GW-071

Annual Groundwater Monitoring Report

.

DATE: NAY 23, 2011

· .

ANNUAL GROUNDWATER MONITORING REPORT DISCHARGE PLAN GW-071

Chaco Gas Plant 895 County Road 7100 Section 16, Township 26N, R12W San Juan County, New Mexico

SWG Project No. 0410001B May 23, 2011

Prepared for: Enterprise Field Services, LLC I 100 Louisiana Street Houston, Texas 77002 Attention: Mr. David R. Smith, P.G.

PREPARED BY:

lynn

Kyle Summers, C.P.G. Senior Geologist/ Manager, Four Corners Office

B. Chris Mitchell, P.G. Principal Geoscientist

606 S. Rio Grande Avenue Unit A, Downstairs West Aztec, NM 87410 Ph[.] (505) 334-5200 Fax: (505) 334-5204

TABLE OF CONTENTS

1.0	INTF	RODUCTION	1
	1.1	Site Description & Background	1
	1.2	Chronology Of Events	l
	1.3	Scope Of Work	6
2.0	SAM	PLING PROGRAM	6
3.0	LAB	ORATORY ANALYTICAL PROGRAM	7
4.0	GRO	UNDWATER FLOW DIRECTION	8
5.0	LIMI	TED NATURAL ATTENUATION SCREENING	3
6.0	DAT. 6.1	A EVALUATION	с С
7.0	FIND	NINGS 1	1
8.0	REC	OMMENDATIONS	2

APPENDIX A	FIGURES
	Figure 1: Topographic Map
	Figure 2: Site Vicinity Map
	Figure 3: Site Plan
	Figure 4: Groundwater Gradient Map
APPENDIX B	TABLES
	Table 1: Groundwater Analytical Summary
	Table 2: Geochemical Parameters
	Table 3: Natural Attenuation Parameters
	Table 4: Fluid Level Gauging Data

APPENDIX C LABORATORY ANALYTICAL DATA & CHAIN-OF-CUSTODY DOCUMENTATION

5

ANNUAL GROUNDWATER MONITORING REPORT

Chaco Gas Plant 895 County Road 7100 Section 16, Township 26N, Range 12W San Juan County, New Mexico

SWG Project No. 0410001B

1.0 INTRODUCTION

1.1 Site Description & Background

Southwest Geoscience (SWG) has conducted one (1) groundwater monitoring event at the Chaco Gas Plant, referred to hereinafter as the "Site" or "subject Site". The Enterprise Field Services, LLC (Enterprise) Chaco Gas Plant consists of approximately 190-acres of land developed with a cryogenic gas plant, amine treatment unit and natural gas compression facilities. The Site is located at 895 County Road (CR) 7100 in Section 16, Township 26N, Range 12W in San Juan County, New Mexico, approximately 17.5 miles south of Farmington.

The topography of the area, as shown in Figure 1, slopes to the west, towards the West Fork of Gallegos Canyon, which flows north to the San Juan River.

The Site is subject to regulatory oversight by the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD) Oil Conservation Division (OCD). To address activities related to releases at natural gas facilities, the New Mexico OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 Remediation. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

1.2 Chronology of Events

Below is a list of significant milestones or events associated with the Site.

- May 13, 1993 EPNG submitted a letter to the OCD requesting EPNG be permitted to continue the use of the unlined ponds for non-contact water based on the quality of the waste water discharged, depth to groundwater and Site geology.
- August 2, 1993 The OCD issued a letter requesting additional analysis of cooling tower effluent to the unlined ponds for cadmium. In addition, the OCD requested a groundwater monitoring program be developed in association with any unlined ponds.
- November 1993 Subsequent to the construction of two (2) lined evaporation/disposal ponds, petroleum contact water would be segregated from the non-

contact water and routed to the lined ponds. Four (4) monitoring wells (MW-1 through MW-4) were installed in the vicinity of the unlined ponds as part of a Groundwater Discharge Plan modification as requested by the OCD.

