.C	CATIO	N AND AC	REAGE DE	EDICATION	I PLAT		
API Number 30-025-	55379		Pool Code	98092	Pool N	ame			ER WOLFCA	MP
Property Code			Property Name						Well Number	
319634					MAMBA 30	STATE CON	Л		-	720H
OGRID No.	7377		Operator Name		EOG RESO	URCES, INC	:.		Ground Level Elev	ation 3547'
Surface Owner:		Tribal Federal					State Fee Tribal	Federal		
					Surface	Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
0	30	24-S	33-E	-	247' S	1849' E	N 32.18207	773 W 1	03.6088274	LEA
	l	I	ı		Bottom Ho	le Location		l	<u> </u>	
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
N	30	24-S	33-E	-	100' S	1314' W	N 32.18167	785 W 1	03.6155952	LEA
Dedicated Acres	Infil on Dof	ining Well Defin	ing Wall ADI			Overlapping Spacing	Linit (V/N)	Consolida	tod Codo	
476.72	DEFIN	-	NDING					Collsolida		
Order Numbers	DEFIN		PENDING				der Common Ownershi	n: DVac VN	<u>C</u>	
Order Numbers			PENDING		W: 1 OCC	1	dei Collinion Ownersin	p. Tes N	0	
UL or lot no.	Section	Township	Range	Lot Idn	K1CK Off P	Point (KOP) Feet from the E/W	Latitude		Longitude	County
O	30	24-S	33-E	-	50' S	2627' W	N 32.18153	885 W 1	03.6113504	LEA
				•	First Take	Point (FTP)		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
0	30	24-S	33-E	-	100' S	2627' W	N 32.18167	760 W 1	03.6113505	LEA
		•	•	•	Last Take 1	Point (LTP)		•	'	
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/S	Feet from the E/W	Latitude		Longitude	County
N	30	24-S	33-E	-	100' S	1314' W	N 32.18167	785 W 1	03.6155952	LEA
Tr. St. 14	CAT IC			la : xi :			la i	El El :		
Unitized Area or A		nterest REEMENT	-	Spacing Unity	Horizont	al Vertical	Ground	Floor Elevation	3572'	
				•			•			
OPER ATO	OR CERTII	FICATION				SURVEYOR	RS CERTIFICA	TION		
I hereby certi	fy that the in	nformation con			complete to the	I herebu certifu	that the well loca	tion shown on	this plat was Mythe	from field
that this orga	nization eith	er owns a wori	king interest	or unleased 1	directional well, mineral interest ght to drill this	notes of actual	surveys made by r rect to the best of	ne or under m	y supervision, and t	Mat the same
well at this lo	ocation pursu iineral intere	ant to a contro st, or to a volv	ict with an o intary pooling	wner of a wo				my belief.	THE CONTRACTOR OF THE PARTY OF	
	-	tered by the di I well, I furthe		this organiz	ation has				(2,4508)	
received The consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.							A CO	4 11		
Ka	yla M	Conn	ell	10/2	22/2025			10/16/2025	8:30:43 AM	MILITAL STREET
Signature 0	7		Date			Signature and Seal of	of Professional Surveyo	r Dat	e	
KAYLA	MCCON	NELL								
Print Name	MCCO	MELL OF	OCRESO		COM	Certificate Number	Date o	f Survey		
KAYLA_MCCONNELL@EOGRESOURCES.COM E-mail Address						09/13/2025				

C 102	State of New Mexico		
<u>C-102</u>	Energy, Minerals & Natural Resources Department		Revised July 9, 20
Submit Electronically Via OCD Permitting	OIL CONSERVATION DIVISION		Initial Submittal
		Submittal Type:	X Amended Report
		Type.	As Drilled
Property Name and Well Number	MAMBA 30 STATE COM 720H		•
SURFACE LOCATION (SHL) NEW MEXICO EAST NAD 1983 X=765483 Y=430729 LAT.: N 32.1820773 LONG.: W 103.6088274 NAD 1927 X=724299 Y=430671 LAT.: N 32.1819539 LONG.: W 103.6083498 247' FSL 1849' FEL KICK OFF POINT (KOP) NEW MEXICO EAST NAD 1983 X=764704 Y=430528 LAT.: N 32.1815385 LONG.: W 103.6113504 NAD 1927 X=723519 Y=430470 LAT.: N 32.1814152 LONG.: W 103.6108728 50' FSL 2627' FWL UPPER MOST PERF. (UMP) NEW MEXICO EAST NAD 1983 X=764704 Y=430578 LAT.: N 32.1816760 LONG.: W 103.6113505 NAD 1927 X=723519 Y=430520 LAT.: N 32.1815526 LONG.: W 103.6108729 100' FSL 2627' FWL PROPOSED PERF. POINT (PPP1) NEW MEXICO EAST NAD 1983 X=764685 Y=433117 LAT.: N 32.1886551 LONG.: W 103.6113566 NAD 1927 X=723500 Y=433059 LAT.: N 32.18865319 LONG.: W 103.6113566 NAD 1927 X=723500 Y=433059 LAT.: N 32.1885319 LONG.: W 103.6108787 2639' FSL 2623' FWL DEFLECTION POINT (DP1) NEW MEXICO EAST NAD 1983 X=764670 Y=435085 LAT.: N 32.18940646 LONG.: W 103.6113614 NAD 1927	X=762046.63 Y=435739.74 24 25 DETAIL DETAIL Y=435757.32 19 20 30 29 X=762061.69 Y=433099.55 X=762061.69 Y=433099.55 DETAIL DETAIL Y=435757.32 19 20 30 29 X=762061.69 Y=433099.55 X=762061.69 Y=433125.59 DETAIL Y=430463.45 X=765994.43 Y=433125.59 DETAIL X=766019.41 Y=430465.83		DEFLECTION POINT (DP3) NEW MEXICO EAST NAD 1983 X=763934 Y=435652 LAT.: N 32.1956384 LONG.: W 103.6137300 NAD 1927 X=722749 Y=435594 LAT.: N 32.1955153 LONG: W 103.6132516 100' FNL 1886' FWL NON PERF. ZONE (NPZ2) NEW MEXICO EAST NAD 1983 X=763553 Y=435504 LAT.: N 32.1952372 LONG.: W 103.6149649 NAD 1927 X=722368 Y=43546 LAT.: N 32.1951140 LONG.: W 103.614865 246' FNL 1505' FWL DEFLECTION POINT (DP4) NEW MEXICO EAST NAD 1983 X=763364 Y=435076 LAT.: N 32.1940648 LONG.: W 103.6155821 NAD 1927 X=722180 Y=435018 LAT.: N 32.1939416 LONG.: W 103.6151038 672' FNL 1314' FWL ROPOSED PERF. POINT (PPP2) NEW MEXICO EAST NAD 1983 X=763376 Y=433108 LAT.: N 32.1886554 LONG.: W 103.6155879 NAD 1927 X=722191 Y=433050 LAT.: N 32.1885321 LONG.: W 103.6151098 2638' FSL 1314' FWL LOWER MOST PERF. (LMP) DITTOM HOLE LOCATION (BHL) NEW MEXICO EAST NAD 1983 X=763390 Y=430570 LAT.: N 32.1816785 LONG.: W 103.6155952 NAD 1927


LONG.: W 103.6108832 673' FNL 2620' FWL

NON PERF. ZONE (NPZ1) NEW MEXICO EAST

NAD 1983 X=764476 Y=435510 LAT.: N 32.1952374 LONG.: W 103.6119788 NAD 1927 X=723292 Y=435452 LAT.: N 32.1951142 LONG.: W 103.6115005 246' FNL 2428' FWL

DEFLECTION POINT (DP2)

NEW MEXICO EAST NAD 1983 X=764093 Y=435654 LAT.: N 32.1956385 LONG.: W 103.6132137 NAD 1927 X=722909 Y=435595 LAT.: N 32.1955153 LONG.: W 103.6127354 100' FNL 2046' FWL

T-24-S, R-33-E SECTION 30 LOT 1 - 39.07 ACRES LOT 2 - 39.15 ACRES LOT 3 - 39.21 ACRES LOT 4 - 39.29 ACRES

LONG.: W 103.6151175 100' FSL 1314' FWL

SURVEYORS CERTIFICATION

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief. 09/13/2025

rey ad Seal of Professional Surveyor.

DOM/NO/INTERPRETATION DOM/N Date of Survey Signature and Seal of Professional Surveyor: 0/16/2025 8:30:44 AM

Released to Imaging: 10/24/2025 1: 646 PM

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 401698

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
EOG RESOURCES INC [7377]	30-025-55379
5509 Champions Drive	Well:
Midland, TX 79706	MAMBA 30 STATE COM #720H

OCD Reviewer	Condition					
jeffrey.harrison	Cement is required to circulate on both surface and intermediate1 strings of casing.					
jeffrey.harrison	f cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.					
jeffrey.harrison	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.					
jeffrey.harrison	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.					
jeffrey.harrison	File As Drilled C-102 and a directional Survey with C-104 completion packet.					
jeffrey.harrison	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.					
jeffrey.harrison	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.					
jeffrey.harrison	No additives containing PFAS chemicals will be added to the drilling fluids or completion fluids used during drilling, completions, or recompletions operations.					
jeffrey.harrison	All logs run on the well must be submitted to NMOCD.					
jeffrey.harrison	NSL required IF any portion of the well is completed within 330' of the spacing unit boundary perpendicular to the well's trajectory.					
jeffrey.harrison	If an alteration to the setting depth of the intermediate casing shoe is desired a form C-103A must be approved prior to the change being made.					
, ,	Surface casing shall be set a minimum of 25' into the Rustler Anhydrite, above the salt, and below usable fresh water and cemented to the surface. If salt is encountered set casing at least 25 ft. above the salt.					

EOG Batch Casing

Pad Name: Mamba 30 State Com Horseshoe PERMITS

SHL: Section 30, Township 24-S, Range 33-E, LEA County, NM

Well Name	API#	Surface		Intermediate		Production	
vven Name	AFI#	MD	TVD	MD	TVD	MD	TVD
Mamba 30 State Com #508H	30-025-****	1,271	1,271	5,088	5,085	21,830	10,845
Mamba 30 State Com #509H	30-025-****	1,271	1,271	5,211	5,085	22,050	10,873
Mamba 30 State Com #720H	30-025-****	1,271	1,271	11,435	11,379	23,659	12,787

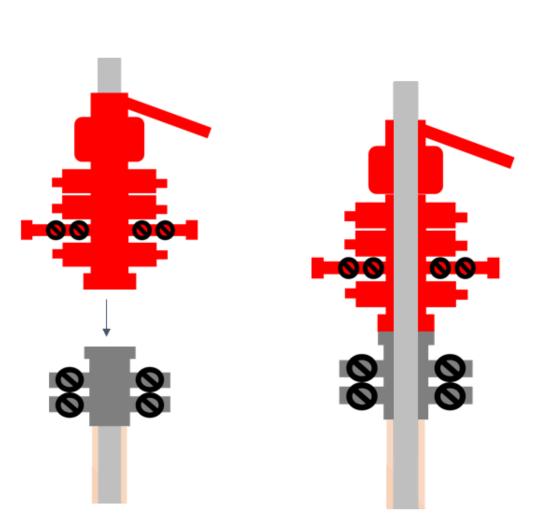
Master Variance Document

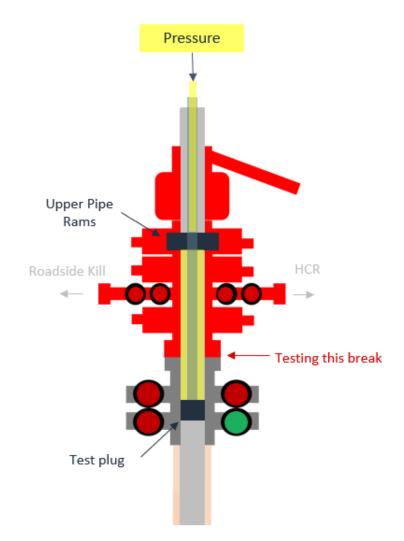
Table of Contents

- **BOPE Break Test** (3/25/2025)
- Offline Surface/Intermediate Cement (8/15/2023)
- Intermediate Bradenhead Cement (Deep Targets) (8/15/2023)
- Wolfcamp Intermediate Casing Setpoint (6/26/2024)
- Offline Production Cement (11/12/2024)
- Production Bradenhead Cement (8/9/2024)
- Salt Section Annular Clearance (11/8/2022)

Received by OCD: 10/23/2025 9:23:48 AM

Page 9 of 73


BOPE Break Test Variance


EOG BOPE Break Test Variance (Intervals 5M MASP or less)

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- Break-test only available for the Base of the Wolfcamp or shallower
 - If anything out of the ordinary is observed during drilling, tripping or casing running operations in the production hole section, break testing will not be performed in the subsequent well's production hole section.
 - Furthermore, break testing in the production hole section will not be performed if offset frac operations are observed within 1 mile and within the same producing horizon.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular → during each full BOPE test and at least weekly
 - Pipe Rams → Every trip and on trip ins where FIT required
 - Blind Rams → Every trip
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface, intermediate or production sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- 4. Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Offline Surface + Intermediate Variance

Received by OCD: 10/23/2025 9:23:48 AM

Page 13 of 73

Offline Surface + Intermediate Cement

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - Perform flow check to confirm well is static.
- Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.

