41 1R

WORKPLANS

Hansen, Edward J., EMNRD

From:Katie Jones [kjones@riceswd.com]Sent:Thursday, August 04, 2011 9:55 AMTo:Hansen, Edward J., EMNRDCc:Hack Conder; Randall HicksSubject:ROC - Hobbs G-9 vent (1R428-73) CAP AddendumAttachments:Hobbs G-9 vent (1R428-73) Proposed Liner.jpg

Mr. Hansen,

This email is an Addendum to the Hobbs G-9 vent site (1R428-73) Corrective Action Plan (CAP), submitted to the NMOCD on May 16, 2011. Page 4, section: Recommendations, paragraph 2: text in blue lettering, below, will be added to the paragraph. Red lettering marked with a strike-through will be deleted and replaced with blue lettering. The new plat showing the additional proposed liner location is attached. If you need any further information, please let me or Hack know.

"Recommendations

The site data that documents the residual mass of chloride and hydrocarbons in the vadose zone permit a conclusion that these constituents in the vadose zone will not with reasonable probability contaminate ground water or surface water in excess of the standards in Subsection B and C of the 19.15.30.9 NMAC through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates.

Our recommended corrective action for the site is re-vegetation of the ground surface to limit infiltration of precipitation and the subsequent migration of constituents of concern to ground water. the installation of a 36-foot by 31-foot, 20-mil, reinforced poly liner at a depth of approximately 4 foot below ground surface (bgs). The excavation will be backfilled with soil containing a chloride concentration below 500 mg/kg and a PID (field) reading below 100 ppm. Excavated soil will be evaluated for use as backfill, and any soil requiring disposal will be properly disposed of at a NMOCD approved facility. The backfilled site will then be seeded with native vegetation. This proposed remedy will limit infiltration of precipitation and the subsequent migration of constituents of concern to ground water. A synthetic liner installed below the root zone as proposed will inhibit the downward migration of water through the subsurface, slowing movement of chloride or soluble hydrocarbons toward ground water. Plants capture water through their roots, thereby reducing the volume of water infiltrating below the root zone. This natural "infiltration barrier" helps protect ground water as the decreased flux of water through the subsurface slows the transportation rate of residual chloride and soluble hydrocarbons in the subsurface. Upon documentation of installation of the liner and re-seeding with an appropriate mix of native grasses we will submit a Termination Request for this site's regulatory file.

ROC is the service provider (agent) for the Hobbs Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The Hobbs SWD System is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis."

1

Thank you.

Katie Jones Environmental Project Coordinator RICE Operating Company

Proposed Liner

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, 🏧 87104 👗 505(266,5004 🛦 Fax: 505.266.0745

May 16, 2011

5

2011 NAY 19 A 11:22

Mr. Edward J. Hansen New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Rice Operating Company, Hobbs SWD System G-9 Vent Site: T-19-S, R-38-E, Section 9, Unit G, Lea County, New Mexico, (NMOCD CASE #1R428-73), Corrective Action Plan

Mr. Hansen:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is submitting this Corrective Active Plan for the Hobbs G-9 Vent site. The investigation demonstrates that residual chloride and hydrocarbons in the vadose zone will not with reasonable probability contaminate ground water or surface water, in excess of the standards in Subsections B and C of 19.15.30.9 NMAC through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates. Revegetation of the site, our recommended corrective action, meets the mandate of NMOCD Rules for protection of surface water and the environment.

Background

The Hobbs G-9 Vent is located southwest of the city of Hobbs, New Mexico at T-19-S, R-38-E, Section 9, in Unit G. An initial 16-foot deep excavation was installed on December 9, 2002, which identified chloride-and hydrocarbon-impacted soil. The NMOCD-approved Investigation Characterization Plan (ICP), dated February 19, 2009 (Attachment A) was prepared to address the further delineation of the site. It includes background information, a site vicinity map, and a regional ground water gradient map for this and five other area sites.

Field Programs

As a part of the approved ICP, ROC installed and sampled three 12-foot deep backhoe trenches on May 5, 2009 in an attempt to delineate the vertical and horizontal extent of hydrocarbons and chloride in the soil.

Hicks Consultants supervised a deep soil sampling program to further delineate the extent and magnitude of media impact. On July 9, 2009, a single 25-foot deep soil boring (SB-1) was drilled just southwest of the original vent location. ROC conducted field analysis of soil samples for chloride and volatile hydrocarbon vapors for the trench and boring program. Plate 1 is a summary map that includes results of the field chloride analyses and hydrocarbon screening data as well as laboratory results for the soil samples used to verify May 16, 2011 Page 2

the ROC field data. Attachment B provides the soil lithology logs for SB-1, which includes the field chloride and hydrocarbon screening data and laboratory results. Attachment C provides the laboratory reports and chain of custody documents for all of the soil verification samples.

Results: Chloride

The ROC trench assessments showed that only the initial source area excavation, conducted in 2002, encountered chloride concentrations above 250 mg/kg. These levels were observed from 12 to 16 feet below the surface (260 and 275 mg/kg respectively). The highest chloride concentration encountered in the 2009 trenches (173 mg/kg) was encountered at six feet below the surface at the trench located five feet east of the original vent.

SB-1 was installed to delineate the depth of chloride-impacted soil. Chloride concentrations similar to the original excavation were encountered at 10 to 12 feet below the surface, decreasing to 128 mg/kg at the total depth of the boring. SB-1 was terminated based on the analysis of chloride by field techniques, which are generally higher in concentration than the analyses performed in the laboratory. The 20-foot sample from SB-1 was anomalous in that the field chloride analysis (245 mg/kg) was lower than the laboratory measurement (336 mg/kg).

