Form 3160-5 (June 2019)

UNITED STATES DEPARTMENT OF THE INTERIOR

BUREAU OF LAND MANAGEMENT	
DUDEAU OF LAND MANAGEMENT	

BURI	EAU OF LAND MANAGEMI	5. Lease Serial No. NMNM04380016. If Indian, Allottee or Tribe Name			
Do not use this t	OTICES AND REPORTS Corm for proposals to drill Use Form 3160-3 (APD) for				
	TRIPLICATE - Other instructions or	7. If Unit of CA/Agree	eement, Name and/or No.		
1. Type of Well Oil Well Gas W	/ell Other			8. Well Name and No	DEEP ELEM 4 FED COM/775H
2. Name of Operator EOG RESOURG	_			O 4 DY YYY 11 3 Y	0-015-48260
		N /: 1 1	7)		
3a. Address 1111 BAGBY SKY LOB	BY 2, HOUSTON, TX 77(35. Phon (713) 65	e No. <i>(include ar</i> 51-7000	ea code)	10. Field and Pool or JENNINGS; BON	E SPRING, WEST
4. Location of Well (Footage, Sec., T.,R SEC 4/T26S/R31E/NMP	.,M., or Survey Description)			11. Country or Parish EDDY/NM	ı, State
12. CHE	CK THE APPROPRIATE BOX(ES) T	O INDICATE N	ATURE OF NOT	TICE, REPORT OR OT	HER DATA
TYPE OF SUBMISSION			TYPE OF AC	CTION	
Notice of Intent Subsequent Report	Acidize Alter Casing Casing Repair	Deepen Hydraulic Fracti	iring Rec	duction (Start/Resume) clamation complete	Water Shut-Off Well Integrity Other
Final Abandonment Notice	Change Plans Convert to Injection	Plug and Aband Plug Back	_	nporarily Abandon ter Disposal	
completion of the involved operation completed. Final Abandonment Not is ready for final inspection.) EOG respectfully requests an Deep Elem 4 Fed Com 592H (Change name from Deep Elem Change BHL from T-26-S, R-3 to T-26-S, R-31-E, Sec 16, 100 Change target formation to Se	amendment to our approved APD for all required amendment to our approved APD for a fixed proved APD for a fixed pr	le completion or ements, including for this well to re	ecompletion in a reclamation, has select the follow	a new interval, a Form 3 ve been completed and	ast be filed within 30 days following 8160-4 must be filed once testing has been the operator has detennined that the site
14. I hereby certify that the foregoing is	true and correct. Name (Printed/Type				
STAR HARRELL / Ph: (432) 848-9	161	Title Reg	ulatory Specia	list	
Signature (Electronic Submission	on)	Date		02/29/2	2024
	THE SPACE FOR F	FEDERAL O	R STATE O	FICE USE	
Approved by			ENGINEER		03/10/2024
KEITH P IMMATTY / Ph: (575) 988 Conditions of approval, if any, are attacl certify that the applicant holds legal or ewhich would entitle the applicant to con	ned. Approval of this notice does not we equitable title to those rights in the sub		OADI ODAD)	Date

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

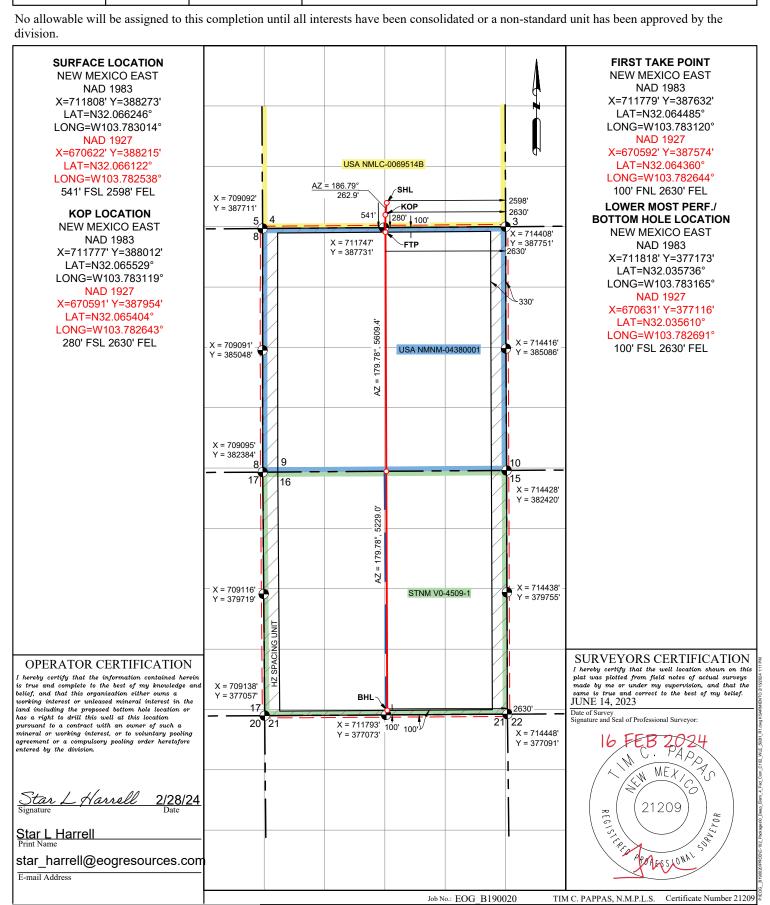
DISTRICT I

1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-0720

DISTRICT II
81 I S. First St., Artesia, NM 88210
Phone: (575) 348-1283 Fax: (575) 748-9720

DISTRICT III
1000 Rio Brazos Rd., Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170

DISTRICT IV
1220 S. St. Francis Dr., Santa Fc., NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462


State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

30-015-48	PI Number			Pool Code 97860		Pool Name Jennings; Bone Spring, West				
Property Code			Property Name Well Number						nber	
329970)		DEEP ELEM 4 FED COM 592H							
OGRID N			Operator Name Elevation							
7377			EOG RESOURCES, INC. 3279'						9'	
	Surface Location									
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
0	4	26 S	31 E		541	SOUTH	2598	EAST	EDDY	
			Botto	om Hole l	Location If Diff	erent From Surfac	e			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
0	16	26 S	31 E		100	SOUTH	2630	EAST	EDDY	
Dedicated Acres	Joint or	Infill	Consolidated Code Order No.							
1280			PENDING COM AGREEMENT							

Revised Permit Information 01/31/2024:

Well Name: Deep Elem 4 Fed Com 592H; FKA Deep Elem 4 Fed Com 775H

Location: SHL: 541' FSL & 2598' FEL, Section 4, T-26-S, R-31-E, Eddy Co., N.M.

BHL: 100' FSL & 2630' FEL, Section 16, T-26-S, R-31-E, Eddy Co., N.M.

1. CASING PROGRAM:

Hole	Interv	Interval MD		Interval TVD				
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	1,240	0	1,240	13-3/8"	54.5#	J-55	STC
11"	0	3,837	0	3,830	9-5/8"	40#	J-55	LTC
0"	0	21,259	0	10,616	5-1/2"	20#	P110-EC	DWC/C IS MS

Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

Depth	No. Sacks	Wt. ppg	Yld Ft3/sk	Slurry Description					
1,240' 13-3/8''	330	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)					
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 1,040')					
3,830' 9-5/8"	400	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @ Surface)					
	130	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 3,070')					
21,259' 5-1/2"	350	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC @ 3,330')					
	780	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5% NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @ 10140')					

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

3. MUD PROGRAM:

Depth (TVD)	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1,240'	Fresh - Gel	8.6-8.8	28-34	N/c
1,240' – 3,830'	Brine	9.0-10.5	28-34	N/c
3,830' – 21,259'	Oil Base	8.8-9.5	58-68	N/c - 6

4. VARIANCE REQUESTS:

EOG requests the additional variance(s) in the attached document(s):

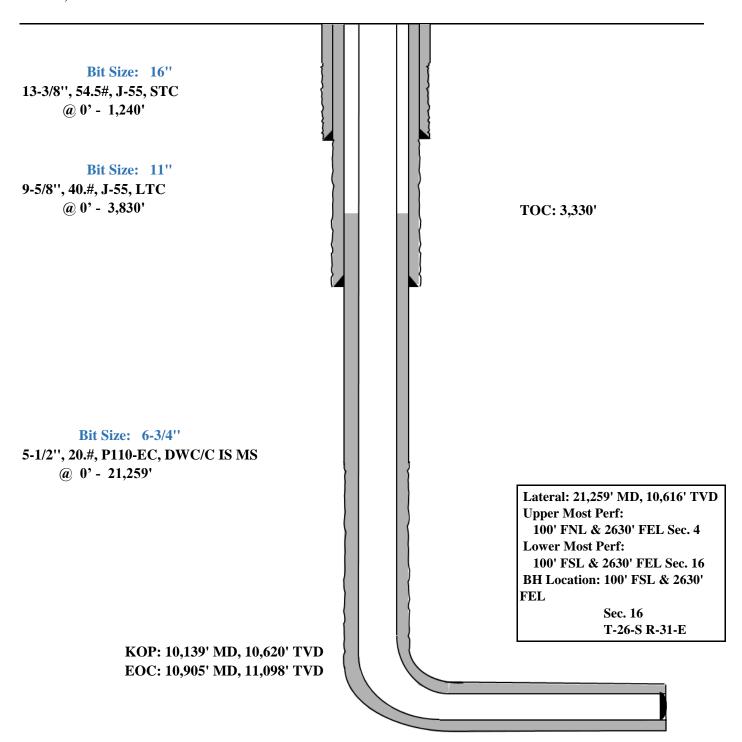
Variances requested include (supporting documents attached):

- BOP Break Testing for 5M Intermediate Intervals (EOG BLM Variance 3a_b)
- Offline Cementing for Surface and Intermediate Intervals (EOG BLM Variance 3a_b)
- Salt Interval Washout Annular Clearnace (EOG BLM Variance 4a)

5. TUBING REQUIREMENTS

EOG respectively requests an exception to the following NMOCD rule:

• 19.15.16.10 Casing AND TUBING RQUIREMENTS: J (3): "The operator shall set tubing as near the bottom as practical and tubing perforations shall not be more than 250 feet above top of pay zone."


With horizontal flowing and gas lifted wells an end of tubing depth placed at or slightly above KOP is a conservative way to ensure the tubing stays clean from debris, plugging, and allows for fewer well interventions post offset completion. The deeper the tubulars are run into the curve, the higher the probability is that the tubing will become stuck in sand and or well debris as the well produces over time. An additional consideration for EOT placement during artificial lift installations is avoiding the high dog leg severity and inclinations found in the curve section of the wellbore to help improve reliability and performance. Dog leg severity and inclinations tend not to hamper gas lifted or flowing wells, but they do effect other forms of artificial lift like rod pump or ESP (electric submersible pump). Keeping the EOT above KOP is an industry best practice for those respective forms of artificial lift.

541' FSL Revised Wellbore KB: 3304' 2598' FEL GL: 3279'

Section 4

T-26-S, R-31-E API: 30-015-54762

GEOLOGIC NAME OF SURFACE FORMATION:

Permian

ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	1,124'
Tamarisk Anhydrite	1,215'
Top of Salt	1,477'
Base of Salt	3,730'
Lamar	3,837'
Bell Canyon	4,091'
Cherry Canyon	5,010'
Brushy Canyon	6,270'
Bone Spring Lime	7,983'
Leonard (Avalon) Shale	8,114'
1st Bone Spring Sand	8,965'
2nd Bone Spring Shale	9,216'
2nd Bone Spring Sand	9,626'
3rd Bone Spring Carb	10,126'
3rd Bone Spring Sand	10,887'
Wolfcamp	11,280'
TD	10,616'

ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Bell Canyon	4,091'	Oil
Cherry Canyon	5,010'	Oil
Brushy Canyon	6,270'	Oil
Leonard (Avalon) Shale	8,114'	Oil
1st Bone Spring Sand	8,965'	Oil
2nd Bone Spring Shale	9,216'	Oil
2nd Bone Spring Sand	9,626'	Oil

Midland

Eddy County, NM (NAD 83 NME) Deep Elem 4 Fed Com #592H

OH

Plan: Plan #0.2

Standard Planning Report

27 February, 2024

PEDM Database:

Company: Midland

Project: Eddy County, NM (NAD 83 NME) Site: Deep Elem 4 Fed Com

Well: #592H Wellbore: OH Design: Plan #0.2 **Local Co-ordinate Reference:**

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

Minimum Curvature

Project Eddy County, NM (NAD 83 NME)

US State Plane 1983 Map System: Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Using geodetic scale factor

Deep Elem 4 Fed Com Site

Northing: 388,239.00 usft Site Position: Latitude: 32° 3' 58.075 N From: Мар Easting: 713,374.00 usft Longitude: 103° 46' 40.657 W

Position Uncertainty: 0.0 usft Slot Radius: 13-3/16 "

Well #592H

Well Position 0.0 usft +N/-S Northing: 388,273.00 usft Latitude: 32° 3' 58.491 N +E/-W 0.0 usft Easting: 711,808.00 usft Longitude: 103° 46' 58.854 W **Position Uncertainty** 0.0 usft Wellhead Elevation: usft **Ground Level:** 3,279.0 usft

0.29 **Grid Convergence:**

ОН Wellbore

Model Name Declination Field Strength Magnetics Sample Date Dip Angle (°) (°) (nT) 47,477.52943423 IGRF2020 7/8/2020 6.74 59.76

Design Plan #0.2

Audit Notes:

Version: Phase: PLAN Tie On Depth: 0.0

Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 179.95 0.0 0.0 0.0

Plan Survey Tool Program Date 2/27/2024

Depth From Depth To

(usft) (usft) Survey (Wellbore) **Tool Name** Remarks

21,259.1 EOG MWD+IFR1 0.0 Plan #0.2 (OH)

MWD + IFR1

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,456.3	3.13	186.77	1,456.2	-4.2	-0.5	2.00	2.00	0.00	186.77	
6,120.8	3.13	186.77	6,113.8	-256.9	-30.5	0.00	0.00	0.00	0.00	
6,277.1	0.00	0.00	6,270.0	-261.1	-31.0	2.00	-2.00	0.00	180.00	
10,138.6	0.00	0.00	10,131.5	-261.1	-31.0	0.00	0.00	0.00	0.00	KOP (Deep Elem 4 Fe
10,797.2	77.09	179.70	10,608.6	-641.2	-29.0	11.71	11.71	27.29	179.70	FTP (Deep Elem 4 Fe
10,905.0	90.03	179.79	10,620.7	-748.1	-28.5	12.00	12.00	0.08	0.40	
21,259.1	90.03	179.79	10,616.0	-11,102.1	10.0	0.00	0.00	0.00	0.00	PBHL (Deep Elem 4 F

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
, ,			` '			, ,	,	, ,	, ,
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
0.008	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	2.00	186.77	1,400.0	-1.7	-0.2	1.7	2.00	2.00	0.00
1,456.3	3.13	186.77	1,456.2	-4.2	-0.5	4.2	2.00	2.00	0.00
1,500.0	3.13	186.77	1,499.9	-6.6	-0.8	6.6	0.00	0.00	0.00
1,600.0	3.13	186.77	1,599.7	-12.0	-1.4	12.0	0.00	0.00	0.00
1,700.0	3.13	186.77	1,699.6	-17.4	-2.1	17.4	0.00	0.00	0.00
1,800.0	3.13	186.77	1,799.4	-22.8	-2.7	22.8	0.00	0.00	0.00
1,900.0	3.13	186.77	1,899.3	-28.3	-3.4	28.3	0.00	0.00	0.00
2,000.0	3.13	186.77	1,999.1	-33.7	-4.0	33.7	0.00	0.00	0.00
2,100.0	3.13	186.77	2,099.0	-39.1	-4.6	39.1	0.00	0.00	0.00
2,200.0	3.13	186.77	2,198.8	-44.5	-5.3	44.5	0.00	0.00	0.00
2,300.0	3.13	186.77	2,298.7	-49.9	-5.9	49.9	0.00	0.00	0.00
2,400.0	3.13	186.77	2,398.5	-55.3	-6.6	55.3	0.00	0.00	0.00
2,500.0	3.13	186.77	2,498.4	-60.8	-7.2	60.8	0.00	0.00	0.00
2,600.0	3.13	186.77	2,598.2	-66.2	-7.9	66.2	0.00	0.00	0.00
2,700.0	3.13	186.77	2,698.1	-71.6	-8.5	71.6	0.00	0.00	0.00
2,800.0	3.13	186.77	2,797.9	-77.0	-9.1	77.0	0.00	0.00	0.00
2,900.0	3.13	186.77	2,897.8	-82.4	-9.8	82.4	0.00	0.00	0.00
3,000.0	3.13	186.77	2,997.6	-87.8	-10.4	87.8	0.00	0.00	0.00
		186.77		-93.3	-11.1	93.2			
3,100.0	3.13		3,097.5				0.00	0.00	0.00
3,200.0	3.13	186.77	3,197.3	-98.7	-11.7	98.7	0.00	0.00	0.00
3,300.0	3.13	186.77	3,297.2	-104.1	-12.4	104.1	0.00	0.00	0.00
3,400.0	3.13	186.77	3,397.0	-109.5	-13.0	109.5	0.00	0.00	0.00
3,500.0	3.13	186.77	3,496.9	-114.9	-13.6	114.9	0.00	0.00	0.00
3,600.0	3.13	186.77			-14.3	120.3	0.00	0.00	0.00
			3,596.7	-120.3					
3,700.0	3.13	186.77	3,696.6	-125.7	-14.9	125.7	0.00	0.00	0.00
3,800.0	3.13	186.77	3,796.4	-131.2	-15.6	131.1	0.00	0.00	0.00
3,900.0	3.13	186.77	3,896.3	-136.6	-16.2	136.6	0.00	0.00	0.00
4,000.0	3.13	186.77	3,996.1	-142.0	-16.9	142.0	0.00	0.00	0.00
4,100.0	3.13	186.77	4,096.0	-147.4	-17.5	147.4	0.00	0.00	0.00
4,200.0	3.13	186.77	4,195.8	-152.8	-18.2	152.8	0.00	0.00	0.00
4,300.0	3.13	186.77	4,295.7	-158.2	-18.8	158.2	0.00	0.00	0.00
4,400.0	3.13	186.77	4,395.5	-163.7	-19.4	163.6	0.00	0.00	0.00
4,500.0	3.13	186.77	4,495.4	-169.1	-20.1	169.1	0.00	0.00	0.00
4,600.0	3.13	186.77	4,595.2	-174.5	-20.7	174.5	0.00	0.00	0.00
4,700.0	3.13	186.77	4,695.1	-179.9	-21.4	179.9	0.00	0.00	0.00
4,800.0	3.13	186.77	4,794.9	-185.3	-22.0	185.3	0.00	0.00	0.00
4,000.0	0.10	100.77	1,104.0	100.0	-22.0	100.0	0.00	0.00	0.00
4,900.0	3.13	186.77	4,894.8	-190.7	-22.7	190.7	0.00	0.00	0.00
5,000.0	3.13			-196.2	-23.3	196.1	0.00	0.00	0.00
		186.77	4,994.6						
5,100.0	3.13	186.77	5,094.5	-201.6	-23.9	201.5	0.00	0.00	0.00
5,200.0	3.13	186.77	5,194.4	-207.0	-24.6	207.0	0.00	0.00	0.00

