Sundry Print Report

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: AUDACIOUS 19 FED Well Location: T25S / R33E / SEC 19 / County or Parish/State: LEA /

TR K / 32.114589 / -103.6156074

Well Number: 582H Type of Well: OIL WELL Allottee or Tribe Name:

Lease Number: NMNM110838 Unit or CA Name: Unit or CA Number:

US Well Number: Operator: EOG RESOURCES

INCORPORATED

Notice of Intent

Sundry ID: 2848622

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 04/22/2025 Time Sundry Submitted: 08:59

Date proposed operation will begin: 04/25/2025

Procedure Description: EOG respectfully requests an amendment to our approved APD for this well to reflect the following changes: Audacious 19 Fed 583H (FKA 582H) API #: 30-025-54594 Change name from Audacious 19 Fed 582H to Audacious 19 Fed 583H. Change BHL from T-25-S, R-33-E, Sec 30, 100' FSL, 1480' FWL, LEA Co., NM, to T-25-S, R-33-E, Sec 30, 100' FSL, 1430' FWL, LEA Co., N.M. Change target formation to Third Bone Carb A. Update casing and cement program to current design.

NOI Attachments

Procedure Description

AUDACIOUS_19_FED__583H_PLAT_20250423141130.pdf

AUDACIOUS_19_FED__583H_PLANNING_REPORT_AND_WALL_PLOT_20250422085821.pdf

Blanket_Casing_Design___Audacious_19_Fed_SHALLOW_Sundry_12.3.2024_20250422085801.pdf

AUDACIOUS_19_FED__583H_VARIANCES_20250422085746.pdf

Audacious_19_Fed_583H_Sundry_Info___Rev_Name__BHL__tgt__csg_12.3.2024_20250422085704.pdf

Page 1 of 2

eceived by OCD: 9/19/2025 7:10:15 AM Well Name: AUDACIOUS 19 FED

Well Location: T25S / R33E / SEC 19 /

TR K / 32.114589 / -103.6156074

County or Parish/State: LEA/ 2 of

NM

Well Number: 582H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM110838

Unit or CA Name:

Unit or CA Number:

US Well Number:

Operator: EOG RESOURCES

INCORPORATED

Conditions of Approval

Additional

AUDACIOUS 19 FED SHALLOW BLANKET COA 20250424112601.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: KAYLA MCCONNELL Signed on: APR 23, 2025 02:11 PM

Name: EOG RESOURCES INCORPORATED

Title: Regulatory Specialist

Street Address: 5509 CHAMPIONS DR

City: MIDLAND State: TX

Phone: (432) 265-6804

Email address: KAYLA_MCCONNELL@EOGRESOURCES.COM

Field

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: KEITH P IMMATTY **BLM POC Title:** ENGINEER

BLM POC Phone: 5759884722 **BLM POC Email Address:** KIMMATTY@BLM.GOV

Disposition: Approved **Disposition Date:** 04/24/2025

Signature: KEITH IMMATTY

Page 2 of 2

Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR DUDE ALL OF LAND MANAGEMENT

FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 202

BUR	EAU OF LAND MANA	AGEMENT		5. Lease Serial No.	
Do not use this t	OTICES AND REPO form for proposals to Use Form 3160-3 (AF	drill or to re-	enter an	6. If Indian, Allottee or Tribe	Name
SUBMIT IN	TRIPLICATE - Other instruc	ctions on page 2		7. If Unit of CA/Agreement,	Name and/or No.
1. Type of Well Oil Well Gas V	Vell Other			8. Well Name and No.	
2. Name of Operator				9. API Well No.	
3a. Address	í	3b. Phone No. (include	de area code)	10. Field and Pool or Explora	atory Area
4. Location of Well (Footage, Sec., T., F	R.,M., or Survey Description)			11. Country or Parish, State	
12. CHE	CK THE APPROPRIATE BO	X(ES) TO INDICAT	E NATURE (OF NOTICE, REPORT OR OT	
TYPE OF SUBMISSION			TYPI	E OF ACTION	
Notice of Intent	Acidize Alter Casing	Deepen Hydraulic F	Fracturing	Production (Start/Resume) Reclamation) Water Shut-Off Well Integrity
Subsequent Report	Casing Repair	New Constr		Recomplete	Other
	Change Plans	Plug and Al	bandon	Temporarily Abandon	
Final Abandonment Notice	Convert to Injection	Plug Back		Water Disposal	work and approximate duration thereof. If
completed. Final Abandonment No is ready for final inspection.) 14. I hereby certify that the foregoing is			uding reciama	tion, nave been completed and	the operator has detennined that the site
14. I hereby certify that the foregoing is	true and correct. Ivame (Frin	Title			
Signature		Date			
	THE SPACE	FOR FEDERA	L OR STA	TE OFICE USE	
Approved by					
			Title		Date
Conditions of approval, if any, are attact certify that the applicant holds legal or of which would entitle the applicant to cor	equitable title to those rights in		Office		
Title 18 U.S.C Section 1001 and Title 4.	3 U.S.C Section 1212, make it	t a crime for any pers	son knowingly	and willfully to make to any o	department or agency of the United States

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United State any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c)and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

(Form 3160-5, page 2)

Additional Information

Additional Remarks

Update casing and cement program to current design.

Location of Well

 $0. \ SHL: TR\ K\ /\ 2095\ FSL\ /\ 1331\ FWL\ /\ TWSP: 25S\ /\ RANGE: 33E\ /\ SECTION: 19\ /\ LAT: 32.114589\ /\ LONG: -103.6156074\ (\ TVD: 0\ feet,\ MD: 0\ feet\)$ PPP: TR\ K\ /\ 2541\ FSL\ /\ 1480\ FWL\ /\ TWSP: 25S\ /\ RANGE: 33E\ /\ SECTION: 19\ /\ LAT: 32.1158137\ /\ LONG: -103.6151295\ (\ TVD: 11013\ feet,\ MD: 11042\ feet\) BHL: TR\ N\ /\ 100\ FSL\ /\ 1480\ FWL\ /\ TWSP: 25S\ /\ RANGE: 33E\ /\ SECTION: 30\ /\ LAT: 32.0945913\ /\ LONG: -103.6151399\ (\ TVD: 11278\ feet,\ MD: 18865\ feet\)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

Pad Name: Audacious 19 Fed SHALLOW Sundry

SHL: Section 19, Township 25-S, Range 33-E, LEA County, NM

Well Name	API #	Sur	face	Intern	nediate	Production	
wen Name	AFI#	MD	TVD	MD	TVD	MD	TVD
Audacious 19 Fed #583H (582H)	30-025-****	1,014	1,014	4,929	4,908	19,177	11,590
Audacious 19 Fed #584H (Audacious 30 Fed Com 208H)	30-025-52358	1,014	1,014	5,011	4,908	19,254	11,590

ALL PREVIOUS COAS STILL APPLY

Above listed wells are approved for the primary design and 4 Designs listed in the "EOG BLM Variance 5a - Alternate Shallow Casing Designs" document. The casing set points and directional plans for the wells in the batch are within the boundary conditions reviewed in the blanket design. The COA is written for the deepest well on the pad. Operator is responsible to review the cement volumes based on the set points, design executed and to achieve the TOC requirements listed in the COA.

COA

H2S	• Yes	O No	
Potash	None	O Secretary	O R-111-P
Cave/Karst Potential	• Low	O Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	O Both
Wellhead Variance	O Diverter		
Other	□4 String	☐ Capitan Reef	□WIPP
Other	☐Fluid Filled	☐ Pilot Hole	☐ Open Annulus
Cementing	☐ Contingency	☐ EchoMeter	☑ Primary Cement
_	Cement Squeeze		Squeeze
Special Requirements	☐ Water Disposal	□ СОМ	□ Unit
Special Requirements	☐ Batch Sundry		
Special Requirements	☐ Break Testing	✓ Offline	✓ Casing
Variance	_	Cementing	Clearance

A. CASING

Primary (Design E:)

1. The **10-3/4** inch surface casing shall be set at approximately **1014** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 8-5/8 inch intermediate casing shall be set at approximately 4908 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch x 5.5 inch tapered production casing shall be set at approximately 19,254 feet. Operator has also proposed ONLY running 6 inch casing for the production string. Reviewed and is OK. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design A:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1014** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of 8

- **hours** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4908 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **19,254** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design B:

- 1. The **10-3/4** inch surface casing shall be set at approximately **1014** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

If cement falls back, remedial cementing will be done prior to drilling out that string.

2. The 8-5/8 inch intermediate casing shall be set at approximately 4908 feet TVD.

- a. Mud weight could brine up to 10.2ppg. Reviewed and OK
- b. Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The **5-1/2** inch production casing shall be set at approximately **19,254** feet. The minimum required fill of cement behind the **5-1/2** inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design C:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1014 feet TVD (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - h. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - i. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - j. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - k. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4908 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch production casing shall be set at approximately 19,254 feet. The minimum required fill of cement behind the 6 inch production casing is:

• Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Shallow Design D:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1014** feet **TVD** (a minimum of 25 feet (Lea County) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface.
 - 1. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - m. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - n. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - o. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The 9-5/8 inch intermediate casing shall be set at approximately 4908 feet TVD.
 - Mud weight could brine up to 10.2ppg. Reviewed and OK
 - Keep casing half full during run for collapse SF

The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The 6 inch x 5.5 inch tapered production casing shall be set at approximately 19,254 feet. The minimum required fill of cement behind the 6 inch x 5.5 inch tapered production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Production Bradenhead Plan Reviewed and is OK for all five designs.

Separate sundry needed for updated break testing procedures.

Offline Cementing

Offline cementing OK for all three intervals if attached qualifiers are met and conducted in adherence to approved procedures. Notify the BLM prior to the commencement of any offline cementing procedure.

Casing Clearance:

- Overlap clearance OK.
- Salt annular variance in place.
- 1" surface clearance not met. Operator aware and will perf and squeeze if necessary

Operator shall clean up cycles until wellbore is clear of cuttings and any large debris, ensure cutting sizes are adequate "coffee ground or less" before cementing.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Eddy County Petroleum Engineering Inspection Staff:

Email or call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220; **BLM_NM_CFO_DrillingNotifications@BLM.GOV**; (575) 361-2822

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i.Notify the BLM when moving in and removing the Spudder Rig.
 - ii.Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii.BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor

is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the

requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii.If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii.Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v.If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i.In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to 43 CFR 3172 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v.The results of the test shall be reported to the appropriate BLM office.
- vi.All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii.The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii.BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per 43 CFR 3172.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

KPI 4/24/2025

C-102 Submit Electroni	oolly.		Energy		State of Ne ls & Natur	w Mexico al Resources	Departmen	t	Revise	ed July 9, 2024
Via OCD Permit				OIL CO	NSERVA	TION DIVI	SION		Initial Submittal	
								Submittal Type:	Amended Report	
								1) [5]	As Drilled	
		W	ELL LC	CATIO	N AND A	CREAGE DI	EDICATIO	N PLAT		
API Number 30-025-5	4594		Pool Code	97903		Name WC-025	5 G-08 S253	235G; Lwr E		
	322220		Property Name		AUDACI	OUS 19 FED			Well Number	583H
OGRID No.	7377		Operator Name		EOG RES	OURCES, INC	D.		Ground Level Elev	ation 3460'
Surface Owner:	State Fee	Tribal X Federal				Mineral Owner:	State Fee Trib	al X Federal		
					Surface	e Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/	Feet from the E/W	Latitude		Longitude	County
K	19	25-S	33-E	-	2095' S	1331' W	N 32.114	5890 W 1	03.6156074	LEA
						ole Location				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/		Latitude		Longitude	County
N	30	25-S	33-E	-	100' S	1430' W	N 32.094	5912 W 1	03.6153013	LEA
Dedicated Acres	Infill or Def	ining Well Defin	ing Well API			Overlapping Spacing	g Unit (Y/N)	Consolida	ited Code	
480.76	INFI		025-4898	5			N			
Order Numbers							nder Common Owner	ship: Yes N	lo .	
					Kick Off	Point (KOP)				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/		Latitude		Longitude	County
К	19	25-S	33-E	-	2591' S	1430' W	N 32.115	9511 W 1	03.6152909	LEA
			-	-	First Take	Point (FTP)		-		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/		Latitude		Longitude	County
K	19	25-S	33-E	-	2541' S	1430' W	N 32.115	8137 W 1	03.6152905	LEA
		•	•		Last Take	Point (LTP)		•		
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the N/		Latitude		Longitude	County
N	30	25-S	33-E	-	100' S	1430' W	N 32.094	5912 W 1	03.6153013	LEA
				1	_					
Unitized Area or A	rea of Uniform I.	ntrest		Spacing Unity	Type Horizo	ntal Vertical	Grou	nd Floor Elevation	3485'	
OPERATO	OR CERTII	FICATION		· ·		SURVEYO	RS CERTIFIC	ATION		
I hereby certi best of my kr that this orga in the land i well at this l or unleased n	fy that the in lowledge and nization eith ncluding the ocation pursu lineral intere:	nformation consibelief; and, if er owns a work proposed botton and to a contro	the well is a king interest or hole location or with an or intary pooling	vertical or o or unleased r or has a ri wner of a wo	complete to the directional well, nineral interest ght to drill thi rking interest r a compulsory	I hereby certify notes of actual	y that the well lo	cation shown on y me or under m	this pM was plotte the supervision look to ME 2	d from field that the same
received The of unleased min any part of t pooling order	consent of at eral interest of he well's com from the dive	pleted interval ision.	e or owner of in the target will be locate	a working in pool or forme				PROTEG	321125	
Kayli	a McC	Connell	e e e e e e e e e e e e e e e e e e e	04/2	22/2025			<u> </u>	WAL	
Signatur		CCONNE	Date			Signature and Seal	of Professional Surve	eyor Dat	te	
Print Name			_			Certificate Number	r Dat	e of Survey		
	A_MCC	ONNELL	@EOGR	ESOUR	CES.COM	_		03/06/2024		
E-mail Address						1	I			

C-102 Submit Electronically Via OCD Permitting	State of New Mexico Energy, Minerals & Natural Resources OIL CONSERVATION DIVIS		Submittal Type:	Revised July 9, 2024 Initial Submittal
Property Name and Well Number	AUDACIOUS 19 FED 583	3H		
SURFACE LOCATION (SHL) NEW MEXICO EAST NAD 1983 X=763549 Y=406164 LAT.: N 32.1145890 LONG.: W 103.6156074 NAD 1927 X=722363 Y=406106 LAT.: N 32.1144644 LONG.: W 103.6151345 2095' FSL 1331' FWL KICK OFF POINT (KOP) NEW MEXICO EAST NAD 1983 X=763644 Y=406660 LAT.: N 32.1159511 LONG.: W 103.6152909 NAD 1927 X=722458 Y=406602 LAT.: N 32.1158266 LONG.: W 103.6148179 2591' FSL 1430' FWL	13 18 24 19 LOT 1 LOT 2 1430' 1430	18 17 19 20	Lo	PPER MOST PERF. (UMP) NEW MEXICO EAST NAD 1983 X=763645 Y=406610 LAT.: N 32.1158137 LONG.: W 103.6152905 NAD 1927 X=722459 Y=406552 LAT.: N 32.1156891 LONG.: W 103.6148175 2541' FSL 1430' FWL DWER MOST PERF. (LMP) TOM HOLE LOCATION (BHL) NEW MEXICO EAST NAD 1983 X=763693 Y=398889 LAT.: N 32.0945912 LONG.: W 103.6153013 NAD 1927 X=722506 Y=398832 LAT.: N 32.0944664 LONG.: W 103.6148296 100' FSL 1430' FWL
T-25-S, R-33-E SECTION 19 LOT 1 - 40.07 ACRES LOT 2 - 40.09 ACRES LOT 3 - 40.11 ACRES LOT 4 - 40.13 ACRES SECTION 30 LOT 1 - 40.14 ACRES LOT 2 - 40.13 ACRES LOT 3 - 40.13 ACRES LOT 3 - 40.13 ACRES	36 X=762263.26 Y=398778.54 UP & S & S & S & S & S & S & S & S & S &	30 29 31 32 - 	I hereby plat was made by same is 03/06/2 Date of Su Signature :	

Midland

Lea County, NM (NAD 83 NME) Audacious 19 Fed #583H

OH

Plan: Plan #0.5

Standard Planning Report

31 March, 2025

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Minimum Curvature

Project Lea County, NM (NAD 83 NME)

Map System:US State Plane 1983Geo Datum:North American Datum 1983Map Zone:New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site Audacious 19 Fed

 Site Position:
 Northing:
 406,251.00 usft
 Latitude:
 32° 6' 53.415 N

 From:
 Map
 Easting:
 763,097.00 usft
 Longitude:
 103° 37' 1.440 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #583H