Received by OCD: 10/23/2025 9:23:48 AM Page 14 of 73

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - b. If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring. Released to timeging: 40/24/2025 1:16:46 PM
 18. Fest night cap to 5,000 psi for 10 min.

Received by OCD: 10/23/2025 9:23:48 AM Page 15 of 73

Offline Surface + Intermediate Cement

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the 5M MASP (Maximum Allowable Surface Pressure) portion of the well, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

RWP
10M
10M
5M
10M
5M
15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).

Released to Imaging: 10/24/2025 1:16:46 PM

5. Notify tool pusher/company representative.

Received by OCD: 10/23/2025 9:23:48 AM Page 16 of 73

Offline Surface + Intermediate Cement

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the 5M MASP (Maximum Allowable Surface Pressure) portion of the well, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).

Released to Imaging: 10/24/2025 1:16:46 PM

5. Notify tool pusher/company representative.

Received by OCD: 10/23/2025 9:23:48 AM

Page 17 of 73

Offline Surface + Intermediate Cement

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

General Procedure After Cementing

- Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain

Figure 1: Cameron TA Plug and Offline Adapter Schematic

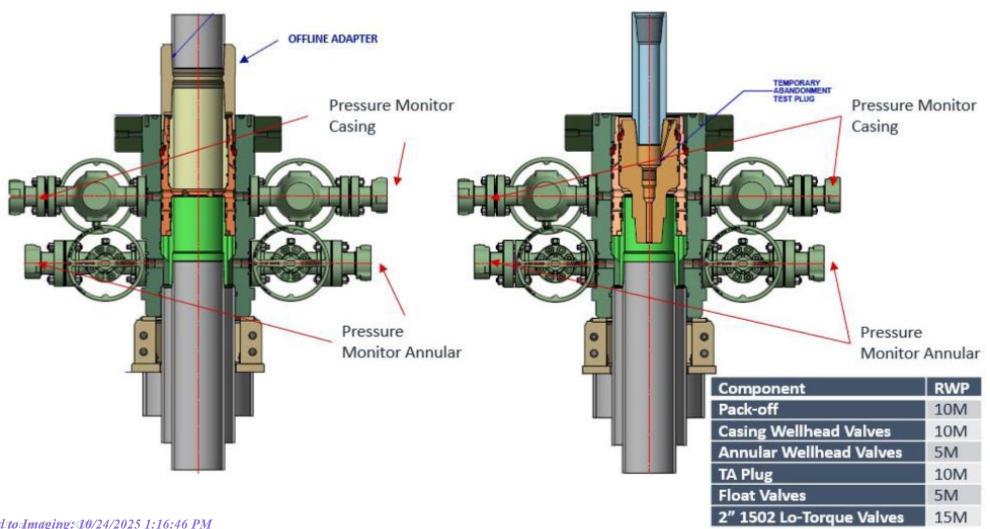


Figure 2: Cactus TA Plug and Offline Adapter Schematic

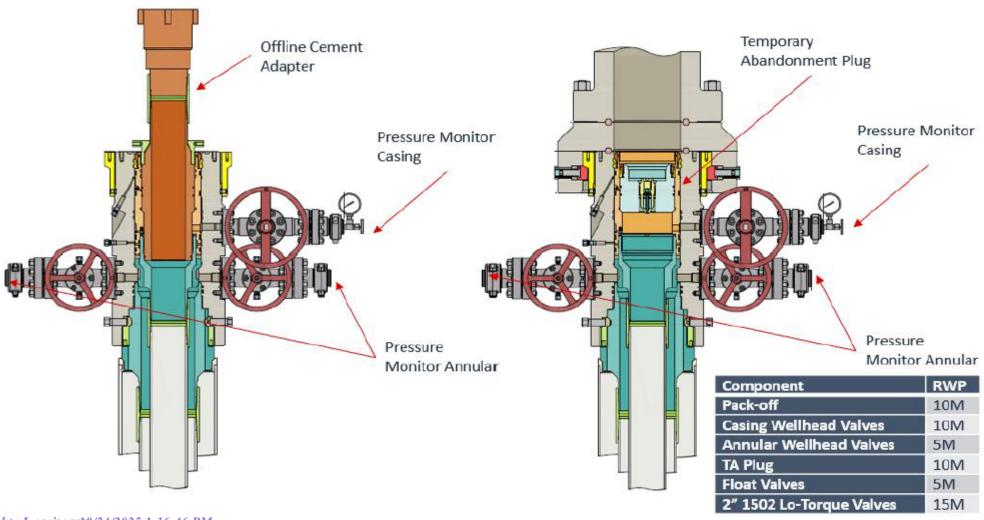


Figure 3: Back Yard Rig Up

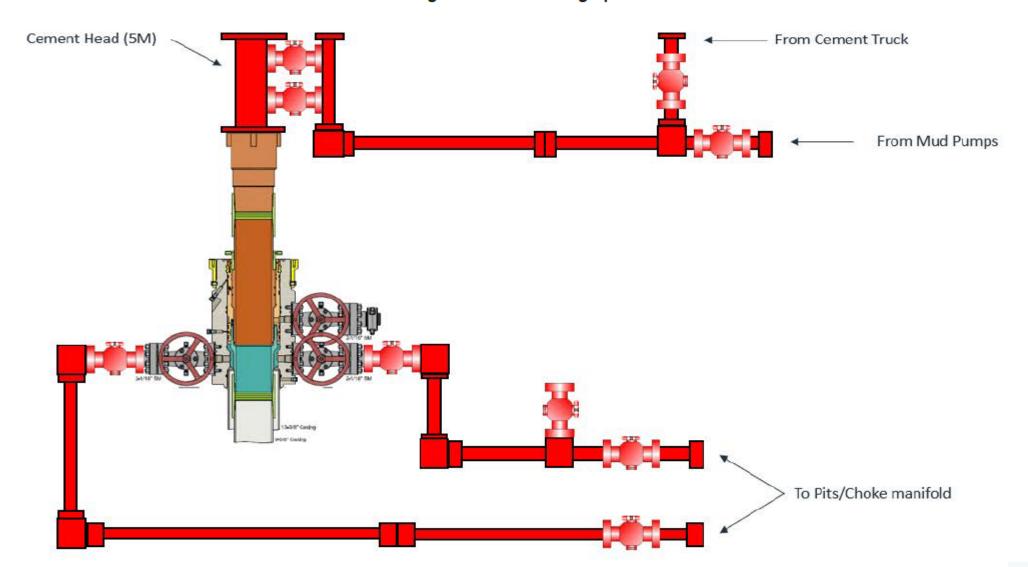
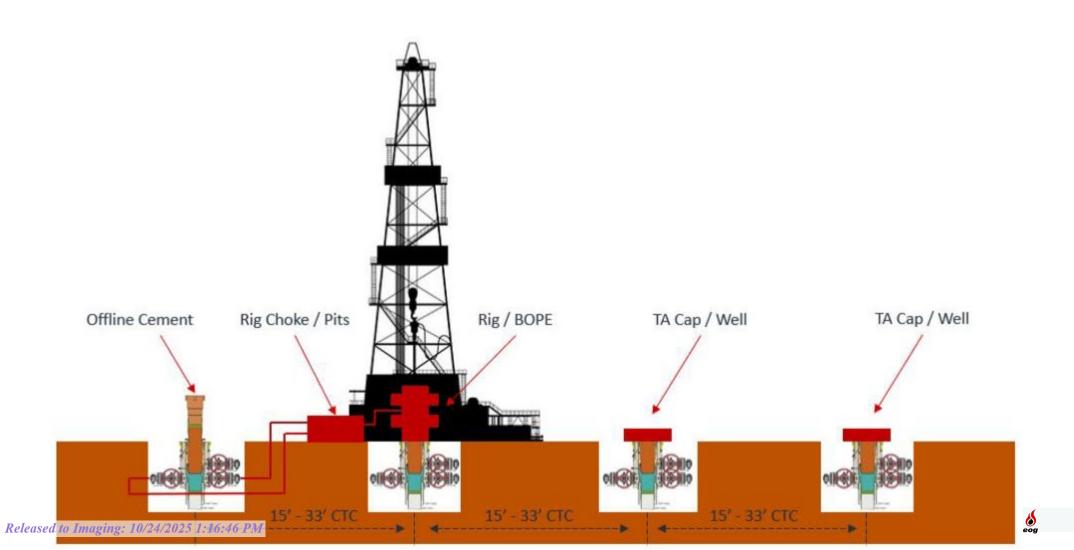



Figure 4: Rig Placement Diagram

Intermediate Bradenhead Cement Variance

Intermediate Bradenhead Cement

Deep Target Intermediate Bradenhead:

EOG requests variance from minimum standards to pump a two stage cement job on the intermediate casing string when set below the Delaware Mountain Group with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon and the second stage bradenhead squeezed to be performed at a minimum of 50% of OH excess (typically increased to ~1,000 sacks) with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of Class C/H cement + additives (2.30 yld, 12.91 ppg) will be executed as a contingency. Top of cement will be verified by Echo-meter.

EOG will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

Wolfcamp Intermediate Casing Setpoint

Intermediate Bradenhead Cement

EOG Resources Inc. (EOG) requests a variance to set the intermediate casing shoe in the Bone Spring formation OR the Wolfcamp formation, depending on depletion in the area and well conditions. EOG will monitor the well and ensure the well is static before casing operations begin.

Offline Production Cement Variance

EOG Offline Production Checklist

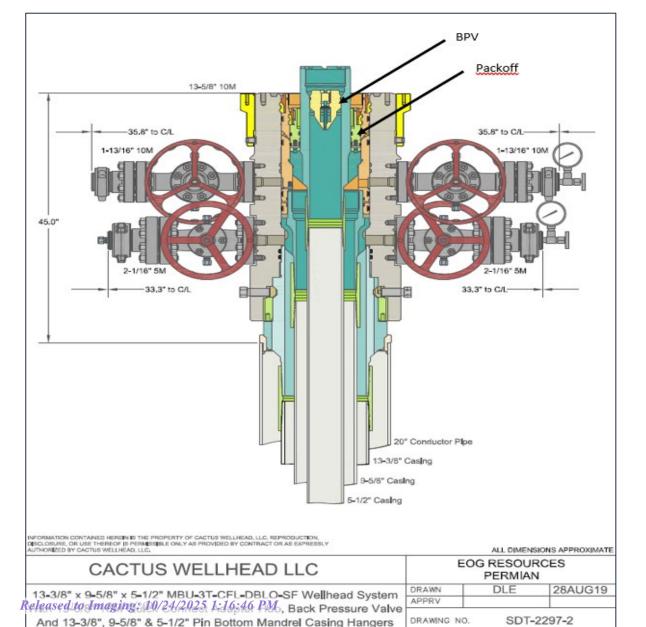
Offline Checklist

All items below must be met. If not, the production cement will be done online.