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

Design:	Plan #0.2								
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,300.0	3.13	186.77	5,294.2	-212.4	-25.2	212.4	0.00	0.00	0.00
5,400.0	3.13	186.77	5,394.1	-217.8	-25.9	217.8	0.00	0.00	0.00
5,500.0	3.13	186.77	5,493.9	-223.2	-26.5	223.2	0.00	0.00	0.00
5,600.0	3.13	186.77	5,593.8	-228.6	-27.2	228.6	0.00	0.00	0.00
5,700.0	3.13	186.77	5,693.6	-234.1	-27.8	234.0	0.00	0.00	0.00
5,800.0	3.13	186.77	5,793.5	-239.5	-28.4	239.5	0.00	0.00	0.00
5,900.0	3.13	186.77	5,893.3	-244.9	-29.1	244.9	0.00	0.00	0.00
6,000.0	3.13	186.77	5,993.2	-250.3	-29.7	250.3	0.00	0.00	0.00
6,100.0	3.13	186.77	6,093.0	-255.7	-30.4	255.7	0.00	0.00	0.00
6,120.8	3.13	186.77	6,113.8	-256.9	-30.5	256.8	0.00	0.00	0.00
6,200.0	1.54	186.77	6,192.9	-260.1	-30.9	260.0	2.00	-2.00	0.00
6,277.1	0.00	0.00	6,270.0	-261.1	-31.0	261.1	2.00	-2.00	0.00
6,300.0	0.00	0.00	6,292.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,400.0	0.00	0.00	6,392.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,500.0	0.00	0.00	6,492.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,600.0	0.00	0.00	6,592.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,700.0	0.00	0.00	6,692.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,800.0	0.00	0.00	6,792.9	-261.1	-31.0	261.1	0.00	0.00	0.00
6,900.0	0.00	0.00	6,892.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,000.0	0.00	0.00	6,992.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,100.0	0.00	0.00	7,092.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,200.0	0.00	0.00	7,192.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,300.0	0.00	0.00	7,292.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,400.0 7,500.0	0.00 0.00	0.00	7,392.9 7,492.9	-261.1	-31.0	261.1 261.1	0.00	0.00	0.00
7,500.0	0.00	0.00 0.00	7,492.9 7,592.9	-261.1 -261.1	-31.0 -31.0	261.1	0.00 0.00	0.00 0.00	0.00 0.00
7,700.0	0.00	0.00	7,692.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,800.0	0.00	0.00	7,792.9	-261.1	-31.0	261.1	0.00	0.00	0.00
7,900.0	0.00	0.00	7,892.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,000.0	0.00	0.00	7,992.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,100.0	0.00	0.00	8,092.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,200.0	0.00	0.00	8,192.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,300.0	0.00	0.00	8,292.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,400.0	0.00	0.00	8,392.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,500.0	0.00	0.00	8,492.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,600.0	0.00	0.00	8,592.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,700.0	0.00	0.00	8,692.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,800.0	0.00	0.00	8,792.9	-261.1	-31.0	261.1	0.00	0.00	0.00
8,900.0	0.00	0.00	8,892.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,000.0	0.00	0.00	8,992.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,100.0	0.00	0.00	9,092.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,200.0	0.00	0.00	9,192.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,300.0	0.00	0.00	9,292.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,400.0	0.00	0.00	9,392.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,500.0	0.00	0.00	9,492.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,600.0	0.00	0.00	9,592.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,700.0	0.00	0.00	9,692.9	-261.1	-31.0	261.1	0.00	0.00	0.00
9,800.0	0.00	0.00	9,792.9	-261.1 -261.1	-31.0	261.1	0.00	0.00	0.00
9,900.0	0.00	0.00	9,892.9	-261.1	-31.0	261.1	0.00	0.00	0.00
10,000.0	0.00	0.00	9,992.9	-261.1	-31.0	261.1	0.00	0.00	0.00
10,100.0	0.00	0.00	10,092.9	-261.1	-31.0	261.1	0.00	0.00	0.00
,									
10,138.6 10,150.0	0.00	0.00	10,131.5	-261.1 -261.2	-31.0 -31.0	261.1 261.2	0.00	0.00	0.00
10,150.0 10,175.0	1.33 4.26	179.70 179.70	10,142.9 10,167.9	-261.2 -262.4	-31.0 -31.0	261.2 262.4	11.71 11.71	11.71 11.71	0.00 0.00
10,175.0	4.20	179.70	10,107.9	-202.4	-31.0	202.4	11.71	11.71	0.00

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

esign:	Plan #0.2										
anned Survey											
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)		
10,200.0	7.19	179.70	10,192.7	-264.9	-31.0	264.9	11.71	11.71	0.00		
10,225.0	10.11	179.70	10,217.5	-268.7	-31.0	268.7	11.71	11.71	0.00		
10,250.0	13.04	179.70	10,241.9	-273.7	-30.9	273.7	11.71	11.71	0.00		
10,275.0	15.97	179.70	10,266.1	-280.0	-30.9	279.9	11.71	11.71	0.00		
10,300.0	18.89	179.70	10,290.0	-287.5	-30.9	287.4	11.71	11.71	0.00		
10,325.0	21.82	179.70	10,313.4	-296.2	-30.8	296.1	11.71	11.71	0.00		
10,350.0	24.75	179.70	10,336.4	-306.0	-30.8	306.0	11.71	11.71	0.00		
10,375.0	27.67	179.70	10,358.8	-317.1	-30.7	317.0	11.71	11.71	0.00		
10,400.0	30.60	179.70	10,380.7	-329.2	-30.7	329.2	11.71	11.71	0.00		
10,425.0	33.53	179.70	10,401.8	-342.5	-30.6	342.5	11.71	11.71	0.00		
10,450.0	36.45	179.70	10,422.3	-356.8	-30.5	356.8	11.71	11.71	0.00		
10,475.0	39.38	179.70	10,442.0	-372.2	-30.4	372.2	11.71	11.71	0.00		
10,500.0	42.30	179.70	10,460.9	-388.6	-30.3	388.5	11.71	11.71	0.00		
10,525.0	45.23	179.70	10,479.0	-405.8 424.0	-30.2	405.8	11.71	11.71	0.00		
10,550.0 10,575.0	48.16 51.08	179.70 179.70	10,496.1	-424.0 -443.1	-30.2 -30.1	424.0 443.0	11.71	11.71 11.71	0.00		
10,575.0	51.08 54.01	179.70 179.70	10,512.3 10,527.5	-443.1 -462.9	-30.1 -29.9	443.0 462.9	11.71 11.71	11.71 11.71	0.00 0.00		
10,625.0	56.94	179.70	10,541.7	-483.5	-29.8	483.5	11.71	11.71	0.00		
10,650.0	59.86	179.70	10,554.8	-504.8	-29.7	504.8	11.71	11.71	0.00		
10,675.0	62.79	179.70	10,566.8	-526.7	-29.6	526.7	11.71	11.71	0.00		
10,700.0	65.72	179.70	10,577.7	-549.3	- 29.5	549.2	11.71	11.71	0.00		
10,725.0	68.64	179.70	10,587.4	-572.3	-29.4	572.3	11.71	11.71	0.00		
10,750.0	71.57	179.70	10,595.9	-595.8	-29.2	595.8	11.71	11.71	0.00		
10,775.0	74.49	179.70	10,603.2	-619.7	-29.1	619.7	11.71	11.71	0.00		
10,797.2	77.09	179.70	10,608.6	-641.2	-29.0	641.2	11.71	11.71	0.00		
10,800.0	77.43	179.70	10,609.2	-644.0	-29.0	643.9	12.00	12.00	0.08		
10,825.0	80.43	179.72	10,614.0	-668.5	-28.9	668.5	12.00	12.00	80.0		
10,850.0	83.43	179.74	10,617.5	-693.2	-28.8	693.2	12.00	12.00	0.08		
10,875.0	86.43	179.76	10,619.7	-718.1	-28.6	718.1	12.00	12.00	0.08		
10,900.0	89.43	179.78	10,620.6	-743.1	-28.5	743.1	12.00	12.00	0.08		
10,905.0	90.03	179.79	10,620.7	-748.1	-28.5	748.1	12.00	12.00	0.08		
11,000.0	90.03	179.79	10,620.6	-843.1	-28.2	843.1	0.00	0.00	0.00		
11,100.0	90.03	179.79	10,620.6	-943.1	-27.8	943.1	0.00	0.00	0.00		
11,200.0	90.03	179.79	10,620.5	-1,043.1	-27.6 -27.4	1,043.1	0.00	0.00	0.00		
11,300.0	90.03	179.79	10,620.5	-1,143.1	-27.1	1,143.1	0.00	0.00	0.00		
11,400.0	90.03	179.79	10,620.4	-1,243.1	-26.7	1,243.1	0.00	0.00	0.00		
11,500.0	90.03	179.79	10,620.4	-1,343.1	-26.3	1,343.1	0.00	0.00	0.00		
11,600.0	90.03	179.79 170.70	10,620.4	-1,443.1 1,543.1	-25.9	1,443.1	0.00	0.00	0.00		
11,700.0 11,800.0	90.03 90.03	179.79 179.79	10,620.3 10,620.3	-1,543.1 -1,643.1	-25.6 -25.2	1,543.1 1,643.1	0.00 0.00	0.00 0.00	0.00 0.00		
11,900.0	90.03	179.79	10,620.3	-1,043.1 -1,743.1	-25.2 -24.8	1,743.1	0.00	0.00	0.00		
12,000.0	90.03	179.79	10,620.2	-1,743.1 -1,843.1	-24.6 -24.5	1,843.1	0.00	0.00	0.00		
12,100.0	90.03	179.79	10,620.1	-1,943.1	-24.1	1,943.1	0.00	0.00	0.00		
12,200.0	90.03	179.79	10,620.1	-2,043.1	-23.7	2,043.1	0.00	0.00	0.00		
12,300.0	90.03	179.79	10,620.0	-2,143.1	-23.3	2,143.1	0.00	0.00	0.00		
12,400.0	90.03	179.79	10,620.0	-2,243.1	-23.0	2,243.1	0.00	0.00	0.00		
12,500.0	90.03	179.79	10,619.9	-2,343.1	-22.6	2,343.1	0.00	0.00	0.00		
12,600.0	90.03	179.79	10,619.9	-2,443.1	-22.2	2,443.1	0.00	0.00	0.00		
12,700.0	90.03	179.79	10,619.9	-2,543.1	-21.8	2,543.1	0.00	0.00	0.00		
12,800.0	90.03	179.79	10,619.8	-2,643.1	-21.5	2,643.1	0.00	0.00	0.00		
12,900.0	90.03	179.79	10,619.8	-2,743.1	-21.1	2,743.1	0.00	0.00	0.00		
13,000.0	90.03	179.79	10,619.7	-2,843.1	-20.7	2,843.1	0.00	0.00	0.00		
13,100.0	90.03	179.79	10,619.7	-2,943.1	-20.4	2,943.1	0.00	0.00	0.00		
13,200.0	90.03	179.79	10,619.6	-3,043.1	-20.0	3,043.1	0.00	0.00	0.00		

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

Design:	Plan #0.2										
lanned Survey											
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)		
13,300.0	90.03	179.79	10,619.6	-3,143.1	-19.6	3,143.1	0.00	0.00	0.00		
13,400.0	90.03	179.79	10,619.5	-3,243.1	-19.2	3,243.1	0.00	0.00	0.00		
13,500.0	90.03	179.79	10,619.5	-3,343.1	-18.9	3,343.1	0.00	0.00	0.00		
13,600.0	90.03	179.79	10,619.5	-3,443.1	-18.5	3,443.1	0.00	0.00	0.00		
13,700.0	90.03	179.79	10,619.4	-3,543.1	-18.1	3,543.1	0.00	0.00	0.00		
13,800.0	90.03	179.79	10,619.4	-3,643.1	-17.8	3,643.1	0.00	0.00	0.00		
13,900.0	90.03	179.79	10.619.3	-3,743.1	-17.4	3,743.1	0.00	0.00	0.00		
14,000.0	90.03	179.79	10,619.3	-3,843.1	-17.0	3,843.1	0.00	0.00	0.00		
14 100 0	90.03	179.79	10,619.2	-3,943.1	-16.6	3,943.1	0.00	0.00	0.00		
14,100.0			,	,		,					
14,200.0	90.03	179.79	10,619.2	-4,043.1	-16.3	4,043.1	0.00	0.00	0.00		
14,300.0	90.03	179.79	10,619.1	-4,143.1	-15.9	4,143.1	0.00	0.00	0.00		
14,400.0	90.03	179.79	10,619.1	-4,243.1	-15.5	4,243.1	0.00	0.00	0.00		
14,500.0	90.03	179.79	10,619.0	-4,343.1	-15.2	4,343.1	0.00	0.00	0.00		
14,600.0	90.03	179.79	10,619.0	-4,443.1	-14.8	4,443.1	0.00	0.00	0.00		
14,700.0	90.03	179.79	10,619.0	-4,543.1	-14.4	4,543.1	0.00	0.00	0.00		
14,800.0	90.03	179.79	10,618.9	-4,643.1	-14.0	4,643.1	0.00	0.00	0.00		
14,900.0	90.03	179.79	10,618.9	-4,743.1	-13.7	4,743.1	0.00	0.00	0.00		
15,000.0	90.03	179.79	10,618.8	-4,843.1	-13.3	4,843.1	0.00	0.00	0.00		
15 100 0	90.03	170.70	10 610 0	-4.943.1	12.0	4 042 4	0.00	0.00	0.00		
15,100.0		179.79	10,618.8	,	-12.9	4,943.1	0.00				
15,200.0	90.03	179.79	10,618.7	-5,043.1	-12.5	5,043.1	0.00	0.00	0.00		
15,300.0	90.03	179.79	10,618.7	-5,143.1	-12.2	5,143.1	0.00	0.00	0.00		
15,400.0	90.03	179.79	10,618.6	-5,243.1	-11.8	5,243.1	0.00	0.00	0.00		
15,500.0	90.03	179.79	10,618.6	-5,343.1	-11.4	5,343.1	0.00	0.00	0.00		
15,600.0	90.03	179.79	10,618.6	-5,443.1	-11.1	5,443.1	0.00	0.00	0.00		
15,700.0	90.03	179.79	10,618.5	-5,543.1	-10.7	5,543.1	0.00	0.00	0.00		
15,800.0	90.03	179.79	10,618.5	-5,643.1	-10.3	5,643.1	0.00	0.00	0.00		
15,900.0	90.03	179.79	10,618.4	-5,743.1	-9.9	5,743.1	0.00	0.00	0.00		
16,000.0	90.03	179.79	10,618.4	-5,843.1	-9.6	5,843.1	0.00	0.00	0.00		
16 100 0	90.03	179.79	10.610.3	-5,943.1	-9.2	5,943.1	0.00	0.00	0.00		
16,100.0			10,618.3	,		6,043.1	0.00				
16,200.0	90.03	179.79	10,618.3	-6,043.1	-8.8			0.00	0.00		
16,300.0	90.03	179.79	10,618.2	-6,143.1	-8.5	6,143.1	0.00	0.00	0.00		
16,400.0 16,500.0	90.03 90.03	179.79 179.79	10,618.2 10,618.1	-6,243.1 -6,343.1	-8.1 -7.7	6,243.1 6,343.1	0.00 0.00	0.00 0.00	0.00 0.00		
16,600.0	90.03	179.79	10,618.1	-6,443.1	-7.3	6,443.1	0.00	0.00	0.00		
16,700.0	90.03	179.79	10,618.1	-6,543.1	-7.0	6,543.1	0.00	0.00	0.00		
16,800.0	90.03	179.79	10,618.0	-6,643.1	-6.6	6,643.1	0.00	0.00	0.00		
16,900.0	90.03	179.79	10,618.0	-6,743.1	-6.2	6,743.1	0.00	0.00	0.00		
17,000.0	90.03	179.79	10,617.9	-6,843.1	-5.8	6,843.1	0.00	0.00	0.00		
17,100.0	90.03	179.79	10,617.9	-6,943.1	-5.5	6,943.1	0.00	0.00	0.00		
17,200.0	90.03	179.79	10,617.8	-7,043.1	-5.1	7,043.1	0.00	0.00	0.00		
17,300.0	90.03	179.79	10,617.8	-7,143.1	-4.7	7,143.1	0.00	0.00	0.00		
17,400.0	90.03	179.79	10,617.7	-7,243.1	-4.4	7,243.1	0.00	0.00	0.00		
17,500.0	90.03	179.79	10,617.7	-7,343.1	-4.0	7,343.1	0.00	0.00	0.00		
17,600.0	90.03	179.79	10,617.6	-7,443.1	-3.6	7,443.1	0.00	0.00	0.00		
17,700.0	90.03	179.79	10,617.6	-7,543.1	-3.2	7,543.1	0.00	0.00	0.00		
17,800.0	90.03	179.79	10,617.6	-7,643.1	-2.9	7,643.1	0.00	0.00	0.00		
17,900.0	90.03	179.79	10,617.5	-7,743.1	-2.5	7,743.1	0.00	0.00	0.00		
18,000.0	90.03	179.79	10,617.5	-7,843.1	-2.1	7,843.1	0.00	0.00	0.00		
18,100.0	90.03	179.79	10,617.4	-7,943.1	-1.8	7,943.1	0.00	0.00	0.00		
18,200.0	90.03	179.79	10,617.4	-8,043.1	-1.4	8,043.1	0.00	0.00	0.00		
18,300.0	90.03	179.79	10,617.3	-8,143.1	-1.0	8,143.1	0.00	0.00	0.00		
18,400.0	90.03	179.79	10,617.3	-8,243.1	-0.6	8,243.1	0.00	0.00	0.00		
18,500.0	90.03	179.79	10,617.2	-8,343.1	-0.3	8,343.1	0.00	0.00	0.00		
18,600.0	90.03	179.79	10,617.2	-8,443.1	0.1	8,443.1	0.00	0.00	0.00		

