Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory

https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form C-101 August 1, 2011

Permit 403365

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

Operator Name and Address		2. OGRID Number
MEWBOURNE OIL CO	14744	
P.O. Box 5270	3. API Number	
Hobbs, NM 88241		30-015-57497
4. Property Code	5. Property Name	6. Well No.
338101	ROOSTER 35 26 STATE COM	717H
		<u> </u>

7. Surface Location

,											
	0	35	23S	26E	0	220	S	2630	E	Eddy	
	UL - Lot	Section	Lownship	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County	

8. Proposed Bottom Hole Location

UL - Lot	Section	Township	Range	Lot Idn	Feet From	N/S Line	Feet From	E/W Line	County
Α	26	23S	26E	Α	330	N	890	Е	Eddy

9. Pool Information

PURPLE SAGE, WOLF CAMP (GAS)	PURPLE SAGE;WOLFCAMP (GAS)	98220	
------------------------------	----------------------------	-------	--

Additional Well Information

11. Work Type New Well	12. Well Type GAS	13. Cable/Rotary	14. Lease Type State	15. Ground Level Elevation 3263
16. Multiple N	17. Proposed Depth 19300	18. Formation Wolfcamp	19. Contractor	20. Spud Date 10/20/2024
Depth to Ground water		Distance from nearest fresh water well		Distance to nearest surface water

${\ensuremath{\overline{\boxtimes}}}$ We will be using a closed-loop system in lieu of lined pits

21. Proposed Casing and Cement Program

	ziii io pooda dadiig ana domenti iogram							
Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC		
Surf	17.5	13.375	48	550	440	0		
Int1	12.25	9.625	36	1700	410	0		
Prod	8.75	7	26	8443	950	1500		
Liner1	6.125	4.5	13.5	19300	710	8243		

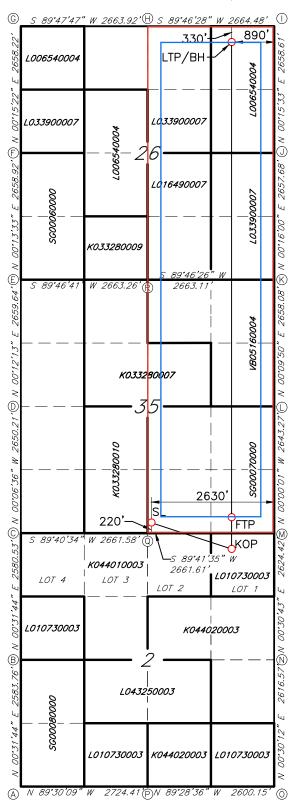
Casing/Cement Program: Additional Comments

MOC proposed to drill & test the Bone Springs formation. H2S rule 118 does not apply because MOC has researched the area & no high concentrations were found. Will have on location & working all H2S safety equiptment before Yates formation for safety & insurance purposes. Will stimulate as needed for production.

22. Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
Annular	5000	2500	SCHAFFER
Double Ram	5000	5000	SHCAFFER
Annular	5000	2500	SHCAFFER

knowledge and I hereby certify tor recompletion	hat no additives containing PFAS che of this well. I have complied with 19.15.14.9 (A) N	true and complete to the best of my micals will be added to the completion		OIL CONSERVA	TION DIVISION
Printed Name: Electronically filed by Monty Whetstone		Approved By:	Jeffrey Harrison		
Title:	Title: Vice President Operations		Title:	Petroleum Specialist III	
Email Address:	fking@mewbourne.com		Approved Date:	11/19/2025	Expiration Date: 11/19/2027
			Conditions of Apr	proval Attached	


C-102 State of New State of New Minusch & Ne						v Mexico 1 Resources Department			Revised July 9, 2024		
	Electronica		Ene			II Resources Dep TION DIVISION				T	
Via OC	CD Permittir	ıg						Sub	mittal	☑ Initial Submitt	
								Тур	e:	☐ Amended Rep☐ As Drilled	ort
					WELLLOCAT	CION INFORMATIO	NAT.			As Diffied	
API Nu	mber		Pool Code			TION INFORMATIO	JN				
					PURPLE SAGE	WOLFC	AMP (GAS	5)			
Property 3381	01		Property Na		ROOSTER 3	35/26 STATI	E COM			l Number	717H
OGRID 14744	No.		Operator Na	ame	MEWBOUR	NE OIL COM	PANY		Grou	and Level Elevation	3263'
Surface	Owner: 🛮	State Fee	 ∃Tribal □ F	ederal		Mineral Owner:	☑ State □	Fee Trib	al 🗆 Fe	deral	
					Surfa	ace Location					
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		1	gitude	County
0	35	23S	26E		220 FSL	2630 FEL	32.25	41954°N	104	2636386°W	EDDY
	1	T	T			Hole Location	T				
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	1 0 0 0 9 N	_	gitude	County
A	26	23S	26E	<u></u>	330 FNL	890 FEL	32.20	18892°N	104	2578899°W	EDDY
Dedicat	ed Acres	Infill or Defin	-	Defining	g Well API	Overlapping Spa	cing Unit (Y/N) Conso	lidation	Code	
-	umbers. N/					Well setbacks ar	e under Cor		ship:	Yes 🛮 No	
UL	Section	Township	Range	Lot	Ft. from N/S	ff Point (KOP) Ft. from E/W	Latitude		Lane	-:4 d -	County
A A	2	24S	26E	1	243 FNL			29455°N	1	gitude 2580195°W	EDDY
						ike Point (FTP)	00.00		101		LDDI
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		Long	gitude	County
P	35	23S	26E		330 FSL	890 FEL	32.25	45202°N	104	.2580112°W	EDDY
		.1	.1		Last Ta	ke Point (LTP)	1				
UL		Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude		_	gitude	County
A	26	23S	26E		330 FNL	890 FEL	32.28	18892°N	104	2578899°W	EDDY
	d Area or Aı	rea of Uniform	Interest	Spacing	Unit Type Hori	izontal		Ground Floo	r Elevat	ion:	
N/A							;	3263'			
OPER.	ATOR CER	TIFICATIONS				SURVEYOR CER	TIFICATIO	ONS			
					plete to the best of	I hereby certify that th	he well locatio	on shown on th	s plat we	as plotted from field no	tes of actual
organiza	tion either owi	ef, and , if the well ns a working intere	est or unleased r	mineral inter	rest in the land	surveys made by me u my belief.	ınder my supe	rvision and the	aftine san	ne is true and correct t	o the best of
		bottom hole locati contract with an o			s well at this r unleased mineral		/6	ME ME	10		
	or to a volunta by the division.	ıry pooling agreen	nent or a compu	lsory pooling	; order heretofore		Q	(3 (1968			
		tal well, I further o					PA PA)	 8	
in each t	ract (in the tar	get pool or format	tion) in which an	ny part of the			\9	d		& /	
_	vill be located LL Mi	or obtained a com	npulsory pooling 11/10/2	-	the division.			SS/ONAL	suk		
Signature	u m		Date	2023		Signature and Seal of Pro					
	TT MILL	.ER				Robert N	1. Hoi	wett			
Printed Na						Certificate Number	Date	of Survey			
BRE Email Add		.ER@ME\	MROUR	NE.CC)IVI	19680	07/22/2025				

ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is a directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

ROOSTER 35/26 STATE COM #717H

<u>GEODETIC DATA</u> NAD 83 GRID — NM EAST

<u>SURFACE LOCATION (SL)</u> 220' FSL & 2630' FEL SEC.35 N: 456216.5 - E: 562882.2

> LAT: 32.2541954° N LONG: 104.2636386° W

<u>KICK OF POINT (KOP)</u> 243' FNL & 890' FEL (SEC.2) N: 455763.0 - E: 564619.6

> LAT: 32.2529455° N LONG: 104.2580195° W

FIRST TAKE POINT (FTP) 330' FSL & 890' FEL (SEC.35) N: 456335.9 - E: 564621.8

LAT: 32.2545202° N LONG: 104.2580112° W

LAST TAKE POINT/BOTTOM HOLE (LTP/BH)
330' FNL & 890' FEL SEC.26
N: 466292.3 - E: 564652.2

LAT: 32.2818892° N LONG: 104.2578899° W

<u>CORNER DATA</u> NAD 83 GRID — NM EAST

- A: FOUND BRASS CAP "1968" N: 450818.6 - E: 560142.0
- B: CALCULATED CORNER N: 453401.6 - E: 560165.9
- C: FOUND BRASS CAP "1943" N: 455981.4 - E: 560189.7
- D: FOUND BRASS CAP "1943" N: 458631.0 - E: 560184.6
- E: FOUND BRASS CAP "1943" N: 461290.0 - E: 560194.1
- F: FOUND BRASS CAP "1943" N: 463948.2 - E: 560204.6
- G: FOUND BRASS CAP "1943" N: 466605.8 - E: 560216.4
- H: FOUND BRASS CAP "1943" N: 466615.2 - E: 562879.7
- I: FOUND BRASS CAP "1943" N: 466625.7 - E: 565543.5

- J: FOUND BRASS CAP "1943" N: 463967.8 - E: 565531.5
- K: FOUND 1/2" REBAR
- N: 461310.8 E: 565519.1
- L: FOUND BRASS CAP ("ILLEGIBLE") N: 458653.4 - E: 565511.5
- M: FOUND BRASS CAP "1968"
- N: 456010.7 E: 565511.5
- N: FOUND BRASS CAP "1968" N: 453387.1 - E: 565488.1
- O: FOUND BRASS CAP "1968"
- N: 450771.2 E: 565465.1
- P: FOUND BRASS CAP "1968"
- N: 450795.0 E: 562865.7
- Q: FOUND BRASS CAP "1943" N: 455996.5 - E: 562850.6
- R: FOUND NAIL
- N: 461300.3 E: 562856.7

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Comments

Permit 403365

PERMIT COMMENTS

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-015-57497
P.O. Box 5270	Well:
Hobbs, NM 88241	ROOSTER 35 26 STATE COM #717H

Created By	Comment	Comment Date
jeffrey.harrison	Submitted as defining well for HSU.	11/19/2025

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Form APD Conditions

Permit 403365

PERMIT CONDITIONS OF APPROVAL

Operator Name and Address:	API Number:
MEWBOURNE OIL CO [14744]	30-015-57497
P.O. Box 5270	Well:
Hobbs, NM 88241	ROOSTER 35 26 STATE COM #717H

OCD Reviewer	Condition
jeffrey.harrison	No additives containing PFAS chemicals will be added to the drilling fluids or completion fluids used during drilling, completions, or recompletions operations.
jeffrey.harrison	All logs run on the well must be submitted to NMOCD.
jeffrey.harrison	Cement is required to circulate on both surface and intermediate1 strings of casing.
jeffrey.harrison	If cement does not circulate on any string, a Cement Bond Log (CBL) is required for that string of casing.
jeffrey.harrison	A [C-103] Sub. Drilling (C-103N) is required within (10) days of spud.
jeffrey.harrison	Notify the OCD 24 hours prior to casing & cement.
jeffrey.harrison	File As Drilled C-102 and a directional Survey with C-104 completion packet.
	Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string.
jeffrey.harrison	Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Mewbourne Oil Co.

BOP Break Testing Variance

Mewbourne Oil Company requests a variance from the minimum standards for well control equipment testing of 43 CFR 3172 to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with batch drilling & offline cementing operations. Modern rig upgrades which facilitate pad drilling allow the BOP stack to be moved between wells on a multi-well pad without breaking any BOP stack components apart. Widespread use of these technologies has led to break testing BOPE being endorsed as safe and reliable. American Petroleum Institute (API) best practices are frequently used by regulators to develop their regulations. API Standard 53, *Well Control Equipment Systems for Drilling Wells* (5th Ed., Dec. 2018) Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component."