- Offline production cement jobs are applicable for the Base of the Wolfcamp or shallower.
- Nothing out of the ordinary observed during drilling, tripping, or casing running operations in the Production Hole Section.
- Casing must be landed with Hanger.
- EOG Company Man and Superintendent with Well Control certification must be present to monitor returns.
- **EOG** Cement Advisor must be present to oversee the Cement Job.
- Rig Manager is responsible for walking the rig to the next well.
- The BOP will *NOT* be nippled down if:
 - ANY barrier fails to test.
 - ANY offset frac operations are observed within 1 mile and within the same producing horizon.
- After all barriers test and the BLM has been notified, the BOP may be nippled down to proceed with offline operations.
- EOG will not Drill out of the next well until Cement Operations have concluded on the offline well.

Offline Procedure

- 1. Run casing as per normal operations. Review EOG Offline Requirements Checklist, if the well is a candidate for Offline Cement on the Production continue following this procedure. Conduct negative pressure test while running casing and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to 15,000 psi.
- 2. Land production casing on mandrel hanger.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
 - b. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff rated to 10,000 psi. Pressure test same to 10,000 psi.
 - c. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 10,000 psi. Remove landing joint.
- 3. Install back pressure valve in the casing for a 3rd casing barrier.
 - a. Back pressure valve rated to a minimum of 10,000 psi.
- 4. With the well Secured and BLM notified; Nipple down BOP and secure on hydraulic carrier or cradle and Skid/Walk rig to next well on pad.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded.
 - b. Note, EOG Company Man and Cement Advisor will oversee Cementing Operations while Rig Manager walks the rig and nipples up the BOP.
 - c. Note, EOG will not drill out of the subsequent well until after plug bump.
- 5. Install 10M Gate Valve, with Wellhead Adapter.
 - a. This creates an additional barrier on the annulus and inside the casing.
 - b. Gate valve rated to a minimum of 10,000 psi.
- 6. Test connection between Wellhead Adapter seals against hanger neck and ring gasket to 10,000 psi.
- 7. Remove backpressure valve from the casing.
- 8. Rig up cement head and cementing lines.
- 9. After rig up of cement head and cement lines, and confirmation of the annular barriers and casing barriers, notify the BLM with intent to proceed offline cementing.
- 10. Perform cement job.
- 11. *Note* Procedure continued on the next page.

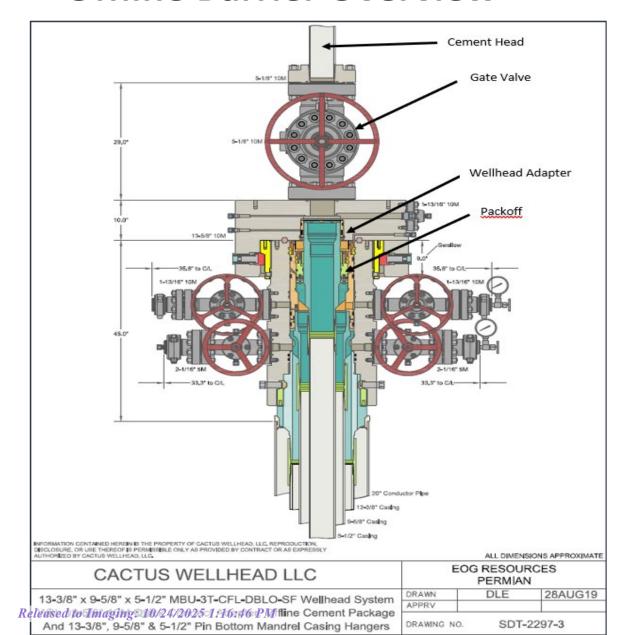

Offline Procedure

- 12. If an influx is noted during the Cement Job:
 - a. It is the Company Man and Superintendent's responsibility to maintain well control.
 - b. The aux manifold will be redirected to the rig's chokes.
 - c. Backpressure will be held on the well with the chokes to ensure well control is maintained through the remainder of the cement job while circulating out the influx.
 - d. If annular surface pressure approaches 90% tested pressure of the manifold or if circulating the influx out with the cementing pumps is not feasible, the well can be secured by closing the casing valves (10M).
 - e. Once cement is in place, we will close the casing valves and confirm the well is static and floats are holding.
 - f. If the floats fail, the gate valve (10M) or cement head (10M) can be closed to secure the well.
- 13. Confirm well is static and floats are holding after cement job.
- 14. Remove cement head.
- 15. Install back pressure valve.
- 16. Remove 10M Gate Valve and Wellhead Adapter.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi.

Received by OCD: 10/23/2025 9:23:48 AM

Page 30 of 73

Offline Barrier Overview


Barriers in Place during removal of BOP						
Operation	Casing	Annulus				
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	Hydrostatic Barrier Mechanical 10M Packoff				

Barriers in Place during Offline Cementing of Production Casing					
Operation	Casing	Annulus			
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	Hydrostatic Barrier Mechanical Packoff 10M Wellhead Adapter			
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Remove Cement Head	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Install BPV	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Remove 10M Gate Valve	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			
Nipple Up TA Cap	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			

Received by OCD: 10/23/2025 9:23:48 AM

Page 31 of 73

Offline Barrier Overview

Barriers in Place during removal of BOP						
Operation	Casing	Annulus				
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	Hydrostatic Barrier Mechanical 10M Packoff				

Barriers in Place during Offline Cementing of Production Casing						
Operation	Casing	Annulus				
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	Hydrostatic Barrier Mechanical Packoff 3. 10M Wellhead Adapter				
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 				
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter				
Remove Cement Head	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter				
Install BPV	1. Float Valves 2. 10M Gate Valve	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 				
Remove 10M Gate Valve	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff				
Nipple Up TA Cap	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff				

Received by OCD: 10/23/2025 9:23:48 AM

Page 32 of 73

More Control: Meeting/Exceeding Barrier Requirements

Casing Barriers – Online vs Offline		
Operation	Online	Offline
Install Cement Head	 Hydrostatic Barrier Float Valves 	 Hydrostatic Barrier Float Valves 10M Gate Valve
Cement Job	 Hydrostatic Barrier Float Valves Cement Head 	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head
Remove Cement Head	1. Float Valves	 Float Valves 10M Gate Valve
Install BPV & Nipple Down BOP / Offline Adapter	1. Float Valves	 Float Valves BPV
Nipple Up TA Cap	1. Float Valves	 Float Valves BPV

Annulus Barriers – Online vs Offline		
Operation	Online	Offline
Install Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter
Cement Job	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter
Remove Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter
Install BPV & Nipple Down BOP / Offline Adapter	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off
Nipple Up TA Cap	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off

Received by OCD: 10/23/2025 9:23:48 AM Page 33 of 73

Return Rig Up Diagram

Offline Online Annular Tested: Lines Tested: 5000psi f/10min 5000psi f/10min 250psi f/10min 250psi f/10min ~5-30days Before every job Aux Choke Manifold Kill line Pits Rig Choke Rig Choke Kill line Open Top Manifold Manifold Note:

- 1) Have the Rig's same Well Control Capabilities as Online
- 2) Have more flexibility with Gate Valve than with a Landing Joint through BOP 3) Released to Imaging: 10/24/2025 1:16:46 PM Never had to circulate out a kick during Offline

Production Bradenhead Cement Variance

Production Bradenhead Cement

Shallow Target Production Offline Bradenhead:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards to allow for offline bradenhead cementing of the production string after primary cementing operations have been completed. The primary cement job will be pumped conventionally (online) to top of the Brushy Canyon and will cover the target production intervals, and after production pack-off is set and tested, bradenhead will be pumped through casing valves between the production and intermediate casings (offline). For the bradenhead stage of production cementing, the barriers remain the same for offline cementing compared to performing it online.

The bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

Salt Section Annular Clearance

Current Design (Salt Strings)

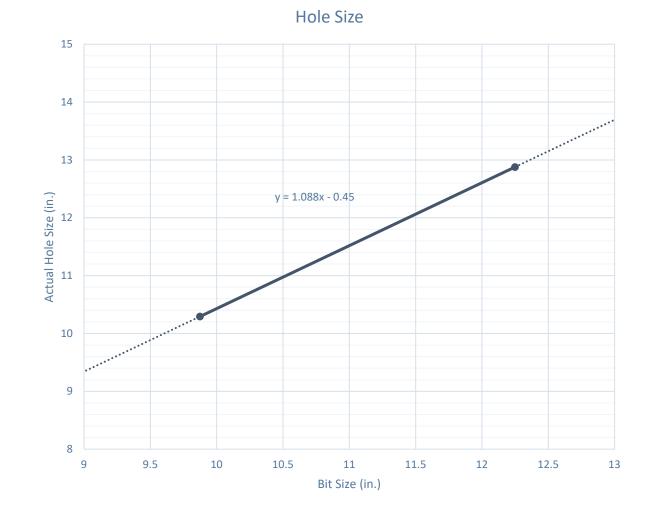
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

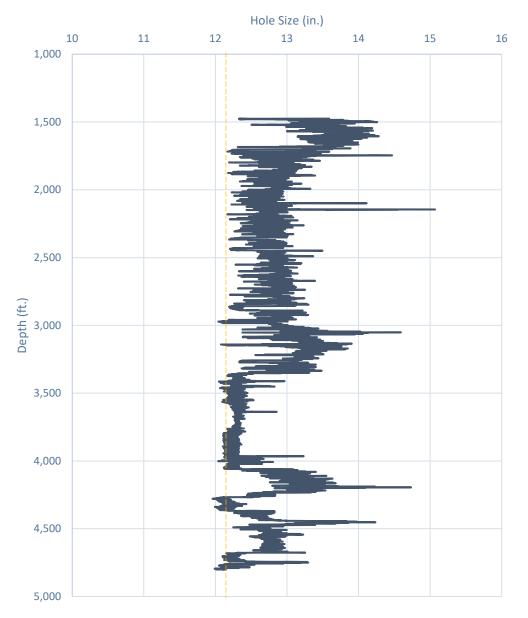

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

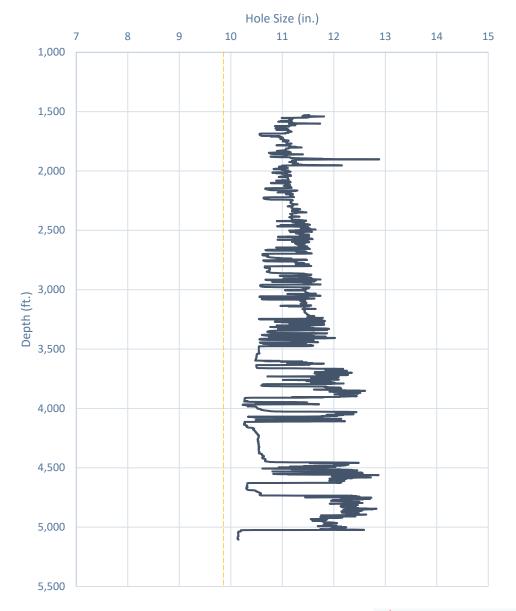


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

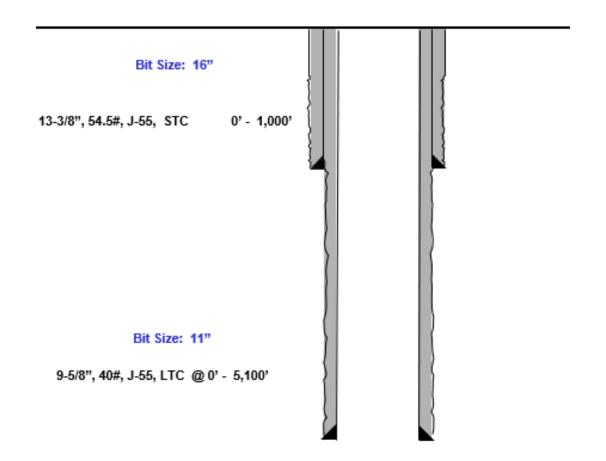
Whirling Wind 11 Fed Com #744H

Design A

Received by OCD: 10/23/2025 9:23:48 AM

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

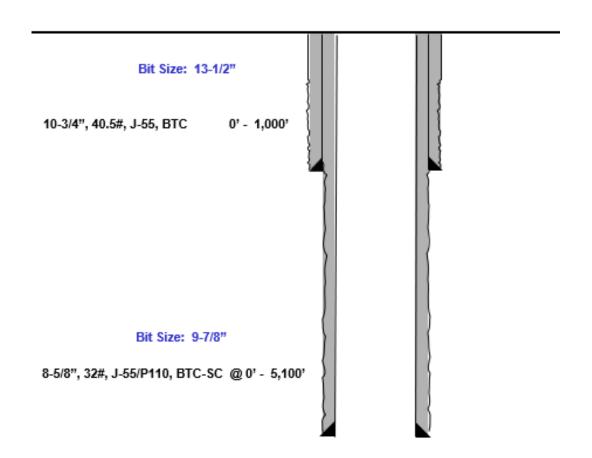
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{^2}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 10/23/2025 9:23:48 AM