Database: PEDM Company: Midland

Project: Eddy County, NM (NAD 83 NME)

Site: Deep Elem 4 Fed Com

 Well:
 #592H

 Wellbore:
 OH

 Design:
 Plan #0.2

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well #592H

KB = 25' @ 3304.0usft KB = 25' @ 3304.0usft

Grid

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
18,700.0	90.03	179.79	10,617.2	-8,543.1	0.5	8,543.1	0.00	0.00	0.00
18,800.0	90.03	179.79	10,617.1	-8,643.1	0.9	8,643.1	0.00	0.00	0.00
18,900.0	90.03	179.79	10,617.1	-8,743.1	1.2	8,743.1	0.00	0.00	0.00
19,000.0	90.03	179.79	10,617.0	-8,843.1	1.6	8,843.1	0.00	0.00	0.00
19,100.0	90.03	179.79	10,617.0	-8,943.1	2.0	8,943.1	0.00	0.00	0.00
19,200.0	90.03	179.79	10,616.9	-9,043.1	2.3	9,043.1	0.00	0.00	0.00
19,300.0	90.03	179.79	10,616.9	-9,143.1	2.7	9,143.1	0.00	0.00	0.00
19,400.0	90.03	179.79	10,616.8	-9,243.1	3.1	9,243.1	0.00	0.00	0.00
19,500.0	90.03	179.79	10,616.8	-9,343.1	3.5	9,343.1	0.00	0.00	0.00
19,600.0	90.03	179.79	10,616.7	-9,443.1	3.8	9,443.1	0.00	0.00	0.00
19,700.0	90.03	179.79	10,616.7	-9,543.1	4.2	9,543.1	0.00	0.00	0.00
19,800.0	90.03	179.79	10,616.7	-9,643.1	4.6	9,643.1	0.00	0.00	0.00
19,900.0	90.03	179.79	10,616.6	-9,743.1	4.9	9,743.1	0.00	0.00	0.00
20,000.0	90.03	179.79	10,616.6	-9,843.1	5.3	9,843.1	0.00	0.00	0.00
20,100.0	90.03	179.79	10,616.5	-9,943.1	5.7	9,943.1	0.00	0.00	0.00
20,200.0	90.03	179.79	10,616.5	-10,043.1	6.1	10,043.1	0.00	0.00	0.00
20,300.0	90.03	179.79	10,616.4	-10,143.0	6.4	10,143.1	0.00	0.00	0.00
20,400.0	90.03	179.79	10,616.4	-10,243.0	6.8	10,243.1	0.00	0.00	0.00
20,500.0	90.03	179.79	10,616.3	-10,343.0	7.2	10,343.1	0.00	0.00	0.00
20,600.0	90.03	179.79	10,616.3	-10,443.0	7.5	10,443.0	0.00	0.00	0.00
20,700.0	90.03	179.79	10,616.3	-10,543.0	7.9	10,543.0	0.00	0.00	0.00
20,800.0	90.03	179.79	10,616.2	-10,643.0	8.3	10,643.0	0.00	0.00	0.00
20,900.0	90.03	179.79	10,616.2	-10,743.0	8.7	10,743.0	0.00	0.00	0.00
21,000.0	90.03	179.79	10,616.1	-10,843.0	9.0	10,843.0	0.00	0.00	0.00
21,100.0	90.03	179.79	10,616.1	-10,943.0	9.4	10,943.0	0.00	0.00	0.00
21,200.0	90.03	179.79	10,616.0	-11,043.0	9.8	11,043.0	0.00	0.00	0.00
21,259.1	90.03	179.79	10,616.0	-11,102.1	10.0	11,102.1	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
KOP (Deep Elem 4 Fed - plan hits target cent - Point	0.00 er	0.00	10,131.5	-261.1	-31.0	388,012.00	711,777.00	32° 3′ 55.910 N	103° 46' 59.230 W
FTP (Deep Elem 4 Fed (- plan hits target cent - Point	0.00 er	0.00	10,608.6	-641.2	-29.0	387,632.00	711,779.00	32° 3′ 52.149 N	103° 46' 59.229 W
PBHL (Deep Elem 4 Fec - plan hits target cent - Point	0.00 er	0.00	10,616.0	-11,102.1	10.0	377,173.00	711,818.00	32° 2' 8.646 N	103° 46' 59.395 W
LTP (Deep Elem 4 Fed (- plan misses target o - Point	0.00 center by 206	0.00 3.8usft at 21	12,655.0 026.7usft M	-10,869.5 D (10616.1 TV	329.0 D, -10869.7 N	377,405.00 , 9.1 E)	712,137.00	32° 2' 10.926 N	103° 46' 55.675 W

1400

2450

10500

Azimuths to Grid North
True North: -0.29°
Magnetic North: 6.45°

Magnetic Field
Strength: 47477.5nT
Dip Angle: 59.76°
Date: 7/8/2020
Model: IGRF2020

To convert a Magnetic Direction to a Grid Direction, Add 6.45°
To convert a Magnetic Direction to a True Direction, Add 6.74° East
To convert a True Direction to a Grid Direction, Subtract 0.29°

Eddy County, NM (NAD 83 NME)

Deep Elem 4 Fed Com #592H

Plan #0.2

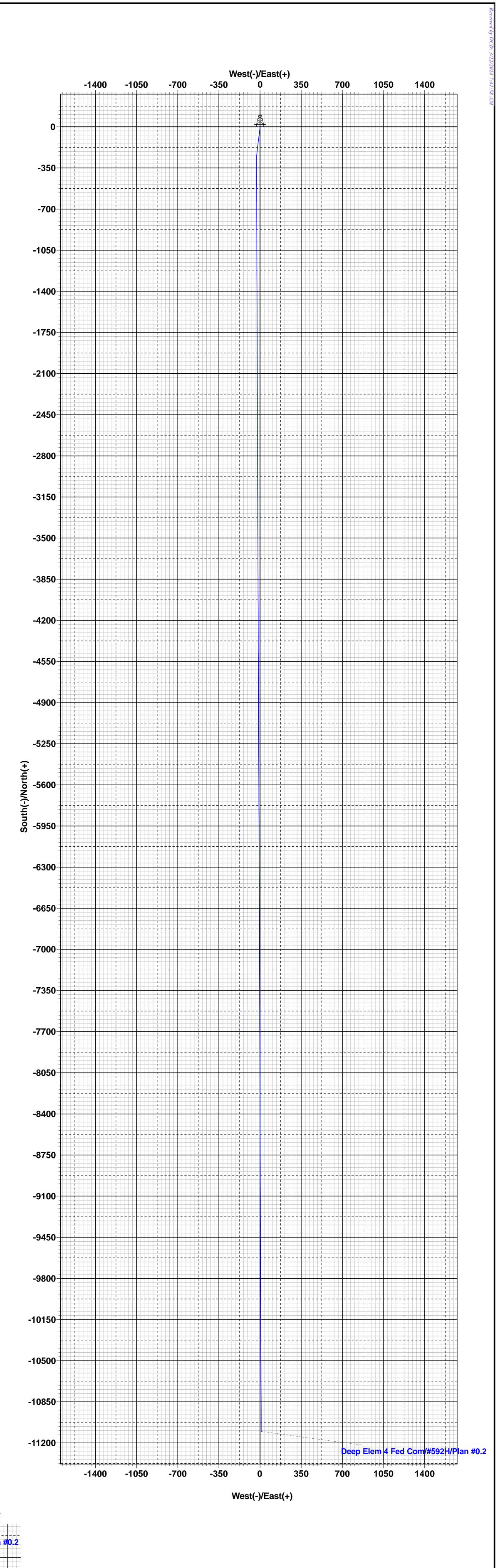
PROJECT DETAILS: Eddy County, NM (NAD 83 NME)

Geodetic System: US State Plane 1983
Datum: North American Datum 1983
Ellipsoid: GRS 1980
Zone: New Mexico Eastern Zone
System Datum: Mean Sea Level

WELL DETAILS: #592H

3279.0

KB = 25' @ 3304.0usft


Northing Easting Latittude Longitude
388273.00 711808.00 32° 3' 58.491 N 103° 46' 58.854 W

						SE	ECTION I	DETAILS		
Sec	MD	Inc	Azi	TVD	+N/-S	+E/-W	Dleg	TFace	VSect	Target
1	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	
2	1300.0	0.00	0.00	1300.0	0.0	0.0	0.00	0.00	0.0	
3	1456.3	3.13	186.77	1456.2	-4.2	-0.5	2.00	186.77	4.2	
4	6120.8	3.13	186.77	6113.8	-256.9	-30.5	0.00	0.00	256.8	
5	6277.1	0.00	0.00	6270.0	-261.1	-31.0	2.00	180.00	261.1	
6	10138.6	0.00	0.00	10131.5	-261.1	-31.0	0.00	0.00	261.1	KOP (Deep Elem 4 Fed Com #775H)
7	10797.2	77.09	179.70	10608.6	-641.2	-29.0	11.71	179.70	641.2	FTP (Deep Elem 4 Fed Com #775H)
8	10905.0	90.03	179.79	10620.7	-748.1	-28.5	12.00	0.40	748.1	
9	21259.1	90.03	179.79	10616.0	-11102.1	10.0	0.00	0.00	11102.1	PBHL (Deep Elem 4 Fed Com #775H)

CASING DETAILS

No casing data is available

Name	TVD	+N/-S	+E/-W	Northing	Easting
KOP (Deep Elem 4 Fed Com #775H)	10131.5	-261.1	-31.0	388012.00	711777.00
FTP (Deep Elem 4 Fed Com #775H)	10608.6	-641.2	-29.0	387632.00	711779.00
PBHL (Deep Elem 4 Fed Com #775H)	10616.0	-11102.1	10.0	377173.00	711818.00
LTP (Deep Elem 4 Fed Com #775H)	12655.0	-10869.5	329.0	377405.00	712137.00

Vertical Section at 179.95°

Received by OCD: 3/12/2024 7:41:58 AM

Salt Section Annular Clearance Variance Request

Daniel Moose

Current Design (Salt Strings)

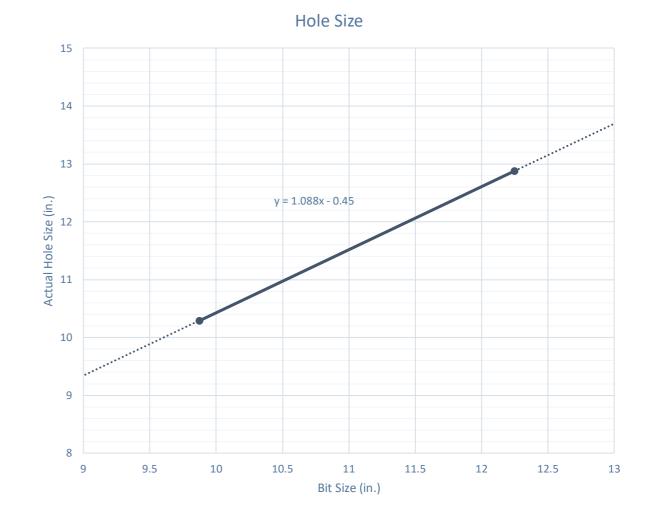
0.422" Annular clearance requirement

- Casing collars shall have a minimum clearance of 0.422 inches on all sides in the hole/casing annulus, with recognition that variances can be granted for justified exceptions.
- 12.25" Hole x 9.625"40# J55/HCK55 LTC Casing
 - 1.3125" Clearance to casing OD
 - 0.8125" Clearance to coupling OD
- 9.875" Hole x 8.75" 38.5# P110 Sprint-SF Casing
 - 0.5625" Clearance to casing OD
 - 0.433" Clearance to coupling OD

Annular Clearance Variance Request

EOG request permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Onshore Order #2 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues

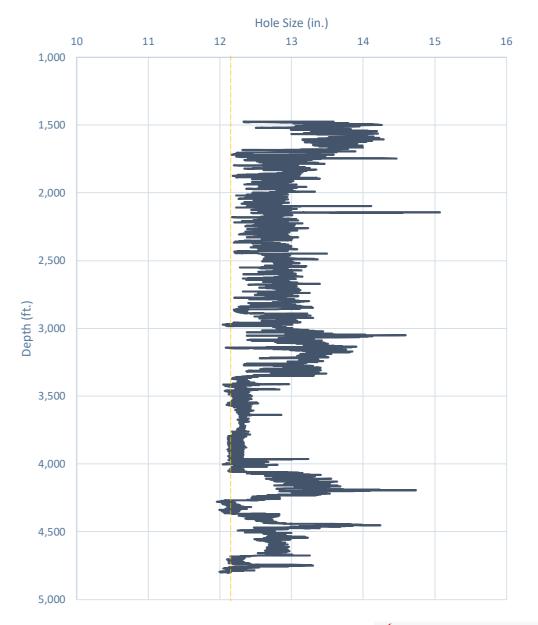

Volumetric Hole Size Calculation

Hole Size Calculations Off Cement Volumes

- Known volume of cement pumped
- Known volume of cement returned to surface
- Must not have had any losses
- Must have bumped plug

Average Hole Size

- 12.25" Hole
 - 12.88" Hole
 - 5.13% diameter increase
 - 10.52% area increase
 - 0.63" Average enlargement
 - 0.58" Median enlargement
 - 179 Well Count
- 9.875" Hole
 - 10.30" Hole
 - 4.24% diameter increase
 - 9.64% area increase
 - 0.42" Average enlargement
 - 0.46" Median enlargement
 - 11 Well Count

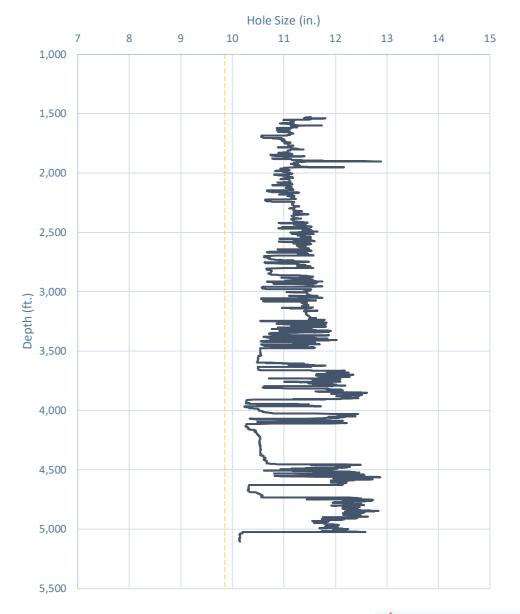


Modelo 10 Fed Com #501H

Caliper Hole Size (12.25")

Average Hole Size

- 12.25" Bit
 - 12.76" Hole
 - 4.14% diameter increase
 - 8.44% area increase
 - 0.51" Average enlargement
 - 0.52" Median enlargement
 - Brine



Caliper Hole Size (9.875")