The trenching and soil borings show that the extent of the chloride-impacted soil is less than 100 ft² (less than 10 x 10 feet) at depths of approximately 12 to 20 feet below the surface. The maximum chloride concentration observed in this area (336 mg/kg) is slightly above the NMOCD guideline target level of 250 mg/kg, however the soil beneath this sample shows chloride levels below 250 mg/kg.

Results: Hydrocarbons

Field screening of hydrocarbon vapors in the soil from the trenches identified concentrations greater than 1,000 ppm in each of the May 2009 excavations (2,948 ppm maximum). Laboratory analysis of BTEX from these samples indicate maximum concentrations of benzene (1.97 mg/kg), toluene (2.01 mg/kg), ethylbenzene (16.7 mg/kg), and total xylenes (22.2 mg/kg) at 2 to 12 feet below the surface. In addition, the samples contained gas and diesel range organics which are essentially non-soluble with respect to leaching.

SB-1 was installed to delineate the vertical extent of hydrocarbon-impacted soil within the source area. Field screening of hydrocarbon vapors were measured from split spoon samples initially but drill cutting samples were used at 20 and 25 feet below the surface because the soil was too hard to recover material with a split spoon sampler. The highest vapor reading was encountered at 15 feet below the surface (2,899 ppm). Laboratory analysis from this sample indicates concentrations of benzene (1.26 mg/kg), toluene (1.01 mg/kg), ethylbenzene (8.50 mg/kg), and total xylenes (11.8 mg/kg). Hydrocarbon concentrations decreased with depth to below the laboratory detection limit at 25 feet below the

~3

May 16, 2011 Page 3

surface. A summary of the laboratory results from all of the soil sampling events are provided on Table 1 below.

Sample Location	Depth (feet)	Sample Date	PID (ppm)	Chloride (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)
5-Ft East	8	5/5/09	1,650	<16	<0.05	0.284	3.53	4.94	8.8	940	2,690
	12	5/5/09	1,509	<16	0.063	0.988	2.73	10.2	14 0	308	411
5-Ft West	8	5/5/09	2,554	<16	1.97	2 01	16,7	7.6	· 28 3	3,730	4,360
	12	5/5/09	1,788	32	0.352	1.36	6.24	10.7	18.7	2,980	3,440
5-Ft South	10	5/5/09	2,948	<16	0.219	1 47	14.0	22.2	37 9	2,220	1,590
	12	5/5/09	314	32	<0 05	0.41	2.37	2.7	5.5	618	2,050
SB-1	15-17	7/9/09	2,899	224	1.26	1.01	8.50	11.8	22.6		
	20	7/9/09	1,283	336	0.082	0.17	1 28	1.4	29	-	-
	25	7/9/09	69 8	128	<0.05	<0.05	<0.05	<0.3	0.1		
NMOCD Gu	ideline Re	mediation L	evels	250	10	-			50		
2006 NMED	Soil (Com./Indus.	Vapor Ex	posure Risk	25.8	252	128	82		No reg	ulatory
Screening C	Guidelines		Protect	GW (DAF20)	0.0201	21.7	20.2	2.06	-	standa	rds have
Site Specifi	c GW Prot	ective Leve	Is (DAF 127))	0.128	138	128	13.1			tabiished

Table 1
Rice Operating Hobbs G-9 Vent Site
Laboratory Data - Soil Samples

The site data that documents the residual mass of chloride in the vadose zone permit a conclusion that it will not contaminate ground water. A conservative estimate of 6,400 ft^2 (80 ft x 80 ft) was used in a simulation modeling evaluation to determine if residual benzene and xylenes concentrations would impact groundwater.

Simulation Modeling

We used the VLEACH vadose zone model to determine if the benzene and xylenes identified during the site assessment would cause the underlying ground water to exceed the regulatory standard. The input to the model employed field data from the site, nearby locations, and conservative default values for parameters that were not measured at or near the site.

The simulation results indicate, for benzene, 300 years will be required for leaching to move the highest concentrations in the soil to the ground water depth. Conversely, 600 years will be required to move the highest xylenes concentrations in the soil to the ground water depth. During this time neither the benzene nor xylenes mass input to the ground water will be sufficient to cause the water concentrations below the site to exceed the New Mexico water quality standards.

VLEACH is conservative of ground water quality because the model does not take into account the natural biological degradation of the hydrocarbons. Attachment D provides an explanation of the data used and results from the simulation at the Hobbs G-9 Vent site. A detailed description of the model and a free windows-based program download is available from the USEPA at http://www.epa.gov/ada/csmos/models/vleach.html.

May 16, 2011 Page 4

Recommendations

The site data that documents the residual mass of chloride and hydrocarbons in the vadose zone permit a conclusion that these constituents in the vadose zone will not with reasonable probability contaminate ground water or surface water in excess of the standards in Subsection B and C of the 19.15.30.9 NMAC through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates.

Our recommended corrective action for the site is re-vegetation of the ground surface to limit infiltration of precipitation and the subsequent migration of constituents of concern to ground water. Plants capture water through their roots, thereby reducing the volume of water infiltrating below the root zone. This natural "infiltration barrier" helps protect ground water as the decreased flux of water through the subsurface slows the transportation rate of residual chloride and soluble hydrocarbons in the subsurface. Upon documentation of re-seeding with an appropriate mix of native grasses we will submit a Termination Request for this site's regulatory file.

