1R-2/36

REPORTS

DATE:

5-18-11

AMARILLO 921 North Bivins Amarillo, Texas 79107 Phone 806.467.0607

Fax 806.467.0622

AUSTIN 3003 Tom Gary Cove Building C-100 Round Rock, Texas 78664 Phone 512.989 3428 Fax 512.989 3487

MIDLAND 2901 State Highway 349 Midland, Texas 79706 Phone 432 522 2133 Fax 432.522.2180

> SAN ANTONIO 17170 Jordan Road Suite 102 Selma, Texas 78154 Phone 210.579 0235 Fax 210.568.2191

9906 East 43rd Street Suite G Tulsa, Oklahoma 74146 Phone 918 742 0871 Fax 918 742 0876

HOBBS 318 East Taylor Street Hobbs, New Mexico 88241 Phone 505 393 4261 Fax 505 393.4658

> TYLER 719 West Front Street Suite 255 Tyler, Texas 75702 Phone 903.531.9971 Fax 903.531 9979

HOUSTON 3233 West 11th Street Suite 400 Houston, Texas 77008 Phone 713 861.0081 Fax 713 868.3208

ENVIRONMENTAL CONSULTING ENGINEERING DRILLING

CONSTRUCTION **EMERGENCY RESPONSE**

Toll Free. 866.742.0742 www.talonlpe.com MOBILE DUAL PHASE EXTRACTION REPORT DCP PLANT TO LEA STATION 6 INCH #2 PIPELINE RELEASE MONUMENT, LEA COUNTY, NEW MEXICO SRS # 2009-039

TALON/LPE PROJECT # 700376.084.01

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET **SUITE 1600 HOUSTON, TEXAS 77002**

Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, NM 87505

JUN 13 2011

PREPARED BY:

TALON/LPE 921 N. BIVINS

AMARILLO, TEXAS 79107

DISTRIBUTION:

COPY 1 - PLAINS MARKETING, L.P. - MIDLAND

COPY 2 - PLAINS MARKETING, L.P. - HOUSTON

COPY 3 - NMOCD - SANTA-FE

COPY 4 – BASIN ENVIRONMENTAL

COPY 5 - TALON/LPE

May 18, 2011

June 10, 2011

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

Plains Pipeline, L.P.

Reports for MDPE Events at Four (4) Remediation Sites in Lea County, NM

Dear Mr. Hansen:

Plains Pipeline, L.P. is pleased to submit the attached reports which provide details regarding the Mobile Dual Phase Extraction (MDPE) events that were conducted at the following sites during May 2011:

DCP Plant to Lea Station 6-inch Sec. 31 DCP Plant to Lea Station 6-inch #2 Monument 10

Monument 10
Monument 18

NMOCD Reference #1R-2166 NMOCD Reference #1R-2136 NMOCD Reference #1R-0119 NMOCD Reference #1R-0124

Should you have any questions or comments, please contact me at (575) 441-1099.

Sincerely,

Jason Henry

Remediation Coordinator

Plains Pipeline, L.P.

Enclosure

TABLE OF CONTENTS

Section	Page
I. MDPE SUMMARY REPORT AND WASTE DISPOSITION	
B. Air Quality	2
C. Waste Management and Disposition	2
II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS. Table 1	
	1

Attachments:

Attachment 1 - MDPE field logs Attachment 2 - Laboratory Analytical Results

Attachment 3 – Oxidizer Charts

I. MDPE SUMMARY REPORT AND WASTE DISPOSITION

A. MDPE Results

The following report summarizes data collected during the 12-hour High Vacuum Multi-Phase Extraction (MDPE) event conducted from May 5, 2011 to May 6, 2011 at the DCP Plant to Lea Station 6 Inch #2 Pipeline release site, located in Lea County, New Mexico. The objective of the MDPE treatment was to remove both vapor and liquid phase separated hydrocarbons (PSH) from onsite groundwater wells. Talon/LPE utilized an MDPE unit which consisted of an SVE extraction pump capable of generating vacuum up to 25" hg. Off gas vapors extracted from the extraction wells were destroyed using a propane-fired 1000-SCFM thermal oxidizer capable of processing 172.96 lbs/hr of gasoline.

A total of 12 hours (0.5 days) of PSH recovery was performed. MW-1 for 12 hours.

Prior to and immediately following the event, the groundwater wells were gauged for groundwater elevation and PSH. Depth to groundwater ranges were measured in feet below the top of casing. Refer to Attachment 1 for a summary of data collected during the MDPE event.