Procedures

- 1. Full BOPE test at first installation on the pad.
 - Full BOPE test at least every 21 days.
 - Function test BOP elements per 43 CFR 3172.
 - Contact the BLM if a well control event occurs.
- 2. After the well section is secured and the well is confirmed to be static, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad. Two breaks on the BOPE will be made (Fig. 1).
 - Connection between the flex line and the HCR valve
 - Connection between the wellhead and the BOP quick connect (Fig. 5 & 6).
- 3. A capping flange will be installed after cementing per wellhead vendor procedure & casing pressure will be monitored via wellhead valve.
- 4. The BOP will be removed and carried by a hydraulic carrier (Fig. 3 & 4).
- 5. The rig will then walk to the next well.
- 6. Confirm that the well is static and remove the capping flange.
- 7. The connection between the flex line and HCR valve and the connection between the wellhead and the BOP quick connect will be reconnected.
- 8. Install a test plug into the wellhead.
- 9. A test will then be conducted against the upper pipe rams and choke, testing both breaks (Fig. 1 & 2).
- 10. The test will be held at 250 psi low and to the high value submitted in the APD, not to exceed 5000 psi.
- 11. The annular, blind rams and lower pipe rams will then be function tested.
- 12. If a pad consists of three or more wells, steps 4 through 11 will be repeated.

13. A break test will only be conducted if the intermediate section can be drilled and cased within 21 days of the last full BOPE test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool and/or cement head
- · Capping flange after cementing

Summary

A variance is requested to only test broken pressure seals on the BOPE when moving between wells on a multi-well pad if the following conditions are met:

- A full BOPE test is conducted on the first well on the pad. API Standard 53 requires testing annular BOP to 70% of RWP or 100% of MASP, whichever is greater.
- If the first well on the pad is not the well with the deepest intermediate section, a full BOPE test will also be performed when moving to a deeper well.
- The hole section being drilled has a MASP under 5000 psi.
- If a well control event occurs, Mewbourne will contact BLM for permission to continue break testing.
- If significant (>50%) losses occur, full BOPE testing will be required going forward.
- Full BOPE test will be required prior to drilling the production hole.

While walking the rig, the BOP stack will be secured via hydraulic winch or hydraulic carrier. A full BOPE test will be performed at least every 21 days.

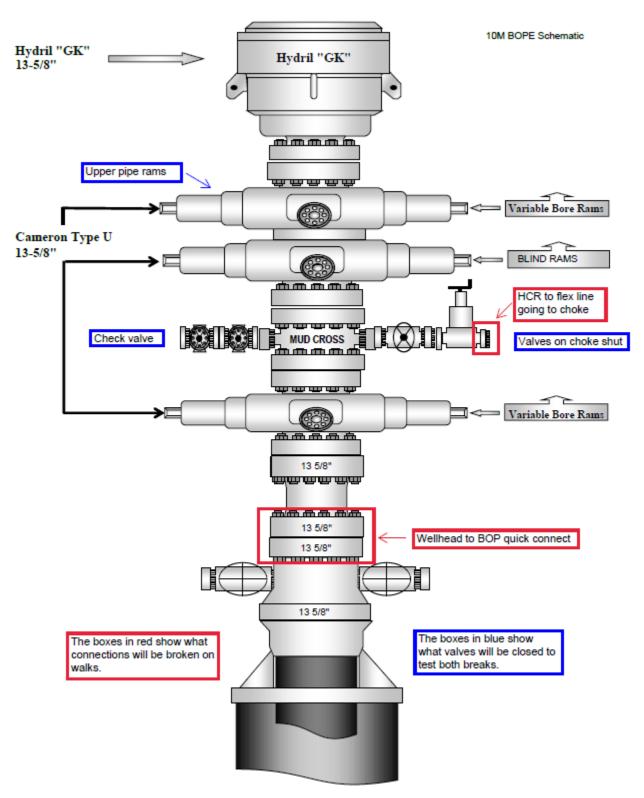


Figure 1. BOP diagram

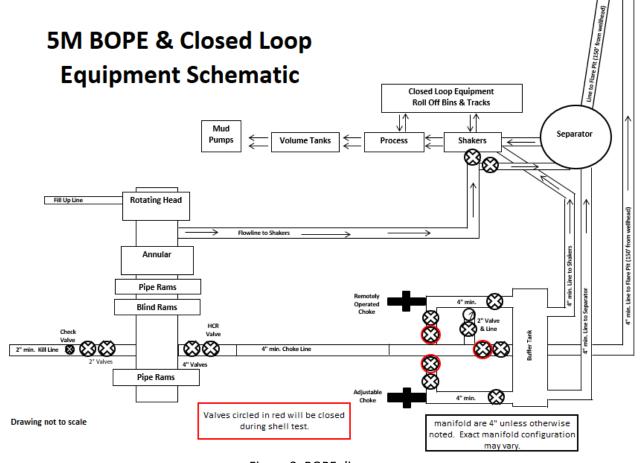


Figure 2. BOPE diagram

Figure 3. BOP handling system

Figure 4. BOP handling system

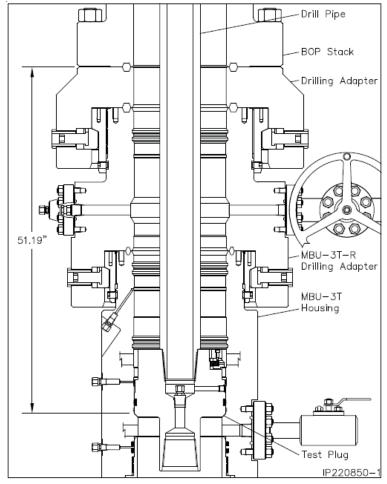


Figure 5. Cactus 5M wellhead with BOP quick connect

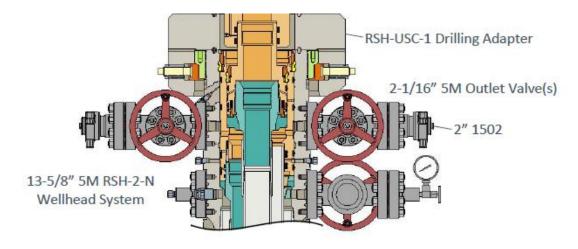


Figure 6. Vault 5M wellhead with BOP quick connect

Mewbourne Oil Co.

Surface & Intermediate Offline Cementing Variance

Mewbourne Oil Company requests a variance to perform offline cementing for surface and intermediate casing strings with the following conditions:

- Offline cementing will not be performed on production casing.
- Offline cementing will not be performed on a hole section with MASP > 5000 psi.
- Offline cementing will not be performed concurrently with offset drilling.

Surface Casing Order of Operations:

- 1. Run 13 3/8" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static.
- 4. Make up 13 %" wellhead or wellhead landing ring assembly and land on 20" conductor.
- 5. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint.
- 8. Walk rig to next well on pad with cement crew standing by to rig up.
- 9. Make up offline cement tool with forklift per wellhead manufacturer (Fig. 1 & 2).
- 10. Make up cement head on top of offline cement tool with forklift.
- 11. Commence cement operations.
- 12. If cement circulates, confirm well is static and proceed to step 16.
- 13. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 14. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 15. Confirm well is static.
- 16. Once cement job is complete, the cement head and offline cementing tool are removed. The wellhead technician returns to cellar to install wellhead/valves.
- 17. Install wellhead capping flange.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Offline cementing tool tested to 5000 psi and cement head
- Capping flange after cementing

20" Surface Casing Order of Operations (4 string area):

- 1. Run 20" surface casing as per normal operations (TPGS and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Fill pipe, circulate casing capacity and confirm float(s) are still holding.
- 4. Confirm well is static.
- 5. Back out landing joint and pull to rig floor. Lay down landing joint.
- 6. Make up cement head.
- 7. Walk rig to next well on pad with cement crew standing by to rig up.
- 8. Commence cement operations.
- 9. If cement circulates, confirm well is static and proceed to step 13.
- 10. If cement does not circulate, notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 11. Use 1" pipe for remedial cement job until the surface casing is cemented to surface.
- 12. Confirm well is static.
- 13. Once cement job is complete, remove cement head and install cap.

Barriers

Before Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement Head

After Walk:

- Float(s) in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Cement head
- Capping flange after cementing

Intermediate Casing Order of Operations:

- 1. Run casing as per normal operations (float shoe and float collar).
- 2. Perform negative pressure test to confirm integrity of float equipment while running casing.
- 3. Confirm well is static (if running SBM).
- 4. Land casing.
- 5. Fill pipe, circulate casing capacity and confirm floats are still holding.
- 6. Confirm well is static.
- 7. Back out landing joint and pull to rig floor. Lay down landing joint. Install packoff & test.
- 8. Nipple down BOP.
- 9. Walk rig to next well on pad with cement crew standing by to rig up.
- 10. Make up offline cement tool using forklift per wellhead manufacturer (Fig. 3 8).
- 11. Make up cement head on top of offline cement tool.
- 12. Commence cement operations.
- 13. If cement circulates, confirm well is static and proceed to step 16.
- 14. If cement does not circulate (when required), notify the appropriate BLM office, wait a minimum of six hours, and run a temperature survey to determine the top of cement.
- 15. Pump remedial cement job if required.
- 16. Confirm well is static.
- 17. Remove cement head and offline cementing tool.
- 18. Install wellhead capping flange and test.

Barriers

Before Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff

After Nipple Down:

- Floats in casing
- Kill weight fluid in casing
- Kill weight fluid in annulus
- Solid body mandrel and/or packoff
- Offline cementing tool tested to 5000 psi and cement head
- · Capping flange after cementing

Risks:

- Pressure build up in annulus before cementing
 - o Contact BLM if a well control event occurs.
 - o Rig up 3rd party pump or rig pumps to pump down casing and kill well.
 - Returns will be taken through the wellhead valves to a choke manifold (Fig 9 & 10).
 - Well could also be killed through the wellhead valves down the annulus.

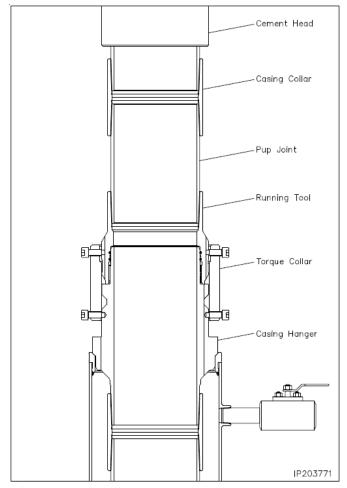


Figure 1. Cactus 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

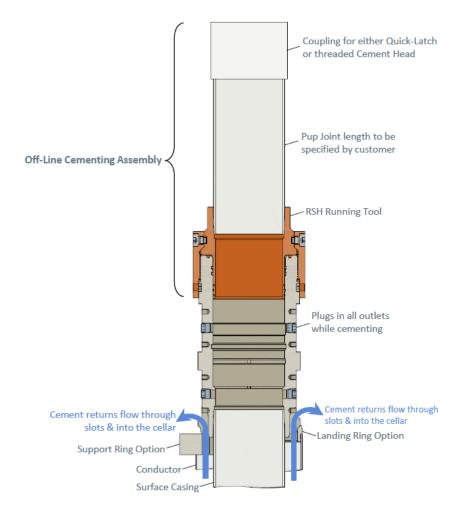


Figure 2. Vault 13 3/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 13 3/8" pup joint and casing.

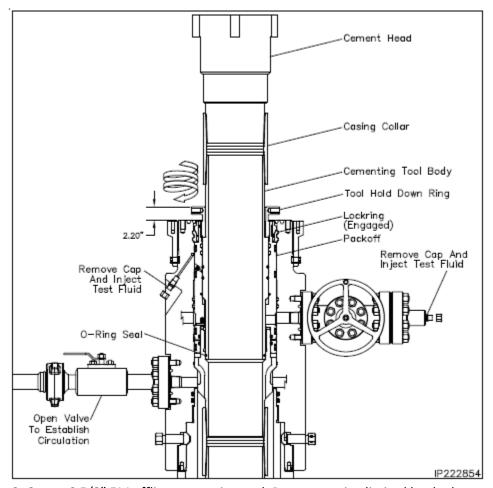


Figure 3. Cactus 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

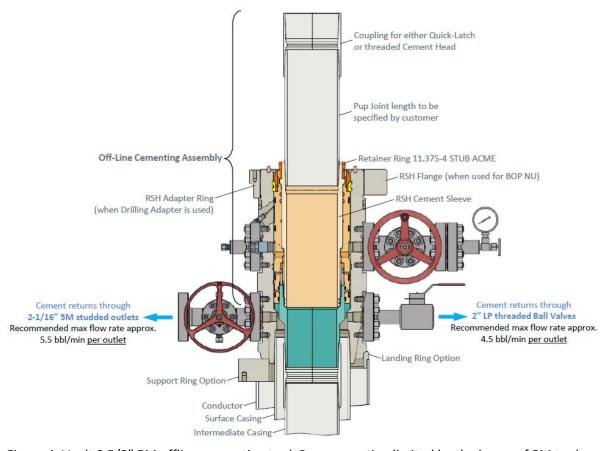


Figure 4. Vault 9 5/8" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 9 5/8" pup joint and casing.