ROC is the service provider (agent) for the Hobbs Salt Water Disposal System and has no ownership of any portion of pipeline, well or facility. The Hobbs SWD System is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

Please contact Hack Conder of ROC at 575-393-9174 if you have any questions concerning this submission. Thank you for your time and consideration.

J

Sincerely, R.T Hicks Consultants, Ltd.

Dal T. Interst

Dale T Littlejohn Geologist

Copy: Hack Conder, ROC

Plates

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142

Attachment A Submitted ICP

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

February 19, 2009

Mr. Brad Jones New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation & Characterization Plan Hobbs Salt Water Disposal System: Jct. A-6, F-24-3 Vent, F-25 EOL, G-9 Vent, Jct. A-25, Jct. F-24-1 T18S, R37E, Sections 24 & 25, and T19S, R38E Sections 6 & 9

Dear Mr. Jones:

On behalf of Rice Operating Company (ROC), R.T. Hicks Consultants, Ltd. is pleased to submit this Investigation & Characterization Plan (ICP) for the six (6) junction box and vent sites within the Hobbs Salt Water Disposal System referenced above. Plate 1 is a map showing the sites relative to major roads in the area. Plate 2 shows the sites, nearby USGS monitoring wells, and a regional potentiometric surface map.

The work elements proposed below will allow us to characterize these sites and develop an appropriate corrective action plan.

- 1. ROC will identify and document the location of all current and historic equipment and pipelines associated with each site.
- 2. ROC will use a backhoe with a 12-foot vertical reach to install a series of sampling trenches in order to recover soil samples and delineate the lateral extent (and potentially the vertical extent) of impacted soil.
- 3. If characterization by the backhoe is insufficient to define the extent and magnitude of past releases, ROC and Hicks Consultants will use a drilling rig to install one soil boring at the center of the source area to delineate the vertical extent of chloride in the soil.
- 4. Soil samples obtained by the backhoe or drilling rig will be obtained from regular intervals below ground surface.
- 5. Representative soil samples will be sent to a laboratory to allow for verification of the field chloride and PID results.
- 6. General soil texture descriptions will be provided for each sample trench or boring.
- 7. The criteria to delineate the extent of impact during trenching as well as in a soil boring is 5 point chloride decline vs. depth, or:
 - a.After thr ee consecutive samples demonstrate <250 ppm chloride using field analyses and <100 ppm total hydrocarbon vapors using the headspace method (see attached ROC Quality Procedure in Appendix A), or
 - b. After five consecutive samples show a decreasing trend of chloride and hydrocarbons and the last sample shows chloride < 250 ppm and total hydrocarbon vapors <100 ppm (Appendix A).
 - c. Soil boring to capillary fringe should neither (a) or (b) apply

February 19, 2009 Page 2

- 8. If the boring penetrates the capillary fringe, a monitoring well will be completed with a 2 or 4" diameter casing 25 feet down gradient from confirmed impact for use during possible corrective actions. Plate 2 presents a potentiometric surface map for the site area.
- 9. If field analysis of hydrocarbon vapors and observations of staining show that hydrocarbon impact is unlikely at the site or below 20-feet, collection of samples from cuttings may be substituted for split spoon sampling (chloride only).

The ROC trench characterization will be employed to identify the lateral extent of chloride at each site, if possible. If trenching does not fully characterize the lateral extent of chloride at each site, boreholes will be advanced 20 feet beyond the furthest trenches where the soil data has an average chloride concentration greater than 1,000 mg/kg. The total depth of borings installed to characterize lateral extent shall be 20 feet below ground surface with soil samples for delineation taken at 5 foot intervals.

Rice Operating Company (ROC) is the service provider (agent) for the Hobbs Saltwater Disposal System and has no ownership of any portion of pipeline, well, or facility. A consortium of oil producers who own the Hobbs System (System Partners) provide all operating capital on a percentage ownership/usage basis. Major projects require System Partner authorization for expenditures (AFE) approval and work begins as funds are received. We will implement the work outlined herein after NMOCD approval and subsequent authorization from the System Partners. The Hobbs SWD system is in abandonment.

For all environmental projects, ROC will choose a path forward that:

- 1. Protects public health.
- 2. Provides the greatest net environmental benefit.
- 3. Complies with NMOCD Rules.
- 4. Is supported by good science.

Following the site characterization described above, a Corrective Action Plan with the data and analysis supportive of a procedure for site file termination, or a termination request will be submitted, depending on characterization findings. Quality Procedures for characterization work are provided in Appendix A.

If you have any questions or comments regarding this ICP, please contact me at our Albuquerque office or Hack Conder of Rice Operating Company.

Sincerely, R.T. Hicks Consultants, Ltd.

Katie Lee

Katie Lee Project Scientist

Copy: Rice Operating Company Edward J. Hansen, NMOCD

February 19, 2009 Page 3

Appendix A

Rice Operating Company

QUALITY PROCEDURE - 03

Sampling and Testing Protocol - Chloride Titration Using .282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite san1ple for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.2 The soil sample(s) shall be immediately inserted into a one-quart or large polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.

3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

4.1 Tare a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.

4.2 Add at least 10 grams of reverse osmosis water to the soil sample and shake for 20 seconds.

4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.

4.4 Carefully pour the free liquid extract from the sample through a paper filter into a clean plastic cup if necessary.

5.0 Titration Procedure

5.1 Using a graduated pipette, remove 10 m1 extract and dispense into a clean plastic cup.

5.2 Add 2-3 drops potassium chromate (K_2CrO_4) to mixture.

1

5.3 If the sample contains any sulfides (hydrogen or iron sulfides are common to oilfield soil samples) add 2-3 drops of hydrogen peroxide (H_2O_2) to mixture.