The volume of PSH removed during the MDPE event is shown to reflect the portions of PSH in the liquid phase and as off-gas vapor. Air removal rates were calculated from velocity measurements recorded at the influent manifold prior to entry into the MDPE unit. PSH recovery and air flow data has been detailed and is contained in Table 1. Three influent air samples were collected over the course of the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. All three influent samples were tested for Total-Gas Analysis (Hydrocarbon Composition) by ASTM method D 1945. Laboratory analytical results can be found in Attachment 2.

Based on a combination of field vapor screening and collected laboratory samples, a combined estimated total of 33.83 equivalent gallons of PSH (Total) were removed during the event. The combined volume of PSH was comprised of approximately 14 gallons of PSH (liquid phase) and approximately 19.83 gallons as off-gas vapor.

The cumulative air flow measurements for the MDPE event were calculated using a combination of field data measurements and Preso® B+ manufacturer provided formulas. Air flow rates extracted from the recovery wells averaged 22.62 SCFM during the event.

A portion of the extracted air flow rates measured is attributable to compressed air, which was "injected" into the extraction wells. This "injected" air is introduced into the extraction wells for the purpose of enhancing liquid recovery rates.

B. Air Quality

Three influent air samples were collected during the event. These samples were submitted for laboratory testing in order to compare the predicted vapor concentrations (based on field-screening or calculated based on fuel consumption) to the actual vapor concentrations. The maximum concentration in air influent was recorded as 35,477.50 ppmv for Hydrocarbon Composition.

C. Waste Management and Disposition

A cumulative total of 1,677 gallons of fluid were generated during this event. The fluids were transferred to an on-site storage tank.

II. SYSTEM OPERATION DATA AND MASS RECOVERY CALCULATIONS

Formulae:

Concentration (C_mg/l) = $\frac{\text{C_ppmv x Mol. wt. in mg(estimated) x 0.000001}}{0.0821 \text{ x Temp (K)}}$

Recovery Rate (lbs/hr) = $\frac{\text{(C mg/l) x 2.2 x (Flowrate) x 60 x 28.32}}{1,000,000}$

Recovery (lbs) = (lbs/hr) x (hrs)

Correction Factor (CF) = FID Reading(ppmv)
FID Reading at Time of Laboratory Analysis

8.34 lbs x 0.734 average specific gravity of light crude = 6.12156 lbs light crude gallon water (estimated) gallon

Table 1
System Operation Data and Mass Recovery Calculations

Time	Period (hours)	Influent Temp. (°f)	Vacuum (In. hg)	Vacuum (In. h20)	Differential pressure (In. h20)	Flow (SCFM)	FID Readings (ppmv)	Lab Result (ppmv)	Assigned Lab Result (ppmv)	Correction Factor (CF)	Adjusted Lab Result (ppmv)	Adjusted Lab Result (mg/L)	Recovery (lbs/hr)	Recovery in Period (lbs)	Total Recovery (lbs)
12:00	0	78	21	285.79	0.9	18.00	633.9		35477.5	0.01	450	1.65	0.11	0.00	0.00
13:00	1	85	21	285.79	1.3	21.49	50000	35477.5	35477.5	1.00	35478	128.59	10.33	10.33	10.33
14:00	1	88	21	285.79	2.6	30.31	50000		35477.5	1.00	35478	127.89	14.49	14.49	24.82
15:00	1	89	21	285.79	2.5	29.70	50000		35477.5	1.00	35478	127.65	14.17	14.17	38.99
16:00	1	90	21	285.79	1.1	19.68	50000		28836.5	1.00	28837	103.57	7.62	7.62	46.61
17:00	1	95	21	285.79	1.9	25.75	50000		28836.5	1.00	28837	102.63	9.88	9.88	56.49
18:00	1	92	21	285.79	1.7	24.42	50000	28836.5	28836.5	1.00	28837	103.19	9.42	9.42	65.91
19:00	1	88	21	285.79	1.2	20.59	50000		28836.5	1.00	28837	103.95	8.00	8.00	73.91
20:00	1	72	21	285.79	1.3	21.75	50000	-	28836.5	1.00	28837	107.08	8.71	8.71	82.62
21:00	1	70	21	285.79	1.1	20.05	50000		33497.5	1.00	33498	124.85	9.36	9.36	91.98
22:00	1	66	21	285.79	1.2	21.02	50000	- 1/2	33497.5	1.00	33498	125.80	9.88	9.88	101.86
23:00	1	64	21	285.79	1.2	21.06	50000	33497.5	33497.5	1.00	33498	126.28	9.94	9.94	111.80
0:00	1	62	21	285.79	1.1	20.20	50000		33497.5	1.00	33498	126.77	9.57	9.57	121.38