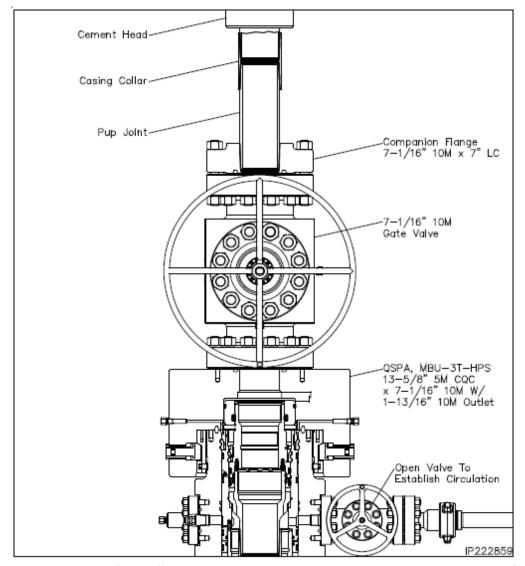


Figure 5. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

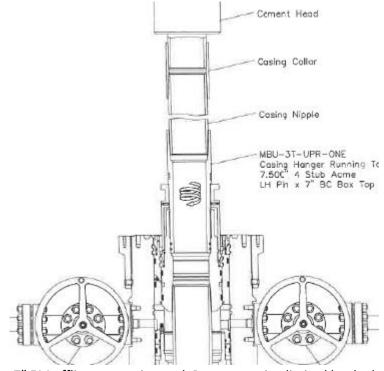


Figure 6. Cactus 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

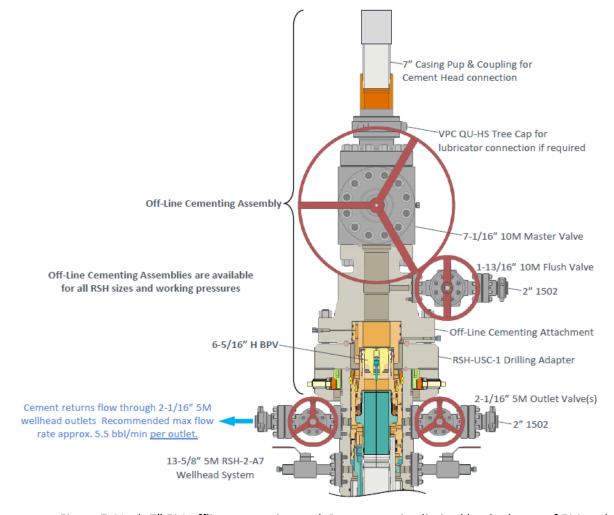


Figure 7. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

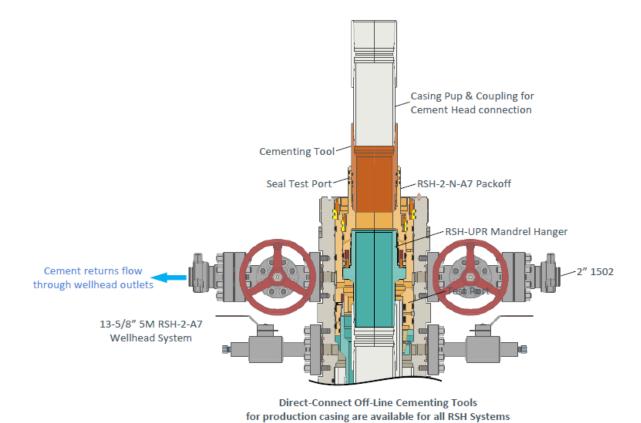


Figure 8. Vault 7" 5M offline cementing tool. Pressure rating limited by the lesser of 5M tool rating or the 7" pup joint and casing.

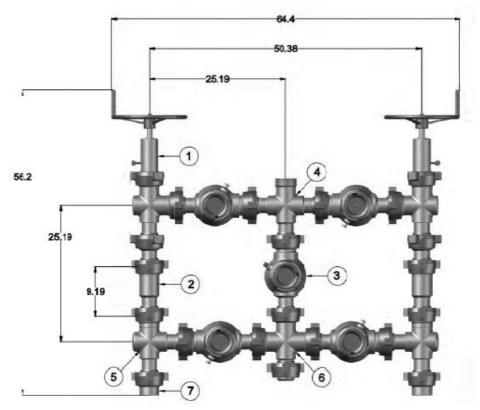


Figure 9. Five valve 15k choke manifold.

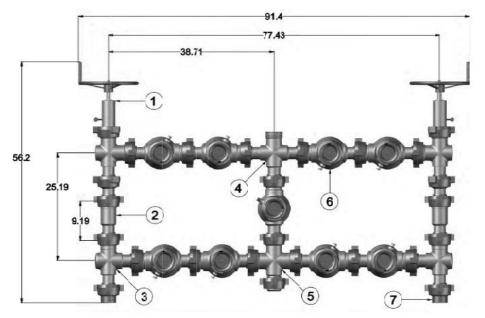


Figure 10. Nine valve 15k choke manifold.

Received by OCD: 11/17/2025 9:46:36 AM

Mewbourne Oil Company

Rooster 35/26 State Com 717H

SHL: 220' FSL & 2630' FEL (Sec 35)

BHL: 330' FNL & 890' FEL (Sec 26)

Casing Type	Fluid Type	Hole Size (in)	Casing Description	Top MD	Setting Depth	Sacks Cement	Top of Cement
Surface	Fresh Water	17.5	13.375" 48# H40 STC	0	550	440	0'
Intermediate	Brine	12.25	9.625" 36# J55 LTC	0'	1700	410	0'
Production	Cut-Brine	8.75	7" 26# P110 LTC	0'	8443	950	1500'
Liner	OBM	6.125	4.5" 13.5# P110 LTC	8243'	19300	710	8243'

Formation	Est. Top (TVD)	Formation	Est. Top (TVD)
Rustler		Delaware (Lamar)	1811
Castile		Bell Canyon	1981
Salt Top	625	Cherry Canyon	2795
Marker Bed 126		Manzanita Marker	2951
Salt Base	1588	Basal Brushy Canyon	4879
Yates		Bone Spring	5371
Seven Rivers		1st Bone Spring Carbonate	
Queen		1st Bone Spring Sand	6296
Capitan		2nd Bone Spring Carbonate	
Grayburg		2nd Bone Spring Sand	6741
San Andres		3rd Bone Spring Carbonate	
Glorietta		3rd Bone Spring Sand	8304
Yeso		Wolfcamp	8704

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Rooster 35/26 State Com #717H

Sec 35, T23S, R26E

SHL: 220' FSL & 2630' FEL (Sec 35) BHL: 330' FNL & 890' FEL (Sec 26)

Plan: Design #1

Standard Planning Report

10 November, 2025

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

Minimum Curvature

Project Eddy County, New Mexico NAD 83

Map System: US State Plane 1983
Geo Datum: North American Datum 1983
Map Zone: New Mexico Eastern Zone

System Datum:

Ground Level

Site Rooster 35/26 State Com #717H

 Site Position:
 Northing:
 456,216.50 usft
 Latitude:
 32.2541953

 From:
 Map
 Easting:
 562,882.20 usft
 Longitude:
 -104.2636386

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well Sec 35, T23S, R26E

 Well Position
 +N/-S
 0.0 usft
 Northing:
 456,216.50 usft
 Latitude:
 32.2541953

 +E/-W
 0.0 usft
 Easting:
 562,882.20 usft
 Longitude:
 -104.2636386

Position Uncertainty 0.0 usft Wellhead Elevation: 3,291.0 usft Ground Level: 3,263.0 usft

Grid Convergence: 0.04 °

Wellbore BHL: 330' FNL & 890' FEL (Sec 26)

 Magnetics
 Model Name
 Sample Date
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2010
 12/31/2014
 7.47
 60.01
 48,181.19768933

 Design
 Design #1

 Audit Notes:
 Version:
 Phase:
 PROTOTYPE
 Tie On Depth:
 0.0

 Vertical Section:
 Depth From (TVD)
 +N/-S
 +E/-W
 Direction

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 9.96

Plan Survey Tool Program Date 11/10/2025

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 19,300.0 Design #1 (BHL: 330' FNL & 890'

Plan Sections Measured Vertical Dogleg Build Turn Depth Inclination Azimuth Depth +N/-S +E/-W Rate Rate Rate TFO (usft) (°) (°) (usft) (usft) (usft) (°/100usft) (°/100usft) (°/100usft) (°) **Target** 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00 0.00 550.0 0.00 0.00 550.0 0.0 0.0 0.00 0.00 0.00 0.00 1,274.9 14.50 104.63 1,267.2 -23.0 88.3 2.00 2.00 0.00 104.63 7,718.7 14,50 104.63 7,505.8 -430.5 1,649,1 0.00 0.00 0.00 0.00 8,443.6 0.00 -453.5 1,737.4 180.00 KOP: 243' FNL & 890' 0.00 8,223.0 2.00 -2.00 0.00 9,343.7 8,796.0 1,739.2 90.00 0.18 119.5 10.00 10.00 0.00 0.18 19,300.0 90.00 0.18 8,796.0 10,075.8 1,770.0 0.00 0.00 0.00 0.00 BHL: 330' FNL & 890'

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83
Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