Average Hole Size

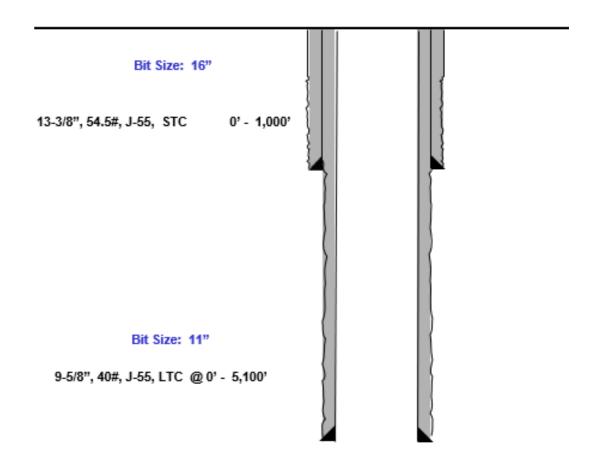
- 9.875" Hole
 - 11.21" Hole
 - 13.54% diameter increase
 - 28.92% area increase
 - 1.33" Average enlargement
 - 1.30" Median enlargement
 - EnerLite

Whirling Wind 11 Fed Com #744H

Design A

Proposed 11" Hole with 9.625" 40# J55/HCK55 LTC Casing

- 11" Bit + 0.52" Average hole enlargement = 11.52" Hole Size
 - 0.9475" Clearance to casing OD


$$=\frac{11.52-9.625}{2}$$

• 0.4475" Clearance to coupling OD

$$=\frac{11.52-10.625}{2}$$

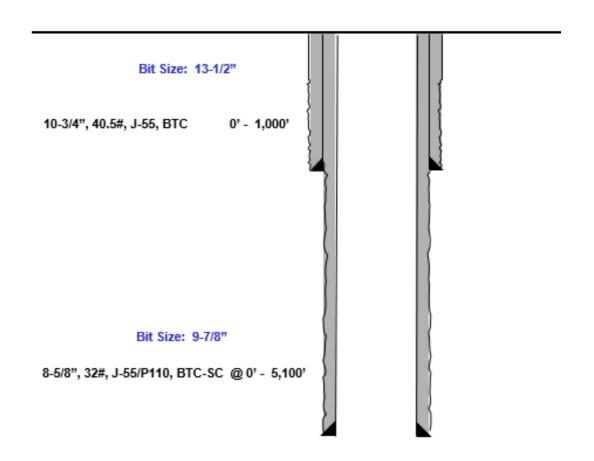
- Previous Shoe 13.375" 54.5# J55 STC
 - 0.995" Clearance to coupling OD (~1,200' overlap)

$$=\frac{12.615-10.625}{^{2}}$$

Design B

Proposed 9.875" Hole with 8.625" 32# J55/P110 BTC-SC Casing

- 9.875" Bit + 0.42" Average hole enlargement = 10.295" Hole Size
 - 0.835" Clearance to casing OD


$$=\frac{10.295-8.625}{2}$$

• 0.585" Clearance to coupling OD

$$=\frac{10.295-9.125}{2}$$

- Previous Shoe 10.75" 40.5# J55 STC
 - 0.4625" Clearance to coupling OD (~1,200' overlap)

$$=\frac{10.05-9.125}{2}$$

Received by OCD: 3/12/2024 7:41:58 AM

Page 25 of 72

Index

Nom. Pipe Body Area

Casing Spec Sheets

PERFORMANCE DATA

API LTC 9.625 in 40.00 lbs/ft K55 HC Technical Data Sheet

Tubular Parameters					
Size	9.625	in	Minimum Yield	55	ksi
Nominal Weight	40.00	lbs/ft	Minimum Tensile	95	ksi
Grade	K55 HC		Yield Load	629	kips
PE Weight	38.94	lbs/ft	Tensile Load	1088	kips
Wall Thickness	0.395	in	Min. Internal Yield Pressure	3,950	psi
Nominal ID	8.835	in	Collapse Pressure	3600	psi
Drift Diameter	8.750	in		•	1

in²

Connection Parameters		
Connection OD	10.625	in
Coupling Length	10.500	in
Threads Per Inch	8	tpi
Standoff Thread Turns	3.50	turns
Make-Up Loss	4.750	in
Min. Internal Yield Pressure	3,950	psi

11.454

Pipe Body and API Connections Performance Data

13.375 54.50/0.380 J55 PDF

New Search ii

« Back to Previous List	
UCC Alleria	

6/8/2015 10:04:37 AM					
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-	-	-	psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ptpe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	-	-	-	in.
Inside Diameter	12.615	12.615	-	12.615	in.
Standard Drift	12.459	12.459	-	12.459	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	54.50	-	-	-	lbs/ft
Plain End Weight	52.79	-	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	-	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	-	2,740	psi
Minimum Pipe Body Yield Strength	853.00	-	-	-	1000 lbs
Joint Strength		909	-	514	1000 lbs
Reference Length	-	11,125	-	6,290	ft
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque	-	-	-	3,860	ff-lbs
Maximum Make-Up Torque	-	-	-	6,430	ff-lbs

Received by OCD: 3/12/2024 7:41:58 AM

Page 27 of 72

5,250

ft-lbs

Casing Spec Sheets

Pipe Body and API Connections Performance Data

10.750 40.50/0.350 J55 PDF

New Search » « Back to Previous List USC Metric BTC STC Ptpe Mechanical Properties Minimum Yield Strength 55,000 psi Maximum Yield Strength 80,000 Minimum Tensile Strength 75,000 psi BTC LTC Pipe STC 11.750 Outside Diameter 10.750 11.750 Wall Thickness 0.350 Inside Diameter 10.050 10.050 10.050 Standard Drift 9.894 9.894 in. Alternate Drift in. 40.50 Nominal Linear Weight, T&C lbs/ft Plain End Weight 38.91 lbs/ft Performance Ptpe BTC STC Minimum Collapse Pressure psi Minimum Internal Yield Pressure 3,130 3.130 3.130 629.00 Minimum Pipe Body Yield Strength 700 420 Joint Strength 1000 lbs Reference Length 11,522 6,915 Make-Up Data BTC STC Ptpe 4.81 Make-Up Loss 3.50 in. Minimum Make-Up Torque 3,150 ft-lbs

ı							V •	val	loui	rec	
ш					API 5CT, 10th Ed. Connection Data						
A FT LB	O.D. (in) 8.625		/ft) 32.00 31.13	WALL (in 0.352	n)	GRADE J55	* API DR 7.7	` '	RBV 87		
MADE IN USA		Material Propertie	es (PE)				Pipe Bod	y Data (PE)		
DE		Pipe					Geo	metry			
_	Minimum \	/ield Strength:	55	ksi		Nominal ID:			7.92	inch	
#0A	Maximum Yield Strength: 8			ksi		Nominal Area	a:		9.149	in ²	
#	Minimum 1	ensile Strength:	75	ksi		*Special/Alt.	Drift:		7.875	inch	
SLN		Coupling					Perfo	rmance			
#0/M	Minimum \	/ield Strength:	55	ksi		Pipe Body Yield Strength:			503 kips		
_	Maximum	Yield Strength:	80	ksi		Collapse Res	sistance:		2,530	psi	
DA 7.875	Minimum 1	ensile Strength:	75	ksi		Internal Yield Pi (API Historical)	ressure:		3,930	psi	
S2L2	API Connection Data Coupling OD: 9.625"					A	PI Conne	ction To	rque		
S		STC Performa	nce		STC Torque (ft-lbs)				os)		
J 55	STC Intern	al Pressure:	3,930	psi		Min: 2,793	Opti:	3,724	Max:	4,655	

STC Performance						
STC Internal Pressure:	3,930	psi				
STC Joint Strength:	372	kips				
LTC Performand	:e					
LTC Internal Pressure:	3,930	psi				
LTC Joint Strength:	417	kips				
SC-BTC Performance - Cplg	OD =	9.125"				
BTC Internal Pressure:	3,930	psi				
BTC Joint Strength:	503	kips				

8.625

VALLOUREC STAR

IVIII I.	2,100	Opti.	5,724	WIGA.	4,000
	L	TC Tor	que (ft-lb	s)	
Min:	3,130	Opti:	4,174	Max:	5,217
	_		/fr 11		
	-	SIC For	que (ft-lb	IS)	
follo	w API guid	delines re	garding pos	sitional ma	ake up

^{*}Alt. Drift will be used unless API Drift is specified on order.

ALL INFORMATION IS PROVIDED BY VALIDUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF, AND ON AN 7-AS IS SASSI WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCIDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALIDUREC OR ITS AFFILIATES ARE RESONISIBLE FOR ANY INDIRECT, SPECIAL MIGHENTLY, PUNITYE, EXPRIENCENCY OR CONCENTRAL LOSS OR ADMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF US, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEABLE OR VALIDUREC OR ITS AFFILIATES WERE ADVISED OF THE

Maximum Make-Up Torque

^{**}If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

EOG BLANKET CASING DESIGN VARIANCE

EOG respectfully requests the drill plans in the attached document 'EOG Alternate Casing Designs – BLM APPROVED' be added to the COA's for this well. These designs have been approved by the BLM down to the TVDs listed below and will allow EOG to run alternate casing designs for this well if necessary.

The designs and associated details listed are the "worst case scenario" boundaries for design safety factors. Location and lithology have NOT been accounted for in these designs. The specific well details will be based on the APD/Sundry package and the information listed in the COA.

The mud program will not change from the original design for this well. Summary of the mud programs for both shallow and deep targets are listed at the end of this document. If the target is changing, a sundry will be filed to update the casing design and mud/cement programs.

Cement volumes listed in this document are for reference only. The cement volumes for the specific well will be adjusted to ensure cement tops meet BLM requirements as listed in the COA and to allow bradenhead cementing when applicable.

This blanket document only applies to wells with three string designs outside of Potash and Capitan Reef boundaries.

Shallow Design Boundary Conditions								
	Deepest	Deepest	Max Inc	Max DLS				
	MD (ft)	TVD (ft)	(deg)	(°/100usft)				
Surface	2030	2030	0	0				
Intermediate	7793	5650	40	8				
Production	28578	11225	90	25				

Shallow Design A

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

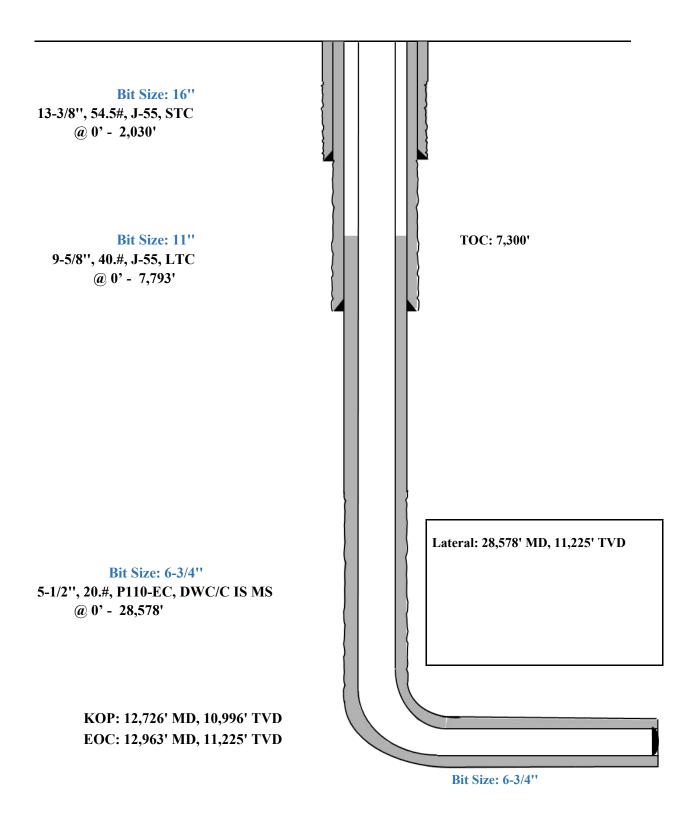
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

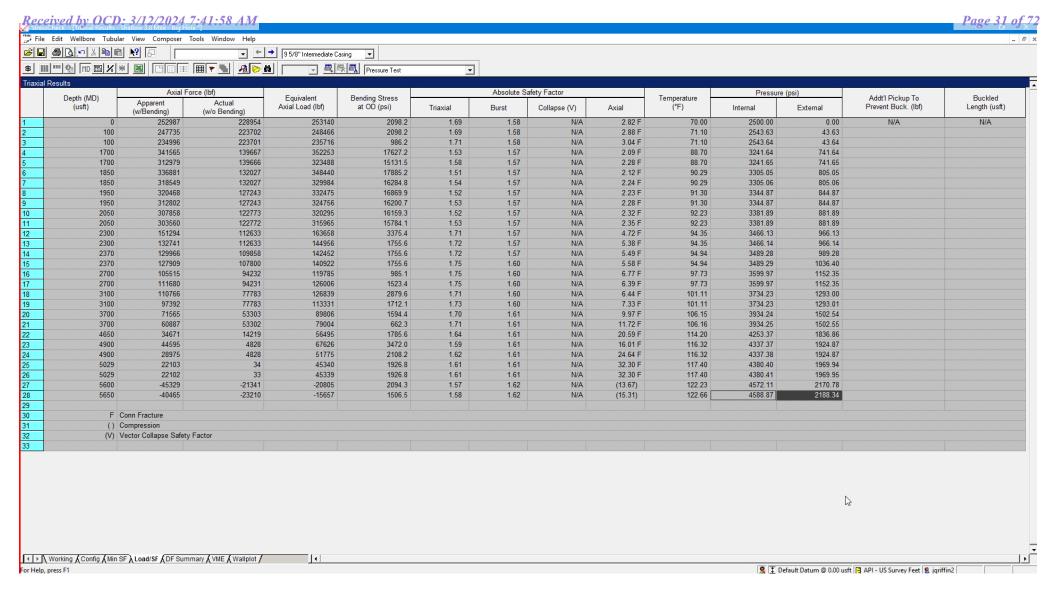
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

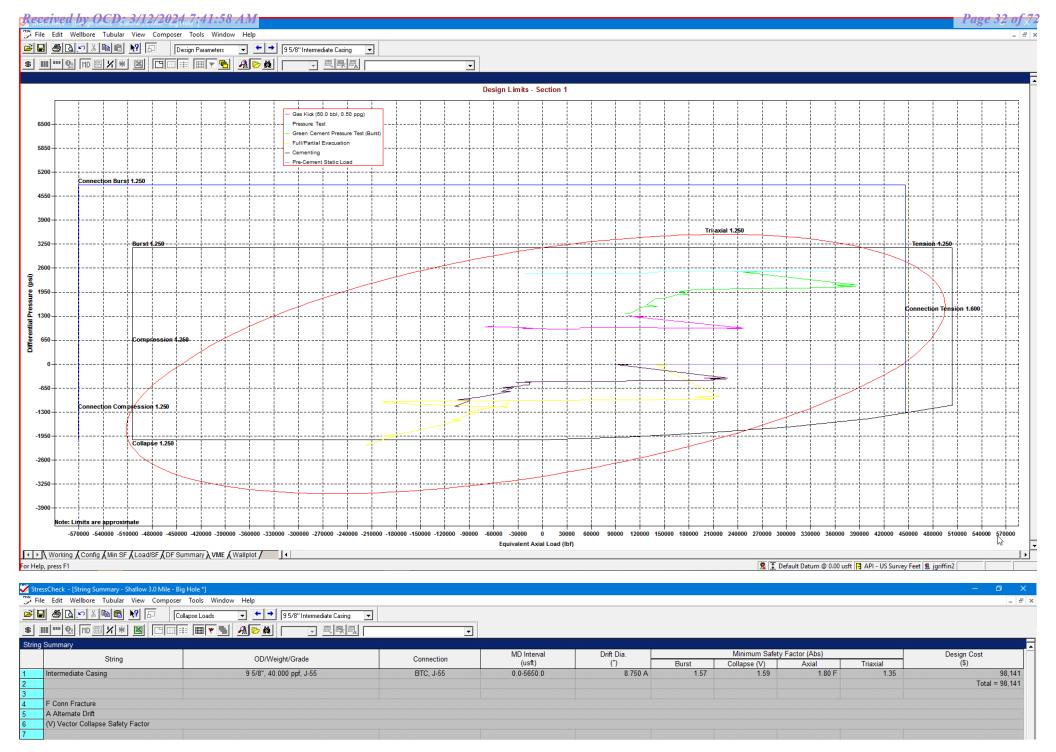

		Wt.	Yld	
Depth	No. Sacks		Ft3/sk	Slurry Description
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-
13-3/8''				Flake (TOC @ Surface)
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium
				Metasilicate (TOC @ 1830')
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @
9-5/8''				Surface)
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')
28,578'	410	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC
5-1/2''				@ 7300')
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @
				12730')