5.4 Using a 10 ml pipette, carefully add 0.282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.

5.5 Record the ml of silver nitrate used.

6.0 Calculation

.

To obtain the chloride concentration, insert measured data into the following formula:

<u>0.282 x 35,450 x ml AgNO₃</u>	X	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

February 19, 2009 Page 5

Rice Operating Company

QUALITY PROCEDURE -07

Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

3.1 Sample Collection and Preparation

3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).

3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.

3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77° F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.

3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

3.2 Sampling Procedure

3.2.1 The instrument to be used in conducting VOC concentration testing shall be an Environmental Instruments 13471 OVM / Datalogger or a similar protype instrument. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure

February 19, 2009 Page 6

outlined in the instrument operation manual. The PID device will be calibrated each day it's used.

3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.

3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.

3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to conduct BTEX Speciation in accordance with QP-O2 and QP-O6. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing fur BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal, IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

Attachment B Soil Boring Log

* . .

1.4

10

٠. ·

. *. .* .

, . . , . .

> . بە بر

-12 24

, 1 1⁴ 1

, x, i

£. `

. .

901 Rio Grande Blvd. NW, Suite F-142

RT Hicks			LI	THOL	DGI	C LOG (Soil Boring)
		SOI	L BORING	NO.: SB-1		TOTAL DEPTH: 28 Feet
l Consultants I	bt		SITI	EID Hobb	s SWD	G-9 CLIENT: Rice Operating Co.
	Ju	SURFAC	E ELEVAT	ION 3.607	(USGS	S) COUNTY: Lea County
P O Box 7624		(CONTRACT	OR Harris	son Coc	oper STATE: New Mexico
Midland, Texas 79708		DRIL	LING METH	IOD' Air-Re	otary	LOCATION: T-19-S R-38-E 9 (G)
(432) 528-3878		INSTAL	LATION D	ATE: July 9	2009	FIELD REP: D. Littleiohn
(432) 689-4578 (fax)		WEL	L PLACEM	ENT: 3 ft S	W of Or	Ig. Pit FILE NAME: \Hobbs SWD\G-9
		BORI	NG LAT ILC	NG: Lat. 3	2° 40' 4	12.6" North, Long 103° 9' 0.6" West
No Surface		Sa	mple Data		Depth	Lithologic Description: LITHOLOGY, Color, grain
Completion	Туре	% Rec	CI (mg/kg)	PID (ppm)	(feet)	size, sorting, rounding, special features
	· ~					SILTY SAND Dark brown.
	 Excav.	-	143	1,738		SILT Grayish brown (discolored), with interbedded caliche, strong hydrocarbon odor
	Excav.	-	145	1,313		
	 Excav	-	143	2,485	- 5 -	
			146	2 640 -		
	Excav.		140	2,040 -		SILTY SAND Light brown (not discolored), hydrocarbon odor.
	Excav.	-	146	2,948	-10-	4
	Spoon	100%	242	1,681		-
e line in the second se	Excav.	í _	260	1,788		4
1 X ////// 5						4
	× .				45	
E	· -	1			-15-	
	Spoon	15%	195	2,89 9		
	Ξ.					CALICHE Light gravish brown, hydrocarbon odor.
		_	245	1,283	-20-	
	田			.,	20	,
	1					
		1				CALICHE Dark gray (discolored), hydrocarbon odor.
	田					a
	++ Cutting	┼	203 —	69.8	-25-	
						QUAR IZITE & SANDSTONE Gray to light pinkish brown, verv hard drilling, crystalline to cemented sand,
						Saturated Formation (hydrocarbon odor)
TD = 28 Feet						· · · · · · · · · · · · · · · · · · ·

,

.

Soil Boring Laboratory Results (mg/kg) July 9, 2009									
Depth	Chloride	Benzene	Toluene	Ethylbenzene	Xylenes				
15 Ft	224	1 26	1.01	8.50	11.8				
20 Ft	336	0 082	0.167	1.28	1.39				
25 Ft	128	<0 05	<0.05	⊲0 05	<03				

TD = 28 Feet

, •

÷

.

Attachment C Laboratory Reports

. . . چ د ژ

· 10° -

-r--

n

. .

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142

July 17, 2009

Hack Conder Rice Operating Company 122 West Taylor Hobbs, NM 88240

Re: Hobbs G-9 Vent

Enclosed are the results of analyses for sample number H17790, received by the laboratory on 07/13/09 at 9:10 am.

Cardinal Laboratories is accredited through Texas NELAP for:

Method SW-846 8021 Method SW-846 8260 Method TX 1005 Benzene, Tolucne, Ethyl Benzene, and Total Xylenes Benzene, Tolucne, Ethyl Benzene, and Total Xylenes Total Petroleum Hydrocarbons

Certificate number T104704398-08-TX. Accreditation applies to solid and chemical materials and non-potable water matrices.