ned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SHL: 220'	FSL & 2630' FEL (Sec 35)							
50.0	•	0.00	50.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0		0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
150.0		0.00	150.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0		0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
250.0	0.00	0.00	250.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
350.0	0.00	0.00	350.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
450.0	0.00	0.00	450.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
550.0		0.00	550.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0		104.63	600.0	-0.1	0.4	0.0	2.00	2.00	0.00
650.0		104.63	650.0	-0.4	1.7	-0.1	2.00	2.00	0.00
700.0		104.63	699.9	-1.0	3.8	-0.3	2.00	2.00	0.00
750.0	0 4.00	104.63	749.8	-1.8	6.8	-0.6	2.00	2.00	0.00
800.0		104.63	799.7	-2.8	10.5	-0.9	2.00	2.00	0.00
850.0		104.63	849.5	-4.0	15.2	-1.3	2.00	2.00	0.00
900.0		104.63	899.1	-5.4	20.7	-1.7	2.00	2.00	0.00
950.0		104.63	948.7	-7.0	27.0	-2.3	2.00	2.00	0.00
1,000.0	0 9.00	104.63	998.2	-8.9	34.1	-2.9	2.00	2.00	0.00
1,050.0		104.63	1,047.5	-11.0	42.1	-3.5	2.00	2.00	0.00
1,100.0		104.63	1,096.6	-13.3	50.9	-4.3	2.00	2.00	0.00
1,150.0		104.63	1,145.6	-15.8	60.6	-5.1	2.00	2.00	0.00
1,200.0		104.63	1,194.4	-18.5	71.0	-6.0	2.00	2.00	0.00
1,250.0	0 14.00	104.63	1,243.1	-21.5	82.3	-6.9	2.00	2.00	0.00
1,274.9		104.63	1,267.2	-23.0	88.3	-7.4	2.00	2.00	0.00
1,300.0		104.63	1,291.5	-24.6	94.3	-7.9	0.00	0.00	0.00
1,350.0		104.63	1,339.9	-27.8	106.5	-8.9	0.00	0.00	0.00
1,400.0		104.63	1,388.3	-30.9	118.6	-10.0	0.00	0.00	0.00
1,450.0	0 14.50	104.63	1,436.7	-34.1	130.7	-11.0	0.00	0.00	0.00
1,500.0		104.63	1,485.1	-37.3	142.8	-12.0	0.00	0.00	0.00
1,550.0		104.63	1,533.5	-40.4	154.9	-13.0	0.00	0.00	0.00
1,600.0		104.63	1,581.9	-43.6	167.0	-14.0	0.00	0.00	0.00
1,650.0		104.63	1,630.3	-46.8	179.1	-15.1	0.00	0.00	0.00
1,700.0		104.63	1,678.8	-49.9	191.2	-16.1	0.00	0.00	0.00
1,750.0		104.63	1,727.2	-53.1	203.3	-17.1	0.00	0.00	0.00
1,800.0		104.63	1,775.6	-56.2	215.5	-18.1	0.00	0.00	0.00
1,850.0		104.63	1,775.0	-50.2 -59.4	213.5	-10.1	0.00	0.00	0.00
1,900.0		104.63	1,872.4	-59.4 -62.6	239.7	-20.1	0.00	0.00	0.00
1,950.0		104.63	1,920.8	-65.7	251.8	-21.2	0.00	0.00	0.00
2,000.0		104.63	1,920.6	-63.7 -68.9	263.9	-21.2 -22.2	0.00	0.00	0.00
2,000.0		104.63	2,017.6	-72.0	276.0	-22.2 -23.2	0.00	0.00	0.00
2,030.0		104.63	2,017.6	-72.0 -75.2	288.1	-23.2 -24.2	0.00	0.00	0.00
2,100.0		104.63	2,114.4	-73.2 -78.4	300.2	-24.2 -25.2	0.00	0.00	0.00
2,200.0									0.00
2,200.0		104.63 104.63	2,162.8 2,211.2	-81.5 -84.7	312.4 324.5	-26.3 -27.3	0.00 0.00	0.00 0.00	0.00
2,250.0		104.63	2,211.2 2,259.6	-84.7 -87.9		-27.3 -28.3		0.00	0.00
2,300.0 2,350.0		104.63	2,259.6 2,308.1	-87.9 -91.0	336.6 348.7	-28.3 -29.3	0.00	0.00	0.00
2,350.0 2,400.0		104.63	2,308.1 2,356.5	-91.0 -94.2	348.7 360.8	-29.3 -30.3	0.00 0.00	0.00	0.00
2,450.0 2,500.0		104.63 104.63	2,404.9 2,453.3	-97.3 -100.5	372.9 385.0	-31.3 -32.4	0.00 0.00	0.00 0.00	0.00 0.00
2,500.0 2,550.0		104.63	2,453.3 2,501.7	-100.5 -103.7	365.0 397.1	-32.4 -33.4	0.00	0.00	0.00

Hobbs Database:

Company:

Mewbourne Oil Company Eddy County, New Mexico NAD 83 Project: Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
2,600.0	14.50	104.63	2,550.1	-106.8	409.2	-34.4	0.00	0.00	0.00
2,650.0	14.50	104.63	2,598.5	-110.0	421.4	-35.4	0.00	0.00	0.00
2,700.0	14.50	104.63	2,646.9	-113.1	433.5	-36.4	0.00	0.00	0.00
2,750.0	14.50	104.63	2,695.3	-116.3	445.6	-37.5	0.00	0.00	0.00
2,800.0	14.50	104.63	2,743.7	-119.5	457.7	-38.5	0.00	0.00	0.00
2,850.0	14.50	104.63	2,792.1	-122.6	469.8	-39.5	0.00	0.00	0.00
2,900.0	14.50	104.63	2,840.5	-125.8	481.9	-40.5	0.00	0.00	0.00
2,950.0	14.50	104.63	2,888.9	-129.0	494.0	-41.5	0.00	0.00	0.00
3,000.0	14.50	104.63	2,937.4	-132.1	506.1	-42.5	0.00	0.00	0.00
3,050.0	14.50	104.63	2,985.8	-135.3	518.2	-43.6	0.00	0.00	0.00
3,100.0	14.50	104.63	3,034.2	-138.4	530.4	-44.6	0.00	0.00	0.00
3,150.0	14.50	104.63	3,082.6	-141.6	542.5	-45.6	0.00	0.00	0.00
3,200.0	14.50	104.63	3,131.0	-144.8	554.6	-46.6	0.00	0.00	0.00
3,250.0	14.50	104.63	3,179.4	-147.9	566.7	-47.6	0.00	0.00	0.00
3,300.0	14.50	104.63	3,227.8	-151.1	578.8	-48.7	0.00	0.00	0.00
3,350.0	14.50	104.63	3,276.2	-154.2	590.9	-49.7	0.00	0.00	0.00
3,400.0	14.50	104.63	3,324.6	-157.4	603.0	-50.7	0.00	0.00	0.00
3,450.0	14.50	104.63	3,373.0	-160.6	615.1	-51.7	0.00	0.00	0.00
3,500.0	14.50	104.63	3,421.4	-163.7	627.2	-52.7	0.00	0.00	0.00
3,550.0	14.50	104.63	3,469.8	-166.9	639.4	-53.7	0.00	0.00	0.00
3,600.0	14.50	104.63	3,518.3	-170.0	651.5	-54.8	0.00	0.00	0.00
3,650.0	14.50	104.63	3,566.7	-173.2	663.6	-55.8	0.00	0.00	0.00
3.700.0	14.50	104.63	3,615.1	-176.4	675.7	-56.8	0.00	0.00	0.00
3,750.0	14.50	104.63	3,663.5	-179.5	687.8	-57.8	0.00	0.00	0.00
3,800.0	14.50	104.63	3,711.9	-179.5 -182.7	699.9	-57.8 -58.8	0.00	0.00	0.00
3,850.0	14.50	104.63	3,760.3	-185.9	712.0	-59.9	0.00	0.00	0.00
3,900.0	14.50	104.63	3,808.7	-189.0	712.0	-60.9	0.00	0.00	0.00
3,950.0	14.50	104.63	3,857.1	-192.2	736.2	-61.9	0.00	0.00	0.00
4,000.0	14.50	104.63	3,905.5	-195.3	748.4	-62.9	0.00	0.00	0.00
4,050.0	14.50	104.63	3,953.9	-198.5	760.5	-63.9	0.00	0.00	0.00
4,100.0	14.50	104.63	4,002.3	-201.7	772.6	-64.9	0.00	0.00	0.00
4,150.0	14.50	104.63	4,050.7	-204.8	784.7	-66.0	0.00	0.00	0.00
4,200.0	14.50	104.63	4,099.1	-208.0	796.8	-67.0	0.00	0.00	0.00
4,250.0	14.50	104.63	4,147.6	-211.1	808.9	-68.0	0.00	0.00	0.00
4,300.0	14.50	104.63	4,196.0	-214.3	821.0	-69.0	0.00	0.00	0.00
4,350.0	14.50	104.63	4,244.4	-217.5	833.1	-70.0	0.00	0.00	0.00
4,390.0	14.50	104.63	4,283.1	-220.0	842.8	-70.9	0.00	0.00	0.00
	14010003: 0' FSL			220.0	3 12.3	, 5.5	5.55	0.00	0.00
		•	,						
4,400.0	14.50	104.63	4,292.8	-220.6	845.3	-71.1	0.00	0.00	0.00
4,450.0	14.50	104.63	4,341.2	-223.8	857.4	-72.1	0.00	0.00	0.00
4,500.0	14.50	104.63	4,389.6	-227.0	869.5	-73.1	0.00	0.00	0.00
4,550.0	14.50	104.63	4,438.0	-230.1	881.6	-74.1	0.00	0.00	0.00
4,600.0	14.50	104.63	4,486.4	-233.3	893.7	-75.1	0.00	0.00	0.00
4,650.0	14.50	104.63	4,534.8	-236.4	905.8	-76.1	0.00	0.00	0.00
4,700.0	14.50	104.63	4,583.2	-239.6	917.9	-77.2	0.00	0.00	0.00
4,750.0	14.50	104.63	4,631.6	-242.8	930.0	-78.2	0.00	0.00	0.00
4,800.0	14.50	104.63	4,680.0	-245.9	942.1	-79.2	0.00	0.00	0.00
4,850.0	14.50	104.63	4,728.4	-249.1	954.3	-80.2	0.00	0.00	0.00
4,900.0	14.50	104.63	4,776.9	-252.2	966.4	-81.2	0.00	0.00	0.00
4,950.0	14.50	104.63	4,825.3	-255.4	978.5	-82.3	0.00	0.00	0.00
5,000.0	14.50	104.63	4,873.7	-258.6	990.6	-83.3	0.00	0.00	0.00
5,050.0	14.50	104.63	4,922.1	-261.7	1,002.7	-84.3	0.00	0.00	0.00
5,100.0	14.50	104.63	4,970.5	-264.9	1,014.8	-85.3	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83
Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

Planned Survey									
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
, ,					, ,	` '			
5,150.0		104.63	5,018.9	-268.0	1,026.9	-86.3	0.00	0.00	0.00
5,200.0		104.63	5,067.3	-271.2	1,039.0	-87.3	0.00	0.00	0.00
5,250.0		104.63	5,115.7	-274.4	1,051.1	-88.4	0.00	0.00	0.00
5,300.0		104.63	5,164.1	-277.5	1,063.3	-89.4	0.00	0.00	0.00
5,350.0	14.50	104.63	5,212.5	-280.7	1,075.4	-90.4	0.00	0.00	0.00
5,400.0	14.50	104.63	5,260.9	-283.9	1,087.5	-91.4	0.00	0.00	0.00
5,450.0		104.63	5,309.3	-287.0	1,099.6	-92.4	0.00	0.00	0.00
5,500.0		104.63	5,357.8	-290.2	1,111.7	-93.5	0.00	0.00	0.00
5,550.0		104.63	5,406.2	-293.3	1,123.8	-94.5	0.00	0.00	0.00
5,600.0		104.63	5,454.6	-296.5	1,135.9	-95.5	0.00	0.00	0.00
5,650.0		104.63	5,503.0	-299.7	1,148.0	-96.5	0.00	0.00	0.00
5,700.0		104.63	5,551.4	-302.8	1,160.1	-97.5	0.00	0.00	0.00
5,750.0	14.50	104.63	5,599.8	-306.0	1,172.3	-98.5	0.00	0.00	0.00
5,800.0	14.50	104.63	5,648.2	-309.1	1,184.4	-99.6	0.00	0.00	0.00
5,850.0	14.50	104.63	5,696.6	-312.3	1,196.5	-100.6	0.00	0.00	0.00
5 000 0	14.50	104.63	5,745.0	-315.5	1 200 6	-101.6	0.00	0.00	0.00
5,900.0					1,208.6				
5,950.0		104.63	5,793.4	-318.6	1,220.7	-102.6	0.00	0.00	0.00
6,000.0		104.63	5,841.8	-321.8	1,232.8	-103.6	0.00	0.00	0.00
6,050.0		104.63	5,890.2	-325.0	1,244.9	-104.7	0.00	0.00	0.00
6,100.0	14.50	104.63	5,938.6	-328.1	1,257.0	-105.7	0.00	0.00	0.00
6,150.0	14.50	104.63	5,987.1	-331.3	1,269.1	-106.7	0.00	0.00	0.00
6,200.0		104.63	6,035.5	-334.4	1,281.3	-107.7	0.00	0.00	0.00
6,250.0		104.63	6,083.9	-337.6	1,293.4	-108.7	0.00	0.00	0.00
6,300.0		104.63	6,132.3	-340.8	1,305.5	-109.7	0.00	0.00	0.00
			,		,		0.00	0.00	0.00
6,350.0	14.50	104.63	6,180.7	-343.9	1,317.6	-110.8	0.00	0.00	0.00
6,400.0	14.50	104.63	6,229.1	-347.1	1,329.7	-111.8	0.00	0.00	0.00
6,405.3	14.50	104.63	6,234.3	-347.4	1,331.0	-111.9	0.00	0.00	0.00
Exit K0440	10003: 127' FNL 8	k 1299' FEL (Se	c 2) - Enter L01	0730003: 127' F	NL & 1299' FEL	(Sec 2)			
6,450.0		104.63	6,277.5	-350.2	1,341.8	-112.8	0.00	0.00	0.00
6,500.0		104.63	6,325.9	-353.4	1,353.9	-113.8	0.00	0.00	0.00
6,550.0		104.63	6,374.3	-356.6	1,366.0	-114.8	0.00	0.00	0.00
6,600.0		104.63	6,422.7	-359.7	1,378.2	-115.9	0.00	0.00	0.00
6,650.0		104.63	6,471.1	-362.9	1,390.3	-116.9	0.00	0.00	0.00
6,700.0		104.63	6,519.5	-366.1	1,402.4	-117.9	0.00	0.00	0.00
6,750.0	14.50	104.63	6,567.9	-369.2	1,414.5	-118.9	0.00	0.00	0.00
6,800.0	14.50	104.63	6,616.4	-372.4	1,426.6	-119.9	0.00	0.00	0.00
6,850.0	14.50	104.63	6,664.8	-375.5	1,438.7	-120.9	0.00	0.00	0.00
6,850.0		104.63	6,713.2	-378.7	1,430.7 1,450.8	-120.9 -122.0	0.00	0.00	0.00
6,950.0				-376.7 -381.9		-122.0 -123.0	0.00		0.00
		104.63	6,761.6	-381.9 -385.0	1,462.9	-123.0 -124.0		0.00	
7,000.0		104.63	6,810.0		1,475.0		0.00	0.00	0.00
7,050.0	14.50	104.63	6,858.4	-388.2	1,487.2	-125.0	0.00	0.00	0.00
7,100.0	14.50	104.63	6,906.8	-391.3	1,499.3	-126.0	0.00	0.00	0.00
7,150.0		104.63	6,955.2	-394.5	1,511.4	-127.1	0.00	0.00	0.00
7,200.0		104.63	7,003.6	-397.7	1,523.5	-128.1	0.00	0.00	0.00
7,250.0		104.63	7,052.0	-400.8	1,535.6	-129.1	0.00	0.00	0.00
7,300.0		104.63	7,100.4	-404.0	1,547.7	-130.1	0.00	0.00	0.00
7,350.0		104.63	7,148.8	-407.1	1,559.8	-131.1	0.00	0.00	0.00
7,400.0		104.63	7,197.2	-410.3	1,571.9	-132.1	0.00	0.00	0.00
7,450.0		104.63	7,245.7	-413.5	1,584.0	-133.2	0.00	0.00	0.00
7,500.0		104.63	7,294.1	-416.6	1,596.2	-134.2	0.00	0.00	0.00
7,550.0	14.50	104.63	7,342.5	-419.8	1,608.3	-135.2	0.00	0.00	0.00
7,600.0	14 50	104.63	7,390.9	400 D	1 620 4	-136.2	0.00	0.00	0.00
7,600.0 7,650.0				-423.0 426.1	1,620.4 1,633.5				
		104.63	7,439.3	-426.1	1,632.5	-137.2	0.00	0.00	0.00
7,700.0	14.50	104.63	7,487.7	-429.3	1,644.6	-138.3	0.00	0.00	0.00

