NM1 - 11

APPROVALS

YEAR(S):

2010____

Bill Richardson

Governor

Jim Noel Cabinet Secretary

Karen W. Garcia Deputy Cabinet Secretary Mark Fesmire
Division Director
Oil Conservation Division

December 8, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Reuse Remediated Soils for the Stabilization/Solidification of Drilling Mud, Tank Bottoms, and Sludge

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated November 2, 2010 to remove approximately 15,000 cubic yards of remediated soils from Cell 5; stockpile in a designated bermed area; and utilize the remediated soils for the stabilization and/or solidification of incoming drilling mud, tank bottoms, and sludge. The analytical results provided in the request, demonstrates that Envirotech has remediated the contaminated soils within Cell 5 to the concentration limits that would allow OCD the authority approval the application of additional lift.

OCD hereby grants Envirotech approval to reuse the remediated soils from **Cell 5** for the stabilization and/or solidification of incoming drilling mud, tank bottoms, and sludge with the following conditions:

<u>Cell 5:</u>

- Envirotech shall control blowing dust and reduce the potential of fugitive dust emissions while transferring the remediated soils from Cell 5 to the designated stockpile area. Pursuant Paragraph (6) of Subsection C of Section 15 of 19.15.36 NMAC, operational requirements regarding landfarms, Envirotech may "add moisture, as necessary," to the remediated soils "to control blowing dust."
- Envirotech shall complete a vadose zone monitoring/sampling event upon the removal of the remediated soils to the original native ground surface.
- If the remediated soils are removed in a phased approach, Envirotech shall complete a vadose zone monitoring/sampling event upon the removal of the remediated soils to the original native ground surface within each phase.

X.

Envirotech, Inc. Commercial Landfarm #2 Permit NM-1-0011 December 8, 2010 Page 2 of 2

- Envirotech shall comply with the release response provision of Paragraph (5) of Subsection E of 19.15.36.15 NMAC, if "vadose zone sampling results show that the concentrations of TPH, BTEX or chlorides exceed the higher of the PQL or the background soil concentrations."
- Envirotech shall obtain OCD approval prior to the placement and application of contaminated soils within Cell 5.

Stockpiling of Remediated Soils:

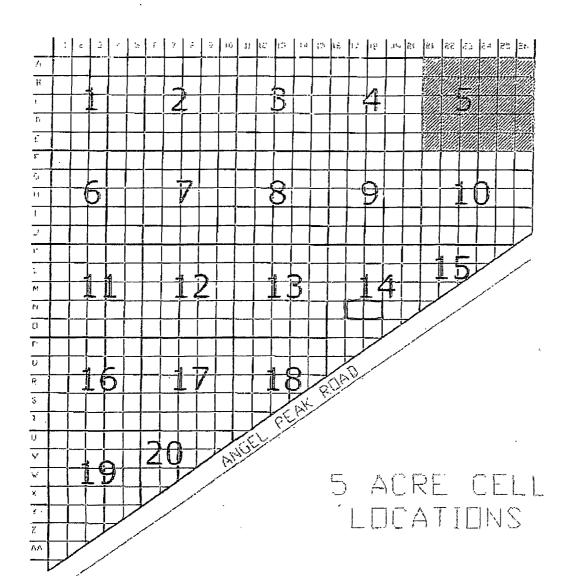
- Envirotech shall ensure that the area containing the stockpiled remediated soils be properly bermed to prevent the collection of surface water run-on and control storm water run-off.
- Envirotech shall ensure that no pooling or ponding of run-off water occur within the bermed stockpile area. Envirotech shall remove any ponding of precipitation within twenty-four (24) hours of discovery.
- Envirotech shall ensure that the stockpiled remediated soils do not exceed a height of six (6) feet.
- Envirotech shall control blowing dust and reduce the potential of fugitive dust emissions of the stockpiled remediated soils from leaving the surface waste management facility. Pursuant Paragraph (6) of Subsection C of Section 15 of 19.15.36 NMAC, operational requirements regarding landfarms, Envirotech may "add moisture, as necessary," to the stockpiled remediated soils "to control blowing dust." If necessary, OCD may require Envirotech to reduce the height of the stockpiled remediated soils to address fugitive dust emissions.

Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely.

Brad A. Jones


Environmental Engineer

BAJ/baj

Attachment: Facility Map (dated August 12, 2010)

cc: OCD District III Office, Aztec

KEY

19 5 ACRE CELL

ENVIROTECH NMOCD PERMITED LANDFARM # 2 CELL 5

SCA	LE: 1=1	00'	FIGURE NO.	REV
PRO	JECT NO).	TIGURE NO.	
			REVISIONS	•
NO.	DATE	BY	DESCRIPTION	
MAP	DRWN	BMM	8-12-10 BASE DRWN	

envirotech

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

November 2, 2010

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RECEIVED OCD

RE: Second Request for removal of remediated soil in Cell 5.

Dear Mr. Jones:

On August 12, we sent in a request to remove remediated soil from a five (5) acre cell from an area in Land Farm 2. This letter is to remind you of this request as we realize you have been extremely busy.

In reviewing the total cubic yardages in our five (5) acre cells we would like to request approval from the NMOCD to remove remediated soil from Cell 5 in Land Farm 2 and reuse it as blending stock.

Cell 5 presently contains 12,051 cubic yards of soil. In the effort to keep the remediation zone at an acceptable level of less than 15,000 cubic yards or less than 24", we do not want to add an additional layer of soil. Envirotech Inc proposes to remove approximately 12,100 cubic yards of remediated soil and stockpile it to be used as blending stock. The material will be stored in the bermed area in use for the current supply of blending stock. All of the remediated soil has been tested and has passed the NMOCD requirements for discontinued maintenance. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 cell 5 has passed laboratory analysis with less than 100 ppm TPH, 50 ppm BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. Cell 5 was sampled using a five point composite protocol, results are attached. In addition the area designated for stockpiling is mapped as requested.

Envirotech Inc. anticipates the remediated material will be used for blending stock in the next five (5) years, however, that is not guaranteed, as we have no way to forecast the amount of material we will receive.

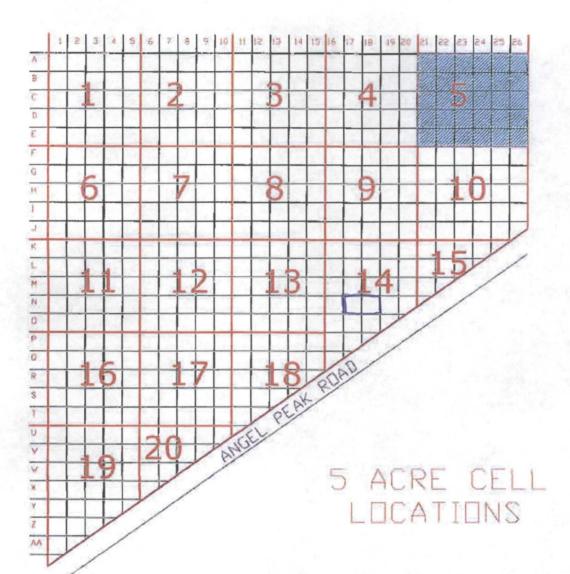
Envirotech Inc. respectfully requests expedition of this matter, in order that we may continue to serve the Four Corners region without interruption.

Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,

Envirotech, Inc.

Vice President, CHMM kpkerr@envirotech-inc.com


Vle P. Kerr

April E. Pohl

Land Farm Administrator apohl@envirotech-inc.com

AEP/Office/Corporate/LF/2ndLF2Cell5removalrequest/2010/11-2-10

N

KEY

19 5 ACRE CELL

ENVIROTECH NMOCD PERMITED LANDFARM # 2 CELL 5

SCAL	E: 1=1	00'	FICUR	E NO.	REV
PROJ	ECT NO).	- FIGUR	E NU.	4
			REVISI	ONS	
NO.	DATE	BY		DESCRIPTION	
MAP	DRWN	BWW	8-12-10	BASE DRWN	

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	5	Date Reported:	08-05-10
Laboratory Number:	55396	Date Sampled:	08-02-10
Chain of Custody No:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-04-10
Preservative:	Cool	Date Analyzed:	08-05-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	47.9	0.1
Total Petroleum Hydrocarbons	47.9	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Review

EPA Method 8015 Modified Nonhalogenated Volatile Organics **Total Petroleum Hydrocarbons**

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	08-05-10 QA/	QC	Date Reported:		08-05-10
Laboratory Number:	55425		Date Sampled:		N/A
Sample Matrix:	Methylene Chlo	ride	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		08-05-10
Condition:	N/A		Analysis Reque		TPH
White Section of the Control of	l-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept. Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Blank Conc. (mg/L - mg/Kg)		Concentration		Detection Limit	
Gasoline Range C5 - C10		ND	•	0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range	
Gasoline Range C5 - C10	ND	, ND	0.0%	0 - 30%	•
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%	
Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept. Range
Gasoline Range C5 - C10	ND	250	258	103%	75 - 125%
Diesel Range C10 - C28	ND	250	253	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55393-55397, 55410-55411, 55425, 55428 and 55431

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	5	Date Reported:	08-05-10
Laboratory Number:	55396	Date Sampled:	08-02-10
Chain of Custody:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-05-10
Preservative:	Cool	Date Extracted:	08-04-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Barrana	AID.		
Benzene Toluene	ND ND	0.9 1.0	
Ethylbenzene	ND ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.6 %
	1,4-difluorobenzene	103 %
	Bromochlorobenzene	101 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

the Mark Control of the Control of t					
Client:	N/A	,	Project #:		N/A
Sample ID:	0805BBLK QA/QC		(8-05-10	
Laboratory Number:	55393	•	Date Reported: Date Sampled:	ı	N/A
Sample Matrix:	Soil		Date Received:	ł	N/A
Preservative:	N/A		Date Analyzed:	(8-05-10
Condition:	N/A		Analysis:	ŧ	BTEX
Calibration and	I-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.
Detection Limits (ug/L)		Accept. Ran	ge 0 - 15 %	Conc	Limit
3enzene	1.0839E+006	1.0861E+006	0.2%	ND	0.1
Toluene	1.2145E+006	1.2169E+006	0.2%	ND	0.1
Ethylbenzene	1.0890E+006	1.0912E+006	0.2%	ND	0.1
p,m-Xylene	2.7702E+006	2.7757E+006	0.2%	ND	0.1
o-Xylene	9.8493E+005	9.8690E+005	0.2%	ND	0.1
Dùplicate Conc. (ùg/Kg)	Sample	Duplicate	%Diff.	Accept Rarige	Detect. Limi
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9
Spike Conc. (ug/Kg)	Sample	Amount Spiked	Spiked Sample,	% Recovery	Accept Range
Benzene	ND	50.0	50.5	101%	39 - 150
Toluene	ND	50.0	50.3	101%	46 - 148
Ethylbenzene	ND	50.0	49.4	98.8%	32 - 160
p,m-Xylene	ND	100	99.4	99.4%	46 - 148
_ , <u>,</u>	.,,,	100	, 33.4	~~ /0	70 - 170
o-Xylene	ND	50.0	48.8	97.7%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 55393-55397, 55410-55411, 55428 and 55431

Analyst

Client: Project #: 1-02-60001 Envirotech Sample ID: 5 08-04-10 Date Reported: 55396 Lab ID#: Date Sampled: 08-02-10 Soil Sample Matrix: Date Received: 08-02-10 Preservative: Cool 08-04-10 Date Analyzed: Condition: -Intact Chain of Custody: 10091

Parameter

Concentration (mg/Kg)

Total Chloride

5

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Closures

Analyst

CHAIN OF CUSTODY RECORD

10091

Client:			.,	Project Name / I	Location	<u> </u>			_	_						ΛΝΔί	VSIS	/ DA D	AME	TEDE	 			
Envirols	<i>Q</i> C	4		Landfa	ch 2	thod sold in the default in the defa																		
Client Address:				Sampler Name:					•		2)	21	6							*				
				Rower	600	cia p	Per	2 <			TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	8	<u> </u>		_							
Client Phone No.:				Client No.:			(<u>8</u>	ļ ģ	Pod	/leta	nion		H/F		£	Ш			8	ıtacı
	,	,		1-07-6	CODI	<u> </u>					Met	Ž	Met	181	٨/٢		¥		(418	문			9	le l
Sample No./	1	mple ate	Samp	l lan No	1	Sample		olume of			표	Ä	8	RCRA 8 Metals	Cation / Anion	<u>5</u>	TCLP with H/P	PAH	TPH (418.1)	CHLORIDE			Sample Cool	Sample Intact
	+				~ 	Matrix Sludge			ngu ₂) n	a B	-	<u> </u>	>	<u> </u>	0	T.	<u> </u>	0.	 				$\frac{S}{\sqrt{I}}$	<u>σ</u>
63	81	2/10	jct:c	055393	Solid Solid	Aqueous	4	02		X	K	X								X			Y	<u> Y</u>
64			14:5	055394	Solid Solid	Sludge Aqueous				X	K	X								X				
65			/ S. [,] C	1055395	Soil Solid	Sludge Aqueous				X	x	X								X	,			
5			/s:2	055396	Solid	Sludge Aqueous				X	X	X								X				
. 28	2		150 5 0	55397	Solid	Sludge Aqueous				义	X	X								X			1	7
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Sludge Aqueous																		
					Soil Solid	Siudge Aqueous																		
					Soil Solid	Sludge Aqueous																		
Relinquished by: (Signa	ature	∌)	Z.	6 25		Date 8/2/10	1	ime :56	и,	ceive	d by:	(Sign	ature)		·						D:	te 2/10		me SZ
Relinquished by: (Signa	ature)	1	E C		8107.0				ceive	d by:	(Sign	ature)	المريحات		<u></u>					 			-42
Relinquished by: (Signa	ature)							Re	ceive	d by:	(Signa	ature)						,					
						3	e	∩V And				e (•		·				 <u> </u>			

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Bill Richardson

Governor

Jim Noel Cabinet Secretary

Karen W. Garcia
Deputy Cabinet Secretary

Mark Fesmire
Division Director
Oil Conservation Division

December 8, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Apply a Successive Lift

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated November 2, 2010 to grant approval to apply an additional six-inch lift to the following cell(s): Cells 21, 22, 23, 25, and 27.

Based upon the analytical results provided, OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cell(s). Envirotech shall ensure that the application of an additional six-inch lift of contaminated soils to the above referenced landfarm cells does not exceed the maximum thickness of two feet or 3000 cubic yards per acre limit as specified in 19.15.36.15 NMAC. The "parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell," as stated in the November 2, 2010 request, is not equivalent to the regulatory requirement is identified above. It is OCD's understand, from conversations with Mr. Kyle Kerr, that the thickness of each cell would be measured and confirmed during the next vadose zone sampling event. Please provide the thickness in future requests. Also, please note that with the addition of successive lifts Envirotech must initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface.

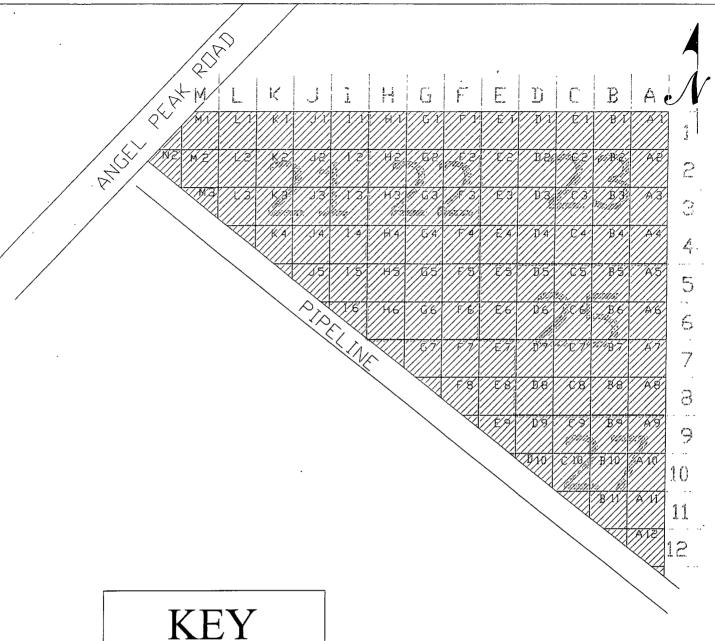
Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does

Envirotech, Inc. Commercial Landfarm #2 Permit NM-1-0011 December 8, 2010 Page 2 of 2

approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,


Brad A. Jones

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: December 7, 2009)

cc: OCD District III Office, Aztec

A8 CELL LABLES

5 ACRE CELL.

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 4 REQUEST ADDITIONAL LAYER

SCA	CC: 1 =	100		'\-
PRO	JECT NO		FIGURE NO.	
			REVISIONS	
NO.	DATE	BY	DESCRIPTION	
MAF	DRWN		12-7-09 BASE DRWN	
1				

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

November 2, 2010

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

ENVIROTECH'S LANDFARM #2 DISCONTINUED MAINTENANCE AND ADDITIONAL

LIFT FOR CELLS 21, 22, 23, 25 AND 27 IN LANDFARM 2 UNIT 4.

Dear Mr. Jones:

Attached please find analytical documentation supporting our request for discontinued maintenance at Envirotech's Land Farm #2 Unit 4, for cells 21, 22, 23, 25 and 27 located near Hilltop, New Mexico. The area being submitted is shown on the attached map, marked by blue crosshatch design. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 all cells being requested for discontinued maintenance have passed laboratory analysis of less than 100 ppm TPH, 50 ppm BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. As stated in the treatment zone monitoring portion of Envirotech's permit, no cell sampled was larger than five acres. Samples were five-point composites. Remediation zone layers averaged 6" in depth, results available upon request.

The blue cells (21, 22, 23, 25 AND 27) have passed analysis for total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylenes (see attached laboratory results). Envirotech hereby requests these cells be granted discontinued maintenance status and approval to apply an additional lift of qualifying material to these cells.

Given the parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell, we are happy to provide the following cubic yard amounts in each cell up to this time:

Cell 21: 7,708 cy

Cell 22: 5,418 cy

Cell 23: 6,651 cy

Cell 25: 7,606 cy

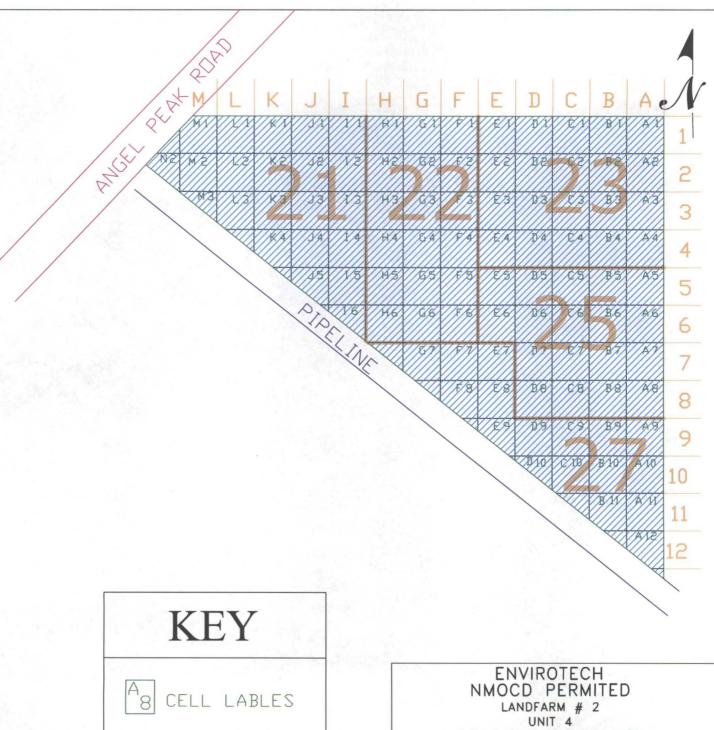
Cell 27: 6,492 cy

Due to the unusually large amounts of contaminated soil Envirotech has accepted recently, our Land Farm #2 suffers limited space constraints. Envirotech respectfully requests expedition of this matter that to serve the Four Corners region without interruption.

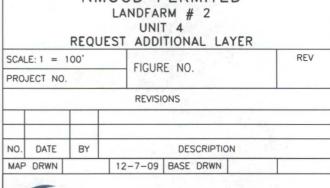
Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,

Envirotech.


Vice President/CHMM

kpkerr@envirotech-inc.com


April F Pohl

Landfarm Administrator apohl@envirotech-inc.com

AEP/Office/Corporate/LF/Closure&added lift/11-2-10

5 ACRE CELL

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	23	Date Reported:	10-04-10
Laboratory Number:	55981	Date Sampled:	09-27-10
Chain of Custody No:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Extracted:	09-30-10
Preservative:	Cool	Date Analyzed:	10-01-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	6.4	0.1
Total Petroleum Hydrocarbons	6.4	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Review

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

	Client:	Envirotech	n ,	Project #:	1-02-60001
	Sample ID:	22		Date Reported:	10-04-10
	Laboratory Number:	55982		Date Sampled:	09-27-10
١.	Chain of Custody No:	10411	3	Date Received:	09-27-10
	Sample Matrix: _≿	Soil	•	Date Extracted:	09-30-10
η	Preservatives (preserve	Cool	• •	Date Analyzed:	10-01-10
	Condition: Styles, Tenant States	Intact		Analysis Requested:	8015 TPH

Concern viv. Parameter/	in the second	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)		0.6	0.2
Diesel Range (C10 - C28)		4.0	0.1
Total Petroleum Hydrocarbons		4.6	

1967 A PAR ND - Parameter not detected at the stated detection limit.

ಯಾಗಿ ಸಾರ್ವೀ Progressis (ಕಿಪ್ಟು Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

1 Chart Land Farm 2 Unit 4 Closures

Analyst

Review

ÉPA METHOD 8015 Modified Nonhalogenated Volatile Organics Tôtal Petroleum Hydrocarbons

Client:	Envirotech	Drain at #1	1 02 60001
Cilent.	Envirolecti	Project #:	1-02-60001
Sample ID:	21	Date Reported:	10-04-10
Laboratory Number:	55983	Date Sampled:	09-27-10
Chain of Custody No:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Extracted:	09-30-10
Preservative:	Cool	Date Analyzed:	10-01-10
Condition: 11 or 11 or 12 or 1	Intact	Analysis Requested:	8015 TPH

	100		Det.
· · · · · · · · · · · · · · · · · · ·	*	Concentration	Limit
Parameter///ww/	****	(mg/Kg)	(mg/Kg)
Gasoline Range (C5 - C10)		ND	0.2
Diesel Range (C10 - C28)	3 . "	ND	0.1
Total Petroleum Hydrocarbons		ND	

Parameter not detected at the stated detection limit.