Total Number of Pages of Report: 4 (includes Chain of Custody)

Sincerely,

Celey D. Keene Laboratory Director

ANALYTICAL RESULTS FOR **RICE OPERATING COMPANY** ATTN: HACK CONDER 122 W. TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/13/09 Reporting Date: 07/16/09 Project Owner: NOT GIVEN Project Name: HOBBS G-29 VENT Project Location: HOBBS G-29 VENT Sampling Date: 07/09/09 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: ZL

ETHYL TOTAL

LAB NO. SAMPLE ID **BENZENE TOLUENE BENZENE XYLENES** (mg/kg) (mg/kg) (mg/kg) (mg/kg)

ANALYSIS DATE:	07/15/09	07/15/09	07/15/09	07/15/09
H17790-1 SB#1 @ 15'	1.26	1.01	8.50	11.8
H17790-2 SB#1 @ 20'	0.082	0.167	1.28	1.39
H17790-3 SB#1 @ 25'	<0.050	<0.050	<0.050	<0.300
Quality Control	0.048	0.050	0.049	0.154
True Value QC	0.050	0.050	0.050	0.150
% Recovery	96.0	100	98.0	103
Relative Percent Difference	10.7	7.8	7.0	8.2

METHODS: BTEX - SW-846 8021B

TEXAS NELAP ACCREDITATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES. Reported on wet weight. Not accredited for Chloride.

Lab Director

H17790 8 RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal writin thirty (30) days after completion of the applicable service in no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such ctaim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 WEST TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 07/13/09 Reporting Date: 07/13/09 Project Number: NOT GIVEN Project Name: HOBBS G-9 VENT Project Location: HOBBS G-9 VENT Analysis Date: 07/13/09 Sampling Date: 07/09/09 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: HM

LAB NO.

SAMPLE ID

CI (mg/kg)

H17790-1	SB #1 @ 15'	224
H17790-2	SB #1 @ 20'	336
H17790-3	SB #1 @ 25'	128
		· · · · · · · · · · · · · · · · · · ·
		·····
Quality Control		500
True Value QC		500
% Recovery		100
Relative Percen	t Difference	

Note: Analyses performed on 1:4 w:v aqueous extracts.

Chemist

0-7/14/09 Date

H17790 RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profils incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories. ARDINAL LABORATORIES

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

.

101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

(505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020

Company Nam	e: Rice Operating Company						T,	• . •	B	LL TO	· · · · ·					ANAI	YSI	S RE	QUE	ST		
Project Manage	r: Hack Conder						P	.0. #	;			Ţ						[1	Ι		
Address: 122	West Taylor			•		_	с	omp	any:]		ļ			I .					
City: Hobbs	State: NM	Zip): 8{	324()		A	ttn:														
Phone #: 393-	9174 Fax #: 397-14	171					A	ddre	6S:													
Project #:	Project Owner	r:					c	ity:					Σ		I							
Project Name:	Hobbs G-9 vent					_	S	tate:		Zip:		ĕ	5		ā							
Project Locatio	n: Hobbs G-9 vent						Р	hone	#:			1.5	ò	Π	د د							
Sampler Name:	Lara Weinheimer						F	ax #:				듣			xa							
FOR LAB USE ONLY			Γ	<u> </u>	M/	ATRI	X	PRI	ESERV	SAMPL	ING	Ο	ā		Le							
Lab I.D.	Sample I.D.	(G)RAB OR (C)OM	# CONTAINERS	GROUNDWATER	WASTEWATER Soll	or	SLUDGE OTHER :	ACID/BASE	ICE / COOL OTHER :	DATE	TIME											
H17790-1	SB #1 @ 15'		1		1	1			✓	7/9/09	03:12	\checkmark		1							 	
- 7	SB #1 @ 20'	 	1		_ √				✓	7/9/09	03:14			✓					ļ		 	[!]
3	SB #1 @ 25'	ļ	1		√	1	1	 	✓	7/9/09	03:16	1		1					ļ	 		
	······································	 	.				i	┨─┤		ļ		 			****				 		 	
	••••••••••••••••••••••••••••••••••••••	 				<u> </u>	<u> </u>			[3	 							<u> </u>		 	
		 				+	+	╉╍╍┥				 									 	
					_		1	-		[<u> </u>	 	
				$\left - \right $			ļ			<u> </u>									<u> </u>		 	
				┝─┼		1	<u> </u>	╉──┤		<u> </u>										<u> </u>	 	
PLEASE NOTE: Liabery a	of Damages. Cardinal's liability and client's exclusive remedy for at	ny clair	n eriss	ng whet	í Dier base	i sd m co	ntract of te	rt, shali	i be limited	to the amount pa	d by the client for	the							L	£	 	

analyses. Al claims including those for negligence and any other cause whatsoeres shall be deemed waved unless made in writing and reserved by Cardinal within 30 days after completion of the applicable service. In on event shall be deemed waved unless made in writing and reserved by Cardinal within 30 days after completion of the applicable

.

service. In no event shall Cardinal be bable for incidental or consequental damages, including without imitation, business interruptions, loss of use, or loss of profile incurred by cloint, its subsidiance affiliates or successors argaing out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.

linguished By:	Date:	Received By:	Phone Result: D Yes D No Add Phone #:
	7-13-09	NO GUR F	Fax Result: D Yes D No Add'I Fax #:
L. Weinheimer	Time:	Stutientelle 1	REMARKS:
linguished By:	Date:	Received By:	email resulte
			cinair results
	Time:		
		· · · · · · · · · · · · · · · · · · ·	Heander Prices wed com: inurvis Prices wed com.
Jelivered By: (Circle One)		Sample Condition CHECKED BY:	riconder whiceswa.com, jparvisagneeswa.com,
amples 1000 Pros Others		Cool Intact (Initials)	Lweinheimer@riceswd.com
Impler - UP3 - BUS - Other:			
linguished By: Jelivered By: (Circle One) ampler - UPS - Bus - Other:	Date: Time:	Received By: Sample Condition CHECKED BY: Cool_Intact(Initials) Yes Yes(Initials) NoNo	email results Hconder@riceswd.com; jpurvis@riceswd.com; Lweinheimer@riceswd.com