Averages:

79.92

21.00

285.79 1.47

22.62 46202.61

Total

PSH Mass Recovered in Vapor Phase =

121.38

19.83 gallons

FID maximum Concentration = 50,000 PPM

Ex: Conversion from ppmv to mg/L (light crude)

Measured Conc.	Molecular Wt.	Pressure	Gas Constant	Temp.	Temp.	Conc.
(C_ppmv)	(Grams)	(atm)	(atm.liter/K. mole)	(F)	(K)	(C_mg/l)
450	90	1	0.0821	78	298.55556	1.6514976

Inputs are the green values.

Calculated values are yellow

Constants are purple values.

Outpus are the blue values.

Liquid-phase Hydrocarbon Recovery

(assumes gasoline product)

 $\prod * r^2 * h = volume$

Gallons removed determined at time of pick up

PSH Volume in Gallons= PSH Mass in Pounds= 14 85.70184

% Total Hyd	drocarl	oon to mg/m³	to ppr	nv
% total Hydrocarbon	=	mg/m³	=	ppmv
14.1910%		141,910.00		35477.5
11.5346%		115,346.00		28836.5
13.3990%		133,990.00		33497.5

Total Hydrocarbon Recovery

PSH Mass Recovered in Vapor Phase =

PSH Mass Recovered in Liquid Phase =

121.38 lbs 19.83 gallons 85.70 lbs 14.00 galons

TOTAL = 207.08 lbs 33.83 gallons

ATTACHMENT 1 MDPE Field Logs

					MDPE FIE	LD NOTES	S		
Site Name.		DCP Plant	to Lea Sta	ation 6 inch	Sec 31			Event #	1
_ocation		Lea Count					5/5/2011 8 00		
Date		5/5-6/2011							
Job#		700376.08	4 01	**	SRS#	2009-039		Start Vac	5/5/2011 12:00
Phase		MDPE Unit				1107		Stop Vac	5/6/2011 0 00
Onsite Per	sonnel	, M L.Coggı	ns			-		Leave Site	5/6/2011 1:30
WELL#		BEFORE			AFTER			COMME	NTS
	PSH_	GW	PSH-T	PSH	GW	PSH-T			
MW-1	79.47_	83.79	4 32	-	80.89	_	TD=95_40		
MW-2		78 43	=	-	78 49	-	TD=94 08		•
MW-3		79 31	-	-	79.45	-	TD=95 04		<u></u>
MW-4		80 21		-	80.30	-	TD=94 45		
MW-5		79.97	-		80 13		TD=96 76		
Ī									
WASTE	H2O.	1663		PSH	14		TOTAL (GAL) 1677	
Sample		Anal		Date:		ne:	Comments:		
NFLUENT		ASTM		5-May-11		:00			
NFLUENT		ASTM		5-May-11		:00			
NFLUENT		ASTM		5-May-11		00			
EFFLUENT	<u></u>	BTEX	/TPH	5-May-11	18	3.00			
		1							
Notes:									
				, <u>, , , , , , , , , , , , , , , , ,</u>					

.

.