Page 44 of 73

Index

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		1	1

in²

11.454

Connection Parameters		
Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search »

« Back to Pre	vious List
USC	Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength		909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Nom. Pipe Body Area

Received by OCD: 10/23/2025 9:23:48 AM Page 46 of 73

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric

6/8/2015 10:14:05 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-			lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength		700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque		-	-	3,150	ft-lbs
Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT (lb/ft)		WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties	(PE)
Pipe	
Minimum Yield Strength:	55 ksi
Maximum Yield Strength:	80 ksi
Minimum Tensile Strength:	75 ksi
Coupling	
Minimum Yield Strength:	55 ksi
Maximum Yield Strength:	80 ksi
Minimum Tensile Strength:	75 ksi

MADE IN USA

Pipe Body Data (PE)						
Geometry	Geometry					
Nominal ID:	7.92 inch					
Nominal Area:	9.149 in ²					
*Special/Alt. Drift:	7.875 inch					
Performance						
Pipe Body Yield Strength:	503 kips					
Collapse Resistance:	2,530 psi					
Internal Yield Pressure: (API Historical)	3,930 psi					

API Connection D Coupling OD: 9.625		
STC Performand	e	
STC Internal Pressure:	3,930	psi
STC Joint Strength: LTC Performand		kips
LTC Internal Pressure:	3,930	psi
LTC Joint Strength: SC-BTC Performance - Cplg		kips 9.125"
BTC Internal Pressure:	3,930	psi

BTC Joint Strength:

	AP	l Conne	ction To	rque	
	5	TC Tor	que (ft-lk	os)	
Min:	2,793	Opti:	3,724	Max:	4,655
	L	TC Tor	que (ft-lb	s)	
Min:	3,130	Opti:	4,174	Max:	5,217
	E	BTC Tor	que (ft-lk	os)	
follo	w API guid	delines reg	garding pos	sitional ma	ake up

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

503 kips

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF, AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 30 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular à during each full BOPE test
 - Upper Pipe Rams à On trip ins where FIT required
 - Blind Rams à Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.

Blind Rams

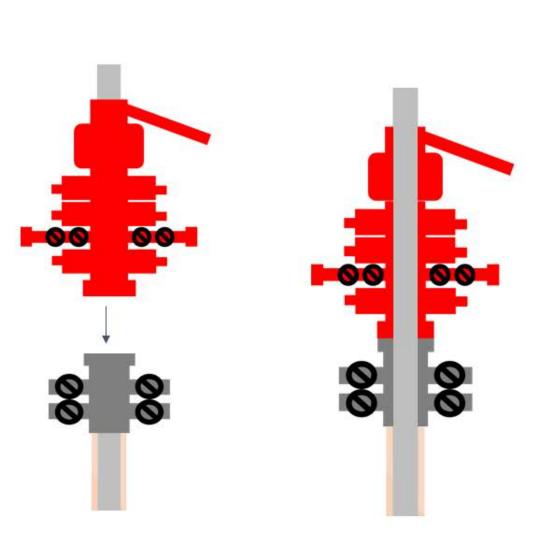
Roadside Kill

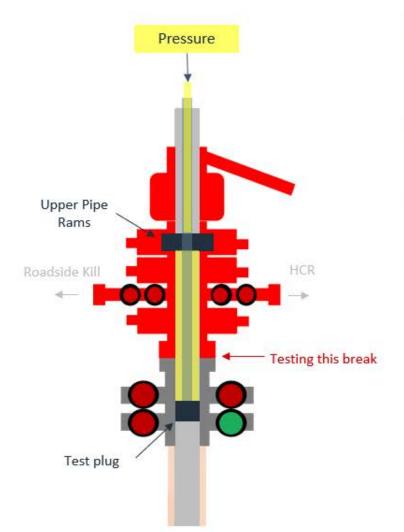
Test plug

Break Test Diagram (HCR valve)

HCR

Testing this break


- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill


Steps

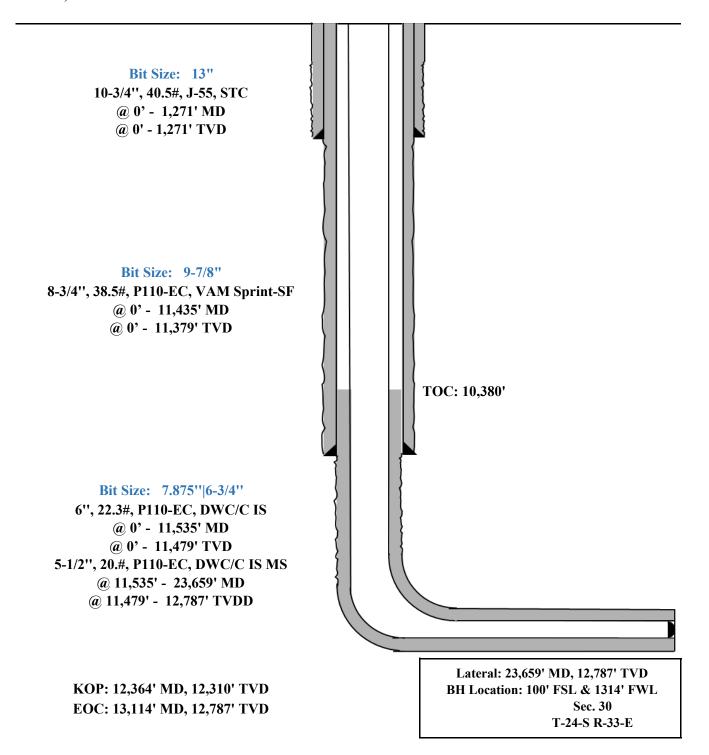
Pressure

- 4. Open HCR (pressure application)
- 5. Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- 8. Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

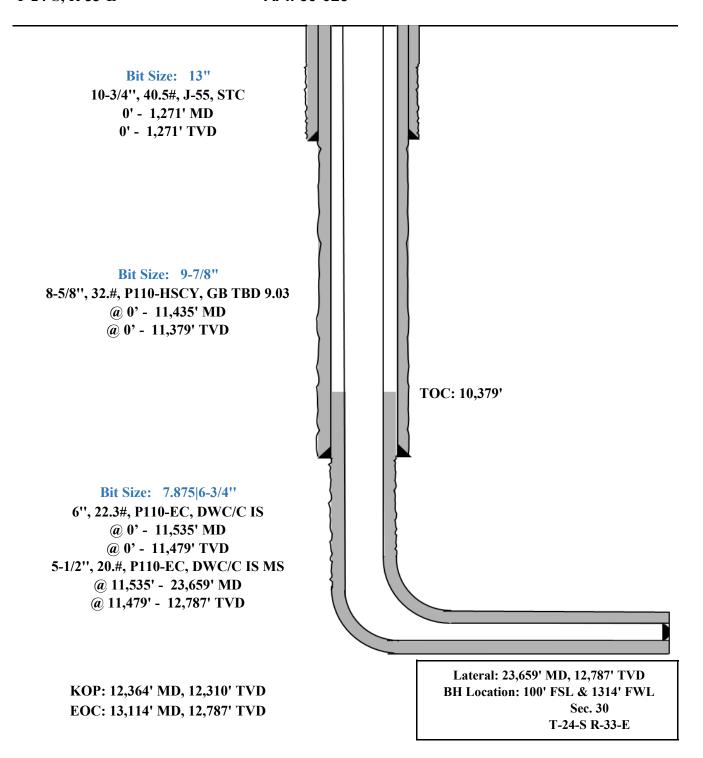

Mamba 30 State Com #720H LEA County, New Mexico Proposed Wellbore

247' FSL 1849' FEL Section 30 T-24-S, R-33-E

PRIMARY DESIGN A

KB: 3572' GL: 3547'

API: 30-025-****



Mamba 30 State Com #720H LEA County, New Mexico Proposed Wellbore

247' FSL 1849' FEL Section 30 T-24-S, R-33-E Proposed Wellbore KB: 3572'
PRIMARY DESIGN B GL: 3547'

API: 30-025-****

Mamba 30 State Com #720H

Permit Information:

Well Name: Mamba 30 State Com #720H

Location:

SHL: 247' FSL & 1849' FEL, Section 30, T-24-S, R-33-E, LEA Co., N.M. BHL: 100' FSL & 1314' FWL, Section 30, T-24-S, R-33-E, LEA Co., N.M.

PRIMARY DESIGN A

Casing Program:

Hole	Interv	al MD	Interva	d TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,271	0	1,271	10-3/4"	40.5#	J-55	STC
9-7/8"	0	11,435	0	11,379	8-3/4"	38.5#	P110-EC	VAM Sprint-SF
7-7/8"	0	11,535	0	11,479	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	11,535	23,659	11,479	12,787	5-1/2"	20#	P110-EC	DWC/C IS MS

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Cement Program:

Come	it i rogram			
D 41	N C I	Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	
1,271' 10-3/4"	320	13.5	1.73	Class C/H + additives (TOC @ Surface)
	70	14.8	1.34	Class C/H + additives
11,379' 8-3/4"	550	14.2	1.11	1st Stage (Tail): Class C/H + additives (TOC @ 7,267')
	1410	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C/H + additives + expansion additives (TOC @ surface)
23,659'	1820	13.2	1.31	Class C/H + additives (TOC @ 10,379')

EOG requests a variance to set the intermediate casing shoe in the Bone Spring formation OR the Wolfcamp formation, depending on depletion in the area and well conditions. EOG will monitor the well and ensure the well is static before casing operations begin.

EOG requests variance from minimum standards to pump a two stage cement job on the 8-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,467') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 100 sacks of Class C/H cement + additives + expansion additives (2.30 yld, 12.91 ppg) will be executed as a contingency.

Mud Program:

Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,271'	Fresh - Gel	8.6-8.8	28-34	N/c
1,271' – 11,379'	Brine	9.8-10.8	28-34	N/c
11,379' – 12,364'	Water - Gel	8.7-9.4	58-68	N/c - 6
12,364' – 23,659'	Oil Base	10.0-14.0	58-68	4 - 6
Lateral				

Mamba 30 State Com #720H

Permit Information:

Well Name: Mamba 30 State Com #720H

Location:

SHL: 247' FSL & 1849' FEL, Section 30, T-24-S, R-33-E, LEA Co., N.M. BHL: 100' FSL & 1314' FWL, Section 30, T-24-S, R-33-E, LEA Co., N.M.

PRIMARY DESIGN B

Casing Program:

Hole	Interv	al MD	Interva	al TVD	Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,271	0	1,271	10-3/4"	40.5#	J-55	STC
9-7/8"	0	11,435	0	11,379	8-5/8"	32#	P110-HSCY	GB TBD 9.03
7-7/8"	0	11,535	0	11,479	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	11,535	23,659	11,479	12,787	5-1/2"	20#	P110-EC	DWC/C IS MS

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above.