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

NEED SAMPLES BACK, PLEASE

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 W. TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/06/09 Reporting Date: 05/11/09 Project Owner: NOT GIVEN Project Name: HOBBS G-9 VENT Project Location: HOBBS G-9 VENT Sampling Date: 05/05/09 Sample Type: SOIL Sample Condition. COOL & INTACT Sample Received By: ML Analyzed By. AB

		GRO (CarCas)	DRO
LAB NUMBER	SAMPLE ID	(mg/kg)	(mg/kg)
ANALYSIS DAT	۲ E ۰	05/08/09	05/08/09
H17370-1	5' WEST TRENCH @ 12'	2,980	3,440
H17370-2	5' EAST TRENCH @ 8'	940	2,690
H17370-3	5' EAST TRENCH @ 12'	308	441
H17370-4	5' SOUTH TRENCH @ 10'	2,220	1,590
H17370-5	5' SOUTH TRENCH @ 12'	618	2,050
H17370-6	5' WEST TRENCH @ 8'	3,730	4,360
		1	
Quality Control		540	500
True Value QC		500	500
% Recovery		108	100
Relative Percer	nt Difference	÷ 1.9	3.0

METHOD: SW-846 8015 M

Chemist

ostizlog

H17370 T RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thurly (30) days after completion of the applicable service in no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptors, loss of use, or loss of profits incurred by client, its subsidiarios, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratones

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS NM 88240

- 13

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 122 W. TAYLOR HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/06/09 Reporting Date: 05/11/09 Project Owner: NOT GIVEN Project Name: HOBBS G-9 VENT Project Location: HOBBS G-9 VENT Sampling Date: 05/05/09 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: ZL ETHYL TOTAL EBENZENE XYLENES

LAB NO. SAMPLE ID

ETHYL TOTAL BENZENE TOLUENE BENZENE XYLENES (mg/kg) (mg/kg) (mg/kg) (mg/kg)

ANALYSIS DATE:	05/10/09	05/10/09	05/10/09	05/10/09
H17370-1 5' WEST TRENCH @ 12'	0.352	1.36	6.24	10.7
H17370-2 5' EAST TRENCH @ 8'	< 0.050	0.284	3.53	4.94
H17370-3 5' EAST TRENCH @ 12'	0.063	0.988	2.73	10.2
H17370-4 5' SOUTH TRENCH @ 10'	0.219	1.47	14.0	22.2
H17370-5 5' SOUTH TRENCH @ 12'	<0.050	0.411	2.37	2.65
H17370-6 5' WEST TRENCH @ 8'	1.97	2.01	16.7	7.58
a mmaagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	1			
	· `			
Quality Control	0.053	0.053	0.048	0.152
True Value QC	0.050	0.050	0.050	0.150
% Recovery	, 106	106	96.0	101
Relative Percent Difference	7.5	12.0	11.1	9.2

METHODS: BTEX - SW-846 8021B

TEXAS NELAP ACCREDITATION T104704398-08-TX FOR BENZENE, TOLUENE, ETHYL BENZENE, AND TOTAL XYLENES.

121 Lab Director

25/12/09

H17370 BCL RICE

PLEASE NOTE. Liability and Damages. Cardinal's lability and client's exclusive remedy for any claim ansing, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinat be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Result: relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

PHONE (575) 393-2326 • 101 E. MARLAND • HOBBS, NM 88240

CL

ANALYTICAL RESULTS FOR **RICE OPERATING COMPANY** ATTN: HACK CONDER **122 WEST TAYLOR** HOBBS, NM 88240 FAX TO: (575) 397-1471

Receiving Date: 05/06/09 Reporting Date: 05/11/09 Project Number: NOT GIVEN Project Name: HOBBS G-9 VENT Project Location: HOBBS G-9 VENT Analysis Date: 05/06/09 Sampling Date: 05/05/09 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: ML Analyzed By: HM

LAB NO.	SAMPLE ID	(mg/L)
H17370-1	5' WEST TRENCH @ 12'	32
H17370-2	5' EAST TRENCH @ 8'	<16
H17370-3	5' EAST TRENCH @ 12'	<16
H17370-4	5' SOUTH TRENCH @ 10'	<16
H17370-5	5' SOUTH TRENCH @ 12'	32
H17370-6	5' WEST TRENCH @ 8'	<16
Quality Control		490
True Value QC		500
% Recovery		98.0
Relative Percent [Difference	2.0

4500-CI'B METHOD: Standard Methods Note: Analyses performed on 1:4 w:v aqueous extracts.

Date

H17370 RICE

PLEASE NOTE. Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim ansing, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after complotion of the applicable service, in no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Result is additioned to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Result relate only to the samples identified above This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

a.

.