Hobbs Database:

Company: Mewbourne Oil Company Eddy County, New Mexico NAD 83 Project: Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E BHL: 330' FNL & 890' FEL (Sec 26) Wellbore:

Design #1

Design:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

ned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
7,718.7 7,750.0	14.50 13.87	104.63 104.63	7,505.8 7,536.1	-430.5 -432.4	1,649.1 1,656.6	-138.6 -139.3	0.00 2.00	0.00 -2.00	0.00 0.00
7,800.0	12.87	104.63	7,584.8	-435.3	1,667.7	-140.2	2.00	-2.00	0.00
7,850.0	11.87	104.63	7,633.6	-438.0	1,678.1	-141.1	2.00	-2.00	0.00
7,900.0	10.87	104.63	7,682.6	-440.5	1,687.6	-141.9	2.00	-2.00	0.00
7,950.0	9.87	104.63	7,731.8	-442.8	1,696.4	-142.6	2.00	-2.00	0.00
8,000.0	8.87	104.63	7,781.2	-444.8	1,704.2	-143.3	2.00	-2.00	0.00
8,050.0	7.87	104.63	7,830.6	-446.7	1,711.3	-143.9	2.00	-2.00	0.00
8,100.0	6.87	104.63	7,880.2	-448.3	1,717.5	-144.4	2.00	-2.00	0.00
8,150.0	5.87	104.63	7,929.9	-449.7	1,722.9	-144.8	2.00	-2.00	0.00
8,200.0	4.87	104.63	7,979.7	-450.9	1,727.4	-145.2	2.00	-2.00	0.00
8,250.0	3.87	104.63	8,029.5	-451.8	1,731.1	-145.5	2.00	-2.00	0.00
8,300.0	2.87	104.63	8,079.4	-452.6	1,733.9	-145.8	2.00	-2.00	0.00
8,350.0	1.87	104.63	8,129.4	-453.1	1,735.9	-145.9	2.00	-2.00	0.00
8,400.0	0.87	104.63	8,179.4	-453.4	1,737.1	-146.0	2.00	-2.00	0.00
8,443.6	0.00	0.00	8,223.0	-453.5	1,737.4	-146.1	2.00	-2.00	0.00
	NL & 890' FEL (S		,		,				
8,450.0	0.64	0.18	8,229.4	-453.5	1,737.4	-146.0	10.00	10.00	0.00
8,500.0	5.64	0.18	8,279.3	- 450.7	1,737.4	- 143.3	10.00	10.00	0.00
8,550.0	10.64	0.18	8,328.8	-443 .7	1,737.4	- 136.4	10.00	10.00	0.00
8,600.0	15.64	0.18	8,377.5	- 432.3	1,737.5	- 125.2	10.00	10.00	0.00
8,650.0	20.64	0.18	8,425.0	- 416.7	1,737.5	- 109.8	10.00	10.00	0.00
8,700.0	25.64	0.18	8,470.9	- 397.1	1,737.6	- 90.5	10.00	10.00	0.00
8,750.0	30.64	0.18	8,515.0	-373.5	1,737.6	-67.2	10.00	10.00	0.00
8,800.0	35.64	0.18	8,556.9	-346.2	1,737.7	-40.3	10.00	10.00	0.00
8,850.0	40.64	0.18	8,596.2	-315.3	1,737.8	-9.9	10.00	10.00	0.00
8,900.0	45.64	0.18	8,632.6	-281.2	1,737.9	23.8	10.00	10.00	0.00
8,950.0	50.64	0.18	8,666.0	-243.9	1,738.0	60.5	10.00	10.00	0.00
8,980.3	53.67	0.18	8,684.6	- 220.0	1,738.1	84.0	10.00	10.00	0.00
9,000.0	0003: 0' FSL & 8 55.63	92 FEL (Sec 35) 0.18	8,696.0	-203.9	1,738.2	99.9	10.00	10.00	0.00
9,000.0	57.08	0.18	8,704.0	-203.9 -191.9	1,738.2	111.7	10.00	10.00	0.00
	37.00 28' FSL & 892' FE		6,704.0	-191.9	1,730.2	111.7	10.00	10.00	0.00
9,050.0	60.63	0.18	8,722.4	-161.5	1,738.3	141.7	10.00	10.00	0.00
9,100.0	65.63	0.18	8,745.0	-116.9	1,738.4	185.6	10.00	10.00	0.00
9,150.0	70.63	0.18	8,763.6	-70.5	1,738.6	231.4	10.00	10.00	0.00
9,200.0	75.63	0.18	8,778.1	-22.7	1,738.7	278.5	10.00	10.00	0.00
9,250.0	80.63	0.18	8,788.4	26.2	1,738.9	326.7	10.00	10.00	0.00
9,300.0	85.63	0.18	8,794.3	75.9	1,739.0	375.6	10.00	10.00	0.00
9,343.6	89.99	0.18	8,796.0	119.4	1,739.2	418.5	10.00	10.00	0.00
,)' FSL & 890' FEL		-,		.,				
9,343.7	90.00	0.18	8.796.0	119.5	1,739.2	418.6	10.00	10.00	0.00
9,350.0	90.00	0.18	8,796.0	125.8	1,739.2	424.8	0.00	0.00	0.00
9,400.0	90.00	0.18	8,796.0	175.8	1,739.3	474.1	0.00	0.00	0.00
9,450.0	90.00	0.18	8,796.0	225.8	1,739.5	523.4	0.00	0.00	0.00
9,500.0	90.00	0.18	8,796.0	275.8	1,739.7	572.7	0.00	0.00	0.00
9,550.0	90.00	0.18	8,796.0	325.8	1,739.8	621.9	0.00	0.00	0.00
9,600.0	90.00	0.18	8,796.0	375.8	1,740.0	671.2	0.00	0.00	0.00
9,650.0	90.00	0.18	8,796.0	425.8	1,740.1	720.5	0.00	0.00	0.00
9,700.0	90.00	0.18	8,796.0	475.8	1,740.3	769.7	0.00	0.00	0.00
9,750.0	90.00	0.18	8,796.0	525.8	1,740.4	819.0	0.00	0.00	0.00
9,800.0	90.00	0.18	8,796.0	575.8	1.740.6	868.3	0.00	0.00	0.00
9,850.0	90.00	0.18	8,796.0	625.8	1,740.7	917.6	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83
Site: Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Minimum Curvature