References: References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Unit 4 Closures

Analyst

Review

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	25	Date Reported:	10-04-10
Laboratory Number:	55984	Date Sampled:	09-27-10
Chain of Custody No:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Extracted:	09-30-10
Preservative:	Cool	Date Analyzed:	10-01-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
,		
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	4.0	0.1
Total Petroleum Hydrocarbons	4.0	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Review

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	27	Date Reported:	10-04-10
Laboratory Number:	55985	Date Sampled:	09-27-10
Chain of Custody No:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Extracted:	09-30-10
Preservative:	Cool	Date Analyzed:	10-01-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Review

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	10-01-10 QA/QC	Date Reported:	10-04-10
Laboratory Number:	55981	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	10-01-10
Condition:	N/A	Analysis Requested:	TPH

	⊹l⊧Cal Date:	. ⊫OalRiPa	©dRitte	% Difference	Accept Range
Gasoline Range C5 - C10	10-01-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	10-01-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Cone. (mc/L+mc/Kc)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	

Duplicate Conc. (mg/Kg)	'Sample	Duplicate :-	% Difference	Accept Range
Gasoline Range C5 - C10	ND	NÞ	0.0%	0 - 30%
Diesel Range C10 - C28	6.4	6.3	1.6%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	:	Accept Range
Gasoline Range C5 - C10	ND	250	251	100%	75 - 125%
Diesel Range C10 - C28	6.4	250	260	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55981-55985, 56008-56011

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	23	Date Reported:	10-06-10
Laboratory Number:	55981	Date Sampled:	09-27-10
Chain of Custody:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Analyzed:	09-30-10
Preservative:	Cool	Date Extracted:	09-30-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

	Dilution.	10
Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.0
Toluene	ND ND	0.9 1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	90.8 %
	1,4-difluorobenzene	86.0 %
	Bromochlorobenzene	91.2 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	22	Date Reported:	10-06-10
Laboratory Number:	55982	Date Sampled:	09-27-10
Chain of Custody:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Analyzed:	09-30-10
Preservative:	Cool	Date Extracted:	09-30-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Concentration	Det. Limit	
(ug/Kg)	(ug/Kg)	
		Concentration Limit

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	85.8 %
	1,4-difluorobenzene	78.2 %
	Bromochlorobenzene	88.2 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	21	Date Reported:	10-06-10
Laboratory Number:	55983	Date Sampled:	09-27-10
Chain of Custody:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Analyzed:	09-30-10
Preservative:	Cool	Date Extracted:	09-30-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		Det.	
15.0	Concentration	Limit	
Parameter	(ug/Kg)	(ug/Kg)	

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
•		

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter		Percent Recovery		
	Fluorobenzene	96.7 %		
	1,4-difluorobenzene	92.6 %		
	Bromochlorobenzene	93.1 %		

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	25	Date Reported:	10-06-10
Laboratory Number:	55984	Date Sampled:	09-27-10
Chain of Custody:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Analyzed:	09-30-10
Preservative:	Cool	Date Extracted:	09-30-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	, ND	0.9	

	,	.15	0.0
Toluene		ND	1.0
Ethylbenzene		ND	1.0
p,m-Xylene		ND	1.2
o-Xylene		ND	0.9
•			

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.0 %
	1,4-difluorobenzene	88.7 %
	Bromochlorobenzene	95.7 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	27	Date Reported:	10-06-10
Laboratory Number:	55985	Date Sampled:	09-27-10
Chain of Custody:	10411	Date Received:	09-27-10
Sample Matrix:	Soil	Date Analyzed:	09-30-10
Preservative:	Cool	Date Extracted:	09-30-10
Condition:	Intact	Analysis Requested:	BTEX
,		Dilution:	10

		Det.	
√1 ×	Concentration	Limit	
Parameter	(ug/Kg)	(ug/Kg)	

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.1 %
	1,4-difluorobenzene	84.3 %
	Bromochlorobenzene	95.2 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client:	N/A	Project #:	N/A
Sample ID:	0930BBLK QA/QC	Date Reported:	10 - 06-10
Laboratory Number:	55981	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	09-30-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

				Diracion.	,,,	,
Calibration a	nd -	LCal RF:	C-CalRF	VDIII.	Bank	Detect.
ampetection; E	iiiines (ugiti)		Acceptaranc	6 :⋒⊨#9%		(Elmit-
Benzene		4.7025E+006	4.7119E+006	0.2%	ND	0.1
Toluene		4.0356E+006	4.0437E+006	0.2%	ND	0.1
Ethylbenzene		3.0406E+006	3.0467E+006	0.2%	ND	0.1
p,m-Xylene		7 3692E+006	7.3840E+006	0.2%	ND	0.1
o-Xylene	•	2.7144E+006	2.7198E+006	0.2%	ND	0.1

Duplicate Conc. (ug/kg)	. Sample : Du	plicate	%Diff.	Accept Range	Detect: Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike:Gonc: (ug/kg)	Sample Ari Amo	ount(Spiked Spik	ed Sample%	Recovery .	Acceptininge.
Benzene	ND	500	479	95.8%	39 - 150
Toluene	ND	500	546	109%	46 - 148
Ethylbenzene	ND	500	438	87.5%	32 - 160
p,m-Xylene	ND	1000	935	93.5%	46 - 148
o-Xylene	ND	500	459	91.7%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 55981-55985

Analyst

Envirotech Client: Project #: 1-02-60001 Sample ID: 23 Date Reported: 09-29-10 Lab ID#: 55981 Date Sampled: 09-27-10 09-27-10 Sample Matrix: Soil Date Received: Preservative: Cool Date Analyzed: 09-29-10 Condition: Intact Chain of Custody: 10411

Parameter

Concentration (mg/Kg)

Total Chloride 340

Reference:

Comments:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Land Farm 2 Unit 4 Closures

Analyst

Envirotech Client: Project #: 1-02-60001 Sample ID: 22 Date Reported: 09-29-10 55982 Lab ID#: Date Sampled: 09-27-10 Sample Matrix: Soil Date Received: 09-27-10 Preservative: Cool Date Analyzed: 09-29-10 Condition: Intact Chain of Custody: 10411

Parameter

Concentration (mg/Kg)

Total Chloride

80

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

Client: Envirotech Project #: 1-02-60001 Sample ID: 21 Date Reported: 09-29-10 Lab ID#: 55983 Date Sampled: 09-27-10 Sample Matrix: Soil Date Received: 09-27-10 Preservative: Cool Date Analyzed: 09-29-10 Condition: Intact Chain of Custody: 10411

Parameter Concentration (mg/Kg)

Total Chloride 60

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Unit 4 Closures

Review

Analyst

Client: Envirotech Project #: 1-02-60001 Sample ID: 25 Date Reported: 09-29-10 Lab ID#: 55984 Date Sampled: 09-27-10 Sample Matrix: Soil Date Received: 09-27-10 Preservative: Cool Date Analyzed: 09-29-10 Condition: Intact Chain of Custody: 10411

Parameter Concentration (mg/Kg)

Total Chloride 95

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Unit 4 Closures

Analyst

Client: Envirotech Project #: 1-02-60001 Sample ID: 27 Date Reported: 09-29-10 Lab ID#: 55985 Date Sampled: 09-27-10 Sample Matrix: Soil Date Received: 09-27-10 Preservative: Cool Date Analyzed: 09-29-10 Condition: Intact Chain of Custody: 10411

Parameter

Concentration (mg/Kg)

Total Chloride

45

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Unit 4 Closures

Analyst

CHAIN OF CUSTODY RECORD

10411

Client: Project Name / Location: Land Form 2						unit	<u> </u>	 C (o	₹0	. 1-6	3					ANAL	YSIS	/ PAR	AME	TERS				`	
Client Address:	1			Sampler Name:							Ļ—	ΚĒ		<u> </u>	Ι -		l			X			•		
				~ ~ Z) ₀	00			(Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	6			 										
Client Phone No.: Client No.:			Lor E	7			_	βg	hod	po	RCRA 8 Metals	ioi	`	H		-	111			.	ō	act			
				-60001				/leth	(Met	Meth	₩ 8	/ A		with		TPH (418.1)	CHLORIDE			.	Sample Cool	Sample Intact			
Sample No./	e No./ Sample Sam					Sample		No./Volume Pres		reservative -		Ä	ည	Ä	RCRA 8 Metal Cation / Anion		TCLP with H/P	Į	Ĭ,	무			. 1	ldm	du
Identification		ate	Time		Matrix		Containers		HgCi, HCI		HE	<u>B</u>	\	윤	S	요	12	PA H	<u> </u>	ㅎ	_			လိ	Sa
23	9/2	7/10	15:3	55981	Solid	Sludge Aqueous	4	2		1	K	X								X				X ,	\nearrow
22		n I	l	55982	Solid	Sludge Aqueous				1	X	X								X				X	X
21			16:0	55983	Solid	Sludge Aqueous				×		X								X				×	x
25			16:19	55984	Solid	Sludge Aqueous				X	X	X								X			•	×	\mathcal{X}
27			16:3	055985	Solid	Sludge Aqueous	•			×	~	X								人				X	父
					Soil Solid	Sludge Aqueous																			
					Soil Solid	Sludge Aqueous												,							
					Soil Solid	Sludge Aqueous																			
					Soil Solid	Sludge Aqueous																			
					Soil Solid	Sludge Aqueous																		-	
Relinquished by: (Signature)				Date	Time Receiv		eive	red by: (Signature)										Date Time			me				
E Toph			9/27/10	17.	25	4	· Rene 9 793i							9/2	7/10	17	125								
Relinquished by: (Signature)			1			Received by: (Signature)																			
Relinquished by: (Signature)					-		Received by: (Signature)																		
		-							L													<u></u>			
					•		e	nv	'i r	'C	t	e	cł	1											

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Bill Richardson

Governor

Jim Noel Cabinet Secretary

Karen W. Garcia Deputy Cabinet Secretary Mark Fesmire
Division Director
Oil Conservation Division

September 28, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Clearance Completion Notification/Demonstration for Cell 28

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) demonstration and request, dated September 20, 2010 to demonstrate that after the removal of all remediated soils from Cell 28 for the stabilization and/or solidification of incoming drilling mud, tank bottoms, and sludge the landfarm operations did not contaminate the vadose zone and to grant approval to apply a six-inch lift of petroleum hydrocarbon-contaminated soils for remediation to the following cell(s): Cell 28.

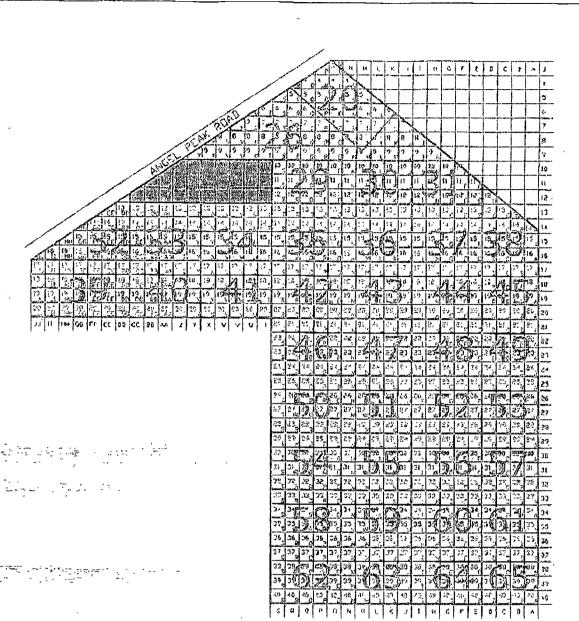
Based upon the analytical results provided, OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cell(s). Please note that by applying a six-inch lift of petroleum hydrocarbon-contaminated soils for remediation to Cell 28 Envirotech must re-initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be 2-3 foot zone below the original native ground surface.

Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

Envirotech. Inc. Commercial Landfarm #2 Permit NM-1-0011 September 28, 2010 Page 2 of 2

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,


Brad A. Jones

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: August 12, 2010)

cc: OCD District III Office, Aztec

	ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5 CELL 28							
SCAL	E: 1=1	00'		EICUD	FIGURE NO		REV	
PRO.	JECT NO).		FIGUR	FIGURE NO.			
			- "	REVISE	ONS			
NO.	DATE	BY	DESCRIPTION .					
MAP	MAP DRWN BWW 8-12-10 BASE DRWN							
_								

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

September 20, 2010

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Clearance completion notification for Cell 28, Landfarm 2, Envirotech Inc.

Dear Mr. Jones:

Envirotech Inc. is pleased to confirm the completion of the clearance of remediated soil from Cell 28, Landfarm 2 located near Hilltop, New Mexico.

Over the span of several months spanning January 11 to June 8, 2010 the clearing of the remediation zone on Cell 28 was completed. We anticipated removing at least 14,765 cubic yards. A total of 14,995 cubic yards of remediated soil were removed, down to the native soil. We used the guidelines provided by the NMOCD, staging the soil to be reused in the appropriate manner, no more than six (6) feet high and controlled to prevent fugitive dust emissions.

As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 cell 28 has passed laboratory analysis for background standards, proven by a vadose sampling as stated on the Chain of Custody form dated 9-15-10. In addition, Envirotech has sampled for chlorides. Cell 28 was sampled using a five point composite protocol, artist's rendition attached. Also, pursuant to our phone conversation of September 8, I have attached a copy of the first background sampling event in this area of Landfarm 2 Unit 5, done on October 8, 1993.

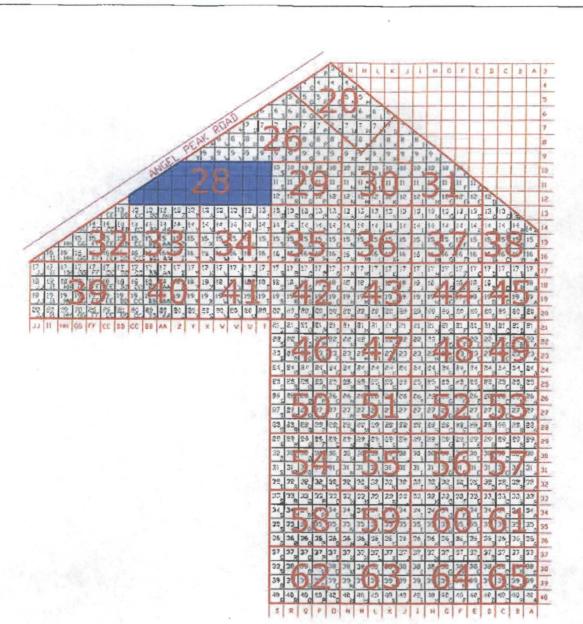
As Envirotech has successfully completed the removal, we respectfully request permission to begin using this area for a new application of soil to be remediated. As per normal procedure each layer of soil applied will be six inches or less in depth and the remediation process will begin anew.

Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,

Envirotech. In

Kyle P. Kerr


Vice President/CHMM

kpkerr@envirotech-inc.com

April E. Pohl

Landfarm Administrator apohl@envirotech-inc.com

AEP/Office/Corporate/LF/LF2cell28clearance/2010/9-20-10

ENVIROTECH
NMOCD PERMITED
LANDFARM # 2
UNIT 5
CELL 28

SCALE: 1=100'		FICURE N	FIGURE NO.			
PROJECT NO.			TIGORE IN	TIGORE NO.		
			REVISIONS			
-					Her	
NO.	DATE	BY		ESCRIPTION	200	
MAP	DRWN	BWW	8-12-10 BAS	E DRWN	In the	

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	28	Date Reported:	09-15-10 `
Laboratory Number:	55855	Date Sampled:	09-14-10
Chain of Custody No:	10351	Date Received:	09-14-10
Sample Matrix:	Soil	Date Extracted:	09-14-10
Preservative:	Cool	Date Analyzed:	09-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Unit 5 Background

Vadose Sampling (per April Pohl 9/14/10)

Sample collected 24"-36" below the treatment zone

Quality Assurance Report

N/A

N/A

09-15-10

Client: QA/QC Project #:
Sample ID: 09-15-10 QA/QC Date Reported:
Laboratory Number: 55845 Date Sampled:

Sample Matrix: Methylene Chloride Date Received: N/A
Preservative: N/A Date Analyzed: 09-15-10

Condition: N/A Analysis Requested: TPH

Blank(Conc. (mg/L=mg/kg) Concentration Detection Limits
Gasoline Range C5 - C10 ND 0.2
Diesel Range C10 - C28 ND 0.1
Total Petroleum Hydrocarbons ND

Duplicate Conc. (mg/Kg)	. Sample	Dublicate	%Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	∌ Sample	Spike Added.	Spike Result	- % Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	255	102%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: QA/QC for Samples 55845-55846, 55849-55851, 55855-55858

Analyst Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	28	Date Reported:	09-15-10
Laboratory Number:	55855	Date Sampled:	09-14-10
Chain of Custody:	10351	Date Received:	09-14-10
Sample Matrix:	Soil	Date Analyzed:	09-15-10
Preservative:	Cool	Date Extracted:	09-14-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	ND	0.9	

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
•		

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	105 %
	1,4-difluorobenzene	99.4 %
	Bromochlorobenzene	103 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 5 Background

Vadose Sampling (per April Pohl 9/14/10)

Sample collected 24"-36" below the treatment zone

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID:	0915BBLK QA/QC	Date Reported:	09-15-10
Laboratory Number:	55845	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	09-15-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

			Dilution.	TG.		
Calibration and	l-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect	X
Detection Limits (ug/L)		Accept Rang	je 0 = 15%	Conc	i. Lifatti	
_						
Benzene	3 7083E+006	3.7158E+006	0.2%	ND	0.1	
Toluene	1.8075E+006	1.8111E+006	0.2%	ND	0.1	
Ethylbenzene	1.4413E+006	1.4442E+006	0.2%	ND	0.1	
p,m-Xylene	2.8355E+006	2.8411E+006	0.2%	ND	0.1	
o-Xylene	9.7261E+005	9.7456E+005	0.2%	ND	0.1	

Duplicate Conc. (ug/Kg)	Sample Du	plicate 💮	₹ %Diffe	-Accept Range	Detecta Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc (ug/Kg)	Sample : : : Amo	ount Spiked Spi	ked Sample : 14%	Recovery	Accept Range
Benzene	ND	500	493	98.7%	39 - 150
Toluene	ND	500	501	100%	46 - 148
Ethylbenzene	ND	500	498	99.6%	32 - 160
p,m-Xylene	ND	1000	1,000	100%	46 - 148
o-Xylene	ND	500	500	100%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References. Method 5030B,

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 55845-55846, 55851-55858

Analyst Review

Chloride

Client: Envirotech Project #: 1-02-60001 Sample ID: 28 Date Reported: 09-15-10 Lab ID#: 55855 Date Sampled: 09-14-10 Sample Matrix: Soil Date Received: 09-14-10 Preservative: Cool Date Analyzed: 09-15-10 Condition: Intact Chain of Custody: 10351

Parameter

Concentration (mg/Kg)

Total Chloride

85

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Unit 5 Background

Vadose Sampling (per April Pohl 9/14/10)

Sample collected 24"-36" below the treatment zone

Analyst

CHAIN OF CUSTODY RECORD

10351

Client:		F	Project Name / Land Fa Sampler Name: Project Name / Land Fa Project Name / Land Fa Project Name / Land Fa L	ocation:	:		rad	ΛS6	50	moli	na P	er f	xpri	Pe	2DI	/ DAD	A		•			
Enxino	Tools	ļ	LandE	V-1. A	2 Uni	ts B		k	טפוני		3.	7/14	In '	ANAL	Y 515	/ PAR	AIVIE I	EHO	•			
Client Address:	120-1	S	Sampler Name:	, ,,,				-	X	K ≘	<u> </u>			Γ			[•				
			120.00	- /-		Rose	• 6		015	802	1260											
Client Phone No.:			Client No.:	_00	xcia_	REGRE	3		<u>ج</u> ۾	DE DE	9 g	stals	- E		₽		_				<u></u>	g
			(/ ^	00 1				etho	Met	eth	₩	An		i j		18.	IDE	 		Sample Cool	Sample Intact
Sample No./	Sample	Sample	1-02	- 60 s	ample	No./Volume	Pres	ervativ	<u></u> <u></u>	X	\(\)	\$	<u>۶</u>		d. ≥		1 (4	O.			ed L	Jple
Identification	Date	Time	Lab No.		/latrix	of Containers	HgCl ₂	HCI 2	칠 두	BIE	١ŏ	2	Cati	교	걸	₩.	뇬	딩			San	San
28	almia	12:/5	55855	Solid Solid	Sludge Aqueous	402		7	C 1	< \					•			×			X	Х
20	IPH V	1242	3,000	Soil	Sludge		\vdash			+-									1	3	├	
				Solid	Aqueous														6	6		
				Soil Solid	Sludge Aqueous														~1 ~1	t		
				Soil	Sludge		\vdash	_	+		+			 					,	3	 	
				Solid	Aqueous				_										0	3_		
				Soil Solid	Sludge Aqueous														-0	7		
				Soil Solid	Sludge Aqueous														70	Y		
				Soil	Sludge				+										9	/		
				Solid Soil	Aqueous			_	+		+			ļ	<u>.</u>	ļ			্	2		
				Solid	Sludge Aqueous															1		
			{ 	Soil Solid	Sludge Aqueous						-) a~	- 3		
				Soil	Siudge														22	20/		
Relinquished by: (Sig	nature)			Solid	Aqueous Date	Time	I I	ecei	ved h	v: (Sig	 nature	<u> </u>	<u> </u>	<u> </u>	L		<u> </u>			Date	Ti	me
·	idioi 0)	2	Î a G		9/4/10		1)		<u> </u>		A	J.	. l	! 1.	Å.			9/14	ı	r.03
Relinquished by: (Sig	nature)		721		1, 1, 10		R	ecei	ved b	y: (Sig	nature	7					1				† <u> </u>	
										·							~-					
Relinquished by: (Sig	nature)						R	ecei	ved b	y: (Sig	nature)	-									
				 			Л.													<u> </u>		
		•				env	, i	r 1	~ ł		ck	•										
				.			7 🛮		J	$\boldsymbol{\Box}$	- 1											1

	ENVIROTEC	 CH Inc.	
	5796 US HWY. 64, FARM (505) 632-0	MINGTON, NM 87401 0615	PIT No: C.O.C #:
FIELD REPORT	REMEDIATION F. CLOSURE VERIF		JOB No. 1-02-6000 PAGE No of
FACILITY LOCATION: Land F. SOURCE LOCATION SOURCE LOCATION	aru Z		DATE STARTED: 9/14/10 DATE FINISHED 9/14/10
SOURCE LOCATION:		Т ТҮРЕ	ENVIRONMENTAL / Re we
DIMENS	IONS:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OF COMP. SAMPLES:
FIELD NOTES & REMARKS: DEPTH TO GROUNDWATER NEAREST WATER SOURCE/TYPE NEAREST SURFACE WATER MAX TPH PER NMOCI NO. OF 5-POINT COMPOSITE SAMPLES: YARDAGE# 0-200=1 201-400=2 401-1000=3 >1000=5			*
FACILITY DIAGRA	M GRID SCALE:		
++	+	OV RESU	LTS
+ + + + + + + + + + + + + + + + + + +	+ +	SAMPLE FIELD	HEADSPACE ID (ppm)
y gad + +	+ + +	+ LAI RESU + SAMPLE ANALY 10 REQUES	LTS
TO STATE OF THE PROPERTY OF TH	B 3' deep : Points + Points + Points + Area was scritantpu titl native ciadenstics: brown tsan		SURFACE FLOW DIR.
Soil cl	transportituative crackenstics: brown tsan	stoil. dr.ysoil	ESTIMATED GROUNDWATER FLOW DIR.