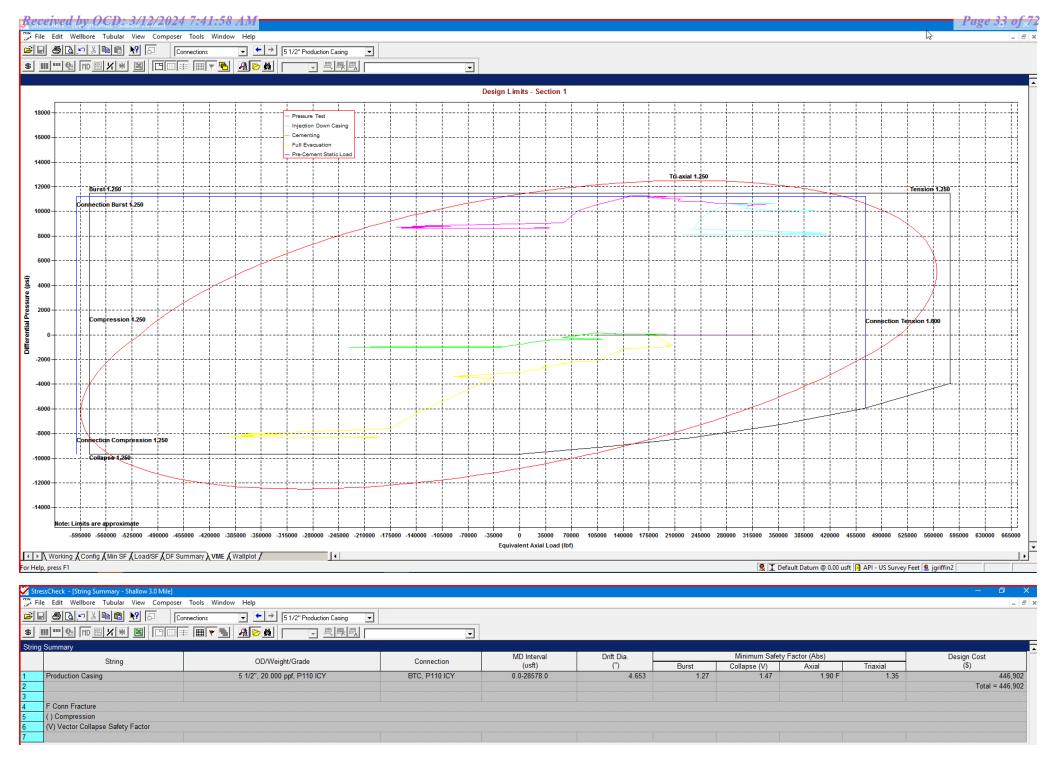


Shallow Design A

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 6 of 32

Shallow Design B

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
13-1/2"	0	2,030	0	2,030	10-3/4"	40.5#	J-55	STC
9-7/8"	0	7,793	0	5,650	8-5/8"	32#	J-55	BTC-SC
6-3/4"	0	28,578	0	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

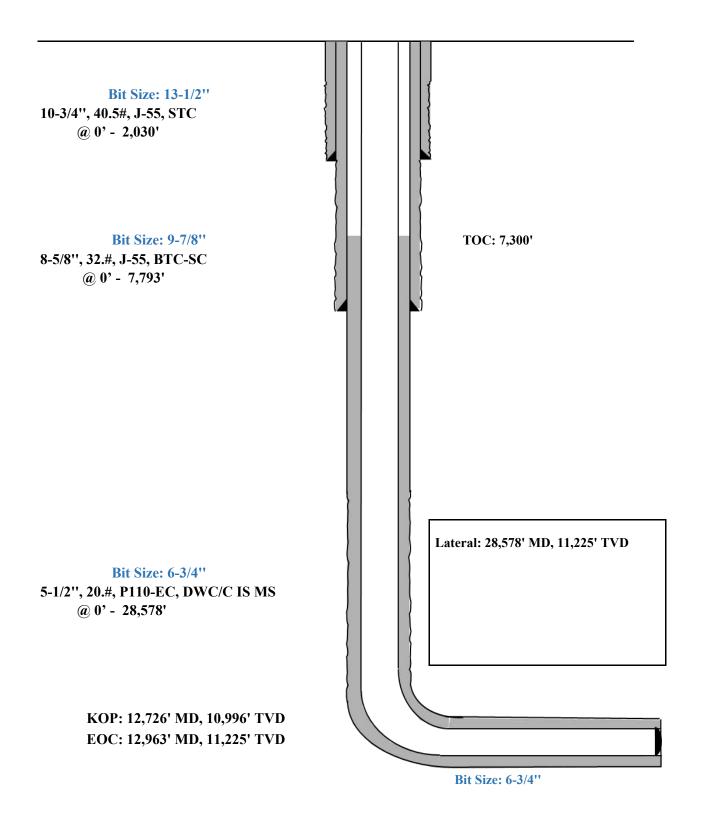
Variance is requested to waive the centralizer requirements for the 8-5/8" casing in the 9-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 9-7/8" hole interval to maximize cement bond and zonal isolation.

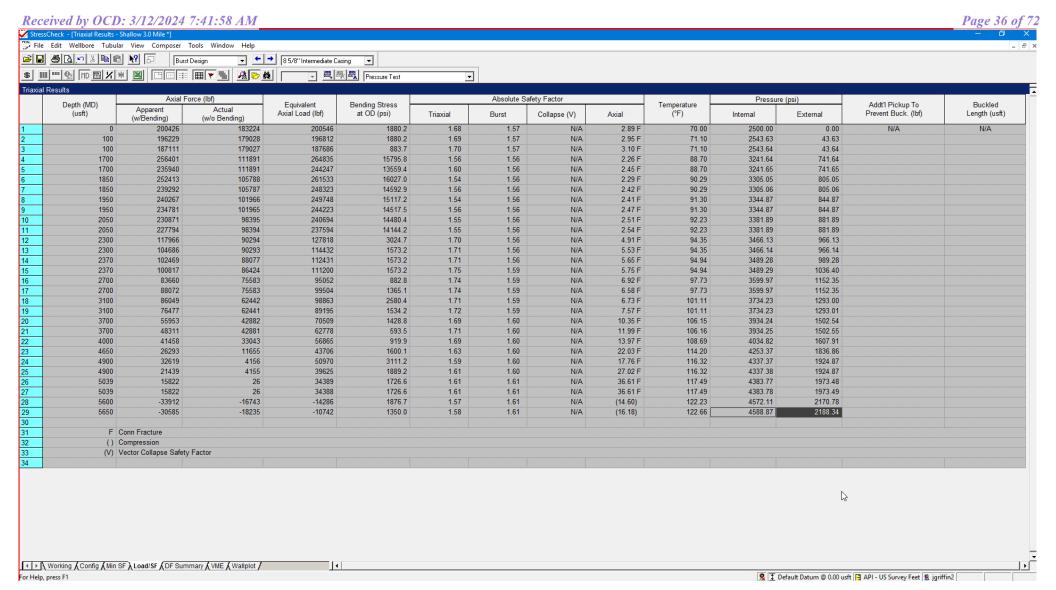
Variance is also requested to waive any centralizer requirements for the 5-1/2" casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

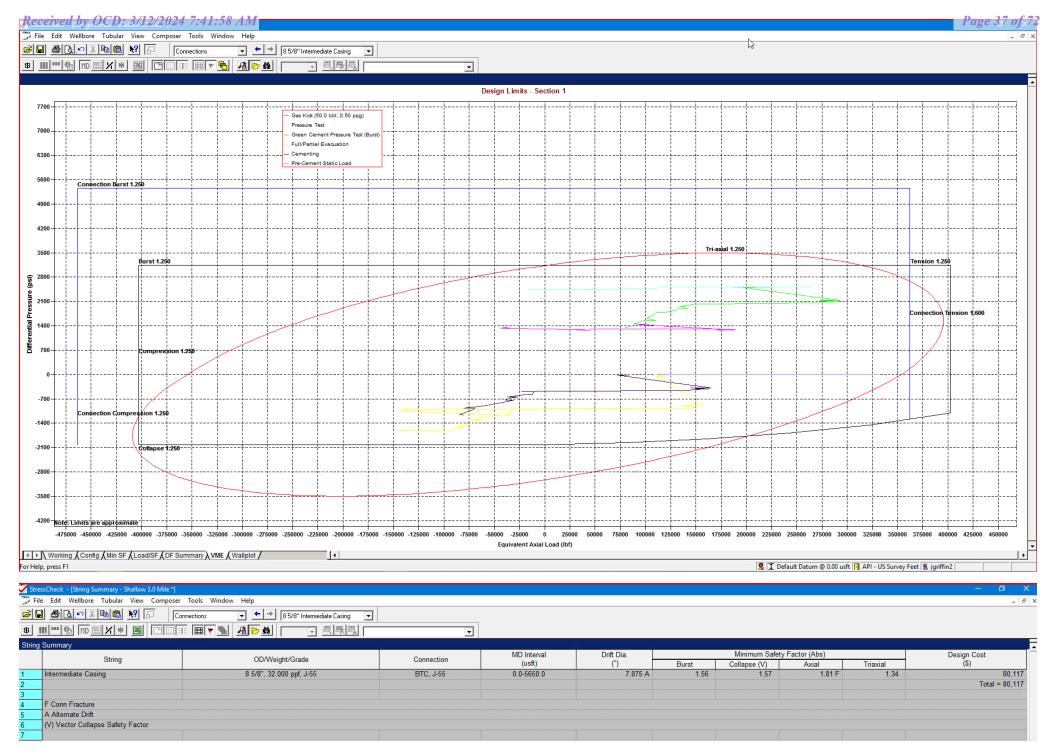

		Wt.	Yld	Slurry Description			
Depth	No. Sacks	ppg	Ft3/sk	Sidily Description			
2,030'	530	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-			
10-3/4''				Flake (TOC @ Surface)			
	140	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium			
				Metasilicate (TOC @ 1830')			
7,793'	460	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @			
8-5/8''				Surface)			
	210	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')			
28,578'	400	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC			
5-1/2"				@ 7300')			
	1110	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%			
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @			
				12730')			

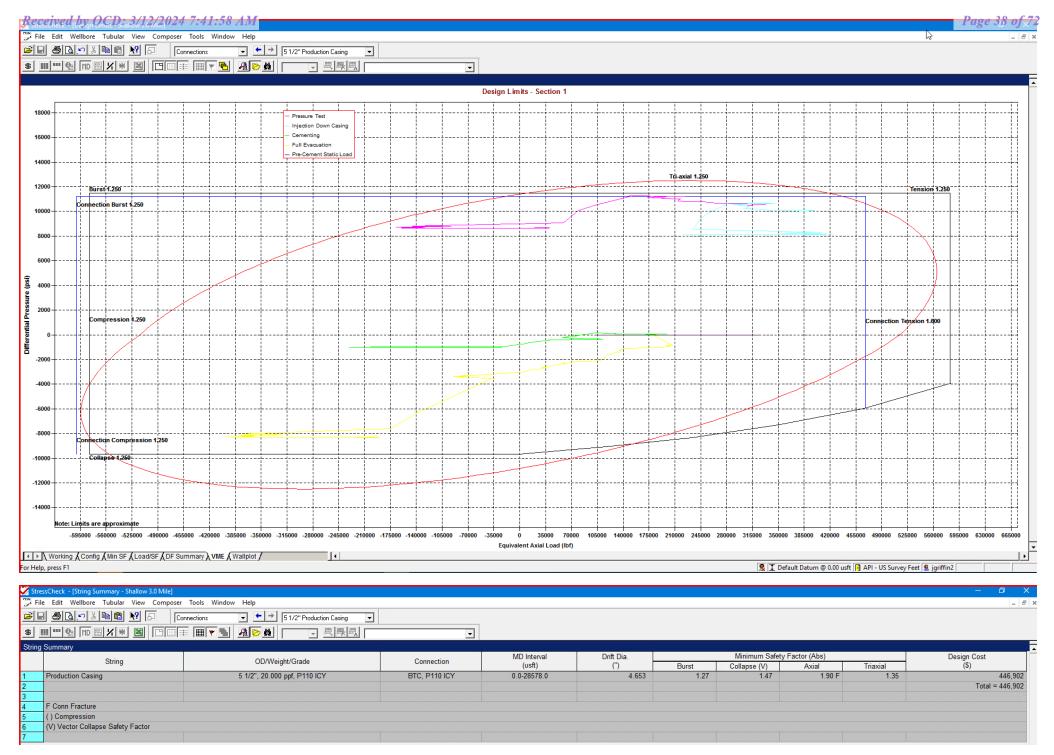


Shallow Design B

Proposed Wellbore

KB: 3558' GL: 3533'




8-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 8-5/8" 32# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 11 of 32

Shallow Design C

1. CASING PROGRAM

Hole	Interval MD		Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft) To (ft)		OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	28,578	0	11,225	6"	24.5#	P110-EC	VAM Sprint-SF

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

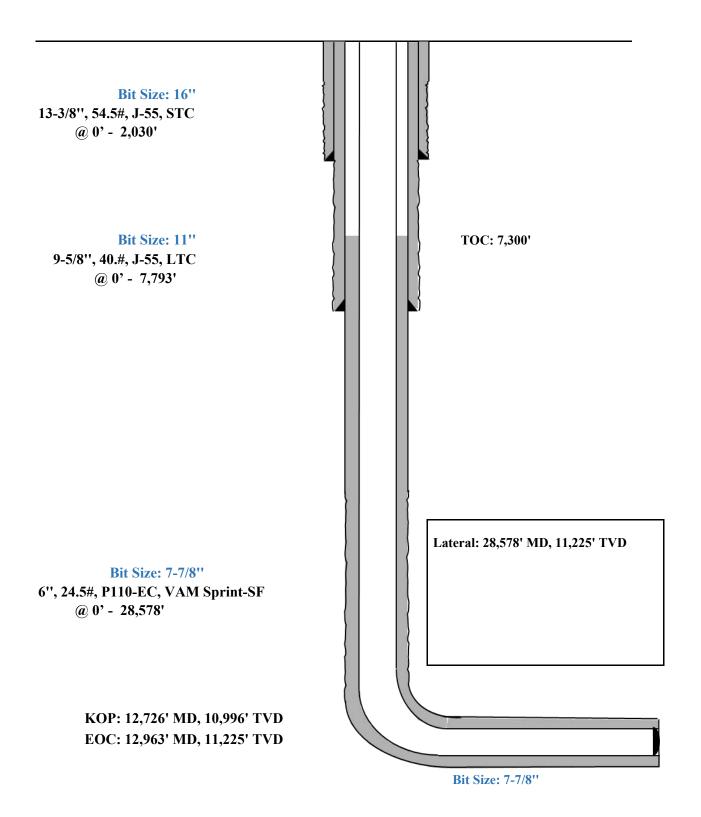
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

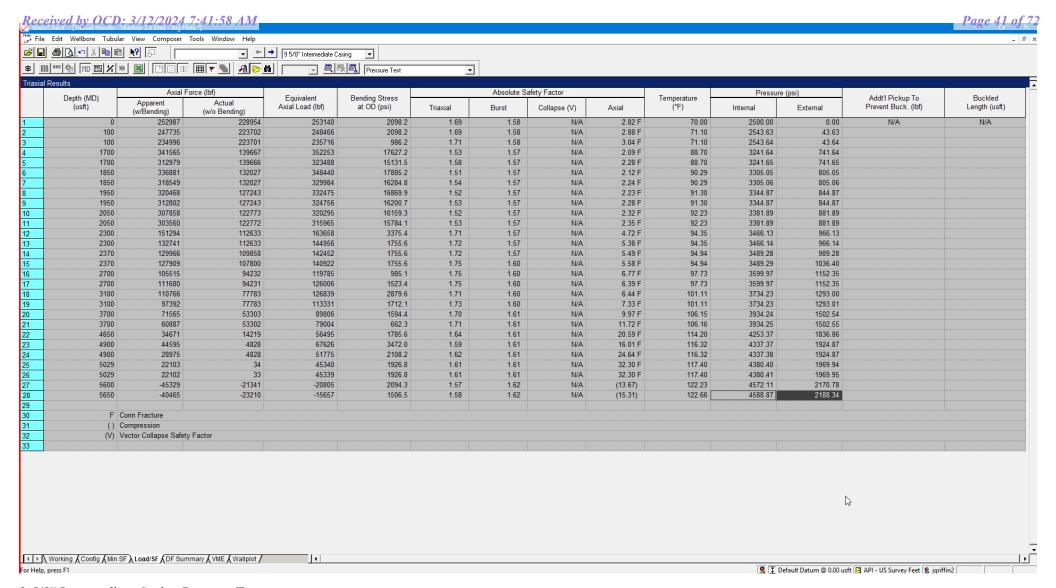
Variance is also requested to waive any centralizer requirements for the 6" casing in the 7-7/8" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 7-7/8" hole interval to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