Grid

Design:	Design #1								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,900.0	90.00	0.18	8,796.0	675.8	1,740.9	966.8	0.00	0.00	0.00
9,950.0	90.00	0.18	8,796.0	725.8	1,741.1	1,016.1	0.00	0.00	0.00
10,000.0	90.00	0.18	8,796.0	775.8	1,741.2	1,065.4	0.00	0.00	0.00
,									
10,050.0	90.00	0.18	8,796.0	825.8	1,741.4	1,114.7	0.00	0.00	0.00
10,100.0	90.00	0.18	8,796.0	875.8	1,741.5	1,163.9	0.00	0.00	0.00
10,150.0	90.00	0.18	8,796.0	925.8	1,741.7	1,213.2	0.00	0.00	0.00
10,200.0	90.00	0.18	8,796.0	975.8	1,741.8	1,262.5	0.00	0.00	0.00
10,250.0	90.00	0.18	8,796.0	1,025.8	1,742.0	1,311.7	0.00	0.00	0.00
10,300.0	90.00	0.18	8,796.0	1,075.8	1,742.1	1,361.0	0.00	0.00	0.00
10,350.0	90.00	0.18	8,796.0	1,125.8	1,742.3	1,410.3	0.00	0.00	0.00
10,400.0	90.00	0.18	8,796.0	1,175.8	1,742.4	1,459.6	0.00	0.00	0.00
10,450.0	90.00	0.18	8,796.0	1,225.8	1,742.6	1,508.8	0.00	0.00	0.00
10,500.0	90.00	0.18	8,796.0	1,275.8	1,742.8	1,558.1	0.00	0.00	0.00
10,550.0	90.00	0.18	8,796.0	1,325.8	1,742.9	1,607.4	0.00	0.00	0.00
10,600.0	90.00	0.18	8,796.0	1,325.8	1,742.9	1,656.6	0.00	0.00	0.00
10,650.0	90.00	0.18	8,796.0	1,425.8	1,743.1	1,705.9	0.00	0.00	0.00
10,700.0	90.00	0.18	8,796.0	1,475.8	1,743.4	1,755.2	0.00	0.00	0.00
10,750.0	90.00	0.18	8,796.0	1,525.8	1,743.5	1,804.5	0.00	0.00	0.00
10,800.0	90.00	0.18	8,796.0	1,575.8	1,743.7	1,853.7	0.00	0.00	0.00
10,850.0	90.00	0.18	8,796.0	1,625.8	1,743.8	1,903.0	0.00	0.00	0.00
10,900.0	90.00	0.18	8,796.0	1,675.8	1,744.0	1,952.3	0.00	0.00	0.00
10,950.0	90.00	0.18	8,796.0	1,725.8	1,744.1	2,001.6	0.00	0.00	0.00
11,000.0	90.00	0.18	8,796.0	1,775.8	1,744.3	2,050.8	0.00	0.00	0.00
11,050.0	90.00	0.18	8,796.0	1,825.8	1,744.5	2,100.1	0.00	0.00	0.00
11,100.0	90.00	0.18	8,796.0	1,875.8	1,744.6	2,149.4	0.00	0.00	0.00
11,150.0	90.00	0.18	8,796.0	1,925.8	1,744.8	2,198.6	0.00	0.00	0.00
11,200.0	90.00	0.18	8,796.0	1,975.8	1,744.9	2,247.9	0.00	0.00	0.00
11,250.0	90.00	0.18	8,796.0	2,025.8	1,745.1	2,297.2	0.00	0.00	0.00
11,300.0	90.00	0.18	8,796.0	2,075.8	1,745.2	2,346.5	0.00	0.00	0.00
11,350.0	90.00	0.18	8,796.0	2,125.8	1,745.4	2,395.7	0.00	0.00	0.00
11,400.0	90.00	0.18	8,796.0	2,175.8	1,745.5	2,445.0	0.00	0.00	0.00
11,450.0	90.00	0.18	8,796.0	2,225.8	1,745.7	2,494.3	0.00	0.00	0.00
11,500.0	90.00	0.18	8,796.0	2,275.8	1,745.9	2,543.6	0.00	0.00	0.00
11,550.0	90.00	0.18	8,796.0	2,325.8	1,746.0	2,592.8	0.00	0.00	0.00
11,600.0	90.00	0.18	8,796.0	2,375.8	1,746.2	2,642.1	0.00	0.00	0.00
11,650.0	90.00	0.18	8,796.0 8,706.0	2,425.8	1,746.3	2,691.4	0.00	0.00	0.00
11,700.0 11,750.0	90.00 90.00	0.18	8,796.0 8,796.0	2,475.8	1,746.5 1,746.6	2,740.6	0.00 0.00	0.00 0.00	0.00 0.00
11,750.0	90.00	0.18	8,796.0	2,525.8	1,746.6	2,789.9	0.00	0.00	0.00
11,800.0	90.00	0.18	8,796.0	2,575.8	1,746.8	2,839.2	0.00	0.00	0.00
11,850.0	90.00	0.18	8,796.0	2,625.8	1,746.9	2,888.5	0.00	0.00	0.00
11,900.0	90.00	0.18	8,796.0	2,675.8	1,747.1	2,937.7	0.00	0.00	0.00
11,950.0	90.00	0.18	8,796.0	2,725.8	1,747.2	2,987.0	0.00	0.00	0.00
12,000.0	90.00	0.18	8,796.0	2,775.8	1,747.4	3,036.3	0.00	0.00	0.00
12,050.0	90.00	0.18	8,796.0	2,825.8	1,747.6	3,085.6	0.00	0.00	0.00
12,100.0	90.00	0.18	8,796.0	2,875.8	1,747.7	3,134.8	0.00	0.00	0.00
12,150.0	90.00	0.18	8,796.0	2,925.8	1,747.9	3,184.1	0.00	0.00	0.00
12,200.0	90.00	0.18	8,796.0	2,975.8	1,748.0	3,233.4	0.00	0.00	0.00
12,250.0	90.00	0.18	8,796.0	3,025.8	1,748.2	3,282.6	0.00	0.00	0.00
12,300.0	90.00	0.18	8,796.0 8,706.0	3,075.8	1,748.3	3,331.9	0.00	0.00	0.00
12,350.0	90.00	0.18	8,796.0 8,706.0	3,125.8	1,748.5	3,381.2	0.00	0.00	0.00
12,400.0 12,450.0	90.00 90.00	0.18	8,796.0 8,796.0	3,175.8 3,225.8	1,748.6	3,430.5 3,479.7	0.00	0.00	0.00
12,450.0 12,500.0	90.00	0.18 0.18	8,796.0 8,796.0	3,225.8 3,275.8	1,748.8 1,748.9	3,479.7 3,529.0	0.00 0.00	0.00 0.00	0.00 0.00
12,550.0	90.00	0.18	8,796.0	3,325.8	1,749.1	3,578.3	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Rooster 35/26 State Com #717H

 Well:
 Sec 35, T23S, R26E

 Wellbore:
 BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

inned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,600.0	90.00	0.18	8,796.0	3,375.8	1,749.3	3,627.5	0.00	0.00	0.00
12,650.0	90.00	0.18	8,796.0	3,425.8	1,749.4	3,676.8	0.00	0.00	0.00
12,700.0	90.00	0.18	8,796.0	3,475.8	1,749.6	3,726.1	0.00	0.00	0.00
12,750.0	90.00	0.18	8,796.0	3,525.8	1,749.7	3,775.4	0.00	0.00	0.00
12,800.0	90.00	0.18	8,796.0	3.575.8	1,749.9	3,824.6	0.00	0.00	0.00
12,850.0	90.00	0.18	8,796.0	3,625.8	1,750.0	3,873.9	0.00	0.00	0.00
12,900.0	90.00	0.18	8,796.0	3,675.8	1,750.2	3.923.2	0.00	0.00	0.00
12,950.0	90.00	0.18	8.796.0	3,725.8	1,750.2	3,972.5	0.00	0.00	0.00
			,						
13,000.0	90.00	0.18	8,796.0	3,775.8	1,750.5	4,021.7	0.00	0.00	0.00
13,050.0	90.00	0.18	8,796.0	3,825.8	1,750.6	4,071.0	0.00	0.00	0.00
13,100.0	90.00	0.18	8,796.0	3,875.8	1,750.8	4,120.3	0.00	0.00	0.00
13,150.0	90.00	0.18	8,796.0	3,925.8	1,751.0	4,169.5	0.00	0.00	0.00
13,200.0	90.00	0.18	8,796.0	3,975.8	1,751.1	4,218.8	0.00	0.00	0.00
13,250.0	90.00	0.18	8,796.0	4,025.8	1,751.3	4,268.1	0.00	0.00	0.00
13,300.0	90.00	0.18	8,796.0	4,075.8	1,751.4	4,317.4	0.00	0.00	0.00
13,350.0	90.00	0.18	8,796.0	4,125.8	1,751.6	4,366.6	0.00	0.00	0.00
13,400.0	90.00	0.18	8,796.0	4,175.8	1,751.7	4,415.9	0.00	0.00	0.00
13,450.0	90.00	0.18	8,796.0	4,225.8	1,751.7	4,415.9	0.00	0.00	0.00
13,500.0	90.00	0.18	8,796.0	4,225.8 4,275.8	1,751.9	4,465.2	0.00	0.00	0.00
13,550.0	90.00	0.18	8,796.0	4,325.8	1,752.2	4,563.7	0.00	0.00	0.00
13,600.0	90.00	0.18	8,796.0	4,375.8	1,752.4	4.613.0	0.00	0.00	0.00
13,650.0	90.00	0.18	8,796.0	4,425.8	1,752.5	4,662.3	0.00	0.00	0.00
13,700.0	90.00	0.18	8,796.0	4,475.8	1,752.7	4,711.5	0.00	0.00	0.00
13,750.0	90.00	0.18	8,796.0	4,475.8	1,752.7	4,711.5	0.00	0.00	0.00
13,800.0	90.00	0.18	8,796.0	4,575.8	1,753.0	4,810.1	0.00	0.00	0.00
13,850.0	90.00	0.18	8,796.0 8,796.0	4,625.8	1,753.0	4,859.4	0.00		0.00
								0.00	
13,900.0	90.00	0.18	8,796.0	4,675.8	1,753.3	4,908.6	0.00	0.00	0.00
13,950.0	90.00	0.18	8,796.0	4,725.8	1,753.4	4,957.9	0.00	0.00	0.00
14,000.0	90.00	0.18	8,796.0	4,775.8	1,753.6	5,007.2	0.00	0.00	0.00
14,050.0	90.00	0.18	8,796.0	4,825.8	1,753.7	5,056.4	0.00	0.00	0.00
14,100.0	90.00	0.18	8,796.0	4,875.8	1,753.9	5,105.7	0.00	0.00	0.00
14,150.0	90.00	0.18	8,796.0	4,925.8	1,754.1	5,155.0	0.00	0.00	0.00
14,200.0	90.00	0.18	8,796.0	4,975.8	1,754.2	5,204.3	0.00	0.00	0.00
14,250.0	90.00	0.18	8,796.0	5,025.8	1,754.4	5,253.5	0.00	0.00	0.00
14,300.0	90.00	0.18	8,796.0	5,075.8	1,754.5	5,302.8	0.00	0.00	0.00
14,350.0	90.00	0.18	8,796.0	5,125.8	1,754.7	5,352.1	0.00	0.00	0.00
14,400.0	90.00	0.18	8,796.0	5,175.8	1,754.8	5,401.4	0.00	0.00	0.00
14,450.0	90.00	0.18	8,796.0	5,225.8	1,755.0	5,450.6	0.00	0.00	0.00
14,500.0	90.00	0.18	8,796.0	5,275.8	1,755.1	5,499.9	0.00	0.00	0.00
14,550.0	90.00	0.18	8,796.0	5,325.8	1,755.3	5,549.2	0.00	0.00	0.00
14,600.0	90.00	0.18	8,796.0	5,375.8	1,755.4	5,598.4	0.00	0.00	0.00
14,650.0	90.00	0.18	8,796.0	5,425.8	1,755.6	5,647.7	0.00	0.00	0.00
14,700.0	90.00	0.18	8,796.0	5,475.8	1,755.8	5,697.0	0.00	0.00	0.00
14,750.0	90.00	0.18	8,796.0	5,525.8	1,755.9	5,746.3	0.00	0.00	0.00
14,800.0	90.00	0.18	8,796.0	5,575.8	1,756.1	5,795.5	0.00	0.00	0.00
14,850.0	90.00	0.18	8,796.0	5,625.8	1,756.2	5,844.8	0.00	0.00	0.00
14,900.0	90.00	0.18	8,796.0	5,675.8	1,756.4	5,894.1	0.00	0.00	0.00
14,950.0	90.00	0.18	8,796.0	5,725.8	1,756.5	5,943.4	0.00	0.00	0.00
15,000.0	90.00	0.18	8,796.0	5,775.8	1,756.7	5,992.6	0.00	0.00	0.00
15,050.0	90.00	0.18	8,796.0	5,825.8	1,756.8	6,041.9	0.00	0.00	0.00
15,100.0	90.00	0.18	8,796.0	5,875.8	1,757.0	6,091.2	0.00	0.00	0.00
15,150.0	90.00	0.18	8,796.0	5,925.8	1,757.2	6,140.4	0.00	0.00	0.00
15,200.0	90.00	0.18	8,796.0	5,975.8	1,757.3	6,189.7	0.00	0.00	0.00
15,250.0	90.00	0.18	8,796.0	6,025.8	1,757.5	6,239.0	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Eddy County, New Mexico NAD 83
Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

