

Well Name: EL CAMPEON FEDERAL COM	Well Location: T26S / R35E / SEC 20 / SESW / 32.022493 / -103.391261	County or Parish/State: LEA / NM
Well Number: 122H	Type of Well: OIL WELL	Allottee or Tribe Name:
Lease Number: NMNM125400	Unit or CA Name:	Unit or CA Number:
US Well Number:	Operator: PERMIAN RESOURCES OPERATING LLC	

Notice of Intent

Sundry ID: 2846261

Type of Submission: Notice of Intent

Type of Action: APD Change

Date Sundry Submitted: 04/09/2025

Time Sundry Submitted: 12:19

Date proposed operation will begin: 05/01/2025

Procedure Description: Permian Resources Operating, LLC requests permission to make the following changes to the original APD: SHL Change, Spacing Change, Updated Drilling Program, Drilling Variances. Well LTP/BHL will remain located in Texas. Original APD ID: 10400100528 Current Well Name/Number: El Campeon Fed Com 122H (No Change) Formation: No Change SHL: Revised Change From: 352'FSL & 2071'FWL, SESW-Sec 20-26S-35E Change To: 354'FSL & 2071'FWL, SESW-Sec 20-26S-35E Total Move: 2' South No Additional Surface Disturbance Lease Number: No Change FTP: Revised Change From: 100'FNL & 1980'FWL, NENW-Sec 29-26S-35E Change To: 100'FNL & 1650'FWL, NENW-Sec 29-26S-35E Lease Number: No Change State Line Crossing: Spacing Changes Only – LTP/BHL Located in Texas Change From: 0'FSL & 1980'FWL, Lot 3-Sec 32-26S-35E Change To: 0'FSL & 1330'FWL, Lot 3-Sec 32-26S-35E Lease Number: No Change LTP/BHL: Located in Texas

NOI Attachments

Procedure Description

El_Campeon_122H_Sundry_Attachments_20250409121853.pdf

Well Name: EL CAMPEON FEDERAL
COM

Well Location: T26S / R35E / SEC 20 /
SESW / 32.022493 / -103.391261

County or Parish/State: LEA /
NM

Well Number: 122H

Type of Well: OIL WELL

Allottee or Tribe Name:

Lease Number: NMNM125400

Unit or CA Name:

Unit or CA Number:

US Well Number:

Operator: PERMIAN RESOURCES
OPERATING LLC

Conditions of Approval

Additional

Sec_20_26S_35E_NMP_Sundry_2846261_El_Campeon_Federal_Com_122H_COAs_20250428143454.pdf

Operator

I certify that the foregoing is true and correct. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. Electronic submission of Sundry Notices through this system satisfies regulations requiring a

Operator Electronic Signature: STEPHANIE RABADUE

Signed on: APR 28, 2025 08:44 AM

Name: PERMIAN RESOURCES OPERATING LLC

Title: Regulatory Manager

Street Address: 300 N MARIENFELD ST STE 1000

City: MIDLAND State: TX

Phone: (432) 695-1115

Email address: STEPHANIE.RABADUE@PERMIANRES.COM

Field

Representative Name:

Street Address:

City: State:

Zip:

Phone:

Email address:

BLM Point of Contact

BLM POC Name: TANJA BACA

BLM POC Title: Land Law Examiner

BLM POC Phone: 5752345940

BLM POC Email Address: tabaca@blm.gov

Disposition: Approved

Disposition Date: 04/29/2025

Signature: Chris Walls

Form 3160-5
(June 2019)UNITED STATES
DEPARTMENT OF THE INTERIOR
BUREAU OF LAND MANAGEMENT**SUNDRY NOTICES AND REPORTS ON WELLS*****Do not use this form for proposals to drill or to re-enter an abandoned well. Use Form 3160-3 (APD) for such proposals.***FORM APPROVED
OMB No. 1004-0137
Expires: October 31, 20215. Lease Serial No.
NMNM125400

6. If Indian, Allottee or Tribe Name

7. If Unit of CA/Agreement, Name and/or No.

1. Type of Well

 Oil Well Gas Well Other8. Well Name and No.
EL CAMPEON FEDERAL COM/122H2. Name of Operator
PERMIAN RESOURCES OPERATING LLC

9. API Well No.

3a. Address 300 N MARIENFELD ST SUITE 1000, MIDLAND
3b. Phone No. (include area code)
(432) 695-422210. Field and Pool or Exploratory Area
WC-025 G-08 S263412K/BONE SPRING

4. Location of Well (Footage, Sec., T.R.M., or Survey Description)

SEC 20/T26S/R35E/NMP

11. Country or Parish, State
LEA/NM

12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT OR OTHER DATA

TYPE OF SUBMISSION	TYPE OF ACTION				
<input checked="" type="checkbox"/> Notice of Intent	<input type="checkbox"/> Acidize	<input type="checkbox"/> Deepen	<input type="checkbox"/> Production (Start/Resume)	<input type="checkbox"/> Water Shut-Off	
<input type="checkbox"/> Subsequent Report	<input type="checkbox"/> Alter Casing	<input type="checkbox"/> Hydraulic Fracturing	<input type="checkbox"/> Reclamation	<input type="checkbox"/> Well Integrity	
<input type="checkbox"/> Final Abandonment Notice	<input type="checkbox"/> Casing Repair	<input type="checkbox"/> New Construction	<input type="checkbox"/> Recomplete	<input type="checkbox"/> Other	
	<input checked="" type="checkbox"/> Change Plans	<input type="checkbox"/> Plug and Abandon	<input type="checkbox"/> Temporarily Abandon		
	<input type="checkbox"/> Convert to Injection	<input type="checkbox"/> Plug Back	<input type="checkbox"/> Water Disposal		

13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has determined that the site is ready for final inspection.)

Permian Resources Operating, LLC requests permission to make the following changes to the original APD: SHL Change, Spacing Change, Updated Drilling Program, Drilling Variances. Well LTP/BHL will remain located in Texas.

Original APD ID: 10400100528

Current Well Name/Number: El Campeon Fed Com 122H (No Change)

Formation: No Change

SHL: Revised

Change From: 352FSL & 2071FWL, SESW-Sec 20-26S-35E

Change To: 354FSL & 2071FWL, SESW-Sec 20-26S-35E

Total Move: 2 South

No Additional Surface Disturbance

Continued on page 3 additional information

14. I hereby certify that the foregoing is true and correct. Name (Printed/Typed)	Regulatory Manager
STEPHANIE RABADUE / Ph: (432) 695-1115	Title
Signature (Electronic Submission)	Date 04/28/2025

THE SPACE FOR FEDERAL OR STATE OFFICE USE

Approved by

CHRISTOPHER WALLS / Ph: (575) 234-2234 / Approved

Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Title 18 U.S.C Section 1001 and Title 43 U.S.C Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

(Instructions on page 2)

GENERAL INSTRUCTIONS

This form is designed for submitting proposals to perform certain well operations and reports of such operations when completed as indicated on Federal and Indian lands pursuant to applicable Federal law and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local area or regional procedures and practices, are either shown below, will be issued by or may be obtained from the local Federal office.

SPECIFIC INSTRUCTIONS

Item 4 - Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult the local Federal office for specific instructions.

Item 13: Proposals to abandon a well and subsequent reports of abandonment should include such special information as is required by the local Federal office. In addition, such proposals and reports should include reasons for the abandonment; data on any former or present productive zones or other zones with present significant fluid contents not sealed off by cement or otherwise; depths (top and bottom) and method of placement of cement plugs; mud or other material placed below, between and above plugs; amount, size, method of parting of any casing, liner or tubing pulled and the depth to the top of any tubing left in the hole; method of closing top of well and date well site conditioned for final inspection looking for approval of the abandonment. If the proposal will involve **hydraulic fracturing operations**, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and the regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 351 et seq., 25 U.S.C. 396; 43 CFR 3160.

PRINCIPAL PURPOSE: The information is used to: (1) Evaluate, when appropriate, approve applications, and report completion of subsequent well operations, on a Federal or Indian lease; and (2) document for administrative use, information for the management, disposal and use of National Resource lands and resources, such as: (a) evaluating the equipment and procedures to be used during a proposed subsequent well operation and reviewing the completed well operations for compliance with the approved plan; (b) requesting and granting approval to perform those actions covered by 43 CFR 3162.3-2, 3162.3-3, and 3162.3-4; (c) reporting the beginning or resumption of production, as required by 43 CFR 3162.4-1(c) and (d) analyzing future applications to drill or modify operations in light of data obtained and methods used.

ROUTINE USES: Information from the record and/or the record will be transferred to appropriate Federal, State, local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecutions in connection with congressional inquiries or to consumer reporting agencies to facilitate collection of debts owed the Government.

EFFECT OF NOT PROVIDING THE INFORMATION: Filing of this notice and report and disclosure of the information is mandatory for those subsequent well operations specified in 43 CFR 3162.3-2, 3162.3-3, 3162.3-4.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to evaluate proposed and/or completed subsequent well operations on Federal or Indian oil and gas leases.

Response to this request is mandatory.

The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C St., N.W., Mail Stop 401 LS, Washington, D.C. 20240

Additional Information

Additional Remarks

Lease Number: No Change

FTP: Revised

Change From: 100FNL & 1980FWL, NENW-Sec 29-26S-35E

Change To: 100FNL & 1650FWL, NENW-Sec 29-26S-35E

Lease Number: No Change

State Line Crossing: Spacing Changes Only LTP/BHL Located in Texas

Change From: 0FSL & 1980FWL, Lot 3-Sec 32-26S-35E

Change To: 0FSL & 1330FWL, Lot 3-Sec 32-26S-35E

Lease Number: No Change

LTP/BHL: Located in Texas

Location of Well

0. SHL: SESW / 352 FSL / 2071 FWL / TWSP: 26S / RANGE: 35E / SECTION: 20 / LAT: 32.022493 / LONG: -103.391261 (TVD: 0 feet, MD: 0 feet)

PPP: SENW / 1322 FNL / 1980 FWL / TWSP: 26S / RANGE: 35E / SECTION: 29 / LAT: 32.017893 / LONG: -103.391548 (TVD: 11300 feet, MD: 12848 feet)

PPP: NENW / 100 FNL / 1980 FWL / TWSP: 26S / RANGE: 35E / SECTION: 29 / LAT: 32.021251 / LONG: -103.391553 (TVD: 11300 feet, MD: 11573 feet)

PPP: NESW / 2643 FSL / 1980 FWL / TWSP: 26S / RANGE: 35E / SECTION: 29 / LAT: 32.01426 / LONG: -103.391542 (TVD: 11300 feet, MD: 14170 feet)

BHL: LOT 3 / 0 FSL / 1980 FWL / TWSP: 26S / RANGE: 35E / SECTION: 32 / LAT: 32.000293 / LONG: -103.39152 (TVD: 11300 feet, MD: 19251 feet)

PECOS DISTRICT

DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Permian Resources Operating LLC
WELL NAME & NO.:	El Campeon Federal Com 122H
LOCATION:	Sec 20-26S-35E-NMP
COUNTY:	Lea County, New Mexico

Changes approved through engineering via Sundry 2846261 on 5/5/2025. Any previous COAs not addressed within the updated COAs still apply. LTP & BHL in Texas.

[Create COAs](#)

H ₂ S	Cave / Karst	Waste Prevention Rule
Not Reported	Low	Waste Minimization Plan
Potash	R-111-Q Design	
None		
Wellhead	Casing	
Multibowl	3-String Well	
<input checked="" type="checkbox"/> Flex Hose	<input type="checkbox"/> Liner	<input type="checkbox"/> Fluid Filled
<input checked="" type="checkbox"/> Break Testing		<input checked="" type="checkbox"/> Casing Clearance
	Cementing	
	<input type="checkbox"/> DV Tool	<input checked="" type="checkbox"/> Bradenhead
	<input checked="" type="checkbox"/> Offline Cement	<input type="checkbox"/> Open Annulus
		<input checked="" type="checkbox"/> Echometer
		<input type="checkbox"/> Pilot Hole
Special Requirements		
<input type="checkbox"/> Capitan Reef	<input type="checkbox"/> Water Disposal	<input checked="" type="checkbox"/> COM
		<input type="checkbox"/> Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H₂S) monitors shall be installed prior to drilling out the surface shoe. If H₂S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet 43 CFR 3176 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

1. The **9-5/8** inch surface casing shall be set at approximately **1,100** feet (a minimum of **25** feet (**Lea County**) into the Rustler Anhydrite, above the salt, and below usable fresh water) and cemented to the surface. **Set depth adjusted per BLM geologist.**
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic-type temperature survey with surface

log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8 hours** or **500 pounds compressive strength**, whichever is greater (including lead cement.)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is **cement to surface**. If cement does not circulate, see B.1.a, c-d above.

Bradenhead Squeeze: Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage, contingent upon no returns to surface.

- a. **First stage:** Operator will cement with intent to reach the top of the **Brushy Canyon**.
- b. **Second stage:** Operator to squeeze and top-out. Cement to meet requirements listed for this casing string. If cement does not circulate see B.1.a, c-d above.

Operator has proposed to pump down **Surface X Intermediate 1** annulus. Submit results to the BLM. If cement does not tie-back into the previous casing shoe, a third stage remediation BH may be performed. The appropriate BLM office shall be notified. *If cement does not reach surface, the next casing string must come to surface.*

- Operator shall run a CBL from TD of the **Intermediate 1** casing to tieback requirements listed above after the second stage BH to verify TOC.
- **Operator shall run Echo-meter to verify Cement Slurry/Fluid top in the annulus.** Submit results to the BLM. No displacement fluid/wash out shall be utilized at the top of the cement slurry between second stage BH and top out.
 - Operator must use a limited flush fluid volume of 1 bbl following backside cementing procedures.
 - No displacement fluid/wash out shall be utilized at the top of the cement slurry during second stage bradenhead when running Echo-meter if cement is required to surface.
 - Adjust cement volume and excess based on a fluid caliper or similar method that reflects the as-drilled size of the wellbore.

3. The minimum required fill of cement behind the **5-1/2** inch production casing is at least **300 feet** (increased due to not meeting 0.422" clearance requirement per 43 CFR 3172) into previous casing string. Operator shall provide method of verification.

- If cement does not circulate to surface on the previous casing, this string must come to surface.

C. PRESSURE CONTROL

1. Operator has proposed a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one-inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172 must be followed.
2. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
3. Break testing has been approved for this well ONLY on those intervals utilizing a 5M BOPE or less. (**Annular preventer must be tested to a minimum of 70% of BOPE working pressure and shall be higher than the MASP.**) If in the event break testing is not utilized, then a full BOPE test would be conducted.
 - a. Variance only pertains to the intermediate hole-sections and no deeper than the Bone Springs formation. **BOPE Break Testing is NOT permitted to drilling the production hole section.**
 - b. While in transfer between wells, BOPE shall be secured by the hydraulic carrier or cradle.
 - c. A full BOPE test is required prior to drilling the first deep intermediate hole section. If any subsequent hole interval is deeper than the first, a full BOPE test will be required. (200' TVD tolerance between intermediate shoes is allowable).
 - d. As a minimum, a full BOPE test shall be performed at 21-day intervals.
 - e. In the event any repairs or replacement of the BOPE is required, the BOPE shall test as per **43 CFR 3172**. Any well control event while drilling require notification to the BLM Petroleum Engineer (**575-706-2779**) prior to the commencement of any BOPE Break Testing operations.

D. SPECIAL REQUIREMENT(S)

Communityization Agreement:

- The operator will submit a Communityization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communityization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communityization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- The operator will submit an as-drilled survey well plat of the well completion, but are not limited to, those specified in 43 CFR 3171 and 3172.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communityization Agreement number is known, it shall also be on the sign.

Offline Cementing

Offline cementing has been approved for **all hole sections, excluding production.** Contact the BLM prior to the commencement of any offline cementing procedure.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Contact Lea County Petroleum Engineering Inspection Staff:

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 689-5981

1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per **43 CFR 3172** as soon as 2nd Rig is rigged up on well.
2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
3. For intervals in which cement to surface is required, cement to surface should be verified with a visual check and density or pH check to differentiate cement from spacer and drilling mud. The results should be documented in the driller's log and daily reports.

A. CASING

1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends of both lead and tail cement, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing integrity test can be done (prior to the cement setting up) immediately after bumping the plug.
4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
8. Whenever a casing string is cemented in the R-111-Q potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in **43 CFR 3172**.
2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification

matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - i. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - ii. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - iii. Manufacturer representative shall install the test plug for the initial BOP test.
 - iv. Whenever any seal subject to test pressure is broken, all the tests in 43 CFR 3172.6(b)(9) must be followed.
 - v. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - i. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead cement), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - ii. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the cement plug. The BOPE test can be initiated after bumping the cement plug with the casing valve open. (only applies to single stage cement jobs, prior to the cement setting up.)
 - iii. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer and can be initiated immediately with the casing valve open. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to **43 CFR 3172** with the

pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for 8 hours or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- iv. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- v. The results of the test shall be reported to the appropriate BLM office.
- vi. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- vii. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- viii. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per **43 CFR 3172**.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

C-102		State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION				Revised July 9, 2024	
Submit Electronically Via OCD Permitting						Submittal Type:	<input checked="" type="checkbox"/> Initial Submittal <input type="checkbox"/> Amended Report <input type="checkbox"/> As Drilled

WELL LOCATION INFORMATION

API Number	Pool Code 96672	Pool Name WC-025 G-08 S263412K; Bone Spring
Property Code	Property Name EL CAMPEON FED COM	
OGRID No. 372165	Operator Name PERMIAN RESOURCES OPERATING, LLC	
Surface Owner: <input type="checkbox"/> State <input type="checkbox"/> Fee <input type="checkbox"/> Tribal <input checked="" type="checkbox"/> Federal		Mineral Owner: <input checked="" type="checkbox"/> State <input type="checkbox"/> Fee <input type="checkbox"/> Tribal <input checked="" type="checkbox"/> Federal

Surface Location

UL N	Section 20	Township 26S	Range 35E	Lot	Ft. from N/S 352' FSL	Ft. from E/W 2,071' FWL	Latitude 32.022493°	Longitude -103.391261°	County LEA
----------------	----------------------	------------------------	---------------------	-----	---------------------------------	-----------------------------------	-------------------------------	----------------------------------	----------------------

State Line Crossing

UL LOT 3	Section 32	Township 26S	Range 35E	Lot	Ft. from N/S 0' FSL	Ft. from E/W 1,330' FWL	Latitude 32.000293°	Longitude -103.393617°	County LEA
--------------------	----------------------	------------------------	---------------------	-----	-------------------------------	-----------------------------------	-------------------------------	----------------------------------	----------------------

Dedicated Acres 387.65	Infill or Defining Well Defining	Defining Well API	Overlapping Spacing Unit (Y/N) Y	Consolidation Code
Order Numbers. NSP-2244			Well setbacks are under Common Ownership: <input type="checkbox"/> Yes <input type="checkbox"/> No	

Kick Off Point (KOP)

UL N	Section 20	Township 26S	Range 35E	Lot	Ft. from N/S 352' FSL	Ft. from E/W 2,071' FWL	Latitude 32.022493°	Longitude -103.391261°	County LEA
----------------	----------------------	------------------------	---------------------	-----	---------------------------------	-----------------------------------	-------------------------------	----------------------------------	----------------------

First Take Point (FTP)

UL C	Section 29	Township 26S	Range 35E	Lot	Ft. from N/S 100' FNL	Ft. from E/W 1,650' FWL	Latitude 32.021252°	Longitude -103.392618°	County LEA
----------------	----------------------	------------------------	---------------------	-----	---------------------------------	-----------------------------------	-------------------------------	----------------------------------	----------------------

Last Take Point (LTP), Bottom Hole Location (BHL)

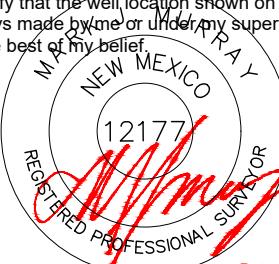
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
----	---------	----------	-------	-----	--------------	--------------	----------	-----------	--------

***LTP & BHL WILL BE IN TEXAS**

Unitized Area or Area of Uniform Interest	Spacing Unit Type <input checked="" type="checkbox"/> Horizontal <input type="checkbox"/> Vertical	Ground Floor Elevation:
---	--	-------------------------

OPERATOR CERTIFICATIONS

I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and, if the well is a vertical or directional well, that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of a working interest or unleased mineral interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.


If this well is a horizontal well, I further certify that this organization has received the consent of at least one lessee or owner of a working interest or unleased mineral interest in each tract (in the target pool or formation) in which any part of the well's completed interval will be located or obtained a compulsory pooling order from the division.

Stephanie Rabadue

04/06/2025

SURVEYOR CERTIFICATIONS

I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief.

Date: 12/3/2024

Signature

Date

Stephanie Rabadue

Printed Name

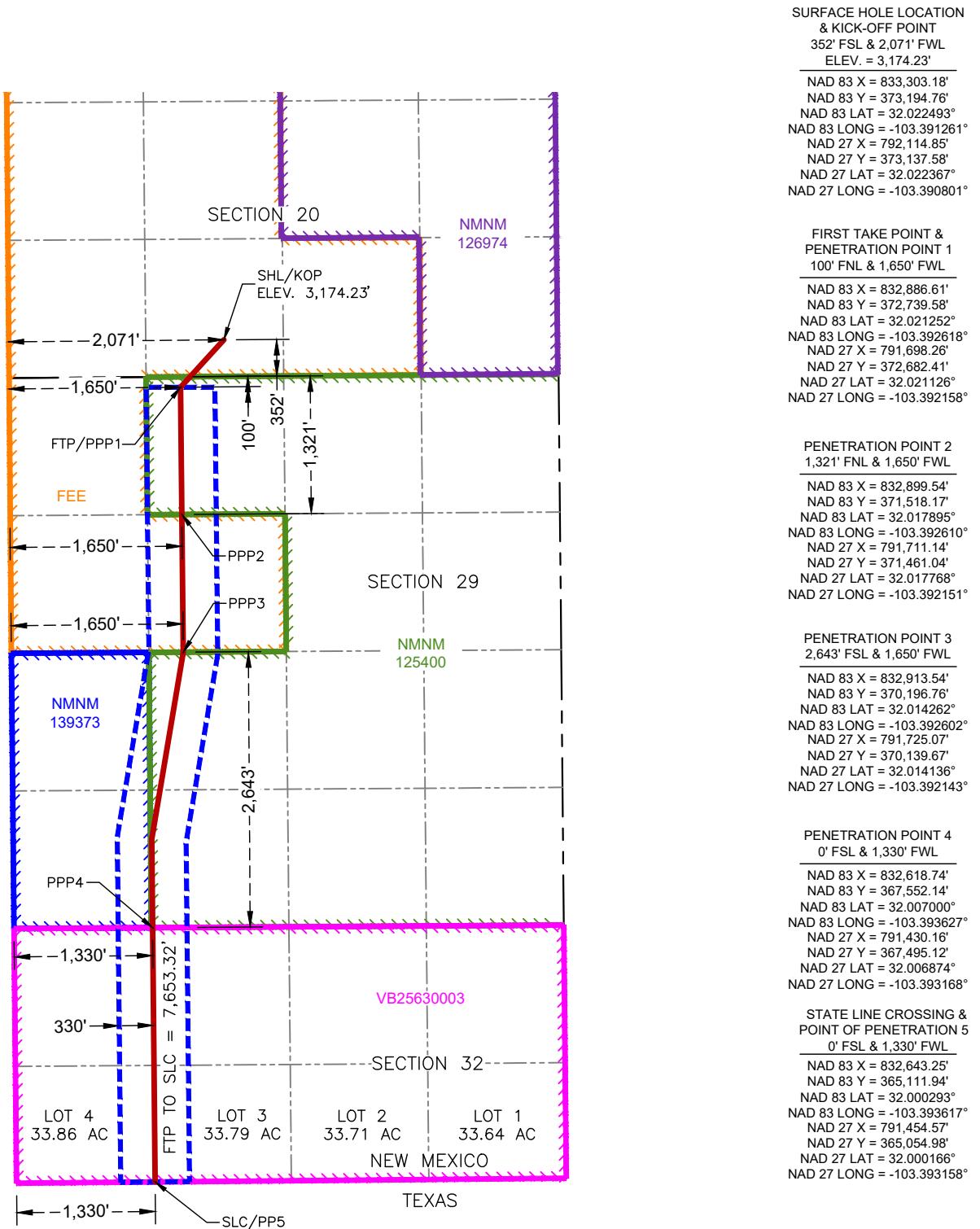
stephanie.rabadue@permianres.com

Email Address

Certificate Number

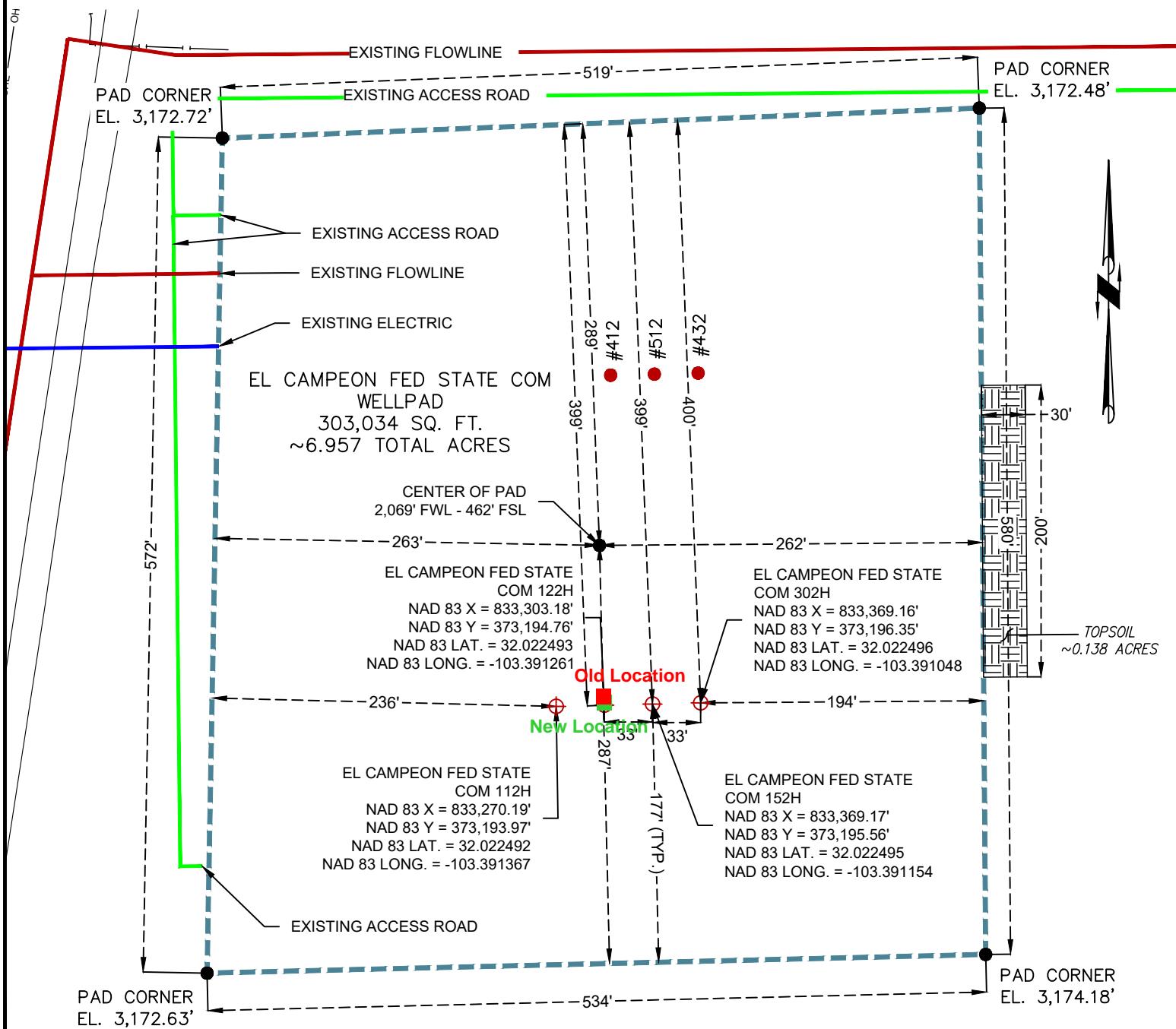
12177

Date of Survey


12/3/2024

Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

ACREAGE DEDICATION PLATS


This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

PERMIAN RESOURCES

SITE PLAN
EL CAMPEON FED COM SESW PAD 2
SECTION 20, TOWNSHIP 26 SOUTH, RANGE 35 EAST
NEW MEXICO PRINCIPAL MERIDIAN
LEA COUNTY, NEW MEXICO