2. CEMENTING PROGRAM:

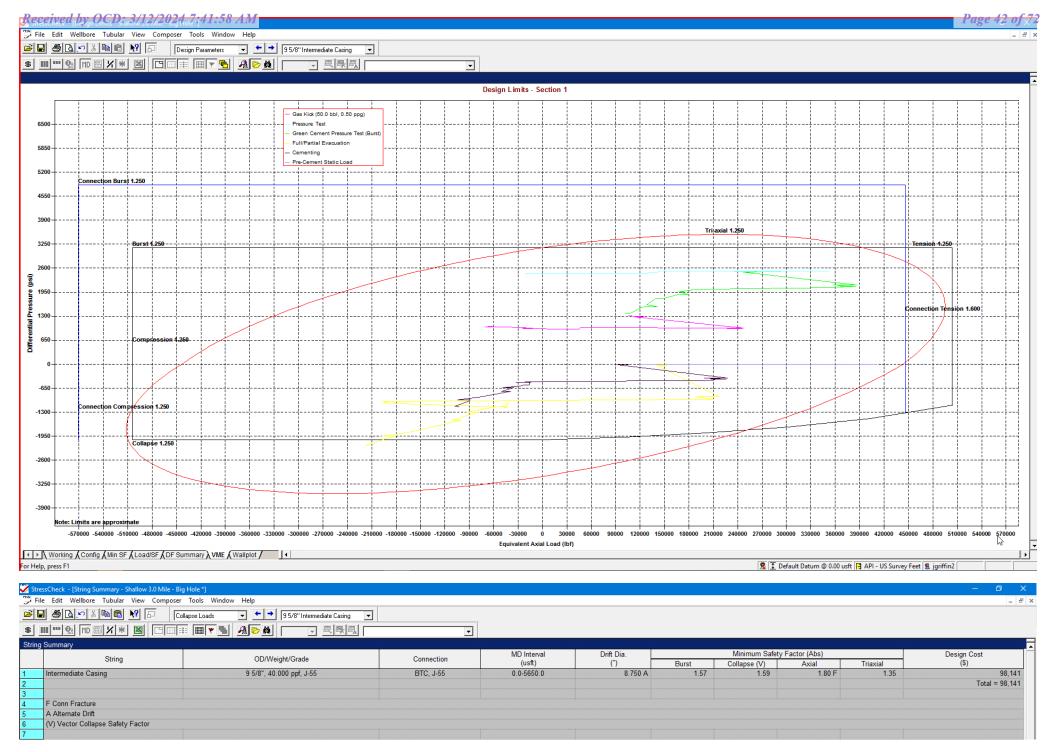

		Wt.	Yld	Chama Danadatian	
Depth	No. Sacks	ppg	Ft3/sk	Slurry Description	
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-	
13-3/8''				Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium	
				Metasilicate (TOC @ 1830')	
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @	
9-5/8''				Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')	
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC	
6''				@ 7300')	
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%	
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @	
				12730')	

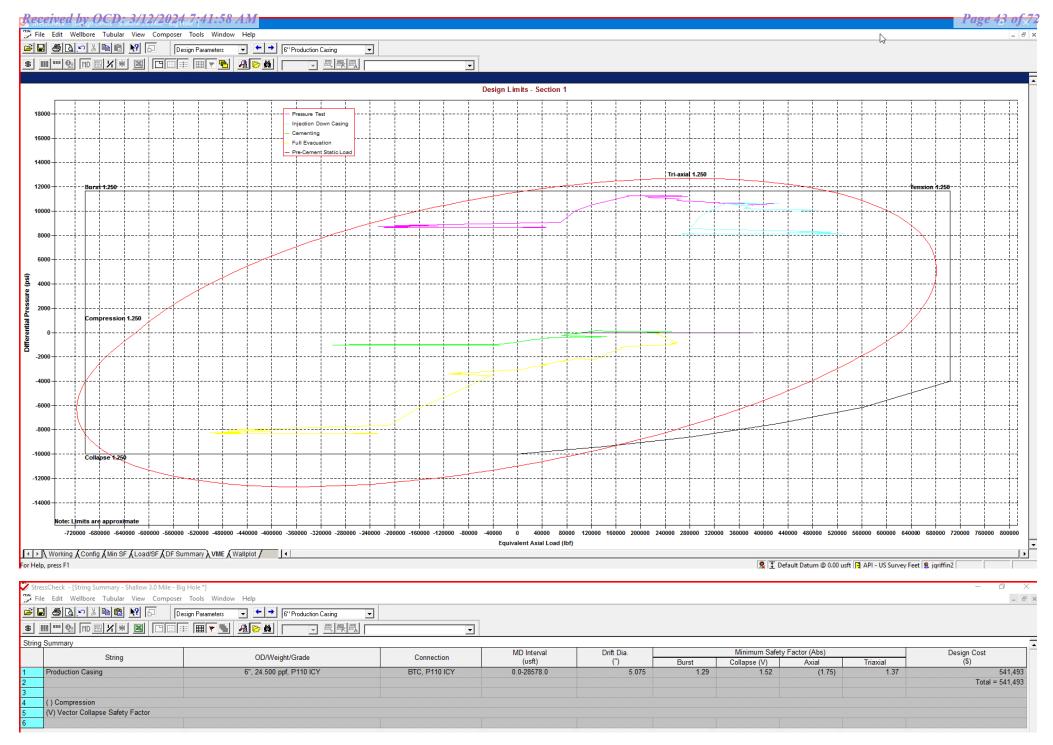


Shallow Design C

Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi

External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Shallow Design D

4. CASING PROGRAM

Hole	Interval MD		MD Interval TVD		Csg			
Size	From (ft)	To (ft)	From (ft)	To (ft)	OD	Weight	Grade	Conn
16"	0	2,030	0	2,030	13-3/8"	54.5#	J-55	STC
11"	0	7,793	0	5,650	9-5/8"	40#	J-55	LTC
7-7/8"	0	12,626	0	10,896	6"	22.3#	P110-EC	DWC/C IS
6-3/4"	12,626	28,578	10,896	11,225	5-1/2"	20#	P110-EC	DWC/C IS MS

Hole will be full during casing run for well control and tensile SF factor. Casing will be kept at least half full during run for this design to meet BLM collapse SF requirement. External pressure will be reviewed prior to conducting casing pressure tests to ensure that 70% of the yield is not exceeded.

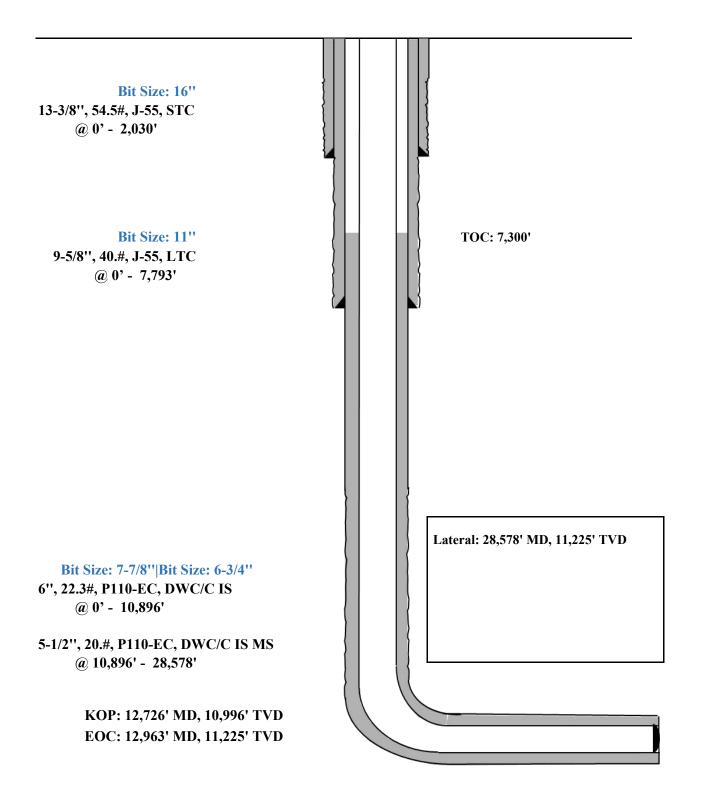
Variance is requested to waive the centralizer requirements for the 9-5/8" casing in the 11" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 11" hole interval to maximize cement bond and zonal isolation.

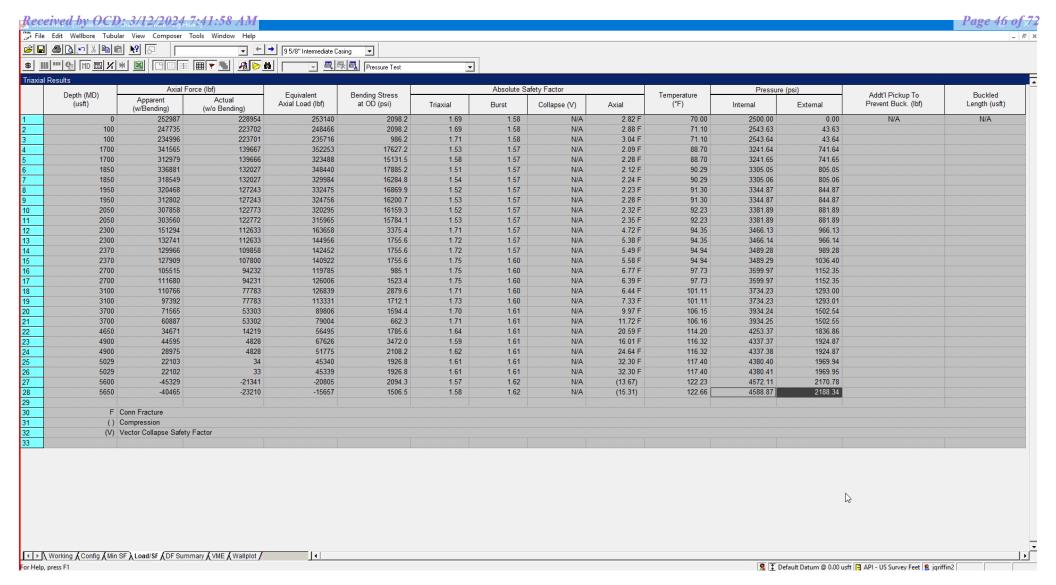
Variance is also requested to waive any centralizer requirements for the 6" and 5-1/2" casings in the 7-7/8" and 6-3/4" hole sizes. An expansion additive will be utilized in the cement slurry for the entire length of the 7-7/8" and 6-3/4" hole intervals to maximize cement bond and zonal isolation.

EOG requests permission to allow deviation from the 0.422" annulus clearance requirement for the intermediate (salt) section from Title 43 CFR Part 3170 under the following conditions:

- The variance is not applicable within the Potash Boundaries or Capitan Reef areas.
- Operator takes responsibility to get casing to set point in the event that the clearance causes stuck pipe issues.

5. CEMENTING PROGRAM:

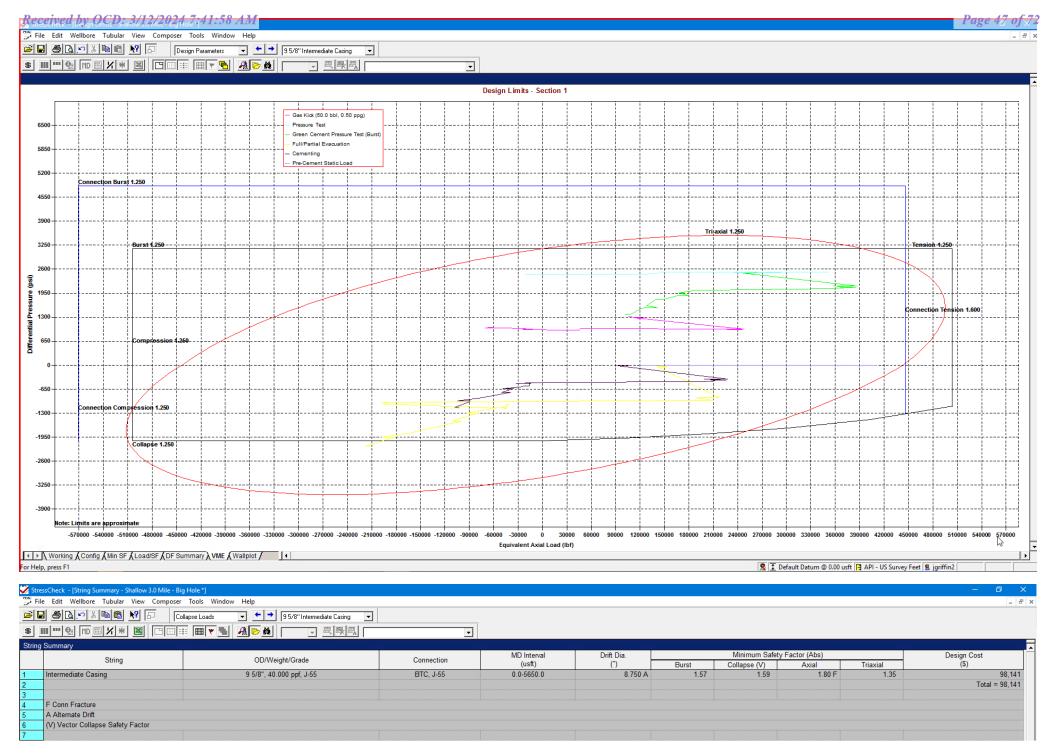

		Wt.	Yld	Slurry Description	
Depth	No. Sacks	ppg	Ft3/sk	Slurry Description	
2,030'	570	13.5	1.73	Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl2 + 0.25 lb/sk Cello-	
13-3/8''				Flake (TOC @ Surface)	
	160	14.8	1.34	Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium	
				Metasilicate (TOC @ 1830')	
7,793'	770	12.7	2.22	Lead: Class C + 10% NaCl + 6% Bentonite Gel + 3% MagOx (TOC @	
9-5/8''				Surface)	
	250	14.8	1.32	Tail: Class C + 10% NaCL + 3% MagOx (TOC @ 6238')	
28,578'	650	10.5	3.21	Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3% Microbond (TOC	
6''				@ 7300')	
	1870	13.2	1.52	Tail: Class H + 5% NEX-020 + 0.2% NAC-102 + 0.15% NAS-725 + 0.5%	
				NFL-549 + 0.2% NFP-703 + 1% NBE-737 + 0.3% NRT-241 (TOC @	
				12730')	

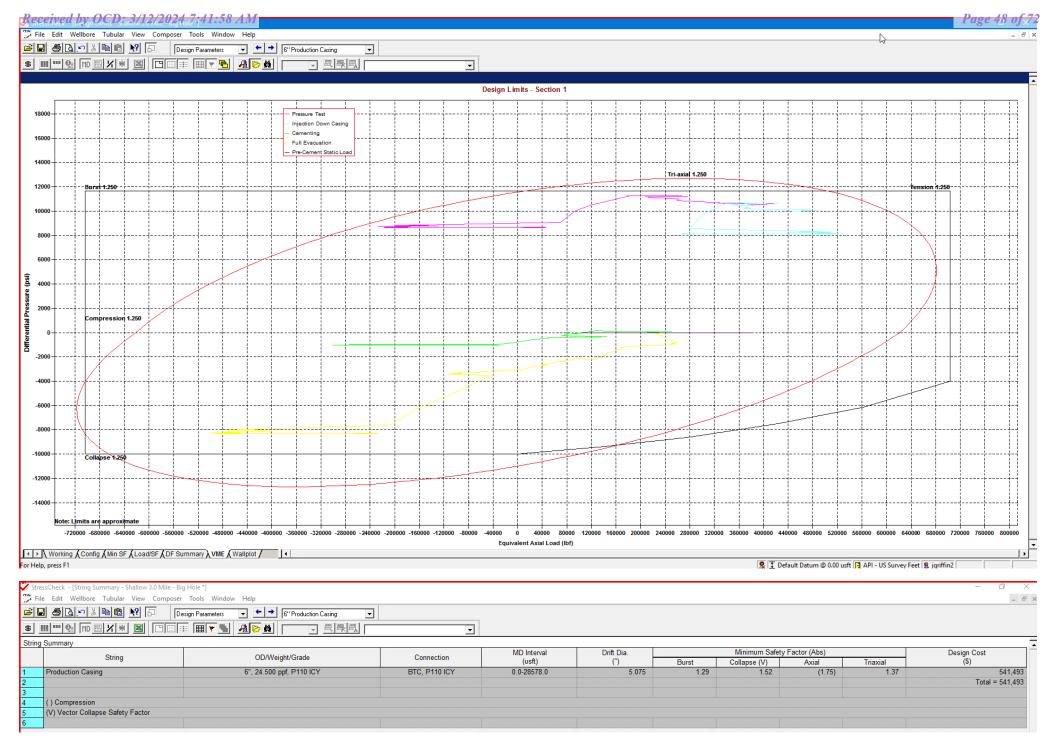


Shallow Design D

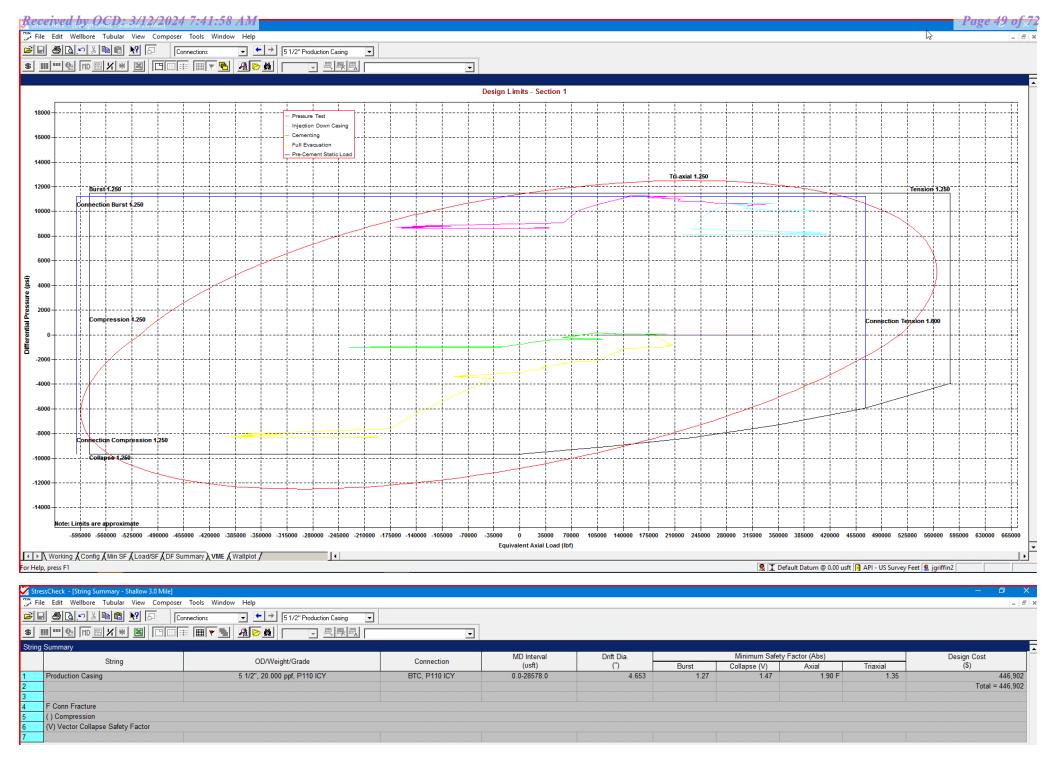
Proposed Wellbore

KB: 3558' GL: 3533'




9-5/8" Intermediate Casing Pressure Test:

Internal Profile based off Surface Pressure + Hydrostatic: 4589 psi


External Profile based off Pore Pressure: 2188 psi

^{*}Modelling done with 9-5/8" 40# Intermediate Casing. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 6" Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

^{*}Modelling done with 5-1/2" 20# Production Casing with a 125ksi Control Yield. Passes all Burst, Collapse and Tensile design criteria.