Cementing Program:

	<u> </u>			
		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	• •
1,271'	320	13.5	1.73	Lead: Class C/H + additives (TOC @ Surface)
10-3/4"				
	70	14.8	1.34	Tail: Class C/H + additives (TOC @ 1,071')
11,379'	1640	14.2	1.11	1st Stage (Tail): Class C/H + additives (TOC @ 7,267')
8-5/8"				
	1000	14.8	1.5	2nd Stage (Bradenhead squeeze): Class C/H + additives + expansion
				additives (TOC @ surface)
23,659'	1880	13.2	1.31	Lead: Class C/H + additives (TOC @ 10,379')
6"				

EOG requests a variance to set the intermediate casing shoe in the Bone Spring formation OR the Wolfcamp formation, depending on depletion in the area and well conditions. EOG will monitor the well and ensure the well is static before casing operations begin.

EOG requests variance from minimum standards to pump a two stage cement job on the 8-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,467') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 100 sacks of Class C/H cement + additives + expansion additives (2.30 yld, 12.91 ppg) will be executed as a contingency.

Mud Program:

Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,271'	Fresh - Gel	8.6-8.8	28-34	N/c
1,271' – 11,379'	Brine	9.8-10.8	28-34	N/c
11,379' – 12,364'	Water - Gel	8.7-9.4	58-68	N/c - 6
12,364' – 23,659'	Oil Base	10.0-14.0	58-68	4 - 6
Lateral				

Mamba 30 State Com 720H

TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."

With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

Mamba 30 State Com #720H

Hydrogen Sulfide Plan Summary

- A. All personnel shall receive proper H2S training in accordance with Onshore Order III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:
 - Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
 - Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit shall be placed at each breathing area, 2 shall be stored in the safety trailer.
- b. Work/Escape packs —4 packs shall be stored on the rig floor with sufficient air hose not to restrict work activity.
- c. Emergency Escape Packs —4 packs shall be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged.

(Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.

Mamba 30 State Com #720H

■ Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

■ Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

■ Communication:

Communication will be via cell phones and land lines where available.

Mamba 30 State Com #720H Emergency Assistance Telephone List

PUBLIC SAFE	ETY:	1	911 or
Lea County She	riff's Department		(575) 396-3611
	Rod Coffman		
Fire Departmen	t:		
_	Carlsbad		(575) 885-3125
	Artesia		(575) 746-5050
Hospitals:			
•	Carlsbad		(575) 887-4121
	Artesia		(575) 748-3333
	Hobbs		(575) 392-1979
Dept. of Public	Safety/Carlsbad		(575) 748-9718
Highway Depar	•		(575) 885-3281
New Mexico Oi			(575) 476-3440
NMOCD Inspec	ction Group - South		(575) 626-0830
U.S. Dept. of La	<u>-</u>		(575) 887-1174
EOG Resource			,
EOG / Midland	·	Office	(432) 686-3600
			,
Company Drill	ling Consultants:		
David Domingu	9	Cell	(985) 518-5839
Mike Vann		Cell	(817) 980-5507
Duilling Engine			
Drilling Engine Stephen Davis	eer	Cell	(422) 225 0790
Matt Day			(432) 235-9789 (432) 296-4456
•		Cell	(432) 290-4430
Drilling Manag Branden Keener		Office	(432) 686-3752
Branden Reener			(210) 294-3729
Duilling Compari	entondont	Cell	(210) 294-3729
Drilling Superi	mtendent	Cell	(422) 215 5079
Ryan Reynolds Steve Kelly			(432) 215-5978
•		Cell	(210) 416-7894
H&P Drilling		066	(122) 562 5757
H&P Drilling	na Dia	Office	(432) 563-5757
H&P 651 Drillin	ng Kig	Rig	(903) 509-7131
Tool Pusher:			
Johnathan Craig		Cell	(817) 760-6374
Brad Garrett	-		,
Safety:			
Brian Chandler	(HSE Manager)	Office	(432) 686-3695
	·	Cell	(817) 239-0251
			` '

Midland

Lea County, NM (NAD 83 NME) Mamba 30 State Com #720H

OH

Plan: Plan #0.1

Standard Planning Report

17 October, 2025

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

 Site:
 Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

Design:

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

Plan #0.1

Map System: US State Plane 1983
Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Mamba 30 State Com

 Site Position:
 Northing:
 430,807.00 usft
 Latitude:
 32° 10′ 56.143 N

 From:
 Map
 Easting:
 767,053.00 usft
 Longitude:
 103° 36′ 13.509 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #720H, Staple Well

Well Position +N/-S 0.0 usft Northing: 430,729.00 usft Latitude: 32° 10' 55.476 N +E/-W 0.0 usft Easting: 765,483.00 usft Longitude: 103° 36' 31.783 W **Position Uncertainty** 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,547.0 usft

Grid Convergence: 0.39 °

Wellbore OH

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2025
 9/17/2025
 6.24
 59.71
 46,964.50233840

Design Plan #0.1

Audit Notes:

Version:Phase:PLANTie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 359.55

Plan Survey Tool Program Date 10/17/2025

23,658.6

Plan #0.1 (OH)

Depth From Depth To

0.0

(usft) (usft) Survey (Wellbore) Tool Name Remarks

EOG MWD+IFR1 MWD + IFR1

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com Well: #720H

Well: #/20H
Wellbore: OH
Design: Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,232.0	0.00	0.00	1,232.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,627.9	7.92	255.53	1,626.6	-6.8	-26.4	2.00	2.00	0.00	255.53	
7,071.5	7.92	255.53	7,018.4	-194.2	-752.6	0.00	0.00	0.00	0.00	
7,467.4	0.00	0.00	7,413.0	-201.0	-779.0	2.00	-2.00	0.00	180.00	
12,363.9	0.00	0.00	12,309.5	-201.0	-779.0	0.00	0.00	0.00	0.00	KOP(720H)
12,584.4	26.46	0.00	12,522.2	-151.0	-779.0	12.00	12.00	0.00	0.00	FTP(720H)
13,113.9	90.00	359.55	12,786.9	276.5	-781.3	12.00	12.00	-0.08	-0.50	
17,193.6	90.00	359.55	12,787.0	4,356.0	-813.0	0.00	0.00	0.00	0.00	DP1(720H)
18,093.1	90.00	269.59	12,787.0	4,924.4	-1,389.9	10.00	0.00	-10.00	-90.00	
18,253.2	90.00	269.59	12,787.0	4,923.3	-1,550.1	0.00	0.00	0.00	0.00	
19,152.5	90.00	179.67	12,787.0	4,347.0	-2,119.0	10.00	0.00	-10.00	-90.00	DP4(720H)
23,658.6	90.00	179.67	12,787.0	-159.0	-2,093.0	0.00	0.00	0.00	0.00	PBHL(720H)

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

esigii.									
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
` '				` ′		, ,	, ,	,	, ,
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
								0.00	
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,232.0	0.00	0.00	1,232.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	1.36	255.53	1,300.0	-0.2	-0.8	-0.2	2.00	2.00	0.00
1,400.0	3.36	255.53	1,399.9	-1.2	-4.8	-1.2	2.00	2.00	0.00
1,500.0	5.36	255.53	1,499.6	-3.1	-12.1	-3.0	2.00	2.00	0.00
1,600.0	7.36	255.53	1,599.0	-5.9	-22.9	-5.7	2.00	2.00	0.00
1,627.9	7.92	255.53	1,626.6	-6.8	-26.4	-6.6	2.00	2.00	0.00
1,700.0	7.92	255.53	1,698.1	-9.3	-36.1	-9.0	0.00	0.00	0.00
1,800.0	7.92	255.53	1,797.1	-12.7	-49.4	-12.4	0.00	0.00	0.00
1,900.0	7.92	255.53	1,896.1	-16.2	-62.7	-15.7	0.00	0.00	0.00
2,000.0	7.92	255.53	1,995.2	-19.6	-76.1	-19.0	0.00	0.00	0.00
2,100.0	7.92	255.53	2,094.2	-23.1	-89.4	-22.4	0.00	0.00	0.00
2,200.0	7.92	255.53	2,193.3	-26.5	-102.8	-25.7	0.00	0.00	0.00
2,300.0	7.92	255.53	2,292.3	-30.0	-116.1	-29.0	0.00	0.00	0.00
2,400.0	7.92	255.53	2,391.4	-33.4	-129.4	-32.4	0.00	0.00	0.00
2,500.0	7.92	255.53	2,490.4	-36.8	-142.8	-35.7	0.00	0.00	0.00
2,600.0	7.92	255.53	2,589.5	-40.3	-156.1	-39.1	0.00		
								0.00	0.00
2,700.0	7.92	255.53	2,688.5	-43.7	-169.5	-42.4	0.00	0.00	0.00
2,800.0	7.92	255.53	2,787.6	-47.2	-182.8	-45.7	0.00	0.00	0.00
2,900.0	7.92	255.53	2,886.6	-50.6	-196.1	-49.1	0.00	0.00	0.00
3,000.0	7.92	255.53	2,985.7	-54.0	-209.5	-52.4	0.00	0.00	0.00
3,100.0	7.92	255.53	3,084.7	-57.5	-222.8	-55.7	0.00	0.00	0.00
3,200.0	7.92	255.53	3,183.8	-60.9	-236.1	-59.1	0.00	0.00	0.00
3,300.0	7.92	255.53	3,282.8	-64.4	-249.5	-62.4	0.00	0.00	0.00
3,400.0	7.92	255.53	3,381.8	-67.8	-262.8	-65.7	0.00	0.00	0.00
3,500.0	7.92	255.53	3,480.9	-71.3	-276.2	-69.1	0.00	0.00	0.00
3,600.0	7.92	255.53	3,579.9	-74.7	-289.5	-72.4	0.00	0.00	0.00
,									
3,700.0	7.92	255.53	3,679.0	-78.1	-302.8	-75.8	0.00	0.00	0.00
3,800.0	7.92	255.53	3,778.0	-81.6	-316.2	-79.1	0.00	0.00	0.00
3,900.0	7.92	255.53	3,877.1	-85.0	-329.5	-82.4	0.00	0.00	0.00
4,000.0	7.92	255.53	3,976.1	-88.5	-342.9	-85.8	0.00	0.00	0.00
4,100.0	7.92	255.53	4,075.2	-91.9	-356.2	-89.1	0.00	0.00	0.00
4,200.0	7.92	255.53	4,174.2	-95.3	-369.5	-92.4	0.00	0.00	0.00
4,300.0	7.92	255.53	4,273.3	-98.8	-382.9	-95.8	0.00	0.00	0.00
4,400.0	7.92	255.53	4,372.3	-102.2	-396.2	-99.1	0.00	0.00	0.00
4,500.0	7.92	255.53	4,471.4	-105.7	-409.5	-102.5	0.00	0.00	0.00
4,600.0		255.53			-422.9				
	7.92		4,570.4	-109.1		-105.8	0.00	0.00	0.00
4,700.0	7.92	255.53	4,669.5	-112.6	-436.2	-109.1	0.00	0.00	0.00
4,800.0	7.92	255.53	4,768.5	-116.0	-449.6	-112.5	0.00	0.00	0.00
4,900.0	7.92	255.53	4,867.5	-119.4	-462.9	-115.8	0.00	0.00	0.00
5,000.0	7.92	255.53	4,966.6	-122.9	-476.2	-119.1	0.00	0.00	0.00
5,100.0	7.92	255.53	5,065.6	-126.3	-489.6	-122.5	0.00	0.00	0.00