Date: 01/14/2025

LEGEND

The legend consists of a horizontal line with six segments of increasing length from left to right. To the right of the line, text identifies each segment: 'SURVEY LINES' (black), 'PROPOSED SURFACE SITE' (blue), 'EXISTING ACCESS ROAD' (green), 'EXISTING FLOWLINE' (red), 'EXISTING ELECTRIC' (dark blue), and 'PROPOSED SURFACE LOCATION' (marked with a red crosshair icon). Below the line, three additional markers are shown: a red circle for 'AS-DRILLED SURFACE LOCATION', a black circle for 'PAD CORNER', and a black circle with a red outline for 'PROPOSED SURFACE LOCATION'.

Date: 01/14/2025	Date: 01/14/2025	Scale: 1"=100'	DWG: 24-051855_El Campeon Fed State Com Pad 2 Site Plan
Block 11	Block 11	Block 11	REVISION NO. 0

DRAWING PATH: D:\Coosa Consulting Dropbox\Coosa Consulting\Clients - Projects\Permian Resources\24-051855_El Campeon Fed State Com\Drafting\Site Plans

Drawn: JML

Checked: M IN

Job: 34 05185

REVISION NO. 3

Permian Resources - El Campeon Fed Com 122H

1. Geologic Formations

Formation	Lithology	Elevation	TVD	Target
Rustler	Sandstone	2174	1040	No
Top of Salt	Salt	1714	1500	No
Lamar	Anhydrite/Shale	-2120	5334	No
Capitan	Limestone	NP	NP	No
Cherry Canyon	Sandstone	-2164	5378	No
Brushy Canyon	Sandstone	NP	NP	No
Bone Spring Lime	Limestone	-6060	9274	No
1st Bone Spring Sand	Sandstone/Limestone/Shale	-7206	10420	No
2nd Bone Spring Sand	Sandstone/Limestone/Shale	-7636	10850	Yes
3rd Bone Spring Sand	Sandstone/Limestone/Shale	3214	0	No
Wolfcamp A/XY	Sandstone/Limestone/Shale	3214	0	No
Wolfcamp B	Sandstone/Limestone/Shale	3214	0	No

2. Blowout Prevention

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Type		x	Tested to:
			Annular	Blind Ram		
8.75	13-5/8"	5M	Pipe Ram	x	5000 psi	5000 psi
			Double Ram			
			Other*			
			Annular	x		50% testing pressure
			Blind Ram	x		
6.75	13-5/8"	10M	Pipe Ram	x	5000 psi	5000 psi
			Double Ram			
			Other*			

Equipment: BOPE will meet all requirements for above listed system per 43 CFR 3172. BOPE with working pressure ratings in excess of anticipated maximum surface pressure will be utilized for well control from drill out of surface casing to TMD. The system may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all of the components installed will be functional, tested, and will meet all requirements per 43 CFR 3172. The wellhead will be a multibowl speed head allowing for hangoff of intermediate casing of the surface x intermediate annulus without breaking the connection between the BOP & wellhead. A variance is requested to utilize a flexible choke line (flexhose) from the BOP to choke manifold.

Requesting Variance? YES

Variance request: Multibowl Wellhead, Flexhose, Breaktesting, Offline Cementing Variances. Attachments in Section 8.

Testing Procedure: Operator requests to ONLY test broken pressure seals per API Standard 53 and the attachments in Section 8. The BOP test shall be performed before drilling out of the surface casing shoe and will occur at a minimum: a. when initially installed, b. whenever any seal subject to test pressure is broken, c. following related repairs, d. at 21-day intervals. Testing of the ram type preventer(s) and annual type preventer(s) shall be tested per 43 CFR 3172. The BOPE configuration, choke manifold layout, and accumulator system will be in compliance with 43 CFR 3172. Bleed lines will discharge 100' from wellhead in non-H2S scenarios and 150' from wellhead in H2S scenarios.

Choke Diagram Attachemnt: 5 M Choe Manifold
BOP Diagram Attachment: BOP Schematic

3. Casing

String	Hole Size	Casing Size	Top	Bottom	Top TVD	Bottom TVD	Length	Grade	Weight	Connection	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
Surface	12.25	9.625	0	1130	0	1130	1130	J55	40	BTC	4.60	4.72	Dry	4.92	Dry	4.34
Intermediate	8.75	7.625	0	2000	0	2000	2000	P110HSC	29.7	MOFLX	3.18	2.18	Dry	6.83	Dry	10.74
Production	6.75	5.5	0	1500	0	0	1500	P110RY	20	Rattler	1.40	1.79	Dry	2.32	Dry	2.32
Production	6.75	5.5	1500	21700	0	11300	20200	P110RY	20	Bushmaster SL	1.40	1.79	Dry	2.32	Dry	2.32
BLM Min Safety Factor											1.125	1		1.6		1.6

Non API casing spec sheets and casing design assumptions attached.

4. Cement

String	Lead/Tail	Top MD	Bottom MD	Quantity (s)	Yield	Density	Cu Ft	Excess %	Cement Type	Additives
Surface	lead	0	900	310	1.88	12.9	570	100%	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
Surface	Tail	900	1130	90	1.34	14.8	110	50%	Class C	Accelerator
Intermediate	Lead	0	1600	140	1.88	10.7	250	50%	Class C	EconoCem-HLC + 5% Salt + 5% Kol-Seal
Intermediate	Tail	1600	2000	60	1.34	14.2	70	50%	Class C	Retarder
Production	Lead	1500	2100	70	2.41	10.7	150	40%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder
Production	Tail	2100	21700	1190	1.73	12.5	2050	25%	Class H	POZ, Extender, Fluid Loss, Dispersant, Retarder

Permian Resources requests to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated top of cement at the Cherry Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. If cement is not visually confirmed to circulate to surface, the final cement top after the second stage job will be verified by Echo-meter. If necessary, a top out consisting of 1,500 sack of Class C cement + 3% Salt + Bentonite Gel (2.30 yld, 12.9 ppg) will be executed as a contingency. If cement is still unable to circulate to surface, another Echo-meter run will be performed for cement top verification.

Permian Resources will include the Echo-meter verified fluid top and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

Permian Resources will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

Permian Resources requests to pump an Optional Lead if well conditions dictate in an attempt to bring cement inside the surface casing. If cement reaches the desired height, the BLM will be notified and the second stage bradenhead squeeze and subsequent TOC verification will be negated.

Permian Resources requests the option to conduct the bradenhead squeeze and TOC verification offline as per standard approval from BLM when unplanned remediation is needed and batch drilling is approved. In the event the bradenhead is conducted, we will ensure the first stage cement job is cemented properly and the well is static with floats holding and no pressure on the csg annulus as with all other casing strings where batch drilling operations occur before moving off the rig. The TA cap will also be installed per Cactus procedure and pressure inside the casing will be monitored via the valve on the TA cap as per standard batch drilling ops.

Permian Resources request permission to allow deviation from the 0.422' annulus clearance requirement from Onshore Order2 under the following conditions:

Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only

on the first 500' overlap between both casing strings.

Annular clearance less than 0.422" is acceptable for the production open hole section.

5. Circulating Medium

Mud System Type: Closed

Will an air or gas system be used: No

Describe what will be on location to control well or mitigate other conditions: Sufficient quantities of mud materials will be on the well site at all times for the purpose of assuring well control and maintaining wellbore integrity. Surface interval will employ fresh water mud. The intermediate hole will utilize a saturated brine fluid to inhibit salt washout. The production hole will employ brine based and oil base fluid to inhibit formation reactivity and of the appropriate density to maintain well control.

Describe the mud monitoring system utilized: Centrifuge separation system. Open tank monitoring with EDR will be used for drilling fluids and return volumes. Open tank monitoring will be used for cement and cuttings return volumes. Mud properties will be monitored at least every 24 hours using industry accepted mud check practices.

Cuttings Volume: 6190 Cu Ft

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight	Max Weight
0	1130	Spud Mud	8.6	9.5
1130	2000	Water Based Mud	10	10
2000	22716	OBM	9	11

6. Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will utilize MWD/LWD from intermediate hole to TD of the well.

List of open and cased hole logs run in the well:

DIRECTIONAL SURVEY

Coring operation description for the well:

N/A

7. Pressure

Anticipated Bottom Hole Pressure	7940	psi
Anticipated Surface Pressure	5447	psi
Anticipated Bottom Hole Temperature	167	°F
Anticipated Abnormal pressure, temp, or geo hazards	No	

8. Waste Management

Waste Type:	Drilling
Waste content description:	Fresh water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Weekly (after drilling all surfaces)
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Grey Water & Human Waste
Waste content description:	Grey Water/Human Waste
Amount of waste:	5000 gallons
Waste disposal frequency:	Weekly
Safe containment description:	Approved waste storage tanks with containment
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Garbage
Waste content description:	General trash/garbage
Amount of waste:	5000 lbs
Waste disposal frequency:	Weekly
Safe containment description:	Enclosed trash trailer
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Drill Cuttings
Amount of waste:	6190 Cu Ft
Waste disposal frequency:	Per well
Safe containment description:	Steel tanks
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial
Waste Type:	Drilling
Waste content description:	Brine water based drilling fluid
Amount of waste:	1500 bbls
Waste disposal frequency:	Monthly
Safe containment description:	Steel tanks with plastic-lined containment berms
Waste disposal type:	Haul to commercial facility
Disposal location ownership:	Commercial

9. Other Information

Well Plan and AC Report: attached

Batching Drilling Procedure: attached

WBD: attached

Flex Hose Specs: attached

Offline Cementing Procedure Attached:

Metal One Corp. Metal One	MO-FXL *1 Pipe Body: BMP P110HSCY MinYS125ksi Min95%WT Connection Data Sheet	CDS#	MO-FXL 8-5/8 32.0		
			P110HSCY		
			MinYS125ksi		
			Min95%WT		
			Date		
			8-Sep-21		
Geometry		Imperial	S.I.		
Pipe Body					
Grade *1 P110HSCY					
MinYS *1	125	ksi	125	ksi	
Pipe OD (D)	8 5/8	in	219.08	mm	
Weight	32.00	lb/ft	47.68	kg/m	
Actual weight	31.10		46.34	kg/m	
Wall Thickness (t)	0.352	in	8.94	mm	
Pipe ID (d)	7.921	in	201.19	mm	
Pipe body cross section	9.149	in ²	5,902	mm ²	
Drift Dia.	7.796	in	198.02	mm	
-	-	-	-	-	
Connection					
Box OD (W) 8.625					
PIN ID 7.921					
Make up Loss 3.847					
Box Critical Area 5.853					
Joint load efficiency 69 %					
Thread Taper 1 / 10 (1.2" per ft)					
Number of Threads 5 TPI					
Performance					
Performance Properties for Pipe Body					
S.M.Y.S. *1 1,144		kips	5,087	kN	
M.I.Y.P. *1 9,690		psi	66.83	MPa	
Collapse Strength *1 4,300		psi	29.66	MPa	
Note S.M.Y.S.= Specified Minimum YIELD Strength of Pipe body M.I.Y.P. = Minimum Internal Yield Pressure of Pipe body					
*1: BMP P110HSCY: MinYS125ksi, Min95%WT, Collapse Strength 4,300psi					
Performance Properties for Connection					
Tensile Yield load 789 kips (69% of S.M.Y.S.)					
Min. Compression Yield 789 kips (69% of S.M.Y.S.)					
Internal Pressure 6,780 psi (70% of M.I.Y.P.)					
External Pressure 100% of Collapse Strength					
Max. DLS (deg. /100ft) 29					
Note : Operational Max. torque can be applied for high torque application					
Recommended Torque					
Min. 13,600		ft-lb	18,400	N-m	
Opti. 14,900		ft-lb	20,200	N-m	
Max. 16,200		ft-lb	21,900	N-m	
Operational Max. 28,400		ft-lb	38,500	N-m	
Legal Notice The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information.					
Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application					
The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mto.co.jp/mo-con/_images/top/WebsiteTerms_Active_20333287_1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.					

5.500 x 20.00# P-110 RY (SeAH Pipe Body) Rattler® (95% RBW Special Clearance)

Pipe Body Data

Nominal OD	5.500	Inches
Wall Thickness	0.361	Inches
Weight	20.00	lb/ft
PE Weight	19.83	lb/ft
Nominal ID	4.778	Inches
Drift	4.653	Inches
Minimum Yield Strength	110,000	PSI
Minimum Tensile Strength	125,000	PSI
RBW	95.0%	Rating

Connection Data

Connection OD	6.050	Inches
Connection ID	4.778	Inches
Make-Up Loss	4.175	Inches
Tension Efficiency	99%	Rating
Compression Efficiency	100%	Rating
Yield Strength in Tension	635,000	LBS.
Yield Strength in Compression	641,000	LBS.
MIYP (Burst)	13,720	PSI
Collapse	11,100	PSI
Uniaxial Bending	90.9	°/100 FT

Make-Up Torque

Yield Torque	36,000	FT-LBS.
Max Operating Torque	30,600	FT-LBS.
Max Make-Up	16,600	FT-LBS.
Optimum Make-Up	14,400	FT-LBS.
Minimum Make-Up	12,200	FT-LBS.

Revision 7.12.23

For Technical Support please email support@fermata-tech.com or call (281) 941-5257.

8/21/2024

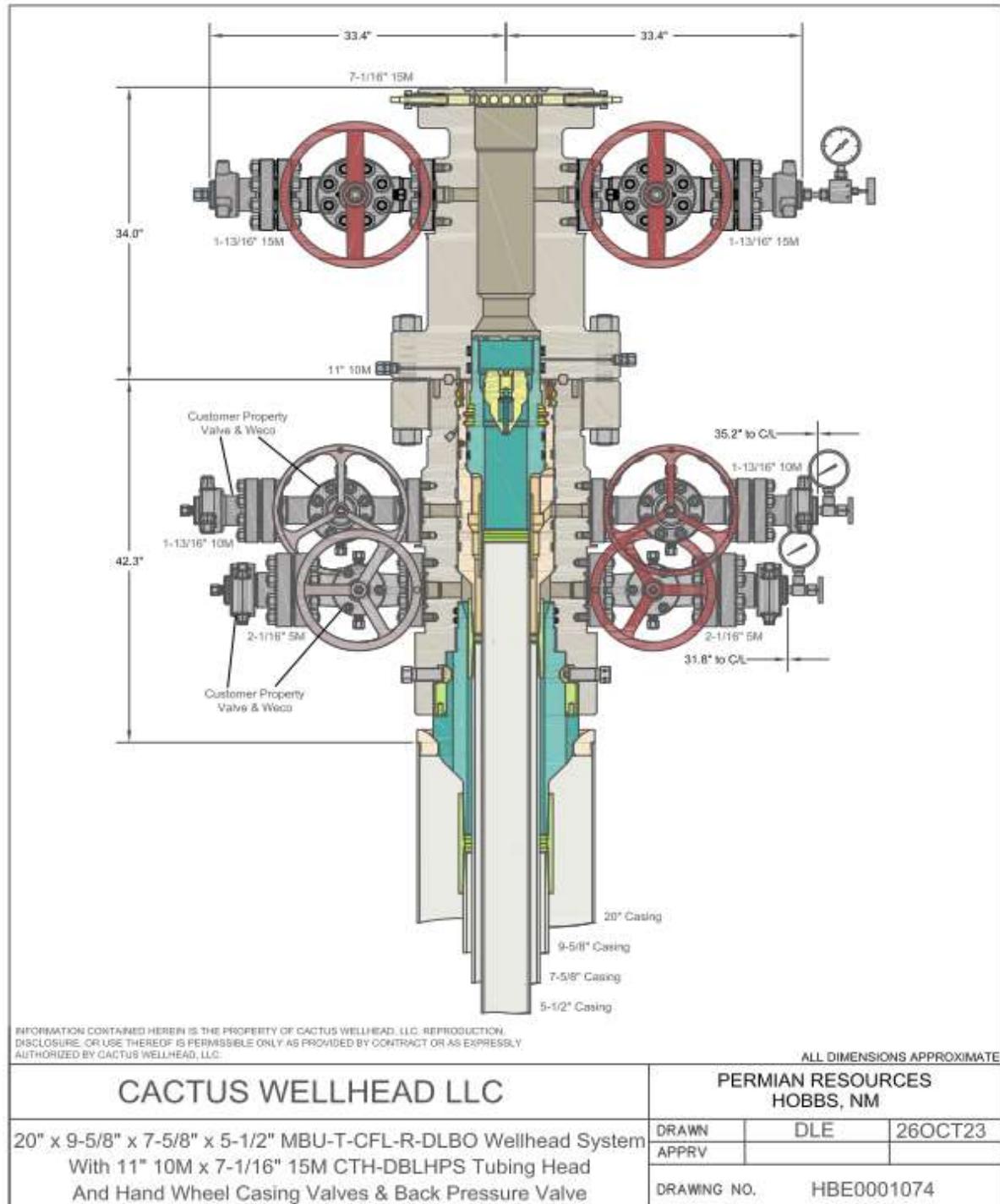
This document is for general information only. It is not intended to be used or relied upon as a recommendation or professional advice for any specific application and is subject to change without notice. Anyone who uses this material does so at their own risk and assumes any and all liability resulting from such use.

Fermata
Technologies

5.500 x 20.00# P-110 RY Bushmaster® SL (95% RBW)

Pipe Body Data

Nominal OD	5.500	Inches
Wall Thickness	0.361	Inches
Weight	20.00	lb/ft
PE Weight	19.83	lb/ft
Nominal ID	4.778	Inches
Drift	4.653	Inches
Minimum Yield Strength	110,000	PSI
Minimum Tensile Strength	125,000	PSI
RBW	95.0%	Rating


Connection Data

Connection OD	5.900	Inches
Connection ID	4.778	Inches
Make-Up Loss	4.892	Inches
Tension Efficiency	100%	Rating
Compression Efficiency	100%	Rating
Yield Strength in Tension	641,000	LBS.
Yield Strength in Compression	641,000	LBS.
MIYP (Burst)	13,720	PSI
Collapse*	11,110	PSI
Uniaxial Bending	92	°/100 FT

Make-Up Torque

Yield Torque	41,000	FT-LBS.
Max Operating Torque	32,800	FT-LBS.
Max Make-Up	22,000	FT-LBS.
Optimum Make-Up	20,000	FT-LBS.
Minimum Make-Up	18,000	FT-LBS.

ContiTech Fluid Technology

<p>ContiTech Oil & Marine Corp. # 11535 Brittmoore Park Dr., Houston, TX 77041-6916 USA</p> <p>CONSIGNEE / Ship-to address:</p> <p>HELMERICH & PAYNE INT'L DRILLING CO ATTN: FLEX RIG WHSE - B-BAY 210 MAGNOLIA DRIVE GALENA PARK TX 77547</p> <p>Buyer:</p> <p>HELMERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER 74119 TULSA</p> <p>Conditions</p> <p>Incoterms EXW Houston Ex Works</p>		<p>Packing list / Delivery note</p> <table border="1"> <tr><td>Document No.</td><td>71461553</td></tr> <tr><td>Document Date</td><td>28.01.2022</td></tr> <tr><td>Customer Number</td><td>11697</td></tr> <tr><td>Customer VAT No.</td><td></td></tr> <tr><td>Supplier Number</td><td></td></tr> <tr><td>Purchase Order No.</td><td>740362040</td></tr> <tr><td>Purchase Order Date</td><td>18.01.2022</td></tr> <tr><td>Sales Order Number</td><td>1388153</td></tr> <tr><td>Sales Order Date</td><td>18.01.2022</td></tr> <tr><td>Unloading Point</td><td></td></tr> <tr><td>RAN-No.</td><td></td></tr> </table> <p>Page 1 of 2</p> <table border="1"> <tr><td>Weights (Gross / Net)</td></tr> <tr><td>Total Gross Weight 2,507.000 LB</td></tr> <tr><td>Total Net Weight 2,507.000 LB</td></tr> </table>	Document No.	71461553	Document Date	28.01.2022	Customer Number	11697	Customer VAT No.		Supplier Number		Purchase Order No.	740362040	Purchase Order Date	18.01.2022	Sales Order Number	1388153	Sales Order Date	18.01.2022	Unloading Point		RAN-No.		Weights (Gross / Net)	Total Gross Weight 2,507.000 LB	Total Net Weight 2,507.000 LB
Document No.	71461553																										
Document Date	28.01.2022																										
Customer Number	11697																										
Customer VAT No.																											
Supplier Number																											
Purchase Order No.	740362040																										
Purchase Order Date	18.01.2022																										
Sales Order Number	1388153																										
Sales Order Date	18.01.2022																										
Unloading Point																											
RAN-No.																											
Weights (Gross / Net)																											
Total Gross Weight 2,507.000 LB																											
Total Net Weight 2,507.000 LB																											
Item	Material/Description	Quantity Net Weight Gross Weight																									
20	<p>Buyer: Jack Peebles E-mail: Jackie.Peebles@hpinc.com Tel: 832-782-6000</p> <p>Rig/Whse: HOW 00RECERTIFY</p> <p>Recert of HP Hoses Serial# 67094</p> <p>Commodity Code: 3" X 35 FT 10K Choke & Kill Hoses API 16C</p> <p>End 1: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4 - 1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w BX155 ring groove each end Standard: API Spec 16C - Monogrammed</p> <p>Working Pressure: 10.000psi Test Pressure: 15.000psi</p> <p>Inspection & Certification includes: External inspection of the hose & couplings Internal boroscopic inspection of hose liner Hydrostatic pressure test of hose assembly Repair of any external damage to hose body and end connections (limited to minor repairs). Clean & protect end connections Inspection Report Disposal of hose assembly if hose fails inspection and recertification process. Please Flush Hoses before sending them to our Facility.</p>	<p>1 PC 2,507.000 LB 2,507.000 LB</p> <p>88000240 106-01-01 22 2</p>																									

ContiTech Rubber Industrial Kft.
H-6728 Szeged Budapesti út 10.
P. O. Box 152 Szeged H-6701
Phone: (62)566-700, Fax: (62)566-713
Tax Number: 11087209-2-06
EU Community VAT: HU11087209
Registration No.: Cg. 0609-002502
Registry Court: Csongrád Megyei Cégbíróság

COMMERZBANK ZRT. (HUF)
H-1054 Budapest, Széchenyi rakpart 8.
H-1245 Budapest P.O. Box 1070
Account No.: 14220108-26830003
IBAN: HU83 1422 0108 2683 0003 0000 0000
SWIFT: COBA HU XXXX

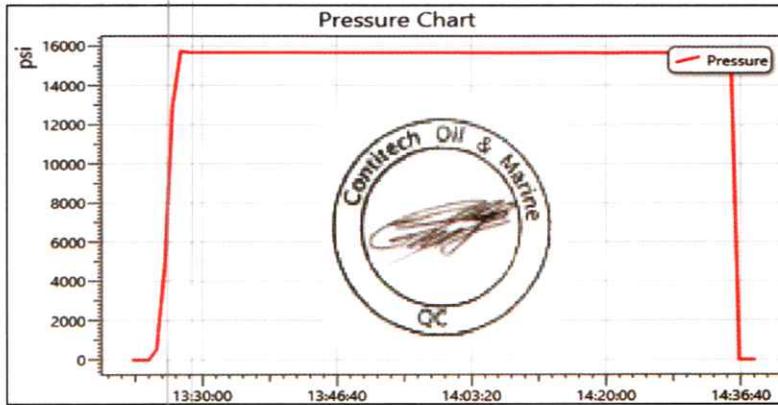
COMMERZBANK AG Hannover (EUR)
30159 Hannover, Theaterstr. 11-12.
Account No.: 3 066 156 00
Sort Code: 250 400 66
BIC: COBADEFF250
IBAN: DE41250400660306615600

Record Rotary Hose sleeve number on the CBC Made Hose List !!!!!!!!!!!!!!!