0.0 usft 406,164.00 usft 32° 6' 52.524 N **Well Position** +N/-S Northing: Latitude: 103° 36' 56.191 W 0.0 usft 763,549.00 usft +E/-W Easting: Longitude: **Position Uncertainty** 0.0 usft Wellhead Elevation: usft Ground Level: 3,460.0 usft

Grid Convergence: 0.38 $^{\circ}$

Wellbore OH

 Magnetics
 Model Name
 Sample Date (°)
 Declination (°)
 Dip Angle (°)
 Field Strength (nT)

 IGRF2025
 3/10/2025
 6.28
 59.66
 46,988.24377238

Design Plan #0.5

Audit Notes:

Version:Phase:PLANTie On Depth:0.0

 Vertical Section:
 Depth From (TVD) (usft)
 +N/-S +E/-W (usft)
 Direction (usft)

 0.0
 0.0
 0.0
 178.87

Plan Survey Tool Program Date 3/31/2025

Depth From Depth To

(usft) (usft) Survey (Wellbore) Tool Name Remarks

1 0.0 19,176.6 Plan #0.5 (OH) EOG MWD+IFR1

MWD + IFR1

Database: Company: PEDMB

Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

lan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,070.0	0.00	0.00	1,070.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,306.8	4.74	10.84	1,306.6	9.6	1.8	2.00	2.00	0.00	10.84	
7,185.8	4.74	10.84	7,165.4	486.4	93.2	0.00	0.00	0.00	0.00	
7,422.6	0.00	0.00	7,402.0	496.0	95.0	2.00	-2.00	0.00	180.00	
11,133.1	0.00	0.00	11,112.5	496.0	95.0	0.00	0.00	0.00	0.00	KOP (Audacious 19 F
11,353.6	26.46	178.85	11,325.2	446.0	96.0	12.00	12.00	81.13	178.85	FTP (Audacious 19 F
11,883.1	90.00	179.66	11,589.9	18.6	100.4	12.00	12.00	0.15	0.90	
19,176.8	90.00	179.66	11,590.0	-7,275.0	144.0	0.00	0.00	0.00	0.00	PBHL (Audacious 19

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,070.0	0.00	0.00	1,070.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.60	10.84	1,100.0	0.2	0.0	-0.2	2.00	2.00	0.00
1,200.0	2.60	10.84	1,200.0	2.9	0.6	-2.9	2.00	2.00	0.00
1,306.8	4.74	10.84	1,306.6	9.6	1.8	-9.6	2.00	2.00	0.00
	4.74		4 000 4		0.0	47.4	0.00		0.00
1,400.0	4.74	10.84	1,399.4	17.2	3.3	-17.1	0.00	0.00	0.00
1,500.0	4.74	10.84	1,499.1	25.3	4.8	-25.2	0.00	0.00	0.00
1,600.0	4.74	10.84	1,598.7	33.4	6.4	-33.3	0.00	0.00	0.00
1,700.0	4.74	10.84	1,698.4	41.5	7.9	-41.3	0.00	0.00	0.00
1,800.0	4.74	10.84	1,798.0	49.6	9.5	-49.4	0.00	0.00	0.00
1 000 0	4 74	10.04	1 007 7	E7 7	11 1	E7 E	0.00	0.00	0.00
1,900.0	4.74	10.84	1,897.7	57.7	11.1	-57.5	0.00	0.00	0.00
2,000.0	4.74	10.84	1,997.4	65.8	12.6	-65.6	0.00	0.00	0.00
2,100.0	4.74	10.84	2,097.0	73.9	14.2	-73.6	0.00	0.00	0.00
2,200.0	4.74	10.84	2,196.7	82.0	15.7	-81.7	0.00	0.00	0.00
2,300.0	4.74	10.84	2,296.3	90.2	17.3	-89.8	0.00	0.00	0.00
2,400.0	4.74	10.84	2,396.0	98.3	18.8	-97.9	0.00	0.00	0.00
			,						
2,500.0	4.74	10.84	2,495.7	106.4	20.4	-106.0	0.00	0.00	0.00
2,600.0	4.74	10.84	2,595.3	114.5	21.9	-114.0	0.00	0.00	0.00
2,700.0	4.74	10.84	2,695.0	122.6	23.5	-122.1	0.00	0.00	0.00
2,800.0	4.74	10.84	2,794.6	130.7	25.0	-130.2	0.00	0.00	0.00
2,900.0	4.74	10.84	2,894.3	138.8	26.6	-138.3	0.00	0.00	0.00
3,000.0	4.74	10.84	2,993.9	146.9	28.1	-146.3	0.00	0.00	0.00
3,100.0	4.74	10.84	3,093.6	155.0	29.7	-154.4	0.00	0.00	0.00
3,200.0	4.74	10.84	3,193.3	163.1	31.2	-162.5	0.00	0.00	0.00
3,300.0	4.74	10.84	3,292.9	171.3	32.8	-170.6	0.00	0.00	0.00
3,400.0	4.74	10.84	3,392.6	179.4	34.4	-178.6	0.00	0.00	0.00
3,500.0	4.74	10.84	3,492.2	187.5	35.9	-176.0	0.00	0.00	0.00
3,600.0	4.74	10.84	3,591.9	195.6	37.5	-194.8	0.00	0.00	0.00
3,700.0	4.74	10.84	3,691.6	203.7	39.0	-202.9	0.00	0.00	0.00
3,800.0	4.74	10.84	3,791.2	211.8	40.6	-211.0	0.00	0.00	0.00
3,900.0	4.74	10.84	3.890.9	219.9	42.1	-219.0	0.00	0.00	0.00
4,000.0	4.74	10.84	3,990.5	228.0	43.7	-227.1	0.00	0.00	0.00
4,100.0	4.74	10.84	4,090.2	236.1	45.7	-235.2	0.00	0.00	0.00
4,200.0	4.74							0.00	0.00
		10.84	4,189.8	244.2	46.8	-243.3	0.00		
4,300.0	4.74	10.84	4,289.5	252.4	48.3	-251.3	0.00	0.00	0.00
4,400.0	4.74	10.84	4,389.2	260.5	49.9	-259.4	0.00	0.00	0.00
4,500.0	4.74	10.84	4,488.8	268.6	51.4	-267.5	0.00	0.00	0.00
4,600.0	4.74	10.84	4,588.5	276.7	53.0	-275.6	0.00	0.00	0.00
4,700.0	4.74	10.84	4,688.1	284.8	54.5	-273.0	0.00	0.00	0.00
		10.84							
4,800.0	4.74	10.84	4,787.8	292.9	56.1	-291.7	0.00	0.00	0.00
4,900.0	4.74	10.84	4,887.5	301.0	57.7	-299.8	0.00	0.00	0.00
5,000.0	4.74	10.84	4,987.1	309.1	59.2	-307.9	0.00	0.00	0.00
5,100.0	4.74	10.84	5,086.8	317.2	60.8	-316.0	0.00	0.00	0.00
5,200.0	4.74	10.84	5,186.4	325.3	62.3	-324.0	0.00	0.00	0.00
5.200.0	4.14	10.04	5,100.4	323.3	02.3	-324.0	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Design:	Plan #0.5								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	4.74	10.84	5,286.1	333.5	63.9	-332.1	0.00	0.00	0.00
5,400.0	4.74	10.84	5,385.8	341.6	65.4	-340.2	0.00	0.00	0.00
5,500.0	4.74	10.84	5,485.4	349.7	67.0	-348.3	0.00	0.00	0.00
5,600.0	4.74	10.84	5,585.1	357.8	68.5	-356.4	0.00	0.00	0.00
5,700.0	4.74	10.84	5,684.7	365.9	70.1	-364.4	0.00	0.00	0.00
5,800.0	4.74	10.84	5,784.4	374.0	71.6	-372.5	0.00	0.00	0.00
5,900.0	4.74	10.84	5,884.0	382.1	73.2	-380.6	0.00	0.00	0.00
6,000.0	4.74	10.84	5,983.7	390.2	74.7	-388.7	0.00	0.00	0.00
6,100.0	4.74	10.84	6,083.4	398.3	76.3	-396.7	0.00	0.00	0.00
6,200.0	4.74	10.84	6,183.0	406.4	77.8	-404.8	0.00	0.00	0.00
6,300.0	4.74	10.84	6,282.7	414.6	79.4	-412.9	0.00	0.00	0.00
6,400.0	4.74	10.84	6,382.3	422.7	81.0	-421.0	0.00	0.00	0.00
6,500.0	4.74	10.84	6,482.0	430.8		-421.0 -429.1	0.00	0.00	
6,600.0	4.74 4.74	10.84	6,482.0 6,581.7	430.8 438.9	82.5 84.1	-429.1 -437.1	0.00	0.00	0.00 0.00
6,700.0	4.74	10.84	6,681.3	436.9 447.0	85.6	-437.1 -445.2	0.00	0.00	0.00
6,800.0	4.74	10.84	6,781.0	447.0 455.1	87.2	-445.2 -453.3	0.00	0.00	0.00
6,900.0	4.74	10.84		463.2	88.7	-461.4	0.00	0.00	0.00
7,000.0	4.74	10.84	6,880.6	403.2 471.3	90.3	-461.4 -469.4	0.00	0.00	0.00
			6,980.3						
7,100.0	4.74	10.84	7,079.9	479.4	91.8	-477.5	0.00	0.00	0.00
7,185.8	4.74	10.84	7,165.4	486.4	93.2	-484.5	0.00	0.00	0.00
7,200.0	4.45	10.84	7,179.6	487.5	93.4	-485.6	2.00	-2.00	0.00
7,300.0	2.45	10.84	7,279.4	493.4	94.5	-491.5	2.00	-2.00	0.00
7,400.0	0.45	10.84	7,379.4	495.9	95.0	-493.9	2.00	-2.00	0.00
7,422.6	0.00	0.00	7,402.0	496.0	95.0	-494.0	2.00	-2.00	0.00
7,500.0	0.00	0.00	7,479.4	496.0	95.0	-494.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,579.4	496.0	95.0	-494.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,679.4	496.0	95.0	-494.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,779.4	496.0	95.0	-494.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,879.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,000.0	0.00	0.00	7,979.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,079.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,179.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,279.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,379.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,479.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,579.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,679.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,779.4	496.0	95.0	-494.0	0.00	0.00	0.00
8,900.0	0.00	0.00	8,879.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,979.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,100.0	0.00	0.00	9,079.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,179.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,279.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,379.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,479.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,600.0	0.00	0.00	9,579.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,679.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,800.0	0.00	0.00	9,779.4	496.0	95.0	-494.0	0.00	0.00	0.00
9,900.0	0.00	0.00	9,879.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,000.0	0.00	0.00	9,979.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,100.0	0.00	0.00	10,079.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,179.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,279.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,400.0	0.00	0.00	10,379.4	496.0	95.0	-494.0	0.00	0.00	0.00

eog resources

Planning Report

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Design.									
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,500.0 10,600.0	0.00 0.00	0.00 0.00	10,479.4 10,579.4	496.0 496.0	95.0 95.0	-494.0 -494.0	0.00 0.00	0.00 0.00	0.00 0.00
10,700.0	0.00	0.00	10,679.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,779.4	496.0	95.0	-494.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,879.4	496.0	95.0	-494.0	0.00	0.00	0.00
11,000.0	0.00	0.00	10,979.4	496.0	95.0	-494.0	0.00	0.00	0.00
11,100.0	0.00	0.00	11,079.4	496.0	95.0	-494.0	0.00	0.00	0.00
11,133.1	0.00	0.00	11,112.5	496.0	95.0 05.0	-494.0	0.00	0.00	0.00
11,150.0 11,175.0	2.03 5.03	178.85 178.85	11,129.4 11,154.3	495.7 494.2	95.0 95.0	-493.7 -492.2	12.00 12.00	12.00 12.00	0.00 0.00
11,200.0	8.03	178.85	11,179.2	491.3	95.1	-489.3	12.00	12.00	0.00
11,225.0	11.03	178.85	11,203.8	487.2	95.2	-485.2	12.00	12.00	0.00
11,250.0	14.03	178.85	11,228.2	481.8	95.3	-479.8	12.00	12.00	0.00
11,275.0	17.03	178.85	11,252.3	475.1	95.4	-473.1	12.00	12.00	0.00
11,300.0	20.03	178.85	11,276.0	467.1	95.6	-465.1	12.00	12.00	0.00
11,325.0 11,350.0	23.03 26.03	178.85 178.85	11,299.3 11,322.0	458.0 447.6	95.8 96.0	-456.0 -445.6	12.00 12.00	12.00 12.00	0.00 0.00
11,353.6 11,375.0	26.46 29.03	178.85 178.94	11,325.2 11,344.2	446.0 436.0	96.0 96.2	-444.0 -434.0	12.00 12.00	12.00 12.00	0.00 0.39
11,400.0	32.03	179.02	11,365.7	423.3	96.4	-421.3	12.00	12.00	0.33
11,425.0	35.03	179.09	11,386.5	409.5	96.6	-407.5	12.00	12.00	0.27
11,450.0	38.03	179.15	11,406.6	394.6	96.9	-392.6	12.00	12.00	0.24
11,475.0	41.03	179.20	11,425.9	378.7	97.1	-376.7	12.00	12.00	0.21
11,500.0	44.03	179.24	11,444.3	361.8	97.3	-359.8	12.00	12.00	0.18
11,525.0 11,550.0	47.03 50.03	179.29 179.32	11,461.8 11,478.4	344.0 325.3	97.6 97.8	-342.0 -323.3	12.00 12.00	12.00 12.00	0.16 0.15
11,575.0	53.03	179.36	11,493.9	305.7	98.0	-303.7	12.00	12.00	0.13
11,600.0	56.03	179.39	11,508.4	285.3	98.2	-283.3	12.00	12.00	0.13
11,625.0	59.03	179.42	11,521.9	264.3	98.5	-262.3	12.00	12.00	0.12
11,650.0	62.03 65.03	179.45	11,534.2	242.5	98.7 98.9	-240.5 -218.1	12.00	12.00	0.11
11,675.0 11,700.0	68.03	179.47 179.50	11,545.3 11,555.2	220.1 197.2	99.1	-216.1 -195.2	12.00 12.00	12.00 12.00	0.10 0.10
11,725.0	71.03	179.52	11,564.0	173.8	99.3	-171.8	12.00	12.00	0.10
11,750.0	74.03	179.54	11,571.5	149.9	99.5	-171.8 -147.9	12.00	12.00	0.09
11,775.0	77.03	179.57	11,577.7	125.7	99.7	-123.7	12.00	12.00	0.09
11,800.0	80.03	179.59	11,582.7	101.2	99.9	-99.2	12.00	12.00	0.09
11,825.0	83.03	179.61	11,586.4	76.5	100.0	-74.5	12.00	12.00	0.09
11,850.0	86.03	179.63	11,588.8	51.6	100.2	-49.6	12.00	12.00	0.08
11,875.0	89.03	179.65	11,589.8	26.6	100.4	-24.7	12.00	12.00	0.08
11,883.1 11,900.0	90.00 90.00	179.66 179.66	11,589.9 11,589.9	18.6 1.6	100.4 100.5	-16.6 0.3	12.00 0.00	12.00 0.00	0.08 0.00
12,000.0	90.00	179.66	11,589.9	-98.4	101.1	100.3	0.00	0.00	0.00
12,100.0	90.00	179.66	11,589.9	-198.4	101.7	200.3	0.00	0.00	0.00
12,200.0	90.00	179.66	11,589.9	-298.4	102.3	300.3	0.00	0.00	0.00
12,300.0	90.00	179.66	11,589.9	-398.3	102.9	400.3	0.00	0.00	0.00
12,400.0 12,500.0	90.00 90.00	179.66 179.66	11,589.9 11,589.9	-498.3 -598.3	103.5 104.1	500.3 600.3	0.00 0.00	0.00 0.00	0.00 0.00
ŕ									
12,600.0 12,700.0	90.00 90.00	179.66 179.66	11,589.9 11,589.9	-698.3 -798.3	104.7 105.3	700.3 800.3	0.00 0.00	0.00 0.00	0.00 0.00
12,700.0	90.00	179.66	11,589.9	-796.3 -898.3	105.3	900.3	0.00	0.00	0.00
12,900.0	90.00	179.66	11,589.9	-998.3	106.5	1,000.2	0.00	0.00	0.00
13,000.0	90.00	179.66	11,589.9	-1,098.3	107.1	1,100.2	0.00	0.00	0.00
13,100.0	90.00	179.66	11,589.9	-1,198.3	107.7	1,200.2	0.00	0.00	0.00
13,200.0	90.00	179.66	11,589.9	-1,298.3	108.3	1,300.2	0.00	0.00	0.00