	Design #1								
anned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,300.0	90.00	0.18	8,796.0	6,075.8	1,757.6	6,288.3	0.00	0.00	0.00
15,350.0	90.00	0.18	8,796.0	6,125.8	1,757.8	6,337.5	0.00	0.00	0.00
15,400.0	90.00	0.18	8,796.0	6,175.8	1,757.9	6,386.8	0.00	0.00	0.00
15,450.0			8,796.0	6,225.8	1,758.1	6,436.1	0.00		0.00
·	90.00	0.18						0.00	
15,500.0	90.00	0.18	8,796.0	6,275.8	1,758.2	6,485.4	0.00	0.00	0.00
15,550.0	90.00	0.18	8,796.0	6,325.8	1,758.4	6.534.6	0.00	0.00	0.00
15,600.0	90.00	0.18	8,796.0	6,375.8	1,758.5	6,583.9	0.00	0.00	0.00
15,650.0	90.00	0.18	8,796.0	6,425.8	1,758.7	6,633.2	0.00	0.00	0.00
15,700.0	90.00	0.18	8,796.0	6,475.8	1,758.9	6,682.4	0.00	0.00	0.00
15,750.0	90.00	0.18	8,796.0	6,525.8	1,759.0	6,731.7	0.00	0.00	0.00
15,800.0	90.00	0.18	8,796.0	6,575.8	1,759.2	6,781.0	0.00	0.00	0.00
,					,				
15,850.0	90.00	0.18	8,796.0	6,625.8	1,759.3	6,830.3	0.00	0.00	0.00
15,900.0	90.00	0.18	8,796.0	6,675.8	1,759.5	6,879.5	0.00	0.00	0.00
15,950.0	90.00	0.18	8,796.0	6,725.8	1,759.6	6,928.8	0.00	0.00	0.00
16,000.0	90.00	0.18	8,796.0	6,775.8	1,759.8	6,978.1	0.00	0.00	0.00
16.050.0	00.00	0.40	0 706 0	6 905 9	1 750 0	7 007 0	0.00	0.00	0.00
16,050.0	90.00	0.18	8,796.0	6,825.8	1,759.9	7,027.3	0.00	0.00	0.00
16,100.0	90.00	0.18	8,796.0	6,875.8	1,760.1	7,076.6	0.00	0.00	0.00
16,150.0	90.00	0.18	8,796.0	6,925.8	1,760.2	7,125.9	0.00	0.00	0.00
16,200.0	90.00	0.18	8,796.0	6,975.8	1,760.4	7,175.2	0.00	0.00	0.00
16,250.0	90.00	0.18	8,796.0	7,025.8	1,760.6	7,224.4	0.00	0.00	0.00
16,300.0	90.00	0.18	8,796.0	7,075.8	1,760.7	7,273.7	0.00	0.00	0.00
16,350.0	90.00	0.18	8,796.0	7,125.8	1,760.9	7,323.0	0.00	0.00	0.00
16,400.0	90.00	0.18	8,796.0	7,175.8	1,761.0	7,372.3	0.00	0.00	0.00
16,450.0	90.00	0.18	8,796.0	7,225.8	1,761.2	7,421.5	0.00	0.00	0.00
16,500.0		0.18	8,796.0	7,275.8	1,761.3	7,470.8	0.00	0.00	0.00
16,550.0	90.00	0.18	8,796.0	7,325.8	1,761.5	7,520.1	0.00	0.00	0.00
16,600.0	90.00	0.18	8,796.0	7,375.8	1,761.6	7,569.3	0.00	0.00	0.00
16,650.0	90.00	0.18	8,796.0	7,425.8	1,761.8	7,618.6	0.00	0.00	0.00
16,700.0	90.00	0.18	8,796.0	7,475.8	1,762.0	7,667.9	0.00	0.00	0.00
16,750.0	90.00	0.18	8,796.0	7,525.8	1,762.1	7,717.2	0.00	0.00	0.00
10,730.0	90.00	0.16	0,790.0	7,323.6	1,702.1	1,111.2	0.00	0.00	0.00
16,800.0	90.00	0.18	8,796.0	7,575.8	1,762.3	7,766.4	0.00	0.00	0.00
16,850.0	90.00	0.18	8,796.0	7,625.8	1,762.4	7,815.7	0.00	0.00	0.00
16,900.0	90.00	0.18	8,796.0	7,675.8	1,762.6	7,865.0	0.00	0.00	0.00
					,				
16,950.0		0.18	8,796.0	7,725.8	1,762.7	7,914.3	0.00	0.00	0.00
17,000.0	90.00	0.18	8,796.0	7,775.8	1,762.9	7,963.5	0.00	0.00	0.00
17,050.0	90.00	0.18	8,796.0	7,825.8	1,763.0	8,012.8	0.00	0.00	0.00
17,100.0	90.00	0.18	8,796.0	7,875.8	1,763.2	8,062.1	0.00	0.00	0.00
17,150.0	90.00	0.18	8,796.0	7,925.8	1,763.2	8,111.3	0.00	0.00	0.00
,				,	,				
17,200.0	90.00	0.18	8,796.0	7,975.8	1,763.5	8,160.6	0.00	0.00	0.00
17,250.0	90.00	0.18	8,796.0	8,025.8	1,763.7	8,209.9	0.00	0.00	0.00
17,300.0	90.00	0.18	8,796.0	8,075.8	1,763.8	8,259.2	0.00	0.00	0.00
17,350.0		0.18	8,796.0	8,125.8	1,764.0	8,308.4	0.00	0.00	0.00
17,400.0						8,357.7	0.00		
		0.18	8,796.0	8,175.8	1,764.1			0.00	0.00
17,450.0		0.18	8,796.0	8,225.8	1,764.3	8,407.0	0.00	0.00	0.00
17,500.0	90.00	0.18	8,796.0	8,275.8	1,764.4	8,456.2	0.00	0.00	0.00
17,550.0	90.00	0.18	8,796.0	8,325.8	1,764.6	8,505.5	0.00	0.00	0.00
17,600.0	90.00	0.18	8,796.0	8,375.8	1,764.7	8,554.8	0.00	0.00	0.00
17,650.0		0.18	8,796.0	8,425.8	1,764.9	8,604.1	0.00	0.00	0.00
17,700.0	90.00	0.18	8,796.0	8,475.8	1,765.0	8,653.3	0.00	0.00	0.00
17,750.0	90.00	0.18	8,796.0	8,525.8	1,765.2	8,702.6	0.00	0.00	0.00
17,800.0	90.00	0.18	8,796.0	8,575.8	1,765.4	8,751.9	0.00	0.00	0.00
17,850.0		0.18	8,796.0	8,625.8	1,765.5	8,801.2	0.00	0.00	0.00
17,900.0	90.00	0.18	8,796.0	8,675.8	1,765.7	8,850.4	0.00	0.00	0.00
17,950.0	90.00	0.18	8,796.0	8,725.8	1,765.8	8,899.7	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico NAD 83

Site: Rooster 35/26 State Com #717H

 Well:
 Sec 35, T23S, R26E

 Wellbore:
 BHL: 330' FNL & 890' FEL (Sec 26)

Wellbore: BHL: 330' F
Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,000.0	90.00	0.18	8,796.0	8,775.8	1,766.0	8,949.0	0.00	0.00	0.00
18,050.0	90.00	0.18	8,796.0	8,825.8	1,766.1	8,998.2	0.00	0.00	0.00
18,100.0	90.00	0.18	8,796.0	8,875.8	1,766.3	9,047.5	0.00	0.00	0.00
18,150.0	90.00	0.18	8,796.0	8,925.8	1,766.4	9,096.8	0.00	0.00	0.00
18,200.0	90.00	0.18	8,796.0	8,975.8	1,766.6	9,146.1	0.00	0.00	0.00
18,250.0	90.00	0.18	8,796.0	9,025.8	1,766.7	9,195.3	0.00	0.00	0.00
18,300.0	90.00	0.18	8,796.0	9,075.8	1,766.9	9,244.6	0.00	0.00	0.00
18,350.0	90.00	0.18	8,796.0	9,125.8	1,767.1	9,293.9	0.00	0.00	0.00
18,400.0	90.00	0.18	8,796.0	9,175.8	1,767.2	9,343.2	0.00	0.00	0.00
18,450.0	90.00	0.18	8,796.0	9,225.8	1,767.4	9,392.4	0.00	0.00	0.00
18,500.0	90.00	0.18	8,796.0	9,275.8	1,767.5	9,441.7	0.00	0.00	0.00
18,550.0	90.00	0.18	8,796.0	9,325.8	1,767.7	9,491.0	0.00	0.00	0.00
18,600.0	90.00	0.18	8,796.0	9,375.8	1,767.8	9,540.2	0.00	0.00	0.00
18,650.0	90.00	0.18	8,796.0	9,425.8	1,768.0	9,589.5	0.00	0.00	0.00
18,700.0	90.00	0.18	8,796.0	9,475.8	1,768.1	9,638.8	0.00	0.00	0.00
18,750.0	90.00	0.18	8,796.0	9,525.8	1,768.3	9,688.1	0.00	0.00	0.00
18,800.0	90.00	0.18	8,796.0	9,575.8	1,768.5	9,737.3	0.00	0.00	0.00
18,850.0	90.00	0.18	8,796.0	9,625.8	1,768.6	9,786.6	0.00	0.00	0.00
18,900.0	90.00	0.18	8,796.0	9,675.8	1,768.8	9,835.9	0.00	0.00	0.00
18,950.0	90.00	0.18	8,796.0	9,725.8	1,768.9	9,885.2	0.00	0.00	0.00
19,000.0	90.00	0.18	8,796.0	9,775.8	1,769.1	9,934.4	0.00	0.00	0.00
19,050.0	90.00	0.18	8,796.0	9,825.8	1,769.2	9,983.7	0.00	0.00	0.00
19,100.0	90.00	0.18	8,796.0	9,875.8	1,769.4	10,033.0	0.00	0.00	0.00
19,150.0	90.00	0.18	8,796.0	9,925.8	1,769.5	10,082.2	0.00	0.00	0.00
19,200.0	90.00	0.18	8,796.0	9,975.8	1,769.7	10,131.5	0.00	0.00	0.00
19,250.0	90.00	0.18	8,796.0	10,025.8	1,769.8	10,180.8	0.00	0.00	0.00
19,300.0	90.00	0.18	8.796.0	10,075.8	1,770.0	10,230,1	0.00	0.00	0.00

Database: Hobbs

Company: Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Eddy County, New Mexico NAD 83
Rooster 35/26 State Com #717H

Well: Sec 35, T23S, R26E

Wellbore: BHL: 330' FNL & 890' FEL (Sec 26)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Rooster 35/26 State Com #717H WELL @ 3291.0usft (Original Well Elev) WELL @ 3291.0usft (Original Well Elev)

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SHL: 220' FSL & 2630' F - plan hits target cent - Point	0.00 ter	0.00	0.0	0.0	0.0	456,216.50	562,882.20	32.2541953	-104.2636386
Enter KK044010003: 0' I - plan hits target cent - Point	0.00 ter	0.00	4,283.1	-220.0	842.8	455,996.50	563,725.04	32.2535890	-104.2609126
Exit K044010003: 127' F - plan hits target cent - Point	0.00 ter	0.00	6,234.3	-347.4	1,331.0	455,869.08	564,213.20	32.2532378	-104.2593338
Enter L010730003: 127' - plan hits target cent - Point	0.00 ter	0.00	6,234.3	-347.4	1,331.0	455,869.08	564,213.20	32.2532378	-104.2593338
KOP: 243' FNL & 890' FI - plan hits target cent - Point	0.00 ter	0.00	8,223.0	-453.5	1,737.4	455,763.00	564,619.60	32,2529454	-104.2580194
Exit L010730003: 0' FSL - plan hits target cent - Point	0.00 ter	0.00	8,684.6	-220.0	1,738.1	455,996.50	564,620.33	32.2535873	-104.2580165
Wolfcamp: 28' FSL & 89: - plan hits target cent - Point	0.00 ter	0.00	8,704.0	- 191.9	1,738.2	456,024.60	564,620.41	32.2536645	- 104.2580162
FTP/LP: 330' FSL & 890 - plan hits target cent - Point	0.00 ter	0.00	8,796.0	119.4	1,739.2	456,335.90	564,621.38	32.2545203	-104.2580124
BHL: 330' FNL & 890' FE - plan hits target cent - Point	0.00 ter	0.00	8,796.0	10,075.8	1,770.0	466,292.30	564,652.20	32.2818892	-104.2578900

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Electronically Via E-permitting

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

NATURAL GAS MANAGEMENT PLAN

This Natural Gas Management Plan must be submitted with each Application for Permit to Drill (APD) for a new or recompleted well.

Section 1 – Plan Description Effective May 25, 2021

I. Operator: MEW	BOURNE	OIL CO.	OGRID:	14744	Date: 1	1_/13	3 /25
II. Type: ☐ Original ☐	☐ Amendment	due to □ 19.15.27.5	9.D(6)(a) NMAC	C □ 19.15.27.9.D	(6)(b) NMAC □ (Other.	
If Other, please describe	··						
III. Well(s): Provide the be recompleted from a s					wells proposed to	be drill	ed or proposed to
Well Name	API	ULSTR	Footages	Anticipated Oil BBL/D	Anticipated Gas MCF/D		Anticipated oduced Water BBL/D
ROOSTER 35-26 STATE COM	715	35 23S 26E	220' FSL X 2650'	FEL 1500	4500		5500
ROOSTER 35-26 STATE COM	1717		220' FSL X 263	0' FEL			
				Y1-400 Y2-300 Y3-20	0 Y1-1200 Y2-900 Y3-6	00 Y1-	1500 Y2-1100 Y3-700
IV. Central Delivery Po	oint Name: _	ROOS	STER 35/26 S	TATE COM	[See 19	9.15.27	7.9(D)(1) NMAC]
V. Anticipated Schedul proposed to be recomple					vell or set of wells	propos	ed to be drilled or
Well Name	API	Spud Date	TD Reached	Completion			First Production
			Date	Commencement	Date Back D	ate	Date

VI. Separation Equipment:

Attach a complete description of how Operator will size separation equipment to optimize gas capture.