Start Date 5 5.11

MDPE FIELD DATA

Start Date	0 0.11								ויטועו	E LIETO DY										
		-	Total Flow			Well Flow			<u> </u>						Well	Data				
TIME	SAMPLE	Inflent temp.	Diff	Pressure	Inflent temp.	Diff.	Vac	FID	Propane	EXHAUST					COMN	MENTS				
	TAKEN	(°f)	Pressure	(In h2O)	(°f)	Pressure	(In.Hg)	Composite	Tank	TEMPF	MV	V1	\bigwedge	<		<		<		<
			(INH20)			(INH20)		(PPM)	(%-size)	•	VAC	PPM	VAC	РРМ	VAC	PPM	VAC	PPM	VAC	PPM
			6" Pitot			2" Preso			500 gal		(INH2O)		(INH2O)	PPIVI	(iNH2O)	PPIVI	(INH2O)	PPIVI	(INH2O)	PPIVI
12 00		96	0 6	0.16	78	0 9	21	633.9	23%	1406	3.19	-	> <	> <	$\supset \subset$	> <	> <	> <	><	> <
13 00	*	102	06	0.15	85	13	21	50000+	21%	1407	11 62	50000+	> <	> <	$\supset \subset$	> <	> <	> <	> <	> <
14 00		102	06	0.15	88	26	21	50000+	20%	1408	15 89	50000+	> <	> <		> <	> <	> <	> <	> <
15 00		104	0.6	0.15	89	25	21	50000+	68%	1409	15 43	50000+	> <	> <	$\supset <$	> <	> <	> <	> <	> <
16.00		105	0.6	0.15	90	11	21	50000+	67%	1411	14.28	50000+	> <	> <		> <	><	> <	$\supset <$	> <
17 00		105	0.6	0.15	95	19	21	50000+	66%	1408	13,86	50000+	$\overline{}$	> <	$\supset \subset$	> <	$\supset \subset$	> <	$\supset \subset$	> <
. 18 00	**	104	0.6	0.15	92	1.7	21	50000+	65%	1410	13.12	50000+	> <	> <		${}$	> <	> <	$\supset \subset$	> <
19 00		101	06	0 15	88	1.2	21	50000+	65%	1414	12.31	50000+	> <	> <	$\supset \subset$	> <	> <	> <	$\supset \subset$	> <
20 00		95	0.6	0.15	72	1.3	21	50000+	59%	1407	12.4	50000+	> <	> <		> <	$\supset \subset$	${}$	$\supset \subset$	> <
21 00		90	06	0.15	70	1.1	21	50000+	59%	1412	12.76	50000+	> <	> <		> <	> <	> <	><	> <
22 00		87	0.6	0.15	66	12	21	50000+	59%	1412	12 98	50000+	> <	> <	$\supset \subset$	${\mathbb X}$	$\supset \subset$	> <		> <
23 00	•	85	0.6	0.15	64	12	21	50000+	58%	1411	13 2	50000+	> <	> <	$\supset \subset$	${\mathbb X}$	$\supset \subset$	> <		> <
0:00		82	0.6	0 15	62	11	21	50000+	57%	1407	13 11	50000+	> <	${\mathbb X}$		${\mathbb X}$		${>}$		> <

Soil Vacuum Influence

Observation Well	MW-5
Extraction Well (EW)	MW-1
Distance (ft) to EW	53'
Time ·	In.H2O
13.00	0 13
18 00	0
23.00	0

ATTACHMENT 2

Laboratory Analytical Results

806-665-0750 806-665-0753 877-788-0750

Date: <u>5/16/11</u>

Midwest Precision Testing LLC 135 N Price Rd Pampa, TX 79065 wv www.mwptlab.com

The following analytical results were produced using the strictest quality control and most current methods:
COC #: N/A
Lab #: 5236-5238
Quality Control #: 1507
Approved by:
Neil Ray
Neil Ray

Midwest Precision Testing LLC

806-665-0753 877-788-0750 135 N Price Rd Pampa, TX 79065

www.mwptfab.com

Sample Matrix: Gas Sample Type: Spot Preservative: N/A

Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc.

Project Location: DCP Plant to Lea Station

6 inch #2

Sample Id.: Influent #1

700376.084.01 Trace: 266021

Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 5/05/11 Time: 1:00 pm

Sampled By: N/A Analysis Date: 5/13/11 Analysis By: Andrew Dunn

Lab #: 5236

Quality Control Report: 1507

Analytical Results

Gas Composition				
	Mol %	<u>GPM</u>	Vol %	Wt. %
Nitrogen (N2):	93.2549	10.2108	82.8529	85.3878
Carbon Dioxide (CO2):	1.8113	0.3056	2.4961	2.5998
Hydrocarbon Composition	Mol %	GPM	Vol. %	Wt. %
Methane (CH4):	0.3792	0.0644	0.5193	0.1983
Ethane (C2H6):	0.0007	0.0002	0.0014	0.0007
Propane (C3H8):	0.0256	0.0070	0.0571	0.0369
Iso-Butane (C4H10):	0.0540	0.0176	0.1426	0.1022
N-Butane (C4H10):	0.2970	0.0932	0.7567	0.5627
Iso-Pentane (C5H12):	0.4750	0.1729	1.4023	1.1154
N-Pentane (C5H12):	0.8124	0.2931	2.3803	1.9127
Hexane+ (C6H14):	2.8900	1.2481	9.3913	8.0834
Totals	100.0000	12.4129	100.0000	100.0000