Database: PEDMB Company: Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,300.0	90.00	179.66	11,589.9	-1,398.3	108.9	1,400.2	0.00	0.00	0.00
13,400.0	90.00	179.66	11,589.9	-1,498.3	100.5	1,500.2	0.00	0.00	0.00
13,500.0	90.00	179.66	11,589.9	-1,598.3	110.1	1,600.2	0.00	0.00	0.00
13,300.0					110.1	1,000.2			
13,600.0	90.00	179.66	11,589.9	-1,698.3	110.7	1,700.2	0.00	0.00	0.00
13,700.0	90.00	179.66	11,589.9	-1,798.3	111.3	1,800.2	0.00	0.00	0.00
13,800.0	90.00	179.66	11,589.9	-1,898.3	111.9	1,900.2	0.00	0.00	0.00
13,900.0	90.00	179.66	11,589.9	-1,998.3	112.5	2,000.2	0.00	0.00	0.00
14,000.0	90.00	179.66	11,589.9	-2,098.3	113.1	2,100.1	0.00	0.00	0.00
14,100.0	90.00	179.66	11,589.9	-2,198.3	113.7	2,200.1	0.00	0.00	0.00
14,200.0	90.00	179.66	11,589.9	-2,298.3	114.3	2,300.1	0.00	0.00	0.00
14,300.0	90.00	179.66	11,589.9	-2,398.3	114.8	2,400.1	0.00	0.00	0.00
14,400.0	90.00	179.66	11,589.9	-2,498.3	115.4	2,500.1	0.00	0.00	0.00
14,500.0	90.00	179.66	11,589.9	-2,598.3	116.0	2,600.1	0.00	0.00	0.00
14,600.0	90.00	179.66	11,589.9	-2,698.3	116.6	2,700.1	0.00	0.00	0.00
14,700.0	90.00	179.66	11,589.9	-2,798.3	117.2	2,800.1	0.00	0.00	0.00
14,800.0	90.00	179.66	11,590.0	-2,898.3	117.8	2,900.1	0.00	0.00	0.00
14,900.0	90.00	179.66	11,590.0	-2,998.3	118.4	3,000.1	0.00	0.00	0.00
15,000.0	90.00	179.66	11,590.0	-3,098.3	119.0	3,100.0	0.00	0.00	0.00
15,100.0	90.00	179.66	11,590.0	-3.198.3	119.6	3,200.0	0.00	0.00	0.00
15,200.0	90.00	179.66	11,590.0	-3,298.3	120.2	3,300.0	0.00	0.00	0.00
15,300.0	90.00	179.66	11,590.0	-3,398.3	120.2	3,400.0	0.00	0.00	0.00
15,400.0	90.00	179.66	11,590.0	-3,498.3	121.4	3,500.0	0.00	0.00	0.00
15,500.0	90.00	179.66	11,590.0	-3,598.3	122.0	3,600.0	0.00	0.00	0.00
13,300.0		179.00	11,590.0			3,000.0			
15,600.0	90.00	179.66	11,590.0	-3,698.3	122.6	3,700.0	0.00	0.00	0.00
15,700.0	90.00	179.66	11,590.0	-3,798.3	123.2	3,800.0	0.00	0.00	0.00
15,800.0	90.00	179.66	11,590.0	-3,898.3	123.8	3,900.0	0.00	0.00	0.00
15,900.0	90.00	179.66	11,590.0	-3,998.3	124.4	4,000.0	0.00	0.00	0.00
16,000.0	90.00	179.66	11,590.0	-4,098.3	125.0	4,100.0	0.00	0.00	0.00
16,100.0	90.00	179.66	11,590.0	-4,198.3	125.6	4,199.9	0.00	0.00	0.00
16,200.0	90.00	179.66	11,590.0	-4,298.3	126.2	4,299.9	0.00	0.00	0.00
16,300.0	90.00	179.66	11,590.0	-4,398.3	126.8	4,399.9	0.00	0.00	0.00
16,400.0	90.00	179.66	11,590.0	-4,498.3	127.4	4,499.9	0.00	0.00	0.00
16,500.0	90.00	179.66	11,590.0	-4,598.3	128.0	4,599.9	0.00	0.00	0.00
16,600.0	90.00	179.66	11,590.0	-4,698.3	128.6	4,699.9	0.00	0.00	0.00
16,700.0	90.00	179.66	11,590.0	-4,798.3	129.2	4,799.9	0.00	0.00	0.00
16,800.0	90.00	179.66	11,590.0	-4,898.3	129.8	4,899.9	0.00	0.00	0.00
16,900.0	90.00	179.66	11,590.0	-4,998.3	130.4	4,999.9	0.00	0.00	0.00
17,000.0	90.00	179.66	11,590.0	-5,098.3	131.0	5,099.9	0.00	0.00	0.00
17,100.0	90.00	179.66	11,590.0	-5,198.3	131.6	5,199.8	0.00	0.00	0.00
17,100.0	90.00	179.66	11,590.0	-5,298.3	132.2	5,299.8	0.00	0.00	0.00
17,300.0	90.00	179.66	11,590.0	-5,398.3	132.8	5,399.8	0.00	0.00	0.00
17,400.0	90.00	179.66	11,590.0	-5,498.3	133.4	5,499.8	0.00	0.00	0.00
17,500.0	90.00	179.66	11,590.0	-5,598.3	134.0	5,599.8	0.00	0.00	0.00
17,600.0	90.00	179.66	11,590.0	-5,698.3	134.6	5,699.8	0.00	0.00	0.00
17,700.0	90.00	179.66	11,590.0	-5,798.3	135.2	5,799.8	0.00	0.00	0.00
17,800.0	90.00	179.66	11,590.0	-5,898.3	135.8	5,899.8	0.00	0.00	0.00
17,900.0	90.00	179.66	11,590.0	-5,998.2	136.4	5,999.8	0.00	0.00	0.00
18,000.0	90.00	179.66	11,590.0	-6,098.2	137.0	6,099.8	0.00	0.00	0.00
18,100.0	90.00	179.66	11,590.0	-6,198.2	137.6	6,199.8	0.00	0.00	0.00
18,200.0	90.00	179.66	11,590.0	-6,298.2	138.2	6,299.7	0.00	0.00	0.00
18,300.0	90.00	179.66	11,590.0	-6,398.2	138.8	6,399.7	0.00	0.00	0.00
18,400.0	90.00	179.66	11,590.0	-6,498.2	139.4	6,499.7	0.00	0.00	0.00
18,500.0	90.00	179.66	11,590.0	-6,598.2	140.0	6,599.7	0.00	0.00	0.00
•									
18,600.0	90.00	179.66	11,590.0	-6,698.2	140.6	6,699.7	0.00	0.00	0.00

Database: Company: PEDMB Midland

Project: Lea County, NM (NAD 83 NME)

Site: Audacious 19 Fed

 Well:
 #583H

 Wellbore:
 OH

 Design:
 Plan #0.5

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

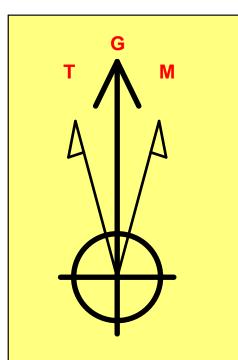
Survey Calculation Method:

Well #583H

KB 26 @ 3486.0usft KB 26 @ 3486.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,700.0	90.00	179.66	11,590.0	-6,798.2	141.2	6,799.7	0.00	0.00	0.00
18,800.0	90.00	179.66	11,590.0	-6,898.2	141.7	6,899.7	0.00	0.00	0.00
18,900.0	90.00	179.66	11,590.0	-6,998.2	142.3	6,999.7	0.00	0.00	0.00
19,000.0	90.00	179.66	11,590.0	-7,098.2	142.9	7,099.7	0.00	0.00	0.00
19,100.0	90.00	179.66	11,590.0	-7,198.2	143.5	7,199.7	0.00	0.00	0.00
19,176.8	90.00	179.66	11,590.0	-7,275.0	144.0	7,276.4	0.00	0.00	0.00


Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Audacious 19 Fed - plan hits target cen - Point	0.00 ter	0.00	11,112.5	496.0	95.0	406,660.00	763,644.00	32° 6′ 57.426 N	103° 36' 55.048 W
2500'(Audacious 19 Fed - plan misses target - Circle (radius 2,500	,	0.00 3.1usft at 11	11,193.0 187.2usft ME	665.0 D (11166.5 TVI	-2,903.0 D, 492.9 N, 95	406,829.00 i.1 E)	760,646.00	32° 6′ 59.294 N	103° 37' 29.893 W
FTP (Audacious 19 Fed - plan hits target cent - Point	0.00 ter	0.00	11,325.2	446.0	96.0	406,610.00	763,645.00	32° 6′ 56.931 N	103° 36' 55.040 W
PBHL (Audacious 19 Fe - plan hits target cen - Point	0.00 ter	0.00	11,590.0	-7,275.0	144.0	398,889.00	763,693.00	32° 5′ 40.525 N	103° 36' 55.080 W

Lea County, NM (NAD 83 NME)

Audacious 19 Fed #583H

Plan #0.5

700-

1050-

1400-

3500-

3850-

4200-

4900-

5250-

Depth 2600

6300-

Azimuths to Grid North True North: -0.38° Magnetic North: 5.90°

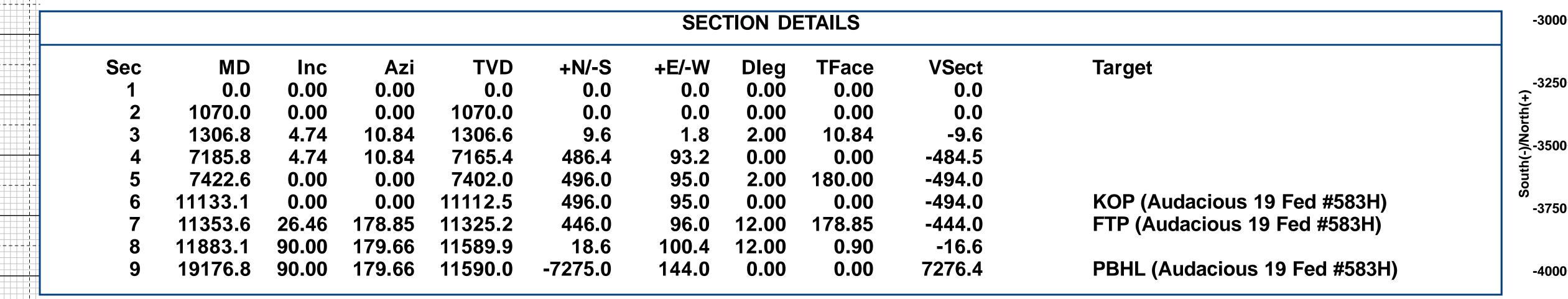
Magnetic Field Strength: 46988.2nT Dip Angle: 59.66° Date: 3/10/2025 Model: IGRF2025

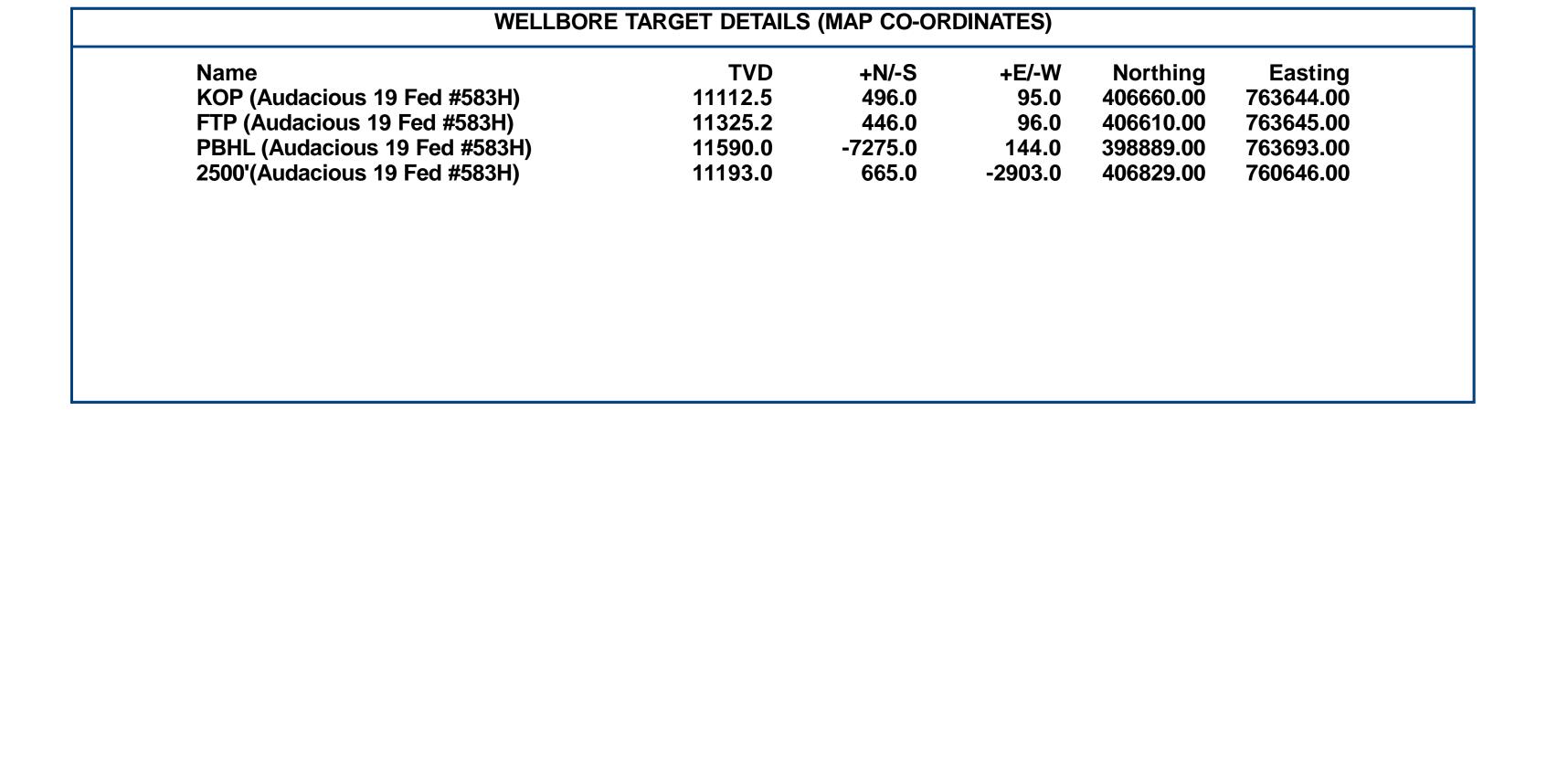
To convert a Magnetic Direction to a Grid Direction, Add 5.90°
To convert a Magnetic Direction to a True Direction, Add 6.28° East
To convert a True Direction to a Grid Direction, Subtract 0.38°

PROJECT DETAILS: Lea County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983 Datum: North American Datum 1983 Ellipsoid: GRS 1980 **Zone: New Mexico Eastern Zone**

System Datum: Mean Sea Level


WELL DETAILS: #583H


3460.0

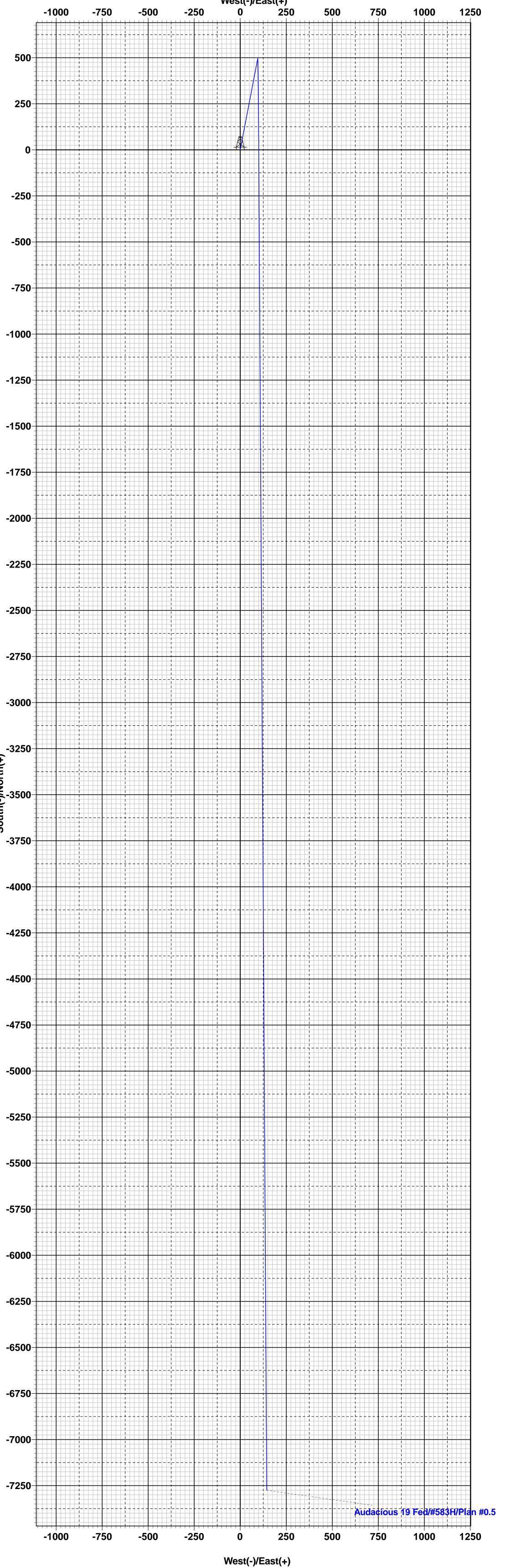
Latittude

KB 26 @ 3486.0usft **Northing Easting** 406164.00 763549.00 32° 6′ 52.524 N

Longitude 103° 36' 56.191 W

. - - - - - - -

. + + + + +


4500

|-|-|----

-|-|- |- |- |-

+ - - - - - -

- |- |- |- |- |- |- |-

- + + + + + +

++++--

2100

- |- |- |- |- |- |- |-

. |- |- |- |- |- |- |-

- + + + + + - - -

. |- |- |- |- |- |- |-

10150

10500

10850-

11200-

EOG Batch Casing

Pad Name: Audacious 19 Fed SHALLOW Sundry

SHL: Section 19, Township 25-S, Range 33-E, LEA County, NM

EOG requests for the below wells to be approved for all designs listed in the Blanket Casing Design ('EOG BLM Variance 5a - Alternate Shallow Casing Designs.pdf' OR 'EOG BLM Variance 5b - Alternate Deep Casing Designs.pdf') document. The MDs and TVDs for all intervals are within the boundary conditions. The max inclination and DLS are also within the boundary conditions. The directional plans for the wells are attached separately.