- August 1, 1994 EPNG submitted a modification to Groundwater Discharge Plan GW-071. The modification enabled the continued use of industrial ponds #3 through #6 and #8 as non-contact water ponds. At the request of the OCD, EPNG installed three (3) additional monitoring wells (MW-5 through MW-7) to further evaluate 1.) the direction of groundwater flow, 2.) poor groundwater quality in the vicinity of MW-4 and 3.) general groundwater quality characteristics.
- August 16, 1994 EPNG submitted a notification letter to the OCD indicating the intention to construct two (2) lined evaporation/disposal ponds to contain petroleum contact water at the Chaco Gas Plant.
- November 22, 1994 In a letter regarding "Solid Waste Pit Closures" the OCD approved the closure plan submitted by EPNG for the solid waste pit located on the southwestern portion of the Chaco Gas Plant provided the soil samples collected from the pit were analyzed for hazardous waste characteristics.
- August 10, 1995 The OCD approved the EPNG "Angel Peak and Chaco Plant Solid Waste Pit Closure Sampling" dated June 5, 1995 and the EPNG "Solid Waste Pit Closures at EPNG's Angel Peak and Chaco Facilities" dated June 5, 1995 based on EPNG's waste characterization sampling.
- October 10, 1995 EPNG submitted an "Annual Report of Monitoring well Analyses & Request Approval of Work Plan for Chaco Industrial Ponds and Flare Pit to the OCD. EPNG proposed a closure plan for industrial ponds #1 and #2 and the earthen flare pit. The proposed closure plan included the advancement of seven (7) soil borings, including one (1) boring within each of the ponds (industrial pond #1 and #2) and the earthen flare pit. Soil samples would be collected from industrial pond #1 and #2 and the earthen flare pit from 3 to 5 feet bgs. In addition, soil samples would be collected from each boring at total depth. One (1) monitoring well (MW-8) would be installed to the north of the earthen flare pit, near the property boundary, to ensure contaminants were not migrating off-Site. The soil and groundwater samples would be analyzed for TPH GRO/DRO, BTEX, polynuclear aromatic hydrocarbons (PAH), RCRA metals and/or cations/anions.
- October 13, 1995 The OCD approved the EPNG "Annual Report of Monitoring well Analyses & Request Approval of Work Plan for Chaco Industrial Ponds and Flare Pit".
- October 19, 1995 EPNG submitted a "*Request Major Modification of Discharge Plan GW-071 Chaco Processing Plan*" to the OCD. The modification was requested to facilitate the addition of a Cryogenic processing unit to the plant, which greatly increases the production of petroleum contact

water.

November 16, 1995 – EPNG submitted a "*Request for Closure of Chaco Industrial Ponds and Flare Pit*". During the completion of closure activities, seven (7) soil borings, including one (1) boring within each of the ponds (industrial pond #1 and #2) and the earthen flare pit were advanced at the Site. Groundwater was not encountered during the installation of monitoring well MW-8; so, the boring was abandoned and an additional monitoring well (MW-8b) was installed to the south, toward the former earthen flare pit. The soil sample collected from soil boring B-5, located within the central portion of industrial pond #1, exhibited a benzene concentration of 2.4 mg/Kg, a toluene concentration of 1.0 mg/Kg, an ethylbenzene concentration of 0.7 mg/Kg, a xylenes concentration of 4.5 mg/Kg and a TPH concentration of 38,400 mg/Kg. The groundwater sample collected from monitoring well MW-8b exhibited a benzene concentration of 29,5 μg/L.

outhwest

- November 17, 1995 The OCD approved the EPNG "*Request for Closure of Chaco Industrial Ponds and Flare Pil*" pending receipt of a report documenting remediation and closure activities; delineation of groundwater contamination between MW-1 and MW-8b; and, semi-annual sampling of groundwater from monitoring wells MW-1 and MW-8b for BTEX and PAH analysis.
- November 17, 1995 EPNG notified the OCD that the "Ballard Pond" and the two (2) lined contact water evaporation/disposal ponds located at the Chaco Gas Plant had failed an integrity test. Eight (8) leaks were identified within the liner seams of the "Ballard Pond", nineteen (19) leaks in the north contact water ponds and fifteen (15) in the south contact water pond.
- January 16, 1997 El Paso Field Services (EPFS) submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "the analysis for monitoring wells MW-2 through MW-7 did not indicate any abnormally high reading for any analyte. We have been unable to collect a sample from monitoring well MW-1. That well as yet never collected any liquids.

The June 24 sample of the 20 inch waste water discharge line did show a chromium level slightly above the New Mexico Water Quality standards. The chromium level in the sample was 0.132 mg/L."