BTU -dry (BTU/ft ³):	215.3	Z-Comp. Factor-dry:	0.99907
BTU -water vapor sat.(BTU/ft ³):	213.8	Z-Comp. Factor-water vapor sat.:	0.99220
			•
Specific Gravity -dry:	1.0647	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0643		

Midwest Precision Testing LLC

806-665-0753° 877-788-0750 135 N Price Rd
 Pampa, TX 79065

www.mwptlab.com

Sample Matrix: Gas

Client: Trace Analysis, Inc.
Project Location: DCP Plant to Lea Station

Sample Type: Spot Preservative: N/A

6 inch #2

Sample Container: Tedlar Bag

Sample Id.: Influent #2

Method(s): ASTM D 1945

700376.084.01 Trace: 266022

Gas Analysis by Gas Chromatography Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 5/05/11 Time: 6:00 pm

Sampled By: N/A Analysis Date: 5/13/11 Analysis By: Andrew Dunn

Lab #: 5237

Quality Control Report: 1507

Analytical Results

Gas Composition				
	Mol %	<u>GPM</u>	Vol %	Wt. %
Nitrogen (N2):	94.3246	10.3262	85.7321	87.7404
Carbon Dioxide (CO2):	1.9388	0.3271	2.7334	2.8271
Hydrocarbon Composition	Mol %	<u>GPM</u>	<u>Vol. %</u>	<u>Wt. %</u>
Methane (CH4):	0.0969	0.0165	0.1358	0.0515
Ethane (C2H6):	0.0005	0.0001	0.0012	0.0005
Propane (C3H8):	0.0350	0.0096	0.0798	0.0511
Iso-Butane (C4H10):	0.0671	0.0219	0.1815	0.1292
N-Butane (C4H10):	0.3242	0.1017	0.8449	0.6239
Iso-Pentane (C5H12):	0.4702	0.1711	1.4201	1.1217
N-Pentane (C5H12):	0.7536	0.2718	2.2589	1.8025
Hexane+ (C6H14):	1.9890	0.8589	6.6124	5.6519
. Totals	100.0000	12.1048	100.0000	100.0000

BTU -dry (BTU/ft ³):	165.3	Z-Comp. Factor-dry:	0.99924
BTU -water vapor sat.(BTU/ft ³):	164.3	Z-Comp. Factor-water vapor sat.:	0.99295
		,	
Specific Gravity -dry:	1.0456	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0448		

Midwest Precision Testing LLC

806-665-0753 877-788-0750 135 N Price Rd Pampa, TX 79065

www.mwptfab.com

Sample Matrix: Gas

Sample Type: Spot Preservative: N/A

Sample Container: Tedlar Bag

Method(s): ASTM D 1945

Gas Analysis by Gas Chromatography Client: Trace Analysis, Inc.

Project Location: DCP Plant to Lea Station

6 inch #2

Sample Id.: Influent #3

700376.084.01 Trace: 266023

Sample Temp.: N/A Atmospheric Temp.: N/A

Pressure: N/A Field Data: N/A

Sample Date: 5/05/11 Time: 11:00 pm

Sampled By: N/A Analysis Date: 5/13/11 Analysis By: Andrew Dunn

Lab #: 5238

Quality Control Report: 1507

Analytical Results

Gas Composition				
	Mol %	<u>GPM</u>	Vol %	Wt. %
Nitrogen (N2):	92.8813	10.1692	83.1410	85.6343
Carbon Dioxide (CO2):	2.4919	0.4204	3.4599	3.6015
Hydrocarbon Composition	Mol %	<u>GPM</u>	Vol. %	<u>Wt. %</u>
Methane (CH4):	0.4726	0.0803	0.6520	0.2489
Ethane (C2H6):	0.0297	0.0079	0.0647	0.0293
Propane (C3H8):	0.0511	0.0140	0.1145	0.0739
Iso-Butane (C4H10):	0.0873	0.0284	0.2324	0.1665
N-Butane (C4H10):	0.4135	0.1297	1.0613	0.7887
Iso-Pentane (C5H12):	0.5357	0.1950	1.5933	1.2666
N-Pentane (C5H12):	0.8156	0.2942	2.4076	1.9335
Hexane+ (C6H14):	2.2215	0.9593	7.2732	6.2567
Totals	100.0000	12.2984	100.0000	100.0000

BTU -dry (BTU/ft ³):	190.5	Z-Comp. Factor-dry:	0.99915
BTU -water vapor sat.(BTU/ft ³):	189.3	Z-Comp. Factor-water vapor sat.:	0.99253
Specific Gravity -dry:	1.0556	14.65 psi Pressure Base	
Specific Gravity-water vapor sat.:	1.0551		