Well Name	API #	Sur	face	Intern	nediate	Production	
vv en Ivanie	A11#	MD	TVD	MD	TVD	MD	TVD
Audacious 19 Fed #583H (582H)	30-025-****	1,014	1,014	4,929	4,908	19,177	11,590
Audacious 19 Fed #584H (Audacious 30 Fed Com 208H)	30-025-52358	1,014	1,014	5,011	4,908	19,254	11,590

EOG Batch Casing

Variances

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 2a Intermediate Bradenhead Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 3e BOP Break-test and Offline Surface and Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

EOG Batch Casing

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	910'
Tamarisk Anhydrite	989'
Top of Salt	1,224'
Base of Salt	4,808'
Lamar	4,891'
Bell Canyon	4,913'
Cherry Canyon	5,958'
Brushy Canyon	7,404'
Bone Spring Lime	9,039'
Leonard (Avalon) Shale	9,090'
1st Bone Spring Sand	10,030'
2nd Bone Spring Shale	10,224'
2nd Bone Spring Sand	10,579'
3rd Bone Spring Carb	10,987'
3rd Bone Spring Sand	11,721'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Bell Canyon	4,913'	Oil
Cherry Canyon	5,958'	Oil
Brushy Canyon	7,404'	Oil
Leonard (Avalon) Shale	9,090'	Oil
1st Bone Spring Sand	10,030'	Oil
2nd Bone Spring Shale	10,224'	Oil
2nd Bone Spring Sand	10,579'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting surface casing at 1,020' and circulating cement back to surface.

Audacious 19 Fed 583H (FKA 582H) API #: 30-025-**** Variances

EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.
- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.
- Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).- Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.
- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

- EOG BLM Variance 3e BOP Break-test and Offline Surface and Intermediate Cement
- EOG BLM Variance 3d Production Offline Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

Offline Production Cement Variance

EOG Offline Production Checklist

Offline Checklist

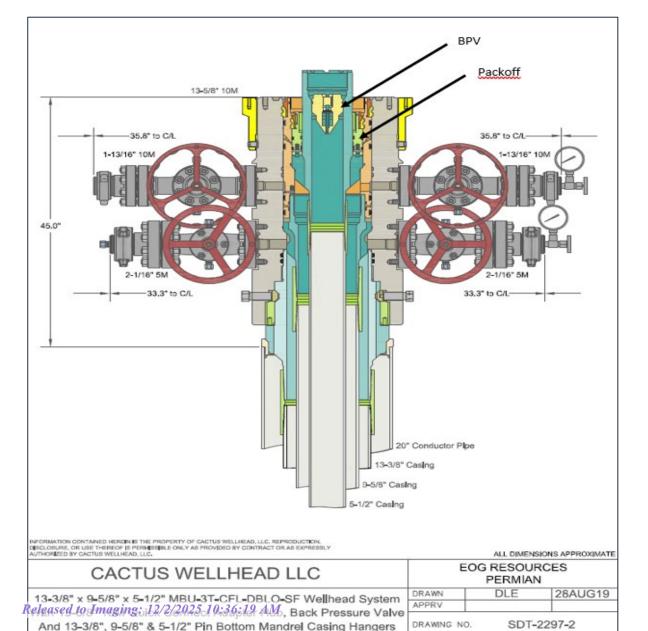
All items below must be met. If not, the production cement will be done online.

- 1. Offline production cement jobs must be above the Atoka formation.
- Nothing out of the ordinary observed during drilling, tripping or casing running operations in the Production Hole Section.
- 3. Casing must be landed with Hanger.
- EOG Company Man and Superintendent with Well Control certification must be present to monitor returns.
- 5. EOG Cement Advisor must be present to oversee the Cement Job.
- 6. Rig Manager is responsible for walking the rig to the next well.
- 7. The BOP will NOT be nippled down if:
 - ANY barrier fails to test.
 - ANY offset frac operations are observed within 1 mile and within the same producing horizon.
- After all barriers test and the BLM has been notified, the BOP may be nippled down to proceed with offline operations.
- EOG will not Drill out of the next well until Cement Operations have concluded on the offline well.

Received by OCD: 9/19/2025 7:10:15 AM

Page 32 of 96

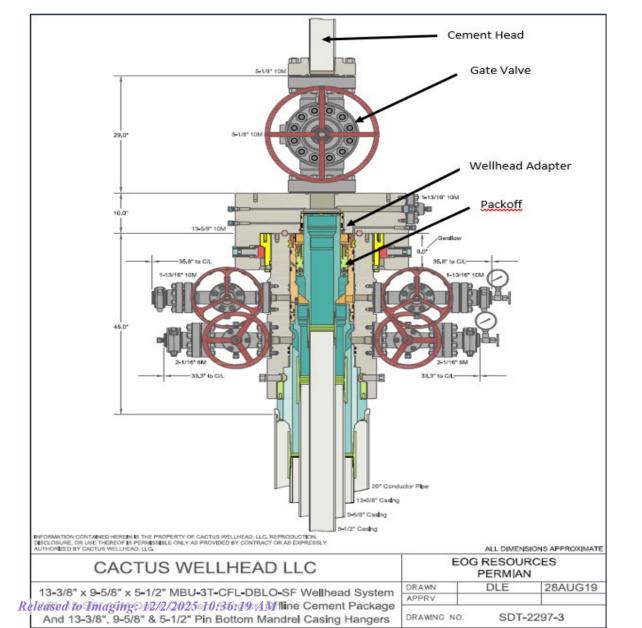
Offline Procedure


- 1. Run casing as per normal operations. Review EOG Offline Requirements Checklist, if the well is a candidate for Offline Cement on the Production continue following this procedure. Conduct negative pressure test while running casing and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to 15,000 psi.
- 2. Land production casing on mandrel hanger.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
 - b. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff rated to 10,000 psi. Pressure test same to 10,000 psi.
 - c. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 10,000 psi. Remove landing joint.
- 3. Install back pressure valve in the casing for a 3rd casing barrier.
 - a. Back pressure valve rated to a minimum of 10,000 psi.
- 4. With the well Secured and BLM notified; Nipple down BOP and secure on hydraulic carrier or cradle and Skid/Walk rig to next well on pad.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded.
 - b. Note, EOG Company Man and Cement Advisor will oversee Cementing Operations while Rig Manager walks the rig and nipples up the BOP.
 - c. Note, EOG will not drill out of the subsequent well until after plug bump.
- 5. Install 10M Gate Valve, with Wellhead Adapter.
 - This creates an additional barrier on the annulus and inside the casing.
 - b. Gate valve rated to a minimum of 10,000 psi.
- 6. Test connection between Wellhead Adapter seals against hanger neck and ring gasket to 10,000 psi.
- 7. Remove backpressure valve from the casing.
- 8. Rig up cement head and cementing lines.
- 9. After rig up of cement head and cement lines, and confirmation of the annular barriers and casing barriers, notify the BLM with intent to proceed offline cementing.
- 10. Perform cement job.
- 11. *Note* Procedure continued on the next page.

eog

Offline Procedure

- 12. If an influx is noted during the Cement Job:
 - a. It is the Company Man and Superintendent's responsibility to maintain well control.
 - b. The aux manifold will be redirected to the rig's chokes.
 - c. Backpressure will be held on the well with the chokes to ensure well control is maintained through the remainder of the cement job while circulating out the influx.
 - d. If annular surface pressure approaches 90% tested pressure of the manifold or if circulating the influx out with the cementing pumps is not feasible, the well can be secured by closing the casing valves (10M).
 - e. Once cement is in place, we will close the casing valves and confirm the well is static and floats are holding.
 - f. If the floats fail, the gate valve (10M) or cement head (10M) can be closed to secure the well.
- 13. Confirm well is static and floats are holding after cement job.
- 14. Remove cement head.
- 15. Install back pressure valve.
- 16. Remove 10M Gate Valve and Wellhead Adapter.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi.


Offline Barrier Overview

Barriers in Place during removal of BOP					
Operation	Casing	Annulus			
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	Hydrostatic Barrier Mechanical 10M Packoff			

Barriers in Place during Offline Cementing of Production Casing					
Operation	Casing	Annulus			
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	Hydrostatic Barrier Mechanical Packoff 10M Wellhead Adapter			
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter			
Remove Cement Head	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Install BPV	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Remove 10M Gate Valve	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			
Nipple Up TA Cap	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			

Offline Barrier Overview

Barriers in Place during removal of BOP					
Operation	Casing	Annulus			
Nippling Down BOP	 BPV Hydrostatic Barrier Float Valves 	Hydrostatic Barrier Mechanical 10M Packoff			

Barriers in Place during Offline Cementing of Production Casing					
Operation	Casing	Annulus			
Pull BPV	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical Packoff 10M Wellhead Adapter 			
Install Cement Head	 Hydrostatic Barrier Float Valves 10M Gate Valve 	 Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter 			
Cement Job	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 	Hydrostatic Barrier Mechanical 10M Packoff 10M Wellhead Adapter			
Remove Cement Head	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Install BPV	1. Float Valves 2. 10M Gate Valve	Hydrostatic Barrier Mechanical 10M Packoff 3. 10M Wellhead Adapter			
Remove 10M Gate Valve	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			
Nipple Up TA Cap	 Float Valves BPV 	Hydrostatic Barrier Mechanical 10M Packoff			

Received by OCD: 9/19/2025 7:10:15 AM

Page 36 of 96

More Control: Meeting/Exceeding Barrier Requirements

Casing Barriers – Online vs Offline						
Operation	Online	Offline				
Install Cement Head	 Hydrostatic Barrier Float Valves 	 Hydrostatic Barrier Float Valves 10M Gate Valve 				
Cement Job	 Hydrostatic Barrier Float Valves Cement Head 	 Hydrostatic Barrier Float Valves 10M Gate Valve Cement Head 				
Remove Cement Head	1. Float Valves	 Float Valves 10M Gate Valve 				
Install BPV & Nipple Down BOP / Offline Adapter	1. Float Valves	 Float Valves BPV 				
Nipple Up TA Cap	1. Float Valves	 Float Valves BPV 				

Annulus Barriers – Online vs Offline					
Operation	Online	Offline			
Install Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 			
Cement Job	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 			
Remove Cement Head	 Hydrostatic Barrier Annular VBR 	 Hydrostatic Barrier Mechanical Pack-off 10M Wellhead Adapter 			
Install BPV & Nipple Down BOP / Offline Adapter	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off 			
Nipple Up TA Cap	 Hydrostatic barrier Mechanical Pack-off 	 Hydrostatic Barrier Mechanical Pack-off 			

Page 37 of 96 Received by OCD: 9/19/2025 7:10:15 AM

Return Rig Up Diagram

Offline Online Annular Tested: Lines Tested: 5000psi f/10min 5000psi f/10min 250psi f/10min 250psi f/10min ~5-30days Before every job Aux Choke Manifold Kill line Pits Rig Choke Rig Choke Kill line Open Top Manifold Manifold Note:

- 1) Have the Rig's same Well Control Capabilities as Online
- 2) Have more flexibility with Gate Valve than with a Landing Joint through BOP 3) Released to Imaging: 12/2/2025 10:36:19 AM Never had to circulate out a kick during Offline

Received by OCD: 9/19/2025 7:10:15 AM

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

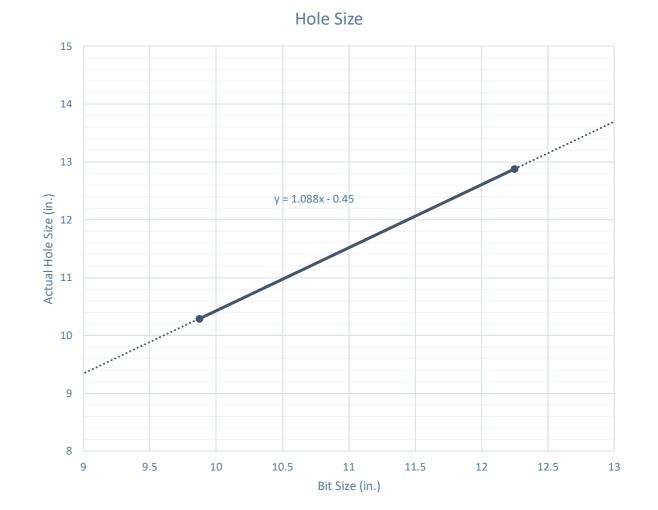
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

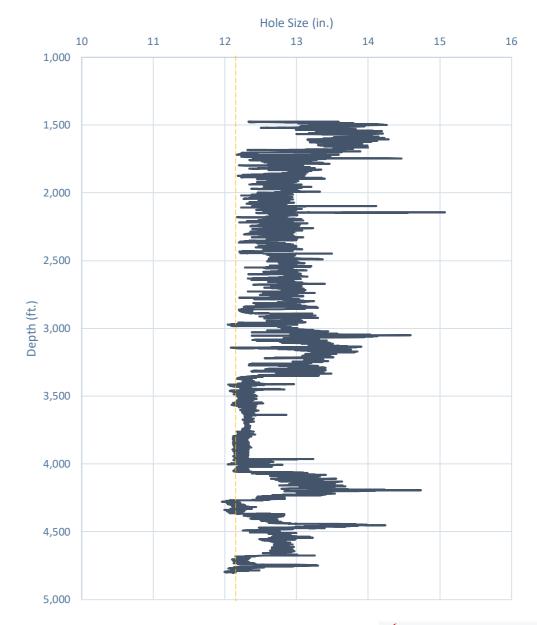

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

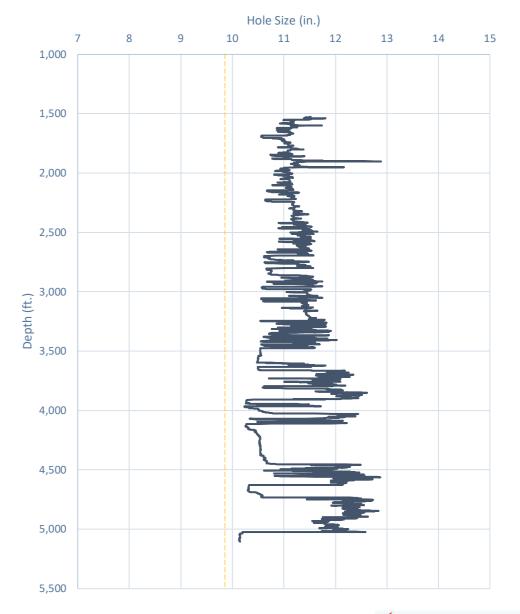


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

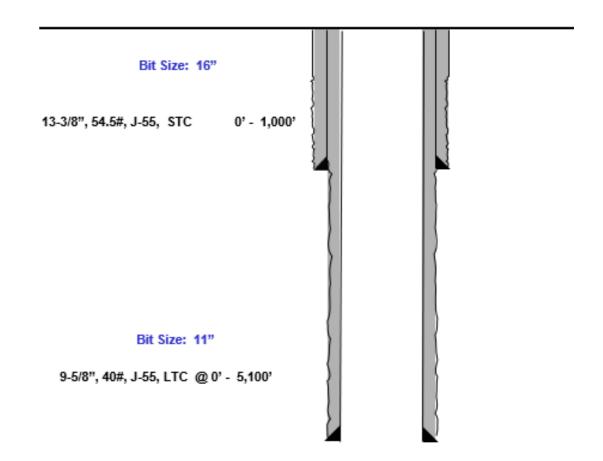
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