May 15, 1997 – EPNG submitted a letter work plan to the OCD detailing the results of liner repairs associated with the north and south contact water ponds at the Chaco Plant. The south contact water pond did not exhibit indications of leaks or integrity failures subsequent to repair. The north contact water pond repairs did not pass leak testing subsequent to repair; therefore, EPNG proposed to install two (2) monitoring wells (MW-9 and MW-10), remove the lined pond from service with use only in case of emergency and monitor groundwater from monitoring wells

MW-9 and MW-10 for TDS, pH and BTEX for one year (four (4) quarters), then annually for two (2) additional years.

- June 13, 1997 The OCD approved EPNG's letter work plan dated May 15, 1997 with regard to the proposed installation of two (2) monitoring wells (MW-9 and MW-10), the removal of the lined pond from service with use only in case of emergency and the monitoring of groundwater from monitoring wells MW-9 and MW-10 for TDS, pH and BTEX for one year (four (4) quarters), then annually for two (2) additional years.
- August 22, 1997 Two (2) soil borings/monitoring wells (MW-9 and MW-10) were installed adjacent to the north contact water pond by Philip Services Corporation (PSC) on behalf of EPNG.
- February 6, 1998 EPFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "the analysis for monitoring wells MW-2 through MW-7 did not indicate any abnormally high reading for any analyte.

The organic analyses for well 10 indicates high levels of several hydrocarbons. Since there is no hydrocarbon waste disposed on in the lined contact waste water ponds, the source of contamination in well 10 is most likely the old flare pit which was closed in 1994."

- February 8, 1999 EPNG submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "the analysis for monitoring wells MW-2 through MW-7 did not indicate any abnormally high reading for any analyte. Monitoring well MW-10, adjacent to the old flare pit which was closed in 1995, exceeds several water quality standards for organics."
- September 9, 1999 EPNG submitted a minor modification request with regard to Groundwater Discharge Plan GW-071 to the OCD. "Rather than make any further attempts to repair the liner, EPFS has decided to discontinue use of the contact water ponds."
- March 22, 2000 PSC, on behalf of EPFS, prepared a letter report documenting the removal of the plastic liner and closure of the South Chaco Pit. Subsequent to the removal of approximately 430 gallons of sludge from the bottom of the pit, each of the three (3) liners were removed. Soil samples were collected from each wall and the floor of the pit. In addition, soils in the central portion of the pit were excavated to an approximate depth of 12 feet bgs. A soil sample was collected from the bottom of the excavation. The pit was then backfilled and graded to conform to the surrounding topography.

The PSC letter report appears to be associated with the north contact water pond, not the south.

February 2, 2000 – EPFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to

Annual Groundwater Monitoring Report Chaco Gas Plant SWG Project No. 0410001B May 23, 2011

the EPFS letter, "the analysis for monitoring wells MW-2 through MW-7 did not indicate any abnormally high reading for any analyte. Monitoring well MW-10, adjacent to the old flare pit which was closed in 1995, exceeds several water quality standards for organics.

Monitoring wells MW-1, MW-8b and MW-9 have not exceeded any state limits for organics during 1997, 1998 or 1999. Due to a change in plant operations during 1999, contact wastewater is no longer discharge to on-Site ponds. This waste stream is now disposed of off-Site in a class 1 underground injection well. The water quality of the non-contact wastewater discharge is such that it would not degrade any waters of the state if the wastewater did percolate to groundwater. Therefore, EPFS requests authorization to cease monitoring the noncontact wastewater and monitoring well MW-1 through MW-9. Due to high levels of BTEX, EPFS will continue to sample monitoring well MW-10 on a quarterly basis."