Midwest Precision Testing LLC

806-665-0753 877-788-0750

135 N Price Rd Pampa, TX 79065

www.mwptlab.com

Sample Type: Standard

Preservative: N/A

Sample Container: Industrial Cylinder

Sample Id.: DCG

Reference Std. 47366AW

Sample Temp.: 120° F Analysis Date: 5/13/11 Analysis By: Andrew Dunn

Method(s): ASTM D 1945

Gas Analysis by Gas

Chromatography

Quality Control Report#: 1507

Analytical Results

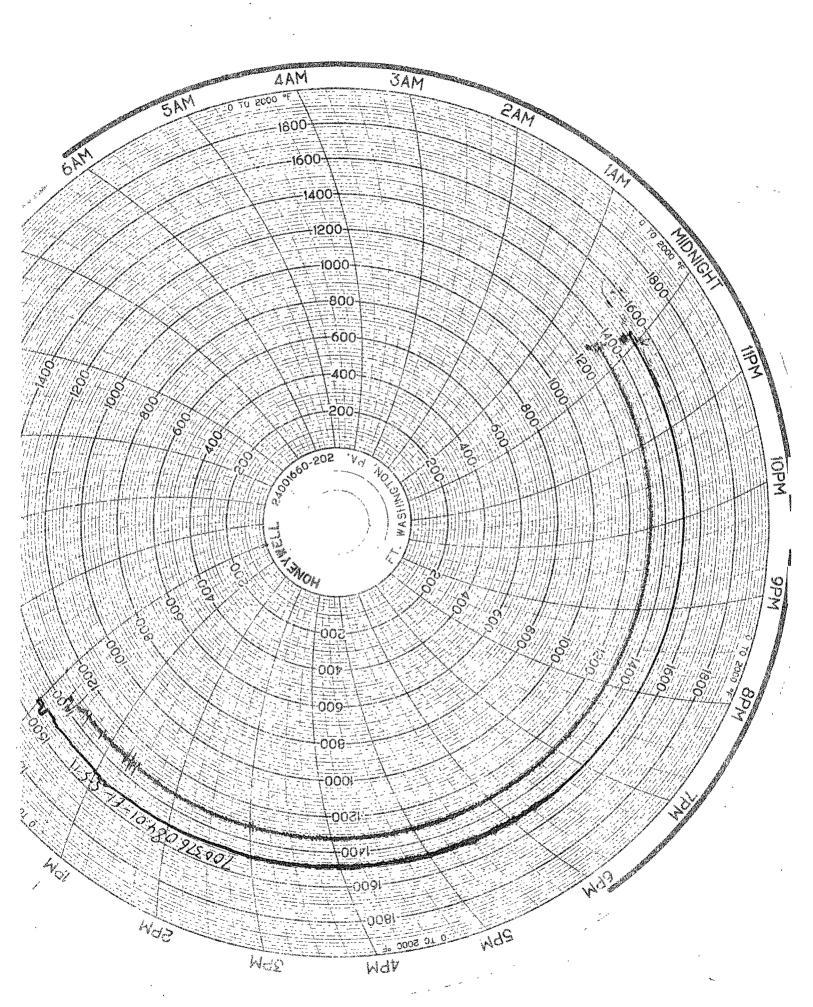
RESULTS	ACTUAL	ANALYSIS			
Gas Composition			MDL	RL.	% Deviation
	Mol %	Mol %	Mol %	ppm mol	(90-100%)
Nitrogen (N2):	4.926	4.9080	0.0010	10	99.6
Carbon Dioxide (CO2):	1.489	1.5073	0.0010	10	98.8
			MDL	RL	% Deviation
Hydrocarbon Composition	Mol %	Mol %	Mol %	ppm mol	(90-100%)
Methane (CH4):	69.955	69.8646	0.0001	1	99.9
Ethane (C2H6):	9.138	9.1822	0.0001	1	99.5
Propane (C3H8):	5.947	5.9777	0.0001	1	99.5
Iso-Butane (C4H10):	3.018	3.0231	0.0001	1	99.8
N-Butane (C4H10):	3.021	3.0258	0.0001	1	99.8
Iso-Pentane (C5H12):	1.001	1.0035	0.0001	1	99.7
N-Pentane (C5H12):	1.007	1.0156	0.0001	1	99.1
Hexane+ (C6H14):	0.498	0.4922	0.0001	1	98.8
Totals	100.000	100.000			