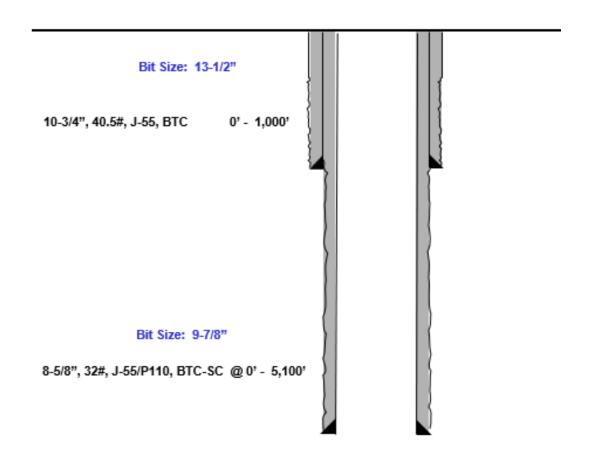
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{2}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 9/19/2025 7:10:15 AM

Page 46 of 96

Index

Released to Imaging: 12/2/2025 10:36:19 AM

Received by OCD: 9/19/2025 7:10:15 AM

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters									
Size	9.625	in	Minimum Yield	55	ksi				
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi				
Grade	K55 HC		Yield Load	629	kips				
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips				
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi				
Nominal ID	8.835	in	Collapse Pressure	3600	psi				
Drift Diameter	8.750	in			1				

Connection Parameters								
Connection OD	10.625	in						
Coupling Length	10.500	in						
Threads Per Inch	8	tpi						
Standoff Thread Turns	3.50	turns						
Make-Up Loss	4.750	in						
Min. Internal Yield Pressure	3,950	psi						

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

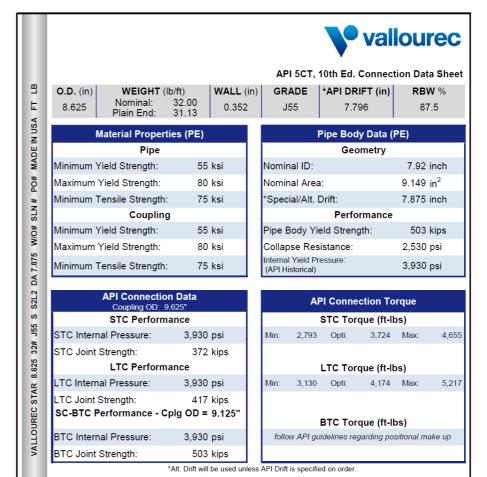
New Search 10

USC Metric

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength	-	909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ft-lbs
Maximum Make-Up Torque	-	-	-	6,430	ft-lbs

Nom. Pipe Body Area

Page 48 of 96 Received by OCD: 9/19/2025 7:10:15 AM


Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric

6/8/2015 10:14:05 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50		-		lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength		700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque				3,150	ft-lbs
Maximum Make-Up Torque		-	-	5,250	ft-lbs

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings. ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT. SPECIAL INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Shallow Design Boundary Conditions									
	Deepest	Deepest	Max Inc	Max DLS					
	MD (ft)	TVD (ft)	(deg)	(°/100usft)					
Surface	2030	2030	0	0					
Intermediate	7793	5650	40	8					
Production	28578	12000	90	25					

Shallow Design A

4. CASING PROGRAM

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

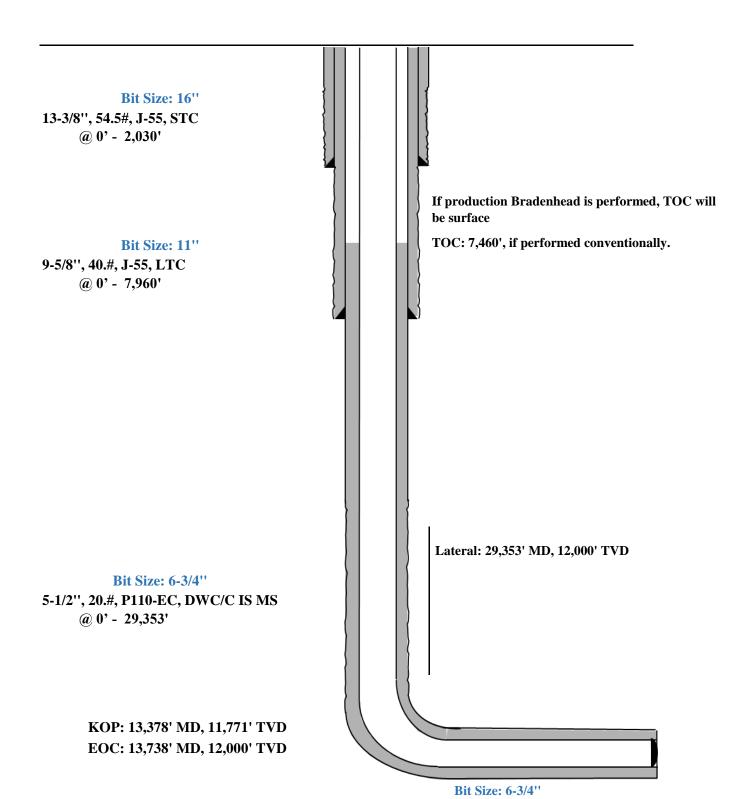
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

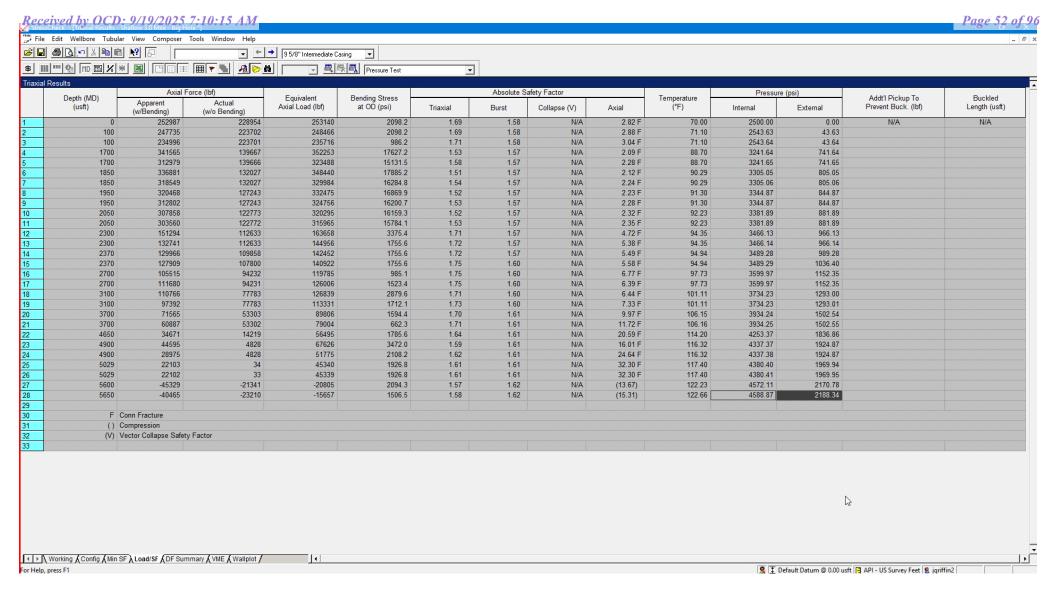
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

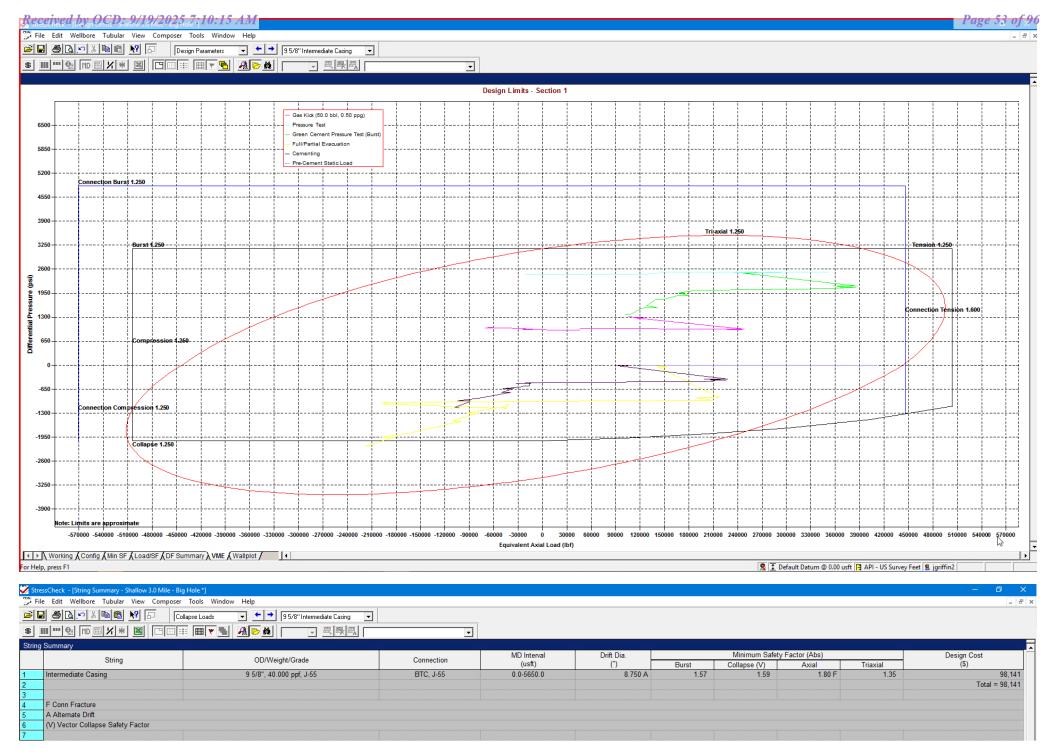

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

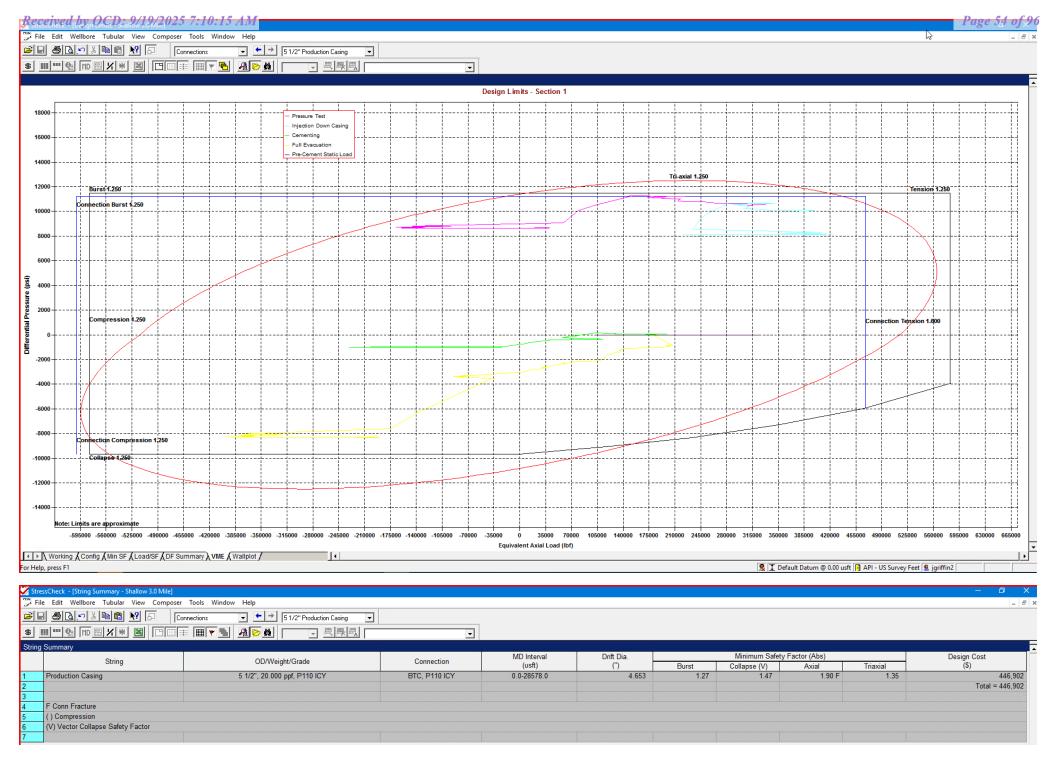


Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 31

Shallow Design B

4. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,161	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,951	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	29,353	0	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

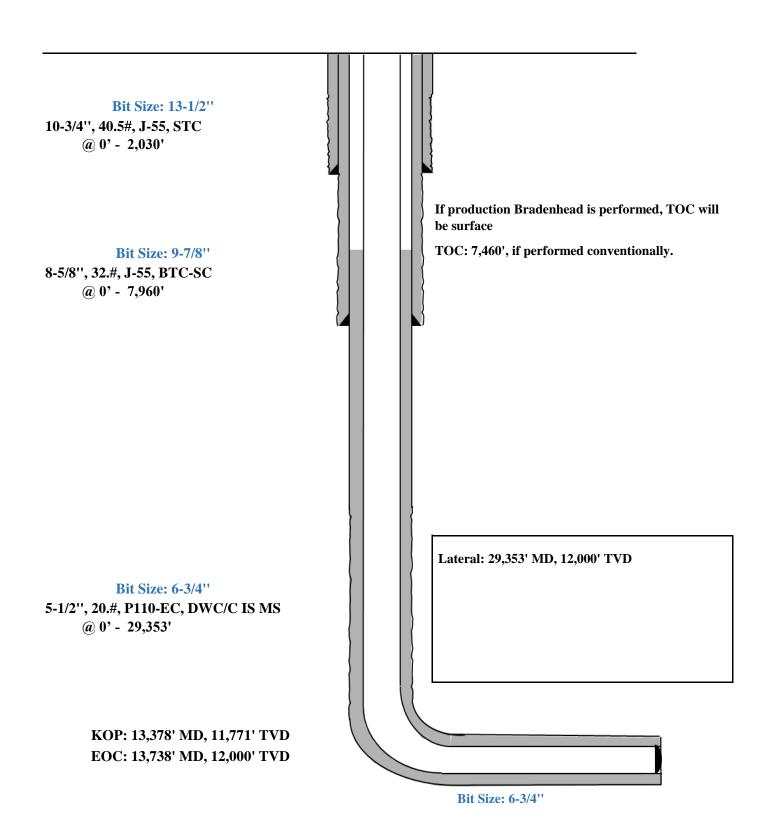
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

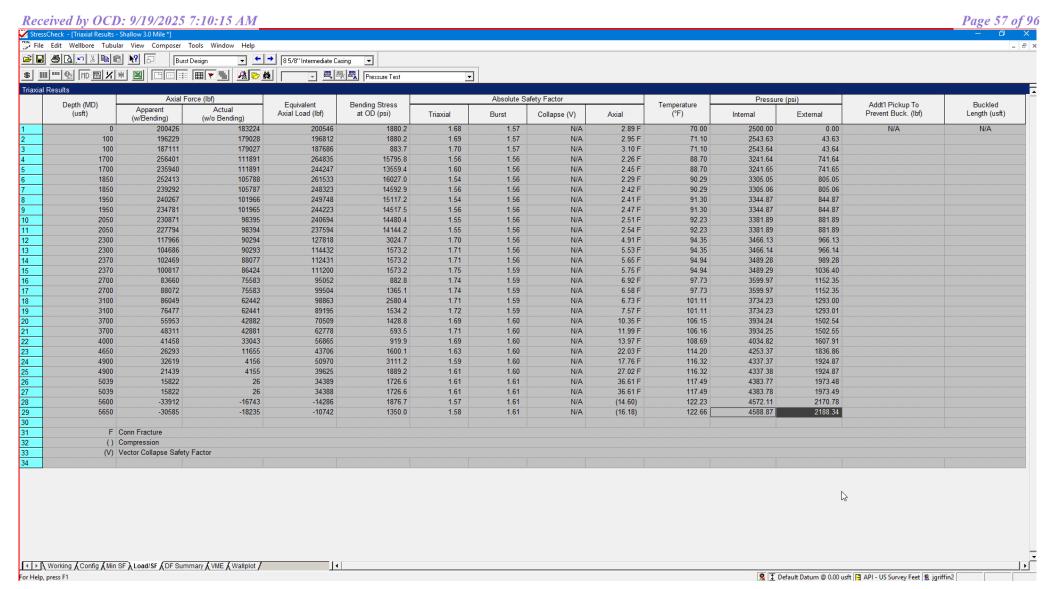
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