- January 31, 2001 EPFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "the analysis for monitoring wells MW-2 through MW-4, MW-6 and MW-7 did not indicate any abnormally high reading for any analyte. Monitoring well MW-5 tested higher for sulfate than in past sampling. Monitoring well MW-10, adjacent to the old flare pit which was closed in 1995, exceeds several water quality standards for organics."
- January 16, 2002 EPFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "the analysis for monitoring wells MW-2, MW-4, MW-6 and MW-7 did not indicate any abnormally high reading for any analyte. Monitoring well MW-3 was dry and could not be sampled. Monitoring well MW-10, adjacent to the old flare pit which was closed in 1995, exceeds several water quality standards for organics."
- March 14, 2003 EPFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams. According to the EPFS letter, "The analysis for monitoring well MW-2 showed an elevated level of chlorides. Monitoring wells MW-2, MW-4, MW-6 and MW-7 all had high readings for sulfates. Monitoring well MW-3 was dry and could not be sampled. Monitoring well MW-10, adjacent to the old flare pit which was closed in 1995, exceeds several water quality standards for organics."
- March 28, 2005 Enterprise Field Services, LLC (EFS) submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams.
- April 5, 2006 EFS submitted an annual letter report regarding the sampling of groundwater monitoring wells and waste water streams.
- September 27, 2010 EFS submitted a Closure Plan for the South Lined Contact

Water Pond detailing the proposed closure activities.

1.3 Scope of Work

The objective of the groundwater monitoring event was to further evaluate the concentrations of chemicals of concern (COCs) in groundwater and general groundwater chemistry in the vicinity of monitoring wells MW-1 through MW-10.

A Site Vicinity Map is included as Figure 2, and a Site Plan, which indicates the approximate locations of the soil borings and monitoring wells in relation to pertinent structures and general Site boundaries, is included as Figure 3 of Appendix A.

2.0 SAMPLING PROGRAM

The annual groundwater sampling event was conducted from December 14 to December 16, 2010 by Kyle Summers, a SWG environmental professional.

SWG's groundwater sampling program consisted of the following:

Monitoring Wells MW-1 through MW-10

• Collection of one groundwater sample from each monitoring well utilizing low-flow sampling techniques.

Prior to sample collection, SWG gauged the depth to fluids in each monitoring well using an interface probe capable of detecting light non-aqueous phase liquids (LNAPL). LNAPL was not observed in the monitoring wells during the sampling event.

Prior to sample collection, each monitoring well was micro-purged utilizing low-flow sampling techniques. Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system, to the extent practical, taking into account established Site sampling objectives. Flow rates on the order of 0.1 to 0.5 L/min will be maintained during sampling activities, using dedicated sampling equipment.

The utilization of low-flow minimal drawdown techniques enables the isolation of the screened interval groundwater from the overlying stagnant casing water. The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The groundwater samples were collected from each monitoring well once produced groundwater was consistent in color, clarity, pH, DO, ORP, temperature and conductivity.

Groundwater samples were collected in laboratory prepared containers, sealed with

custody tape and placed on ice in a cooler secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico.

3.0 LABORATORY ANALYTICAL PROGRAM

The groundwater samples collected from the monitoring wells during the groundwater sampling event were analyzed for select cations/anions (calcium, magnesium, chloride, sulfates, fluoride, nitrates, potassium and sodium) utilizing EPA method SW-846# 6010B/6020A or EPA method SW-846# 9056, phosphates utilizing SM 4500 PB.5/E and total dissolved solids (TDS) utilizing SM 2540C. In addition, the groundwater samples collected from monitoring wells MW-8b, MW-9 and MW-10 were analyzed for total petroleum hydrocarbons (TPH) gasoline range organics (GRO) and diesel range organics (DRO) utilizing EPA method SW-846#8015M and benzene, toluene, ethylbenzene and xylenes (BTEX) utilizing EPA method SW-846 #8021B.

A summary of the analysis, sample type, sample frequency and EPA-approved methods are presented on the following page:

Analysis	Sample Type	No. of Samples	Method
Calcium	Groundwater	10	SW-846# 6010B/6020A
Magnesium	Groundwater	10	SW-846# 6010B/6020A
Chloride	Groundwater	10	SW-846# 9056A
Sulfates	Groundwater	10	SW-846# 9056A
Fluoride	Groundwater	10	SW-846# 9056A
Nitrates	Groundwater	10	SW-846# 9056A
Phosphates	Groundwater	10	SM 4500 PB.5/E
Potassium	Groundwater	10	SW-846# 6010B/6020A
Sodium	Groundwater	10	SW-846# 6010B/6020A
Total Dissolved Solids	Groundwater	10	SM 2540C
TPH GRO/DRO	Groundwater	3	SW-846# 8015M
BTEX	Groundwater	3	SW-846# 8021B

Laboratory results are summarized in Table 1 included in Appendix B. The executed chain-of-custody form and laboratory data sheets are provided in Appendix C.