ARDINAL LABORATORIES

1

101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79
--

(505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020

Company Name: Rice Operating Company					T	BILL TO ANALYSIS REQUEST																		
Project Manager: Hack Conder					ļ	P.O. #:					Γ						Ι							
Address: 122 West Taylor						C	Company:									l								
City: Hobbs State: NM Zip: 88240						4	Attn:										1							
Phone #: 393-9174 Fax #: 397-1471					4	Address:										1								
Project #: Project Owner:					c	City:			6	Σ		II												
Project Name: Hobbs G-9 vent					5	State: Zip:				ĕ	15	×	6											
Project Location: Hobbs G-9 vent						F	^o hone #:				Diro	ò	Ш	5				1						
Sampler Name:	Lara Weinheimer							F	Fax #:				일	PH 8	BT	[exa:					1		•	
FOR LAB USE ONLY						MAT	TRIX		PRESE	RV.	SAMPL	NG	O											
Lab I.D. H17370-7	Sample I	.D.	(G)RAB OR (C)OM	# CONTAINERS	GROUNDWATER WASTEWATER	SOIL	OIL	SLUDGE	01HER : ACID/BASE: ICE / COOL	OTHER .	DATE	TIME												
H+756-1	5' west trench	<u>e 12ⁱ</u>	6	1		1			1		5/5/09	11:29	✓	1	1			ļ	ļ	<u> </u>	. 	ľ	ļ	
<u>۳۶ -2</u>	5' capt treach	e 8'	4	1		1		 	1		5/5/09	9:50	1	1	1	ļ		ļ	_	_	ļ		ļ	
-3	s' cart french	e 12'	6	1	,	√		·;	✓		5/5/09	9:40	1	1	 ✓ 			 	ļ	_		ļ	ļ	
<u> </u>	5' south frend	<u>~ e (o'</u>	6	1		V		t			5/5/09	8:50	✓	✓	√	ļ		ļ	·	.			 	
	is south treach	<u>en</u>	8			V				_	5/5/09	F:42	.√ ./	V	*			 	 				<u> </u>	
Q	s west treed	er	10			Y			- × -		5/5/09	(1:2)	•	v	*			 		}		<u> </u>	<u> </u>	
	••••••••••••••••••••••••••••••••••••••																	<u> </u>		<u> </u>				
											t							 	1	<u>†</u>		1		
	· <u>····································</u>							k 1					····					t	1					
PLEASE NOTE: Liability en analyses. All claims includin service. In no event shall Cu afiliates or successors arisin	d Damages. Cardinal's liability and di g hose for negligence and any other writinal be liable for incidential or conse grout of or related to the performance	ion's exclusive remody for a cause whotseever shall be equental damages, including a of services hereunder by C	iny clair deemec) withou Lardinal	n ansk I waive I limita I limita	ng whethe nd unless i tion, bust tiess of w	n based made in ness inte fuether s	l in con writing emuptic such cl	tract or 1 and re one, fos aim is b	tort, shall be im received by Card a of use, or lost pased upon any	sted to trai wi of pro of the	o the amount pai thin 30 days afte afte incurred by o above stated re-	d by the client for r completion of th fient, its subsidiar mons or otherwis	the e spplics tes c.	bia _{st}	Ple	<u>(</u> 050)	ا ب	bvá	nt	T	PIt a	2 <u>0</u> .(ົວເຈັ້ມ	N JØG
L. Weinheimer				L	B J Fax Result REMARKS				Phone Result: Yes Ø No Add'l Phone #: Fax Result: Yes Ø No Add'l Fax #: REMARKS:															
Relinguished By: Date: Received By:							f		email I	resu	ilts													
Delivered By: (Circle One) Sample Conditio Cool. Intact Sampler - UPS - Bus - Other:					dition 1 Yes		CHECKED BY: (Initials) Lweinheimer@riceswd.com																	

f Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

NEED SAMPLES BACK, PLEASE

Attachment D VLEACH Model Results

÷....

`, ' ...'

* * * * * * * *

h three d

31 S.

2

. .

y

,

۰.

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142

4

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745

Input and Results of the VLEACH Simulation Performed at the Rice Operating Co. Hobbs G-9 Vent Site

The specific parameters used in the simulation and diffusion to ground water equation at the site are presented in the table and figures below.

Model Parameter	Value	Source of Value				
Banzona & Vilana Chamical Dammetars	Chemical	NMED June 2006 Soil				
	Specific	Screening Levels Document				
Spill Area (ft²)	6,400	Site Measurement (Estimate)				
Groundwater Table Depth (ft)	30	Hobbs M-4 and E-4 Sites				
Vadose Zone Soil Bulk Density (g/cm ³)	1.5	NMED June 2006 Document				
Vadose Zone Porosity (unitless)	0.43	NMED June 2006 Document				
Volumetric Water Content (%)	0.26	NMED June 2006 Document				
Vadose Zone Soil Organic Content (f _{oc})	0.0015	NMED June 2006 Document				
Recharge Rate (ft/year)	0.028	Musharrafieh 1999				
Ronzono & Vitono Concontrations (us /kg)	Chemical	Worst-Case Hydrocarbon				
Delizene & Aylene Concentrations (ug/kg)	Specific	Profile (Excavations & SB-1)				
Slope of Water Table	0.002	Regional Map (Attachment A)				
Hydraulic Conductivity (ft/d)	81	Musharrafieh 1999				
Max width perpendicular to direction of GW flow (ft)	80	Site Measurement				
A gratifican Donogita (annitilaga)		Prof. Judgment				
Aquiter POPOSity (unitiess)	0.25	Conservative Assumption				
Mining gone donth in aquifar (ft)	6.6	Prof. Judgment Conservative Assumption				
wixing zone deput in aquiler (it)	0.0					

Table 1 – Common Parameters Employed in the VLEACH model for the Hobbs G-9 Vent Site

Figure 1 - Actual Input Screens from the VLEACH Model Program for the Benzene Run