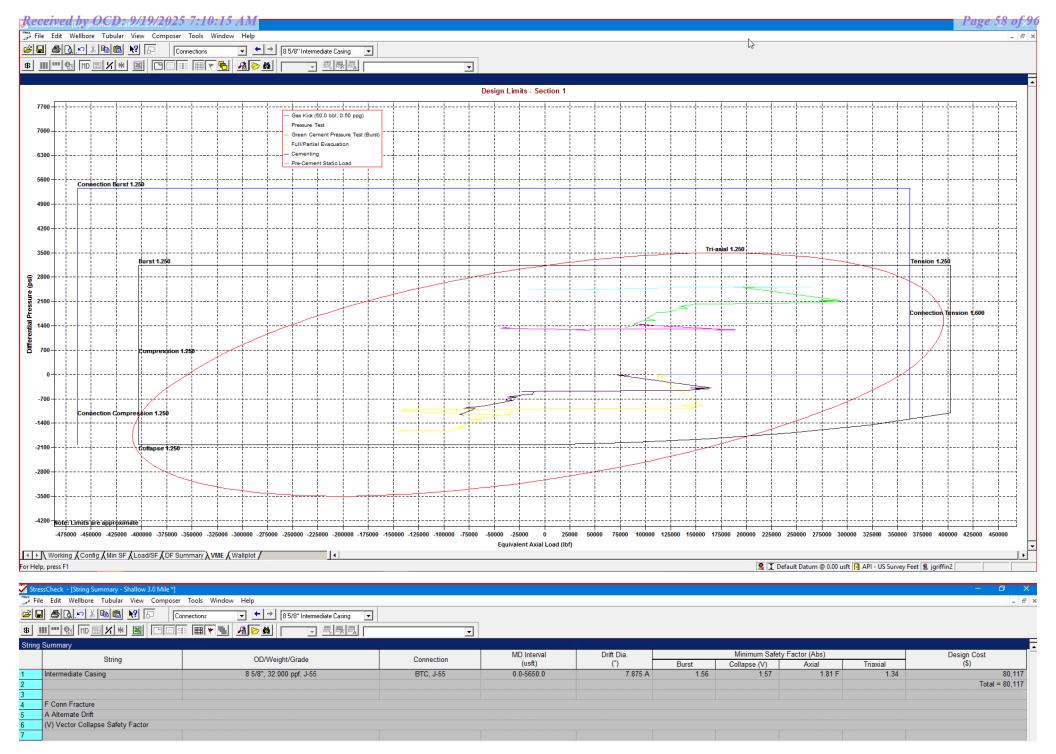

		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 10-3/4''	530	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	140	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 8-5/8"	470	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 5-1/2"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	1480	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

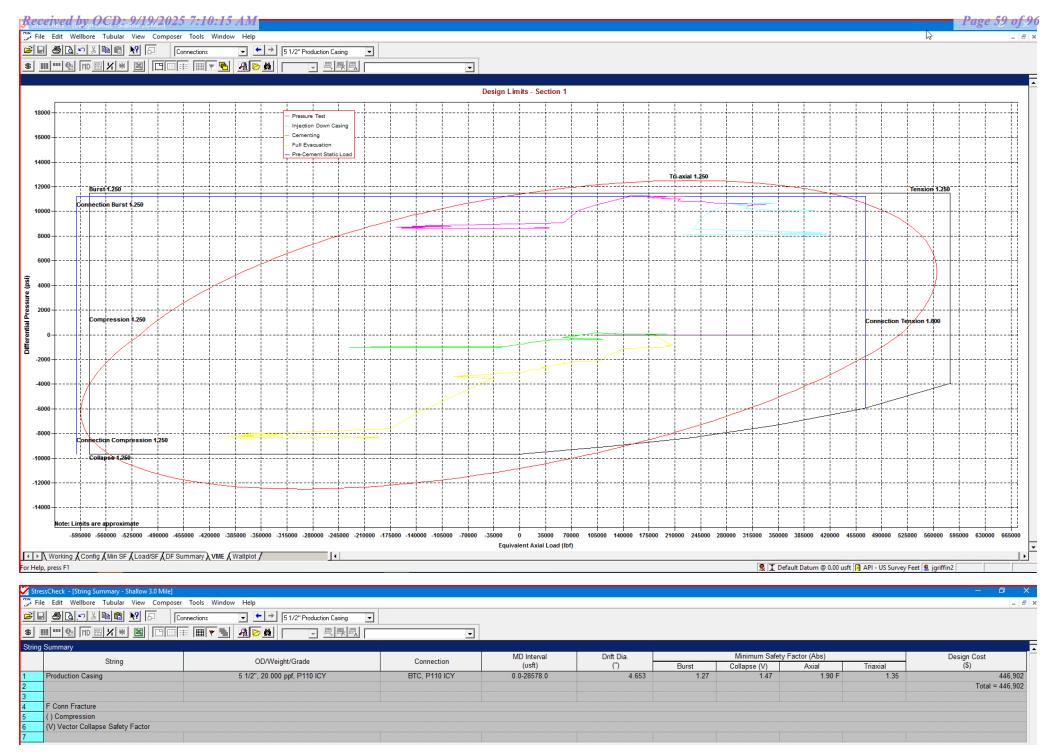


Shallow Casing Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 31

Released to Imaging: 12/2/2025 10:36:19 AM

Shallow Design C

4. CASING PROGRAM

Hole	Interv	al MD	Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	29,353	0	12,000	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

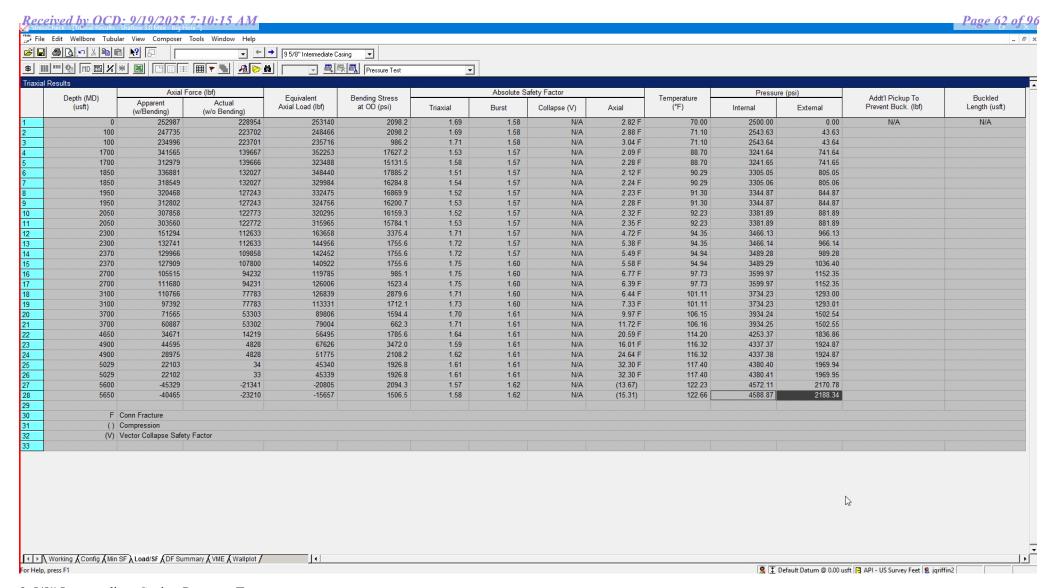
Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

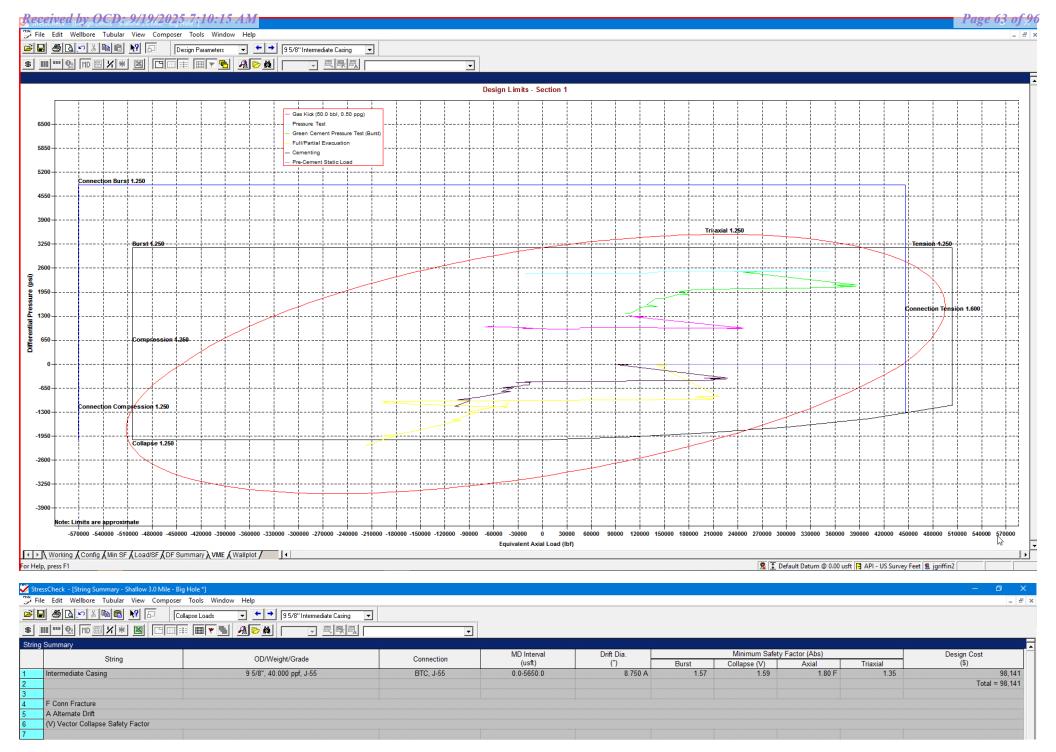
		Wt.	Yld	Slurry Description
Depth	No. Sacks	ppg	Ft3/sk	Sidify Description
2,030' 13-3/8''	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)

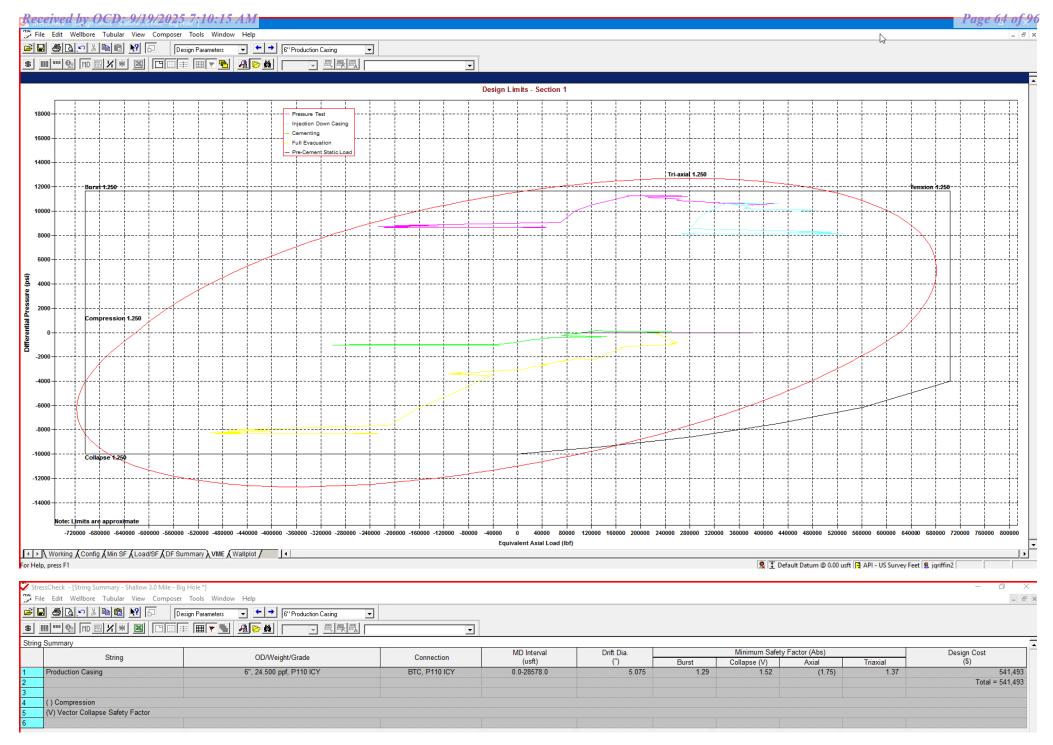


Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,161	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,951	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	13,278	0	11,671	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	13,278	29,353	11,671	12,000	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

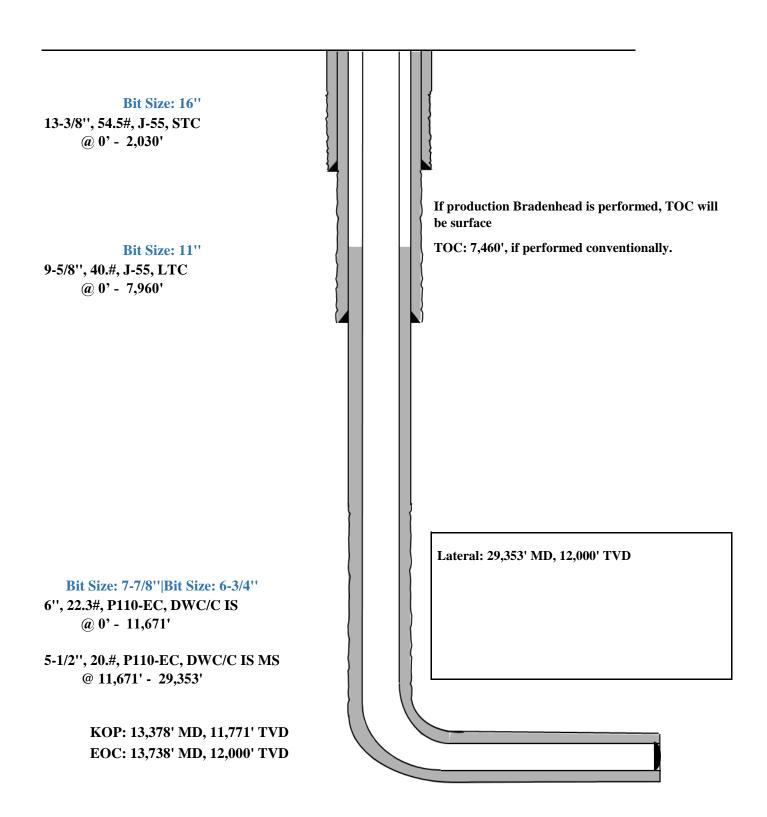
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

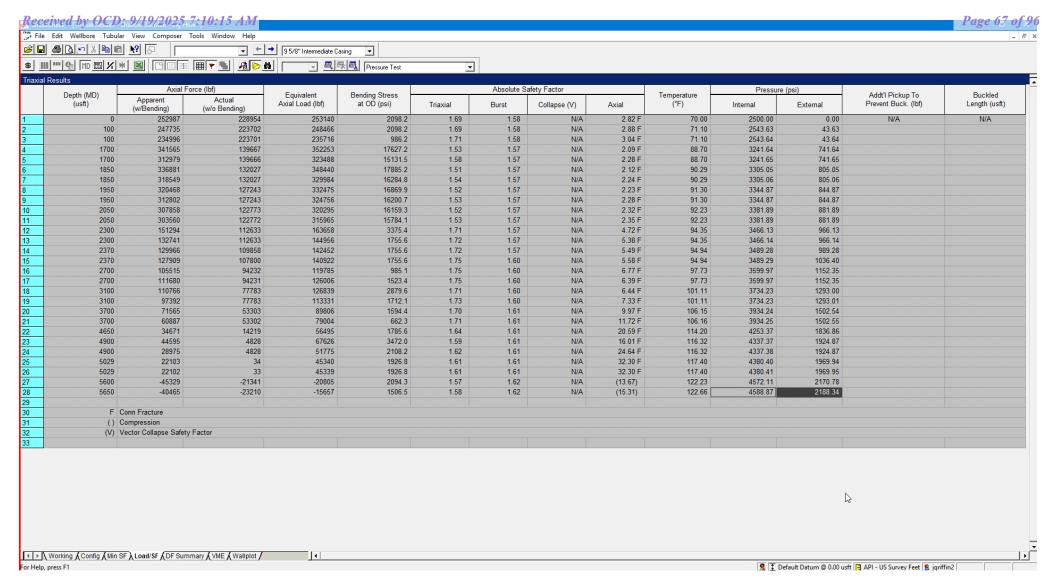
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