ContiTech

Hydrostatic Test Certificate

Certificate Number		COM Order Reference	Customer Name & Address
H100122		1388153	HELMERICH & PAYNE DRILLING CO
Customer Purchase Order No:		740362040	1434 SOUTH BOULDER AVE
Project:			TULSA, OK 74119
			USA
Test Center Address		Accepted by COM Inspection	Accepted by Client Inspection
ContiTech Oil & Marine Corp. 11535 Brittmoore Park Drive Houston, TX 77041 USA		Signed: Gerson Mejia-Lazo 	
Date: 02/09/22			


We certify that the goods detailed hereon have been inspected as described below by our Quality Management System, and to the best of our knowledge are found to conform the requirements of the above referenced purchase order as issued to ContiTech Oil & Marine Corporation.

Item	Part No.	Description	Qty	Serial Number	Work. Press. (psi)	Test Press. (psi)	Test Time (minutes)
20	RECERTIFICATION	3" ID 10K Choke and Kill Hose x 35ft OAL	1	67094	10,000	15,000	60

Record Information	
Start Time	1/27/2022 13:21:21
End Time	1/27/2022 14:38:28
Interval	00:01:00
Number	78
MaxValue	15849
MinValue	-3
AvgValue	14240
RecordName	67094-sh
RecordNumber	199

Gauge Information	
Model	ADT680
SN	21817380014
Range	(0-40000)psi
Unit	psi

Permian Resources

Multi-Well Pad Batch Drilling Procedure

Surface Casing - PR intends to Batch set all surface casing to a depth approved in the APD. Surface Holes will be batch drilled by a rig. Appropriate notifications will be made prior to spudding the well, running and cementing casing and prior to skidding to the rig to the next well on pad.

1. Drill Surface hole to Approved Depth with Rig and perform wellbore cleanup cycles. Trip out and rack back drilling BHA.
2. Run and land planned surface casing see Illustration 1-1 Below to depth approved in APD.
3. Set packoff and test to 5k psi
4. Offline Cement
5. Install wellhead with pressure gauge and nightcap. Nightcap is shown on final wellhead Stack up Illustration #2-2.
6. Skid Rig to adjacent well to drill Surface hole.
7. Surface casing test will be performed by the rig in order to allow ample time for Cement to develop 500psi compressive strength. Casing test to 0.22 psi/ft or 1500 psi whichever is greater - not to exceed 70% casing burst.

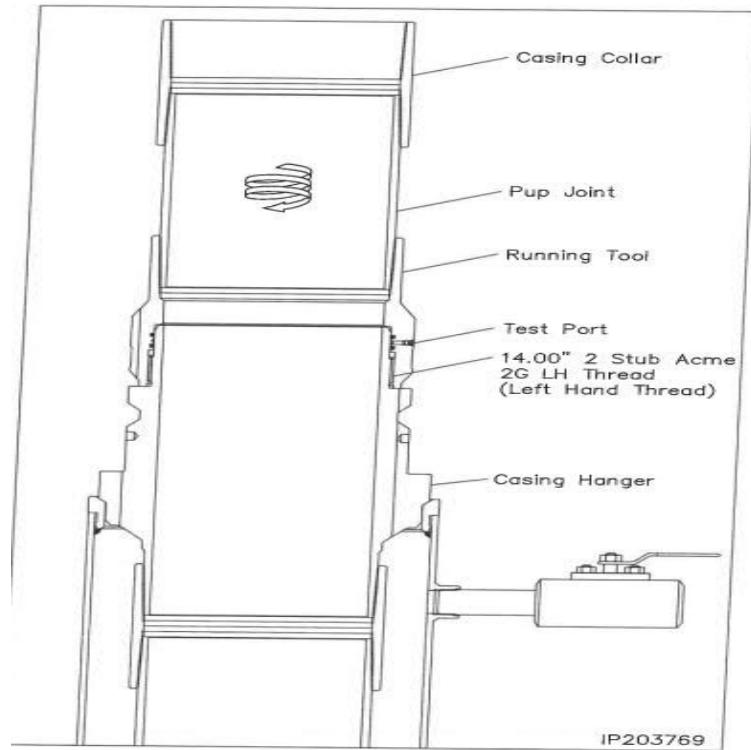


Illustration 1-1

Intermediate Casing – PR intends to Batch set all intermediate casing strings to a depth approved in the APD. Intermediate Holes will be batch drilled by the rig. Appropriate notifications will be made prior to testing BOPE, and prior to running/cementing all casing strings.

1. Rig will remove the nightcap and install and test BOPE.
2. Test Surface casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) - not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
3. Install wear bushing then drill out surface casing shoe-track plus 20' and conduct FIT to minimum of the MW equivalent anticipated to control the formation pressure to the next casing point.
4. Drill Intermediate hole to approved casing point. Trip out of hole with BHA to run Casing.
5. Remove wear bushing then run and land Intermediate Casing with mandrel hanger in wellhead.
6. Cement casing to surface with floats holding.
7. Washout stack then run wash tool in wellhead and wash hanger and pack-off setting area.
8. Install pack-off and test void to 5,000 psi for 15 minutes. Nightcap shown on final wellhead stack up illustration 2-2 on page 3.
9. Test casing per COA WOC timing (.22 psi/ft or 1500 psi whichever is greater) - not to exceed 70% casing burst. Cement must have achieved 500psi compressive strength prior to test.
10. Install nightcap – skid rig to adjacent well to drill Intermediate hole.

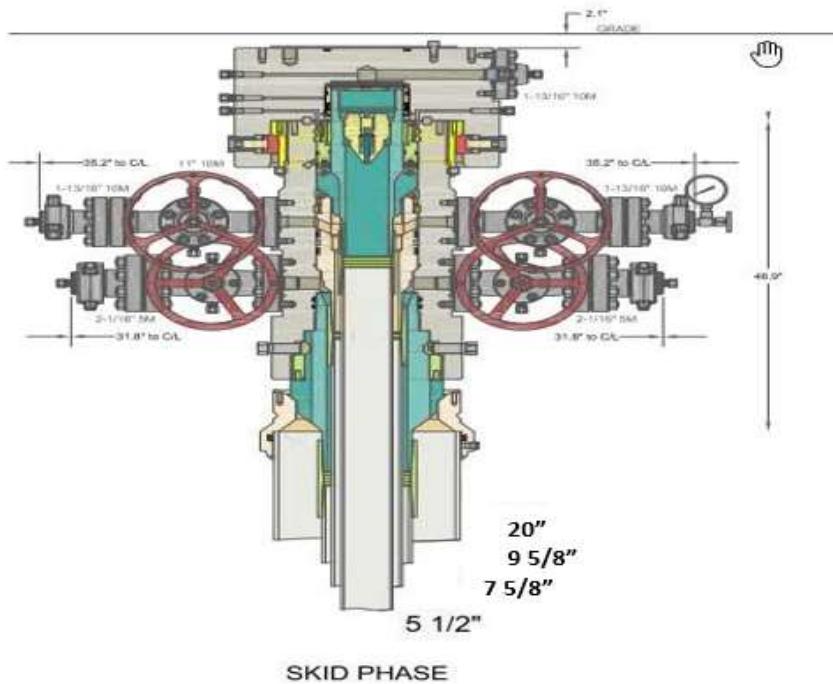


Illustration 2-2

Production Casing – PR intends to Batch set all Production casings with Rig. Appropriate notifications will be made prior Testing BOPE, and prior to running/cementing all casing strings.

1. Drilling Rig will remove the nightcap and install and test BOPE.
2. Install wear bushing then drill Intermediate shoe-track plus 20' and conduct FIT to minimum MW equivalent to control the formation pressure to TD of well.
3. Drill Vertical hole to KOP – Trip out for Curve BHA.
4. Drill Curve, landing in production interval – Trip for Lateral BHA.
5. Drill Lateral / Production hole to Permitted BHL, perform cleanup cycles and trip out to run Production Casing.
6. Remove wear bushing then run Production casing to TD landing casing mandrel in wellhead.
7. Cement Production string with floats holding.
8. Run in with wash tool and wash wellhead area – install pack-off and test void to 5,000psi for 15 minutes.
9. Install BPV in Production mandrel hanger – Nipple down BOPE and install nightcap.
10. Test nightcap void to 5,000 psi for 30 minutes per illustration 2-2
11. Skid rig to adjacent well on pad to drill production hole.

Permian Resources BOP Break Testing Variance Procedure

Subject: Request for a Variance Allowing break Testing of the Blowout Preventer Equipment (BOPE). Permian Resources requests a variance to ONLY test broken pressure seals on the BOPE and function test BOP when skidding a drilling rig between multiple wells on a pad.

Background

Title 43 CFR 3172, Drilling Operations, Sections 6.b.9.iv states that the BOP test must be performed whenever any seal subject to test pressure is broken. The current interpretation of the Bureau of Land Management (BLM) requires a complete BOP test and not just a test of the affected component. 43 CFR 3172.13, Variances from minimum standards states, "An operator may request the authorized officer to approve a variance from any of the minimum standards prescribed in [§§ 3172.6](#) through [3172.12](#). All such requests shall be submitted in writing to the appropriate authorized officer and provide information as to the circumstances which warrant approval of the variance(s) requested and the proposed alternative methods by which the related minimum standard(s) are to be satisfied. The authorized officer, after considering all relevant factors, if appropriate, may approve the requested variance(s) if it is determined that the proposed alternative(s) meet or exceed the objectives of the applicable minimum standard(s)." Permian Resources feels the break testing the BOPE is such a situation. Therefore, as per 43 CFR 3172.13, Permian Resources submits this request for the variance.

Supporting Documentation

The language used in 43 CFR 3172 became effective on December 19, 1988 and has remained the standard for regulating BLM onshore drilling operations for over 30 years. During this time, there have been significant changes in drilling technology. The BLM continues to use the variance request process to allow for the use of modern technology and acceptable engineering practices that have arisen since 43 CFR 3172 was originally released. The Permian Resources drilling rig fleet has many modern upgrades that allow the intact BOP stack to be moved between well slots on a multi-well pad, as well as, wellhead designs that incorporate quick connects facilitating release of the BOP from the wellhead without breaking any BOP stack components apart. These technologies have been used extensively offshore, and other regulators, API, and many operators around the world have endorsed break testing as safe and reliable.

Figure 1: Winch System attached to BOP Stack

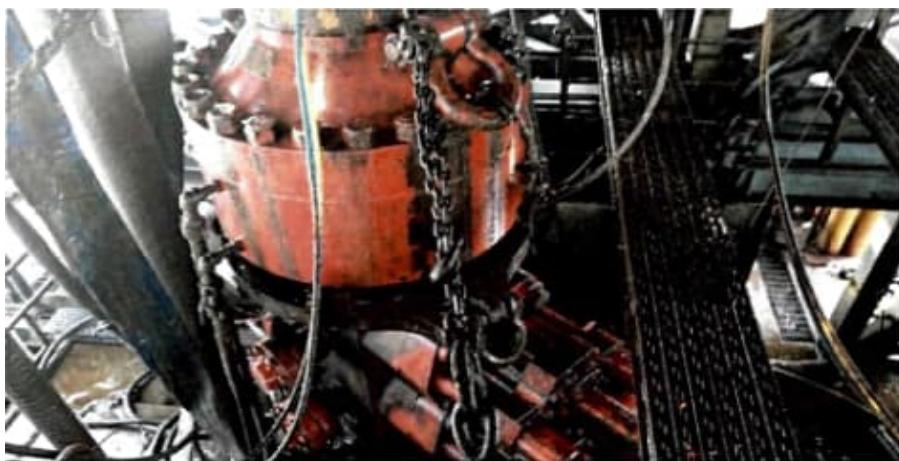
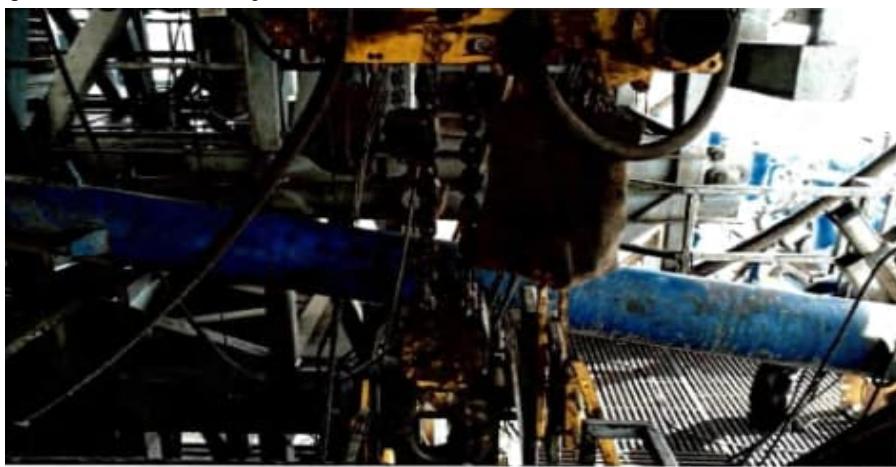



Figure 2: BOP Winch System

American Petroleum Institute (API) standards, specification and recommended practices are considered the industry standard and are consistently utilized and referenced by the industry. 43 CFR 3172 recognizes API recommended Practices (RP) 53 in its original development. API Standard 53, Well Control Equipment Systems for Drilling Wells (Fifth Edition, December 2018, Annex C, Table C.4) recognizes break testing as an acceptable practice. Specifically, API Standard 53, Section 5.3.7.1 states "A pressure test of the pressure containing component shall be performed following the disconnection or repair, limited to the affected component." See Table C.4 below for reference.

62

API STANDARD 53

Table C.4—Initial Pressure Testing, Surface BOP Stacks

Component to be Pressure Tested	Pressure Test—Low Pressure ^a psig (MPa)	Pressure Test—High Pressure ^a	
		Change Out of Component, Elastomer, or Ring Gasket	No Change Out of Component, Elastomer, or Ring Gasket
Annular preventer ^b	250 to 350 (1.72 to 2.41)	RWP of annular preventer	MASP or 70% annular RWP, whichever is lower.
Fixed pipe, variable bore, blind, and BSR preventers ^{c,d}	250 to 350 (1.72 to 2.41)	RWP of ram preventer or wellhead system, whichever is lower	ITP
Choke and kill line and BOP side outlet valves below ram preventers (both sides)	250 to 350 (1.72 to 2.41)	RWP of side outlet valve or wellhead system, whichever is lower	ITP
Choke manifold—upstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of ram preventers or wellhead system, whichever is lower	ITP
Choke manifold—downstream of chokes ^e	250 to 350 (1.72 to 2.41)	RWP of valve(s), line(s), or MASP for the well program, whichever is lower	
Kelly, kelly valves, drill pipe safety valves, IBOPs	250 to 350 (1.72 to 2.41)	MASP for the well program	

^a Pressure test evaluation periods shall be a minimum of five minutes.
No visible leaks.
The pressure shall remain stable during the evaluation period. The pressure shall not decrease below the intended test pressure.

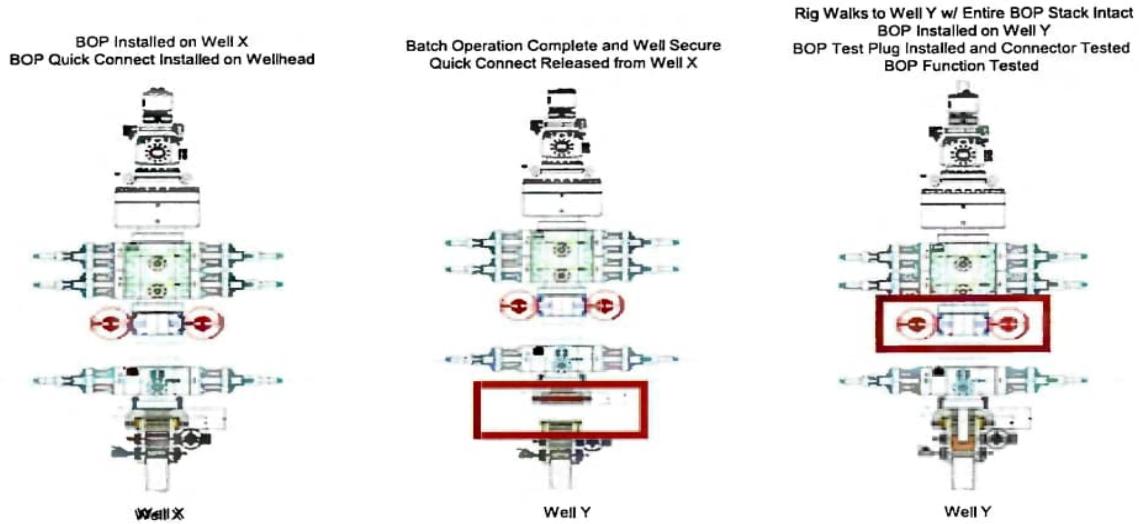
^b Annular(s) and VBR(s) shall be pressure tested on the largest and smallest OD drill pipe to be used in well program.

^c For pad drilling operations, moving from one wellhead to another within the 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

^d For surface offshore operations, the ram BOPs shall be pressure tested with the ram locks engaged and the closing and locking pressure vented during the initial test. For land operations, the ram BOPs shall be pressure tested with the ram locks engaged and the closing and locking pressure vented at commissioning and annually.

^e Adjustable chokes are not required to be full sealing devices. Pressure testing against a closed choke is not required.

The Bureau of Safety and Environmental Enforcement (BSEE), Department of Interior, has also utilized the API standards, specification and best practices in the development of its offshore oil and gas regulations and incorporates them by reference within its regulations.


Break testing has been approved by the BLM in the past with other operators based on the detailed information provided in this document.

Permian Resources feels break testing and our current procedures meet the intent of 43 CFR 3172 and often exceed it. There has been no evidence that break testing results in more components failing than seen on full BOP tests. Permian Resources internal standards require complete BOPE tests more often than that of 43 CFR 3172 (every 21 days). In addition to function testing the annular, pipe rams and blind rams after each BOP nipple up, Permian Resources performs a choke drill with the rig crew prior to drilling out every casing shoe. This is additional training for the rig crew that exceeds the requirements of 43 CFR 3172.

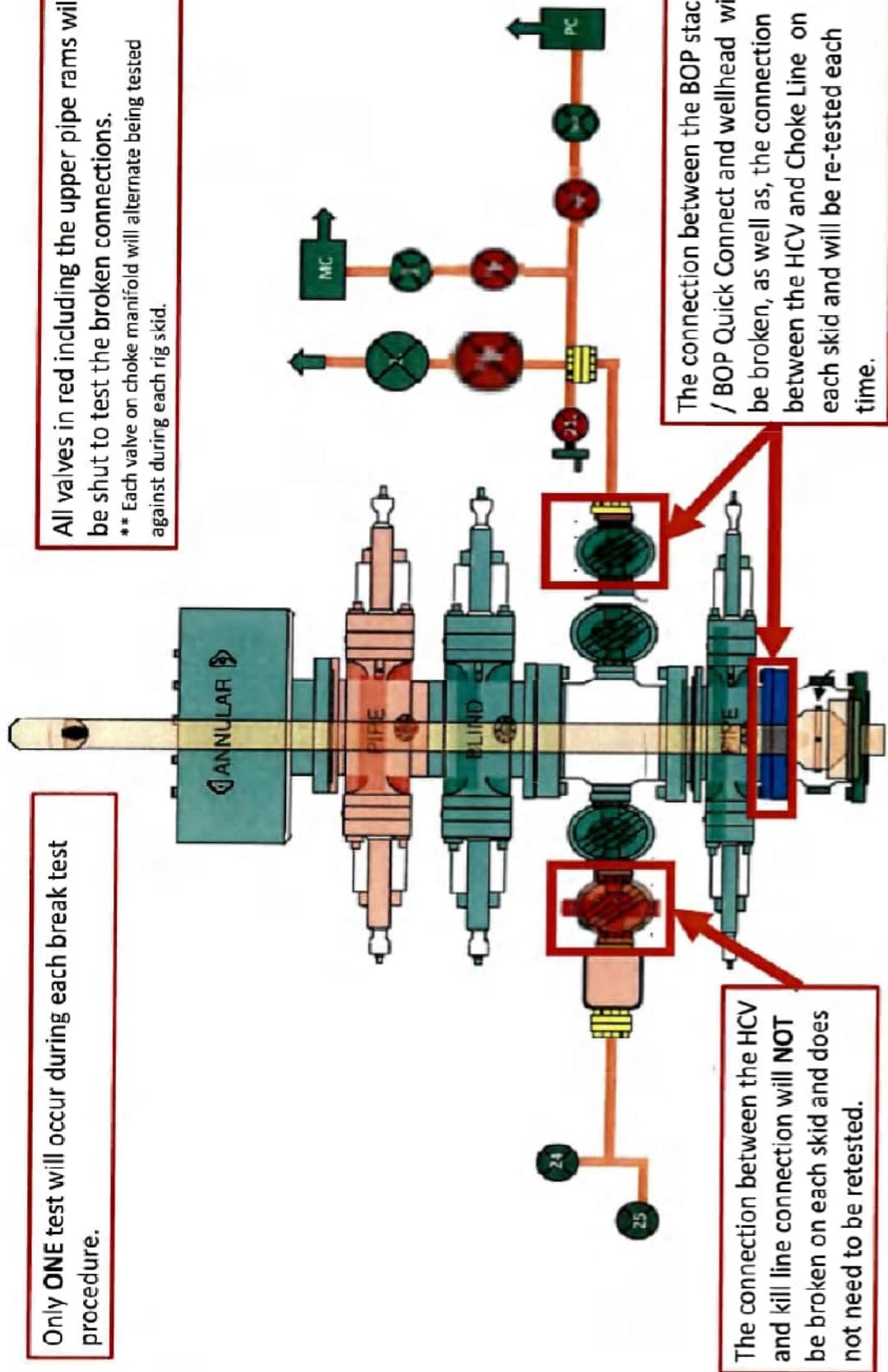
Procedures

- 1) Permian Resources will use this document for our break testing plan for New Mexico Delaware Basin. The summary below will be referenced in the APD or Sundry Notice and receive approval prior to implementing this variance.
- 2) Permian Resources will perform BOP break testing on multi-wells pads where multiple intermediate sections can be drilled and cased within the 21-day BOP test window.
 - a) A full BOP test will be conducted on the first well on the pad.
 - b) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same formation depth or shallower.
 - c) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
 - d) A full BOP test will be required prior to drilling any production hole.
- 3) After performing a complete BOP test on the first well, the intermediate hole section will be drilled and cased, two breaks would be made on the BOP equipment.
 - a) Between the HCV valve and choke line connection
 - b) Between the BOP quick connect and the wellhead
- 4) The BOP is then lifted and removed from the wellhead by a hydraulic system.
- 5) After skidding to the next well, the BOP is moved to the wellhead by the same hydraulic system and installed.
- 6) The connections mentioned in 3a and 3b will then be reconnected.
- 7) Install test plug into the wellhead using test joint or drill pipe.
- 8) A shell test is performed against the upper pipe rams testing the two breaks.
- 9) The shell test will consist of a 250 psi low test and a high test to the value submitted in the APD or Sundry (e.g. 5,000 psi or 10,000psi).
- 10) Function tests will be performed on the following components: lower pipe rams, blind rams, and annular.
- 11) For a multi-well pad the same two breaks on the BOP would be made and on the next wells and steps 4 through 10 would be repeated.
- 12) A second break test would only be done if the intermediate hole section being drilled could not be completed within the 21 day BOP test window.

Note: Picture below highlights BOP components that will be tested during batch operations

Summary

A variance is requested to ONLY test broken pressure seals on the BOP equipment when moving from wellhead to wellhead which is in compliance with API Standard 53. API Standard 53 states, that for pad drilling operations, moving from one wellhead to another within 21 days, pressure testing is required for pressure-containing and pressure-controlling connections when the integrity of a pressure seal is broken.