Page 22 of 32

MUD PROGRAM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal. The applicable depths and properties of the drilling fluid systems are as follows:

Measured Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 2,030'	Fresh - Gel	8.6-8.8	28-34	N/c
2,030' – 7,793'	Brine	9-10.5	28-34	N/c
5,450' – 28,578' Lateral	Oil Base	8.8-9.5	58-68	N/c - 6

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

CEMENTING ADDITIVES:

Additive	Purpose
Bentonite Gel	Lightweight/Lost circulation prevention
Calcium Chloride	Accelerator
Cello-flake	Lost circulation prevention
Sodium Metasilicate	Accelerator
MagOx	Expansive agent
Pre-Mag-M	Expansive agent
Sodium Chloride	Accelerator
FL-62	Fluid loss control
Halad-344	Fluid loss control
Halad-9	Fluid loss control
HR-601	Retarder
Microbond	Expansive Agent

Cement integrity tests will be performed immediately following plug bump.

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

New Search »

Make-Up Loss

Minimum Make-Up Torque

Released to Imaging: 12/12/2025 9:15:22 AM Maximum Make-Up Torque

Back to Previous List

in.

ft-lbs

ft-lbs

3.50

3,860

6,430

6/8/2015 10:04:37 AM

Mechanical Properties

Pipe

BTC

LTC

STC

		7	<u> </u>		
Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	21	~	==	psi
Maximum Yield Strength	80 <mark>,</mark> 000	-		-	psi
Minimum Tensile Strength	75,000		_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	13.375	14.375	-	14.375	in.
Wall Thickness	0.380	#	, = 21		in.
Inside Diameter	12.615	12.615		12.615	in.
Standard Drift	12.459	12.459		12.459	in.
Alternate Drift	_		-	-	in.
Nominal Linear Weight, T&C	54.50			-	lbs/ft
Plain End Weight	52.79				lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	1,130	1,130	->	1,130	psi
Minimum Internal Yield Pressure	2,740	2,740	##4	2,740	psi
Minimum Pipe Body Yield Strength	853.00				1000 lbs
Joint Strength	=	909	-0	514	1000 lbs
Reference Length	=	11,125	-	6,290	п
Make-Up Data	Pipe	втс	LTC	STC	

Page 24 of 32

4.81

New Search »					
					USC Metri
6/8/2015 10:23:27 AM	75 S	v			0.5
Mechanical Properties	Pipe	втс	LTC	STC	
Minimum Yield Strength	55,000	=	= .		psi
Maximum Yield Strength	80,000		-	-	psi
Minimum Tensile Strength	75,000		_	_	psi
Dimensions	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625	10.625	in.
Wall Thickness	0.395	==	77.0	170	in.
Inside Diameter	8.835	8.835	8.835	8.835	in.
Standard Drift	8.679	8.679	8.679	8.679	in.
Alternate Drift	8.750	8.750	8.750	8.750	in.
Nominal Linear Weight, T&C	40.00	-	-	, , , ,	lbs/ft
Plain End Weight	38.97	_	-	-	lbs/ft
Performance	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	2,570	2,570	2,570	2,570	psi
Minimum Internal Yield Pressure	3,950	3,950	3,950	3,950	psi
Minimum Pipe Body Yield Strength	630.00	-			1000 lbs
Joint Strength		714	520	452	1000 lbs
Reference Length	-	11,898	8,665	7,529	п
Make-Up Data	Pipe	втс	LTC	STC	
Make-Up Loss	-	4.81	4.75	3.38	in.
Minimum Make-Up Torque	D 05 100	_	3,900	3,390	ft-lbs
Released to Imaging: 12/12/2025 9:15:22 AM Maximum Make-Up Torque	Page 25 of 32	=	6,500	5,650	ff-lbs

Nominal Area Grade Type Min. Yield Stren Max. Yield Stren Min. Tensile Str Yield Strength Ultimate Streng Min. Internal Yield

Collapse

Connection Data Sheet

OD (in.) WEIGHT (lbs./ft.) 5.500 Nominal: 20.00

WALL (in.) 0.361

GRADE VST P110EC API DRIFT (in.) 4.653

RBW% 87.5

CONNECTION DWC/C-IS MS

Plain End: 19.83

	PIPE PROPERTIES		
0 4 14 81			
Outside Diameter		5.500	in.
Inside Diameter		4.778	in.
Nominal Area		5.828	sq.in.
Grade Type		API 5CT	
Min. Yield Strength		125	ksi
Max. Yield Strength		140	ksi
Min. Tensile Strength		135	ksi
Yield Strength		729	klb
Ultimate Strength		787	klb

14,360

12,090

	CONNECTION PR	OPERTIES	
in.	Connection Type	Semi-Premium	T&C
in.	Connection O.D. (nom)	6.115	in.
q.in.	Connection I.D. (nom)	4.778	in.
	Make-Up Loss	4.125	in.
ksi	Coupling Length	9.250	in.
ksi	Critical Cross Section	5.828	sq.in.
ksi	Tension Efficiency	100.0% of	fpipe
klb	Compression Efficiency	100.0% of	fpipe
klb	Internal Pressure Efficiency	100.0% of	fpipe
psi	External Pressure Efficiency	100.0% of	fpipe
psi			

CONNECTION PERFORMANCES				
Yield Strength	729	klb		
Parting Load	787	klb		
Compression Rating	729	klb		
Min. Internal Yield	14,360	psi		
External Pressure	12,090	psi		
Maximum Uniaxial Bend Rating	104.2	°/100 ft		
Reference String Length w 1.4 Design Factor	26,040	ft		

	FIELD END TORQUE VAL	UES	
,	Min. Make-up torque	16,100	ft.lb
,	Opti. Make-up torque	17,350	ft.lb
,	Max. Make-up torque	18,600	ft.lb
i	Min. Shoulder Torque	1,610	ft.lb
i	Max. Shoulder Torque	12,880	ft.lb
ŧ	Min. Delta Turn	-	Turns
t	Max. Delta Turn	0.200	Turns
_	Maximum Operational Torque	21,100	ft.lb
	Maximum Torsional Value (MTV)	23,210	ft.lb

Need Help? Contact: tech.support@vam-usa.com Reference Drawing: 8136PP Rev.01 & 8136BP Rev.01

Date: 12/03/2019 Time: 06:19:27 PM

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for ourpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA 2107 CityWest Boulevard Suite 1300 Houston, TX 77042

Phone: 713-479-3200 Fax: 713-479-3234

VAM[®] USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

PDF

10.750 40.50/0.350 J55

New Search »

« Back to Previous List

USC Metric

	6	/8/20	15	10:1	4:05	ΑM
--	---	-------	----	------	------	----

Mechanical Properties	Ptpe	втс	LTC	STC	
Minimum Yield Strength	55,000	-	-	-	psi
Maximum Yield Strength	80,000	-			psi
Minimum Tensile Strength	75,000	-	-	-	psi
Dimensions	Ртре	втс	LTC	STC	
Outside Diameter	10.750	11.750	-	11.750	in.
Wall Thickness	0.350	-	-	-	in.
Inside Diameter	10.050	10.050	-	10.050	in.
Standard Drift	9.894	9.894	-	9.894	in.
Alternate Drift	-	-	-	-	in.
Nominal Linear Weight, T&C	40.50		-	-	lbs/ft
Plain End Weight	38.91	-	-	-	lbs/ft
Performance	Ptpe	втс	LTC	STC	
Minimum Collapse Pressure	1,580	1,580	-	1,580	psi
Minimum Internal Yield Pressure	3,130	3,130	-	3,130	psi
Minimum Pipe Body Yield Strength	629.00	-	-	-	1000 lbs
Joint Strength	-	700	-	420	1000 lbs
Reference Length	-	11,522	-	6,915	ft
Make-Up Data	Ріре	втс	LTC	STC	
Make-Up Loss	-	4.81	-	3.50	in.
Minimum Make-Up Torque		-		3,150	ft-lbs
Released to Imaging: 12/12/2025 9:15:22 AM Maximum Make-Up Torque	Page 28 of 32	-	-	5,250	ft-lbs

API 5CT, 10th Ed. Connection Data Sheet

O.D. (in)	WEIGHT	(lb/ft)	WALL (in)	GRADE	*API DRIFT (in)	RBW %
8.625	Nominal: Plain End:	32.00 31.13	0.352	J55	7.796	87.5

Material Properties (PE)					
Pipe					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				
Coupling					
Minimum Yield Strength:	55 ksi				
Maximum Yield Strength:	80 ksi				
Minimum Tensile Strength:	75 ksi				

Pipe Body Data (PE)				
Geometry				
Nominal ID:	7.92 inch			
Nominal Area:	9.149 in ²			
*Special/Alt. Drift:	7.875 inch			
Performance				
Pipe Body Yield Strength:	503 kips			
Collapse Resistance:	2,530 psi			
Internal Yield Pressure: (API Historical)	3,930 psi			

API Connection Data			
Coupling OD: 9.6	625"		
STC Performa	ince		
STC Internal Pressure:	3,930	psi	
STC Joint Strength:	372	kips	
LTC Performance			
LTC Internal Pressure:	3,930	psi	
LTC Joint Strength:	417	kips	
SC-BTC Performance - Cp	olg OD =	9.125"	
BTC Internal Pressure:	3,930	psi	
BTC Joint Strength:	503	kips	

API Connection Torque							
	STC Torque (ft-lbs)						
Min:	2,793	Opti:	3,724	Max:	4,655		
	LTC Torque (ft-lbs)						
Min:	3,130	Opti:	4,174	Max:	5,217		
	_	. TO T	/6: 11	- 1			
	BTC Torque (ft-lbs)						
follow API guidelines regarding positional make up							

*Alt. Drift will be used unless API Drift is specified on order.

**If above API connections do not suit your needs, VAM® premium connections are available up to 100% of pipe body ratings.

ALL INFORMATION IS PROVIDED BY VALLOUREC OR ITS AFFILIATES AT USER'S SOLE RISK, WITHOUT LIABILITY FOR LOSS, DAMAGE OR INJURY RESULTING FROM THE USE THEREOF; AND ON AN "AS IS" BASIS WITHOUT WARRANTY OR REPRESENTATION OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR PURPOSE, ACCURACY OR COMPLETENESS. THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS BASED ON ESTIMATES THAT HAVE NOT BEEN VERIFIED OR TESTED. IN NO EVENT SHALL VALLOUREC OR ITS AFFILIATES BE RESPONSIBLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, EXEMPLARY OR CONSEQUENTIAL LOSS OR DAMAGE (INCLUDING WITHOUT LIMITATION, LOSS OF USE, LOSS OF BARGAIN, LOSS OF REVENUE, PROFIT OR ANTICIPATED PROFIT) HOWEVER CAUSED OR ARISING, AND WHETHER SUCH LOSSES OR DAMAGES WERE FORESEEABLE OR VALLOUREC OR ITS AFFILIATES WERE ADVISED OF THE

Rev 3, 7/30/2021 POSSIBILITY OF SUCH DAMAGES. 10/21/2022 15:24

Issued on: 10 Feb. 2021 by Wesley Ott

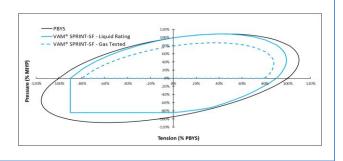
Connection Data Sheet

OD Weight (lb/ft) Wall Th. Grade API Drift: Connection

6 in. Nominal: 24.50 Plain End: 23.95

Wall Th. Grade API Drift: Connection

VAM® SPRINT-SF


PI PE PROPERTI ES		
Nominal OD	6.000	in.
Nominal ID	5.200	in.
Nominal Cross Section Area	7.037	sqin.
Grade Type	Hig	jh Yield
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Ultimate Tensile Strength	135	ksi

CONNECTION PROPERTIES		
Connection Type	Integral	Semi-Flush
Connection OD (nom):	6.277	in.
Connection ID (nom):	5.146	in.
Make-Up Loss	5.386	in.
Critical Cross Section	6.417	sqin.
Tension Efficiency	91.0	% of pipe
Compression Efficiency	91.0	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

CONNECTION PERFORMANCES				
Tensile Yield Strength	801	klb		
Compression Resistance	801	klb		
Internal Yield Pressure	14,580	psi		
Collapse Resistance	12,500	psi		
Max. Structural Bending	83	°/100ft		
Max. Bending with ISO/API Sealability	30	°/100ft		

TORQUE VALUES		
Min. Make-up torque	21,750	ft.lb
Opt. Make-up torque	24,250	ft.lb
Max. Make-up torque	26,750	ft.lb
Max. Torque with Sealability (MTS)	53,000	ft.lb

VAM® SPRINT-SF is a semi-flush connection innovatively designed for extreme shale applications. Its high tension rating and ultra high torque capacity make it ideal to run a fill string length as production casing in shale wells with extended horizontal sections and tight clearance requirements.

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com Do you need help on this product? - Remember no one knows VAM® like VAM®

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

^{* 87.5%} RBW

Connection Data Sheet

 OD (in.)
 WEIGHT (lbs./ft.)
 WALL (in.)
 GRADE
 API DRIFT (in.)
 RBW%
 CONNECTION

 6.000
 Nominal: 22.30
 0.360
 VST P110EC
 5.155
 92.5
 DWC/C-IS

 Plain End: 21.70

PIPE PROPERTIES		
Nominal OD	6.000	in.
Nominal ID	5.280	in.
Nominal Area	6.379	sq.in.
Grade Type	API 5CT	
Min. Yield Strength	125	ksi
Max. Yield Strength	140	ksi
Min. Tensile Strength	135	ksi
Yield Strength	797	klb
Ultimate Strength	861	klb
Min. Internal Yield Pressure	13,880	psi
Collapse Pressure	9,800	psi

CONNECTION PERFORMANCES			
Yield Strength	797	klb	
Parting Load	861	klb	
Compression Rating	797	klb	
Min. Internal Yield	13,880	psi	
External Pressure	9,800	psi	
Maximum Uniaxial Bend Rating	47.7	°/100 ft	
Reference String Length w 1.4 Design Factor	25.530	ft.	