Envirotech Inc.

Underground Tank Testing of Site Assessment . Site Remediatio

5796 U.S. HIGHWAY 64 - 3014 FARMINGTON, NEW MEXICO 87401

PHONE: (505) 632-0615

'93 NJ: 5 AM 9 09

November 1, 1993

Ms. Kathy Brown
State of New Mexico Oil Conservation Division
P.O. Box 2088
State Land Office Building
Santa Fe, New Mexico 87504

Dear Ms. Brown:

Attached please find the analytical results for the initial Quarterly Soil Sample taken from the approximate center of the proposed Landfarm #2 Expansion Area. This is per requirements set by our September 29, 1993 Rule 711 Permit.

The samples were taken from approximately two feet (2') below the original soil surface. The sample was obtained by hand auguring approximately two feet into the underlying soil.

The underlying soil is anticipated to be uniform over the area of the proposed expansion area. The soil is described as: Light brown, poorly graded, fine sand to coarse silt, non-cohesive, dry to moist, soft, loose, and eolian in origin.

The attached site diagram shows the location of where this soil sample was taken.

We appreciate working with you on our landfarms, and the many other areas were you have been so helpful.

Respectfully submitted, ENVIROTECH, INC.

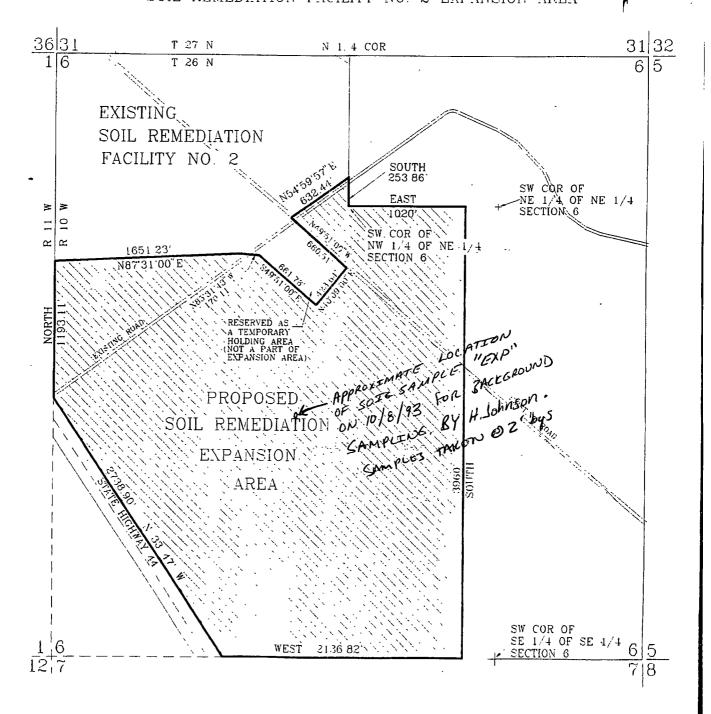
mari Q. young

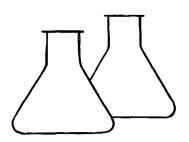
Morris D. Young

President

100893LT.OCD

Attachment: Laboratory Analysis


Site Diagram


cc: Mr. Denny Foust, NMOCD Aztec, NM office.

File

PLAT

TO ACCOMPANY DESCRIPTION FOR
YOUNG ENGINEERING SERVICES INC.
dba ENVIROTECH INC.
SOIL REMEDIATION FACILITY NO. 2 EXPANSION AREA

5796 US Highway 64-3014 • Farmington, New Mexico 87401 Phone: (505) 632-0615 • Fax: (505) 632-1865

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

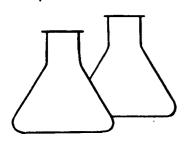
Client: Envirotech Project #: NA Sample ID: EXP Date Sampled: 10-08-93 Laboratory Number: 6278 Date Received: 10-08-93 Sample Matrix: Soil Date Analyzed: 10-11-93 Preservative: Cool Date Reported: 10-11-93 Condition: Cool & Intact Analysis Needed: TPH

Parameter	Concentration (mg/kg)	Det. Limit (mg/kg)
Total Petroleum Hydrocarbons	9.9	5.0

ND = Parameter not detected at the stated detection limit. N/A = Not applicable

Method:

Method 418.1, Petroleum Hydrocarbons, Total


Recoverable, Chemical Analysis of Water and

Waste, USEPA Storet No.4551, 1978

Comments: Land Farm 2

In Chaharlang Analyst

Review Review

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

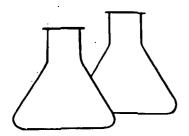
EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	NA
Sample ID:	EXP	Date Reported:	10-11-93
Laboratory Number:	6278	Date Sampled:	10-08-93
Sample Matrix:	Soil	Date Received:	10-08-93
Preservative:	Cool	Date Extracted:	10-11-93
Condition:	Cool & Intact	Date Analyzed:	10-11-93
		Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
	~~~~~~~~	
Benzene	ND	13.2
Toluene	82	32.9
Ethylbenzene	ND	13.2
p,m-Xylene	67	19.8
o-Xylene	14.8	13.2

SURROGATE RECOVERIES:	Parameter	Percent Recovery
	Trifluorotoluene	98 %
	Bromofluorobenzene	103 %

Method:


Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

ND - Parameter not detected at the stated detection limit.

Comments: Land Farm 2

Analyst



5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

#### TRACE METAL ANALYSIS

Client:	Envirotech	Project #:	NA
Sample ID:	EXP	Date Reported:	10-12-93
Laboratory Number:	6278	Date Sampled:	10-08-93
Sample Matrix:	Soil	Date Received:	10-08-93
Preservative:	Cool	Date Analyzed:	10-12-93
Condition:	Cool & Intact	Analysis Needed:	Trace metals

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
ARSENIC	0.625	0.0001
BARIUM	ND	0.01
CADMIUM	<b>0.05</b> 5	0.0001
CHROMIUM	1.675	0.0001
LEAD	2.275	0.0001
MERCURY	0.020	0.0002
SELENIUM	0.095	0.0001

Method:

Methods 3010A, 3020A, Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, USEPA 1992

Methods 7060A, 7080, 7131, 7191, 7470, 7421, 7740, 7760A Analysis of Metals by GFAA and FLAA, SW-846, USEPA 1992

ND - Parameter not detected at the stated detection limit.

Comments: Land Farm 2

analyst year



#### Inter-Mountain Laboratories, Inc.

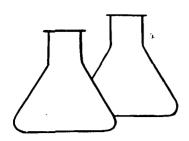
2506 West Main Street

Farmington, New Mexico 87401

Tel. (505) 326-4737

ENVIROTECH Farmington, New Mexico

DATE SAMPLED: October 8, 1993 DATE REPORTED: October 28, 1993 LOCATION: Landfarm 2


Page 1 of 1

Lab No.	Location	Depths	Calcium meq/l	Magnesium meq/l	Sodium meq/l	SAR	ppm ·	Nitrate- Nitrogen ppm	Chloride PE meq/l	Alkalinity PE meq/l	SO4 PE meq/1
31971	EXP (3948)	0~0	1.22	0.40	0.94	1.04	0.10	2.26	0.15	0.37	3.77

5796 U.S. HIGHWAY 64-3014 FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615

## QUALITY ASSURANCE/QUALITY CONTROL

**DOCUMENTATION** 



5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

#### EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

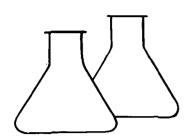
Client:	AИ	Project #:	NA
Sample ID:	Laboratory Blank	Date Reported:	10-11-93
Laboratory Number:	1011AM.BLK	Date Sampled:	NA
Sample Matrix:	Water	Date Received:	NA
Preservative:	NA	Date Analyzed:	10-11-93
Condition:	NA	Analysis Requested:	BTEX

Parameter	Concentration (ug/L)	Det. Limit (ug/L)
Benzene	ND	0.2
Toluene	ND	0.5
Ethylbenzene	ND .	0.2
p,m-Xylene	ND	0.3
o-Xylene	ND	0.2

SURROGATE	RECOVERIES:	Parameter	Percent	Recovery	
		~~~~~~			
		Trifluorotoluene		99 9	Ė
		Bromofluorobenzene		95 %	ģ

Method:

Method 5030A, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992


Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986

ND - Parameter not detected at the stated detection limit.

Comments:

Analyst X. Carlotte

Pozziow

5796 US Highway 64-3014 • Farmington, New Mexico 87401 Phone: (505) 632-0615 • Fax: (505) 632-1865

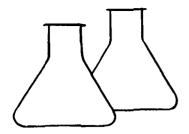
EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client: N/A Project #: N/A Sample ID: Laboratory Blank Date Sampled: N/A Laboratory Number: TPSB1011 Date Received: N/A Sample Matrix: Soil Date Analyzed: 10-11-93 Preservative: N/A Date Reported: 10-11-93 Condition: N/A Analysis Needed: TPH

Parameter	Concentration (mg/kg)	Det. Limit (mg/kg)
Total Petroleum Hydrocarbons	ND	5.0

ND = Parameter not detected at the stated detection limit. N/A = Not applicable

Method:


Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and

Waste, USEPA Storet No.4551, 1978

Comments:

Ca Chaharlang Analyst

Review Young

5796 US Highway 64-3014 • Farmington, New Mexico 87401 Phone: (505) 632-0615 • Fax: (505) 632-1865

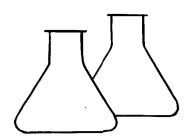
TRACE METAL ANALYSIS - BLANKS

Client:	NA	Project #:	NA
Sample ID:	Blanks	Date Reported:	10-12-93
Laboratory Number:	NA	Date Sampled:	NA
Sample Matrix:	Soil	Date Received:	NA
Preservative:	Cool	Date Analyzed:	10-12-93
Condition:	NA	Analysis Needed:	Trace Metals

Instrument		Det.
Blank	Method Blank	Limit
(mg/Kg)	(mg/Kg)	(mg/Kg)
ND	ND	0.0001
ND	ND	0.01
ND	ND	0.0001
ND	ND	0.0001
ND	ND	0.0001
ND	ND	0.0002
ND	ND	0.0001
ND	ND	0.0001
	Blank (mg/Kg) ND	Blank Method Blank (mg/Kg) (mg/Kg) ND N

Method:

Methods 3010A, 3020A, Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, USEPA, Sept. 1992


Methods 7060A, 7080, 7131, 7191, 7470, 7421, 7740, 7760A Analysis of Metals by GFAA and FLAA, SW-846, USEPA, 1992

ND - Parameter not detected at the stated detection limit.

Comments:

Alue O Glaver

Monin Dyoung Review

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

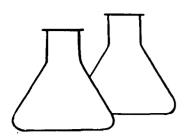
** QUALITY ASSURANCE EPA METHOD 8020 MATRIX SPIKE - AROMATIC VOLATILE ORGANICS

Client: NA Project #: NA Sample ID: Sample Spike Date Reported: 10-11-93 Laboratory Number: 6277-S-BTEX Date Sampled: 10-08-93 Sample Matrix: Water . Date Received: 10-08-93 Analysis Requested: BTEX Date Analyzed: 10-11-93 Condition: NA

	Sample Result	Spike Added	Spiked Sample Result	Det. Limit	Percent Recovery	SW-846 % Rec. Accept.
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	_	Range
Benzene	12.6	20.0	31.1	0.2	95	39-150
Toluene	2.7	20.0	21.9	0.5	96	46-148
Ethylbenzene	3.0	20.0	22.5	0.2	98	32-160
p,m-Xylene	167.7	20.0	186.5	0.3	99	46-148
o-Xylene	0.6	20.0	20.6	0.2	100	46-148

Method:

Method 5030A, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992


Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986

ND - Parameter not detected at the stated detection limit.

Comments:

Analyst

Paviau

5796 US Highway 64-3014 • Farmington, New Mexico 87401 Phone: (505) 632-0615 • Fax: (505) 632-1865

** QUALITY ASSURANCE REPORT

MATRIX SPIKE -

TOTAL PETROLEUM HYDROCARBONS

Client:

N/A

Project #: N/A

Sample ID:

Laboratory Spike

Date Sampled: N/A

Laboratory Number:

TPSS1011

Date Received: N/A
Date Analyzed: 10-11-93

Sample Matrix: Analysis Requested: Soil TPH

Date Reported: 10-11-93

	Sample Result	Spike Added	Spiked sample Result	Percent
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	Recovery
the tipe and the the sale take the				
Total Petroleum Hydrocarbons	ND	504	453	90

QA ACCEPTANCE CRITERIA:

Parameter

Acceptance Range %

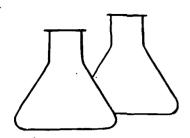
TPH

80 - 120

ND = Parameter not detected at the stated detection limit. N/A = Not applicable

Method:

Method 418.1, Petroleum Hydrocarbons, Total


Recoverable, Chemical Analysis of Water and

Waste, USEPA Storet No.4551, 1978

Comments:

Analyst Chalanta

Review C

5796 US Highway 64-3014 • Farmington, New Mexico 87401 Phone: (505) 632-0615 • Fax: (505) 632-1865

QUALITY ASSURANCE REPORT

TRACE METAL ANALYSIS - MATRIX SPIKE

Client: Sample ID: Laboratory Number: Sample Matrix: Analysis Requested: Condition:	NA NA NA Soil Trace Me NA	tals	Project #: Date Reported: Date Sampled: Date Received: Date Analyzed: Date Extracted:	NA 10-12-93 NA NA 10-12-93 NA
Parameter	_	Sample Result (mg/Kg)	Result	Percent
ARSENIC BARIUM CADMIUM CHROMIUM LEAD MERCURY SELENIUM SILVER	0.0100 1.00 0.0100 0.0200 0.0200 0.0025 0.0100 0.100	0.000 0.000	0.0106 01 0.0202	98 100 100 101 100 96 97 97
QA ACCEPTANCE CRITER		Parametei Trace Met		Range %

Method:

Methods 3010, 3020, Acid Digestion of Aqueous Samples and Extracts for Total Metals, SW-846, USEPA, July 1992.

Methods 7060, 7080, 7131, 7191, 7470, 7421, 7740, 7760A Analysis of Metals by GFAA and FLAA, SW-846, USEPA

ND - Parameter not detected at the stated detection limit.

Comments:

Analyst

Review Maria

CHAIN OF CUSTODY RECORD Project Location ent/Project Name ANALYSIS/PARAMETERS npler: (Signature) Chain of Custody Tape No. Remarks Sample No./ Sample Sample Sample Lab Number Identification Date Time Matrix 10/8/93 10:30 \$ 62.78 Soil EXP 2 inquished by (Signature) Received by: (Signature) Time Time 10/8/93 12:45 1245 inquished by: (Signature Received by. (Signature) inquished by: (Signature) Received by: (Signature)

Envirotech Inc.

5796 U.S. Highway 64-3014 Farmington, New Mexico 87401 (505) 632-0615

Bill Richardson

Governor

Jim Noel Cabinet Secretary

Karen W. Garcia Deputy Cabinet Secretary Mark Fesmire
Division Director
Oil Conservation Division

September 28, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Apply a Successive Lift

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated September 20, 2010 to grant approval to apply an additional six-inch lift to the following cell(s): Cells 47, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, and 65:

Based upon the analytical results provided, OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cell(s). Envirotech shall ensure that the application of an additional six-inch lift of contaminated soils to the above referenced landfarm cells does not exceed the maximum thickness of two feet or 3000 cubic yards per acre limit as specified in 19.15.36.15 NMAC. The "parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell," as stated in the September 20, 2010 request, is not equivalent to the regulatory requirement is identified above. It is OCD's understand, from conversations with Mr. Kyle Kerr, that the thickness of each cell would be measured and confirmed during the next vadose zone sampling event. Please note that with the addition of successive lifts Envirotech must initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface.

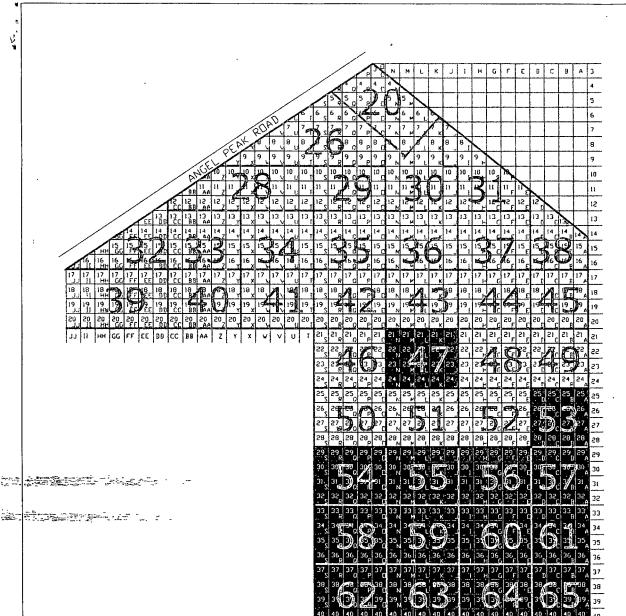
Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does

Envirotech. Inc. Commercial Landfarm #2 Permit NM-1-0011 September 28, 2010 Page 2 of 2

approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,


Brad A. Jones

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: September 17, 2010)

cc: OCD District III Office, Aztec

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5 CELLS 47, 53 TO 65

SCALE. 1=100' FIGURE NO.

				4 FIGUR	⊢ Ni()		1
PRO	JECT NO)		11001	L 110.		
	·			REVISI	SNC		
NO	DATE	BY	DESCRIPTION.				
MAF	DRWN	BWW	9-	-17-10	BASE	DRWN	

September 20, 2010

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE:

ENVIROTECH'S LANDFARM #2 DISCONTINUED MAINTENANCE AND ADDITIONAL LIFT FOR CELLS 47, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 and 65 in LANDFARM 2 UNITED MAINTENANCE AND ADDITIONAL SERVICE AND ADDITION

Dear Mr. Jones:

Attached please find analytical documentation supporting our request for discontinued maintenance at Envirotech's Land Farm #2, for cells 47,53,54,55,56,57,58,59,60,61,62,63,64 and 65 located near Hilltop, New Mexico. The area being submitted is shown on the attached map, marked by blue crosshatch design. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 all cells being requested for discontinued maintenance have passed laboratory analysis of less than 100 ppm TPH, 50 ppm BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. As stated in the treatment zone monitoring portion of Envirotech's permit, no cell sampled was larger than five acres. Samples were five-point composites. Remediation zone layers averaged 6" in depth, results available upon request.

The blue cells (47,53,54,55,56,57,58,59,60,61,62,63,64 and 65) have passed analysis for total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylenes (see attached laboratory results). Envirotech hereby requests these cells be granted discontinued maintenance status and approval to apply an additional lift of qualifying material to these cells.

Given the parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell, we are happy to provide the following cubic yard amounts in each cell up to this time:

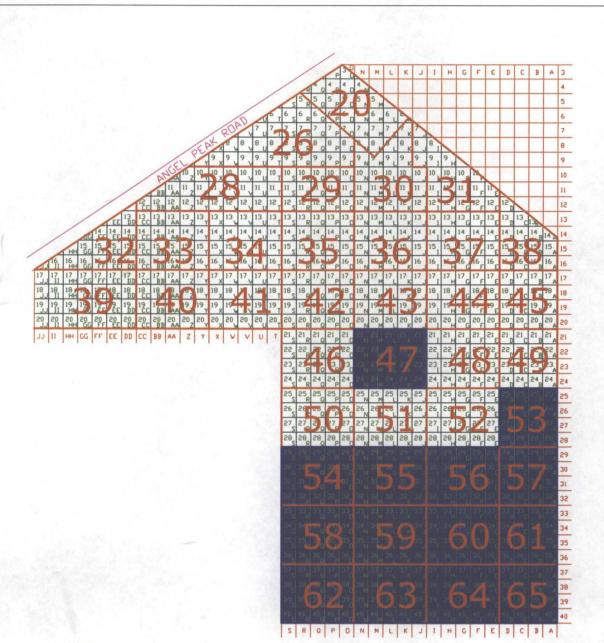
,		
Cell 47: 7,420 cy	Cell 53: 6,112 cy	Cell 54: 3,995 cy
Cell 55: 5,714 cy	Cell 56: 7,807 cy	Cell 57: 4,952 cy
Cell 58: 4,860 cy	Cell 59: 4,814 cy	Cell 60: 5,257 cy
Cell 61: 7,747 cy	Cell 62: 5,561 cy	Cell 63: 6,497 cy
Cell 64: 5 896 cv	Cell 65: 6 933 cv	•

Due to the unusually large amounts of contaminated soil Envirotech has accepted recently, our Land Farm #2 suffers limited space constraints. Envirotech respectfully requests expedition of this matter that to serve the Four Corners region without interruption.

Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,

Kyle P. Kerr


Vice President/CHMM kpkerr@envirotech-inc.com

Envirotech. Inc

April E. Pohl

Landfarm Administrator apohl@envirotech-inc.com

AEP/Office/Corporate/LF/Closure&added lift/9-20-10

ENVIROTECH
NMOCD PERMITED
LANDFARM # 2
UNIT 5
CELLS 47, 53 TO 65

PROJECT NO.

FIGURE NO.

REVISIONS

NO. DATE BY DESCRIPTION

MAP DRWN BWW 9-17-10 BASE DRWN

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	58	Date Reported:	08-04-10
Laboratory Number:	55388	Date Sampled:	08-02-10
Chain of Custody No:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	59	Date Reported:	08-04-10
Laboratory Number:	55389	Date Sampled:	08-02-10
Chain of Custody No:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	3.6	0.2
Diesel Range (C10 - C28)	0.7	0.1
Total Petroleum Hydrocarbons	4.3	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	60	Date Reported:	08-04-10
Laboratory Number:	55390	Date Sampled:	08-02-10
Chain of Custody No:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	ND	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	61	Date Reported:	08-04-10
Laboratory Number:	55391	Date Sampled:	08-02-10
Chain of Custody No:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	5.9	0.1
Total Petroleum Hydrocarbons	5.9	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	62 ·	Date Reported:	08-04-10
Laboratory Number:	55392	Date Sampled:	08-02-10
Chain of Custody No:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Land Farm 2 Closures Comments:

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc com

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	08-04-10 QA/QC	Date Reported:	08-04-10
Laboratory Number:	55404	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	08-04-10
Condition:	N/A	Analysis Requested:	TPH (

And the state of t	l • (l•Cal Date	LECEURIA	© €€al RFR	% Difference	Accept Range
Gasoline Range C5 - C10	08-04-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	08-04-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Gone (mc/L+mc/kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample :	. Duplicate	% Difference	· Accept Range
Gasoline Range C5 - C10	20.7	20.5	1.0%	0 - 30%
Diesel Range C10 - C28	0.4	0.4	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample 4	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	20.7	250	280	104%	75 - 125%
Diesel Range C10 - C28	0.4	250	255	102%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55388-55392; 55403-55405; 55408-55409

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	58	Date Reported:	08-04-10
Laboratory Number:	55388	Date Sampled:	08-02-10
Chain of Custody:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-04-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	•
Benzene	ND	0.9	
Toluene	· ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	1.2	0.9	
Total BTEX	1.2		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	99.0 %	
	1,4-difluorobenzene	98.1 %	
	Bromochlorobenzene	100 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Paviou

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	59	Date Reported:	08-04-10
Laboratory Number:	55389	Date Sampled:	08-02-10
Chain of Custody:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-04-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	15.5	0.9	
Toluene	2.6	1.0	
Ethylbenzene	3.3	1.0	
p,m-Xylene	2.6	1.2	
o-Xylene	1.9	0.9	
Total BTEX	25.9		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	100 %	
	1,4-difluorobenzene	103 %	
	Bromochlorobenzene	100 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	•	Project #:	1-02-60001
Sample ID:	60	•	Date Reported:	08-04-10
Laboratory Number:	55390		Date Sampled:	08-02-10
Chain of Custody:	10090	•	Date Received:	08-02-10
Sample Matrix:	Soit		Date Analyzed:	08-04-10
Preservative:	Cool		Date Extracted:	08-03-10
Condition:	Intact		Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	

loluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total DTEV	ND	
Total BTEX	שאו	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	101 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	103 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: **Land Farm 2 Closures**

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	61	Date Reported:	08-04-10
Laboratory Number:	55391	Date Sampled:	08-02-10
Chain of Custody:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-04-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
<u> </u>	Fluorobenzene	96.6 %
	1,4-difluorobenzene	102 %
	Bromochlorobenzene	103 %

References:

Total BTEX

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

ND

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	62	Date Reported:	08-04-10
Laboratory Number:	55392	Date Sampled:	08-02-10
Chain of Custody:	10090	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-04-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

	Concentration	Det. Limit
Parameter	(ug/Kg)	(ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0

	* * 	
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
-		

Total BTEX ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery				
	Fluorobenzene	98.7 %				
·	1,4-difluorobenzene	99.0 %				
	Bromochlorobenzene	98.8 %				

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	N/A	P	Project #:	N	/A
Sample ID:	0804Bblk QA/QC		Date Reported	, 08	3-04-10
Laboratory Number:	55388	C	ate Sampled	N	/A
Sample Matrix [.]	Soil		ate Received:	N	/A
Preservative:	N/A		ate Analyzed [.]		3-04-10
Condition:	N/A	A	analysis:	В	TEX
Calibration and Detection Limits (ug/L)	i-Cal RF:	C-Cal RF. Accept. Range	%Diff.	Blank	Detect. 'Limit
Benzene	1 3846E+007	1.3874E+007	0.2%	ND	0.1
Toluene	9.5430E+006	9 5621E+006	0.2%	ND	0.1
Ethylbenzene	6 7927E+006	6 8063E+006	0.2%	ND	0.1
p,m-Xylene	1.6107E+007	1.6139E+007	0.2%	ND	0.1
o-Xylene	5.4695E+006	5.4805E+006	0.2%	ND	0.1
Duplicate Conc. (ug/Kg)	a feature of the second second second	Duplicate		Accept Range	Detect. Limit
Benzene Toluene Ethylbenzene p,m-Xylene	Sample ND ND ND ND ND	ND ND ND	%Diff	Accept Range 0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	Detect. Limit 0.9 1.0 1.0 1.2 0.9
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc (ug/Kg)	ND ND ND 1.2 Sample	ND ND ND 1.1	0.0% 0.0% 0.0% 0.0% 8.3% Spiked Sample	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc (ug/Kg)	ND ND ND 1.2	ND ND ND 1.1	0.0% 0.0% 0.0% 0.0% 8.3%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg)	ND ND ND 1.2 Sample	ND ND ND 1.1	0.0% 0.0% 0.0% 0.0% 8.3% Spiked Sample	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc (ug/Kg) Benzene Toluene	ND ND ND 1.2 Sample ND ND	ND ND ND 1.1 Amount Spiked 5 50.0 50.0 50.0	0.0% 0.0% 0.0% 8.3% Spiked Sample 57.1 56.9	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9 Accept Range

ND - Parameter not detected at the stated detection limit.

References Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 55388-55392; 55403-55405; 55408-55409

Analyst Re

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client: Envirotech Project #: 1-02-60001 Sample ID: 58 Date Reported: 08-05-10 Lab ID#: 55388 Date Sampled: 08-02-10 08-02-10 Sample Matrix: Soil Date Received: Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10090

Parameter

Concentration (mg/Kg)

Total Chloride

75

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

· Comments:

Land Farm 2 Closures

Analyst

Client: Envirotech Project #: 1-02-60001 59 Sample ID: Date Reported: 08-05-10 Lab ID#: 55389 Date Sampled: 08-02-10 Soil Sample Matrix: Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10090

Parameter

Concentration (mg/Kg)

Total Chloride 65

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

Analyst Mompan

Client: Envirotech Project #: 1-02-60001 Sample ID: 60 Date Reported: 08-05-10 Lab ID#: 55390 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10090

Parameter Concentration (mg/Kg)

Total Chloride 95

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

Client: **Envirotech** Project #: 1-02-60001 Sample ID: Date Reported: 08-05-10 Lab ID#: 55391 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: . Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10090

Parameter

Concentration (mg/Kg)

Total Chloride 70

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

Analyst

Client: **Envirotech** Project #: 1-02-60001 Sample ID: 62 Date Reported: 08-05-10 Lab ID#: 55392 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10090

Parameter

Concentration (mg/Kg)

Total Chloride

100

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Closures

Analyst

CHAIN OF CUSTODY RECORD

10090

Client: Project Name / Location:				ANALYSIS / PARAMETERS																						
Eur relech handform 2 Closures Client Address: Sampler Name: Pene Garcia Reyes Client Phone No.:													V													
Client Address:			_	Sar	mpler Name:							5)	21)	(0												
				'	Revé 6	CTC	in R	240	8			801	1 80	826	<u>_v</u>						İ					
Client Phone No.:		_		Clic	ent No.:			1				b	thoc	ρo	eta	ioi				ĺ €	ш				8	tact
					1-02-	600) 0 (TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	San	nple	Samp	le	Lab No.	Si	ample	No./V	olume P	reserv	ative	E	K	2	₩.	tion	_	اما	ا ڀ ا	<u>`</u>	2				Id I	ш
Identification	Da	ate	Time	э	Lad Ivo.	٨	Matrix	Conta	of ainers	IgCl ₂ HCI	3	<u>d</u>	ВТ	9	<u>유</u>	Ca	RCI	2	РАН	묘	占	↓			Sa	Sa
58	8/2	01/2	1325	0	55388	Solid	Sludge Aqueous	Q0	52		7	Κ	X								X				1	4
59							Sludge Aqueous				R	K	X								X					
60						<i></i>	Sludge Aqueous				1	K	X								K					
61		\	14:2	20/3	55391	©ii Solid	Sludge Aqueous				1	X	X								X					
62	<		1423	301	55392	Soil) Solid	Sludge Aqueous		_			X	X								X				I	I
				\top	-	Soil Solid	Sludge Aqueous				1		•								1					
						Soil Solid	Sludge Aqueous			\uparrow																
				\top		Soil Solid	Sludge Aqueous													 	+	†				
						Soil Solid	Sludge Aqueous			+												 				
			-			Soil Solid	Sludge Aqueous	_		+												+	 			
Relinquished by: (Signa	ıture)) 	22				Date		ime '52	Rec	eive	y: vd t	Signa (Signa	ature)					·			J	D 8/2	ate- 2/10	Tir	me ,
Relinquished by: (Signa	ature)		A ST	<u> 2/c</u>	,		8/2/10	1/6-	- 24_	Rec	eive	d by:	(Signa	ature)										770)0
Relinquished by: (Signa	ature))								Rec	eive	by:	(Signa	ature)												
		. -					3	e	nv	<u> </u>	' O	t	e (_ ch	1											

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	63	Date Reported:	08-05-10
Laboratory Number:	55393	Date Sampled:	08-02-10
Chain of Custody No:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-04-10
Preservative:	Cool	Date Analyzed:	08-05-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	5.7	0.1
Total Petroleum Hydrocarbons	5.7	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: **Land Farm 2 Closures**

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	64	Date Reported:	08-05-10
Laboratory Number:	55394	Date Sampled:	08-02-10
Chain of Custody No:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-04-10
Preservative:	Cool	Date Analyzed:	08-05-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	65	Date Reported:	08-05-10
Laboratory Number:	55395	Date Sampled:	08-02-10
Chain of Custody No:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-04-10
Preservative:	Cool	Date Analyzed:	08-05-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	1.9	0.1	
Total Petroleum Hydrocarbons	1.9	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	08-05-10 QA/QC	Date Reported:	08-05-10
Laboratory Number:	55425	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	08-05-10
Condition:	N/A	Analysis Requested:	TPH

	∴l-Cal Date: ⊜	, I-Cal RF:	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L - mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	258	103%	75 - 125%
Diesel Range C10 - C28	ND	250	253	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55393-55397, 55410-55411, 55425, 55428 and 55431

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	63	Date Reported:	08-05-10
Laboratory Number:	55393	Date Sampled:	08-02-10
Chain of Custody:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-05-10
Preservative:	Cool	Date Extracted:	08-04-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	96.0 %
	1,4-difluorobenzene	97.2 %
	Bromochlorobenzene	101 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client	Envirotooh	Designat #1	1 00 60004
Client:	Envirotech	Project #:	1-02-60001
Sample ID:	64	Date Reported:	08-05-10
Laboratory Number:	55394	Date Sampled:	08-02-10
Chain of Custody:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-05-10
Preservative:	Cool	Date Extracted:	08-04-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
	<u> </u>		
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.4 %
-	1,4-difluorobenzene	98.6 %
,	Bromochlorobenzene	100 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	65	Date Reported:	08-05-10
Laboratory Number:	55395	Date Sampled:	08-02-10
Chain of Custody:	10091	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-05-10
Preservative:	Cool	Date Extracted:	08-04-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND	0.9
Toluene	ND	1.0
Ethylhenzene	ND	1.0

Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	ND	0.9
Total BTEX	· ND	

- · · · · · ·

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.8 %
•	1,4-difluorobenzene	101 %
	Bromochlorobenzene	100 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Review \

Client:	N/A	Project #:	N/A
Sample ID:	0805BBLK QA/QC	Date Reported:	08-05-10
Laboratory Number:	55393	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	08-05-10
Condition:	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/L)	l-Cál RF.	C-Cal RF Accept Rang	%Diff. le 0 - 15%	Blank Conc	Detect:
Benzene	1.0839E+006	1 0861E+006	0.2%	ND	0.1
Toluene	1 2145E+006	1.2169E+006	0.2%	ND	0.1
Ethylbenzene	1 0890E+006	1.0912E+006	0.2%	ND	0.1
p,m-Xylene	2.7702E+006	2.7757E+006	0.2%	ND	0.1
o-Xylene	9.8493E+005	9 8690E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	Sample, Du	plicate	%Diff.	Accept Range	Detect: Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked Spik	red Sample	Recovery	Accept Range
Benzene	ND	50.0	50.5	101%	39 - 150
Toluene	ND	50.0	50.3	101%	46 - 148
Ethylbenzene	ND	50.0	49.4	98.8%	32 - 160
p,m-Xylene	ND	100	99.4	99.4%	46 - 148
o-Xylene	ND	50.0	48.8	97.7%	46 - 148

ND - Parameter not detected at the stated detection limit.

References

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

Comments:

QA/QC for Samples 55393-55397, 55410-55411, 55428 and 55431

Analyst

Client: Envirotech Project #: 1-02-60001 Sample ID: 63 Date Reported: 08-04-10 Lab ID#: 55393 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10091

Parameter

Concentration (mg/Kg)

Total Chloride

5

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Closures

Client: Envirotech Project #: 1-02-60001 Sample ID: 64 Date Reported: 08-04-10 Lab ID#: 55394 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10091

Parameter

Concentration (mg/Kg)

Total Chloride

15

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Closures

Analyst

Client: Envirotech Project #: 1-02-60001 Sample ID: 65 Date Reported: 08-04-10 Lab ID#: 55395 Date Sampled: 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10091

Parameter

Concentration (mg/Kg)

Total Chloride 10

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

CHAIN OF CUSTODY RECORD

10091

Client:											ANAL	YSIS.	/ PAR	AME	 ΓERS				-				
Envirols	ech		Laus Form 2 Closures Sampler Name: René Garcia Repos																				
Client Address:			Sampler Name:			_			7	5)	6							*					
		,	Rono	600	cia k	GRA	\$			1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	826	<u>s</u>	_										
Client Phone No.:			Client No.:			(be j	<u>8</u>	leta	nion		¥		- :	w				8	tact
			1-07-6	0001	,					TPH (Method 8015) BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	Sample	Sampl	Lab No.	1	Sample			reservat	ive	<u> </u>	100	Ä	tion	5	TCLP	PAH	<u>Ť</u>	일				gm!	ldmi
Identification	Date	Time			Matrix	Contai	iners H	HgCl, HCl	<u>}</u> i	<u> </u>	>	<u> </u>	ပၱ	2	1	8	片	さ				<u>8</u>	S
63	8/2/10	14:4	055393	Sóil) Solid	Sludge Aqueous	40	12		X	KX								K				4	Y
64		14:50	255394	Soil Solid	Sludge Aqueous			(X	XX								X					
65		15.°C	255395	Soil Solid	Sludge Aqueous				X	KX								X					
5			0 55 396	Solid Solid	Sludge Aqueous			}	ζ,	XX								X					
28		1505C	55397	_	Sludge Aqueous	لے			X	KX								X				floor	\overline{I}
				Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
		-		Soil Solid	Sludge Aqueous	,											-						
Relinquished by: (Signa	ature)	1294	K		Date 8/2/10		me 56	Recei	ived I	by: (<u>Sigr</u>	nature		·				ı			Dat	te 2/10	Tin	ne SZ
Relinquished by: (Signa	ature)		PCIC_		8/2/10		<u> </u>	Recei	ived I	by: (Sigr	nature	~~)		-past "					·		70		» C
Relinquished by: (Signa	ature)							Recei	ived I	by: (Sigr	nature)					****						
					3					te Labor													

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	53	Date Reported:	08-05-10
Laboratory Number:	55383	Date Sampled:	08-02-10
Chain of Custody No:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-03-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	0.5	0.2
Diesel Range (C10 - C28)	0.4	0.1
Total Petroleum Hydrocarbons	0.9	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	54	Date Reported:	08-05-10
Laboratory Number:	55384	Date Sampled:	08-02-10
Chain of Custody No:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-03-10
Condition:	Intact	Analysis Requested:	₹8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	55	Date Reported:	08-05-10
Laboratory Number:	55385	Date Sampled:	08-02-10
Chain of Custody No:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-03-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

		·	
Client:	Envirotech	Project #:	1-02-60001
Sample ID:	56	Date Reported:	08-05-10
Laboratory Number:	55386	Date Sampled:	08-02-10
Chain of Custody No:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-03-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	1.8	0.1
Total Petroleum Hydrocarbons	1.8	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	57	Date Reported:	08-05-10
Laboratory Number:	55387	Date Sampled:	08-02-10
Chain of Custody No:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Extracted:	08-03-10
Preservative:	Cool	Date Analyzed:	08-03-10
Condition:	Intact	Analysis Requested:	. 8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	ND	0.2	

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	08-03-10 QA/0	QC	Date Reported:		08-05-10
Laboratory Number:	55368		Date Sampled:		N/A
Sample Matrix:	Methylene Chlor	ide	Date Received:		N/A
Preservative:	N/A		Date Analyzed:		08-03-10
Condition:	N/A		Analysis Request	ed:	TPH
and the employment programme accommend a contribution of a superscript and the supersc	ida in " "gia y _ m			the state of the s	
	I-Cal Date	l-Cal RF:	C-Cal RF:	% Difference	Accept: Range
Gasoline Range C5 - C10	08-03-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	08-03-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
##	Thinks where we will be a side of the side	Marky 2 St. T. B.	a	and sufference that we would be the first to be a con-	4.7
Blank Conc. (mg/L - mg/Kg)		Concentration		Detection Lim	<u>it</u>
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
Duplicate Conc. (mg/Kg)		er in Billiothers	് സ് ത്യങ്ങൾക്കുന്നത്	on the second second	《卷 条
Language and the state of the s	Sample	Duplicate	% Difference	a control storething one - an	
Gasoline Range C5 - C10	14.3	14.4	1.0%	0 - 30%	
Diesel Range C10 - C28	16.7	16.8	1.0%	0 - 30%	
Spike Conc. (mg/kg)	Sample	Spike Added	Spike Result	% Recovery	Accept: Range
Gasoline Range C5 - C10	14.3	250	273	103%	75 - 125%
Diesel Range C10 - C28	16.7	250	273	103%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55382-55387, 55368 and 55377

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	53	Date Reported:	08-05-10
Laboratory Number:	55383	Date Sampled:	08-02-10
Chain of Custody:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-03-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

	Concentration	Det.	
Parameter	(ug/Kg)	Limit (ug/Kg)	
Benzene	2.8	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	1.7	0.9	
Total BTEX	4.5		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	103 %
	1,4-difluorobenzene	99.3 %
	Bromochlorobenzene	101 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	54	Date Reported:	08-05-10
Laboratory Number:	55384	Date Sampled:	08-02-10
Chain of Custody:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-03-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

· · · · · · · · · · · · · · · · · · ·		Det.
:	Concentration	Limit
Parameter	(ug/Kg)	(ug/Kg)

Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	ND	1.2
o-Xylene	1.1	0.9
•		

Total BTEX 1.1

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.6 %
	1,4-difluorobenzene	104 %
	Bromochlorobenzene	104 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

THE REST OF THE PERSON OF THE

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	55	Date Reported:	08-05-10
Laboratory Number:	55385	Date Sampled:	08-02-10
Chain of Custody:	10089	Date Received:	08-02-10
Sample Matrix:	Soil `	Date Analyzed:	08-03-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter Percent Recovery	
	Fluorobenzene	97.2 %
	1,4-difluorobenzene	97.7 %
	Bromochlorobenzene	99.3 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	56	Date Reported:	08-05-10
•		•	08-03-10
Laboratory Number:	55386	Date Sampled:	
Chain of Custody:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-03-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

	·	Det.	
	Concentration	Limit	!
Parameter	(ug/Kg)	(ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.7 %
	1,4-difluorobenzene	97.4 %
	Bromochlorobenzene	99.9 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: Land Farm 2 Closures

Analyst

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	57	Date Reported:	08-05-10
Laboratory Number:	55387	Date Sampled:	08-02-10
Chain of Custody:	10089	Date Received:	08-02-10
Sample Matrix:	Soil	Date Analyzed:	08-03-10
Preservative:	Cool	Date Extracted:	08-03-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	102 %
	1,4-difluorobenzene	98.3 %
	Bromochlorobenzene	100 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Closures

Analyst

Client:	N/A		roject #:	N/	Ά
Sample ID:	0803BBLK QA/QC		ate Reported:	08	-05-10
Laboratory Number:	55368	D	ate Sampled:	N/	Ά
Sample Matrix:	Soil	_	ate Received	N/	Α
Preservative:	N/A Date Analyzed:			08-03-10	
Condition:	N/A	A	nalysis.	ВТ	ΓEX
Calibration and	I-Cal RF:	C-Cal RF:	%Diff:	Blank	Detect.
Detection Limits (ug/L)		Accept. Range	e 0 - 15%	Conc	Limit
Benzene	1 3846E+007	1.3874E+007	0.2%	ND	0.1
Toluene	9 5430E+006	9.5621E+006	0.2%	ND	0.1
Ethylbenzene	6 7927E+006	6 8063E+006	0.2%	ND	0.1
p,m-Xylene	1.6107E+007	1.6139E+007	0.2%	ND	0.1
o-Xylene	5 4695E+006	5 4805E+006	0.2%	ND	0.1
Duplicate Conc. (ug/kg)	THE CHAIN SEA SOULTH THE SEE THE SEE THE SECTION OF THE SECTION OF SECTION SERVICES.	Dùplicaté	7 642 47 47 47	Accept Range	, phendepara a pera h m
Duplicate Conc. (ug/Kg) Benzene Toluene	1.7	1.9 2.9	11.8% 7.4%	0 - 30% 0 - 30%	0.9 1.0
Duplicate Conc. (ug/Kg) Benzene Toluene Ethylbenzene	1.7 2.7 7.7	1.9 2.9 7.5	11.8% 7.4% 2.6%	0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0
Duplicate Conc. (ug/Kg) Benzene Toluene	1.7	1.9 2.9	11.8% 7.4%	0 - 30% 0 - 30%	0.9 1.0
Duplicate Conc. (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene	1.7 2.7 7.7 31.5	1.9 2.9 7.5 31.2	11.8% 7.4% 2.6% 1.0% 2.6%	0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2
Duplicate Conc. (ug/kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	1.7 2.7 7.7 31.5 26.6	1.9 2.9 7.5 31.2 25.9	11.8% 7.4% 2.6% 1.0% 2.6%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Duplicate Conc. (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg)	1.7 2.7 7.7 31.5 26.6	1.9 2.9 7.5 31.2 25.9	11.8% 7.4% 2.6% 1.0% 2.6%	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9
Duplicate Conc. (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg)	1.7 2.7 7.7 31.5 26.6	1.9 2.9 7.5 31.2 25.9 Amount Spiked	11.8% 7.4% 2.6% 1.0% 2.6% Spiked Sample	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.2 0.9 Accept Range
Duplicate Conc. (ug/Kg) Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene Spike Conc. (ug/Kg) Benzene Toluene	1.7 2.7 7.7 31.5 26.6 33mple	1.9 2.9 7.5 31.2 25.9 Amount Spiked 50.0 50.0	11.8% 7.4% 2.6% 1.0% 2.6% Spiked Sample 51.6 50.5	0 - 30% 0 - 30% 0 - 30% 0 - 30% 0 - 30%	0.9 1.0 1.0 1.2 0.9 Accept Range

ND - Parameter not detected at the stated detection limit.

References Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 55382-55387, 55368 and 55377

Analyst R

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	55383	Date Reported:	08-04-10
Lab ID#:	53	Date Sampled:	08-02-10
Sample Matrix:	Soil	Date Received:	08-02-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Chain of Custody:	10089

Parameter

Concentration (mg/Kg)

5

Total Chloride

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

lyst

Project #: Client: Envirotech 1-02-60001 55384 Date Reported: 08-04-10 Sample ID: Date Sampled: Lab ID#: 54 08-02-10 Sample Matrix: Soil Date Received: 08-02-10 Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10089

Parameter Concentration (mg/Kg)

Total Chloride 10

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

Analyst Monpoul

Project #: Client: **Envirotech** 1-02-60001 Sample ID: 55385 Date Reported: 08-04-10 Lab ID#: 55 Date Sampled: 08-02-10 Soil Date Received: 08-02-10 Sample Matrix: Preservative: Cool Date Analyzed: 08-04-10 Condition: Intact Chain of Custody: 10089

Parameter Concentration (mg/Kg)

Total Chloride 15

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

I ale thompson

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	55386	Date Reported:	08-04-10
Lab ID#:	56	Date Sampled:	08-02-10
Sample Matrix:	Soil	Date Received:	08-02-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Chain of Custody:	10089

Parameter Concentration (mg/Kg)

Total Chloride 15

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

alyst R

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	55387	Date Reported:	08-04-10
Lab ID#:	57	Date Sampled:	08-02-10
Sample Matrix:	Soil	Date Received:	08-02-10
Preservative:	Cool	Date Analyzed:	08-04-10
Condition:	Intact	Chain of Custody:	10089

Parameter Concentration (mg/Kg)

Total Chloride 20

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Land Farm 2 Closures

Analyst Mompan

CHAIN OF CUSTODY RECORD

10089

					<u> </u>		· • ·						•													
Client:		_			oject Name / L											,	ANAL	YSIS .	/ PAR	AME	TERS					
Envirote	cl	~		1	and Far	m 2	C(050	IFR	25																	
Client Address:				Sa	mpler Name:	_					1	X _{IO}	X	6							*			_		
					Rono 1	2000	cia la	224	es			301	8	826	ဟ	ļ								Ì		
Client Phone No.:		14		Cli	ent No.:	= = ·		1				bo	pot	po.	etal	ioi		Ŧ		E					ᅙ	tact
				<u> </u>	mpler Name: Rene (ent No.: / - 02 Lab No.	- 60	0001					(Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE				Sample Cool	Sample Intact
Sample No./	Sa	ample	Samp	le	Lab No.	5	Sample	No./V	olume	Preserv		E	Ĕ	2	Ä.	ţi	$\overline{}$	٩	I	Ţ	밀			-	du	d w
Identification		Date	Time	∍		_	Matrix	Conta	of ainers	HgCl ₂ HCl	3	TPH	ВТ	8	8	ပိ	RCI	70	PAH	무		_			Sa	Sa
5 3	8/	מוןנו	13:0	0	55383	Solid	Sludge Aqueous		2		X	K	X								X)			Y	Y
54		1	13:10	2	55383 55384	Soil Solid	Sludge Aqueous				K	Κ	X								X					
55			13:2	0	55385	Solid	Sludge Aqueous				X	X	X							-	X					
56			13:3	0	55386	Soil Solid	Sludge Aqueous				X	~	Χ								X					
57	2		13:4	0	55385 55386 55387	Solid	Sludge Aqueous				X	X	X								X					1
						Soil Solid	Sludge Aqueous																			
						Soil Solid	Sludge Aqueous																			
						Soil Solid	Sludge Aqueous							-					,							
						Soil Solid	Sludge Aqueous																			
						Soil Solid	Sludge Aqueous																			
Relinquished by: (Sign	atur	re) €	27)0.	>10	1	Date CZ/IC	- 1	ime '52				(Signa				<u> </u>		1	<u> </u>	,	.	83	ate		me ,
Relinquished by: (Sign	atur	re) /	700	70	210		42/10	/6.	- 2	Red	ceive	d by	(Signa	aturé)	1		~						-/	10		10
Relinquished by: (Sign	atur	е)					1	-					(Signa					···								-
									. =																	
	envirotech envirotech																									

Oli a nda	Paratas de ale	5	4 00 00004
Client:	Envirotech	Project #:	1-02-60001
Sample ID:	47	Date Reported:	09-15-10
Laboratory Number:	55856	Date Sampled:	09-14-10
Chain of Custody No:	10352	Date Received:	09-14-10
Sample Matrix:	Soil	Date Extracted:	09-14-10
Preservative:	Cool	Date Analyzed:	09-15-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	2.6	0.1
Total Petroleum Hydrocarbons	2.6	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Land Farm 2 Unit 5 Closures

Analyst Review

Quality Assurance Report

N/A

N/A

09-15-10

Client: QA/QC Project #:
Sample ID: 09-15-10 QA/QC Date Reported:
Laboratory Number: 55845 Date Sampled:

Sample Matrix:Methylene ChlorideDate Received:N/APreservative:N/ADate Analyzed:09-15-10Condition:N/AAnalysis Requested:TPH

 Gasoline Range
 C5 - C10
 09-15-10
 9.9960E+002
 1.0000E+003
 0.04%
 0 - 15%

 Diesel Range
 C10 - C28
 09-15-10
 9.9960E+002
 1.0000E+003
 0.04%
 0 - 15%

Blank Conc. (mg/L≤mg/Kg) Concentration Detection Limit
Gasoline Range C5 - C10 ND 0.2

Diesel Range C10 - C28 ND 0.1

Total Petroleum Hydrocarbons ND

Duplicate Conc. (mg/Kg)SampleDuplicate SampleDuplicate SampleDifferenceAccept RangeGasoline RangeC5 - C10NDND0.0%0 - 30%Diesel RangeC10 - C28NDND0.0%0 - 30%

Spike Conc. (mg/Kg)	Sample 🐵 💭	Spike Added	Spike Result⊚	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	255	102%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments: QA/QC for Samples 55845-55846, 55849-55851, 55855-55858

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	1-02-60001
Sample ID:	47	Date Reported:	09-15-10
Laboratory Number:	55856	Date Sampled:	09-14-10
Chain of Custody:	10352	Date Received:	09-14-10
Sample Matrix:	Soil	Date Analyzed:	09-15-10
Preservative:	Cool	Date Extracted:	09-14-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		Det.	
	Concentration	Limit	
Parameter	(ug/Kg)	(ug/Kg)	

Benzene	ND	0.9
Toluene	1.3	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	6.2	1.2
o-Xylene	3.1	0.9

Total BTEX 10.6

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.0 %
	1,4-difluorobenzene	102 %
	Bromochlorobenzene	106 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Land Farm 2 Unit 5 Closures

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID:	0915BBLK QA/QC	Date Reported:	09-15-10
Laboratory Number:	55845	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	09-15-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

Gallbration and Detection Limits (ug/L)	L-CaliRF:	@ Cal RF: Accept: Ran	,	Blank Gonc	Detect, Limit
Benzene	3.7083E+006	3.7158E+006	0.2%	ND	0.1
Toluene	1.8075E+006	1.8111E+006	0.2%	ND	0.1
Ethylbenzene	1.4413E+006	1.4442E+006	0.2%	ND	0.1
p,m-Xylene	2.8355E+006	2.8411E+006	0.2%	ND	0.1
o-Xylene	9.7261E+005	9.7456E+005	0.2%	ND	0.1

Duplicate(Conc. (ug/Kg))	Sample : ** Du	iplicate	:#%Diff.	Accept Range	Detect Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	≥ Sample	ount Spiked & Spi	ked Sample 🤲	Recovery	Accept Range
Benzene	ND	500	493	98.7%	39 - 150
Toluene	ND	500	501	100%	46 - 148
Ethylbenzene	ND	500	498	99.6%	32 - 160
p,m-Xylene	ND	1000	1,000	100%	46 - 148
o-Xylene	ND	500	500	100%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 55845-55846, 55851-55858

Analyst Review

Client: Envirotech Project #: 1-02-60001 Sample ID: 47 Date Reported: 09-15-10 Lab ID#: 55856 Date Sampled: 09-14-10 Sample Matrix: Soil Date Received: 09-14-10 Preservative: Cool Date Analyzed: 09-15-10 Condition: Intact Chain of Custody: 10352

Parameter

Concentration (mg/Kg)

Total Chloride

140

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Land Farm 2 Unit 5 Closures

Analyst

CHAIN OF CUSTODY RECORD

10352

Client:	Client: Project Name / Location: Land Ferm ? Unit & Mosures Client Address: Sampler Name: Client Phone No.: Client No.:					ANALYSIS / PARAMETERS																	
	<u> </u>		and rom	170	uil 5	(108V)	<u>es</u>	<u> </u>	X	X _				,		т	·	X	<u> </u>			 ,	,
Client Address:		1 :	Sampler Name:		· . •	_			<u>2</u>	12/	<u>6</u>				}	ļ			į			j	. [
			Deno 6	ene barcia Klyls			8)8 p	82	ျှ	_		_										
Client Phone No.:		[•	Ćlient No.:	No.:			P	욽	<u> </u>	Neta	ij	ļ	Ī		=	اسا			į	8	Itaci		
			1-07-	600) /				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion	ĺ	TCLP with H/P		TPH (418.1)	CHLORIDE			ļ	Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	_ s	ample	No./Volume of				Ĭ,	ပ္ထ	Α̈́	ţi	_	녓	PAH	Ť	우				d I	ᇤ
Identification	Date	Time			Matrix	Of Containers	HgCl ₂	на 🥏	<u> </u>	8	>	<u>~</u>	ပိ	<u>R</u>	2	8	片	Ö					Š
47	914/10	12:4°	55856	Solid Solid	Sludge Aqueous	495		X	X	K								X				X	X
59	9/14/10	13:15	55857	Solid Solid	Sludge Aqueous	402		4	X	X								X				X	X
				Soil Solid	Sludge Aqueous	,																	
				Soit Solid	Sludge Aqueous																		
1				Soil Solid	Sludge Aqueous		-																
				Soil Solid	Sludge Aqueous																		
				Soil Solid	Sludge Aqueous																		
			,	Soil Solid	Sludge Aqueous					ļ			-		<u> </u>								
				Soil Solid	Sludge Aqueous			1.															
				Soil Solid	Sludge Aqueous																		
Relinquished by: (Sign	ature)	,	<u> </u>	1	Date_	Time	R	eceiv	ed by:	(Sign	ature))	L	L	<u> </u>	<u>. </u>	<u> </u>				ate	Tir	me
		Æ	1000	•	9/14/10	14.05		2	Sa	m	1	6	0,	110						91	171	14	.05
Relinquished by: (Sign	ature)					-	R	eceiv	ed by:	(Sign	ature)	/ /	~ (,,,,,,,	<u> </u>			-					
Relinquished by: (Sign	ature)		:				R	eceiv	ed by:	(Sign	ature))	 _					<u></u>			· · ·		
			·			<u> </u>																<u> </u>	
1					ィス		.:		1	_	_ L												

Bill Richardson

Governor

Jon Goldstein Cabinet Secretary

Jim Noel
Deputy Cabinet Secretary

Mark Fesmire
Division Director
Oil Conservation Division

July 6, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Apply a Successive Lift

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated July 2, 2010 to grant approval to apply an additional six-inch lift to the following cell(s): **Cell 46**.

Based upon the analytical results provided, OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cell(s). Envirotech shall ensure that the application of an additional six-inch lift of contaminated soils to the above referenced landfarm cells does not exceed the maximum thickness of two feet or 3000 cubic vards per acre limit as specified in 19.15.36.15 NMAC. The "parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell," as stated in the July 2, 2010 request, is not equivalent to the regulatory requirement is identified above. It is OCD's understand, from conversations with Mr. Kyle Kerr, that the thickness of each cell would be measured and confirmed during the next vadose zone sampling event. Please note that with the addition of successive lifts Envirotech must initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface.

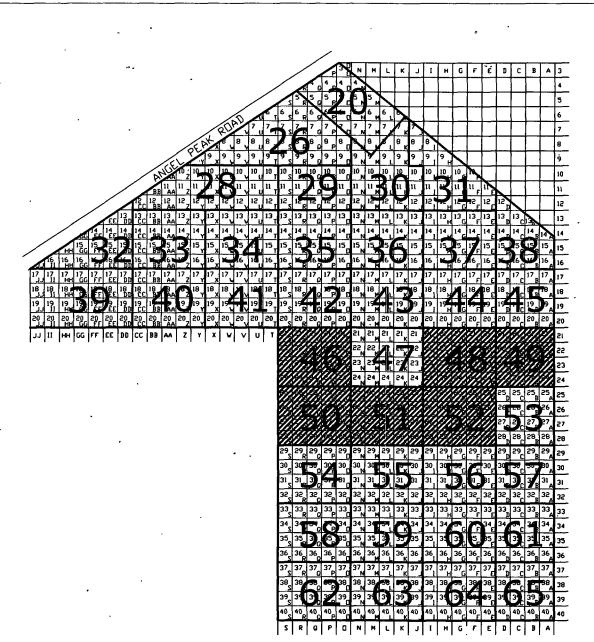
Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does

Envirotech, Inc. Commercial Landfarm #2 Permit NM-1-0011 July 6, 2010 Page 2 of 2

approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,


Brad-A-Jones

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: June 24, 2010)

cc: OCD District III Office, Aztec

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5

SCAL	E: 1=1	00,	FIGURE NO.	REV
PRO	JECT NO).	TIGUIL NO.	
			REVISIONS	
NO.	DATE	BY	6-24-10 DESCRIPTION	
MAP	DRWN	JMK	12 7 09 BASE DRWN	1

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RECEIVED OCD

RE: ENVIROTECH'S LANDFARM #2 DISCONTINUED MAINTENANCE AND ADDITIONAL LIFT FOR CELL 46 IN LAND FARM 2 UNIT 5.

Dear Mr. Jones:

Attached please find analytical documentation supporting our request for discontinued maintenance at Envirotech's Land Farm #2, for cell 46 located near Hilltop, New Mexico. The area being submitted is shown on the attached map, marked by blue crosshatch design as well as the other cells previously approved. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 the cell being requested for discontinued maintenance has passed laboratory analysis of less than 100 ppm TPH, 50 ppb BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. As stated in the treatment zone monitoring portion of Envirotech's permit, no cell sampled was larger than five acres. Samples were collected as a five-point composite. Remediation zone layers averaged 12" in depth, results available upon request.

The blue cell 46 has passed analysis for total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylenes (see attached laboratory results). As you will notice the BTEX results are in parts per billion, so the result should read .0208. Envirotech hereby requests this cell be granted discontinued maintenance status and approval to apply an additional lift of qualifying material to this cell.

Given the parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell, we are happy to provide the following cubic yard amounts in each cell up to this time:

Cell 46: 9,723 cubic yards

Due to the unusually large amounts of contaminated soil Envirotech has accepted recently, our Land Farm #2 is currently under limited space constraints. Therefore, Envirotech respectfully requests expedition of this matter, in order that our Land Farm #2 may continue to serve the Four Corners region without interruption.

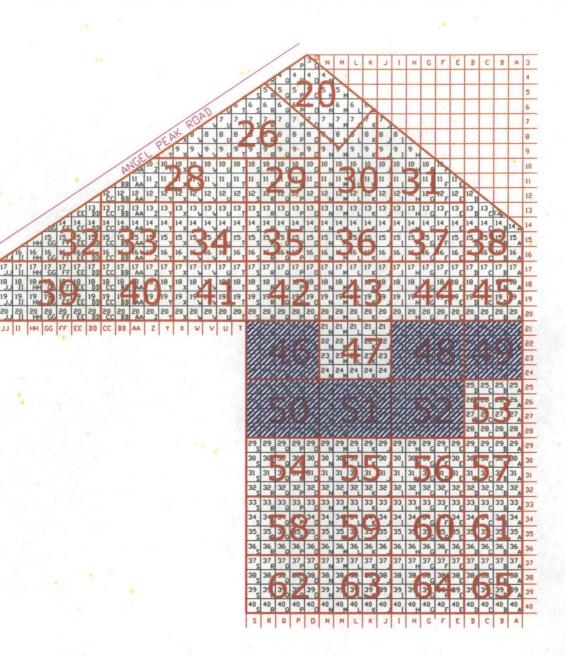
Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,

Envirotech, Inc.

April E. Pohl

Land Farm Administrator apohl@envirotech-inc.com


Kyle F. Kert

Vice President/CHMM

kpkerr@envirotech-inc.com

AEP/Office/Corporate/LF/DC maintenance and added lift/7-2-10

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5

SCAL	.E: 1=1	00'	FIGURE NO.	REV
PRO	JECT NO).	FIGURE NO.	
			REVISIONS	
			*	
			4-	
NO.	DATE	BY	6-24-10 DESCRIPTION	4
MAP	DRWN	JMK	12 7-09 BASE DRWN	

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	
Sample ID:	46	Date Reported: .	04-30-10
Laboratory Number:	53711	Date Sampled.	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil,	Date Analyzed:	04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
•			
Benzene	ND	0.9	
Toluene	165	1.0	
Ethylbenzene	9.4	1.0	
	20.4	1.2	
p,m-Xylene o-Xylene	13.3	0.9	
Total RTFY	. 208		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	•	99.6 %
4	1,4-difluorobenzene		99.2 %
	Bromochlorobenzene		98.8 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client: Sample ID:		N/A 04-29-BTEX QA/QC	Project #: Date Reported:	N/A 04-30-10
Laboratory Number:	•	53704	Date Sampled.	N/A
Sample Matrix:	•	Soil ·	Date Received:	N/A
Preservative ·		N/A	Date Analyzed:	04-29-10
Condition:		N/A -	Analysis ⁻	BTEX

Calibration and >	##CaliRF#	CECall RE	%Diff; je.0≃415%: •	⊴Blank . s 	Detect
Benzene	2 1496E+006	2.1539E+006	. 0.2%	ND	0.1
Toluene	1 1328E+006	1 1351E+006	0.2%	ND .	0.1
Ethylbenzene	8.0255E+005	8.0416E+005	0.2%	ND.	0.1
p,m-Xylene	2 1971E+006	2.2015E+006	0.2%	· ND	0.1
o-Xylene	9.5956E+005	9.6149E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)		iplicate 🧽	%Diff.	Accept Range	Detect: Hmit
Benzene	, ND	ND	0.0%	0 - 30%	0.9
Toluene	14.0	13.5	3.6%	0 - 30%	. 1.0
Ethylbenzene	2.4	2.1	12.5%	0 - 30%	1.0
p,m-Xylene	8.2	8.1	1.2%	0 - 30%	1.2
o-Xylene	1.5	1.3	13.3%	0 - 30%	0.9

Spike Conc. (ug/Kg).	Sample Amo	ount Spiked 4 Spi	ked Sample	% Recovery	- Accept Range
Benzene	ND .	50.0	50.6	101%	39 - 150
Toluene	14.0	50.0	· 58.0	90.6%	46 - 148
Ethylbenzene	2.4	50.0	53.5	102%	32 - 160
o,m-Xylene	. 8.2	100	103.8	95.9%	46 - 148
o-Xylene	1.5	50.0	[·] 51.9	101%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 53704 - 53711 and 53877 - 53878.