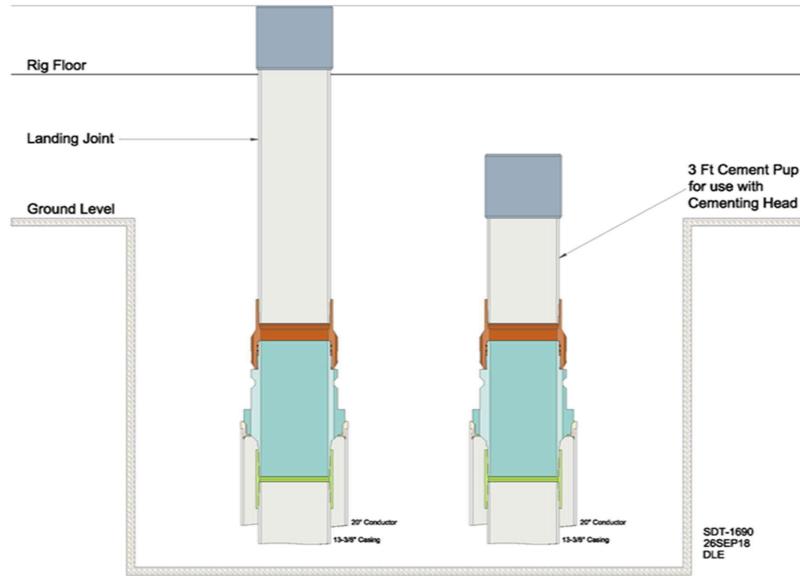

The BOP will be secured by a hydraulic carrier or cradle. The BLM will be contacted if a Well Control event occurs prior to the commencement of a BOPE Break Testing operation.

Based on public data and the supporting documentation submitted herein to the BLM, we will request permission to ONLY retest broken pressure seals if the following conditions are met:

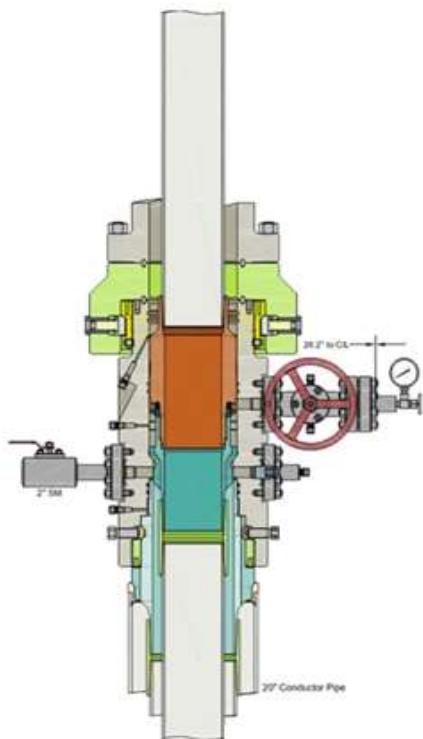
- 1) After a full BOP test is conducted on the first well on the pad.
- 2) The first intermediate hole section drilled on the pad will be the deepest. All the remaining hole sections will be the same depth or shallower.
- 3) A full BOP test will be required if the intermediate hole section being drilled has a MASP over 5M.
- 4) A full BOP test will be required prior to drilling the production hole.

Only **ONE** test will occur during each break test procedure.

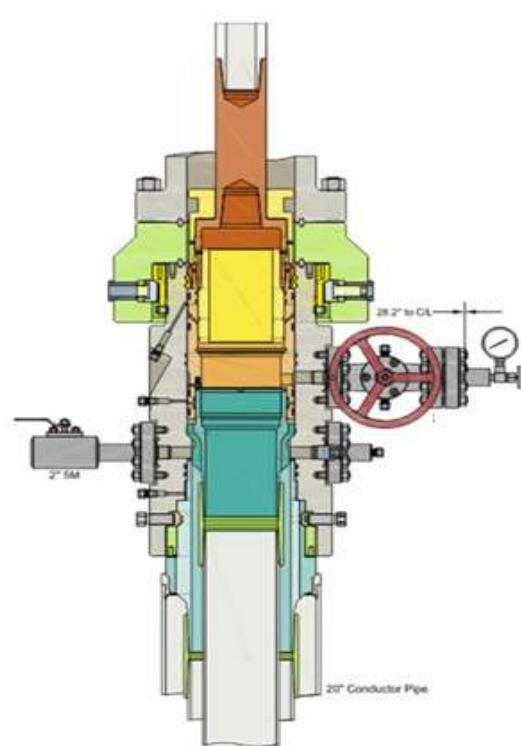
All valves in red including the upper pipe rams will be shut to test the broken connections.
** Each valve on choke manifold will alternate being tested against during each rig skid.

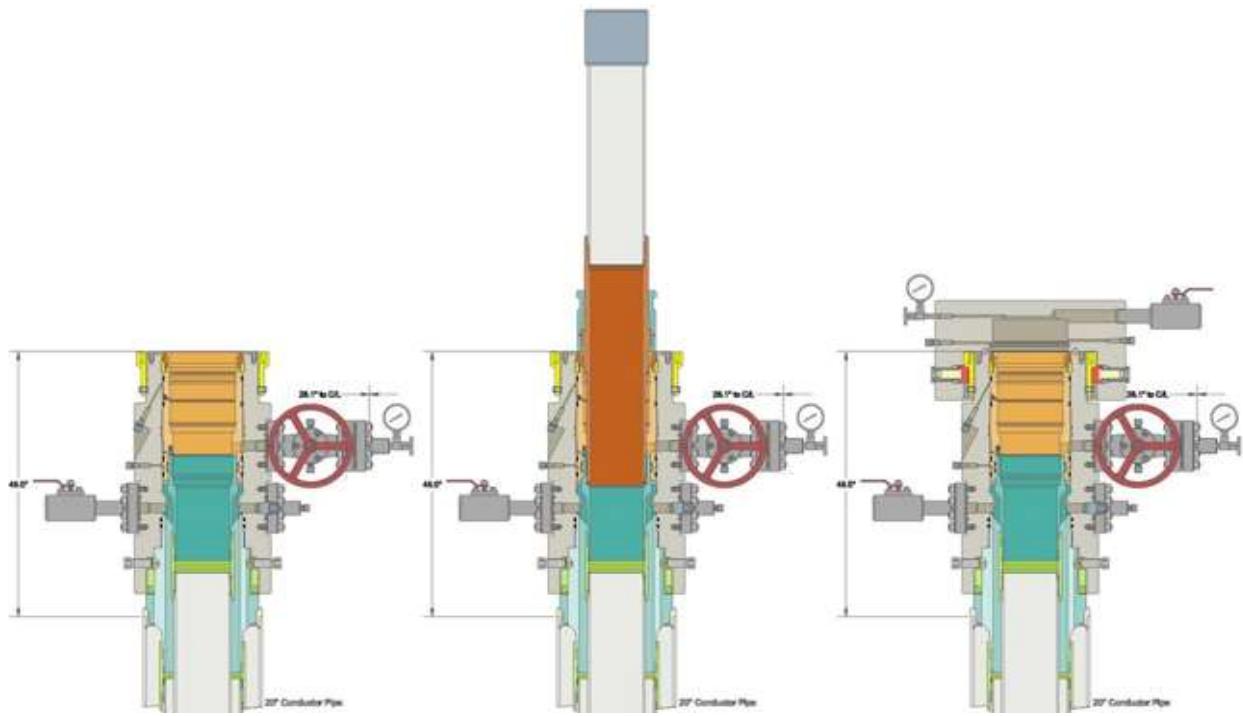


Permian Resources Offline Cementing Procedure
Surface & Intermediate Casing


1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
2. Run and casing to Depth.
3. Land casing with mandrel.
4. Circulate 1.5 csg capacity.
5. Flow test – Confirm well is static and floats are holding.
6. Set Annular packoff and pressure test. Test to 5k.
7. Nipple down BOP and install cap flange.
8. Skid rig to next well on pad
9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
10. Install offline cement tool.
11. Rig up cementers.
12. Circulate bottoms up with cement truck
13. Commence planned cement job, take returns through the annulus wellhead valve
14. After plug is bumped confirm floats hold and well is static
15. Rig down cementers and equipment
16. Install night cap with pressure gauge to monitor.

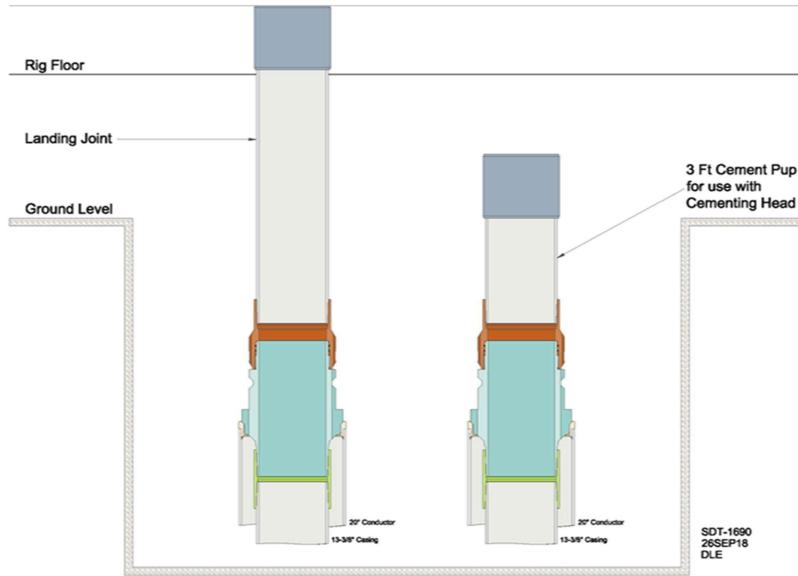
13 3/8" Surface


CFL Off-Line Cementing Tool

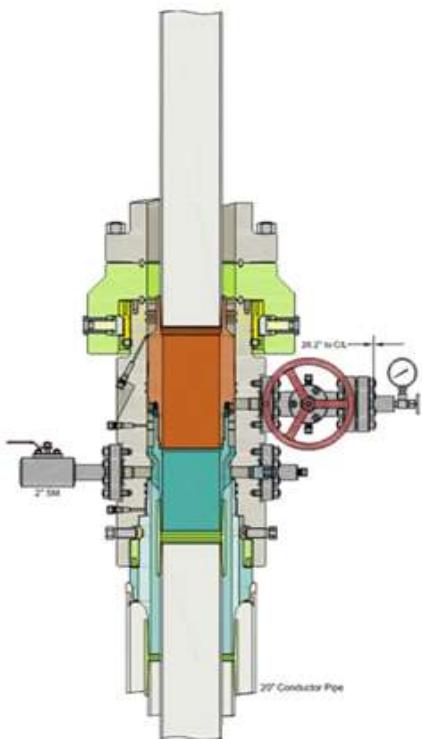

Intermediate

Run 7 5/8" Casing
Land Casing on 7 5/8" Mandrel Hanger
Cement 7 5/8" Casing
Retrieve Running Tool

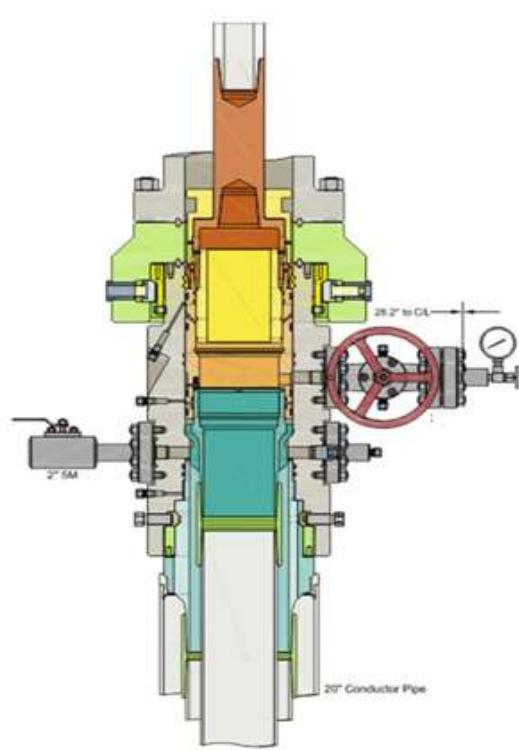
Run 9 5/8" Packoff
Test Upper and Lower Seals
Engage Lockring
Retrieve Running Tool

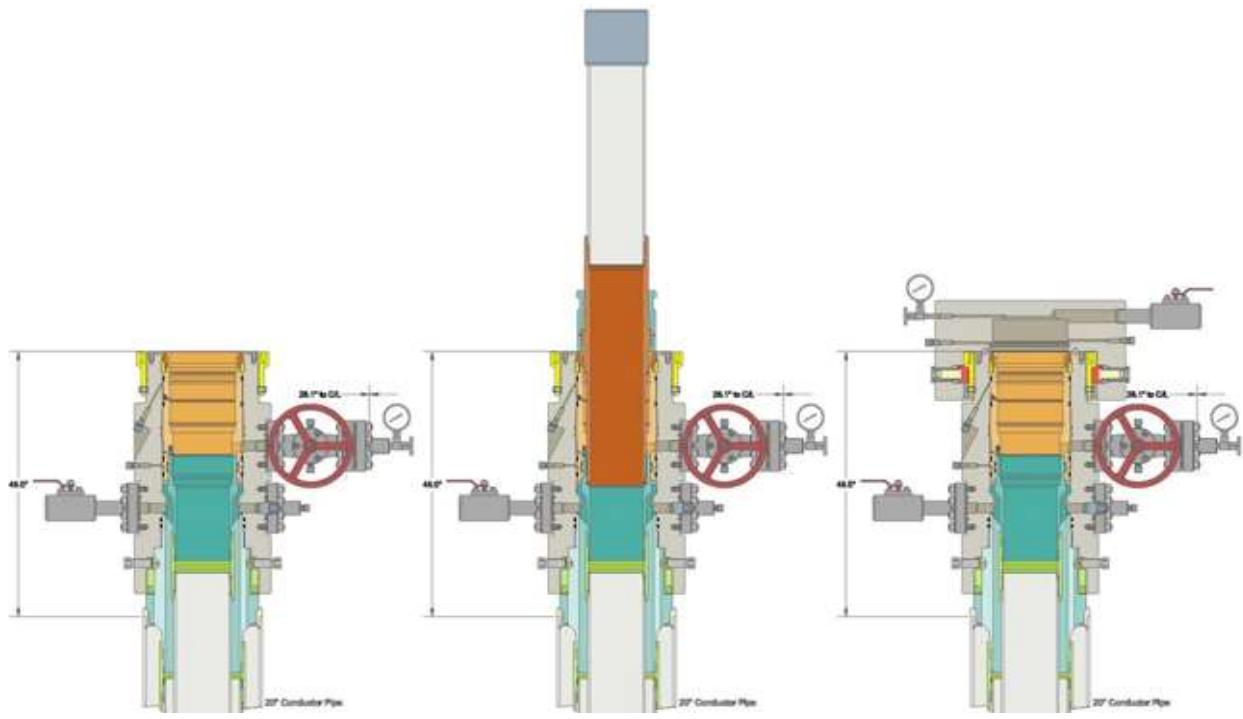


Permian Resources Offline Cementing Procedure
Surface & Intermediate Casing


1. Drill hole to Total Depth with Rig and perform wellbore cleanup cycles.
2. Run and casing to Depth.
3. Land casing with mandrel.
4. Circulate 1.5 csg capacity.
5. Flow test – Confirm well is static and floats are holding.
6. Set Annular packoff and pressure test. Test to 5k.
7. Nipple down BOP and install cap flange.
8. Skid rig to next well on pad
9. Remove cap flange (confirm well is static before removal)
 - a) If well is not static use the casing outlet valves to kill well
 - b) Drillers method will be used in well control event
 - c) High pressure return line will be rigged up to lower casing valve and run to choke manifold to control annular pressure
 - d) Kill mud will be circulated once influx is circulated out of hole
 - e) Confirm well is static and remove cap flange to start offline cement operations
10. Install offline cement tool.
11. Rig up cementers.
12. Circulate bottoms up with cement truck
13. Commence planned cement job, take returns through the annulus wellhead valve
14. After plug is bumped confirm floats hold and well is static
15. Rig down cementers and equipment
16. Install night cap with pressure gauge to monitor.

13 3/8" Surface


CFL Off-Line Cementing Tool


Intermediate

Run 7 5/8" Casing
Land Casing on 7 5/8" Mandrel Hanger
Cement 7 5/8" Casing
Retrieve Running Tool

Run 9 5/8" Packoff
Test Upper and Lower Seals
Engage Lockring
Retrieve Running Tool

NEW MEXICO
(SP) LEA
EL CAMPEON FED COM PROJECT
EL CAMPEON FED COM 122H

OWB

Plan: PWP0

Standard Planning Report - Geographic

03 April, 2025

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PWP0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature		
Project	(SP) LEA				
Map System: Geo Datum: Map Zone:	US State Plane 1983 North American Datum 1983 New Mexico Eastern Zone	System Datum:	Mean Sea Level		
Site	EL CAMPEON FED COM PROJECT				
Site Position: From: Position Uncertainty:	Map 0.0 usft	Northing: Easting: Slot Radius:	371,005.08 usft 831,976.77 usft 13-3/16 "		
			32° 0' 59.423 N 103° 23' 44.166 W		
Well	EL CAMPEON FED COM 122H				
Well Position	+N/-S +E/-W	0.0 usft 0.0 usft	Northing: Easting:		
Position Uncertainty		0.0 usft	373,194.76 usft 833,303.18 usft		
Grid Convergence:	0.50 °		Latitude: Longitude: Wellhead Elevation: usft		
Latitude: Longitude: Ground Level:	32° 1' 20.976 N 103° 23' 28.539 W 3,175.0 usft				
Wellbore	OWB				
Magnetics	Model Name	Sample Date	Declination (°)	Dip Angle (°)	Field Strength (nT)
	IGRF200510	12/31/2009	7.65	60.09	48,693.25394692
Design	PWP0				
Audit Notes:					
Version:		Phase:	PROTOTYPE	Tie On Depth:	0.0
Vertical Section:		Depth From (TVD) (usft)	+N/-S (usft)	+E/-W (usft)	Direction (°)
		0.0	0.0	0.0	183.41
Plan Survey Tool Program	Date	4/3/2025			
Depth From (usft)	Depth To (usft)	Survey (Wellbore)	Tool Name	Remarks	
1	0.0	21,804.0 PWP0 (OWB)	MWD OWSG_Rev2_ MWD - Star		

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PWP0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00
2,500.0	10.00	270.00	2,497.5	0.0	-43.5	2.00	2.00	0.00	270.00	
4,397.7	10.00	270.00	4,366.3	0.0	-373.0	0.00	0.00	0.00	0.00	
4,897.7	0.00	0.00	4,863.8	0.0	-416.6	2.00	-2.00	0.00	180.00	
10,856.4	0.00	0.00	10,822.5	0.0	-416.6	0.00	0.00	0.00	0.00	
11,606.4	90.00	179.49	11,300.0	-477.4	-412.3	12.00	12.00	23.93	179.49	
14,127.1	90.00	179.49	11,300.0	-2,998.0	-389.6	0.00	0.00	0.00	0.00	PP3-EL CAMP 122I
14,533.2	90.00	187.61	11,300.0	-3,403.0	-414.7	2.00	0.00	2.00	89.99	
16,381.0	90.00	187.61	11,300.0	-5,234.6	-659.4	0.00	0.00	0.00	0.00	
16,790.2	90.00	179.42	11,300.0	-5,642.6	-684.4	2.00	0.00	-2.00	-90.00	PP4-EL CAMP 122I
21,804.0	90.00	179.42	11,300.0	-10,656.2	-634.1	0.00	0.00	0.00	0.00	BHL-EL CAMP 122

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PWP0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
100.0	0.00	0.00	100.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
200.0	0.00	0.00	200.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
300.0	0.00	0.00	300.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
400.0	0.00	0.00	400.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
500.0	0.00	0.00	500.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
600.0	0.00	0.00	600.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
700.0	0.00	0.00	700.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
800.0	0.00	0.00	800.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
900.0	0.00	0.00	900.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,000.0	0.00	0.00	1,000.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,100.0	0.00	0.00	1,100.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,200.0	0.00	0.00	1,200.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,300.0	0.00	0.00	1,300.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,400.0	0.00	0.00	1,400.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,500.0	0.00	0.00	1,500.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,600.0	0.00	0.00	1,600.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,700.0	0.00	0.00	1,700.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,800.0	0.00	0.00	1,800.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
1,900.0	0.00	0.00	1,900.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
2,000.0	0.00	0.00	2,000.0	0.0	0.0	373,194.76	833,303.18	32° 1' 20.976 N	103° 23' 28.539 W
Start Build 2.00									
2,100.0	2.00	270.00	2,100.0	0.0	-1.7	373,194.76	833,301.43	32° 1' 20.976 N	103° 23' 28.560 W
2,200.0	4.00	270.00	2,199.8	0.0	-7.0	373,194.76	833,296.20	32° 1' 20.977 N	103° 23' 28.621 W
2,300.0	6.00	270.00	2,299.5	0.0	-15.7	373,194.76	833,287.49	32° 1' 20.978 N	103° 23' 28.722 W
2,400.0	8.00	270.00	2,398.7	0.0	-27.9	373,194.76	833,275.30	32° 1' 20.979 N	103° 23' 28.863 W
2,500.0	10.00	270.00	2,497.5	0.0	-43.5	373,194.76	833,259.66	32° 1' 20.980 N	103° 23' 29.045 W
Start 1897.7 hold at 2500.0 MD									
2,600.0	10.00	270.00	2,595.9	0.0	-60.9	373,194.76	833,242.29	32° 1' 20.982 N	103° 23' 29.247 W
2,700.0	10.00	270.00	2,694.4	0.0	-78.3	373,194.76	833,224.93	32° 1' 20.983 N	103° 23' 29.448 W
2,800.0	10.00	270.00	2,792.9	0.0	-95.6	373,194.76	833,207.56	32° 1' 20.985 N	103° 23' 29.650 W
2,900.0	10.00	270.00	2,891.4	0.0	-113.0	373,194.76	833,190.20	32° 1' 20.986 N	103° 23' 29.852 W
3,000.0	10.00	270.00	2,989.9	0.0	-130.3	373,194.76	833,172.83	32° 1' 20.988 N	103° 23' 30.053 W
3,100.0	10.00	270.00	3,088.3	0.0	-147.7	373,194.76	833,155.47	32° 1' 20.989 N	103° 23' 30.255 W
3,200.0	10.00	270.00	3,186.8	0.0	-165.1	373,194.76	833,138.10	32° 1' 20.991 N	103° 23' 30.457 W
3,300.0	10.00	270.00	3,285.3	0.0	-182.4	373,194.76	833,120.74	32° 1' 20.992 N	103° 23' 30.658 W
3,400.0	10.00	270.00	3,383.8	0.0	-199.8	373,194.76	833,103.37	32° 1' 20.994 N	103° 23' 30.860 W
3,500.0	10.00	270.00	3,482.3	0.0	-217.2	373,194.76	833,086.01	32° 1' 20.995 N	103° 23' 31.062 W
3,600.0	10.00	270.00	3,580.8	0.0	-234.5	373,194.76	833,068.64	32° 1' 20.997 N	103° 23' 31.263 W
3,700.0	10.00	270.00	3,679.2	0.0	-251.9	373,194.76	833,051.28	32° 1' 20.998 N	103° 23' 31.465 W
3,800.0	10.00	270.00	3,777.7	0.0	-269.3	373,194.76	833,033.91	32° 1' 21.000 N	103° 23' 31.667 W
3,900.0	10.00	270.00	3,876.2	0.0	-286.6	373,194.76	833,016.55	32° 1' 21.001 N	103° 23' 31.869 W
4,000.0	10.00	270.00	3,974.7	0.0	-304.0	373,194.76	832,999.18	32° 1' 21.002 N	103° 23' 32.070 W
4,100.0	10.00	270.00	4,073.2	0.0	-321.4	373,194.76	832,981.82	32° 1' 21.004 N	103° 23' 32.272 W
4,200.0	10.00	270.00	4,171.6	0.0	-338.7	373,194.76	832,964.45	32° 1' 21.005 N	103° 23' 32.474 W
4,300.0	10.00	270.00	4,270.1	0.0	-356.1	373,194.76	832,947.09	32° 1' 21.007 N	103° 23' 32.675 W
4,397.7	10.00	270.00	4,366.3	0.0	-373.0	373,194.76	832,930.13	32° 1' 21.008 N	103° 23' 32.872 W
Start Drop -2.00									
4,400.0	9.95	270.00	4,368.6	0.0	-373.5	373,194.76	832,929.73	32° 1' 21.008 N	103° 23' 32.877 W
4,500.0	7.95	270.00	4,467.4	0.0	-389.0	373,194.76	832,914.16	32° 1' 21.010 N	103° 23' 33.058 W
4,600.0	5.95	270.00	4,566.6	0.0	-401.1	373,194.76	832,902.06	32° 1' 21.011 N	103° 23' 33.198 W
4,700.0	3.95	270.00	4,666.3	0.0	-409.8	373,194.76	832,893.42	32° 1' 21.012 N	103° 23' 33.299 W
4,800.0	1.95	270.00	4,766.1	0.0	-414.9	373,194.76	832,888.27	32° 1' 21.012 N	103° 23' 33.358 W