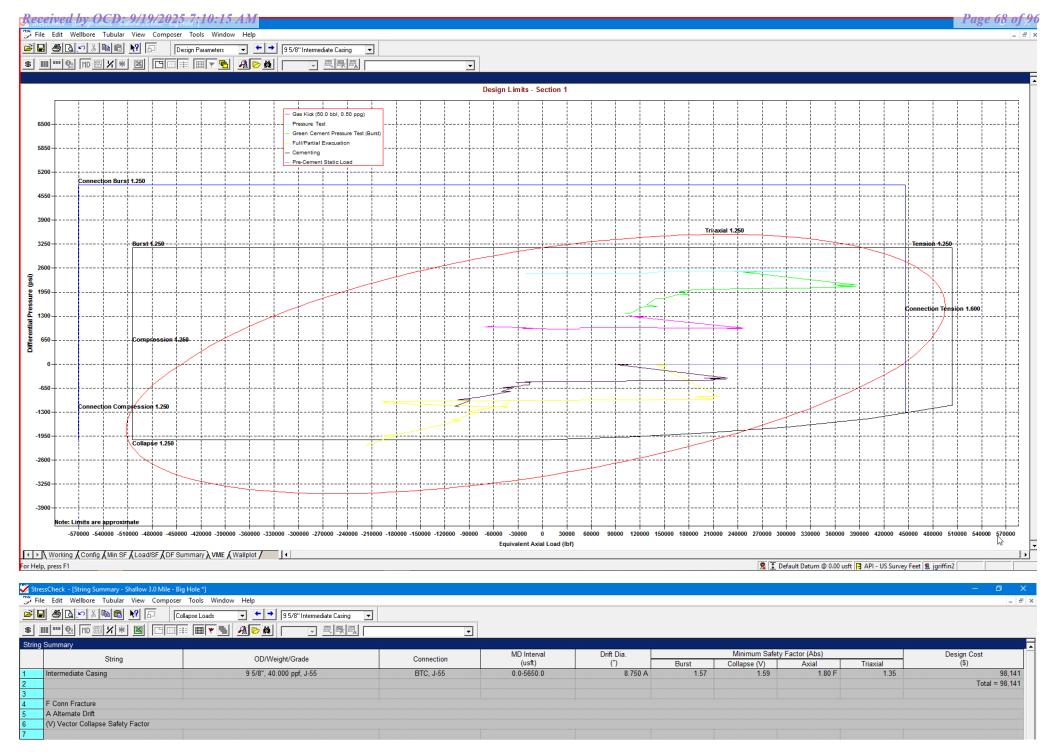

		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk		
2,030' 13-3/8"	570	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello- Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')	
8,050' 9-5/8"	760	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)	
	250	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6360')	
29,353' 6"	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)	
	2500	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ Top of Brushy)	

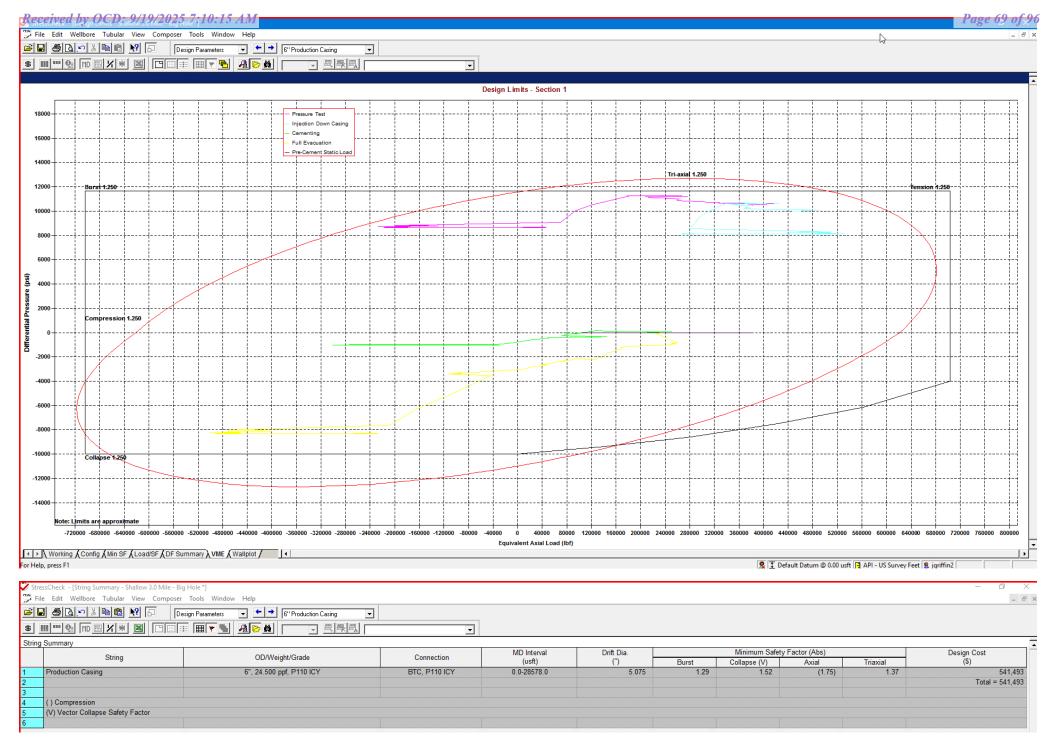


Shallow Design D

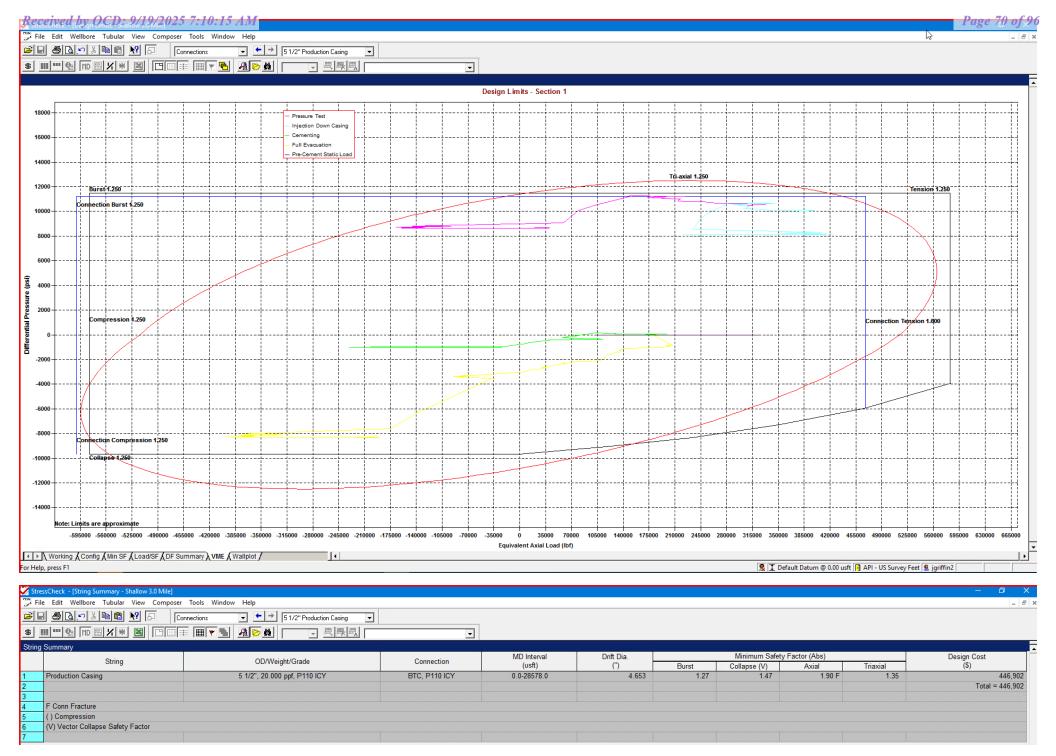
Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 31

Shallow Casing Design E

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	2,025	0	2,025	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,645	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	12,626	0	10,896	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

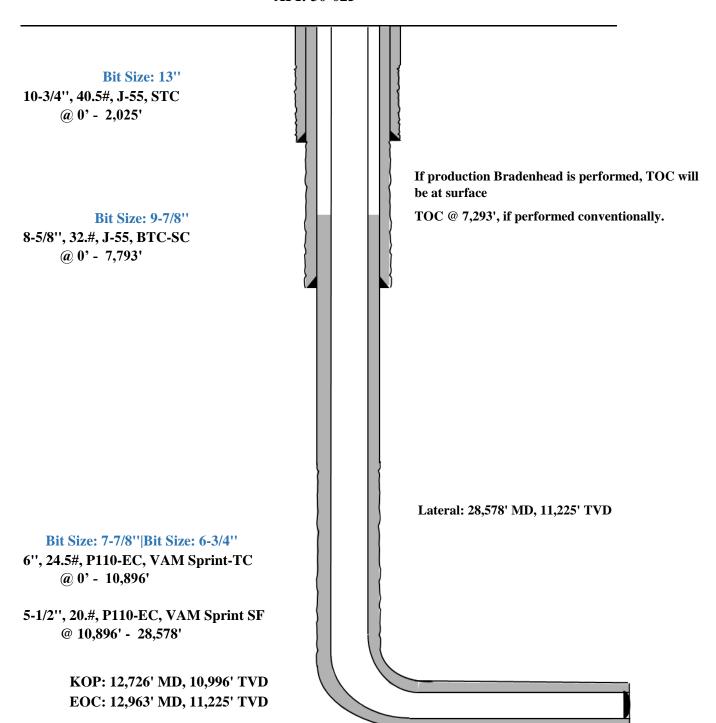
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

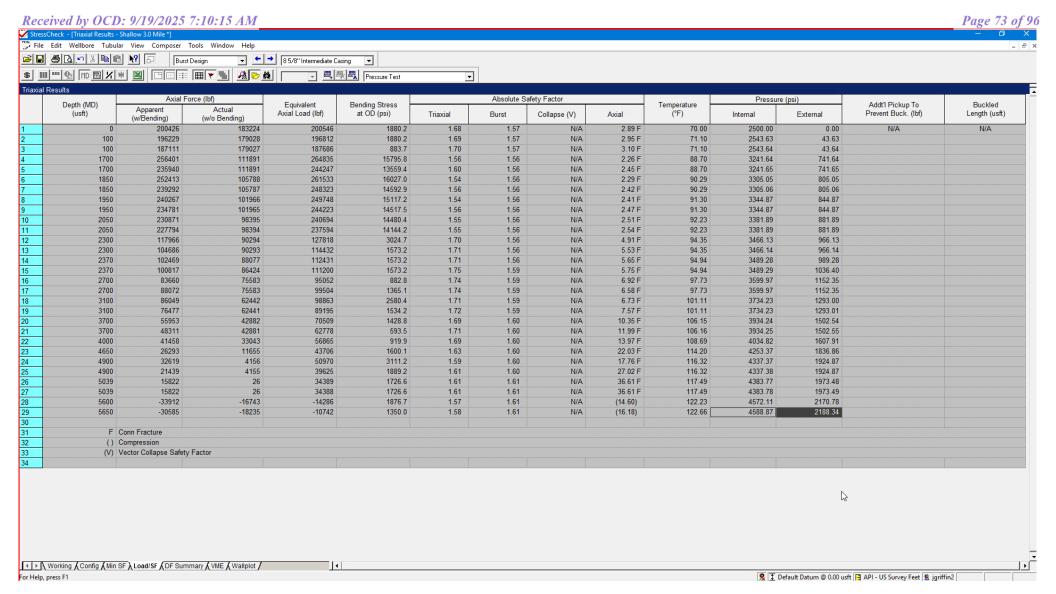
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

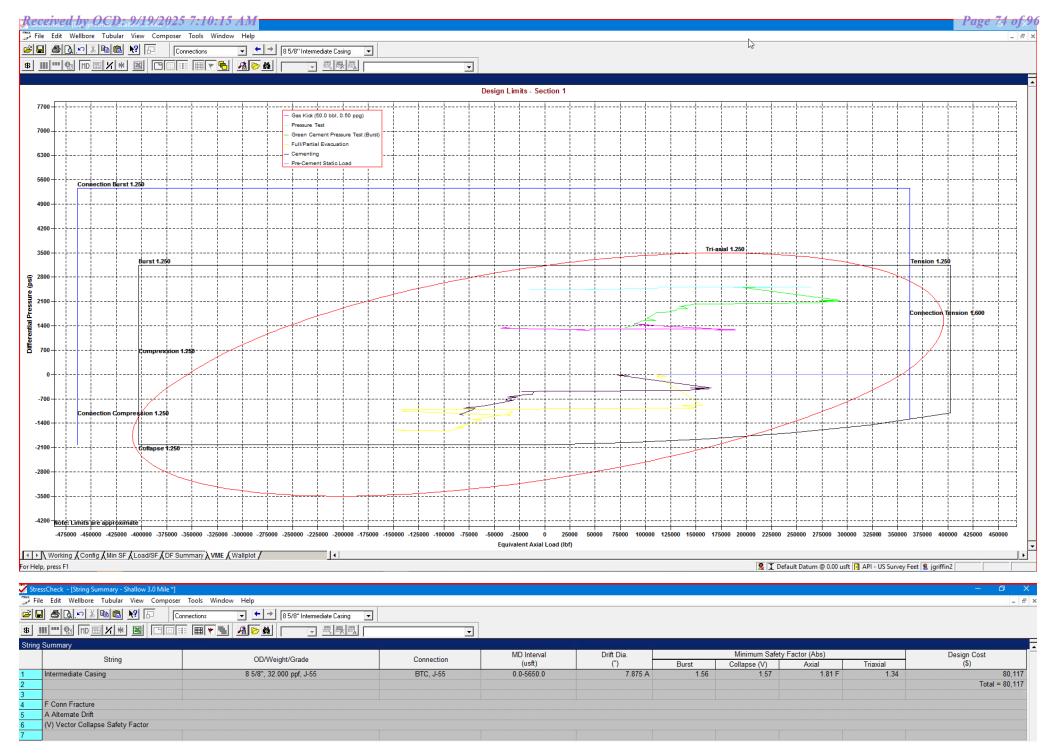

Depth	No. Sacks	Wt.	Yld Ft3/sk	Slurry Description
2,030' 10-3/4"	450	13.5	1.73	Lead: Class C/H + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	120	14.8	1.34	Tail: Class C/H + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1830')
7,890' 8-5/8"	460	12.7	2.22	Lead: Class C/H + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)
	210	14.8	1.32	Tail: Class C/H + 10% NaCL + 3% MagOx (TOC @ 6234')
28,578'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (TOC @ surface)
	2410	13.2	1.52	Tail: Class C/H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 8140')