Carrier Jane

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Envirotech	• .	Project #:	
Sample ID:	46		Date Reported:	04-30-10
Laboratory Number:	53711		Date Sampled:	04-15-10
Chain of Custody No:	9092		Date Received:	04-15-10
Sample Matrix:	Soil		Date Extracted:	04-23-10
Preservative:	Cool		Date Analyzed:	04-29-10
Condition:	Intact		Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
	•	• .
Gasoline Range (C5 - C10)	6.8	0.2
Diesel Range (C10 - C28)	80.4	0.1
Total Petroleum Hydrocarbons	87.2	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst Sale

Moster Males

Quality Assurance Report

، Client:	QA/QC	Project #:	N/A
Sample ID:	04-29-10 QA/QC	Date Reported:	04-30-10
Laboratory Number:	53704	Date Sampled:	´ N/A
Sample Matrix:	. Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	04-29-10
Condition:	N/A	Analysis Requested:	TPH

	: I-Cal Date	- FCaTRF:	C-Cal RF:	.% Difference	 Accept Range
Gasoline Range C5 - C10	05-07-07	1.0028E+003	1.0032E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9912E+002	9.9952E+002	0.04%	0 - 15%

Blank Cone (mg/Lame/Kg) 😿 🐣	. Goncenticiton	7-4	Detection Limit
Gasoline Range C5 - C10	ND		0.2
Diesel Range C10 - C28	ND .		0.1
Total Petroleum Hydrocarbons	ND		0.2

Duplicate Cone, (mg/Kg)	· Sample ·	Duplicate	% Difference	- Accept⊧Range⊪
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	230	230	0.0%	0 - 30%

Spike Conc. (mg/Kg).	Sample	Spike Added	Spike Result	%'Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	255	102%	75 - 125%
Diesel Range C10 - C28	230	250	481	· 100%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, No

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53704 - 53711 and 53877 - 53878.

Envirotech Project #: Client: Sample ID: 46 Date Reported: 04-30-10 Lab ID#: 53711 Date Sampled: 04-15-10 Sample Matrix: Soil Date Received: 04-15-10 Preservative: Cool Date Analyzed: 04-27-10 Condition: Intact Chain of Custody: 9092

Parameter

Concentration (mg/Kg)

Total Chloride

50

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

CHAIN OF CUSTODY RECORD

Client:	i	i	P	roject Name / L			e 01	•							ANAL	YSIS /	 / PAR	AMET	rers					
Euripo	10.	<u>eh</u>		Laudifo	Ju	2 Unit	5 (6)	<u> </u>	<u>es</u>		·			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			r			· 		
Client Address:			S	ampler Name:	·					5)	21)	<u>()</u>												
				Revie	Ga	ircía				801	80	826	<u>.</u>							B				
Client Phone No.:			С	lient No.:			·.			po		bo	etal	ioi		¥		7	₁₁	K		7	5 2	2
				1-02-	600	30C	•			(Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA-8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE	Bezzer		loo olamoo	Sample Intact	ב ט
Sample No./	Sa	ample	Sample	Lab No.	S	Sample	No./Volume	Prese	vative	H	Ä	၁	Α̈́	ţi	'	Ы	_	Ę	일	4			- E	<u>\$</u> .
Identification		Date	Time	Eab No.		Matrix	of Containers	HgCl ₂ Ho	i i	TPH	ВТ	8	8	ပ္မ	<u>2</u>	21	PAH	且	占	17		ő	2 <u>8.</u>	5
. 53	4/1	15/10	10:00	53704	Solid	Sludge Aqueous	402		X	X	X				•				X	X			< x	2
52		1	10:15	53705	Solid	Sludge Aqueous	. 1		X	X	X								χ	X		`	XX	1
51			10:30	53706	Solid	Sludge Aqueous			X	Κ.	X								X	X			XX	(
50			10:45	53707	Solid	Sludge Aqueous			X	X	X								X	X		. 7	< X	
49			11:00	53708	Solid	Sludge Aqueous			X	×	X						c		X	X			XX	
48			11:15.	53709	Solid	Sludge Aqueous			X	X	Х								X	X		. 7	\ \	
47			11:30	53710	Solid	Sludge Aqueous			X	X	X								X	X		X	X	_
46	1	-	11:45	53711	Solid	Sludge Aqueous			X	4	X								K	A			< X	_
					Soil Solid	Sludge Aqueous	•.																-	
					Soil Solid	Sludge Aqueous							•			,				•				
Relinquished by: (Sign	ature	e) '		<i>Se</i>		Date 4//\$ 10	Time 12:50	Re	ceive	d by:	(Signa	ature)	>	=	<u> </u>		-				Dat	e /10 /	Time	}
Relinquished by: (Sign	ature	e) /	770			,,,,,		Re	ćeive	d by:	(Signa	ture)		/	<u></u>	ار					24/15	101	<u>~~~)(</u>	ט
		- <u>-</u>											٠.						_					_
Relinquished by: (Sign	ature	9)			٠	-		Re	ceive	d by:	(Signa	ature)	:					-			, .			Į
							<u></u>														L			\dashv
		•	v		A		An v	, i .	ro	# 4	^	~ 	•						•					

Bill Richardson

Governor

Jon Goldstein Cabinet Secretary

Jim Noel
Deputy Cabinet Secretary

Mark Fesmire
Division Director
Oil Conservation Division

June 29, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Apply a Successive Lift

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated June 24, 2010 to grant approval to apply an additional six-inch lift to the following cells: Cells 48, 49, 50, 51, and 52.

Based upon the analytical results provided, OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cells. Envirotech shall ensure that the application of an additional six-inch lift of contaminated soils to the above referenced landfarm cells does not exceed the maximum thickness of two feet or 3000 cubic vards per acre limit as specified in 19.15.36.15 NMAC. The "parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell," as stated in the June 24, 2010 request, is not equivalent to the regulatory requirement is identified above. It is OCD's understand, from conversations with Mr. Kyle Kerr, that the thickness of each cell would be measured and confirmed during the next vadose zone sampling event. Please note that with the addition of successive lifts Envirotech must initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface.

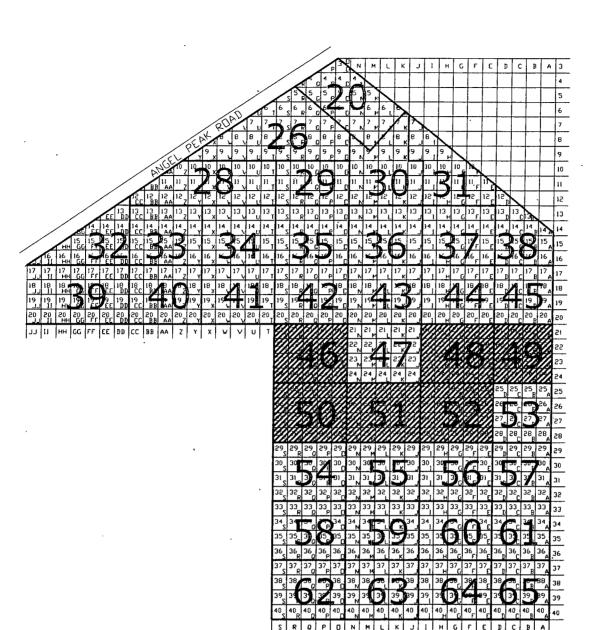
OCD was unable to consider **Cell 46**, as requested in the June 24, 2010 submittal, for approval due to the absence of analytical data.

Envirotech, Inc. Commercial Landfarm #2 Permit NM-1-0011 June 29, 2010 Page 2 of 2

Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or <u>brad.a.jones@state.nm.us</u>.

Sincerely


Brad A. Jones

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: June 23, 2010)

cc: OCD District III Office, Aztec

ENVIROTECH
NMOCD PERMITED
LANDFARM # 2
UNIT 5

SCAL	_E: 1=1	00'	FICUR	FIGURE NO.						
PRO.	JECT NO)		TIGURE NO.						
			REVISI	ONS						
NO.	DATE	BY	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION)N					
MAP	DRWN	BWW	6-23-10	BASE DRWN	•					

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

RECEIVED OCD

2010 JUN 28 P 2: 17

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: ENVIROTECH'S LANDFARM #2 DISCONTINUED MAINTENANCE AND ADDITIONAL LIFT FOR CELLS 46, 48, 49, 50, 51 and 52 in Land Farm 2 Unit 5.

Dear Mr. Jones:

June 24, 2010

Attached please find analytical documentation supporting our request for discontinued maintenance at Envirotech's Land Farm #2, for cells 46, 48, 49, 50, 51 and 52 located near Hilltop, New Mexico. The area being submitted is shown on the attached map, marked by blue crosshatch design. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 all cells being requested for discontinued maintenance have passed laboratory analysis of less than 100 ppm TPH, 50 ppm BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. As stated in the treatment zone monitoring portion of Envirotech's permit, no cell sampled was larger than five acres. Samples were collected as a five-point composite. Remediation zone layers averaged 12" in depth, results available upon request.

The blue cells (46, 48, 49, 50, 51 and 52) have passed analysis for total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylenes (see attached laboratory results). Envirotech hereby requests these cells be granted discontinued maintenance status and approval to apply an additional lift of qualifying material to these cells.

Given the parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell, we are happy to provide the following cubic yard amounts in each cell up to this time:

Cell 46: 9,723 cubic yards

Cell 48: 5,233 cubic yards

Cell 49: 6,459 cubic yards

Cell 50: 5,477 cubic yards

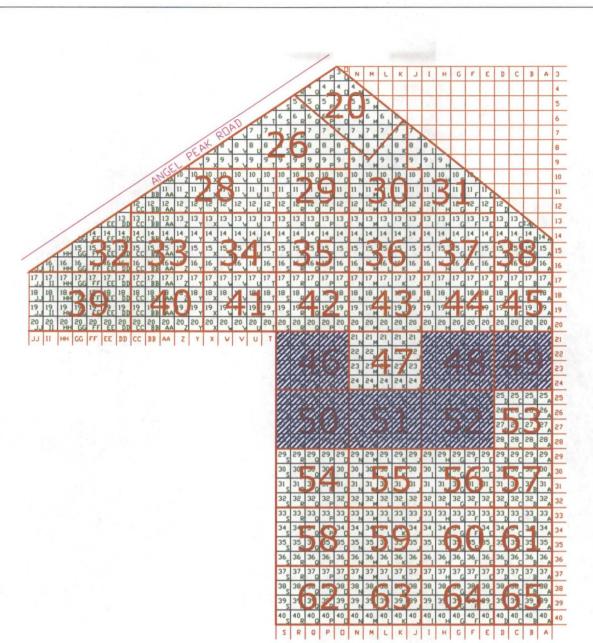
Cell 51: 7,658 cubic yards

Cell 52: 7,380 cubic yards

Due to the unusually large amounts of contaminated soil Envirotech has accepted recently, our Land Farm #2 is currently under limited space constraints. Therefore, Envirotech respectfully requests expedition of this matter, in order that our Land Farm #2 may continue to serve the Four Corners region without interruption.

Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,


Envirotech, Inc.

April E. Poli

Land Farm Administrator apohl@envirotech-inc.com

Vice President/CHMM kpkerr@envirotech-inc.com

AEP/Office/Corporate/LF/DC maintenance and added lift/6-24-10

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5

SCAL	.E: 1 = 1	00'	FICUID	FIGURE NO.					
PRO	JECT NO).	TIGUN						
	- 44		REVISI	ONS					
					The same of the sa				
NO.	DATE	BY	136	DESCRIPTION					
MAP	DRWN	BWW	6-23-10	BASE DRWN					

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

Ċlient:	Envirotech	Project #:	
Sample ID.	52	Date Reported:	04-30-10
Laboratory Number:	53705	Date Sampled:	04-15-10
Chain of Custody No:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Extracted:	04-23-10
Preservative:	Cool .	Date Analyzed:	04-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter ·	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	81.4	0.1	
Total Petroleum Hydrocarbons	81.4	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

-			
Client:	Envirotech	Project #:	
Sample ID:	51	Date Reported:	04-30-10
Laboratory Number:	53706	Date Sampled:	04-15-10
Chain of Custody No:	9092	Date Received:	04-15-10
Sample Matrix:	Soil	Date Extracted:	04-23-10
Preservative:	Cool .	Date Analyzed:	04-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND ₂	0.2	
Diesel Range (C10 - C28)	46.6	0.1	
Total Petroleum Hydrocarbons	46.6	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Manda July Analyst

Phristu muce Les

Client:	Envirotech	Project #:	
Sample ID:	50	Date Reported:	04-30-10
Laboratory Number:	53707	Date Sampled:	04-15-10
Chain of Custody No:	9092	Date Received:	04-15-10
Sample Matrix:	Soil	Date Extracted:	04-23-10
Preservative:	Cool .	Date Analyzed:	04-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	23.9	0.1	
Total Petroleum Hydrocarbons	23.9	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Frank July

Muster my Weeters Review

Client:	Envirotech	Project #:	
Sample ID:	49	Date Reported:	[°] 04-30-10
Laboratory Number:	53708	Date Sampled:	04-15-10
Chain of Custody No:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Extracted:	04-23-10
Preservative:	Cool .	Date Analyzed:	04-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
	,	. ,	
Gasoline Range (C5 - C10)	, ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	ND	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Brandle July

Priste of Weeters

ť			
Client:	Envirotech	Project #:	•
Sample ID:	48	Date Reported:	04-30-10
Laboratory Number:	53709	Date Sampled:	04-15-10
Chain of Custody No:	9092	Date Received:	04-15-10
Sample Matrix:	Soil	Date Extracted:	04-23-10
Preservative:	Cool	Date Analyzed:	04-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	, ND	0.2	
Diesel Range (C10 - C28)	116	0.1	
Total Petroleum Hydrocarbons	116	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Quality Assurance Report

Client:	QA/QC	Project #:	N/A .
Sample ID:	04-29-10 QA/QC ·	Date Reported:	04-30-10
Laboratory Number:	² 53704	Date Sampled:	· N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	04-29-10
Condition:	N/A	Analysis Requested:	TPH

	: I-Cal Date	, ⊩CajRF.	· C Cal RF:	% Difference	At Accept: Range
Gasoline Range C5 - C10	05-07-07	1.0028E+003	1.0032E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9912E+002	9.9952E+002	0.04%	0 - 15%

Blank Cone. (mg/L=mg/kg)) Concentration Detection I imply			
Gasoline Range C5 - C10	ND		0.2
Diesel Range C10 - C28	ND		0.1
Total Petroleum Hydrocarbons	ND	•	0.2

Duplicate Conc. (mg/k/g). 🦠	♣Sample ♣		. % Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	230	230	0.0%	0 - 30%

Spike Conce (mg/Kg)	- Sample	- Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	255	102%	75 - 125%
Diesel Range C10 - C28	230	250	481	100%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

· Comments:

QA/QC for Samples 53704 - 53711 and 53877 - 53878.

ysi Rei

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Envirotech	Project #:	
Sample ID:	52	Date Reported:	04-30-10
Laboratory Number:	53705	Date Sampled:	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Analyzed:	.04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	21.5	0.9	
Toluene	11.2	1.0	
Ethylbenzene	2.5	1.0	
p,m-Xylene	· 12.1	1.2	
o-Xylene	3.6	0.9	
Total BTEX	50.9		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	96.8 %
	1,4-difluorobenzene	96.6 %
•	Bromochlorobenzene	98.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

'Comments:

Landfarm 2 Unit 5 Closures

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

	•	(
Client:	Envjrotech	Project #:	
Sample ID:	51	Date Reported:	04-30-10
Laboratory Number:	53706	Date Sampled:	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Analyzed:	.04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Donrana	44 E	0.0	
Benzene	11.5	0.9	
Toluene	8.7	1.0	
Ethylbenzene	1.8 .	1.0	
p,m-Xylene	5.3	1.2	
o-Xylene	3.0	0.9	
Total BTEX	30.3		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	95.4 %
	1,4-difluorobenzene	97.0 %
·	Bromochlorobenzene	98.4 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Maria -

	+	·	
Client:	Envirotech	Project #:	_
Sample ID:	50 [°]	Date Reported:	04-30-10
Laboratory Number:	53707	Date Sampled:	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Analyzed:	04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
_		
Benzene	12.4	0.9
Toluene	11.1	1.0
Ethylbenzene	2.4	1.0
p,m-Xylene	10.9	1.2
o-Xylene	3.1	0.9
Total BTEX	39.9	ſ

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	97.2 %
	1,4-difluorobenzene	95.8 %
	Bromochlorobenzene	97.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst Analyst

Alustu m Ucetar Review

	• '	•	
Client:	Envirotech	Project #:	
Sample ID:	49	Date Reported:	04-30-10
Laboratory Number:	53708	Date Sampled:	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil .	Date Analyzed:	04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	33.3	0.9	
Toluene	10.1	1.0	
Ethylbenzene	2.4	1.0	
p,m-Xylene	· 13.7	1.2	
o-Xylene	3.4	0.9	
Total RTFX	62 9		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter		Percent Recovery
	Fluorobenzene	102 %
	1,4-difluorobenzene	97.2 %
	Bromochlorobenzene	99.4 %

References: ...

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Branish July Arralyst

Mistu M Letter Review

Client:	Envirotech	Project #:	
Sample ID:	48	Date Reported:	04-30-10
Laboratory Number:	53709	Date Sampled:	04-15-10
Chain of Custody:	9092	Date Received:	04-15-10
Sample Matrix:	Soil ,	Date Analyzed:	04-29-10
Preservative:	Cool	Date Extracted:	04-23-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	16.9	0.9
Toluene	8.6	1.0
Ethylbenzene	1.2	1.0
p,m-Xylene	· 7.5	1.2
o-Xylene	2.7	0.9
Total BTEX	36.9	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.0 %
	1,4-difluorobenzene	103 %
·	Bromochlorobenzene	99.4 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative:	N/A 04-29-BTEX QA/QC 53704 Soil N/A	Project #: Date Reported: Date Sampled: Date Received: Date Analyzed:	N/A 04-30-10 N/A N/A 04-29-10
Condition	N/A	Analysis:	BTEX

Calibration and	Legal RF.	C Cal RF	%Diff.	Blank	Detect
Detection Limits (ug/L)		Accept Rang	je 0 = 15% = ==	COILE	
Benzene	2 1496E+006	2 1539E+006	0.2%	ND	0.1
Toluene	1.1328E+006	1.1351E+006	0.2%	ND	0.1
Ethylbenzene	8.0255E+005	8.0416E+005	0.2%	ND	0.1
p,m-Xylene	2.1971E+006	2.2015E+006	0.2%	ND	0.1
o-Xylene	9 5956E+005	9 6149E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	<i>series s</i> € € Sample	- Duplicate ≥ ∄	%Diff:	Accept Range	Detectalimit
Benzene	ND	ND	0.0%	. 0 - 30%	0.9
Toluene	· 14.0	13.5	3.6%	0 - 30%	· 1.0
Ethylbenzene	2.4	2.1	12.5%	0 - 30%	1.0
p,m-Xylene	8.2	8.1	1.2%	0 - 30%	1.2
o-Xylene	1.5	1.3	13.3%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample FAmo	ount Spiked Spi	ked/Sample 5	% Recovery	ા⊪ AcceptiRange⊯
Benzene	ND	50.0	50.6	101%	39 - 150
Toluene	[′] 14.0	50.0	58.0	90.6%	46 - 148
Ethylbenzene	2.4	50.0	53.5	102%	32 - 160
p,m-Xylene	·8.2	100	103.8	95.9%	46 - 148
o-Xylene	1.5	50.0	51.9	101%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 53704 - 53711 and 53877 - 53878.

lab@envirotech-inc.com envirotech-inc.com

Client: Envirotech Project #:

Sample ID: 52 Date Reported: 04-30-10 Lab ID#: 53705 Date Sampled: · 04-15-10 Sample Matrix: Soil Date Received: 04-15-10 04-27-10 Date Analyzed: Preservative: Cool Condition: Intact Chain of Custody: 9092

Parameter Concentration (mg/Kg)

Total Chloride 40

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

nalyst (Nesthern Wolfers

04-30-10

Client: Envirotech Project #:
Sample ID: 51 Date Reported:
Lab ID#: 53706 Date Sampled:

Lab ID#:53706Date Sampled:.04-15-10Sample Matrix:SoilDate Received:04-15-10Preservative:CoolDate Analyzed:04-27-10

Condition: Intact Chain of Custody: 9092

Parameter Concentration (mg/Kg)

Total Chloride 40

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

nalyst Review Weeter

Client: Envirotech Project #:
Sample ID: 50 Date Reported:

 Sample ID:
 50
 Date Reported:
 04-30-10

 Lab ID#:
 53707
 Date Sampled:
 ·04-15-10

 Sample Matrix:
 Soil
 Date Received:
 04-15-10

 Preservative:
 Cool
 Date Analyzed:
 04-27-10

Condition: Intact Chain of Custody: 9092

Parameter Concentration (mg/Kg)

Total Chloride 65

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

Client: Envirotech Project #: Sample ID: 49 Date Reported: 04-30-10 Lab ID#: 53708 Date Sampled: 04-15-10 Sample Matrix: Soil Date Received: 04-15-10 Preservative: 04-27-10 Cool Date Analyzed: Condition: Intact Chain of Custody: 9092

Parameter

Concentration (mg/Kg)

Total Chloride

5

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

Client: Project #:
Sample ID: 48 Date Repor

Sample ID:48Date Reported:04-30-10Lab ID#:53709*Date Sampled:04-15-10Sample Matrix:SoilDate Received:04-15-10Preservative:CoolDate Analyzed:04-27-10

Condition: Intact Chain of Custody: 9092

Parameter Concentration (mg/Kg)

Total Chloride 55

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

CHAIN OF CUSTODY RECORD

Client:			·	Project Name / L	ocation	 1:			- -							NIAL)	Vele		Λ D Λ		EDC					
Euriro	10.	eh		Laudfo	iju	2 UniT	5 (65	o K	ر 2				,	•	ANAL	1010/	/ PAD	АПА	IVIE 1	ENS	•				
Client Address:				Sampler Name:							<u> </u>	21)	6													
				Rene	6	arcía					801	1 80,	826	<u>_s</u>	_						ĺ	19				
Client Phone No.:			•	Client No.:							pol	tho Tho	ğ	leta	noic		H H			=	ш	K			8	tact
<u></u>				1-02-	60	500					TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	8 Metals	Cation / Anion		TCLP with H/P			TPH (418.1)	CHLORIDE	Bester			Sample Cool	Sample Intact
Sample No./	- 1	ample	Sampl	e Lab No.		Sample	No./Volu) H	Ä	ည	RCRA	atior	ក	딧	РАН	<u> </u>	, 보	무	43		,	dur	amp
Identification	+	Date	Time			Matrix	Contain		IgCl ₂ HCl	©	1	B.	×	품	ర	RCI	<u> </u>	8	2	<u> </u>	Ö	₩		+	ၓ	_ <u>~~</u>
53 .	4/1	15/10	1010	53704	Solid	Sludge Aqueous	40	2		X	X	X									χ	X			X	X
52		1	ا انها	53705	Solid	Sludge Aqueous	1			X	X	X									χ	*			X	' <u>'</u>
51			10:3	53706	Solid	Sludge Aqueous				X	χ.	X									X	X			X	X
50			-	53707	Solid	Sludge Aqueous				X	X	X									X	X			X	X
49	\prod		10:00	53708	Solid	Sludge Aqueous				X	K	X									X	X			X	メ
48	\prod		11:19	53709	Solid	Sludge Aqueous				X	X	Х									X	X			X	X
47			11:3		Solid	Sludge Aqueous				X	X	X									X	X			χ	X
46		_	11:4	5 53711	Solid	Sludge Aqueous	I			X	X	, X	- ,								X	A	·		X	X
	1.		,	-	Soil Solid	Sludge Aqueous								·										·		
,		-			Soil Solid	Sludge Aqueous	-																			
Relinquished by: (Sign	ature	e)	6/		-t <u>-</u>	Date 4//s 1/0	Tim		Rec	eive	d by:	(Signa	ature)								'		1	ate /		me
Relinquished by: (Sign	ature	-/ <i>C</i> /e)	4 H	2 R		77/5/10	16-0		Rec	eive	d by:	سمر Signi)	ature)		7	ul	<u>E.</u>	····					oy/!	5/10	12.	56
							ł				•	` [//												
Relinquished by: (Sign	ature	e)		······································			 		Rec	eive	d by:	(Signa	ature)										†			
																								•		
									•			-								-						

Client:	Envirotech	Project #:	1-02-60002
Sample ID:	Cell 48	Date Reported:	06-17-10
Laboratory Number:	54604	Date Sampled:	06-04-10
Chain of Custody No:	9599	Date Received:	06-04-10
Sample Matrix:	Soil	Date Extracted:	06-12-10
Preservative:	Cool	Date Analyzed:	06-14-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	27.4	0.1
Total Petroleum Hydrocarbons	27.4	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	06-14-10 QA/QC	Date Reported:	06-17-10
Laboratory Number:	54602	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	06-14-10
Condition:	N/A	Analysis Requested:	TPH

10 Atlanta America America	1-Cal Date	I-Cal RF:	C-Cal RF	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L - mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND .	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/kg)	Sample	Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	128	121	5.5%	0 - 30%
Diesel Range C10 - C28	282	273	3.2%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	128	250	448	119%	75 - 125%
Diesel Range C10 - C28	282	250	590	111%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 54664, 54602-54604, 54709, 54677-54690 and 54665.