4.0 GROUNDWATER FLOW DIRECTION

The monitoring wells were historically surveyed for top-of-casing (TOC) elevations. Prior to sample collection, SWG gauged the depth to fluids in each monitoring well. The groundwater flow direction at the Site is generally towards the northwest, at an average gradient of 0.020 ft/ft; however, an apparent groundwater mound was noted in the vicinity of monitoring well MW-3, which is likely attributable to infiltration from the unlined non-contact water ponds located at the Site.

Groundwater measurements collected during the most recent gauging event in December 2010 are presented with TOC elevations in Table 4, Appendix B. A groundwater gradient map is included as Figure 4 in Appendix A.

5.0 LIMITED NATURAL ATTENUATION SCREENING

A limited natural attenuation screening has been conducted at the Site to evaluate the occurrence of natural attenuation. The New Mexico OCD has not published guidance specific to natural attenuation; however, the New Mexico Environment Department (NMED) has approved the American Society for Testing and Materials (ASTM) *Guide for Remediation by Natural Attenuation at Petroleum Release Sites (E1943-9)* as its preferred method for assessing and monitoring sites for remediation by natural attenuation.

Natural attenuation is the process by which contaminants in the environment are degraded, or reduced in concentrations by various means including volatilization, adsorption, desorption, dispersion, dilution, diffusion, biodegradation, and abiotic degradation. Natural attenuation is achieved when one or more of these processes brings about a reduction in the total mass, toxicity, mobility, volume, or concentration of a contaminant. The presence or absence of key indicator parameters will determine the degree to which (if any) natural attenuation will occur. Monitored natural attenuation is the measurement or analysis of these key indicator parameters over time to establish trends that document that a reduction in total mass, toxicity, mobility, volume, or concentration of a contaminant is taking place. Several of the indicator parameters such as Oxygen, Conductivity, pH, Temperature, and Oxidation-Reduction Potential can be measured in the field. For the purposes of the limited natural attenuation screening, each of the parameters listed above were measured from the on-Site monitoring well utilizing low flow sampling techniques during each sampling event.

The limited natural attenuation screening included the following review of the "*Primary Lines of Evidence*" as well as select "*Secondary Lines of Evidence*".

Primary Lines of Evidence

Primary lines of evidence consist of historical groundwater data that demonstrate a clear trend of stable of decreasing COC concentrations in groundwater over time and with distance away from the source at appropriate monitoring or sampling points.

 Based on SWG's review of the historical groundwater data, TPH GRO/DRO and or BTEX concentrations have not been identified in groundwater samples collected from monitoring wells MW-1 through MW-7 or MW-9. BTEX concentrations historically identified in groundwater samples collected from

monitoring wells MW-8b and MW-10 have decreased over time. BTEX concentrations have not been identified above the Practical Quantitation Limits (PQLs) during the most recent groundwater sampling event.

Secondary Lines of Evidence

Secondary lines of evidence consist of geochemical indicators to document certain geochemical signatures or "footprints" in the groundwater that demonstrate (indirectly) the type of natural attenuation process(es) occurring at the affected property and the destruction of COCs.

- **Temperature:** Groundwater temperature affects the rate of many biological and chemical reaction rates. Effective biodegradation can generally occur within a temperature range of 5°C to 45°C; ideally, temperature should be above 15°C for optimal biological activity. Extreme temperatures (either hot or cold) prohibit microbial growth. Additionally, oxygen solubility is dependent on groundwater temperature. The average temperature associated with the on-Site groundwater was 13.51°C during the most recent sampling event, which is suitable for natural attenuation processes.
- *pH:* pH in groundwater can limit natural attenuation by inhibiting microbes from performing bioremedial processes if it drifts substantially from a neutral value of 7. A pH range of 5-9 is generally amenable to bioremediation. The pH associated with the on-Site groundwater ranges from 7.58 to 8.34.
- Dissolved Oxygen: Microbes can utilize dissolved oxygen (DO) in groundwater as an electron acceptor while undergoing aerobic respiration. Elevated DO levels suggest bioremediation has not occurred whereas depressed levels indicate that it has. Based on SWG's evaluation of the DO concentrations identified in the monitoring wells, dissolved oxygen in the on-Site groundwater in the vicinity of the affected area (former industrial ponds) is significantly lower when compared to up-gradient, unaffected areas, indicating the occurrence of biodegradation/natural attenuation.
- Oxidation-Reduction Potential (ORP): The ORP of groundwater is a measure of the relative tendency of a solution to accept or donate electrons. Although not always true, a positive value generally indicates that the solution is oxidizing (aerobic) while a negative value indicates that the solution is chemically reducing (anaerobic). If the ORP measurements taken outside the plume are higher than the ORP measurements in the plume, it is an indication that biodegradation may be occurring. Dissolved Oxygen and ORP readings should be in agreement. Dissolved Oxygen should be less than I ppm when ORP is negative. Based on the observed DO and ORP values, the initial groundwater-bearing zone within the affected area (former industrial ponds) has likely transitioned from an aerobic environment to an anaerobic environment as microbes have utilized the available dissolved oxygen during natural attenuation processes.
- Specific Conductivity: Specific conductivity is a measurement of an aqueous solution's ability to conduct or carry an electric current. This ability depends on the presence, total concentration, mobility and valence of charged ionic species (e.g., Ca+2, Na+, Mg+2, HCO3 -, Cl-), turbidity, and the solution's temperature. Specific conductivity can be used as an indicator that samples collected from separate sampling points are from the same groundwater-bearing zone. Based on the