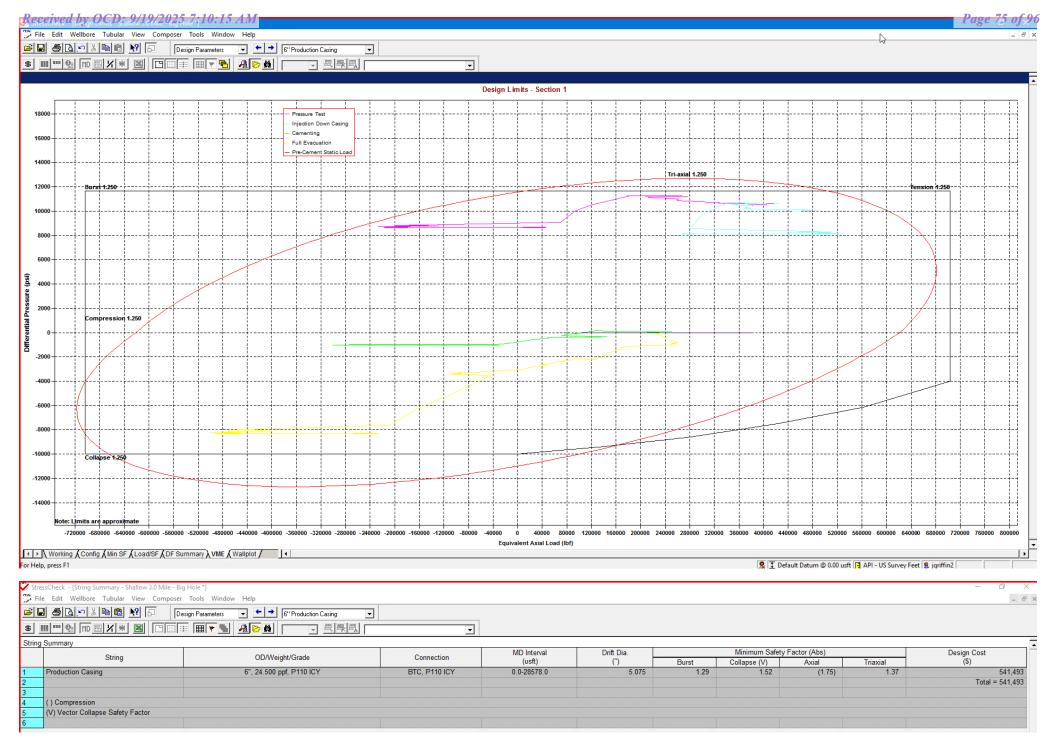

Shallow Casing Design E

Proposed Wellbore

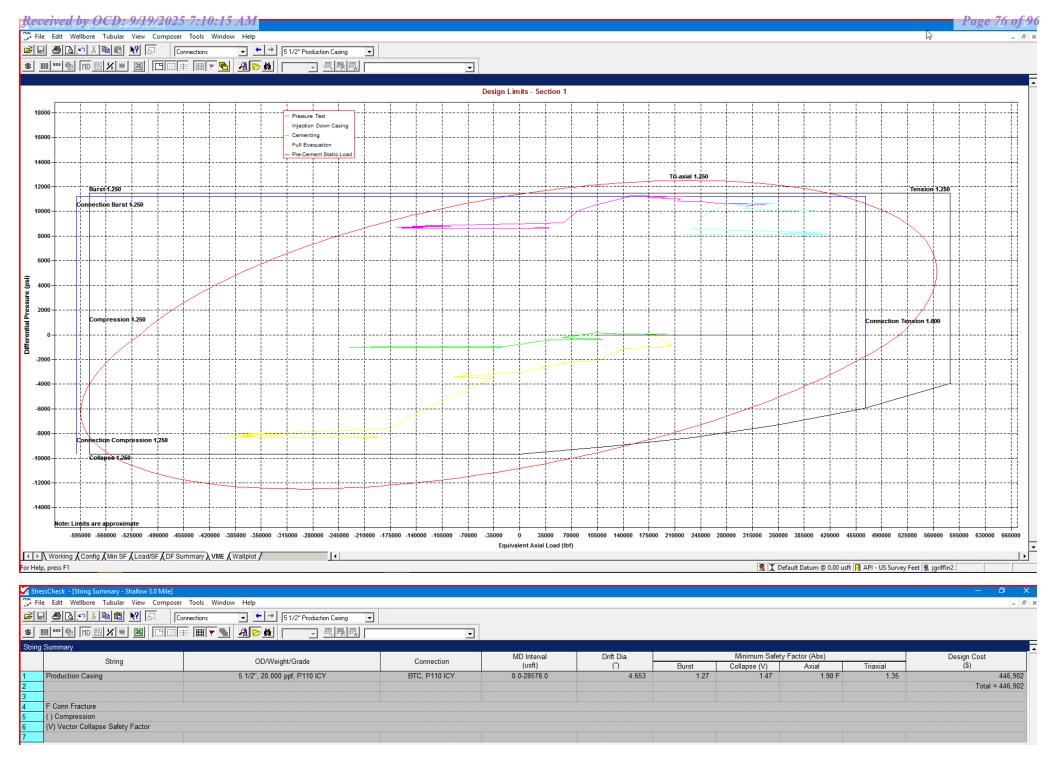
KB: 3558' GL: 3533'

API: 30-025-****




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 28 of 31

Shallow Casing Design 501H

Additive	Purpose	
Bentonite Gel	Lightweight/Lost circulation prevention	
Calcium Chloride	Accelerator	
Cello-flake	Lost circulation prevention	
Sodium Metasilicate	Accelerator	
MagOx	Expansive agent	
Pre-Mag-M	Expansive agent	
Sodium Chloride	Accelerator	
FL-62	Fluid loss control	
Halad-344	Fluid loss control	
Halad-9	Fluid loss control	
HR-601	Retarder	
Microbond	Expansive Agent	

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the production casing string with the first stage being pumped conventionally with the calculated top of cement at the top of the Brushy Canyon and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

Appendix A - Spec Sheets

New Search »					« Back to Previous Lis
					USC Metric
6/8/2015 10:04:37 AM					
Mechanical Properties	Ріре	втс	LTC	STC	
Minimum Yield Strength	55,000	2.	_	_	psi
Maximum Yield Strength	80,000	-		I :=:	psi
Minimum Tensile Strength	75,000		_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375		14.375	in.
Wall Thickness	0.380	B 1	:=21	. 	in.
Inside Diameter	12.615	12.615	21	12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	¥		-	-	in.
Nominal Linear Weight, T&C	54.50	-			lbs/ft
Plain End Weight	52.79			24	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00		_	-	1000 lbs
Joint Strength	-	909		514	1000 lbs
Reference Length	=	11,125		6,290	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-		: ::	3,860	ft-lbs
Released to Imaging: 12/2/2025 10:36:19 AM Maximum Make-Up Torque	_		_	6,430	ft-lbs

New Search »

« Back to Previous List

USC Metric 6/8/2015 10:23:27 AM **Mechanical Properties** Pipe BTC LTC STC Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 psi Minimum Tensile Strength 75,000 psi **Dimensions** Pipe BTC LTC STC **Outside Diameter** 9.625 10.625 10.625 10.625 in.

Wall Thickness	0.395	-	#A		in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-		lbs/ft
Plain End Weight	38.97	<u> -</u>	-		lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00			*** *	1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length		11,898	8,665	7,529	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss		4.81	4.75	3.38	in.
Minimum Make-Up Torque	72	6.0	3,900	3,390	ft-lbs
Released to Imaging: 12/2/2025 10:36:19 AM Maximum Make-Up Torque	(144		6,500	5,650	ft-lbs

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00 WALL (in.) 0.361 GRADE VST P110EC

12,090

API DRIFT (in.) 4.653 RBW% 87.5 CONNECTION
DWC/C-IS MS

Plain End: 19.83

PIPE PROPERTIES		
Outside Diameter	5.500	in.
Inside Diameter	4.778	in.
Nominal Area	5.828	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	729	klb
Ultimate Strength	787	klb
Min. Internal Yield	14,360	psi

	CONNECTION PROPERTIES					
	Occupantian Towns	0 . 5				
١.	Connection Type	Semi-Prem	ium T&C			
١.	Connection O.D. (nom)	6.115	in.			
۱.	Connection I.D. (nom)	4.778	in.			
	Make-Up Loss	4.125	in.			
si	Coupling Length	9.250	in.			
si	Critical Cross Section	5.828	sq.in.			
si	Tension Efficiency	100.0%	of pipe			
b	Compression Efficiency	100.0%	of pipe			
b	Internal Pressure Efficiency	100.0%	of pipe			
si	External Pressure Efficiency	100.0%	of pipe			
si						

CONNECTION PERFORMANCES						
Yield Strength	729	klb				
Parting Load	787	klb				
Compression Rating	729	klb				
Min. Internal Yield	14,360	psi				
External Pressure	12,090	psi				
Maximum Uniaxial Bend Rating	104.2	°/100 ft				
Reference String Length w 1.4 Design Factor	26,040	ft				

	FIELD END TORQUE VALUES						
י	Min. Make-up torque	16,100	ft.lb				
)	Opti. Make-up torque	17,350	ft.lb				
י	Max. Make-up torque	18,600	ft.lb				
i	Min. Shoulder Torque	1,610	ft.lb				
i	Max. Shoulder Torque	12,880	ft.lb				
t	Min. Delta Turn	-	Turns				
t	Max. Delta Turn	0.200	Turns				
	Maximum Operational Torque	21,100	ft.lb				
	Maximum Torsional Value (MTV)	23,210	ft.lb				

Need Help? Contact: tech.support@vam-usa.com
Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

Collapse

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: VAMUSAsales@vam-usa.com
Tech Support Email: tech.support@vam-usa.com

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

SC Metric

|--|

Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Р1ре	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50	-	-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ptpe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,150	ft-lbs
Released to Imaging: 12/2/2025 10:36:19 AM Maximum Make-Up Torque	-	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)					
Pipe					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				
Coupling					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				

Pipe Body Data (PE)				
Geomet	ry			
Nominal ID:	7.92 inch			
Nominal Area:	9.149 in ²			
*Special/Alt. Drift:	7.875 inch			
Performa	nce			
Pipe Body Yield Strength:	503 kips			
Collapse Resistance:	2,530 psi			
Internal Yield Pressure: (API Historical)	3,930 psi			

API Connection Data Coupling OD: 9.625"					
STC Performa	nce				
STC Internal Pressure:	3,930	psi			
STC Joint Strength:	372	kips			
LTC Performa	LTC Performance				
LTC Internal Pressure:	3,930	psi			
LTC Joint Strength:	417	kips			
SC-BTC Performance - Cplg OD = 9.125"					
BTC Internal Pressure:	3,930	psi			
BTC Joint Strength:	503	kips			

	API Connection Torque							
	5	STC Tor	que (ft-lb	s)				
Min:	2,793	Opti:	3,724	Max:	4,655			
	L	_TC Tor	que (ft-lb	s)				
Min:	Min: 3,130 Opti: 4,174 Max: 5,217							
	_	OTO To:		\				
	BTC Torque (ft-lbs)							
follow API guidelines regarding positional make up								

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

Connection Data Sheet

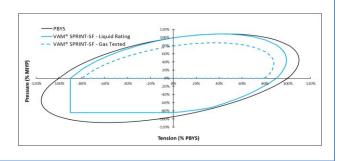
OD Weight (lb/ft) Wall Th. Grade API Drift: Connection
6 in. Nominal: 24.50 Plain End: 23.95

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection


PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	h Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral:	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES				
Tensile Yield Strength	801	klb		
Compression Resistance	801	klb		
Internal Yield Pressure	14,580	psi		
Collapse Resistance	12,500	psi		
Max. Structural Bending	83	°/100ft		
Max. Bending with ISO/API Sealability	30	°/100ft		

TORQUE VALUES				
Min. Make-up torque	21,750	ft.lb		
Opt. Make-up torque	24,250	ft.lb		
Max. Make-up torque	26,750	ft.lb		
Max. Torque with Sealability (MTS)	53,000	ft.lb		

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES			
Nominal OD	6.000	in.	
Nominal ID	5.280	in.	
Nominal Area	6.379	sq.in.	
Grade Type	API 5CT		
Min. Yield Strength	125	ksi	
Max. Yield Strength	140	ksi	
Min. Tensile Strength	135	ksi	
Yield Strength	797	klb	
Ultimate Strength	861	klb	
Min. Internal Yield Pressure	13,880	psi	
Collapse Pressure	9,800	psi	

CONNECTION PERFORMANCE	S	
Yield Strength	797	klb
Parting Load	861	klb
Compression Rating	797	klb
Min. Internal Yield	13,880	psi
External Pressure	9,800	psi
Maximum Uniaxial Bend Rating	47.7	°/100 ft
Reference String Length w 1.4 Design Factor	25,530	ft.

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	OPERTIES	
Connection Type	Semi-Pren	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VA	LUES	
Min. Make-up torque	17,000	ft.lb
Opti. Make-up torque	18,250	ft.lb
Max. Make-up torque	19,500	ft.lb
Min. Shoulder Torque	1,700	ft.lb
Max. Shoulder Torque	13,600	ft.lb
Min. Delta Turn	-	Turns
Max. Delta Turn	0.200	Turns
Maximum Operational Torque	24,200	ft.lb
Maximum Torsional Value (MTV)	26,620	ft.lb

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Revised Permit Information 12/03/2024:

Well Name: Audacious 19 Fed 583H; FKA Audacious 19 Fed 582H

Location: SHL: 2095' FSL & 1331' FWL, Section 19, T-25-S, R-33-E, LEA Co., N.M. BHL: 100' FSL & 1430' FWL, Section 30, T-25-S, R-33-E, LEA Co., N.M.

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13"	0	1,014	0	1,014	10-3/4"	40.5#	J-55	STC
9-7/8"	0	4,929	0	4,908	8-5/8"	32#	J-55	BTC-SC
7-7/8"	0	11,133	0	11,113	6"	24.5#	P110-EC	VAM Sprint-TC
6-3/4"	11,133	19,177	11,113	11,590	5-1/2"	20#	P110-EC	VAM Sprint SF

^{**}For highlighted rows above, variance is requested to run entire string of either 6" or 5-1/2" casing string above due to availablility.

Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

Depth	No Cooks	Wt.	Yld	Slurry Description	
TVD	No. Sacks	ppg	Ft3/sk		
1,014'	240	13.5	1.73	Lead: Class C/H + additives (TOC @ Surface)	
10-3/4''					
	120	14.8	1.34	Tail: Class C/H + additives (TOC @ 820')	
4,908'	300	12.7	2.22	Lead: Class C/H + additives + expansion additives (TOC @ Surface)	
8-5/8''					
	140	14.8	1.32	Tail: Class C/H + additives + expansion additives (TOC @ 3943')	
19,177'	1000	14.8	1.32	Bradenhead squeeze: Class C/H + additives + expansion additives (TOC	
6''				@ surface)	
5-1/2"	1390	13.2	1.52	Tail: Class C/H + additives (TOC @ 7,404')	

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

EOG requests variance from minimum standards to pump a two stage cement job on the 6" and 5-1/2" production casing strings with the first stage being pumped conventionally with the calculated top of cement at the Brushy Canyon (7,404') and the second stage performed as a 1000 sack bradenhead squeeze with planned cement from the Brushy Canyon to surface. If necessary, a top out consisting of 400 sacks of Class C/H cement + 3% Salt + 1% PreMag-M + 6% Bentonite Gel (1.32 yld, 14.8 ppg) will be executed as a contingency. Top will be verified by Echo-meter.

Bradenhead will be the primary option for production cementing. EOG also requests to have the conventional option in place to accommodate for logistical or wellbore conditions. The tie back requirements will be met if the cement is pumped conventionally, and cement volumes will be adjusted accordingly. TOC will be verified by CBL.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,014'	Fresh - Gel	8.6-8.8	28-34	N/c
1,014' – 4,908'	Brine	9.0-10.5	28-34	N/c
4,908' – 19,177'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

Variances requested include (supporting documents attached):

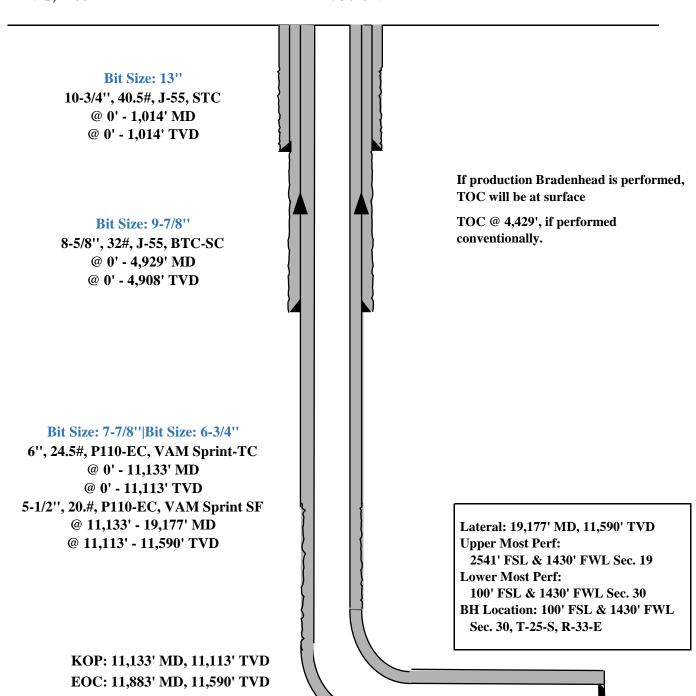
- BOP Break Testing for 5M Intervals (EOG BLM Variance 3e)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3e)
- Production Offline Cement (EOG BLM Variance 3_d)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)
- Alternate Shallow Casing Designs (EOG BLM Variance 5a)

8. TUBING REQUIREMENTS:

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS:

J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."


With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

2095' FSL Proposed Wellbore KB: 3485' GL: 3460'

1331' FWL Section 19

T-25-S, R-33-E API: 30-025-****

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	910'
Tamarisk Anhydrite	989'
Top of Salt	1,224'
Base of Salt	4,808'
Lamar	4,891'
Bell Canyon	4,913'
Cherry Canyon	5,958'
Brushy Canyon	7,404'
Bone Spring Lime	9,039'
Leonard (Avalon) Shale	9,090'
1st Bone Spring Sand	10,030'
2nd Bone Spring Shale	10,224'
2nd Bone Spring Sand	10,579'
3rd Bone Spring Carb	10,987'
3rd Bone Spring Sand	11,721'
TD	11,590'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Bell Canyon	4,913'	Oil
Cherry Canyon	5,958'	Oil
Brushy Canyon	7,404'	Oil
Leonard (Avalon) Shale	9,090'	Oil
1st Bone Spring Sand	10,030'	Oil
2nd Bone Spring Shale	10,224'	Oil
2nd Bone Spring Sand	10,579'	Oil

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Action 507426

COMMENTS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	507426
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

COMMENTS

Created By	Comment	Comment Date	
matthew.gomez	COA requiring NSP no longer applies.	12/2/2025	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 507426

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	507426
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
matthew.gome	Any previous COA's not addressed within the updated COA's still apply.	12/2/2025