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PPW0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
4,897.7	0.00	0.00	4,863.8	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
Start 5958.7 hold at 4897.7 MD									
4,900.0	0.00	0.00	4,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,000.0	0.00	0.00	4,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,100.0	0.00	0.00	5,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,200.0	0.00	0.00	5,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,300.0	0.00	0.00	5,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,400.0	0.00	0.00	5,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,500.0	0.00	0.00	5,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,600.0	0.00	0.00	5,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,700.0	0.00	0.00	5,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,800.0	0.00	0.00	5,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
5,900.0	0.00	0.00	5,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,000.0	0.00	0.00	5,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,100.0	0.00	0.00	6,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,200.0	0.00	0.00	6,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,300.0	0.00	0.00	6,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,400.0	0.00	0.00	6,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,500.0	0.00	0.00	6,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,600.0	0.00	0.00	6,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,700.0	0.00	0.00	6,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,800.0	0.00	0.00	6,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
6,900.0	0.00	0.00	6,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,000.0	0.00	0.00	6,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,100.0	0.00	0.00	7,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,200.0	0.00	0.00	7,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,300.0	0.00	0.00	7,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,400.0	0.00	0.00	7,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,500.0	0.00	0.00	7,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,600.0	0.00	0.00	7,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,700.0	0.00	0.00	7,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,800.0	0.00	0.00	7,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
7,900.0	0.00	0.00	7,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,000.0	0.00	0.00	7,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,100.0	0.00	0.00	8,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,200.0	0.00	0.00	8,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,300.0	0.00	0.00	8,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,400.0	0.00	0.00	8,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,500.0	0.00	0.00	8,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,600.0	0.00	0.00	8,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,700.0	0.00	0.00	8,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,800.0	0.00	0.00	8,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
8,900.0	0.00	0.00	8,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,000.0	0.00	0.00	8,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,100.0	0.00	0.00	9,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,200.0	0.00	0.00	9,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,300.0	0.00	0.00	9,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,400.0	0.00	0.00	9,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,500.0	0.00	0.00	9,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,600.0	0.00	0.00	9,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,700.0	0.00	0.00	9,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,800.0	0.00	0.00	9,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
9,900.0	0.00	0.00	9,866.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,000.0	0.00	0.00	9,966.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PWP0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey

Measured	Vertical	Map	Map	Latitude	Longitude				
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
10,100.0	0.00	0.00	10,066.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,200.0	0.00	0.00	10,166.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,300.0	0.00	0.00	10,266.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,400.0	0.00	0.00	10,366.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,500.0	0.00	0.00	10,466.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,600.0	0.00	0.00	10,566.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,700.0	0.00	0.00	10,666.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,800.0	0.00	0.00	10,766.1	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
10,856.4	0.00	0.00	10,822.5	0.0	-416.6	373,194.76	832,886.61	32° 1' 21.012 N	103° 23' 33.378 W
Start DLS 12.00 TFO 179.49									
10,875.0	2.23	179.49	10,841.1	-0.4	-416.6	373,194.40	832,886.61	32° 1' 21.009 N	103° 23' 33.378 W
10,900.0	5.23	179.49	10,866.0	-2.0	-416.6	373,192.77	832,886.63	32° 1' 20.993 N	103° 23' 33.378 W
10,925.0	8.23	179.49	10,890.9	-4.9	-416.5	373,189.84	832,886.65	32° 1' 20.964 N	103° 23' 33.378 W
10,950.0	11.23	179.49	10,915.5	-9.1	-416.5	373,185.61	832,886.69	32° 1' 20.922 N	103° 23' 33.378 W
10,975.0	14.23	179.49	10,939.9	-14.7	-416.4	373,180.10	832,886.74	32° 1' 20.867 N	103° 23' 33.378 W
11,000.0	17.23	179.49	10,963.9	-21.4	-416.4	373,173.33	832,886.80	32° 1' 20.800 N	103° 23' 33.378 W
11,025.0	20.23	179.49	10,987.6	-29.5	-416.3	373,165.30	832,886.87	32° 1' 20.721 N	103° 23' 33.378 W
11,050.0	23.23	179.49	11,010.8	-38.7	-416.2	373,156.04	832,886.96	32° 1' 20.629 N	103° 23' 33.378 W
11,075.0	26.23	179.49	11,033.5	-49.2	-416.1	373,145.59	832,887.05	32° 1' 20.526 N	103° 23' 33.378 W
11,100.0	29.23	179.49	11,055.7	-60.8	-416.0	373,133.95	832,887.15	32° 1' 20.411 N	103° 23' 33.378 W
11,125.0	32.23	179.49	11,077.2	-73.6	-415.9	373,121.18	832,887.27	32° 1' 20.284 N	103° 23' 33.378 W
11,150.0	35.23	179.49	11,097.9	-87.5	-415.8	373,107.30	832,887.39	32° 1' 20.147 N	103° 23' 33.377 W
11,175.0	38.23	179.49	11,118.0	-102.4	-415.7	373,092.35	832,887.53	32° 1' 19.999 N	103° 23' 33.377 W
11,200.0	41.23	179.49	11,137.2	-118.4	-415.5	373,076.37	832,887.67	32° 1' 19.841 N	103° 23' 33.377 W
11,225.0	44.23	179.49	11,155.6	-135.3	-415.4	373,059.41	832,887.82	32° 1' 19.673 N	103° 23' 33.377 W
11,250.0	47.23	179.49	11,173.0	-153.2	-415.2	373,041.51	832,887.99	32° 1' 19.496 N	103° 23' 33.377 W
11,275.0	50.23	179.49	11,189.5	-172.0	-415.0	373,022.72	832,888.15	32° 1' 19.310 N	103° 23' 33.377 W
11,300.0	53.23	179.49	11,205.0	-191.7	-414.8	373,003.10	832,888.33	32° 1' 19.116 N	103° 23' 33.377 W
11,325.0	56.23	179.49	11,219.4	-212.1	-414.7	372,982.69	832,888.51	32° 1' 18.914 N	103° 23' 33.377 W
11,350.0	59.23	179.49	11,232.8	-233.2	-414.5	372,961.56	832,888.70	32° 1' 18.704 N	103° 23' 33.377 W
11,375.0	62.23	179.49	11,245.0	-255.0	-414.3	372,939.75	832,888.90	32° 1' 18.489 N	103° 23' 33.377 W
11,400.0	65.23	179.49	11,256.0	-277.4	-414.1	372,917.34	832,889.10	32° 1' 18.267 N	103° 23' 33.377 W
11,425.0	68.23	179.49	11,265.9	-300.4	-413.9	372,894.37	832,889.31	32° 1' 18.040 N	103° 23' 33.377 W
11,450.0	71.23	179.49	11,274.6	-323.8	-413.7	372,870.92	832,889.52	32° 1' 17.808 N	103° 23' 33.377 W
11,475.0	74.23	179.49	11,282.0	-347.7	-413.4	372,847.05	832,889.73	32° 1' 17.571 N	103° 23' 33.377 W
11,483.0	75.19	179.49	11,284.1	-355.4	-413.4	372,839.36	832,889.80	32° 1' 17.495 N	103° 23' 33.377 W
MNMN 125400 Entry at 11483.0 MD									
11,500.0	77.23	179.49	11,288.2	-371.9	-413.2	372,822.83	832,889.95	32° 1' 17.332 N	103° 23' 33.377 W
11,525.0	80.23	179.49	11,293.0	-396.4	-413.0	372,798.31	832,890.17	32° 1' 17.089 N	103° 23' 33.376 W
11,550.0	83.23	179.49	11,296.6	-421.2	-412.8	372,773.58	832,890.39	32° 1' 16.844 N	103° 23' 33.376 W
11,575.0	86.23	179.49	11,298.9	-446.1	-412.6	372,748.69	832,890.62	32° 1' 16.598 N	103° 23' 33.376 W
11,600.0	89.23	179.49	11,299.9	-471.0	-412.3	372,723.71	832,890.84	32° 1' 16.351 N	103° 23' 33.376 W
11,606.4	90.00	179.49	11,300.0	-477.4	-412.3	372,717.32	832,890.90	32° 1' 16.288 N	103° 23' 33.376 W
Start 2520.7 hold at 11606.4 MD									
11,700.0	90.00	179.49	11,300.0	-571.0	-411.4	372,623.72	832,891.74	32° 1' 15.361 N	103° 23' 33.376 W
11,800.0	90.00	179.49	11,300.0	-671.0	-410.5	372,523.72	832,892.64	32° 1' 14.372 N	103° 23' 33.376 W
11,900.0	90.00	179.49	11,300.0	-771.0	-409.6	372,423.72	832,893.53	32° 1' 13.382 N	103° 23' 33.375 W
12,000.0	90.00	179.49	11,300.0	-871.0	-408.7	372,323.73	832,894.43	32° 1' 12.393 N	103° 23' 33.375 W
12,100.0	90.00	179.49	11,300.0	-971.0	-407.8	372,223.73	832,895.33	32° 1' 11.403 N	103° 23' 33.375 W
12,200.0	90.00	179.49	11,300.0	-1,071.0	-406.9	372,123.74	832,896.23	32° 1' 10.414 N	103° 23' 33.374 W
12,300.0	90.00	179.49	11,300.0	-1,171.0	-406.1	372,023.74	832,897.13	32° 1' 9.424 N	103° 23' 33.374 W
12,400.0	90.00	179.49	11,300.0	-1,271.0	-405.2	371,923.74	832,898.03	32° 1' 8.434 N	103° 23' 33.374 W
12,500.0	90.00	179.49	11,300.0	-1,371.0	-404.3	371,823.75	832,898.92	32° 1' 7.445 N	103° 23' 33.373 W
12,600.0	90.00	179.49	11,300.0	-1,471.0	-403.4	371,723.75	832,899.82	32° 1' 6.455 N	103° 23' 33.373 W

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PPW0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey

Measured	Vertical	Map	Map	Latitude	Longitude				
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
12,700.0	90.00	179.49	11,300.0	-1,571.0	-402.5	371,623.76	832,900.72	32° 1' 5.466 N	103° 23' 33.373 W
12,800.0	90.00	179.49	11,300.0	-1,671.0	-401.6	371,523.76	832,901.62	32° 1' 4.476 N	103° 23' 33.372 W
12,806.0	90.00	179.49	11,300.0	-1,677.0	-401.5	371,517.79	832,901.67	32° 1' 4.417 N	103° 23' 33.372 W
FEE Entry at 12806.0 MD									
12,900.0	90.00	179.49	11,300.0	-1,771.0	-400.7	371,423.76	832,902.52	32° 1' 3.487 N	103° 23' 33.372 W
13,000.0	90.00	179.49	11,300.0	-1,871.0	-399.8	371,323.77	832,903.42	32° 1' 2.497 N	103° 23' 33.372 W
13,100.0	90.00	179.49	11,300.0	-1,971.0	-398.9	371,223.77	832,904.31	32° 1' 1.508 N	103° 23' 33.371 W
13,200.0	90.00	179.49	11,300.0	-2,071.0	-398.0	371,123.78	832,905.21	32° 1' 0.518 N	103° 23' 33.371 W
13,300.0	90.00	179.49	11,300.0	-2,171.0	-397.1	371,023.78	832,906.11	32° 0' 59.529 N	103° 23' 33.371 W
13,400.0	90.00	179.49	11,300.0	-2,271.0	-396.2	370,923.78	832,907.01	32° 0' 58.539 N	103° 23' 33.370 W
13,500.0	90.00	179.49	11,300.0	-2,371.0	-395.3	370,823.79	832,907.91	32° 0' 57.550 N	103° 23' 33.370 W
13,600.0	90.00	179.49	11,300.0	-2,471.0	-394.4	370,723.79	832,908.80	32° 0' 56.560 N	103° 23' 33.370 W
13,700.0	90.00	179.49	11,300.0	-2,571.0	-393.5	370,623.80	832,909.70	32° 0' 55.570 N	103° 23' 33.369 W
13,800.0	90.00	179.49	11,300.0	-2,671.0	-392.6	370,523.80	832,910.60	32° 0' 54.581 N	103° 23' 33.369 W
13,900.0	90.00	179.49	11,300.0	-2,771.0	-391.7	370,423.80	832,911.50	32° 0' 53.591 N	103° 23' 33.369 W
14,000.0	90.00	179.49	11,300.0	-2,871.0	-390.8	370,323.81	832,912.40	32° 0' 52.602 N	103° 23' 33.369 W
14,100.0	90.00	179.49	11,300.0	-2,970.9	-389.9	370,223.81	832,913.30	32° 0' 51.612 N	103° 23' 33.368 W
14,127.1	90.00	179.49	11,300.0	-2,998.0	-389.6	370,196.76	832,913.54	32° 0' 51.345 N	103° 23' 33.368 W
Start DLS 2.00 TFO 89.99									
14,128.0	90.00	179.50	11,300.0	-2,998.9	-389.6	370,195.84	832,913.55	32° 0' 51.335 N	103° 23' 33.368 W
FEE Exit at 14128.0 MD									
14,200.0	90.00	180.94	11,300.0	-3,070.9	-389.9	370,123.82	832,913.27	32° 0' 50.623 N	103° 23' 33.379 W
14,300.0	90.00	182.94	11,300.0	-3,170.9	-393.3	370,023.88	832,909.87	32° 0' 49.634 N	103° 23' 33.428 W
14,400.0	90.00	184.94	11,300.0	-3,270.6	-400.2	369,924.12	832,902.99	32° 0' 48.648 N	103° 23' 33.518 W
14,500.0	90.00	186.94	11,300.0	-3,370.1	-410.5	369,824.66	832,892.64	32° 0' 47.664 N	103° 23' 33.648 W
14,533.2	90.00	187.61	11,300.0	-3,403.0	-414.7	369,791.77	832,888.44	32° 0' 47.339 N	103° 23' 33.701 W
Start 1847.9 hold at 14533.2 MD									
14,600.0	90.00	187.61	11,300.0	-3,469.2	-423.6	369,725.52	832,879.59	32° 0' 46.685 N	103° 23' 33.810 W
14,700.0	90.00	187.61	11,300.0	-3,568.4	-436.8	369,626.40	832,866.35	32° 0' 45.705 N	103° 23' 33.974 W
14,800.0	90.00	187.61	11,300.0	-3,667.5	-450.1	369,527.28	832,853.11	32° 0' 44.725 N	103° 23' 34.138 W
14,900.0	90.00	187.61	11,300.0	-3,766.6	-463.3	369,428.16	832,839.87	32° 0' 43.746 N	103° 23' 34.301 W
15,000.0	90.00	187.61	11,300.0	-3,865.7	-476.5	369,329.04	832,826.64	32° 0' 42.766 N	103° 23' 34.465 W
15,100.0	90.00	187.61	11,300.0	-3,964.8	-489.8	369,229.92	832,813.40	32° 0' 41.786 N	103° 23' 34.629 W
15,200.0	90.00	187.61	11,300.0	-4,064.0	-503.0	369,130.80	832,800.16	32° 0' 40.807 N	103° 23' 34.793 W
15,300.0	90.00	187.61	11,300.0	-4,163.1	-516.3	369,031.68	832,786.92	32° 0' 39.827 N	103° 23' 34.956 W
15,400.0	90.00	187.61	11,300.0	-4,262.2	-529.5	368,932.56	832,773.68	32° 0' 38.847 N	103° 23' 35.120 W
15,500.0	90.00	187.61	11,300.0	-4,361.3	-542.7	368,833.44	832,760.44	32° 0' 37.868 N	103° 23' 35.284 W
15,600.0	90.00	187.61	11,300.0	-4,460.4	-556.0	368,734.32	832,747.20	32° 0' 36.888 N	103° 23' 35.448 W
15,700.0	90.00	187.61	11,300.0	-4,559.6	-569.2	368,635.20	832,733.97	32° 0' 35.908 N	103° 23' 35.611 W
15,800.0	90.00	187.61	11,300.0	-4,658.7	-582.5	368,536.08	832,720.73	32° 0' 34.929 N	103° 23' 35.775 W
15,900.0	90.00	187.61	11,300.0	-4,757.8	-595.7	368,436.96	832,707.49	32° 0' 33.949 N	103° 23' 35.939 W
16,000.0	90.00	187.61	11,300.0	-4,856.9	-608.9	368,337.84	832,694.25	32° 0' 32.969 N	103° 23' 36.103 W
16,100.0	90.00	187.61	11,300.0	-4,956.0	-622.2	368,238.72	832,681.01	32° 0' 31.990 N	103° 23' 36.266 W
16,200.0	90.00	187.61	11,300.0	-5,055.2	-635.4	368,139.60	832,667.77	32° 0' 31.010 N	103° 23' 36.430 W
16,300.0	90.00	187.61	11,300.0	-5,154.3	-648.6	368,040.48	832,654.53	32° 0' 30.030 N	103° 23' 36.594 W
16,381.0	90.00	187.61	11,300.0	-5,234.6	-659.4	367,960.18	832,643.81	32° 0' 29.237 N	103° 23' 36.727 W
Start DLS 2.00 TFO -90.00									
16,400.0	90.00	187.23	11,300.0	-5,253.4	-661.8	367,941.35	832,641.36	32° 0' 29.051 N	103° 23' 36.757 W
16,500.0	90.00	185.23	11,300.0	-5,352.8	-672.7	367,841.95	832,630.51	32° 0' 28.068 N	103° 23' 36.893 W
16,600.0	90.00	183.23	11,300.0	-5,452.5	-680.0	367,742.23	832,623.14	32° 0' 27.082 N	103° 23' 36.989 W
16,700.0	90.00	181.23	11,300.0	-5,552.5	-683.9	367,642.31	832,619.25	32° 0' 26.093 N	103° 23' 37.044 W
16,790.2	90.00	179.42	11,300.0	-5,642.6	-684.4	367,552.14	832,618.74	32° 0' 25.201 N	103° 23' 37.059 W
Start 5013.9 hold at 16790.2 MD									

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PPW0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
16,791.0	90.00	179.42	11,300.0	-5,643.4	-684.4	367,551.35	832,618.75	32° 0' 25.193 N	103° 23' 37.059 W
NMNM 125400 Exit at 16791.0 MD									
16,800.0	90.00	179.42	11,300.0	-5,652.4	-684.3	367,542.31	832,618.84	32° 0' 25.104 N	103° 23' 37.059 W
16,900.0	90.00	179.42	11,300.0	-5,752.4	-683.3	367,442.32	832,619.84	32° 0' 24.114 N	103° 23' 37.057 W
17,000.0	90.00	179.42	11,300.0	-5,852.4	-682.3	367,342.32	832,620.85	32° 0' 23.125 N	103° 23' 37.056 W
17,100.0	90.00	179.42	11,300.0	-5,952.4	-681.3	367,242.33	832,621.85	32° 0' 22.135 N	103° 23' 37.054 W
17,200.0	90.00	179.42	11,300.0	-6,052.4	-680.3	367,142.33	832,622.86	32° 0' 21.146 N	103° 23' 37.052 W
17,300.0	90.00	179.42	11,300.0	-6,152.4	-679.3	367,042.34	832,623.86	32° 0' 20.156 N	103° 23' 37.051 W
17,400.0	90.00	179.42	11,300.0	-6,252.4	-678.3	366,942.34	832,624.87	32° 0' 19.167 N	103° 23' 37.049 W
17,500.0	90.00	179.42	11,300.0	-6,352.4	-677.3	366,842.35	832,625.87	32° 0' 18.177 N	103° 23' 37.048 W
17,600.0	90.00	179.42	11,300.0	-6,452.4	-676.3	366,742.35	832,626.87	32° 0' 17.188 N	103° 23' 37.046 W
17,700.0	90.00	179.42	11,300.0	-6,552.4	-675.3	366,642.36	832,627.88	32° 0' 16.198 N	103° 23' 37.045 W
17,800.0	90.00	179.42	11,300.0	-6,652.4	-674.3	366,542.36	832,628.88	32° 0' 15.209 N	103° 23' 37.043 W
17,900.0	90.00	179.42	11,300.0	-6,752.4	-673.3	366,442.37	832,629.89	32° 0' 14.219 N	103° 23' 37.041 W
18,000.0	90.00	179.42	11,300.0	-6,852.4	-672.3	366,342.37	832,630.89	32° 0' 13.229 N	103° 23' 37.040 W
18,100.0	90.00	179.42	11,300.0	-6,952.4	-671.3	366,242.38	832,631.90	32° 0' 12.240 N	103° 23' 37.038 W
18,200.0	90.00	179.42	11,300.0	-7,052.4	-670.3	366,142.38	832,632.90	32° 0' 11.250 N	103° 23' 37.037 W
18,300.0	90.00	179.42	11,300.0	-7,152.4	-669.3	366,042.39	832,633.91	32° 0' 10.261 N	103° 23' 37.035 W
18,400.0	90.00	179.42	11,300.0	-7,252.4	-668.3	365,942.39	832,634.91	32° 0' 9.271 N	103° 23' 37.034 W
18,500.0	90.00	179.42	11,300.0	-7,352.4	-667.3	365,842.40	832,635.92	32° 0' 8.282 N	103° 23' 37.032 W
18,600.0	90.00	179.42	11,300.0	-7,452.4	-666.3	365,742.40	832,636.92	32° 0' 7.292 N	103° 23' 37.030 W
18,700.0	90.00	179.42	11,300.0	-7,552.3	-665.3	365,642.41	832,637.93	32° 0' 6.303 N	103° 23' 37.029 W
18,800.0	90.00	179.42	11,300.0	-7,652.3	-664.2	365,542.41	832,638.93	32° 0' 5.313 N	103° 23' 37.027 W
18,900.0	90.00	179.42	11,300.0	-7,752.3	-663.2	365,442.42	832,639.93	32° 0' 4.324 N	103° 23' 37.026 W
19,000.0	90.00	179.42	11,300.0	-7,852.3	-662.2	365,342.42	832,640.94	32° 0' 3.334 N	103° 23' 37.024 W
19,100.0	90.00	179.42	11,300.0	-7,952.3	-661.2	365,242.43	832,641.94	32° 0' 2.344 N	103° 23' 37.023 W
19,200.0	90.00	179.42	11,300.0	-8,052.3	-660.2	365,142.43	832,642.95	32° 0' 1.355 N	103° 23' 37.021 W
19,231.0	90.00	179.42	11,300.0	-8,083.3	-659.9	365,111.47	832,643.26	32° 0' 1.049 N	103° 23' 37.020 W
VB 25630003 Exit at 19231.0 MD									
19,300.0	90.00	179.42	11,300.0	-8,152.3	-659.2	365,042.44	832,643.95	32° 0' 0.365 N	103° 23' 37.019 W
19,400.0	90.00	179.42	11,300.0	-8,252.3	-658.2	364,942.44	832,644.96	31° 59' 59.376 N	103° 23' 37.018 W
19,500.0	90.00	179.42	11,300.0	-8,352.3	-657.2	364,842.45	832,645.96	31° 59' 58.386 N	103° 23' 37.016 W
19,600.0	90.00	179.42	11,300.0	-8,452.3	-656.2	364,742.45	832,646.97	31° 59' 57.397 N	103° 23' 37.015 W
19,700.0	90.00	179.42	11,300.0	-8,552.3	-655.2	364,642.46	832,647.97	31° 59' 56.407 N	103° 23' 37.013 W
19,800.0	90.00	179.42	11,300.0	-8,652.3	-654.2	364,542.46	832,648.98	31° 59' 55.418 N	103° 23' 37.012 W
19,900.0	90.00	179.42	11,300.0	-8,752.3	-653.2	364,442.47	832,649.98	31° 59' 54.428 N	103° 23' 37.010 W
20,000.0	90.00	179.42	11,300.0	-8,852.3	-652.2	364,342.47	832,650.99	31° 59' 53.439 N	103° 23' 37.008 W
20,100.0	90.00	179.42	11,300.0	-8,952.3	-651.2	364,242.48	832,651.99	31° 59' 52.449 N	103° 23' 37.007 W
20,200.0	90.00	179.42	11,300.0	-9,052.3	-650.2	364,142.48	832,652.99	31° 59' 51.459 N	103° 23' 37.005 W
20,300.0	90.00	179.42	11,300.0	-9,152.3	-649.2	364,042.49	832,654.00	31° 59' 50.470 N	103° 23' 37.004 W
20,400.0	90.00	179.42	11,300.0	-9,252.3	-648.2	363,942.49	832,655.00	31° 59' 49.480 N	103° 23' 37.002 W
20,500.0	90.00	179.42	11,300.0	-9,352.3	-647.2	363,842.50	832,656.01	31° 59' 48.491 N	103° 23' 37.001 W
20,600.0	90.00	179.42	11,300.0	-9,452.3	-646.2	363,742.50	832,657.01	31° 59' 47.501 N	103° 23' 36.999 W
20,700.0	90.00	179.42	11,300.0	-9,552.2	-645.2	363,642.51	832,658.02	31° 59' 46.512 N	103° 23' 36.997 W
20,800.0	90.00	179.42	11,300.0	-9,652.2	-644.2	363,542.51	832,659.02	31° 59' 45.522 N	103° 23' 36.996 W
20,900.0	90.00	179.42	11,300.0	-9,752.2	-643.2	363,442.52	832,660.03	31° 59' 44.533 N	103° 23' 36.994 W
21,000.0	90.00	179.42	11,300.0	-9,852.2	-642.1	363,342.52	832,661.03	31° 59' 43.543 N	103° 23' 36.993 W
21,100.0	90.00	179.42	11,300.0	-9,952.2	-641.1	363,242.53	832,662.04	31° 59' 42.554 N	103° 23' 36.991 W
21,200.0	90.00	179.42	11,300.0	-10,052.2	-640.1	363,142.53	832,663.04	31° 59' 41.564 N	103° 23' 36.989 W
21,300.0	90.00	179.42	11,300.0	-10,152.2	-639.1	363,042.54	832,664.05	31° 59' 40.574 N	103° 23' 36.988 W
21,400.0	90.00	179.42	11,300.0	-10,252.2	-638.1	362,942.54	832,665.05	31° 59' 39.585 N	103° 23' 36.986 W
21,500.0	90.00	179.42	11,300.0	-10,352.2	-637.1	362,842.55	832,666.05	31° 59' 38.595 N	103° 23' 36.985 W
21,600.0	90.00	179.42	11,300.0	-10,452.2	-636.1	362,742.55	832,667.06	31° 59' 37.606 N	103° 23' 36.983 W
21,700.0	90.00	179.42	11,300.0	-10,552.2	-635.1	362,642.56	832,668.06	31° 59' 36.616 N	103° 23' 36.982 W