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	7.92	255.53	5,164.7	-129.8	-502.9	-125.8	0.00	0.00	0.00
5,300.0	7.92	255.53	5,263.7	-133.2	-516.3	-129.1	0.00	0.00	0.00
5,400.0	7.92	255.53	5,362.8	-136.6	-529.6	-132.5	0.00	0.00	0.00
5,500.0	7.92	255.53	5,461.8	-140.1	-542.9	-135.8	0.00	0.00	0.00
5,600.0	7.92	255.53	5,560.9	-143.5	-556.3	-139.2	0.00	0.00	0.00
5,700.0	7.92	255.53	5,659.9	-147.0	-569.6	-142.5	0.00	0.00	0.00
5,800.0	7.92	255.53	5,759.0	-150.4	-583.0	-145.8	0.00	0.00	0.00
5,900.0	7.92	255.53	5,858.0	-153.9	-596.3	-149.2	0.00	0.00	0.00
6,000.0	7.92	255.53	5,957.1	-157.3	-609.6	-152.5	0.00	0.00	0.00
6,100.0	7.92	255.53	6,056.1	-160.7	-623.0	-155.8	0.00	0.00	0.00
6,200.0	7.92	255.53	6,155.2	-164.2	-636.3	-159.2	0.00	0.00	0.00
6,300.0	7.92	255.53	6,254.2	-167.6	-649.6	-162.5	0.00	0.00	0.00
6,400.0	7.92	255.53	6,353.2	-171.1	-663.0	-165.9	0.00	0.00	0.00
6,500.0	7.92	255.53	6,452.3	-174.5	-676.3	-169.2	0.00	0.00	0.00
6,600.0	7.92	255.53	6,551.3	-177.9	-689.7	-172.5	0.00	0.00	0.00
6,700.0	7.92	255.53	6,650.4	-181.4	-703.0	-175.9	0.00	0.00	0.00
6,800.0	7.92	255.53	6,749.4	-184.8	-716.3	-179.2	0.00	0.00	0.00
,	7.92 7.92	255.53 255.53	,		-716.3 -729.7	-179.2 -182.5	0.00		
6,900.0			6,848.5	-188.3				0.00	0.00
7,000.0	7.92	255.53	6,947.5	-191.7	-743.0	-185.9	0.00	0.00	0.00
7,071.5	7.92	255.53	7,018.4	-194.2	-752.6	-188.3	0.00	0.00	0.00
7,100.0	7.35	255.53	7,046.6	-195.1	-756.2	-189.2	2.00	-2.00	0.00
7,200.0	5.35	255.53	7,146.0	-197.9	-766.9	-191.9	2.00	-2.00	0.00
7,300.0	3.35	255.53	7,245.7	-199.8	-774.3	-193.7	2.00	-2.00	0.00
7,400.0	1.35	255.53	7,345.6	-200.8	-778.2	-194.7	2.00	-2.00	0.00
7,467.4	0.00	0.00	7,413.0	-201.0	-779.0	-194.9	2.00	-2.00	0.00
7,500.0	0.00	0.00	7,445.6	-201.0	-779.0 -779.0	-194.9	0.00	0.00	0.00
7,600.0	0.00	0.00	7,545.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
7,700.0	0.00	0.00	7,645.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
7,800.0	0.00	0.00	7,745.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
7,900.0	0.00	0.00	7,845.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,000.0	0.00	0.00	7,945.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
0.400.0	0.00	0.00	0.045.0	204.0	770.0	101.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,045.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,200.0	0.00	0.00	8,145.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,300.0	0.00	0.00	8,245.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,400.0	0.00	0.00	8,345.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,500.0	0.00	0.00	8,445.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,600.0	0.00	0.00	8,545.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
8,700.0	0.00	0.00	8,645.6	-201.0	-779.0 -779.0	-194.9	0.00	0.00	0.00
8,800.0	0.00	0.00	8,745.6	-201.0	-779.0 -779.0	-194.9	0.00	0.00	0.00
8,900.0	0.00	0.00	8,845.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,000.0	0.00	0.00	8,945.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,100.0	0.00	0.00	9,045.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,200.0	0.00	0.00	9,145.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,300.0	0.00	0.00	9,245.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,400.0	0.00	0.00	9,345.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,500.0	0.00	0.00	9,445.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,600.0	0.00	0.00	9,545.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,700.0	0.00	0.00	9,645.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,800.0	0.00	0.00	9,745.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
9,900.0	0.00	0.00	9,845.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
10,000.0	0.00	0.00	9,945.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
10,100.0	0.00	0.00	10.045.6	_201 O	_770 O	_10/10	0.00	0.00	0.00
10,100.0	0.00	0.00 0.00	10,045.6 10,145.6	-201.0 -201.0	-779.0 -779.0	-194.9 -194.9	0.00	0.00	0.00
10,300.0	0.00	0.00	10,245.6	-201.0	-779.0	-194.9	0.00	0.00	0.00

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400.0 10,500.0	0.00 0.00	0.00 0.00	10,345.6 10,445.6	-201.0 -201.0	-779.0 -779.0	-194.9 -194.9	0.00 0.00	0.00 0.00	0.00 0.00
10,600.0	0.00	0.00	10,545.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
10,700.0	0.00	0.00	10,645.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
10,800.0	0.00	0.00	10,745.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
10,900.0	0.00	0.00	10,845.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,000.0	0.00	0.00	10,945.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,100.0	0.00	0.00	11,045.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,200.0 11,300.0	0.00 0.00	0.00 0.00	11,145.6 11,245.6	-201.0 -201.0	-779.0 -779.0	-194.9 -194.9	0.00 0.00	0.00 0.00	0.00 0.00
11,400.0	0.00	0.00	11,345.6	-201.0 -201.0	-779.0 -779.0	-194.9	0.00	0.00	0.00
11,500.0	0.00	0.00	11,445.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,600.0	0.00	0.00	11,545.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,700.0	0.00	0.00	11,645.6	-201.0 -201.0	-779.0 -779.0	-194.9 -194.9	0.00	0.00	0.00
11,800.0	0.00	0.00	11,745.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
11,900.0	0.00	0.00	11,845.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,000.0	0.00	0.00	11,945.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,100.0	0.00	0.00	12,045.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,200.0	0.00	0.00	12,145.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,300.0	0.00	0.00	12,245.6	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,363.9	0.00	0.00	12,309.5	-201.0	-779.0	-194.9	0.00	0.00	0.00
12,375.0	1.33	0.00	12,320.6	-200.9	-779.0	-194.7	12.00	12.00	0.00
12,400.0	4.33	0.00	12,345.5	-199.6	-779.0	-193.5	12.00	12.00	0.00
12,425.0	7.33	0.00	12,370.4	-197.1	-779.0	-191.0	12.00	12.00	0.00
12,450.0	10.33	0.00	12,395.1	-193.3	-779.0	-187.1	12.00	12.00	0.00
12,475.0 12,500.0	13.33 16.33	0.00 0.00	12,419.6 12,443.7	-188.1 -181.7	-779.0 -779.0	-182.0 -175.6	12.00 12.00	12.00 12.00	0.00 0.00
12,525.0	19.33	0.00	12,467.5	-174.1	-779.0	-168.0	12.00	12.00	0.00
12,550.0	22.33 25.33	0.00	12,490.9	-165.2	-779.0	-159.1 -149.0	12.00	12.00 12.00	0.00
12,575.0 12,584.4	26.46	0.00 0.00	12,513.8 12,522.2	-155.1 -151.0	-779.0 -779.0	-149.0 -144.9	12.00 12.00	12.00	0.00 0.00
12,600.0	28.33	359.97	12,536.1	-143.8	-779.0	-137.7	12.00	12.00	-0.22
12,625.0	31.33	359.92	12,557.8	-131.4	-779.0	-125.2	12.00	12.00	-0.19
12,650.0	34.33	359.88	12,578.8	-117.8	-779.0	-111.7	12.00	12.00	-0.16
12,675.0	37.33	359.85	12,599.0	-103.2	-779.1	-97.1	12.00	12.00	-0.14 0.12
12,700.0 12,725.0	40.33 43.33	359.82 359.79	12,618.5 12,637.1	-87.5 -70.8	-779.1 -779.2	-81.4 -64.7	12.00 12.00	12.00 12.00	-0.12 -0.10
12,750.0	46.33	359.77	12,654.9	-53.2	-779.2	-47.1	12.00	12.00	-0.09
12,775.0 12,800.0	49.33 52.33	359.75 359.73	12,671.6 12,687.4	-34.7 -15.3	-779.3 -779.4	-28.6 -9.2	12.00 12.00	12.00 12.00	-0.08 -0.08
12,825.0	55.33	359.71	12,702.2	4.9	-779.5	11.0	12.00	12.00	-0.07
12,850.0	58.33	359.69	12,715.9	25.8	-779.6	31.9	12.00	12.00	-0.07
12,875.0	61.33	359.68	12,728.4	47.4	-779.7	53.5	12.00	12.00	-0.06
12,900.0	64.33	359.66	12,739.8	69.6	-779.9	75.8	12.00	12.00	-0.06
12,925.0	67.33	359.65	12,750.1	92.5	-780.0	98.6	12.00	12.00	-0.06
12,950.0 12,975.0	70.33 73.33	359.63 359.62	12,759.1 12,766.9	115.8 139.5	-780.2 -780.3	121.9 145.6	12.00 12.00	12.00 12.00	-0.05 -0.05
13,000.0	76.33	359.61	12,773.4	163.6	-780.5	169.8	12.00	12.00	-0.05
13,025.0	79.33	359.60	12,778.7	188.1	-780.6	194.2	12.00	12.00	-0.05
13,050.0	82.33	359.58	12,782.7	212.8	-780.8	218.9	12.00	12.00	-0.05
13,075.0	85.33	359.57	12,785.4	237.6	-781.0	243.7	12.00	12.00	-0.05
13,100.0	88.33	359.56	12,786.7	262.6	-781.2	268.7	12.00	12.00	-0.05
13,113.9	90.00	359.55	12,786.9	276.5	-781.3	282.6	12.00	12.00	-0.05
13,200.0	90.00	359.55	12,786.9	362.6	-782.0	368.7	0.00	0.00	0.00