TFACH Mod	al Parameters'			-			
		<u> </u>	^ ^ L	Polygon Parana	eters		
imulation Parameters	· · · ·			Polygon Title Pol	ygon1		
fitta Hobbe G-9 Veni	t - Benzene contamination s	cenano		Area of Polygo	on Ventical Cell Damensio	n 🔨 Number Of Cells	Height of Polygon
Smutahon Time	Time Step	Output Time Interval*	Profile Time Interval	6400	1	30	30
300	5	5	300/	Square ft	ft	Cells	ft
. Үөдээ 🚆	Years _ 1	Years:	Years ^a -				
No		1	· •	for a rest of a loss	// สพัดร์วิธีรี รัก ต. 1	the to be	·
***	<u> </u>			Soli ype Helen	ence Soil Type Profiles	· · · · ·	
		<u> </u>		Soil Type Nam	e Sand NM		
hemical Reference Q	hemical Profiles	-		Diy Bulk Der	sity Effective Porcial	Volumetric Water Content	Soil Organic Carbon Content
Chemical Name Be	nzene - NM		1	15	0.43	0.26	0.0015
ະຈິມີແຫລ່ມ ແລະ			Free Ar Different	23. × 5g/cm3		•َرُنَّ (Vè) نُبِهُ	(foc)
Distribution Coefficient	Hensy's Law Constant	Water Solubility	Coefficient				
89	0 228	1750	0 6307	Boundary Cond	itions		
mUL.	Kh,- ""	mg/L_	m2/day	Becharge Bat	Concentration of	Upper Boundary	Lower Boundary Vapo
			<u> </u>	0.000	T Hecharge Water.	vapor Londson	Concision _
alvaa				Til a thing		· · · · · · · · · · · · · · · · · · ·	mail
12	·····		- <u>35 18 5</u> 7 -	1			¢ װערב,,,,
Polygon S	elected Num	ber of Polygon(s): 1		Output Opticos	Initial Contagina	nt Epocentrations	······································
1		Add Now Polymon	- , [*] ,	Crists Gréadure	ler and Linner Cel	Lower Cell Linhal Con	carliston (un/ka)
	2.4	AUDINER LONGOL		Soil Contaminant	Profile 1	3 536	Actividual (ug/kg)
	Sec. 4.5	View Polygon & Mu		CoYes Cit	40 1 3	5 325	·
5	132.73	Martin Polymen 2		Carl Continuous	≫ <u>Ç</u> } ₹ •5	7	
	1. 3	Desere Linkford ~ ~		Time (Years	7	9 1970	
-1	[*· ÷	* <u>*</u> *	· · · · ·	1. 1.	. 19	1142	
·]	ال	هيه .		טון ו		12 652 2	į.

As a conservative measure a "worst-case" hydrocarbon soil profile was constructed by taking the highest benzene and xylenes concentration from each sampled depth as shown in Figure 2. Sampling depths for which laboratory results were not available were estimated from the field screening data. The benzene and xylenes values from this profile were conservatively assumed to be present across the entire 6,400 ft² area.

The results from the VLEACH modeling relative to this assessment are provided as a graph that presents the subsurface impact as Mass Flux to Ground Water in grams/year (g/yr) as a function of future time as shown in Figure 3.

Simulation Time, Time Step, Output Time adjusted to provide the clearest presentation of the results based on the time required to

identify the maximum impact to groundwater. The model results show the highest mass flux to ground water occurs at the present time. At a time of 250 years from now, the flux from the soil profile to ground water will be 1/10 or less of the present values.

Figure 3 - Results of VLEACH Vadose Model for Benzene (Present - 300 years from now)

Figure 4 - Results of VLEACH Vadose Model for Xylenes (Present to 600 years from now)

In order to compare the modeled results to the NMED ground water standard, the VLEACH output data required a conversion from g/yr to mg/L. This was performed by calculating the annual recharge (flux) volume from the spill area and the annual ground water flow volume below the spill area as shown:

<u>Recharge</u> is defined as: $Flux_{flow}(L/yr) = A \times R \times 29.317$ where,

A = spill area (ft²) R = recharge rate (ft/yr), and 29.317 = conversion factor from ft³ to liters

<u>Groundwater flow</u> is defined as: $GW_{flow}(L/yr) = \left(\frac{k \times i}{\theta_T}\right) \times T_{aq} \times W \times 29.317$ where,

k = hydraulic conductivity of the aquifer (ft/yr) i = groundwater gradient (ft/ft) θ_T = porosity of the aquifer T_{aq} = aquifer mixing zone thickness (ft) and, W = length of the spill area (ft) perpendicular to the ground water gradient direction

The relationship between the annual recharge volume and the annual ground water flow volume was used to calculate the predicted ground water concentration for the initial (year zero) time and the maximum impact year time (also year zero) for the constituent of concern as demonstrated in Table 2 below.

Table 2

		Present	Impact Data	a		NM			
Chemical of Concern	imp al of Concern Year (g/)			GW Conc. (mg/L)	Year	Impact (g/yr)	Leachate Conc. (mg/L)	GW Conc. (mg/L)	Water Quality (mg/L)
Benzene	0	29	5.6	0.008	0	29	56	0.008	0.01
Total Xylenes	0	250	48	0.068	0	250	48	0.068	06

Bold text values indicate concentrations that exceed the NMED Water Quality Standard values for groundwater

Present impact concentrations and maximum impact concentrations are compared with NMED ground water standards in blue. As shown, predicted concentrations of benzene and total xylenes in ground water are below ground water standards. The VLEACH model, conservative of ground water quality by construction, predicts that concentrations of benzene and total xylenes decline in the future. No exceedance of NMED ground water standards is predicted.