ACTUAL		ANALYSIS	
BTU -dry (BTU/ft3):	1322.3	BTU -dry (BTU/ft ³):	1323.4
BTU -water vapor sat. (BTU/ft3):	1316.6	BTU -water vapor sat. (BTU/ft ³):	1317.7
Specific Gravity -dry:	0.8337	Specific Gravity -dry:	0.8345
Specific Gravity -water vapor sat.:	0.8406	Specific Gravity -water vapor sat.:	0.8415
Z-Comp. Factor -dry:	0.99565	Z-Comp. Factor -dry:	0.99564
Z-Comp. Factor -water vapor sat.:	0.98309	Z-Comp. Factor -water vapor sat.:	0.98307

LAB Order ID#	1051014
---------------	---------

-	l	1
Page	of	

TraceAnalysis, Inc.


email: lab@traceanalysis.com

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 5002 Basın Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313 200 East Sunset Rd , Suite E El Paso, Texas 79922 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 BioAquatic Testing 2501 Mayes Rd , Ste 100 Carrollton, Texas 75006 Tel (972) 242-7750

Company Name: TALON LPR JO PLAINS ALL AMERICAN 866-742.0742 Address: (Street, City, Zip) Fax #: 901 N. Bivins, Amarico, Tx 79107 Contact Person: E-mail:												(Cir	cle					EQI			d N	No.)						
Contact Per	1. BIVING , AMARILE	-0 , '1 x		4104	F-m	ail·										-		1	3,	1	47	6						۾ ا	
SIA	SIMON LAUSHE SMAUSHER TALONCPECON &												00/0	휘	1	į i	Γ.	*			b -l	or.	7			ngai	} }		
invoice to:	voice to:												3	.	604	Se Hg	14	\$	129	₽ ″	4	30	-	+	1			sta	
(If different Project #:	from above) TASON F	ENKY	_('	کھریہ)	<u>>(</u>	oot Nan	200	<u>- 79</u>	05	<u> </u>	#6	77	ЩĞ		5	E e			+	$\vdash \uparrow$	\top			4				Į Ę	
7703°CC #.	76.004.01		7	DEP P	(4~7	Te	16. . / E	4	STAT	100 L	1001	9/	005	¥	0	ဋ္ဌိုင်					325			1 2	<u></u>			±	
Project Loc	Project #: Project Name: Project Name: Project Location (including state): Sampler Signature: Project Location (including state): Sampler Signature: Project Name: Project Name:																												
CEA (Loury, Monument	- NIM		,					35			~ 8	3(3)	윊	3	3 8		စ္ဆ		729	827	8		2	S, E	6		d di	1
	,	RS	ount	MATR	RIX	₽ F	RESER METI	VATIV IOD	/E	SAME	PLING	8021 / 602	602 / 8260 / 624 [X1005 TX1005 Ext(C35)	0/0	25	Ag As	S	olatile	3	7 092	. Vol. 8270 / 625	81/6	ı	tent	K, TDS, RC	1 1		Time	
LAB# (LAB USE) (ONLY)	FIELD CODE	# CONTAINERS	Volume / Amount	WATER SOIL AIR	SLUDGE	HOS	H ₂ SO ₄	ICE	NONE	DATE	TIME	MTBE 802	8027 12/18	101	PAH 8270 / 625	TCLP Metals Ag As Ba Cd Cr Pb	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol. 8260 / 624	GC/MS Semi. Vol.	Pesticides 8081 / 608	BOD, TSS, pH	Moisture Content	Na, Ca, Mg, K,	ASTM		Turn Around Time if different from standard	Hold
266021	INFLUENT# 1	1	ise	义					1	3 MAY	13:00														١,	X			
022	INFLUENT #2	l	1	X.					x	2011	(b). co						П								Ι,	×			
023	INFLUENT #3 EFFLUENT #1		17Z	1					7	SMAI	93:a				1		T			П					,	X			П
024	FEFLURAT #1	1	278	义					1	5M97	18:00		××	1	1					II	\top	T		\top	+		+	\top	\Box
	<u> </u>		C/IC						~	וועכי	10.00		<u> </u>	11	+	_	\Box	+	\top	\Box	\top	1		1	+	\Box	11		\Box
			-			$\vdash \vdash$		+ +	-					+	+	-		+	+-		+	+	\vdash	+	+	\vdash	+	 	++
						 				 		\Box	+	\vdash	-	+	H	\dagger	+	H	+	\dagger	\Box		+	-	++	+	\forall
					\vdash	-		+	-	 		\vdash		+	+			+	+-	$\dagger \dagger$	+	+	H	+	+	++	+	+	+
	,		 	 	†-			+	_	 		\vdash		+	+	+	H	t	+	+	+	+	H		+	+	++	+	+
			 		-			+		 	-	\vdash		+	+	+	\vdash	+	+	\vdash	+	+		+		-	++		++
			-		-			+ +				\vdash			+	+	+		-		+	+		+	+	-		 	+
Relinquish	ned by: Company: Da GUZNS SM TALON CPK	A711	ime:	Received		Com	bany:	Λ <u>-</u>	ate: / (0/i1	Time:	OBS	220	Ч°с	1.77		US ILY		F	REMA	ARK	S:				<u> </u>	<u> </u>			
Relinquish	ned by: Company: Da		ime:	Received		Com	oàny:		ate:	Time			°c °c	Intad Head	y) Ispace	ŠÝŲ V	ĀĀ												
Relinquish	ned by: Company: Da	ate: T	ime:	Received	by:	Com	pany:	D	ate:	Time	INST OBS COR			Ľog-i	n-Rev	iew		ור ס	RRP	Rep	ort R	s Rec equire Repo ed	ed	_	A A Y	17	· 20	11 de	JM
Submittal c	of samples constitutes agreement	to Terms a	nd Con	ditions listed	d on rev	erse sid	de of C	. O. C	;.			Car	rier#	U	PS	-	Tz	23	5	41	2	82	3 4	· C		tt		•	