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Planned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)			(usft)			(usft)	(°/100usft)	(°/100usft)	(°/100usft)
(usit)	(°)	(°)	(usit)	(usft)	(usft)	(usit)	(/ loousit)	(/ loousit)	(/ loousit)
13,300.0	90.00	359.55	12,786.9	462.6	-782.7	468.7	0.00	0.00	0.00
13,400.0	90.00	359.55	12,786.9	562.5	-783.5	568.7	0.00	0.00	0.00
13,500.0	90.00	359.55	12,787.0	662.5	-784.3	668.7	0.00	0.00	0.00
13,300.0	90.00	339.33	12,707.0	002.3	-704.5	000.7	0.00	0.00	0.00
13,600.0	90.00	359.55	12,787.0	762.5	-785.1	768.7	0.00	0.00	0.00
13,700.0	90.00	359.55	12,787.0	862.5	-785.9	868.7	0.00	0.00	0.00
13,800.0	90.00	359.55	12,787.0	962.5	-786.6	968.7	0.00	0.00	0.00
13,900.0	90.00	359.55	12,787.0	1,062.5	-787.4	1,068.7	0.00	0.00	0.00
14,000.0	90.00	359.55	12,787.0	1,162.5	-788.2	1,168.7	0.00	0.00	0.00
14,100.0	90.00	359.55	12,787.0	1,262.5	-789.0	1,268.7	0.00	0.00	0.00
14,200.0	90.00	359.55	12,787.0	1,362.5	-789.7	1,368.7	0.00	0.00	0.00
14,300.0	90.00	359.55	12,787.0	1,462.5	-790.5	1,468.7	0.00	0.00	0.00
14,400.0	90.00	359.55	12,787.0	1,562.5	-791.3	1,568.7	0.00	0.00	0.00
14,500.0	90.00	359.55	12,787.0	1,662.5	-792.1	1,668.7	0.00	0.00	0.00
14,600.0	90.00	359.55	12,787.0	1,762.5	-792.8	1,768.7	0.00	0.00	0.00
14,700.0	90.00	359.55	12,787.0	1,862.5	-793.6	1,868.7	0.00	0.00	0.00
14,800.0	90.00	359.55	12,787.0	1,962.5	-794.4	1,968.7	0.00	0.00	0.00
14,900.0	90.00	359.55	12,787.0	2,062.5	-795.2	2,068.7	0.00	0.00	0.00
15,000.0	90.00	359.55	12,787.0	2,162.5	-796.0	2,168.7	0.00	0.00	0.00
15,100.0	90.00	359.55	12,787.0	2,262.5	-796.7	2,268.7	0.00	0.00	0.00
15,200.0	90.00	359.55	12,787.0	2,362.5	-797.5	2,368.7	0.00	0.00	0.00
15,300.0	90.00	359.55	12,787.0	2,462.5	-798.3	2,468.7	0.00	0.00	0.00
15,400.0	90.00	359.55	12,787.0	2,562.5	-799.1	2,568.7	0.00	0.00	0.00
15,500.0	90.00	359.55	12,787.0	2,662.5	-799.8	2,668.7	0.00	0.00	0.00
,									
15,600.0	90.00	359.55	12,787.0	2,762.5	-800.6	2,768.7	0.00	0.00	0.00
15,700.0	90.00	359.55	12,787.0	2,862.5	-801.4	2,868.7	0.00	0.00	0.00
15,800.0	90.00	359.55	12,787.0	2,962.5	-802.2	2,968.7	0.00	0.00	0.00
15,900.0	90.00	359.55	12,787.0	3,062.5	-802.9	3,068.7	0.00	0.00	0.00
16,000.0	90.00	359.55	12,787.0	3,162.5	-803.7	3,168.7	0.00	0.00	0.00
16,100.0	90.00	359.55	12,787.0	3,262.5	-804.5	3,268.7	0.00	0.00	0.00
16,200.0	90.00	359.55	12,787.0	3,362.5	-805.3	3,368.7	0.00	0.00	0.00
16,300.0	90.00	359.55	12,787.0	3,462.5	-806.1	3,468.7	0.00	0.00	0.00
16,400.0	90.00	359.55	12,787.0	3,562.5	-806.8	3,568.7	0.00	0.00	0.00
16,500.0	90.00	359.55	12,787.0	3,662.5	-807.6	3,668.7	0.00	0.00	0.00
16,600.0	90.00	359.55	12,787.0	3,762.5	-808.4	3,768.7	0.00	0.00	0.00
16,700.0	90.00	359.55	12,787.0	3,862.5	-809.2	3,868.7	0.00	0.00	0.00
16,800.0	90.00	359.55	12,787.0	3,962.4	-809.9	3,968.7	0.00	0.00	0.00
16,900.0	90.00	359.55	12,787.0	4,062.4	-810.7	4,068.7	0.00	0.00	0.00
17,000.0	90.00	359.55	12,787.0	4,162.4	-811.5	4,168.7	0.00	0.00	0.00
17,000.0				7,102.4			0.00	0.00	
17,100.0	90.00	359.55	12,787.0	4,262.4	-812.3	4,268.7	0.00	0.00	0.00
17,193.6	90.00	359.55	12,787.0	4,356.0	-813.0	4,362.3	0.00	0.00	0.00
,				4,362.4					
17,200.0	90.00	358.91	12,787.0	,	-813.1	4,368.7	10.00	0.00	-10.00
17,250.0	90.00	353.91	12,787.0	4,412.3	-816.2	4,418.6	10.00	0.00	-10.00
17,300.0	90.00	348.91	12,787.0	4,461.7	-823.7	4,468.1	10.00	0.00	-10.00
47.000.0	00.00	242.04	10 707 0		005.4	4 540 0	40.00	0.00	40.00
17,350.0	90.00	343.91	12,787.0	4,510.3	-835.4	4,516.8	10.00	0.00	-10.00
17,400.0	90.00	338.91	12,787.0	4,557.7	-851.4	4,564.3	10.00	0.00	-10.00
17,450.0	90.00	333.91	12,787.0	4,603.5	-871.4	4,610.2	10.00	0.00	-10.00
17,500.0	90.00	328.91	12,787.0	4,647.4	-895.3	4,654.3	10.00	0.00	-10.00
17,550.0	90.00	323.91	12,787.0	4,689.0	-922.9	4,696.1	10.00	0.00	-10.00
							10.00		
17,600.0	90.00	318.91	12,787.0	4,728.1	-954.1	4,735.5	10.00	0.00	-10.00
17,650.0	90.00	313.91	12,787.0	4,764.3	-988.6	4,771.9	10.00	0.00	-10.00
17,700.0	90.00	308.91	12,787.0	4,797.4	-1,026.1	4,805.3	10.00	0.00	-10.00
17,750.0	90.00	303.91	12,787.0	4,827.0	-1,066.3	4,835.3	10.00	0.00	-10.00
17,800.0	90.00	298.91	12,787.0	4,853.1	-1,108.9	4,861.7	10.00	0.00	-10.00
17 050 0	00.00	202.04	10 707 0	1 075 2	1 150 7	4 004 0	10.00	0.00	10.00
17,850.0	90.00	293.91	12,787.0	4,875.3	-1,153.7	4,884.2	10.00	0.00	-10.00

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

Design:	Plan #0.1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,900.0	90.00	288.91	12,787.0	4,893.6	-1,200.2	4,902.9	10.00	0.00	-10.00
17,950.0	90.00	283.91	12,787.0	4,907.7	-1,248.2	4,917.4	10.00	0.00	-10.00
18,000.0	90.00	278.91	12,787.0	4,917.6	-1,297.2	4,927.6	10.00	0.00	-10.00
18,050.0	90.00	273.91	12,787.0	4,923.2	-1,346.9	4,933.6	10.00	0.00	-10.00
18,093.1	90.00	269.59	12,787.0	4,924.4	-1,389.9	4,935.2	10.01	0.00	-10.01
18,100.0	90.00	269.59	12,787.0	4,924.4	-1,396.8	4,935.2	0.00	0.00	0.00
18,200.0	90.00	269.59	12,787.0	4,923.7	-1,496.8	4,935.3	0.00	0.00	0.00
18,253.2	90.00	269.59	12,787.0	4,923.3	-1,550.1	4,935.3	0.00	0.00	0.00
18,300.0	90.00	264.92	12,787.0	4,921.1	-1,596.8	4,933.5	10.00	0.00	-10.00
18,350.0	90.00	259.92	12,787.0	4,914.5	-1,646.3	4,927.2	10.00	0.00	-10.00
18,400.0	90.00	254.92	12,787.0	4,903.6	-1,695.1	4,927.2	10.00	0.00	-10.00
18,450.0	90.00	249.92	12,787.0	4,888.5	-1,742.7	4,902.0	10.00	0.00	-10.00
18,500.0	90.00	244.92	12,787.0	4,869.3	-1,788.9	4,883.2	10.00	0.00	-10.00
18,550.0	90.00	239.92	12,787.0	4,846.1	-1,833.2	4,860.4	10.00	0.00	-10.00
18,600.0	90.00	234.92	12,787.0	4,819.2	-1,875.3	4,833.8	10.00	0.00	-10.00
18,650.0 18,700.0	90.00 90.00	229.92 224.92	12,787.0 12,787.0	4,788.7 4.754.0	-1,914.9 -1,951.7	4,803.6 4,770.1	10.00 10.00	0.00 0.00	-10.00 -10.00
	90.00			4,754.9				0.00	
18,750.0 18,800.0	90.00	219.92 214.92	12,787.0 12,787.0	4,718.0 4,678.3	-1,985.4 -2,015.8	4,733.5 4,694.0	10.00 10.00	0.00	-10.00 -10.00
10,000.0				,			10.00		
18,850.0	90.00	209.92	12,787.0	4,636.1	-2,042.6	4,652.0	10.00	0.00	-10.00
18,900.0	90.00	204.92	12,787.0	4,591.8	-2,065.6	4,607.8	10.00	0.00	-10.00
18,950.0	90.00	199.92	12,787.0	4,545.5	-2,084.7	4,561.8	10.00	0.00	-10.00
19,000.0	90.00	194.92	12,787.0	4,497.9	-2,099.6	4,514.2	10.00	0.00	-10.00
19,050.0	90.00	189.92	12,787.0	4,449.0	-2,110.4	4,465.5	10.00	0.00	-10.00
19,100.0	90.00	184.92	12,787.0	4,399.5	-2,116.8	4,416.0	10.00	0.00	-10.00
19,152.5	90.00	179.67	12,787.0	4,347.0	-2,119.0	4,363.5	9.99	0.00	-9.99
19,200.0	90.00	179.67	12,787.0	4,299.5	-2,118.7	4,316.0	0.00	0.00	0.00
19,300.0	90.00	179.67	12,787.0	4,199.5	-2,118.1	4,216.0	0.00	0.00	0.00
19,400.0	90.00	179.67	12,787.0	4,099.5	-2,117.6	4,116.0	0.00	0.00	0.00
19,500.0	90.00	179.67	12,787.0	3,999.5	-2,117.0	4,016.0	0.00	0.00	0.00
19,600.0	90.00	179.67	12,787.0	3,899.5	-2,116.4	3,916.0	0.00	0.00	0.00
19,700.0	90.00	179.67	12,787.0	3,799.5	-2,115.8	3,816.0	0.00	0.00	0.00
19,800.0	90.00	179.67	12,787.0	3,699.5	-2,115.3	3,716.0	0.00	0.00	0.00
19,900.0	90.00	179.67	12,787.0	3,599.5	-2,114.7	3,616.0	0.00	0.00	0.00
20,000.0	90.00	179.67	12,787.0	3,499.5	-2,114.1	3,516.0	0.00	0.00	0.00
20,100.0	90.00	179.67	12,787.0	3,399.6	-2,114.1 -2,113.5	3,416.0	0.00	0.00	0.00
20,200.0	90.00	179.67	12,787.0	3,299.6	-2,113.0	3,316.0	0.00	0.00	0.00
20,300.0	90.00	179.67	12,787.0	3,199.6	-2,112.4	3,216.0	0.00	0.00	0.00
20,400.0	90.00	179.67	12,787.0	3,099.6	-2,111.8	3,116.0	0.00	0.00	0.00
20,500.0	90.00	179.67	12,787.0	2,999.6	-2,111.2	3,016.0	0.00	0.00	0.00
20,600.0 20,700.0	90.00	179.67	12,787.0	2,899.6	-2,110.6	2,916.0	0.00	0.00	0.00
20,700.0	90.00 90.00	179.67 179.67	12,787.0 12,787.0	2,799.6 2,699.6	-2,110.1 -2,109.5	2,816.0 2,716.0	0.00 0.00	0.00 0.00	0.00 0.00
20,800.0	90.00	179.67	12,787.0	2,599.6	-2,109.5 -2,108.9	2,716.0	0.00	0.00	0.00
21,000.0	90.00	179.67	12,787.0	2,499.6	-2,108.3	2,516.0	0.00	0.00	0.00
21,100.0	90.00	179.67	12,787.0	2,399.6	-2,107.8	2,416.0	0.00	0.00	0.00
21,200.0	90.00	179.67	12,787.0	2,299.6	-2,107.2	2,316.0	0.00	0.00	0.00
21,300.0	90.00	179.67	12,787.0	2,199.6	-2,106.6	2,216.0	0.00	0.00	0.00
21,400.0	90.00	179.67	12,787.0	2,099.6	-2,106.0	2,116.0	0.00	0.00	0.00
21,500.0	90.00	179.67	12,787.0	1,999.6	-2,105.5	2,016.0	0.00	0.00	0.00
21,600.0	90.00	179.67	12,787.0	1,899.6	-2,104.9	1,916.0	0.00	0.00	0.00
21,700.0	90.00	179.67	12,787.0	1,799.6	-2,104.3	1,816.0	0.00	0.00	0.00
21,800.0	90.00	179.67	12,787.0	1,699.6	-2,103.7	1,716.0	0.00	0.00	0.00
21,900.0	90.00	179.67	12,787.0	1,599.6	-2,103.1	1,616.0	0.00	0.00	0.00

Database: EDT_18
Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Mamba 30 State Com