Analyst

Client:	Envirotech	Project #:	1-02-60002
Sample ID:	Cell 48	Date Reported:	06-16-10
Laboratory Number:	54604	Date Sampled:	06-04-10
Chain of Custody:	9599	Date Received:	06-04-10
Sample Matrix:	Soil	Date Analyzed:	06-14-10
Preservative:	Cool	Date Extracted:	06-12-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	. ND	0.0	
Toluene	ND	0.9	
	2.2	1.0	
Ethylbenzene	2.6	1.0	
p,m-Xylene	5.4	1.2	
o-Xylene	5.5	0.9	
Total BTEX	15.7		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter .	Percent Recovery
	Fluorobenzene	107 %
	1,4-difluorobenzene	105 %
	Bromochlorobenzene	103 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Client: Project #: 1-02-60002 Envirotech Sample ID: Cell 48 06-17-10 Date Reported: Lab ID#: 54604 Date Sampled: 06-04-10 Sample Matrix: Soil Date Received: 06-04-10 Preservative: Cool Date Analyzed: 06-14-10 Condition: Intact Chain of Custody: 9599

Parameter

Concentration (mg/Kg)

Total Chloride

60

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landarm 2 Unit 5 Closures

Analyst

Client	N/A	Project #.	N/A
Sample ID:	0614BBL QA/QC	Date Reported:	06-16-10
Laboratory Number:	54602	Date Sampled:	N/A
Sample Matrix	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	06-14-10
Condition ⁻	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/l	1,05 to 1	I-Gal RF:	C-Cal RF: Accept, Ran	%Diff je 0 - 15%	Blank Conce	Detect.
Benzene		1 3235E+006	1.3261E+006	0.2%	ND	0.1
Toluene	•	1 3048E+006	1 3074E+006	0.2%	ND .	0.1
Ethylbenzene	;	1 0800E+006	1.0821E+006	0.2%	ND	· 0.1
p,m-Xylene		2 6296E+006	2 6348E+006	0.2%	ND	0.1
o-Xylene		9.6184E+005	9 6377E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)		Sample	uplicate	.%Diff.	Accept Range	Detect. Limit
Benzene .		1.9	1.7	10.5%	0 - 30%	0.9
Toluene	•	19.7	13.9	29.4%	0 - 30%	1.0
Ethylbenzene		43.6	47.7	9.4%	0 - 30%	1.0
p,m-Xylene		292	279	4.5%	0 - 30%	1.2
o-Xylene		188	191	1.5%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked Spik	red Sample	% Recovery	Accept Range
Benzene	1.9	50.0	46.2	89.1%	39 - 150
Toluene	19.7	50.0	65.0	93.2%	46 - 148
Ethylbenzene	43.6	50.0	110	11,7%	32 - 160
p,m-Xylene	· 292	100	337	86.1%	46 - 148
o-Xylene	188	50.0	260	109%	46 - 148

ND - Parameter not detected at the stated detection limit.

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

(QA/QC for Samples 54664, 54665, 54602-54<u>604</u>,

.Analyst

09599

Client:			Project Name / L	ocation	:									ΔΝΔΙ	VSIS	/ PΔ R	ΔN/F	TERS					
E-tech			Land Sorm Z	Unit	- 5 CI	nsures		ANALYSIS / PARAMETERS															
Client Address:			Sampler Name:						6	2	6												
			Kyle (Client No.:	055	um				801	980	826	<u>s</u>	_		0	<u> </u>							٠,
Client Phone No.:			Client No.:		,				g	ğ	g O	leta	į		Ī	[-	ш				<u>8</u>	tact
			1-02 -	600	ひ 2.				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE	i			Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	_ s	ample	No./Volume of			Ţ	Ŭ	ည	₹	įį	_	۳	I	Ĭ	일			1	E	g E
Identification	Date	Time	Lab No.	<u> </u>	Matrix	of Containers	HgCl ₂ H	a	<u> </u>	П	>	2	ပိ	泛	2	PAH	ㅂ	ㅎ				Sa	Sa
Cell 47	6410	13148	54602	Solid	Sludge Aqueous	1/402		<u>-</u>	X	X						,		X				Y	Y
(ell 53	6-4-10	14:21	54603	Solid	Sludge Aqueous	1/402		У	メ	X								X	i				\overline{I}
Cell 48	6-4-10	14:00	· -	Solid	Sludge Aqueous	1/402		X	X	Х								X					
				Soil Solid	Sludge Aqueous									,									
				Soil Solid	Sludge Aqueous										_				!			-	
				Soil Solid	Sludge Aqueous	<u> </u>											_						
				Soil Solid	Sludge Aqueous																		·
			· · · · ·	Soil Solid	Sludge Aqueous					· · ·				_									
				Soil Solid	Sludge Aqueous			+								-	-						<u> </u>
				Soil Solid	Sludge Aqueous			+				 										-	-
Relinquished by: (Signa	ature)	L	.1	00110	Date	Time	Re	ceive	ed by:	(Sign	L ature)		<u> </u>		<u> </u>	L		l		Da	ate	Ti	me
	-				6410		2		ed by:	Ü				-	S	•				44	10	· -	30
Relinquished by: (Signature)					Re	ceive	ed by:	(Stgn	ature)														
Relinquished by: (Signature)					Re	Received by: (Signature)																	
										•		•				•							

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Bill Richardson

Governor

Jon Goldstein Cabinet Secretary

Jim Noel
Deputy Cabinet Secretary

Mark Fesmire
Division Director
Oil Conservation Division

March 25, 2010

Kyle P. Kerr Envirotech, Inc. 5796 US Highway 64 Farmington, New Mexico 87401

RE: Request for Approval to Apply a Successive Lift

Envirotech, Inc.

Commercial Landfarm #2: Permit NM-1-0011

Location: NW/4 Section 6, Township 26 North, Range 10 West, NMPM

San Juan County, New Mexico

Dear Mr. Kerr:

The Oil Conservation Division (OCD) has reviewed Envirotech, Inc.'s (Envirotech) request, dated March 12, 2010 to grant approval to apply an additional six-inch lift to the following cells: Cells 29, 30, 31, 35, 36, 37, 38, 42, 43, 44, and 45.

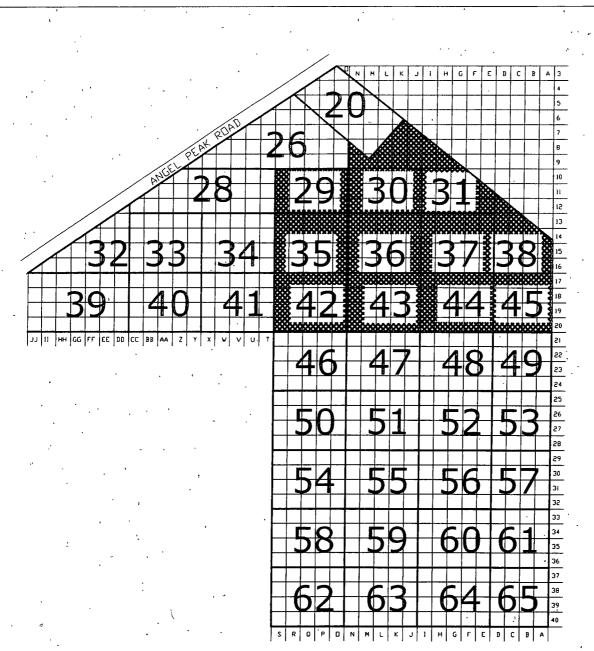
Based upon the analytical results provided, the OCD hereby grants Envirotech approval to apply an additional six-inch lift of contaminated soils to the above referenced landfarm cells. Envirotech shall ensure that the application of an additional six-inch lift of contaminated soils to the above referenced landfarm cells does not exceed the maximum thickness of two feet or 3000 cubic yards per acre limit as specified in 19.15.36.15 NMAC. Note, that with the addition of successive lifts Envirotech must initiate treatment zone monitoring and resume vadose zone monitoring. The vadose zone monitoring depth must be adjusted to reach the 2-3 foot zone below the original native ground surface.

Please be advised that approval of this request does not relieve Envirotech of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve Envirotech of its responsibility to comply with any other applicable governmental authority's rules and regulations.

Envirotech, Inc. Commercial Landfarm #2 Permit NM-1-0011 December 1, 2009 Page 2 of 2

If there are any questions regarding this matter, please do not hesitate to contact me at (505) 476-3487 or brad.a.jones@state.nm.us.

Sincerely,


Brad-A. Jones.

Environmental Engineer

BAJ/baj

Attachment: Facility Map (Revision Date: March 11, 2010)

cc: OCD District III Office, Aztec

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5

l							•		
SCALE. 1=100'						RE			
PRO	PROJECT NO. FIGURE NO.				1	!			
			-	REVISIONS					
ì	3								
	3-11-10	JMK	CLOS	ED CELLS					
NO	DATE	BY		Ε	ESCRIPTIO	N			
MAF	DRWN	JMK	12	-7-09 BAS	SE DRWN]		

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

March 12, 2010

Mr. Brad Jones New Mexico Oil Conservation District 1220 South St. Francis Drive Santa Fe, New Mexico 87505 RECEIVED OCD

200 Mai : 2 P 1: 24

RE: ENVIROTECH'S LANDFARM #2 DISCONTINUED MAINTENANCE AND ADDITIONAL LIFT FOR CELLS 29, 30, 31, 35, 36, 37, 38, 42, 43, 44, 45 in Land Farm 2 Unit 5.

Dear Mr. Jones:

Attached please find analytical documentation supporting our request for discontinued maintenance at Envirotech's Land Farm #2, for cells 29, 30, 31, 35, 36, 37, 38, 42, 43, 43 and 44 located near Hilltop, New Mexico. The area being submitted is shown on the attached map, marked by blue crosshatch design. As per Envirotech's OCD Rule 711 Permit Approval NM 01-0011 dated April 8, 2000 all cells being requested for discontinued maintenance have passed laboratory analysis of less than 100 ppm TPH, 50 ppm BTEX and 10 ppm Benzene. In addition, Envirotech has sampled for chlorides. As stated in the treatment zone monitoring portion of Envirotech's permit, no cell sampled was larger than five acres. Samples were collected as a five-point composite.

The blue cells (29, 30, 31, 35, 36, 37, 38, 42, 43, 43 and 44) have passed analysis for total petroleum hydrocarbons, benzene, toluene, ethylbenzene and total xylenes (see attached laboratory results). Envirotech hereby requests these cells be granted discontinued maintenance status and approval to apply an additional lift of qualifying material to these cells.

Given the parameter for cubic yardages of 15,000 or less to be applied in each five (5) acre cell, we are happy to provide the following cubic yard amounts in each cell up to this time:

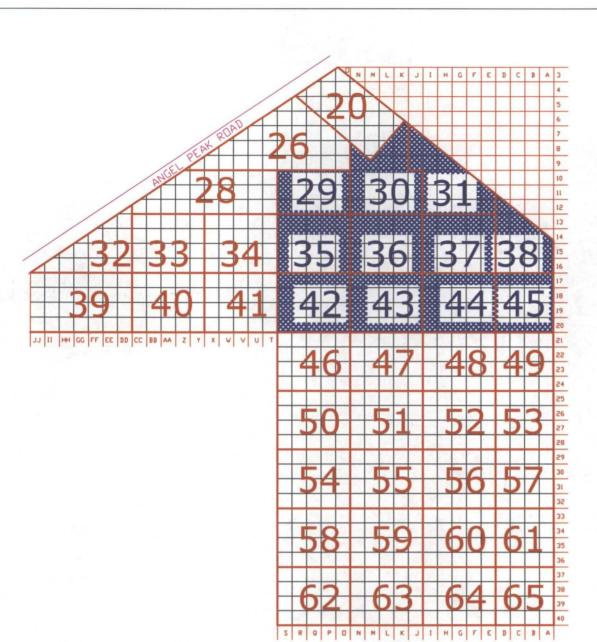
Cell 29: 4,759 cubic yards	Cell 30: 8,358 cubic yards	Cell 31: 6,173 cubic yards
Cell 35: 5,660 cubic yards	Cell 36: 6,136 cubic yards	Cell 37: 7,867 cubic yards
Cell 38: 7,984 cubic yards	Cell 42: 4,931 cubic yards	Cell 43: 7,413 cubic yards
- 11 44	- 11 45 0 005 11	

Cell 44: 7,924 cubic yards Cell 45: 8,325 cubic yards

Due to the unusually large amounts of contaminated soil Envirotech has accepted recently, our Land Farm #2 is currently under limited space constraints. Therefore, Envirotech respectfully requests expedition of this matter, in order that our Land Farm #2 may continue to serve the Four Corners region without interruption.

Thank you for your consideration in this matter. If you have any questions or require additional information, please do not hesitate to contact our office at (505) 632-0615.

Respectfully submitted,


Envirotech, Inc.

April E. Pohl

Land Farm Administrator apohl@envirotech-inc.com

Kyle P. Kerr

Vice President/CHMM kpkerr@envirotech-inc.com

ENVIROTECH NMOCD PERMITED LANDFARM # 2 UNIT 5

SCA	CALE: 1=100' FIGURE NO.				REV		
PROJECT NO.				FIGUR	E NO.		1
				REVISI	ONS		
	3-11-10	JMK	CLOS	SED CELI	.S		
NO.	DATE	BY			DESCRIPTION	N	
MAP	DRWN .	JMK	1:	2-7-09	BASE DRWN		

5796 U.S. HIGHWAY 64, FARMINGTON, NM 87401 505-632-0615

Client:	Envirotech	Project #:	
Sample ID:	31	Date Reported:	02-23-10
Laboratory Number:	53182	Date Sampled:	02-18-10
Chain of Custody No:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND.	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Envirotech	Project #:	•
Sample ID:	29	Date Reported:	02-23-10
Laboratory Number:	53183	Date Sampled:	02-18-10
Chain of Custody No:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Client:	Envirotech	Project #:	
Sample ID:	35	Date Reported:	02-23-10
Laboratory Number:	53184	Date Sampled:	02-18-10
Chain of Custody No:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	ND	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Arestum Weller Review

Client:	Envirotech	Project #:	
Sample ID:	30	Date Reported:	02-23-10
Laboratory Number:	53185	Date Sampled:	02-18-10
Chain of Custody No:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact.	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Anster of Worlds
Review

Client:	Envirotech	Project #:	
Sample ID:	43	Date Reported:	02-23-10
Laboratory Number:	53186	Date Sampled:	02-18-10
Chain of Custody No:	8764	Date Received:	02-18-10
Sample Matrix:	Soil .	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND ND	0.2	
Diesel Range (C10 - C28)	ND	0.1	
Total Petroleum Hydrocarbons	ND	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Christin m Westers Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC	Project #:		N/A
Sample ID:	02-22-10 QA/QC	Date Reported:	•	02-23-10
Laboratory Number:	53182	Date Sampled:		N/A
Sample Matrix:	Methylene Chloride	Date Received:	. :	Ņ/A
Preservative:	N/A	Date Analyzed:		02-22-10
Condition:	N/A	Analysis Requested:		TPH

A STATE OF THE STA	: I-Cal Date	I-Cal RF:	C-Cal RF;	% Difference	- Accept, Range
Gasoline Range C5 - C10	05-07-07	9.2263E+002	9.2300E+002	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.6742E+002	9.6781E+002	0.04%	0 - 15%

Blank Conc. (mg/L - mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate:	% Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	ND	250	241	96.4%	75 - 125%
Diesel Range C10 - C28	ND	250	262	105%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53182 - 53191.

Analyst

Client:	Envirotech	Project #:	
Sample ID:	31	Date Reported:	02-22-10
Laboratory Number:	53182	Date Sampled:	02-18-10
Chain of Custody:	8764	Date Received ⁻	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested.	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)		
Donzana	ND	0.0		
Benzene	ND	0.9		
Toluene	ND	1.0		
Ethylbenzene	ND	1.0		
p,m-Xylene	ND	1.2		
o-Xylene	ND .	0.9		
Total BTEX	ND ND			

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	94.0 %
	1,4-difluorobenzene	99.0 %
	Bromochlorobenzene	98.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

· Landfarm 2 Unit 5 Closures

Analyst

Řeview

Client:	Envirotech	Project #:	
Sample ID:	29	Date Reported:	02-22-10
Laboratory Number:	53183	Date Sampled:	02-18-10
Chain of Custody:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	ND ·	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	· ND	1.2
o-Xylene	ND ₋	0.9
Total BTEX	ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter,	Percent Recovery
	Fluorobenzene	91.0 %
	1,4-difluorobenzene	96.0 %
	Bromochlorobenzene	92.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Review .

Client:	Envirotech	Project #:	
Sample ID:	35	Date Reported:	02-22-10
Laboratory Number:	53184	Date Sampled:	02-18-10
Chain of Custody:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed.	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. . Limit (ug/Kg)	. Limit	
_		•		
Benzene	ND	0.9		
Toluene	ND	1.0		
Ethylbenzene .	ND	1.0		
p,m-Xylene	ND	1.2		
o-Xylene	ND -	0.9		
Total BTEX	. ND			

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
,	Fluorobenzene	93.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Client:	Envirotech .	Project #.	
Sample ID:	30	Date Reported:	02-22-10
Laboratory Number:	53185	Date Sampled:	02-18-10
Chain of Custody:	8764	Date Received	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

		Det.	
Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	, ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND .	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	93.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

- Client:	Envirotech	Project #:	
Sample ID:	43	Date Reported:	02-22-10
Laboratory Number:	53186	Date Sampled:	02-18-10
Chain of Custody:	8764	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND .	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND ₋	0.9	
Total BTEX	ND	•	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	91.0 %
•	1,4-difluorobenzene	96.0 %
	Bromochlorobenzene	92.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996. :..

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst-

Client Sample ID Laboratory Number:	N/A 02-22-BT QA/QC 53182	Project #. Date Reported	N/A 02-23-10
Sample Matrix:	Soil	Date Sampled: Date Received:	N/A . N/A
Preservative Condition	N/A N/A	Date Analyzed [.] Analysis:	02-22-10 BTEX

Calibration and Detection Limits (ug/L)	I-Cal-RE:	G-Cal RF Accept Rang		Blank Cone	Detect. Limit
Benzene	1 0907E+006	1 0929E+006	0.2%	ND	0.1
Toluene	9.9667E+005	9 9866E+005	0.2%	ND	0.1
Ethylbenzene	8 9937E+005	9 0117E+005	0.2%	ND	0.1
p,m-Xylene	2 2367E+006	2 2412E+006	0.2%	ND	0.1
o-Xylene	8.4808E+005	8.4978E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	Sample Dug	licate	%Diff	Accept Range	Detect. Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	.00%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	. · ND	NÐ	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked - Spik	ed Sample	% Recovery	Accept Range
Benzene	ND	50.0	49.7	99.4%	39 - 150
Toluene	ND	50.0	47.9	95.8%	46 - 148
Ethylbenzene	ND	50.0	48.2	96.4%	32 - 160
p,m-Xylene	ND	100	97.9	97.9%	46 - 148
o-Xylene	ND	50.0	47.5	95.0%	46 - 148

ND - Parameter not detected at the stated detection limit

References

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

Comments:

QA/QC for Samples 53182 - 53191.