ATTACHMENT 3

Oxidizer Charts

GANDY CORPORATION P.O. BOX 2140 LOVINGTON, NM 88260 (575) 396-0522 FAX (575) 396-0797 PRC 14225

BILL TO: PLAINS ALL AMERICAN C/O ENV-00 ACCTS.PAYABLE

P.O. BOX 4648

HOUSTON, TX 77210-4648

DCP TO LEA STATION #2 LEASE:

SRS 2009-039

		PAGE 1	
NVOICE DATE		INVOICE NO.	
5/30/11	•		197387
YTITMAUC	DESCRIPTION	UNIT PRICE	AMOUNT
	05/06/11 WT. 444981		
,	JOB 700376-084-01	,	
3.25	HRS HAZMAT, DOT, COATED VACUUM TRUCK	W/OPER 108.00	351.0
40.00	BBLS DISPOSAL FEE	0.85	34.0
	EMPTY POLY TANK. HAULED 40 BBLS WATER TO DISPOSAL.	S PRODUCED	
EN	TRY		
COM	PLETED [®] JON 0 8 7 1/1		
	_		
		. .	
ļ			
		STOTAL (5.5%	385.0 21.1
	Thank You INV	OICE TOTAL	406.1

TERMS. Net., Interest of 1 1/2% per month (18% per annum) added to accounts over 90 days.

78530

 24-HÖÜR SERVICE, CALL LOVINGTON 396-4948 TATUM 398-4960

GANDY CORPORATION

KILL TRUCKS - VACUUM TRUCKS - WINCH TRUCKS
TANK CLEANING - ROUSTABOUTING
PRC #14225

P.O. BOX 2140 LOVINGTON, NEW MEXICO 88260

444981

Date 5/6/11		356			
Company Plains Pipeline	PurchaseOrder No			nvoice lumber	
From DCP TO Lea STATZO 72	Rig No		Location	· · · · · · · · · · · · · · · · · · ·	
To Lease	Well No.		Location		
	4.474	A.M. P.M.	TIME	rate	AMOUNT
Diesel Brine Water Fresh Water Crude Oil Gall Water Acid Bbls	. Hauled 40			.85	34.00
Driver, Operator or Pusher Richard G Lenny	7.00		3,25	108.00	357.00
Helper wAter - 1677		·			
Helper PSH ~ 14		JUD#	,		
Helper 1(9) Tot	pr 7003	76.084.	0		
Other Charges					
	. 0/ /				
Description of Work: Empty Poly Tank			·		
TAKE TO DISPOSAL	· Spankle				
Wait time 9+ Dist	iosal 30 m	1,13			
·				Sub Total	385.00
SRS#2009	- 039			Sales Tax	21.18
Authorized by: Jason Jenry	05/20/201	1		TOTAL	406.18
Superior Printing Service: Inc 101	1				