1/13/26

2/13/26

2/28/26

12/13/25

3/3/26

ROOSTER 35/26 STATE COM

VII. Operational Practices: ☒ Attach a complete description of the actions Operator will take to comply with the requirements of Subsection A through F of 19.15.27.8 NMAC.

VIII. Best Management Practices: Attach a complete description of Operator's best management practices to minimize venting during active and planned maintenance.

Section 2 – Enhanced Plan EFFECTIVE APRIL 1, 2022

Beginning April 1, 2022, an operator that is not in compliance with its statewide natural gas capture requirement for the applicable reporting area must complete this section.

🛛 Operator certifies that it is not required to complete this section because Operator is in compliance with its statewide natural gas capture requirement for the applicable reporting area.

IX. Anticipated Natural Gas Production:

Well	API	Anticipated Average Natural Gas Rate MCF/D	Anticipated Volume of Natural Gas for the First Year MCF

X. Natural Gas Gathering System (NGGS):

Operator	System	ULSTR of Tie-in	Anticipated Gathering Start Date	Available Maximum Daily Capacity of System Segment Tie-in

XI. Map. \square Attach an accurate and legible map depicting the location of the well(s), the anticipated pipeline route(s) connecting the production operations to the existing or planned interconnect of the natural gas gathering system(s), and the maximum daily capacity of the segment or portion of the natural gas gathering system(s) to which the well(s) will be connected.

XII. Line Capacity. The natural gas gathering system \square will \square will not have capacity to gather 100% of the anticipated natural gas production volume from the well prior to the date of first production.

XIII. Line Pressure. Operator \Box does \Box does not anticipate that its existing well(s) connected to the same segment, or portion, of the natural gas gathering system(s) described above will continue to meet anticipated increases in line pressure caused by the new well(s).

☐ Attach Operator's plan to manage production in response to the increased line pressure.

XIV. Confidentiality:
Operator asserts confidentiality pursuant to Section 71-2-8 NMSA 1978 for the information provided in Section 2 as provided in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and attaches a full description of the specific information for which confidentiality is asserted and the basis for such assertion.

(h)

(i)

Section 3 - Certifications <u>Effective May 25, 2021</u>

Operator certifies that, after reasonable inquiry and based on the available information at the time of submittal: 🗵 Operator will be able to connect the well(s) to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system: or ☐ Operator will not be able to connect to a natural gas gathering system in the general area with sufficient capacity to transport one hundred percent of the anticipated volume of natural gas produced from the well(s) commencing on the date of first production, taking into account the current and anticipated volumes of produced natural gas from other wells connected to the pipeline gathering system. If Operator checks this box, Operator will select one of the following: Well Shut-In. ☐ Operator will shut-in and not produce the well until it submits the certification required by Paragraph (4) of Subsection D of 19.15.27.9 NMAC; or Venting and Flaring Plan.

Operator has attached a venting and flaring plan that evaluates and selects one or more of the potential alternative beneficial uses for the natural gas until a natural gas gathering system is available, including: power generation on lease; (a) **(b)** power generation for grid; compression on lease; (c) (d) liquids removal on lease; reinjection for underground storage; (e) **(f)** reinjection for temporary storage; **(g)** reinjection for enhanced oil recovery;

Section 4 - Notices

1. If, at any time after Operator submits this Natural Gas Management Plan and before the well is spud:

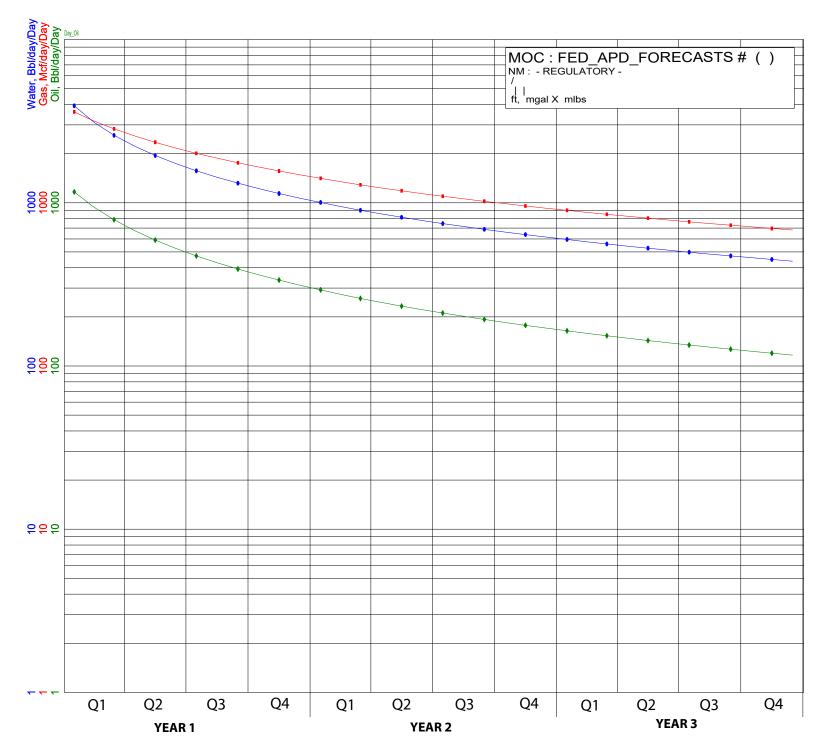
other alternative beneficial uses approved by the division.

fuel cell production; and

- (a) Operator becomes aware that the natural gas gathering system it planned to connect the well(s) to has become unavailable or will not have capacity to transport one hundred percent of the production from the well(s), no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised venting and flaring plan containing the information specified in Paragraph (5) of Subsection D of 19.15.27.9 NMAC; or
- (b) Operator becomes aware that it has, cumulatively for the year, become out of compliance with its baseline natural gas capture rate or natural gas capture requirement, no later than 20 days after becoming aware of such information, Operator shall submit for OCD's approval a new or revised Natural Gas Management Plan for each well it plans to spud during the next 90 days containing the information specified in Paragraph (2) of Subsection D of 19.15.27.9 NMAC, and shall file an update for each Natural Gas Management Plan until Operator is back in compliance with its baseline natural gas capture rate or natural gas capture requirement.
- 2. OCD may deny or conditionally approve an APD if Operator does not make a certification, fails to submit an adequate venting and flaring plan which includes alternative beneficial uses for the anticipated volume of natural gas produced, or if OCD determines that Operator will not have adequate natural gas takeaway capacity at the time a well will be spud.

I certify that, after reasonable inquiry, the statements in and attached to this Natural Gas Management Plan are true and correct to the best of my knowledge and acknowledge that a false statement may be subject to civil and criminal penalties under the Oil and Gas Act.

Signature:	Budly C Birks
Printed Name:	BRADLEY BISHOP
Title:	REGULATORY MANAGER
E-mail Address	BBISHOP@MEWBOURNE.COM
Date:	11/13/25
Phone:	575-393-5905
	OIL CONSERVATION DIVISION
	(Only applicable when submitted as a standalone form)
Approved By:	
Title:	
Approval Date:	
Conditions of A	pproval:


Mewbourne Oil Company

Natural Gas Management Plan – Attachment

- VI. Separation equipment will be sized by construction engineering staff based on stated manufacturer daily throughput capacities and anticipated daily production rates to ensure adequate capacity. Closed vent system piping, compression needs, and VRUs will be sized utilizing ProMax modelling software to ensure adequate capacity for anticipated production volumes and conditions.
- VII. Mewbourne Oil Company (MOC) will take following actions to comply with the regulations listed in 19.15.27.8:
 - A. MOC will maximize the recovery of natural gas by minimizing the waste, as defined by 19.15.2 NMAC, of natural gas through venting and flaring. MOC will ensure that well(s) will be connected to a natural gas gathering system with sufficient capacity to transport natural gas. If there is no adequate takeaway for the gas, well(s) will be shut in until the natural gas gathering system is available.
 - B. All drilling operations will be equipped with a rig flare located at least 100 ft from the nearest surface hole. Rig flare will be utilized to combust any natural gas that is brought to surface during normal drilling operations. In the case of emergency venting or flaring the volumes will be estimated and reported appropriately.
 - C. During completion operations any natural gas brought to surface will be flared. Immediately following the finish of completion operations, all well flow will be directed to permanent separation equipment. Produced natural gas from separation equipment will be sent to sales. It is not anticipated that gas will not meet pipeline standards. However, if natural gas does not meet gathering pipeline quality specifications, MOC will flare the natural gas for 60 days or until the natural gas meets the pipeline quality specifications, whichever is sooner. MOC will ensure that the flare is sized properly and is equipped with automatic igniter or continuous pilot. The gas sample will analyzed twice per week and the gas will be routed into a gathering system as soon as pipeline specifications are met.
 - D. Natural gas will not be flared with the exceptions and provisions listed in the 19.15.27.8 D.(1) through (4). If there is no adequate takeaway for the separator gas, well(s) will be shut in until the natural gas gathering system is available with exception of emergency or malfunction situations. Venting and/or flaring volumes will be estimated and reported appropriately.
 - E. MOC will comply with the performance standards requirements and provisions listed in 19.15.27.8 E.(1) through (8). All equipment will be designed and sized to handle maximum anticipated pressures and throughputs in order to minimize the waste. Production storage tanks constructed after May 25, 2021 will be equipped with automatic gauging system. Flares constructed after May 25, 2021 will be equipped with automatic igniter or continuous pilot. Flares will be located at least 100' from the well and storage tanks unless otherwise approved by the division. MOC will conduct AVO inspections as described in 19.15.27.8 E (5) (a) with frequencies specified in 19.15.27.8 E (5) (b) and (c). All emergencies will be resolved as quickly and safely as feasible to minimize waste.
 - F. The volume of natural gas that is vented or flared as the result of malfunction or emergency during drilling and completions operations will be estimated. The volume of natural gas that is vented, flared or beneficially used during production operations, will be measured or estimated. MOC will install equipment to measure

the volume of natural gas flared from existing process piping or a flowline piped from equipment such as high pressure separators, heater treaters, or vapor recovery units associated with a well or facility associated with a well authorized by an APD issued after May 25, 2021 that has an average daily production greater than 60 Mcf/day. If metering is not practicable due to circumstances such as low flow rate or low pressure venting and flaring, MOC will estimate the volume of vented or flared natural gas. Measuring equipment will conform to industry standards and will not be designed or equipped with a manifold that allows the diversion of natural gas around the metering element except for the sole purpose of inspecting and servicing the measurement equipment.

VIII. For maintenance activities involving production equipment and compression, venting will be limited to the depressurization of the subject equipment to ensure safe working conditions. For maintenance of production and compression equipment the associated producing wells will be shut in to eliminate venting. For maintenance of VRUs all gas normally routed to the VRU will be routed to flare to eliminate venting.

Oil, Bbl/day◆ Qual€DDYWFMP2.0 Ref= 1/2025 Cum= 344065 344065 Rem= EUR= 3.000 Yrs= Qi= 1315.0 0.950000 b= De= 77.000000 Df= 24.155973 Qab= 115.0 Gas, Mcf/day ■ Qual €DDYWFMP2.0 Ref= 1/2025 Cum= 1522747 Rem= 1522747 3.000 3860.0 EUR= Yrs= Qi= 1.100000 62.500000 b= De= Df= 20.355806 Qab= 673.5 Water, Bbl/d • Qual €DDYWFMP2.0 Ref= Cum= 1179800 1179800 3.000 4500.0 Rem= EUR= Yrs= Qi= 1.100000 b= De= 77.000000 21.653105 Df= Qab= 433.8

Released to Imaging: 11/19/2025 9:45:18 AM