Analyst

Client: Envirotech Project #: Sample ID: 31 Date Reported:

 Sample ID:
 31
 Date Reported:
 02-24-10

 Lab ID#:
 53182
 Date Sampled:
 02-18-10

 Sample Matrix:
 Soil
 Date Received:
 02-18-10

 Preservative:
 Cool
 Date Analyzed:
 02-24-10

Condition: Intact Chain of Custody: 8764

Parameter Concentration (mg/Kg)

Total Chloride 40

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

Analyst (Mustum Weeters Review

Envirotech Project #: Client: Sample ID: 29 Date Reported: 02-24-10 Lab ID#: 53183 Date Sampled: 02-18-10 Sample Matrix: Soil Date Received: 02-18-10 Preservative: Cool Date Analyzed: 02-24-10 Condition: Intact Chain of Custody: 8764

Parameter

Concentration (mg/Kg)

Total Chloride

55

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Christian Weetles Review

Client: Envirotech Project #: Sample ID: 35 Date Repor

 Sample ID:
 35
 Date Reported:
 02-24-10

 Lab ID#:
 53184
 Date Sampled:
 02-18-10

 Sample Matrix:
 Soil
 Date Received:
 02-18-10

 Preservative:
 Cool
 Date Analyzed:
 02-24-10

Condition: Intact Chain of Custody: 8764

Parameter Concentration (mg/Kg)

Total Chloride 45

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

Analyst Review Weeters

Project #: Client: Envirotech Sample ID: 30 Date Reported: 02-24-10 Lab ID#: 53185 Date Sampled: 02-18-10 02-18-10 Sample Matrix: Date Received: Soil Preservative: Date Analyzed: 02-24-10 Cool Condition: Chain of Custody: 8764 Intact

Parameter

Concentration (mg/Kg)

Total Chloride

15

Reference: -

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

Client: Project #: Envirotech 43 Sample ID: Date Reported: 02-24-10 Lab ID#: 53186 Date Sampled: 02-18-10 Sample Matrix: Soil Date Received: 02-18-10 Preservative: Cool Date Analyzed: 02-24-10 Condition: Intact Chain of Custody: 8764

Parameter

Concentration (mg/Kg)

Total Chloride

15

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Mestre of Weelles Review

Client:			P	roject Name /	Location			9/ 0															·
_	a														ANAL	YSIS.	/ PAR	AME	ΓERS				
EUUITO te	CV		1.0	ampler Name:	بكان	MIT 5	Clasures			ļ	_	γ	1	1			Γ						
Client Address:			5	ampier ivame:						15)	BTEX (Method 8021)	VOC (Method 8260)											
O				JKIRC	hnel					88	8 00	8	as	چ		٩		_				_	75
Client Phone No.:			C	lient No.:						(Method 8015)	eth	tho	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	삥			Sample Cool	Sample Intact
				1-02-1			Th. 04.			(Me	\mathbb{Z}	[Me	A 8	/ u		× Ki		(41				ole (ole l
Sample No./- Identification	1	mple	Sample	Lab No.	1	ample	No./Volume of			TPH	<u> </u>	8	8	atio	교	끙	PAH	PH	CHLORIDE			am	am
		Date	Time			Vatrix	Containers	ngu _z nu	+	F	m	>	cc	0	<u>«</u>	<u> </u>	<u>a</u>	-	1/			ဟ	S
31	2	-13.0	1030	53182	Solid	Sludge Aqueous	462		0													4	<u> </u>
29			1000	53183	Solid	Sludge Aqueous	1		٥ ك	\ \	V											J	J
. 35			1045	53184	€ii Solid	Sludge Aqueous			1	V	V								V				Ì
30	1		1015	53185	\$50 Solid	Sludge Aqueous				/	/								V				
43	-		1145	53186	50) Solid	Sludge Aqueous	له		1	1	V								1				
					Soil Solid	Sludge Aqueous															•		
			-	484	Soil Solid	Sludge Aqueous												-					
				VIA	Soil Solid	Sludge Aqueous									_								
,					Soil Solid	Sludge Aqueous									_			٠					
,			٠,		Soil Solid	Sludge Aqueous																	
Relinquished by: (Signa	ature	 ∋)	1	<u> </u>		Date	Time	Rec	eive	∟bby:	(Signa	ature))				l	L	<u> </u>		Date /	Ti	me
Llnk		/				2-1870	Time (カン00 イ/・3/2		K		na	1-	/	X,	F.					7	18/10	13	02
Pelinquished by: (Signature)	ature	e).						Rec	ejve	d by:	(Signa	ature	//	1			·_·_			7	77.0		
Relinquished by: (Signa	ature	∋)						Rec	eive	d by:	(Signa	ature))										
				•																			
).													•	•	•		
•							env) [6	C											
								alvt															

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Client:	Envirotech	Project #:	
Sample ID:	44	Date Reported.	02-23-10
Laboratory Number:	53187	Date Sampled:	02-18-10
Chain of Custody No:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed.	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Review

Client:	Envirotech	Project #:	
Sample ID:	45	Date Reported:	02-23-10
Laboratory Number:	53188	Date Sampled:	02-18-10
Chain of Custody No:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Christinen Walter Review

Client:	Envirotech	Project #:		
Sample ID:	42	Date Reported:		02-23-10
Laboratory Number:	53189	Date Sampled:		02-18-10
Chain of Custody No:	8765	Date Received:		02-18-10
Sample Matrix:	Soil	Date Extracted:	•	02-19-10
Preservative:	Cool	Date Analyzed:		02-22-10
Condition:	Intact	Analysis Requested:	•	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	. ND	0.2
Diesel Range (C10 - C28)	, ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Mustum Waster
Beview

		•	
Client:	Envirotech	Project #:	
Sample ID:	38	Date Reported:	02-23-10
Laboratory Number:	53190	Date Sampled:	02-18-10
Chain of Custody No:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted:	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Mester Wester Review

Client:	Envirotech	Project #:	-
Sample ID:	37	Date Reported:	02-23-10
Laboratory Number:	53191	Date Sampled:	02-18-10
Chain of Custody No:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Extracted ⁻	02-19-10
Preservative:	Cool	Date Analyzed:	02-22-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
	•	-
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND .	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Muster Mudalters
Review

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	02-22-10 QA/QC	Date Reported:	02-23-10
Laboratory Number:	53182	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	02-22-10
Condition:	N/A	Analysis Requested:	TPH

all of the second s	I-Cal Date	I-Cal RF	C-Cal RF	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	9.2263E+002	9.2300E+002	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.6742E+002	9.6781E+002	0.04%	0 - 15%

Blank Cone. (mg/L-mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Récovery	Accept Range
Gasoline Range C5 - C10	ND	250	241	96.4%	75 - 125%
Diesel Range C10 - C28	ND	250	262	105%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B; Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53182 - 53191.

Client:	Envirotech	Project #:	
Sample ID:	. 44	Date Reported:	02-22-10
Laboratory Number:	53187	Date Sampled:	02-18-10
Chain of Custody:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)
_	,	
Benzene	ND	0.9
Toluene	ND	1.0
Ethylbenzene	ND	1.0
p,m-Xylene	. ND	1.2
o-Xylene	ND -	0.9
Total BTEX	. ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	93.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Mustlum Wolters
Review

Client:	Envirotech	Project #:	
Sample ID:	45	Date Reported:	02-22-10
Laboratory Number:	53188	Date Sampled:	02-18-10
Chain of Custody:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	,
o-Xylene	ND -	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.0 %
	1,4-difluorobenzene	97.0 %
•	Bromochlorobenzene	94.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: --

Landfarm 2 Unit 5 Closures

Analyst

Mustum Wooders

Client:	Envirotech	Project #:	
Sample ID:	42	Date Reported:	02-22-10
Laboratory Number:	53189	Date Sampled:	02-18-10
Chain of Custody:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
_			
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND .	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter g	Percent Recovery
	Fluorobenzene	93.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Review

Client:	Envirotech	Project #:	
Sample ID:	38	Date Reported.	02-22-10
Laboratory Number:	53190	Date Sampled:	02-18-10
Chain of Custody:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted.	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Bannana	ND	•	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND -	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.0 %
	1,4-difluorobenzene	97.0 %
	Bromochlorobenzene	94.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Allum Mallum M

Client:	Envirotech	Project #:	
Sample ID:	37	Date Reported:	02-22-10
Laboratory Number:	53191	Date Sampled:	02-18-10
Chain of Custody:	8765	Date Received:	02-18-10
Sample Matrix:	Soil	Date Analyzed:	02-22-10
Preservative:	Cool	Date Extracted:	02-19-10
Condition:	Intact	Analysis Requested:	BTEX

Parameter Benzene Toluene Ethylbenzene p,m-Xylene	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	•
Toluene	ND	1.0	
Ethylbenzene	` ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND -	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	92.0 %
	1,4-difluorobenzene	97.0 %
	Bromochlorobenzene	94.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5 Closures

Analyst

Achustum Weeter

Client:	N/A	Project #.	N/A
Sample ID:	02-22-BT QA/QC	Date Reported:	02-23-10
Laboratory Number:	53182	Date Sampled.	N/A
Sample Matrix:	Soil	Date Received	N/A
Preservative:	N/A	Date Analyzed:	02-22-10
Condition:	N/A	Analysis:	BTEX

Calibration and Detection Limits (ug/L)	ren in un i l-Cal RF	C-Cal RF		Blank Conc	Detect. Limit
Benzene	1 0907E+006	1 0929E+006	0.2%	ND	0:1
Toluene	9 9667E+005	9.9866E+005	0.2%	ND	0.1
Ethylbenzene	8 9937E+005	9.0117E+005	0.2%	ND	0.1
p,m-Xylene	2 2367E+006	2 2412E+006	0.2%	ND	0.1
o-Xylene	8 4808E+005	8 4978E+005	0.2%	ND	0.1

Duplicate Conc. (ug/Kg)	Sample, Du	plicate	%Diff.	Accept Range	Detect Limit
Benzene	ND	ND	0.0%	0 - 30%	0.9
Toluene	ND	ND	.0.0%	0 - 30%	1.0
Ethylbenzene	ND	ND	0.0%	0 - 30%	1.0
p,m-Xylene	ND	ND	0.0%	0 - 30%	1.2
o-Xylene	ND	ND	0.0%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	unt Spiked - Spik	ed Sample	% Recovery	Accept Range
Benzene	ND	50.0	49.7	99.4%	39 - 150
Toluene	ND	50.0	47.9	95.8%	46 - 148
Ethylbenzene	ND	50.0	48.2	96.4%	32 - 160
p,m-Xylene	ND	100	97.9	97.9%	46 - 148
o-Xylene	· ND	50.0	47.5	95.0%	46 - 148

ND - Parameter not detected at the stated detection limit.

References

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

Comments:

QA/QC for Samples 53182 - 53191.

Client: Envirotech Project #:

Sample ID: 44 Date Reported: 02-24-10 Lab ID#: 53187 Date Sampled: 02-18-10 Sample Matrix: Soil Date Received: 02-18-10

Preservative: Cool Date Analyzed: 02-24-10 Condition: Intact 8765

Chain of Custody:

Parameter Concentration (mg/Kg)

Total Chloride 30

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

Client: Envirotech Project #:

Sample ID: 45 Date Reported: 02-24-10 Lab ID#: 53188 Date Sampled: 02-18-10 Sample Matrix: Soil Date Received: 02-18-10 Preservative: Date Analyzed: 02-24-10 Cool

Condition: Intact Chain of Custody: 8765

Parameter Concentration (mg/Kg)

Total Chloride 40

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

nalyst Review Wolfes

Project #: Client: Envirotech Sample ID: Date Reported: 02-24-10 42 Lab ID#: 53189 Date Sampled: 02-18-10 Sample Matrix: Date Received: 02-18-10 Soil Preservative: Cool Date Analyzed: 02-24-10

Condition: Intact Chain of Custody: 8765

Parameter Concentration (mg/Kg)

Total Chloride 20

Reference: U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Landfarm 2 Unit 5 Closures

Analyst / Review / Review

Client: Project #: Envirotech Date Reported: Sample ID: 38

02-24-10 Lab ID#: Date Sampled: 02-18-10 53190 Date Received: 02-18-10 Sample Matrix: Soil Date Analyzed: 02-24-10 Preservative: Cool

Chain of Custody: Condition: Intact 8765

Parameter Concentration (mg/Kg)

Total Chloride 10

U.S.E.P.A., 4500B; "Methods for Chemical Analysis of Water and Wastes", 1983. Reference:

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: **Landfarm 2 Unit 5 Closures**

Envirotech Client: Project #: Sample ID: 37 Date Reported: Lab ID#: 53191 Date Sampled: Sample Matrix: Soil

Cool

Intact

Date Received:

Date Analyzed:

Chain of Custody: 8765

02-24-10

02-18-10

02-18-10

02-24-10

Parameter

Concentration (mg/Kg)

Total Chloride

30

Reference:

Preservative:

Condition:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5 Closures

CHAIN OF CUSTODY RECORD

8765

· · · · · · · · · · · · · · · · · · ·											11												
Client: Project Name / Location:												ANAL'	YSIS.	/ PAR	AMET	ERS					-		
Envirotech			And FAIM ampler Name:	2	unit5	Clasure	25																
Client Address:		S	ampler Name:						10	21)	6												
			JKircha	20					200	80	826	ဟ											
Client Phone No.:		С	lient No.:	<u>. </u>					g	poų:	bo	etal	<u>i</u>		Ŧ		7				1 7	<u>ā</u>	act
•			1-02	- 6000	2				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	CHLORIDE		İ		Sample Cool	Sample Intact
Sample No./	Sample	Sample	Lab No.	S	Sample	No./Volume			Ē	X	ျွ	₽,	tion	_	٩	I) H	2				Ē	ld m
Identification	Date	Time	Lab No.		Matrix	of Containers	HgCl ₂ HC	1 C	<u>P</u>	ВТ	9	8	Ca	교	10	PAH	TP	공			ć	Ŋ	Sa
44	2-14-16	1260	63184	Solid	Sludge Aqueous	462		0	/	/								V			>	4	×
45	2-18-10	125	53188	Solid	Sludge Aqueous	/		L	/	V							•	V				×	¥
42	2-18-10	1130	53189	Solid	Sludge Aqueous			1	V	V								1				×	V
38	2-18-10	1115	53190	Solid	Sludge Aqueous				1	1								V				X	×
31	218-10	1199	53191	Solid	Sludge Aqueous	+		1	v	~										·	×	,	\checkmark
			-	Soil Solid	Sludge Aqueous										,	,			-				
			يغ	Soil Solid	Sludge Aqueous												•						
				Soil Solid	Sludge Aqueous								,										
			,	Soil Solid	Sludge Aqueous																		
		•.		Soil Solid	Sludge Aqueous																		
Relinquished by: (Sign	ature)				Date 2/18-10	Time (7:00)	Re	ceive	ed by:	(Sign	ature)						. 1	.	'	Da 2-18-		Tin	
Relinquished by: Sign	ature)	,				11.00	Re	ceive	d by:	(Sign	ature)									<u> </u>			-
Relinquished by: (Signa	ature)						Red	ceive	d by:	(Signa	ature)												
		;		A		en	/ i	r E	t	e	C	h											

Client:	Envirotech	Project #:	
Sample ID:	36	Date Reported:	03-10-10
Laboratory Number:	53293	Date Sampled:	02-25-10
Chain of Custody No:	8833	Date Received:	03 - 08-10
Sample Matrix:	Soil	Date Extracted:	03-08-10
Preservative:	Cool	Date Analyzed:	03-09-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	59.5	0.1	
Total Petroleum Hydrocarbons	59.5	0.2	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

Landfarm 2 Unit 5

5 pt Comp Closure Sample

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	03-09-10 QA/QC	Date Reported:	03-10-10
Laboratory Number:	53289	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	03-09-10
Condition:	N/A	Analysis Requested:	TPĤ

700	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	05-07-07	8.3534E+002	8.3567E+002	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	8.7194E+002	8.7229E+002	0.04%	0 - 15%

Blank Cone. (mg/L - mg/kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept. Range
Gasoline Range C5 - C10	7.3	8.4	15.1%	0 - 30%
Diesel Range C10 - C28	118	123	3.6%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept Range
Gasoline Range C5 - C10	7.3	250	244	94.9%	75 - 125%
Diesel Range C10 - C28	118	250	346	94.0%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 53289 and 53293 - 53301

Client:	Envirotech	Project #:	
Sample ID:	36	Date Reported:	03-10-10
Laboratory Number:	53293	Date Sampled:	02-25-10
Chain of Custody:	8833	Date Received:	03-08-10 ′
Sample Matrix:	Soil	Date Analyzed:	03-09-10
Preservative:	Cool	Date Extracted:	03-08-10
Condition:	Intact	Analysis Requested:	BTEX

 Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
		, , , , , , , , , , , , , , , , , , , ,	
Benzene Senzene	ND	0.9	
Foluene	ND	1.0	
Ethylbenźene	ND	1.0	
o,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	93.0 %
	1,4-difluorobenzene	99.5 %
	Bromochlorobenzene	97.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

Landfarm 2 Unit 5

5 pt Comp Closure Sample

Analyst

Review

Client: Sample ID Laboratory Number: Sample Matrix Preservative:	N/A 03-09-BT QA/QC 53289 Soil N/A	Project #: Date Reported: Date Sampled Date Received Date Analyzed	N/A 03-10-10 N/A N/A 03-09-10
Condition.	N/A	Analysis.	BTEX

Calibration and Detection Limits (ug/L)	I-Cal RF:	C-Cal/RF: Accept Rang	%Diff. je 0 - 15%	Blank Conc	Detect. Limit
Benzene	1.0755E+006	1 0777E+006	0.2%	ND	, 0.1
Toluene	9 8382E+005	9 8579E+005	0.2%	ND	0.1
Ethylbenzene	8 8806E+005	8.8984E+005	0.2%	ND	0.1
p,m-Xylene	2 2002E+006	2 2047E+006	0.2%	ND	0.1
o-Xylene	8.2736E+005	8 2901E+005	0.2%	- ND	0.1

Duplicate Conc. ((ug/Kg)	Sample D	uplicate	%Diff.	Accept Range	Detect Limit
Benzene	. ···	9.5	9.3	2.1%	0 - 30%	0.9
Toluene		38.6	38.0	1.6%	0 - 30%	1.0
Ethylbenzene		12.5	11.4	8.8%	0 - 30%	1.0
p,m-Xylene		65.8	64.0	2.7%	0 - 30%	1.2
o-Xylene		32.5	31.9	1.8%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sa	mple Amo	ount Spiked - Spik	red Sample	% Recovery	Accept Range
Benzene	,	9.5	50.0	58.1	97.6%	39 - 150
Toluene		38.6	50.0	88.0	99.3%	46 - 148
Ethylbenzene	•	12.5	50.0	61.8	98.9%	32 - 160
p,m-Xylene		65.8	100	165	99.4%	46 - 148
o-Xylene		32.5	50.0	82.3	99.8%	46 - 148

ND - Parameter not detected at the stated detection limit.

References Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996

Comments: QA/QC for Samples 53289 and 53293 - 53301

03-10-10

02-25-10

03-08-10

Client: Envirotech Project #:
Sample ID: 36 Date Reported:
Lab ID#: 53293 Date Sampled:
Sample Matrix: Soil Date Received:

Preservative: Cool Date Analyzed: 03-09-10 Condition: Intact Chain of Custody: 8833

Parameter

Concentration (mg/Kg)

Total Chloride

2

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

Landfarm 2 Unit 5

5 pt Comp Closure Sample

Analyst

Review

CHAIN OF CUSTODY RECORD

8833

Client: Project Name / Location:					T					ΔΝΑΙ	YSIS	/ PAR	AME ⁻	TERS.											
Envirotech		1	Landfarm 2 Unit 5 Sampler Name:										11 47 11	10.0	, , , , , ,										
Client Address: Sampler Name:						-		5)	(121	(ĝ															
			J. Kirch	hev	· · · · · · · · · · · · · · · · · · ·				801	96 B	826	25	_		<u>a</u>	8							+		
Client Phone No.:			Client No.:				TPH (Method 8015)	BTEX (Method 8021)	VOC (Method 8260)	RCRA 8 Metals	Cation / Anion		TCLP with H/P		TPH (418.1)	필				Sample Cool	Sample Intact				
Sample No./ Sample Sam		Sample	nle Sample			No./Volume Preservative		Ž)	X	<u></u> S ∪	AA 8	/ uoi		P.	_	4) H	CHLORIDE				nple	mple			
Identification	Date	Time	Lab No.	M	latrix	of Containers	HgCl, HCl		直	BTE	Š	<u> </u>	Cat	RC.	덛	PAH	且	동				Sar	Sar		
36	0425/10	10 00	53293	Solid	Sludge Aqueous	1-402		1		/												4	4		
•				Soil Solid	Sludge Aqueous)	J		
				Soil Solid	Sludge Aqueous								-										٠.		
	· ·			Soil Solid	Słudge Aqueous																				
				Soil Solid	Sludge Aqueous																				
· · · · · · · · · · · · · · · · · · ·				Soil	Sludge			 	 								-								
				Solid	Aqueous			+																	
•				Solid	Aqueous Sludge			+-																	
				Solid Soil	Aqueous Sludge			-									<u>'</u>					-			
	,			Solid	Aqueous Sludge																				
Relinguished by: (Sigr			<u> </u>	Solid	Aqueous Date	Time	 Re	Ceive	d by:	(Sign	ature'	<u> </u>					L			D	ate .	Ti	me		
				3/8/10			Received by: (Signature) Date 03/08/10/5																		
Refinquished by: (Sign	nature)				7 170	1520	Re	ceive	ed by:	(Sign	aturé	/ p	llu			•	. <u></u>			7	410				
Relinquished by: (Signature)					Re	ceive	ed by:	(Sign	ature))							<u> </u>			<u> </u>					
							<u> </u>	•											×						
50t Comp.							. :		L			L													

5pt Comp. Closure Sample