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	Compass_17 NEW MEXICO (SP) LEA EL CAMPEON FED COM PROJECT EL CAMPEON FED COM 122H OWB PWP0	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well EL CAMPEON FED COM 122H KB @ 3205.0usft KB @ 3205.0usft Grid Minimum Curvature
--	--	--	---

Planned Survey										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/S (usft)	+E/W (usft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude	
21,804.0	90.00	179.42	11,300.0	-10,656.2	-634.1	362,538.54	832,669.11	31° 59' 35.587 N	103° 23' 36.980 W	
TD at 21804.0										

Design Targets										
Target Name	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/S (usft)	+E/W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
PP2-EL CAMP 122H	0.00	0.00	11,300.0	-1,676.6	-403.6	371,518.17	832,899.54	32° 1' 4.421 N	103° 23' 33.397 W	
- plan misses target center by 2.1usft at 12805.6usft MD (11300.0 TVD, -1676.6 N, -401.5 E)										
- Point										
STLC-EL CAMP 122H	0.00	0.00	11,300.0	-8,082.8	-659.9	365,111.94	832,643.25	32° 0' 1.053 N	103° 23' 37.021 W	
- plan hits target center										
- Point										
BHL-EL CAMP 122H	0.00	0.00	11,300.0	-10,656.2	-634.1	362,538.54	832,669.11	31° 59' 35.587 N	103° 23' 36.980 W	
- plan hits target center										
- Point										
PP3-EL CAMP 122H	0.00	0.00	11,300.0	-2,998.0	-389.6	370,196.76	832,913.54	32° 0' 51.345 N	103° 23' 33.368 W	
- plan hits target center										
- Point										
FTP-EL CAMP 122H	0.00	0.00	11,300.0	-455.2	-416.6	372,739.58	832,886.61	32° 1' 16.508 N	103° 23' 33.424 W	
- plan misses target center by 4.1usft at 11584.1usft MD (11299.4 TVD, -455.2 N, -412.5 E)										
- Point										
PP4-EL CAMP 122H	0.00	0.00	11,300.0	-5,642.6	-684.4	367,552.14	832,618.74	32° 0' 25.201 N	103° 23' 37.059 W	
- plan hits target center										
- Point										

Plan Annotations					
Measured Depth (usft)	Vertical Depth (usft)	Local Coordinates		Comment	
		+N/S (usft)	+E/W (usft)		
2,000.0	2,000.0	0.0	0.0	Start Build 2.00	
2,500.0	2,497.5	0.0	-43.5	Start 1897.7 hold at 2500.0 MD	
4,397.7	4,366.3	0.0	-373.0	Start Drop -2.00	
4,897.7	4,863.8	0.0	-416.6	Start 5958.7 hold at 4897.7 MD	
10,856.4	10,822.5	0.0	-416.6	Start DLS 12.00 TFO 179.49	
11,483.0	11,284.1	-355.4	-413.4	NMNM 125400 Entry at 11483.0 MD	
11,606.4	11,300.0	-477.4	-412.3	Start 2520.7 hold at 11606.4 MD	
12,806.0	11,300.0	-1,677.0	-401.5	FEE Entry at 12806.0 MD	
14,127.1	11,300.0	-2,998.0	-389.6	Start DLS 2.00 TFO 89.99	
14,128.0	11,300.0	-2,998.9	-389.6	FEE Exit at 14128.0 MD	
14,533.2	11,300.0	-3,403.0	-414.7	Start 1847.9 hold at 14533.2 MD	
16,381.0	11,300.0	-5,234.6	-659.4	Start DLS 2.00 TFO -90.00	
16,790.2	11,300.0	-5,642.6	-684.4	Start 5013.9 hold at 16790.2 MD	
16,791.0	11,300.0	-5,643.4	-684.4	NMNM 125400 Exit at 16791.0 MD	
19,231.0	11,300.0	-8,083.3	-659.9	VB 25630003 Exit at 19231.0 MD	
21,804.0	11,300.0	-10,656.2	-634.1	TD at 21804.0	

NEW MEXICO
(SP) LEA
EL CAMPEON FED COM PROJECT
EL CAMPEON FED COM 122H

OWB
PWP0

Anticollision Report

03 April, 2025

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Reference	PWP0
Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria	
Interpolation Method:	Stations
Depth Range:	Unlimited
Results Limited by:	Maximum centre distance of 1,000.0usft
Warning Levels Evaluated at:	2.00 Sigma
Error Model:	ISCWSA
Scan Method:	Closest Approach 3D
Error Surface:	Pedal Curve
Casing Method:	Not applied

Survey Tool Program		Date	4/3/2025	
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.0	21,804.0	PWP0 (OWB)	MWD	OWSG_Rev2_MWD - Standard

Summary		Reference Measured Depth (usft)	Offset Measured Depth (usft)	Distance Between Centres (usft)	Distance Between Ellipses (usft)	Separation Factor	Warning
Site Name							
Offset Well - Wellbore - Design							
EL CAMPEON FED COM PROJECT							
EL CAMPEON FED COM 112H - OWB - PWP0		2,433.4	2,430.3	27.5	10.5	1.618	CC, ES, SF
EL CAMPEON FED COM 113H - OWB - PWP0							Out of range
EL CAMPEON FED COM 114H - OWB - PWP0							Out of range
EL CAMPEON FED COM 123H - OWB - PWP0							Out of range
EL CAMPEON FED COM 124H - OWB - PWP0							Out of range
EL CAMPEON FED COM 152H - OWB - PWP0		2,000.0	2,000.0	33.0	18.9	2.336	CC, ES, SF
EL CAMPEON FED STATE COM 153H - OWB - PWP0							Out of range
EL CAMPEON FED STATE COM 154H - OWB - PWP0							Out of range

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 112H - OWB - PWP0												Offset Site Error:	0.0 usft
Survey Program: 0-MWD		Offset		Semi Major Axis		Offset Wellbore Centre		Rule Assigned:				Offset Well Error:	
Measured Reference Depth (usft)	Vertical Depth (usft)	Measured Reference Depth (usft)	Vertical Depth (usft)	Reference (usft)	Major Axis Offset (usft)	Highside Toolface (°)	+N/S (usft)	+E/W (usft)	Distance Between Centres (usft)	Distance Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
0.0	0.0	0.0	0.0	0.0	0.0	-91.37	-0.8	-33.0	33.0				
100.0	100.0	100.0	100.0	0.3	0.3	-91.37	-0.8	-33.0	33.0	32.5	0.50	65.754	
200.0	200.0	200.0	200.0	0.6	0.6	-91.37	-0.8	-33.0	33.0	31.8	1.22	27.075	
300.0	300.0	300.0	300.0	1.0	1.0	-91.37	-0.8	-33.0	33.0	31.1	1.94	17.047	
400.0	400.0	400.0	400.0	1.3	1.3	-91.37	-0.8	-33.0	33.0	30.3	2.65	12.440	
500.0	500.0	500.0	500.0	1.7	1.7	-91.37	-0.8	-33.0	33.0	29.6	3.37	9.793	
600.0	600.0	600.0	600.0	2.0	2.0	-91.37	-0.8	-33.0	33.0	28.9	4.09	8.075	
700.0	700.0	700.0	700.0	2.4	2.4	-91.37	-0.8	-33.0	33.0	28.2	4.80	6.870	
800.0	800.0	800.0	800.0	2.8	2.8	-91.37	-0.8	-33.0	33.0	27.5	5.52	5.978	
900.0	900.0	900.0	900.0	3.1	3.1	-91.37	-0.8	-33.0	33.0	26.8	6.24	5.291	
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	-91.37	-0.8	-33.0	33.0	26.0	6.95	4.745	
1,100.0	1,100.0	1,100.0	1,100.0	3.8	3.8	-91.37	-0.8	-33.0	33.0	25.3	7.67	4.302	
1,200.0	1,200.0	1,200.0	1,200.0	4.2	4.2	-91.37	-0.8	-33.0	33.0	24.6	8.39	3.934	
1,300.0	1,300.0	1,300.0	1,300.0	4.6	4.6	-91.37	-0.8	-33.0	33.0	23.9	9.11	3.624	
1,400.0	1,400.0	1,400.0	1,400.0	4.9	4.9	-91.37	-0.8	-33.0	33.0	23.2	9.82	3.360	
1,500.0	1,500.0	1,500.0	1,500.0	5.3	5.3	-91.37	-0.8	-33.0	33.0	22.5	10.54	3.131	
1,600.0	1,600.0	1,600.0	1,600.0	5.6	5.6	-91.37	-0.8	-33.0	33.0	21.7	11.26	2.932	
1,700.0	1,700.0	1,700.0	1,700.0	6.0	6.0	-91.37	-0.8	-33.0	33.0	21.0	11.97	2.756	

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 112H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N-S (usft)	Centre +E-W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	
1,800.0	1,800.0	1,800.0	1,800.0	6.3	6.3	-91.37	-0.8	-33.0	33.0	20.3	12.69	2.600		
1,900.0	1,900.0	1,900.0	1,900.0	6.7	6.7	-91.37	-0.8	-33.0	33.0	19.6	13.41	2.461		
2,000.0	2,000.0	2,000.0	2,000.0	7.1	7.1	-91.37	-0.8	-33.0	33.0	18.9	14.12	2.336		
2,100.0	2,100.0	2,099.3	2,099.3	7.4	7.4	-3.89	-2.2	-34.0	32.3	17.5	14.81	2.183		
2,200.0	2,199.8	2,198.4	2,198.3	7.8	7.7	-11.99	-6.4	-37.0	30.7	15.3	15.46	1.986		
2,300.0	2,299.5	2,297.7	2,297.2	8.1	8.1	-26.53	-13.0	-41.7	29.2	13.1	16.11	1.813		
2,400.0	2,398.7	2,397.2	2,396.3	8.5	8.4	-46.55	-20.1	-46.8	27.7	10.9	16.78	1.650		
2,433.4	2,431.7	2,430.3	2,429.3	8.6	8.5	-54.67	-22.5	-48.5	27.5	10.5	17.01	1.618	CC, ES, SF	
2,500.0	2,497.5	2,496.4	2,495.1	8.8	8.7	-72.50	-27.1	-51.8	28.5	11.0	17.49	1.628		
2,600.0	2,595.9	2,595.4	2,593.7	9.2	9.1	-96.07	-34.2	-56.8	34.5	16.3	18.22	1.892		
2,700.0	2,694.4	2,694.3	2,692.3	9.6	9.4	-111.01	-41.2	-61.8	44.4	25.4	18.94	2.343		
2,800.0	2,792.9	2,793.3	2,790.9	10.0	9.8	-120.15	-48.2	-66.8	56.2	36.5	19.66	2.857		
2,900.0	2,891.4	2,892.3	2,889.5	10.3	10.1	-126.05	-55.2	-71.8	68.9	48.5	20.38	3.380		
3,000.0	2,989.9	2,991.3	2,988.2	10.7	10.5	-130.08	-62.3	-76.9	82.1	61.0	21.10	3.891		
3,100.0	3,088.3	3,090.5	3,087.0	11.1	10.8	-133.11	-69.1	-81.8	95.5	73.7	21.82	4.379		
3,200.0	3,186.8	3,189.9	3,186.3	11.5	11.2	-136.80	-73.8	-85.1	108.8	86.3	22.54	4.829		
3,300.0	3,285.3	3,289.0	3,285.3	12.0	11.5	-141.28	-75.7	-86.5	122.2	99.0	23.24	5.260		
3,400.0	3,383.8	3,387.5	3,383.8	12.4	11.9	-145.81	-75.8	-86.5	136.3	112.4	23.93	5.696		
3,500.0	3,482.3	3,486.0	3,482.3	12.8	12.2	-149.50	-75.8	-86.5	151.0	126.4	24.62	6.135		
3,600.0	3,580.8	3,584.5	3,580.8	13.2	12.5	-152.53	-75.8	-86.5	166.3	141.0	25.32	6.569		
3,700.0	3,679.2	3,682.9	3,679.2	13.6	12.9	-155.05	-75.8	-86.5	181.9	155.9	26.01	6.994		
3,800.0	3,777.7	3,781.4	3,777.7	14.0	13.2	-157.16	-75.8	-86.5	197.8	171.1	26.71	7.407		
3,900.0	3,876.2	3,879.9	3,876.2	14.5	13.6	-158.96	-75.8	-86.5	214.0	186.6	27.41	7.807		
4,000.0	3,974.7	3,978.4	3,974.7	14.9	13.9	-160.51	-75.8	-86.5	230.3	202.2	28.11	8.192		
4,100.0	4,073.2	4,076.9	4,073.2	15.3	14.3	-161.86	-75.8	-86.5	246.8	218.0	28.82	8.563		
4,200.0	4,171.6	4,175.3	4,171.6	15.7	14.6	-163.03	-75.8	-86.5	263.3	233.8	29.52	8.920		
4,300.0	4,270.1	4,273.8	4,270.1	16.2	15.0	-164.07	-75.8	-86.5	280.0	249.8	30.23	9.263		
4,397.7	4,366.3	4,370.0	4,366.3	16.6	15.3	-164.97	-75.8	-86.5	296.4	265.5	30.92	9.585		
4,400.0	4,368.6	4,372.3	4,368.6	16.6	15.3	-164.99	-75.8	-86.5	296.8	265.8	30.94	9.593		
4,500.0	4,467.4	4,471.1	4,467.4	17.0	15.7	-165.80	-75.8	-86.5	311.8	280.2	31.65	9.854		
4,600.0	4,566.6	4,570.3	4,566.6	17.4	16.0	-166.38	-75.8	-86.5	323.6	291.2	32.35	10.002		
4,700.0	4,666.3	4,670.0	4,666.3	17.8	16.4	-166.77	-75.8	-86.5	332.0	298.9	33.06	10.041		
4,800.0	4,766.1	4,769.8	4,766.1	18.2	16.7	-167.00	-75.8	-86.5	337.0	303.2	33.77	9.980		
4,897.7	4,863.8	4,867.5	4,863.8	18.5	17.1	102.93	-75.8	-86.5	338.6	304.2	34.46	9.828		
4,900.0	4,866.1	4,869.8	4,866.1	18.5	17.1	102.93	-75.8	-86.5	338.6	304.2	34.47	9.823		
5,000.0	4,966.1	4,969.8	4,966.1	18.8	17.4	102.93	-75.8	-86.5	338.6	303.5	35.17	9.628		
5,100.0	5,066.1	5,069.8	5,066.1	19.2	17.8	102.93	-75.8	-86.5	338.6	302.8	35.87	9.440		
5,200.0	5,166.1	5,169.8	5,166.1	19.5	18.2	102.93	-75.8	-86.5	338.6	302.1	36.57	9.259		
5,300.0	5,266.1	5,269.8	5,266.1	19.8	18.5	102.93	-75.8	-86.5	338.6	301.4	37.28	9.085		
5,400.0	5,366.1	5,369.8	5,366.1	20.2	18.9	102.93	-75.8	-86.5	338.6	300.7	37.98	8.917		
5,500.0	5,466.1	5,469.8	5,466.1	20.5	19.2	102.93	-75.8	-86.5	338.6	300.0	38.68	8.755		
5,600.0	5,566.1	5,569.8	5,566.1	20.8	19.6	102.93	-75.8	-86.5	338.6	299.3	39.38	8.598		
5,700.0	5,666.1	5,669.8	5,666.1	21.2	19.9	102.93	-75.8	-86.5	338.6	298.6	40.09	8.447		
5,800.0	5,766.1	5,769.8	5,766.1	21.5	20.3	102.93	-75.8	-86.5	338.6	297.8	40.79	8.301		
5,900.0	5,866.1	5,869.8	5,866.1	21.8	20.6	102.93	-75.8	-86.5	338.6	297.1	41.50	8.161		
6,000.0	5,966.1	5,969.8	5,966.1	22.2	21.0	102.93	-75.8	-86.5	338.6	296.4	42.20	8.024		
6,100.0	6,066.1	6,069.8	6,066.1	22.5	21.4	102.93	-75.8	-86.5	338.6	295.7	42.91	7.892		
6,200.0	6,166.1	6,169.8	6,166.1	22.8	21.7	102.93	-75.8	-86.5	338.6	295.0	43.61	7.765		
6,300.0	6,266.1	6,269.8	6,266.1	23.2	22.1	102.93	-75.8	-86.5	338.6	294.3	44.32	7.641		
6,400.0	6,366.1	6,369.8	6,366.1	23.5	22.4	102.93	-75.8	-86.5	338.6	293.6	45.03	7.521		
6,500.0	6,466.1	6,469.8	6,466.1	23.9	22.8	102.93	-75.8	-86.5	338.6	292.9	45.73	7.405		
6,600.0	6,566.1	6,569.8	6,566.1	24.2	23.1	102.93	-75.8	-86.5	338.6	292.2	46.44	7.292		

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 112H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N/S (usft)	Centre +E/W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	
6,700.0	6,666.1	6,669.8	6,666.1	24.5	23.5	102.93	-75.8	-86.5	338.6	291.5	47.15	7.183		
6,800.0	6,766.1	6,769.8	6,766.1	24.9	23.9	102.93	-75.8	-86.5	338.6	290.8	47.86	7.076		
6,900.0	6,866.1	6,869.8	6,866.1	25.2	24.2	102.93	-75.8	-86.5	338.6	290.1	48.56	6.973		
7,000.0	6,966.1	6,969.8	6,966.1	25.6	24.6	102.93	-75.8	-86.5	338.6	289.4	49.27	6.873		
7,100.0	7,066.1	7,069.8	7,066.1	25.9	24.9	102.93	-75.8	-86.5	338.6	288.7	49.98	6.776		
7,200.0	7,166.1	7,169.8	7,166.1	26.3	25.3	102.93	-75.8	-86.5	338.6	288.0	50.69	6.681		
7,300.0	7,266.1	7,269.8	7,266.1	26.6	25.6	102.93	-75.8	-86.5	338.6	287.2	51.40	6.589		
7,400.0	7,366.1	7,369.8	7,366.1	27.0	26.0	102.93	-75.8	-86.5	338.6	286.5	52.11	6.499		
7,500.0	7,466.1	7,469.8	7,466.1	27.3	26.4	102.93	-75.8	-86.5	338.6	285.8	52.82	6.412		
7,600.0	7,566.1	7,569.8	7,566.1	27.6	26.7	102.93	-75.8	-86.5	338.6	285.1	53.53	6.327		
7,700.0	7,666.1	7,669.8	7,666.1	28.0	27.1	102.93	-75.8	-86.5	338.6	284.4	54.24	6.244		
7,800.0	7,766.1	7,769.8	7,766.1	28.3	27.4	102.93	-75.8	-86.5	338.6	283.7	54.95	6.163		
7,900.0	7,866.1	7,869.8	7,866.1	28.7	27.8	102.93	-75.8	-86.5	338.6	283.0	55.66	6.085		
8,000.0	7,966.1	7,969.8	7,966.1	29.0	28.1	102.93	-75.8	-86.5	338.6	282.3	56.37	6.008		
8,100.0	8,066.1	8,069.8	8,066.1	29.4	28.5	102.93	-75.8	-86.5	338.6	281.6	57.08	5.933		
8,200.0	8,166.1	8,169.8	8,166.1	29.7	28.9	102.93	-75.8	-86.5	338.6	280.9	57.79	5.860		
8,300.0	8,266.1	8,269.8	8,266.1	30.1	29.2	102.93	-75.8	-86.5	338.6	280.1	58.50	5.789		
8,400.0	8,366.1	8,369.8	8,366.1	30.4	29.6	102.93	-75.8	-86.5	338.6	279.4	59.21	5.719		
8,500.0	8,466.1	8,469.8	8,466.1	30.8	29.9	102.93	-75.8	-86.5	338.6	278.7	59.92	5.652		
8,600.0	8,566.1	8,569.8	8,566.1	31.1	30.3	102.93	-75.8	-86.5	338.6	278.0	60.63	5.585		
8,700.0	8,666.1	8,669.8	8,666.1	31.5	30.6	102.93	-75.8	-86.5	338.6	277.3	61.34	5.520		
8,800.0	8,766.1	8,769.8	8,766.1	31.8	31.0	102.93	-75.8	-86.5	338.6	276.6	62.05	5.457		
8,900.0	8,866.1	8,869.8	8,866.1	32.2	31.4	102.93	-75.8	-86.5	338.6	275.9	62.77	5.395		
9,000.0	8,966.1	8,969.8	8,966.1	32.5	31.7	102.93	-75.8	-86.5	338.6	275.2	63.48	5.335		
9,100.0	9,066.1	9,069.8	9,066.1	32.9	32.1	102.93	-75.8	-86.5	338.6	274.5	64.19	5.276		
9,200.0	9,166.1	9,169.8	9,166.1	33.2	32.4	102.93	-75.8	-86.5	338.6	273.7	64.90	5.218		
9,300.0	9,266.1	9,269.8	9,266.1	33.6	32.8	102.93	-75.8	-86.5	338.6	273.0	65.61	5.161		
9,400.0	9,366.1	9,369.8	9,366.1	33.9	33.1	102.93	-75.8	-86.5	338.6	272.3	66.33	5.106		
9,500.0	9,466.1	9,469.8	9,466.1	34.3	33.5	102.93	-75.8	-86.5	338.6	271.6	67.04	5.051		
9,600.0	9,566.1	9,569.8	9,566.1	34.6	33.9	102.93	-75.8	-86.5	338.6	270.9	67.75	4.998		
9,700.0	9,666.1	9,669.8	9,666.1	35.0	34.2	102.93	-75.8	-86.5	338.6	270.2	68.46	4.946		
9,800.0	9,766.1	9,769.8	9,766.1	35.3	34.6	102.93	-75.8	-86.5	338.6	269.5	69.17	4.895		
9,900.0	9,866.1	9,869.8	9,866.1	35.7	34.9	102.93	-75.8	-86.5	338.6	268.8	69.89	4.845		
10,000.0	9,966.1	9,969.8	9,966.1	36.0	35.3	102.93	-75.8	-86.5	338.6	268.0	70.60	4.797		
10,100.0	10,066.1	10,059.8	10,055.9	36.4	35.6	103.52	-79.4	-86.5	339.6	268.4	71.21	4.770		
10,200.0	10,166.1	10,141.7	10,136.0	36.7	35.9	106.26	-96.3	-86.3	345.3	273.7	71.62	4.822		
10,300.0	10,266.1	10,215.9	10,205.1	37.1	36.1	110.45	-123.3	-86.1	358.0	286.4	71.61	4.999		
10,400.0	10,366.1	10,280.5	10,261.2	37.4	36.3	115.13	-155.2	-85.8	380.2	309.3	70.88	5.364		
10,500.0	10,466.1	10,335.4	10,305.1	37.8	36.5	119.59	-188.0	-85.4	413.5	344.1	69.33	5.964		
10,600.0	10,566.1	10,381.4	10,338.7	38.1	36.6	123.49	-219.3	-85.1	457.9	390.7	67.14	6.819		
10,700.0	10,666.1	10,425.0	10,367.8	38.5	36.8	127.20	-251.8	-84.8	512.3	447.4	64.93	7.891		
10,800.0	10,766.1	10,450.0	10,383.1	38.8	36.9	129.29	-271.6	-84.6	575.0	512.9	62.13	9.255		
10,856.4	10,822.5	10,467.9	10,393.3	39.0	36.9	130.76	-286.3	-84.5	613.5	552.6	60.93	10.069		
10,875.0	10,841.1	10,475.0	10,397.3	39.1	36.9	146.58	-292.2	-84.4	626.5	565.9	60.61	10.336		
10,900.0	10,866.0	10,475.0	10,397.3	39.2	36.9	144.55	-292.2	-84.4	643.6	583.9	59.75	10.771		
10,925.0	10,890.9	10,487.1	10,403.8	39.2	37.0	141.91	-302.4	-84.3	660.4	601.0	59.42	11.113		
10,950.0	10,915.5	10,500.0	10,410.4	39.3	37.0	139.50	-313.5	-84.2	676.9	617.8	59.11	11.450		
10,975.0	10,939.9	10,500.0	10,410.4	39.4	37.0	137.94	-313.5	-84.2	692.8	634.6	58.27	11.890		
11,000.0	10,963.9	10,509.8	10,415.2	39.5	37.1	136.07	-322.0	-84.1	708.4	650.6	57.83	12.249		
11,025.0	10,987.6	10,517.7	10,419.0	39.5	37.1	134.45	-328.9	-84.1	723.5	666.2	57.31	12.623		
11,050.0	11,010.8	10,525.0	10,422.4	39.6	37.1	133.00	-335.4	-84.0	738.0	681.2	56.78	12.999		
11,075.0	11,033.5	10,533.8	10,426.3	39.7	37.1	131.64	-343.3	-83.9	752.0	695.7	56.30	13.358		