 Well:
 #720H

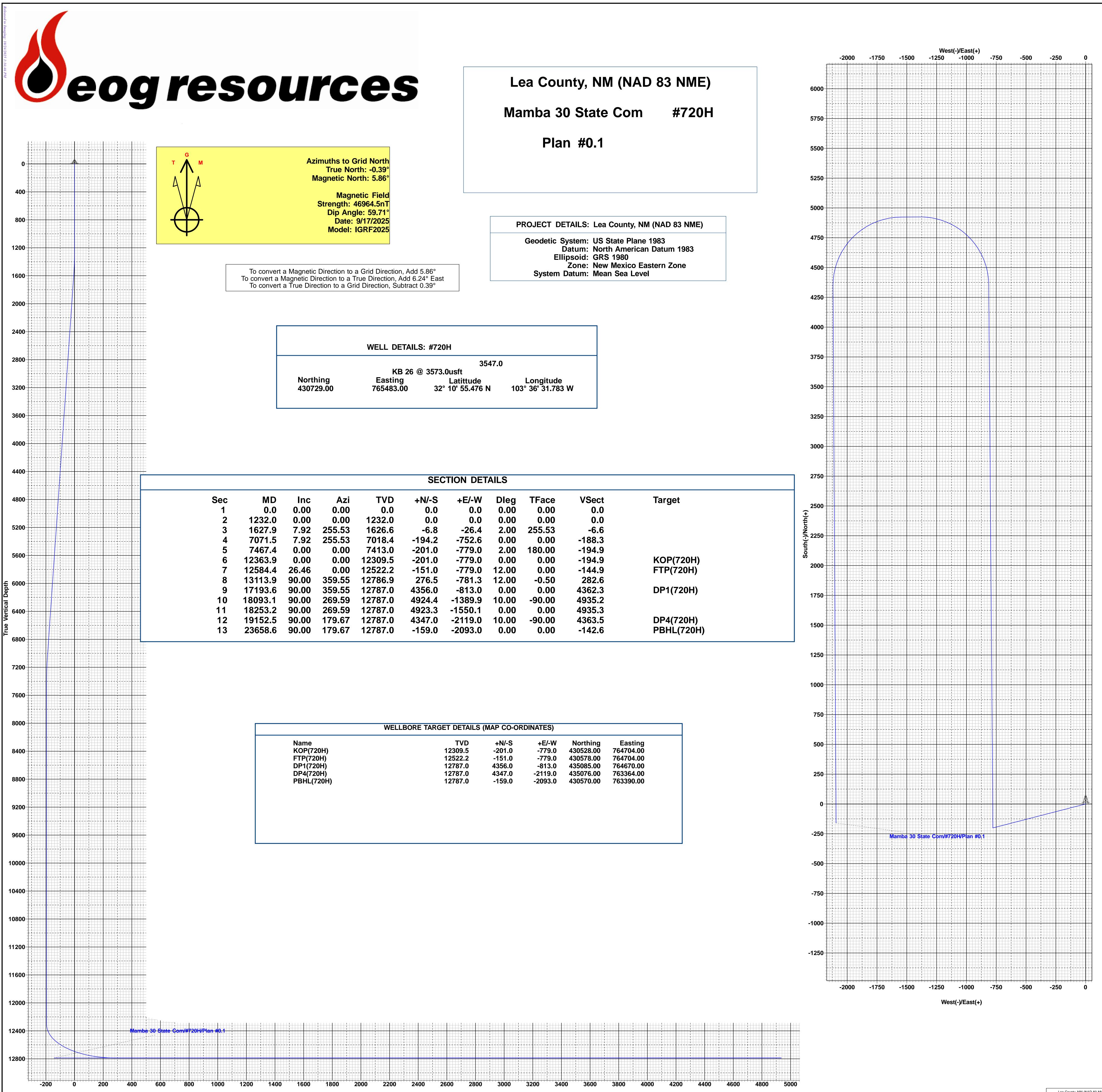
 Wellbore:
 OH

 Design:
 Plan #0.1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:


Well #720H

KB 26 @ 3573.0usft KB 26 @ 3573.0usft

Grid

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
22,000.0	90.00	179.67	12,787.0	1,499.6	-2,102.6	1,516.0	0.00	0.00	0.00
22,100.0	90.00	179.67	12,787.0	1,399.6	-2,102.0	1,416.0	0.00	0.00	0.00
22,200.0	90.00	179.67	12,787.0	1,299.6	-2,101.4	1,316.0	0.00	0.00	0.00
22,300.0	90.00	179.67	12,787.0	1,199.6	-2,100.8	1,216.0	0.00	0.00	0.00
22,400.0	90.00	179.67	12,787.0	1,099.6	-2,100.3	1,116.0	0.00	0.00	0.00
22,500.0	90.00	179.67	12,787.0	999.6	-2,099.7	1,016.0	0.00	0.00	0.00
22,600.0	90.00	179.67	12,787.0	899.6	-2,099.1	916.1	0.00	0.00	0.00
22,700.0	90.00	179.67	12,787.0	799.6	-2,098.5	816.1	0.00	0.00	0.00
22,800.0	90.00	179.67	12,787.0	699.6	-2,098.0	716.1	0.00	0.00	0.00
22,900.0	90.00	179.67	12,787.0	599.6	-2,097.4	616.1	0.00	0.00	0.00
23,000.0	90.00	179.67	12,787.0	499.6	-2,096.8	516.1	0.00	0.00	0.00
23,100.0	90.00	179.67	12,787.0	399.6	-2,096.2	416.1	0.00	0.00	0.00
23,200.0	90.00	179.67	12,787.0	299.6	-2,095.6	316.1	0.00	0.00	0.00
23,300.0	90.00	179.67	12,787.0	199.6	-2,095.1	216.1	0.00	0.00	0.00
23,400.0	90.00	179.67	12,787.0	99.6	-2,094.5	116.1	0.00	0.00	0.00
23,500.0	90.00	179.67	12,787.0	-0.4	-2,093.9	16.1	0.00	0.00	0.00
23,600.0	90.00	179.67	12,787.0	-100.4	-2,093.3	-83.9	0.00	0.00	0.00
23,658.6	90.00	179.67	12,787.0	-159.0	-2,093.0	-142.6	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP(720H) - plan hits target ce - Point	0.00 enter	0.00	12,309.5	-201.0	-779.0	430,528.00	764,704.00	32° 10' 53.539 N	103° 36' 40.862 W
FTP(720H) - plan hits target ce - Point	0.00 enter	0.00	12,522.2	-151.0	-779.0	430,578.00	764,704.00	32° 10′ 54.034 N	103° 36' 40.858 W
DP4(720H) - plan hits target ce - Point	0.00 enter	0.00	12,787.0	4,347.0	-2,119.0	435,076.00	763,364.00	32° 11' 38.632 N	103° 36' 56.101 W
PBHL(720H) - plan hits target ce - Point	0.00 enter	0.00	12,787.0	-159.0	-2,093.0	430,570.00	763,390.00	32° 10′ 54.042 N	103° 36' 56.148 W
DP1(720H) - plan hits target ce - Point	0.00 enter	0.00	12,787.0	4,356.0	-813.0	435,085.00	764,670.00	32° 11' 38.634 N	103° 36' 40.902 W

Vertical Section at 359.55°

9:47, October 17 2025

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator:EOG	Resources, Inc	OGRII	D: 7377		Da	ite: 10/2	2/2025	
II. Type: ⊠ Origina	nl □ Amendm	ent due to □ 19.15	.27.9.D(6)(a) NI	MAC □ 19.15.27.	9.D(6)(t) NMAC	□ Otl	ner.
If Other, please describe):							
III. Well(s): Provide the be recompleted from a s					wells pr	oposed to	be dri	lled or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D		cipated MCF/D		Anticipated roduced Water BBL/D
MAMBA 30 STATE COM 720H		O-30-24S-33E	247' FSL & 1849' FEL	+/- 1000	+/- 35	000	+/- 30	000
V. Anticipated Sched or proposed to be recom	ule: Provide the apleted from a s	e following inform single well pad or o	ation for each no	ew or recompleted entral delivery poi	l well or nt.	set of wel	lls prop	posed to be drilled
Well Name	API	Spud Date	TD Reached Date	Completion Commencement		Initial F Back D		First Production Date
MAMBA 30 STATE COM 720H		11/15/25	12/26/25	01/26/26		03/1/26		05/15/26
VI. Separation Equipm VII. Operational Prac Subsection A through F VIII. Best Management during active and planne	tices: Attac of 19.15.27.8	ch a complete desc NMAC. ☑ Attach a comple	ription of the ac	tions Operator wi	ll take to	o comply	with th	he requirements of

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

 \square Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well API		Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF	

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the
production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of
the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system	\square will \square will not have capacity t	to gather 100% of the anticipated natur	al gas
production volume from the well prior to the date of fin	rst production.		

XIII. Line Pressure. Operator \square does \square does not anticipate that its existing well(s) connected to the same segment, or property of the same segment of the same segment.	ortion, o	of the
natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the	new wel	ll(s).

			_						
	Attach (Onerator	s nlan ta	n manage	production	in response	to the incre	ased line pre	eriire

XIV. Confidentiality: \square Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information prov	vided in
Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information of the	rmation
for which confidentiality is asserted and the basis for such assertion.	

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal:

🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system; or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a)

- **(b)** power generation for grid;
- (c) compression on lease;
- (d) liquids removal on lease;
- reinjection for underground storage; (e)
- **(f)** reinjection for temporary storage;
- **(g)** reinjection for enhanced oil recovery;
- (h) fuel cell production; and
- (i) other alternative beneficial uses approved by the division.

Section 4 - Notices

- 1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:
- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature: Kayla McConnell
Printed Name: KAYLA MCCONNELL
Title: Regulatory Specialist
E-mail Address: KAYLA_MCCONNELL@EOGRESOURCES.COM
Date: 10/22/2025
Phone: (432) 265-6804
OIL CONSERVATION DIVISION
(Only applicable when submitted as a standalone form)
Approved By:
Title:
Approval Date:
Conditions of Approval:

Natural Gas Management Plan Items VI-VIII

VI. Separation Equipment: Attach a complete description of how Operator will size separation equipment to optimize gas capture.

- Separation equipment will be sized to provide adequate separation for anticipated rates.
- Adequate separation relates to retention time for Liquid Liquid separation and velocity for Gas-Liquid separation.
- Collection systems are appropriately sized to handle facility production rates on all (3) phases.
- Ancillary equipment and metering is selected to be serviced without flow interruptions or the need to release
 gas from the well.

VII. Operational Practices: Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F 19.15.27.8 NMAC.

Drilling Operations

- All flare stacks will be properly sized. The flare stacks will be located at a minimum 100' from the nearest surface hole location on the pad.
- All natural gas produced during drilling operations will be flared, unless there is an equipment malfunction
 and/or to avoid risk of an immediate and substantial adverse impact on safety and the environment, at which
 point the gas will be vented.

Completions/Recompletions Operations

- New wells will not be flowed back until they are connected to a properly sized gathering system.
- The facility will be built/sized for maximum anticipated flowrates and pressures to minimize waste.
- For flowback operations, multiple stages of separation will be used as well as excess VRU and blowers to make sure waste is minimized off the storage tanks and facility.
- During initial flowback, the well stream will be routed to separation equipment.
- At an existing facility, when necessary, post separation natural gas will be flared until it meets pipeline specifications, at which point it will be turned into a collection system.
- At a new facility, post separation natural gas will be vented until storage tanks can safely function, at which point it will be flared until it meets pipeline spec.

Production Operations

- Weekly AVOs will be performed on all facilities.
- All flares will be equipped with auto-ignition systems and continuous pilot operations.
- After a well is stabilized from liquid unloading, the well will be turned back into the collection system.
- All plunger lift systems will be optimized to limit the amount of waste.
- All tanks will have automatic gauging equipment installed.
- Leaking thief hatches found during AVOs will be cleaned and properly re-sealed.

Performance Standards

- Production equipment will be designed to handle maximum anticipated rates and pressure.
- All flared gas will be combusted in a flare stack that is properly sized and designed to ensure proper combustion.
- Weekly AVOs will be performed on all wells and facilities that produce more than 60 Mcfd.

Measurement & Estimation

- All volume that is flared and vented that is not measured will be estimated.
- All measurement equipment for flared volumes will conform to API 14.10.
- No meter bypasses with be installed.

• When metering is not practical due to low pressure/low rate, the vented or flared volume will be estimated.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

- During downhole well maintenance, EOG will use best management practices to vent as minimally as possible.
- Prior to the commencement of any maintenance, the tank or vessel will be isolated from the rest of the facilities.
- All valves upstream of the equipment will be closed and isolated.
- After equipment has been isolated, the equipment will be blown down to as low a pressure as possible into the collection system.
- If the equipment being maintained cannot be relieved into the collection system, it shall be released to a tank where the vapor can either be captured or combusted if possible.
- After downhole well maintenance, natural gas will be flared until it reaches pipeline specification.