Need Help? Contact: <u>tech.support@vam-usa.com</u>
Reference Drawing: 8135PP Rev.02 & 8135BP Rev.02

Date: 07/30/2020 Time: 07:50:47 PM

CONNECTION PRO	PERTIES	
Connection Type	Semi-Prem	nium T&C
Connection OD (nom)	6.650	in.
Connection ID (nom)	5.280	in.
Make-Up Loss	4.313	in.
Coupling Length	9.625	in.
Critical Cross Section	6.379	sq.in.
Tension Efficiency	100.0%	of pipe
Compression Efficiency	100.0%	of pipe
Internal Pressure Efficiency	100.0%	of pipe
External Pressure Efficiency	100.0%	of pipe

FIELD END TORQUE VALUES			
Min. Make-up torque	17,000	ft.lb	
Opti. Make-up torque	18,250	ft.lb	
Max. Make-up torque	19,500	ft.lb	
Min. Shoulder Torque	1,700	ft.lb	
Max. Shoulder Torque	13,600	ft.lb	
Min. Delta Turn	-	Turns	
Max. Delta Turn	0.200	Turns	
Maximum Operational Torque	24,200	ft.lb	
Maximum Torsional Value (MTV)	26,620	ft.lb	

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

VAM USA

2107 CityWest Boulevard Suite 1300

Houston, TX 77042 Phone: 713-479-3200 Fax: 713-479-3234

VAM® USA Sales E-mail: <u>VAMUSAsales@vam-usa.com</u> Tech Support Email: <u>tech.support@vam-usa.com</u>

DWC Connection Data Sheet Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a given pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- 4. DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.
- 12. DWC/C family of connections are compatible with API Buttress BTC connections. Please contact tech.support@vam-usa.com for details on connection ratings and make-up.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In one event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

Deep Elem 4 Fed Com 592H (FKA 775H) API #: 30-015-54762 Variances

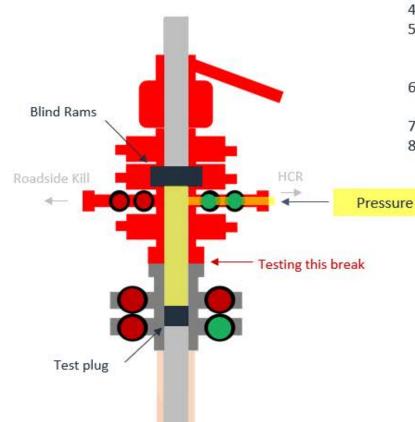
EOG respectfully requests the below variances to be applied to the above well:

- Variance is requested to waive the centralizer requirements for the intermediate casing in the intermediate hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the intermediate interval to maximize cement bond and zonal isolation.
- Variance is also requested to waive the centralizer requirements for the production casing in the production hole. An expansion additive will be utilized, in the cement slurry, for the entire length of the production interval to maximize cement bond and zonal isolation.
- Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).
 - Variance is requested to use a 5,000 psi annular BOP with the 10,000 psi BOP stack.
- EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and Cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Surface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1,500 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources

would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

EOG requests the additional variance(s) in the attached document(s):

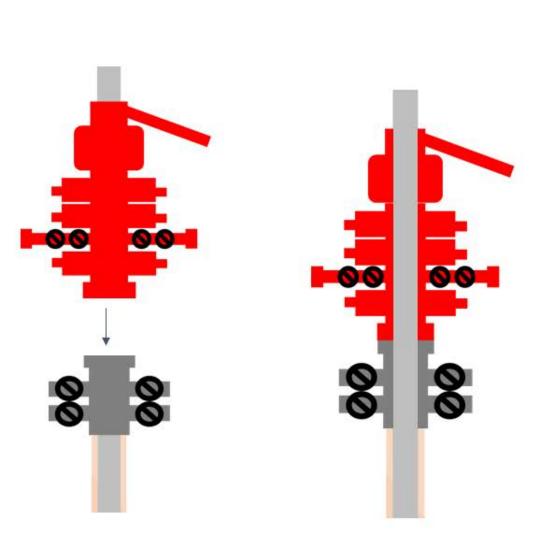
- EOG BLM Variance 3a b BOP Break-test and Offline Intermediate Cement
- EOG BLM Variance 4a Salt Section Annular Clearance
- EOG BLM Variance 5a Alternate Shallow Casing Designs

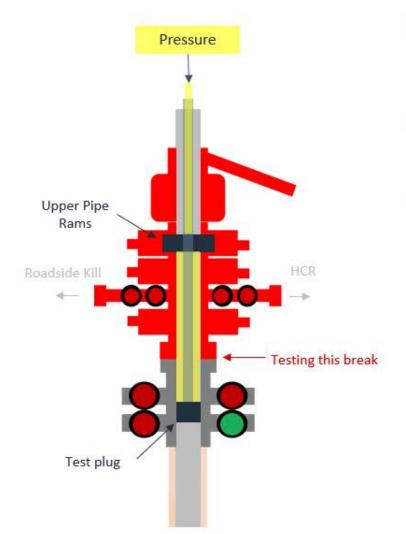


Break-test BOP & Offline Cementing:

EOG Resources Inc. (EOG) respectfully requests a variance from the minimum standards for well control equipment testing of ECFR Title 43 Part 3172.6(b)(9)(iv) to allow a testing schedule of the blow out preventer (BOP) and blow out prevention equipment (BOPE) along with Batch Drilling & Offline cement operations to include the following:

- Full BOPE test at first installation on the pad.
- Full BOPE test every 21 days.
- This test will be conducted for 5M rated hole intervals only.
- Each rig requesting the break-test variance is capable of picking up the BOP without damaging components using winches, following API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth edition, December 2018, Annex C. Table C.4) which recognizes break testing as an acceptable practice.
- Function tests will be performed on the following BOP elements:
 - Annular à during each full BOPE test
 - Upper Pipe Rams à On trip ins where FIT required
 - Blind Rams à Every trip
 - Lower Pipe Rams à during each full BOPE test
- Break testing BOP and BOPE coupled with batch drilling operations and option to offline cement and/or remediate (if needed) any surface or intermediate sections, according to attached offline cementing support documentation.
- After the well section is secured, the BOP will be disconnected from the wellhead and walked with the rig to another well on the pad.
- TA cap will also be installed per Wellhead vendor procedure and pressure inside the
 casing will be monitored via the valve on the TA cap as per standard batch drilling
 ops.


Break Test Diagram (HCR valve)



Steps

- 1. Set plug in wellhead (lower barrier)
- 2. Close Blind Rams (upper barrier)
- 3. Close roadside kill
- 4. Open HCR (pressure application)
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- Tie BOP testers high pressure line to main choke manifold crown valve
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

Break Test Diagram (Test Joint)

Steps

- Set plug in with test joint wellhead (lower barrier)
- 2. Close Upper Pipe Rams (upper barrier)
- 3. Close roadside kill
- Close HCR
- Open wellhead valves below test plug to ensure if leak past test plug, pressure won't be applied to wellbore
- 6. Tie BOP testers high pressure line to top of test joint
- 7. Pressure up to test break
- Bleed test pressure from BOP testing unit

2/24/2022

Cement Program

1. No changes to the cement program will take place for offline cementing.

Summarized Operational Procedure for Intermediate Casing

- 1. Run casing as per normal operations. While running casing, conduct negative pressure test and confirm integrity of the float equipment back pressure valves.
 - a. Float equipment is equipped with two back pressure valves rated to a minimum of 5,000 psi.
- 2. Land production casing on mandrel hanger through BOP.
 - a. If casing is unable to be landed with a mandrel hanger, then the casing will be cemented online.
- 3. Break circulation and confirm no restrictions.
 - a. Ensure no blockage of float equipment and appropriate annular returns.
 - b. Perform flow check to confirm well is static.
- 4. Set pack-off
 - a. If utilizing a fluted/ported mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid, remove landing joint, and set annular packoff through BOP. Pressure test to 5,000 psi for 10 min.
 - b. If utilizing a solid mandrel hanger, ensure well is static on the annulus and inside the casing by filling the pipe with kill weight fluid. Pressure test seals to 5,000 psi for 10 min. Remove landing joint through BOP.
- 5. After confirmation of both annular barriers and the two casing barriers, install TA plug and pressure test to 5,000 psi for 10 min. Notify the BLM with intent to proceed with nipple down and offline cementing.
 - a. Minimum 4 hrs notice.
- 6. With the well secured and BLM notified, nipple down BOP and secure on hydraulic carrier or cradle.
 - a. Note, if any of the barriers fail to test, the BOP stack will not be nippled down until after the cement job has concluded and both lead and tail slurry have reached 500 psi.
- 7. Skid/Walk rig off current well.
- 8. Confirm well is static before removing TA Plug.
 - a. Cementing operations will not proceed until well is under control. (If well is not static, notify BLM and proceed to kill)
 - b. Casing outlet valves will provide access to both the casing ID and annulus. Rig or third party pump truck will kill well prior to cementing.
 - c. Well control plan can be seen in Section B, Well Control Procedures.
 - d. If need be, rig can be moved back over well and BOP nippled back up for any further remediation.

2/24/2022

- e. Diagram for rig positioning relative to offline cementing can be seen in Figure 4.
- 9. Rig up return lines to take returns from wellhead to pits and rig choke.
 - a. Test all connections and lines from wellhead to choke manifold to 5,000 psi high for 10 min.
 - If either test fails, perform corrections and retest before proceeding.
 - c. Return line schematics can be seen in Figure 3.
- 10. Remove TA Plug from the casing.
- 11. Install offline cement tool.
 - a. Current offline cement tool schematics can be seen in Figure 1 (Cameron) and Figure 2 (Cactus).
- 12. Rig up cement head and cementing lines.
 - a. Pressure test cement lines against cement head to 80% of casing burst for 10 min.
- 13. Break circulation on well to confirm no restrictions.
 - a. If gas is present on circulation, well will be shut in and returns rerouted through gas buster.
 - b. Max anticipated time before circulating with cement truck is 6 hrs.
- 14. Pump cement job as per plan.
 - a. At plug bump, test casing to 0.22 psi/ft or 1500 psi, whichever is greater.
 - b. If plug does not bump on calculated, shut down and wait 8 hrs or 500 psi compressive strength, whichever is greater before testing casing.
- 15. Confirm well is static and floats are holding after cement job.
 - a. With floats holding and backside static:
 - i. Remove cement head.
 - b. If floats are leaking:
 - i. Shut-in well and WOC (Wait on Cement) until tail slurry reaches 500 psi compressive strength and the casing is static prior to removing cement head.
 - c. If there is flow on the backside:
 - i. Shut in well and WOC until tail slurry reaches 500 psi compressive strength. Ensure that the casing is static prior to removing cement head.
- 16. Remove offline cement tool.
- 17. Install night cap with pressure gauge for monitoring.
- 18. Test night cap to 5,000 psi for 10 min.

2/24/2022

Example Well Control Plan Content

A. Well Control Component Table

The table below, which covers the cementing of the <u>5M MASP (Maximum Allowable Surface Pressure) portion of the well</u>, outlines the well control component rating in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the BOP nippled up to the wellhead.

Intermediate hole section, 5M requirement

Component	RWP
Pack-off	10M
Casing Wellhead Valves	10M
Annular Wellhead Valves	5M
TA Plug	10M
Float Valves	5M
2" 1502 Lo-Torque Valves	15M

B. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while circulating and cementing through the Offline Cement Adapter.

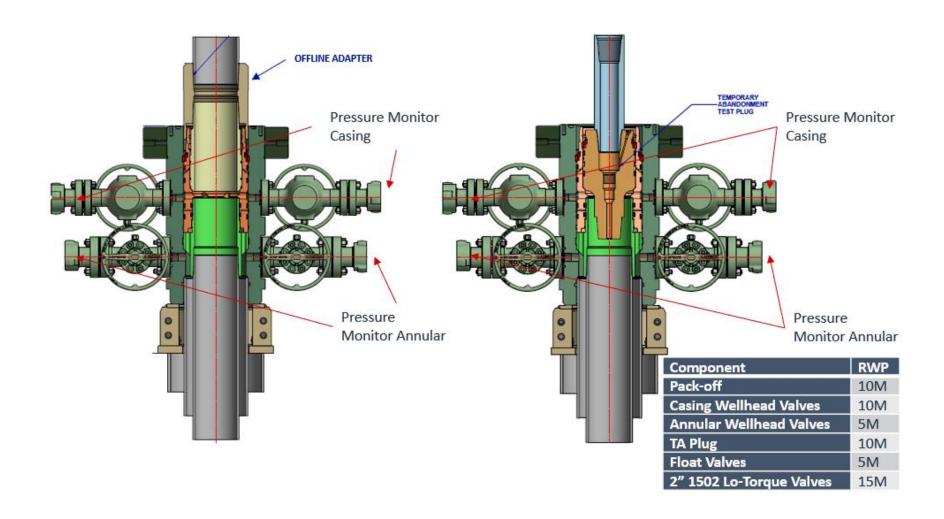
General Procedure While Circulating

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.

Page | 3

2/24/2022

- 6. Read and record the following:
 - a. SICP (Shut in Casing Pressure) and AP (Annular Pressure)
 - b. Pit gain
 - c. Time
 - d. Regroup and identify forward plan to continue circulating out kick via rig choke and mud/gas separator. Circulate and adjust mud density as needed to control well.

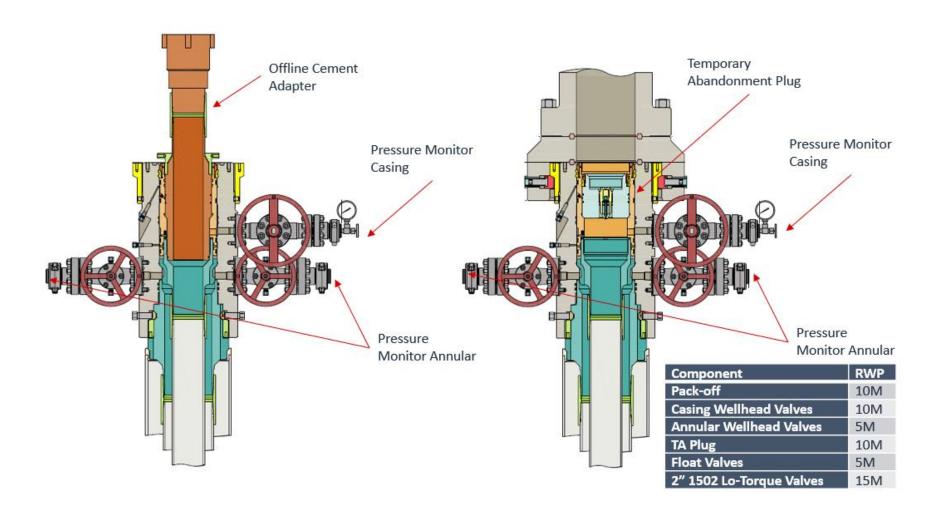

General Procedure While Cementing

- 1. Sound alarm (alert crew).
- 2. Shut down pumps.
- 3. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 4. Confirm shut-in.
- 5. Notify tool pusher/company representative.
- 6. Open rig choke and begin pumping again taking returns through choke manifold and mud/gas separator.
- 7. Continue to place cement until plug bumps.
- 8. At plug bump close rig choke and cement head.
- 9. Read and record the following
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

General Procedure After Cementing

- 1. Sound alarm (alert crew).
- 2. Shut-in Well (close valves to rig pits and open valve to rig choke line. Rig choke will already be in the closed position).
- 3. Confirm shut-in.
- 4. Notify tool pusher/company representative.
- 5. Read and record the following:
 - a. SICP and AP
 - b. Pit gain
 - c. Time
 - d. Shut-in annulus valves on wellhead

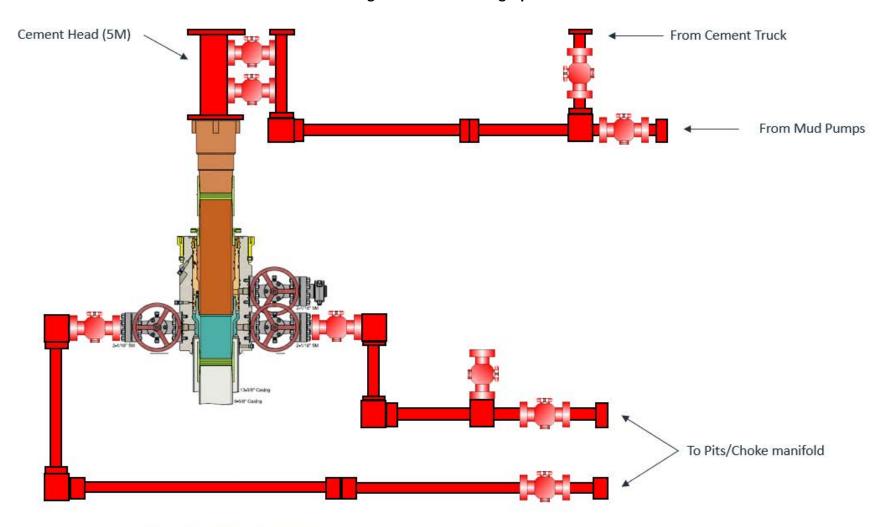
Figure 1: Cameron TA Plug and Offline Adapter Schematic



Page | 5

2/24/2022

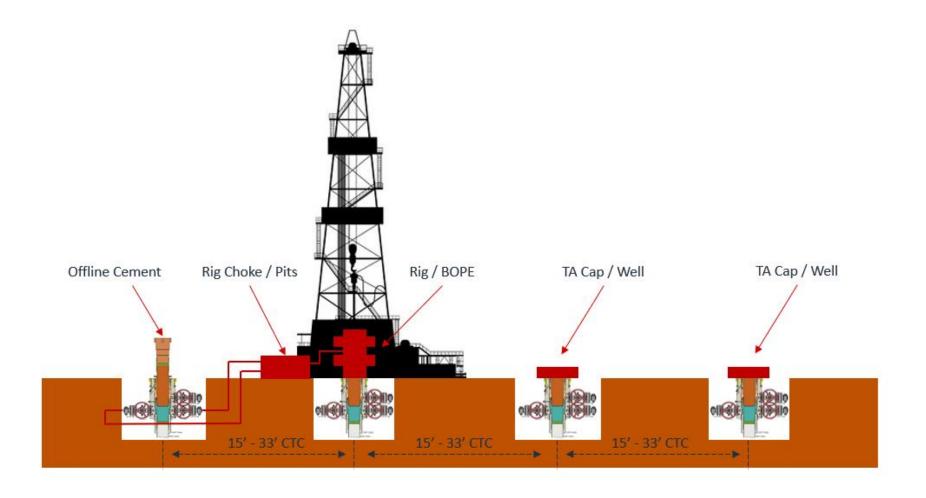
Figure 2: Cactus TA Plug and Offline Adapter Schematic



Page | 6

2/24/2022

Figure 3: Back Yard Rig Up


*** All Lines 10M rated working pressure

Page | 7

2/24/2022

Figure 4: Rig Placement Diagram

Page | 8

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 322374

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	322374
	Action Type:
	[C-103] NOI Change of Plans (C-103A)

CONDITIONS

Created By	Condition	Condition Date
ward.rikala	Work was performed without OCD approval.	12/12/2025