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 112H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N/S (usft)	Centre +E/W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	
11,100.0	11,055.7	10,542.1	10,429.9	39.8	37.2	-30.42	-350.7	-83.9	765.5	709.7	55.81	13.717		
11,125.0	11,077.2	10,550.0	10,433.2	39.8	37.2	-29.33	-357.9	-83.8	778.4	723.1	55.31	14.073		
11,150.0	11,097.9	10,558.9	10,436.7	39.9	37.2	-28.32	-366.0	-83.7	790.6	735.8	54.85	14.414		
11,175.0	11,118.0	10,567.4	10,440.0	40.0	37.3	-27.42	-373.9	-83.6	802.2	747.9	54.39	14.751		
11,200.0	11,137.2	10,575.0	10,442.8	40.0	37.3	-26.63	-381.0	-83.6	813.2	759.3	53.91	15.086		
11,225.0	11,155.6	10,584.7	10,446.2	40.1	37.3	-25.88	-390.1	-83.5	823.5	770.0	53.50	15.393		
11,250.0	11,173.0	10,600.0	10,451.2	40.1	37.4	-25.13	-404.5	-83.3	833.2	780.0	53.27	15.642		
11,275.0	11,189.5	10,600.0	10,451.2	40.2	37.4	-24.65	-404.5	-83.3	842.1	789.5	52.61	16.007		
11,300.0	11,205.0	10,611.1	10,454.6	40.2	37.4	-24.10	-415.2	-83.2	850.3	798.0	52.28	16.264		
11,325.0	11,219.4	10,625.0	10,458.4	40.3	37.5	-23.60	-428.5	-83.1	857.9	805.8	52.04	16.486		
11,350.0	11,232.8	10,625.0	10,458.4	40.3	37.5	-23.26	-428.5	-83.1	864.6	813.2	51.47	16.799		
11,375.0	11,245.0	10,638.0	10,461.6	40.4	37.5	-22.88	-441.1	-83.0	870.7	819.4	51.24	16.994		
11,400.0	11,256.0	10,650.0	10,464.3	40.4	37.5	-22.55	-452.8	-82.9	876.0	825.0	50.99	17.179		
11,425.0	11,265.9	10,650.0	10,464.3	40.5	37.5	-22.34	-452.8	-82.9	880.6	830.0	50.53	17.426		
11,450.0	11,274.6	10,665.2	10,467.2	40.5	37.6	-22.10	-467.7	-82.7	884.3	833.9	50.40	17.547		
11,475.0	11,282.0	10,675.0	10,468.9	40.6	37.6	-21.94	-477.4	-82.6	887.3	837.2	50.18	17.683		
11,500.0	11,288.2	10,683.4	10,470.2	40.6	37.7	-21.81	-485.7	-82.6	889.6	839.6	49.97	17.802		
11,525.0	11,293.0	10,700.0	10,472.2	40.7	37.7	-21.72	-502.1	-82.4	891.2	841.3	49.91	17.857		
11,550.0	11,296.6	10,700.0	10,472.2	40.8	37.7	-21.70	-502.1	-82.4	891.8	842.2	49.65	17.963		
11,575.0	11,298.9	10,710.8	10,473.3	40.8	37.8	-21.70	-512.9	-82.3	891.8	842.2	49.56	17.993		
11,600.0	11,299.9	10,725.0	10,474.2	40.9	37.8	-21.75	-527.0	-82.2	891.0	841.5	49.54	17.986		
11,606.4	11,300.0	10,725.0	10,474.2	40.9	37.8	-21.76	-527.0	-82.2	890.6	841.1	49.50	17.992		
11,685.1	11,300.0	10,751.2	10,475.0	41.2	37.9	-21.78	-553.2	-81.9	888.4	839.0	49.45	17.966		
11,700.0	11,300.0	10,765.8	10,475.0	41.2	38.0	-21.78	-567.9	-81.8	888.4	838.9	49.50	17.950		
11,800.0	11,300.0	10,865.8	10,475.0	41.6	38.4	-21.79	-667.9	-80.8	888.5	838.6	49.86	17.819		
11,900.0	11,300.0	10,965.8	10,475.0	42.1	38.9	-21.79	-767.8	-79.8	888.5	838.2	50.29	17.667		
12,000.0	11,300.0	11,065.8	10,475.0	42.6	39.4	-21.80	-867.8	-78.9	888.5	837.7	50.79	17.494		
12,100.0	11,300.0	11,165.8	10,475.0	43.1	40.0	-21.80	-967.8	-77.9	888.5	837.2	51.35	17.302		
12,200.0	11,300.0	11,265.8	10,475.0	43.8	40.7	-21.80	-1,067.8	-76.9	888.6	836.6	51.98	17.094		
12,300.0	11,300.0	11,365.8	10,475.0	44.4	41.4	-21.81	-1,167.8	-76.0	888.6	835.9	52.67	16.870		
12,400.0	11,300.0	11,465.8	10,475.0	45.1	42.2	-21.81	-1,267.8	-75.0	888.6	835.2	53.42	16.634		
12,500.0	11,300.0	11,565.8	10,475.0	45.9	43.0	-21.82	-1,367.8	-74.0	888.7	834.4	54.23	16.387		
12,600.0	11,300.0	11,665.8	10,475.0	46.7	43.9	-21.82	-1,467.8	-73.0	888.7	833.6	55.09	16.132		
12,700.0	11,300.0	11,765.8	10,475.0	47.6	44.8	-21.82	-1,567.8	-72.1	888.7	832.7	56.00	15.869		
12,800.0	11,300.0	11,865.8	10,475.0	48.5	45.7	-21.83	-1,667.8	-71.1	888.7	831.8	56.96	15.602		
12,900.0	11,300.0	11,965.8	10,475.0	49.4	46.7	-21.83	-1,767.8	-70.1	888.8	830.8	57.97	15.331		
13,000.0	11,300.0	12,065.8	10,475.0	50.4	47.7	-21.84	-1,867.8	-69.2	888.8	829.8	59.02	15.058		
13,100.0	11,300.0	12,165.8	10,475.0	51.4	48.8	-21.84	-1,967.8	-68.2	888.8	828.7	60.12	14.784		
13,200.0	11,300.0	12,265.8	10,475.0	52.4	49.9	-21.85	-2,067.8	-67.2	888.8	827.6	61.25	14.511		
13,300.0	11,300.0	12,365.8	10,475.0	53.5	51.0	-21.85	-2,167.8	-66.3	888.9	826.4	62.43	14.238		
13,400.0	11,300.0	12,465.8	10,475.0	54.6	52.2	-21.85	-2,267.8	-65.3	888.9	825.3	63.64	13.968		
13,500.0	11,300.0	12,565.8	10,475.0	55.7	53.3	-21.86	-2,367.8	-64.3	888.9	824.0	64.88	13.701		
13,600.0	11,300.0	12,665.8	10,475.0	56.9	54.5	-21.86	-2,467.8	-63.4	889.0	822.8	66.15	13.438		
13,700.0	11,300.0	12,765.8	10,475.0	58.1	55.8	-21.87	-2,567.8	-62.4	889.0	821.5	67.46	13.178		
13,800.0	11,300.0	12,865.8	10,475.0	59.3	57.0	-21.87	-2,667.8	-61.4	889.0	820.2	68.79	12.924		
13,900.0	11,300.0	12,965.8	10,475.0	60.5	58.3	-21.87	-2,767.8	-60.5	889.0	818.9	70.15	12.673		
14,000.0	11,300.0	13,065.8	10,475.0	61.7	59.6	-21.88	-2,867.7	-59.5	889.1	817.5	71.53	12.429		
14,100.0	11,300.0	13,165.8	10,475.0	63.0	60.9	-21.88	-2,967.7	-58.5	889.1	816.1	72.94	12.189		
14,127.1	11,300.0	13,192.9	10,475.0	63.3	61.2	-21.88	-2,994.8	-58.3	889.1	815.8	73.33	12.125		
14,200.0	11,300.0	13,265.8	10,475.0	64.3	62.2	-21.94	-3,067.7	-57.6	889.5	815.0	74.42	11.951		
14,300.0	11,300.0	13,365.7	10,475.0	65.6	63.5	-22.16	-3,167.6	-56.6	891.1	815.0	76.12	11.707		
14,400.0	11,300.0	13,465.4	10,475.0	66.8	64.8	-22.57	-3,267.3	-55.6	894.1	816.0	78.04	11.456		

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 112H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference	Measured	Offset	Semi	Major	Axis	Rule Assigned:	Offset	Wellbore	Centre	Distance	Warning		
Measured	Vertical	Measured	Offset	Major	Axis	Highside	Rule Assigned:	Offset	Wellbore	Centre	Distance	Warning	Offset Well Error:	0.0 usft
Depth (usft)	Depth (usft)	Depth (usft)	Vertical Depth (usft)	Reference	Offset (usft)	Toolface (°)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	Offset Site Error:	0.0 usft	
14,500.0	11,300.0	13,564.8	10,475.0	68.2	66.2	-23.16	-3,366.7	-54.7	898.5	818.3	80.22	11.201		
14,533.2	11,300.0	13,597.6	10,475.0	68.6	66.6	-23.38	-3,399.5	-54.4	900.3	819.3	80.99	11.116		
14,600.0	11,300.0	13,663.8	10,475.0	69.5	67.6	-23.93	-3,465.7	-53.7	904.2	821.5	82.60	10.946		
14,700.0	11,300.0	13,762.8	10,475.0	70.8	68.9	-24.74	-3,564.6	-52.8	910.1	825.0	85.06	10.699		
14,800.0	11,300.0	13,861.7	10,475.0	72.1	70.3	-25.54	-3,663.6	-51.8	916.1	828.6	87.57	10.461		
14,900.0	11,300.0	13,960.7	10,475.0	73.5	71.7	-26.33	-3,762.6	-50.8	922.4	832.3	90.14	10.232		
15,000.0	11,300.0	14,059.7	10,475.0	74.8	73.1	-27.11	-3,861.6	-49.9	928.8	836.1	92.77	10.013		
15,100.0	11,300.0	14,158.7	10,475.0	76.2	74.5	-27.88	-3,960.6	-48.9	935.4	840.0	95.44	9.802		
15,200.0	11,300.0	14,257.7	10,475.0	77.6	75.9	-28.63	-4,059.6	-48.0	942.2	844.1	98.16	9.599		
15,300.0	11,300.0	14,356.7	10,475.0	79.0	77.4	-29.38	-4,158.5	-47.0	949.1	848.2	100.92	9.405		
15,400.0	11,300.0	14,455.7	10,475.0	80.4	78.8	-30.12	-4,257.5	-46.0	956.2	852.5	103.73	9.219		
15,500.0	11,300.0	14,554.7	10,475.0	81.8	80.3	-30.84	-4,356.5	-45.1	963.5	856.9	106.58	9.040		
15,600.0	11,300.0	14,653.6	10,475.0	83.2	81.7	-31.56	-4,455.5	-44.1	970.9	861.4	109.47	8.869		
15,700.0	11,300.0	14,752.6	10,475.0	84.6	83.2	-32.26	-4,554.5	-43.2	978.5	866.1	112.39	8.706		
15,800.0	11,300.0	14,851.6	10,475.0	86.1	84.6	-32.95	-4,653.5	-42.2	986.2	870.8	115.35	8.549		
15,900.0	11,300.0	14,950.6	10,475.0	87.5	86.1	-33.63	-4,752.4	-41.3	994.0	875.7	118.34	8.399		

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 152H - OWB - PWP0												Offset Site Error:	0.0 usft	
Survey Program:	0-MWD											Offset Well Error:	0.0 usft	
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N/S (usft)	Centre +E/W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning
0.0	0.0	0.0	0.0	0.0	0.0	0.0	88.61	0.8	33.0	33.0				
100.0	100.0	100.0	100.0	0.3	0.3	0.3	88.61	0.8	33.0	33.0	32.5	0.50	65.755	
200.0	200.0	200.0	200.0	0.6	0.6	0.6	88.61	0.8	33.0	33.0	31.8	1.22	27.075	
300.0	300.0	300.0	300.0	1.0	1.0	1.0	88.61	0.8	33.0	33.0	31.1	1.94	17.048	
400.0	400.0	400.0	400.0	1.3	1.3	1.3	88.61	0.8	33.0	33.0	30.3	2.65	12.440	
500.0	500.0	500.0	500.0	1.7	1.7	1.7	88.61	0.8	33.0	33.0	29.6	3.37	9.793	
600.0	600.0	600.0	600.0	2.0	2.0	2.0	88.61	0.8	33.0	33.0	28.9	4.09	8.075	
700.0	700.0	700.0	700.0	2.4	2.4	2.4	88.61	0.8	33.0	33.0	28.2	4.80	6.870	
800.0	800.0	800.0	800.0	2.8	2.8	2.8	88.61	0.8	33.0	33.0	27.5	5.52	5.978	
900.0	900.0	900.0	900.0	3.1	3.1	3.1	88.61	0.8	33.0	33.0	26.8	6.24	5.291	
1,000.0	1,000.0	1,000.0	1,000.0	3.5	3.5	3.5	88.61	0.8	33.0	33.0	26.0	6.95	4.745	
1,100.0	1,100.0	1,100.0	1,100.0	3.8	3.8	3.8	88.61	0.8	33.0	33.0	25.3	7.67	4.302	
1,200.0	1,200.0	1,200.0	1,200.0	4.2	4.2	4.2	88.61	0.8	33.0	33.0	24.6	8.39	3.934	
1,300.0	1,300.0	1,300.0	1,300.0	4.6	4.6	4.6	88.61	0.8	33.0	33.0	23.9	9.11	3.624	
1,400.0	1,400.0	1,400.0	1,400.0	4.9	4.9	4.9	88.61	0.8	33.0	33.0	23.2	9.82	3.360	
1,500.0	1,500.0	1,500.0	1,500.0	5.3	5.3	5.3	88.61	0.8	33.0	33.0	22.5	10.54	3.131	
1,600.0	1,600.0	1,600.0	1,600.0	5.6	5.6	5.6	88.61	0.8	33.0	33.0	21.7	11.26	2.932	
1,700.0	1,700.0	1,700.0	1,700.0	6.0	6.0	6.0	88.61	0.8	33.0	33.0	21.0	11.97	2.756	
1,800.0	1,800.0	1,800.0	1,800.0	6.3	6.3	6.3	88.61	0.8	33.0	33.0	20.3	12.69	2.600	
1,900.0	1,900.0	1,900.0	1,900.0	6.7	6.7	6.7	88.61	0.8	33.0	33.0	19.6	13.41	2.461	
2,000.0	2,000.0	2,000.0	2,000.0	7.1	7.1	7.1	88.61	0.8	33.0	33.0	18.9	14.12	2.336 CC, ES, SF	
2,100.0	2,100.0	2,098.8	2,098.8	7.4	7.4	177.84		1.4	34.6	36.4	21.6	14.81	2.456	
2,200.0	2,199.8	2,196.9	2,196.8	7.8	7.8	176.20		3.1	39.4	46.5	31.1	15.48	3.008	
2,300.0	2,299.5	2,294.6	2,294.1	8.1	8.1	174.69		5.7	46.9	63.1	47.0	16.14	3.910	
2,400.0	2,398.7	2,392.5	2,391.6	8.5	8.4	173.95		8.6	55.0	83.6	66.8	16.82	4.969	
2,500.0	2,497.5	2,489.6	2,488.4	8.8	8.8	173.69		11.4	62.9	107.5	90.0	17.50	6.140	
2,600.0	2,595.9	2,586.3	2,584.7	9.2	9.1	173.65		14.2	70.9	133.0	114.8	18.18	7.317	
2,700.0	2,694.4	2,682.9	2,681.0	9.6	9.5	173.62		17.0	78.8	158.6	139.7	18.86	8.409	
2,800.0	2,792.9	2,779.6	2,777.3	10.0	9.8	173.60		19.9	86.8	184.1	164.6	19.54	9.423	
2,900.0	2,891.4	2,876.3	2,873.6	10.3	10.2	173.58		22.7	94.7	209.7	189.5	20.22	10.368	
3,000.0	2,989.9	2,973.0	2,969.9	10.7	10.5	173.57		25.5	102.7	235.2	214.3	20.91	11.250	
3,100.0	3,088.3	3,069.7	3,066.2	11.1	10.9	173.56		28.3	110.6	260.8	239.2	21.60	12.074	
3,200.0	3,186.8	3,166.3	3,162.5	11.5	11.2	173.55		31.1	118.5	286.4	264.1	22.29	12.846	
3,300.0	3,285.3	3,263.0	3,258.8	12.0	11.6	173.54		33.9	126.5	311.9	288.9	22.98	13.571	
3,400.0	3,383.8	3,359.7	3,355.2	12.4	12.0	173.53		36.7	134.4	337.5	313.8	23.68	14.252	
3,500.0	3,482.3	3,456.4	3,451.5	12.8	12.3	173.53		39.6	142.4	363.0	338.6	24.38	14.893	
3,600.0	3,580.8	3,553.1	3,547.8	13.2	12.7	173.52		42.4	150.3	388.6	363.5	25.07	15.498	
3,700.0	3,679.2	3,649.7	3,644.1	13.6	13.0	173.52		45.2	158.3	414.1	388.4	25.77	16.069	
3,800.0	3,777.7	3,746.4	3,740.4	14.0	13.4	173.52		48.0	166.2	439.7	413.2	26.47	16.609	
3,900.0	3,876.2	3,843.1	3,836.7	14.5	13.8	173.51		50.8	174.1	465.2	438.1	27.17	17.121	
4,000.0	3,974.7	3,939.8	3,933.0	14.9	14.1	173.51		53.6	182.1	490.8	462.9	27.88	17.606	
4,100.0	4,073.2	4,036.5	4,029.3	15.3	14.5	173.51		56.4	190.0	516.4	487.8	28.58	18.067	
4,200.0	4,171.6	4,133.1	4,125.6	15.7	14.8	173.51		59.3	198.0	541.9	512.6	29.28	18.505	
4,300.0	4,270.1	4,229.8	4,222.0	16.2	15.2	173.50		62.1	205.9	567.5	537.5	29.99	18.922	
4,397.7	4,366.3	4,324.2	4,316.0	16.6	15.6	173.50		64.8	213.7	592.4	561.7	30.68	19.311	
4,400.0	4,368.6	4,326.5	4,318.3	16.6	15.6	173.50		64.9	213.8	593.0	562.3	30.69	19.320	
4,500.0	4,467.4	4,423.6	4,415.0	17.0	15.9	173.54		67.7	221.8	616.8	585.4	31.40	19.643	
4,600.0	4,566.6	4,521.5	4,512.5	17.4	16.3	173.53		70.6	229.9	637.2	605.1	32.11	19.846	
4,700.0	4,666.3	4,632.6	4,623.2	17.8	16.7	173.48		73.6	238.5	653.8	620.9	32.91	19.864	
4,800.0	4,766.1	4,760.9	4,751.4	18.2	17.2	173.45		75.6	243.9	663.3	629.5	33.81	19.621	
4,897.7	4,863.8	4,873.2	4,863.8	18.5	17.6	83.46		75.8	244.6	665.5	631.0	34.57	19.254	
4,900.0	4,866.1	4,875.6	4,866.1	18.5	17.6	83.46		75.8	244.6	665.5	631.0	34.58	19.245	

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 152H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N/S (usft)	Centre +E/W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	
5,000.0	4,966.1	4,975.6	4,966.1	18.8	17.9	83.46	75.8	244.6	665.5	630.3	35.28	18.864		
5,100.0	5,066.1	5,075.6	5,066.1	19.2	18.3	83.46	75.8	244.6	665.5	629.6	35.98	18.497		
5,200.0	5,166.1	5,175.6	5,166.1	19.5	18.6	83.46	75.8	244.6	665.5	628.9	36.68	18.145		
5,300.0	5,266.1	5,275.6	5,266.1	19.8	19.0	83.46	75.8	244.6	665.5	628.2	37.38	17.805		
5,400.0	5,366.1	5,375.6	5,366.1	20.2	19.3	83.46	75.8	244.6	665.5	627.5	38.08	17.477		
5,500.0	5,466.1	5,475.6	5,466.1	20.5	19.7	83.46	75.8	244.6	665.5	626.8	38.78	17.161		
5,600.0	5,566.1	5,575.6	5,566.1	20.8	20.0	83.46	75.8	244.6	665.5	626.1	39.49	16.855		
5,700.0	5,666.1	5,675.6	5,666.1	21.2	20.4	83.46	75.8	244.6	665.5	625.4	40.19	16.561		
5,800.0	5,766.1	5,775.6	5,766.1	21.5	20.7	83.46	75.8	244.6	665.5	624.6	40.89	16.276		
5,900.0	5,866.1	5,875.6	5,866.1	21.8	21.1	83.46	75.8	244.6	665.5	623.9	41.60	16.000		
6,000.0	5,966.1	5,975.6	5,966.1	22.2	21.4	83.46	75.8	244.6	665.5	623.2	42.30	15.734		
6,100.0	6,066.1	6,075.6	6,066.1	22.5	21.8	83.46	75.8	244.6	665.5	622.5	43.00	15.476		
6,200.0	6,166.1	6,175.6	6,166.1	22.8	22.1	83.46	75.8	244.6	665.5	621.8	43.71	15.227		
6,300.0	6,266.1	6,275.6	6,266.1	23.2	22.5	83.46	75.8	244.6	665.5	621.1	44.41	14.985		
6,400.0	6,366.1	6,375.6	6,366.1	23.5	22.8	83.46	75.8	244.6	665.5	620.4	45.12	14.751		
6,500.0	6,466.1	6,475.6	6,466.1	23.9	23.2	83.46	75.8	244.6	665.5	619.7	45.83	14.523		
6,600.0	6,566.1	6,575.6	6,566.1	24.2	23.5	83.46	75.8	244.6	665.5	619.0	46.53	14.303		
6,700.0	6,666.1	6,675.6	6,666.1	24.5	23.9	83.46	75.8	244.6	665.5	618.3	47.24	14.089		
6,800.0	6,766.1	6,775.6	6,766.1	24.9	24.2	83.46	75.8	244.6	665.5	617.6	47.95	13.881		
6,900.0	6,866.1	6,875.6	6,866.1	25.2	24.6	83.46	75.8	244.6	665.5	616.9	48.65	13.679		
7,000.0	6,966.1	6,975.6	6,966.1	25.6	24.9	83.46	75.8	244.6	665.5	616.2	49.36	13.483		
7,100.0	7,066.1	7,075.6	7,066.1	25.9	25.3	83.46	75.8	244.6	665.5	615.5	50.07	13.293		
7,200.0	7,166.1	7,175.6	7,166.1	26.3	25.7	83.46	75.8	244.6	665.5	614.8	50.78	13.107		
7,300.0	7,266.1	7,275.6	7,266.1	26.6	26.0	83.46	75.8	244.6	665.5	614.1	51.49	12.927		
7,400.0	7,366.1	7,375.6	7,366.1	27.0	26.4	83.46	75.8	244.6	665.5	613.3	52.19	12.751		
7,500.0	7,466.1	7,475.6	7,466.1	27.3	26.7	83.46	75.8	244.6	665.5	612.6	52.90	12.581		
7,600.0	7,566.1	7,575.6	7,566.1	27.6	27.1	83.46	75.8	244.6	665.5	611.9	53.61	12.414		
7,700.0	7,666.1	7,675.6	7,666.1	28.0	27.4	83.46	75.8	244.6	665.5	611.2	54.32	12.252		
7,800.0	7,766.1	7,775.6	7,766.1	28.3	27.8	83.46	75.8	244.6	665.5	610.5	55.03	12.094		
7,900.0	7,866.1	7,875.6	7,866.1	28.7	28.1	83.46	75.8	244.6	665.5	609.8	55.74	11.940		
8,000.0	7,966.1	7,975.6	7,966.1	29.0	28.5	83.46	75.8	244.6	665.5	609.1	56.45	11.790		
8,100.0	8,066.1	8,075.6	8,066.1	29.4	28.8	83.46	75.8	244.6	665.5	608.4	57.16	11.644		
8,200.0	8,166.1	8,175.6	8,166.1	29.7	29.2	83.46	75.8	244.6	665.5	607.7	57.87	11.501		
8,300.0	8,266.1	8,275.6	8,266.1	30.1	29.5	83.46	75.8	244.6	665.5	607.0	58.58	11.361		
8,400.0	8,366.1	8,375.6	8,366.1	30.4	29.9	83.46	75.8	244.6	665.5	606.3	59.29	11.225		
8,500.0	8,466.1	8,475.6	8,466.1	30.8	30.3	83.46	75.8	244.6	665.5	605.5	60.00	11.092		
8,600.0	8,566.1	8,575.6	8,566.1	31.1	30.6	83.46	75.8	244.6	665.5	604.8	60.71	10.962		
8,700.0	8,666.1	8,675.6	8,666.1	31.5	31.0	83.46	75.8	244.6	665.5	604.1	61.42	10.835		
8,800.0	8,766.1	8,775.6	8,766.1	31.8	31.3	83.46	75.8	244.6	665.5	603.4	62.13	10.711		
8,900.0	8,866.1	8,875.6	8,866.1	32.2	31.7	83.46	75.8	244.6	665.5	602.7	62.85	10.590		
9,000.0	8,966.1	8,975.6	8,966.1	32.5	32.0	83.46	75.8	244.6	665.5	602.0	63.56	10.472		
9,100.0	9,066.1	9,075.6	9,066.1	32.9	32.4	83.46	75.8	244.6	665.5	601.3	64.27	10.356		
9,200.0	9,166.1	9,175.6	9,166.1	33.2	32.7	83.46	75.8	244.6	665.5	600.6	64.98	10.242		
9,300.0	9,266.1	9,275.6	9,266.1	33.6	33.1	83.46	75.8	244.6	665.5	599.8	65.69	10.131		
9,400.0	9,366.1	9,375.6	9,366.1	33.9	33.5	83.46	75.8	244.6	665.5	599.1	66.40	10.023		
9,500.0	9,466.1	9,475.6	9,466.1	34.3	33.8	83.46	75.8	244.6	665.5	598.4	67.11	9.916		
9,600.0	9,566.1	9,575.6	9,566.1	34.6	34.2	83.46	75.8	244.6	665.5	597.7	67.83	9.812		
9,700.0	9,666.1	9,675.6	9,666.1	35.0	34.5	83.46	75.8	244.6	665.5	597.0	68.54	9.710		
9,800.0	9,766.1	9,775.6	9,766.1	35.3	34.9	83.46	75.8	244.6	665.5	596.3	69.25	9.611		
9,900.0	9,866.1	9,875.6	9,866.1	35.7	35.2	83.46	75.8	244.6	665.5	595.6	69.96	9.513		
10,000.0	9,966.1	9,975.6	9,966.1	36.0	35.6	83.46	75.8	244.6	665.5	594.9	70.68	9.417		
10,100.0	10,066.1	10,075.6	10,066.1	36.4	35.9	83.46	75.8	244.6	665.5	594.2	71.39	9.323		

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 152H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program:	0-MWD												Offset Well Error:	0.0 usft
	Reference Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Offset Vertical Depth (usft)	Semi Reference (usft)	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre +N/S (usft)	Centre +E/W (usft)	Distance Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	
10,200.0	10,166.1	10,175.6	10,166.1	36.7	36.3	83.46		75.8	244.6	665.5	593.4	72.10	9.231	
10,300.0	10,266.1	10,275.6	10,266.1	37.1	36.7	83.46		75.8	244.6	665.5	592.7	72.81	9.140	
10,400.0	10,366.1	10,375.6	10,366.1	37.4	37.0	83.46		75.8	244.6	665.5	592.0	73.53	9.052	
10,500.0	10,466.1	10,482.9	10,473.3	37.8	37.4	83.69		73.1	244.7	665.3	591.0	74.25	8.960	
10,600.0	10,566.1	10,593.7	10,581.1	38.1	37.7	85.79		48.7	244.9	663.4	588.5	74.94	8.852	
10,700.0	10,666.1	10,689.1	10,667.4	38.5	38.0	89.29		8.2	245.3	661.9	586.3	75.57	8.758	
10,704.8	10,670.9	10,693.3	10,670.9	38.5	38.0	89.47		6.1	245.3	661.9	586.3	75.60	8.755	
10,800.0	10,766.1	10,766.3	10,730.2	38.8	38.2	93.16		-36.6	245.7	664.2	588.2	76.03	8.736	
10,856.4	10,822.5	10,802.4	10,756.9	39.0	38.2	95.25		-60.8	245.9	668.5	592.4	76.13	8.781	
10,875.0	10,841.1	10,813.5	10,764.7	39.1	38.3	-83.35		-68.7	246.0	670.4	594.3	76.12	8.807	
10,900.0	10,866.0	10,828.2	10,774.8	39.2	38.3	-82.14		-79.4	246.1	673.3	597.2	76.09	8.849	
10,925.0	10,890.9	10,842.8	10,784.5	39.2	38.3	-80.93		-90.3	246.2	676.6	600.6	76.03	8.899	
10,950.0	10,915.5	10,857.4	10,793.8	39.3	38.3	-79.72		-101.5	246.3	680.1	604.2	75.94	8.956	
10,975.0	10,939.9	10,875.0	10,804.6	39.4	38.4	-78.33		-115.4	246.4	684.0	608.1	75.87	9.015	
11,000.0	10,963.9	10,886.1	10,811.2	39.5	38.4	-77.29		-124.3	246.5	688.0	612.3	75.70	9.089	
11,025.0	10,987.6	10,900.0	10,819.1	39.5	38.4	-76.11		-135.8	246.6	692.2	616.7	75.53	9.164	
11,050.0	11,010.8	10,914.5	10,827.0	39.6	38.5	-74.92		-148.0	246.7	696.6	621.2	75.36	9.243	
11,075.0	11,033.5	10,925.0	10,832.5	39.7	38.5	-73.92		-156.9	246.8	701.1	625.9	75.11	9.334	
11,100.0	11,055.7	10,942.7	10,841.2	39.8	38.5	-72.62		-172.2	246.9	705.6	630.7	74.95	9.415	
11,125.0	11,077.2	10,956.6	10,847.8	39.8	38.6	-71.52		-184.6	247.0	710.2	635.5	74.72	9.505	
11,150.0	11,097.9	10,975.0	10,855.8	39.9	38.6	-70.27		-201.1	247.2	714.9	640.3	74.55	9.590	
11,175.0	11,118.0	10,984.5	10,859.7	40.0	38.6	-69.40		-209.7	247.3	719.5	645.3	74.24	9.691	
11,200.0	11,137.2	11,000.0	10,865.7	40.0	38.7	-68.34		-224.0	247.4	724.1	650.1	74.02	9.782	
11,225.0	11,155.6	11,012.1	10,870.1	40.1	38.7	-67.43		-235.4	247.5	728.6	654.9	73.75	9.879	
11,250.0	11,173.0	11,025.0	10,874.4	40.1	38.7	-66.54		-247.5	247.6	733.0	659.6	73.50	9.974	
11,275.0	11,189.5	11,039.6	10,878.9	40.2	38.8	-65.64		-261.4	247.7	737.4	664.1	73.27	10.063	
11,300.0	11,205.0	11,050.0	10,881.8	40.2	38.8	-64.90		-271.3	247.8	741.6	668.6	73.00	10.158	
11,325.0	11,219.4	11,067.0	10,886.2	40.3	38.8	-64.03		-287.8	248.0	745.6	672.7	72.82	10.238	
11,350.0	11,232.8	11,080.7	10,889.3	40.3	38.9	-63.30		-301.1	248.1	749.4	676.8	72.62	10.319	
11,375.0	11,245.0	11,094.3	10,891.9	40.4	38.9	-62.62		-314.5	248.2	753.0	680.6	72.43	10.396	
11,400.0	11,256.0	11,107.9	10,894.2	40.4	39.0	-61.99		-327.9	248.3	756.5	684.2	72.26	10.468	
11,425.0	11,265.9	11,125.0	10,896.6	40.5	39.0	-61.35		-344.8	248.5	759.7	687.5	72.14	10.530	
11,450.0	11,274.6	11,135.1	10,897.7	40.5	39.0	-60.88		-354.9	248.6	762.6	690.6	71.99	10.593	
11,475.0	11,282.0	11,150.0	10,898.9	40.6	39.1	-60.38		-369.7	248.7	765.3	693.4	71.90	10.645	
11,500.0	11,288.2	11,162.3	10,899.6	40.6	39.1	-59.98		-381.9	248.8	767.8	695.9	71.82	10.690	
11,525.0	11,293.0	11,175.0	10,899.9	40.7	39.1	-59.61		-394.7	249.0	769.9	698.1	71.77	10.728	
11,550.0	11,296.6	11,195.4	10,900.0	40.8	39.2	-59.25		-415.1	249.1	771.7	699.9	71.77	10.753	
11,575.0	11,298.9	11,220.3	10,900.0	40.8	39.3	-58.98		-440.0	249.4	772.9	701.1	71.83	10.760	
11,600.0	11,299.9	11,245.3	10,900.0	40.9	39.4	-58.86		-465.0	249.6	773.4	701.5	71.93	10.752	
11,606.4	11,300.0	11,251.7	10,900.0	40.9	39.4	-58.86		-471.4	249.7	773.4	701.5	71.97	10.747	
11,700.0	11,300.0	11,345.3	10,900.0	41.2	39.7	-58.86		-565.0	250.5	773.5	700.9	72.51	10.667	
11,800.0	11,300.0	11,445.3	10,900.0	41.6	40.1	-58.86		-665.0	251.4	773.5	700.3	73.20	10.566	
11,900.0	11,300.0	11,545.3	10,900.0	42.1	40.6	-58.86		-765.0	252.4	773.5	699.5	74.01	10.452	
12,000.0	11,300.0	11,645.3	10,900.0	42.6	41.1	-58.86		-865.0	253.3	773.5	698.6	74.91	10.325	
12,100.0	11,300.0	11,745.3	10,900.0	43.1	41.7	-58.86		-965.0	254.2	773.5	697.6	75.93	10.188	
12,200.0	11,300.0	11,845.3	10,900.0	43.8	42.4	-58.86		-1,064.9	255.1	773.5	696.5	77.03	10.041	
12,300.0	11,300.0	11,945.3	10,900.0	44.4	43.1	-58.86		-1,164.9	256.0	773.6	695.3	78.24	9.887	
12,400.0	11,300.0	12,045.3	10,900.0	45.1	43.8	-58.86		-1,264.9	256.9	773.6	694.0	79.53	9.726	
12,500.0	11,300.0	12,145.3	10,900.0	45.9	44.6	-58.86		-1,364.9	257.9	773.6	692.7	80.91	9.561	
12,600.0	11,300.0	12,245.3	10,900.0	46.7	45.5	-58.86		-1,464.9	258.8	773.6	691.2	82.38	9.391	
12,700.0	11,300.0	12,345.3	10,900.0	47.6	46.4	-58.86		-1,564.9	259.7	773.6	689.7	83.92	9.219	
12,800.0	11,300.0	12,445.3	10,900.0	48.5	47.3	-58.87		-1,664.9	260.6	773.6	688.1	85.53	9.045	

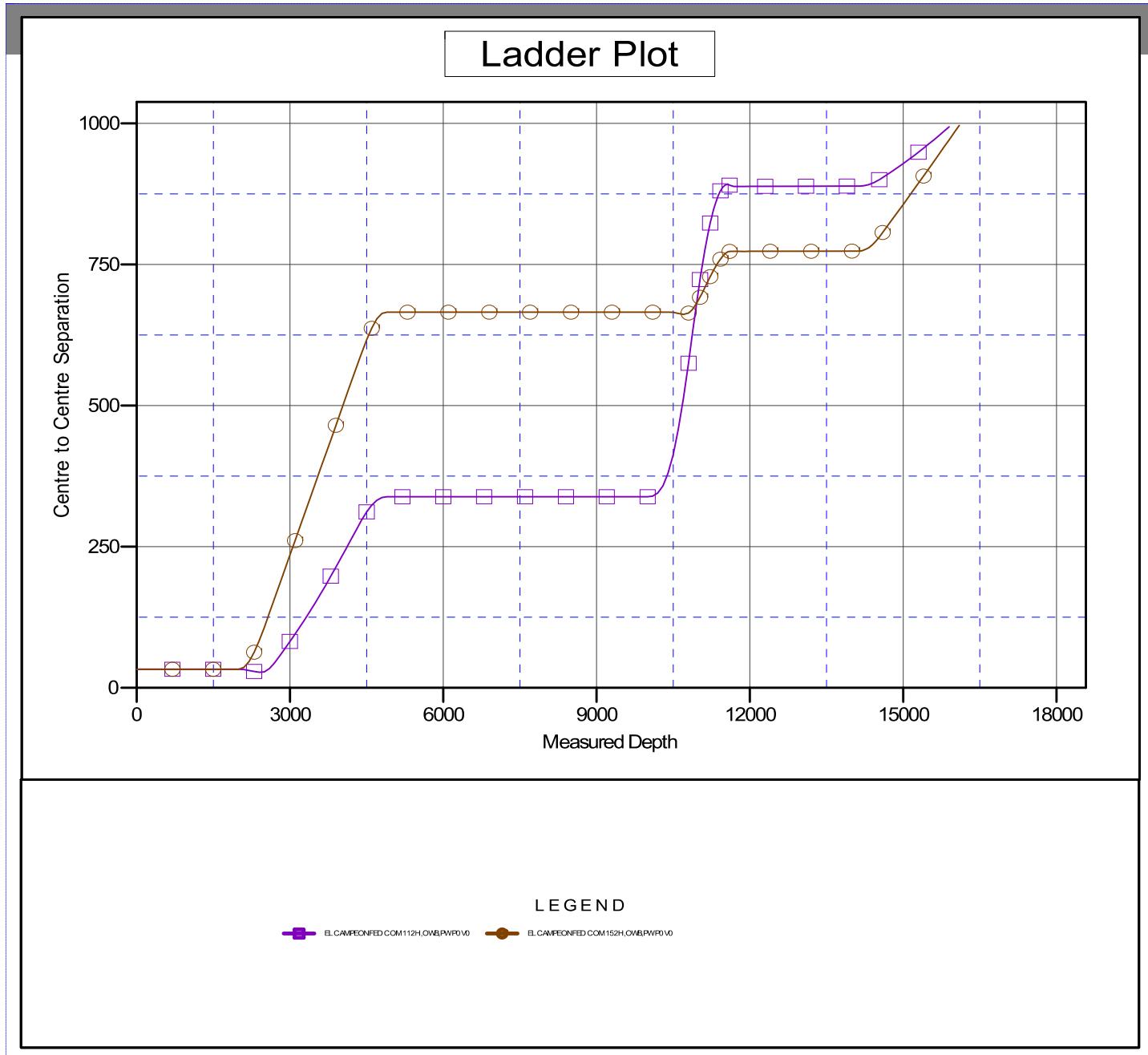
CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Offset Design: EL CAMPEON FED COM PROJECT - EL CAMPEON FED COM 152H - OWB - PWP0													Offset Site Error:	0.0 usft
Survey Program: 0-MWD													Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Semi Reference	Major Axis Offset (usft)	Highside Toolface (")	Offset Wellbore Centre		Rule Assigned:				Warning	
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Semi Reference	Major Axis Offset (usft)	Highside Toolface (")	+N/S (usft)	+E/W (usft)	Distance Between Centres (usft)	Distance Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor		
12,900.0	11,300.0	12,545.3	10,900.0	49.4	48.3	-58.87	-1,764.9	261.5	773.7	686.4	87.21	8.871		
13,000.0	11,300.0	12,645.3	10,900.0	50.4	49.3	-58.87	-1,864.9	262.4	773.7	684.7	88.96	8.697		
13,100.0	11,300.0	12,745.3	10,900.0	51.4	50.3	-58.87	-1,964.9	263.4	773.7	682.9	90.76	8.524		
13,200.0	11,300.0	12,845.3	10,900.0	52.4	51.4	-58.87	-2,064.9	264.3	773.7	681.1	92.63	8.353		
13,300.0	11,300.0	12,945.3	10,900.0	53.5	52.5	-58.87	-2,164.9	265.2	773.7	679.2	94.55	8.183		
13,400.0	11,300.0	13,045.3	10,900.0	54.6	53.6	-58.87	-2,264.9	266.1	773.7	677.2	96.52	8.016		
13,500.0	11,300.0	13,145.3	10,900.0	55.7	54.8	-58.87	-2,364.9	267.0	773.8	675.2	98.54	7.852		
13,600.0	11,300.0	13,245.3	10,900.0	56.9	55.9	-58.87	-2,464.9	268.0	773.8	673.2	100.61	7.691		
13,700.0	11,300.0	13,345.3	10,900.0	58.1	57.2	-58.87	-2,564.9	268.9	773.8	671.1	102.71	7.533		
13,800.0	11,300.0	13,445.3	10,900.0	59.3	58.4	-58.87	-2,664.9	269.8	773.8	669.0	104.86	7.379		
13,900.0	11,300.0	13,545.3	10,900.0	60.5	59.6	-58.87	-2,764.9	270.7	773.8	666.8	107.05	7.229		
14,000.0	11,300.0	13,645.3	10,900.0	61.7	60.9	-58.87	-2,864.9	271.6	773.8	664.6	109.27	7.082		
14,100.0	11,300.0	13,745.3	10,900.0	63.0	62.2	-58.87	-2,964.9	272.5	773.9	662.3	111.52	6.939		
14,127.1	11,300.0	13,772.4	10,900.0	63.3	62.5	-58.87	-2,991.9	272.8	773.9	661.7	112.13	6.901		
14,200.0	11,300.0	13,845.3	10,900.0	64.3	63.5	-58.90	-3,064.9	273.5	774.7	660.8	113.83	6.806		
14,300.0	11,300.0	13,945.2	10,900.0	65.6	64.8	-59.03	-3,164.8	274.4	778.4	662.1	116.27	6.694		
14,400.0	11,300.0	14,044.9	10,900.0	66.8	66.1	-59.25	-3,264.4	275.3	785.1	666.2	118.85	6.606		
14,500.0	11,300.0	14,144.3	10,900.0	68.2	67.4	-59.57	-3,363.8	276.2	794.8	673.2	121.55	6.539		
14,533.2	11,300.0	14,177.1	10,900.0	68.6	67.9	-59.69	-3,396.6	276.5	798.7	676.2	122.47	6.522		
14,600.0	11,300.0	14,243.3	10,900.0	69.5	68.8	-60.03	-3,462.8	277.1	806.9	682.5	124.34	6.489		
14,700.0	11,300.0	14,342.3	10,900.0	70.8	70.1	-60.52	-3,561.8	278.0	819.2	692.0	127.16	6.442		
14,800.0	11,300.0	14,441.3	10,900.0	72.1	71.5	-61.00	-3,660.8	278.9	831.6	701.6	130.01	6.396		
14,900.0	11,300.0	14,540.3	10,900.0	73.5	72.9	-61.47	-3,759.8	279.8	844.0	711.1	132.87	6.352		
15,000.0	11,300.0	14,639.3	10,900.0	74.8	74.3	-61.92	-3,858.8	280.7	856.5	720.7	135.75	6.309		
15,100.0	11,300.0	14,738.3	10,900.0	76.2	75.7	-62.35	-3,957.8	281.7	869.0	730.4	138.65	6.268		
15,200.0	11,300.0	14,837.2	10,900.0	77.6	77.1	-62.78	-4,056.8	282.6	881.6	740.0	141.56	6.228		
15,300.0	11,300.0	14,936.2	10,900.0	79.0	78.5	-63.19	-4,155.7	283.5	894.2	749.7	144.49	6.189		
15,400.0	11,300.0	15,035.2	10,900.0	80.4	79.9	-63.60	-4,254.7	284.4	906.9	759.5	147.43	6.151		
15,500.0	11,300.0	15,134.2	10,900.0	81.8	81.3	-63.99	-4,353.7	285.3	919.6	769.2	150.39	6.115		
15,600.0	11,300.0	15,233.2	10,900.0	83.2	82.8	-64.37	-4,452.7	286.2	932.4	779.0	153.36	6.080		
15,700.0	11,300.0	15,332.2	10,900.0	84.6	84.2	-64.74	-4,551.7	287.1	945.2	788.8	156.34	6.046		
15,800.0	11,300.0	15,431.2	10,900.0	86.1	85.7	-65.10	-4,650.7	288.0	958.0	798.7	159.34	6.012		
15,900.0	11,300.0	15,530.2	10,900.0	87.5	87.1	-65.45	-4,749.7	288.9	970.9	808.5	162.34	5.981		
16,000.0	11,300.0	15,629.2	10,900.0	88.9	88.6	-65.79	-4,848.7	289.8	983.8	818.4	165.36	5.950		
16,100.0	11,300.0	15,728.2	10,900.0	90.4	90.1	-66.12	-4,947.7	290.7	996.7	828.4	168.38	5.919		

CC - Min centre to center distance or convergent point, SF - min separation factor, ES - min ellipse separation

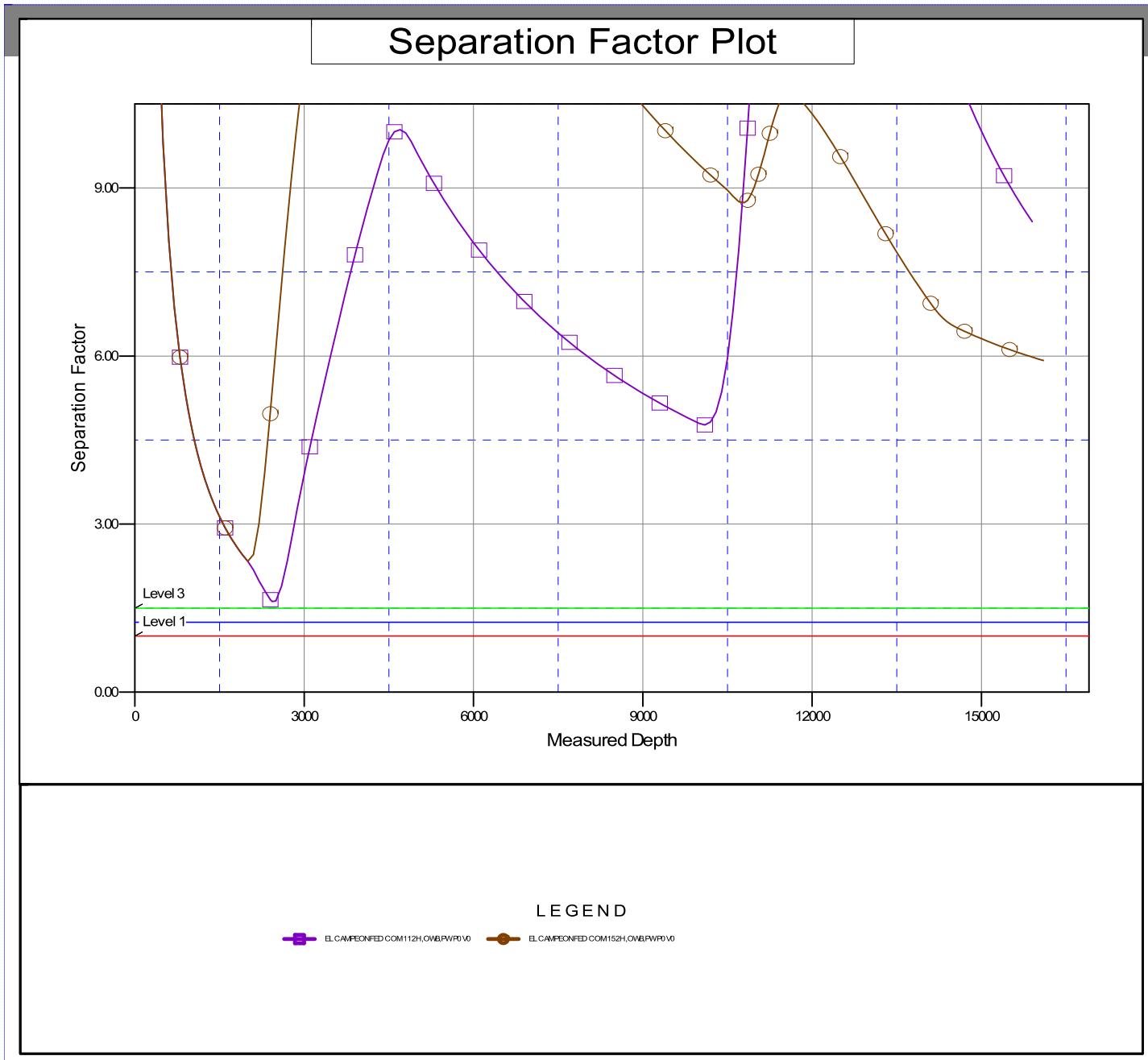

Anticollision Report

Company:	NEW MEXICO
Project:	(SP) LEA
Reference Site:	EL CAMPEON FED COM PROJECT
Site Error:	0.0 usft
Reference Well:	EL CAMPEON FED COM 122H
Well Error:	0.0 usft
Reference Wellbore	OWB
Reference Design:	PWP0

Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
TVD Reference:	KB @ 3205.0usft
MD Reference:	KB @ 3205.0usft
North Reference:	Grid
Survey Calculation Method:	Minimum Curvature
Output errors are at	2.00 sigma
Database:	Compass_17
Offset TVD Reference:	Offset Datum

Reference Depths are relative to KB @ 3205.0usft
 Offset Depths are relative to Offset Datum
 Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: EL CAMPEON FED COM 122H
 Coordinate System is US State Plane 1983, New Mexico Eastern Zone
 Grid Convergence at Surface is: 0.50°



Anticollision Report

Company:	NEW MEXICO	Local Co-ordinate Reference:	Well EL CAMPEON FED COM 122H
Project:	(SP) LEA	TVD Reference:	KB @ 3205.0usft
Reference Site:	EL CAMPEON FED COM PROJECT	MD Reference:	KB @ 3205.0usft
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	EL CAMPEON FED COM 122H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	Compass_17
Reference Design:	PWP0	Offset TVD Reference:	Offset Datum

Reference Depths are relative to KB @ 3205.0usft
 Offset Depths are relative to Offset Datum
 Central Meridian is 104° 20' 0.000 W

Coordinates are relative to: EL CAMPEON FED COM 122H
 Coordinate System is US State Plane 1983, New Mexico Eastern Zone
 Grid Convergence at Surface is: 0.50°

Sante Fe Main Office
Phone: (505) 476-3441

General Information
Phone: (505) 629-6116

Online Phone Directory
<https://www.emnrd.nm.gov/ocd/contact-us>

State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

CONDITIONS

Action 473851

CONDITIONS

Operator: Permian Resources Operating, LLC 300 N. Marienfeld St Ste 1000 Midland, TX 79701	OGRID: 372165 Action Number: 473851 Action Type: [C-103] NOI Change of Plans (C-103A)
---	--

CONDITIONS

Created By	Condition	Condition Date
matthew.gomez	The C-103 NOI was not approved or rejected; however, the work requested in the C-103 NOI was performed and completed without NMOCD approval. This action will result in review for potential compliance actions.	1/12/2026