observed conductivity, each of the monitoring wells are generally consistent and appear to be completed within the same groundwater-bearing zone.

Based on the available geochemical data, natural attenuation does appear to be occurring at the Site. Natural attenuation should continue to occur provided electron acceptors $(NO_3^{-1}, Mn^{4+}, and SO_4^{-2})$ remain available in on-Site groundwater.

6.0 DATA EVALUATION

To address activities related to condensate releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the OCD rules, specifically NMAC 19.15.30 *Remediation*. These guidance documents establish investigation and abatement action requirements for Sites subject to reporting and/or corrective action.

6.1 Groundwater Samples

SWG compared the identified constituent concentrations or PQLs associated with the groundwater samples collected from the monitoring wells to the New Mexico WQCC *Ground Water Standards.* The results of the groundwater sample analyses are summarized in Table 2 of Appendix B.

6.1.1 Petroleum Hydrocarbons

The groundwater samples collected from monitoring wells MW-8b, MW-9 and MW-10 did not exhibit TPH GRO/DRO and/or BTEX concentrations above the laboratory PQLs, which are below the New Mexico WQCC *Ground Water Standards*.

6.1.2 Groundwater Quality Parameters

The groundwater samples collected from monitoring wells MW-1 through MW-10 did exhibit chloride, sulfate, fluoride and/or total dissolved solids (TDS)¹ concentrations above the New Mexico WQCC *Ground Water Standards*. However, these constituents are likely attributable to one or a combination of the following factors:

- 1.) Sulfates and fluoride are commonly naturally occurring in groundwater as a result of the breakdown and weathering of the native geologic formation and soils.
- 2.) Sulfates and fluoride are most commonly identified at elevated levels in groundwater due to the infiltration of runoff of chemical fertilizers in agricultural production, which is consistent with the direction of groundwater flow, concentration gradient and historic and current use of the up-gradient adjacent property as agricultural production land by the Navajo Agricultural Products Industry (NAPI).
- 3.) Sulfates are a common electron acceptor utilized by microbes in the natural

¹ Total Dissolved Solids (TDS) is a measure of the combined content of all inorganic and organic substances, which includes chloride, sultate and fluoride, contained in a liquid in suspended form

attenuation (anaerobic respiration) of petroleum hydrocarbons, which have historically been associated with on-Site subsurface soil and initial groundwater bearing unit. Sulfate concentrations are most elevated along the southern, hydro-geologically up-gradient, property boundary and decline toward the northwestern portion of the Site with groundwater flow, which was historically impacted by petroleum hydrocarbons.

7.0 FINDINGS

SWG has conducted one (1) groundwater monitoring event at the Enterprise Chaco Gas Plant. The Enterprise Chaco Gas Plant consists of approximately 190-acres of land developed with a cryogenic gas plant, amine treatment unit and natural gas compression facilities located at 895 CR 7100 in Section 16, Township 26N, Range 12W in San Juan County, New Mexico. The objective of the groundwater monitoring event was to further evaluate the concentrations of COCs in groundwater and general groundwater chemistry in the vicinity of monitoring wells MW-1 through MW-10.

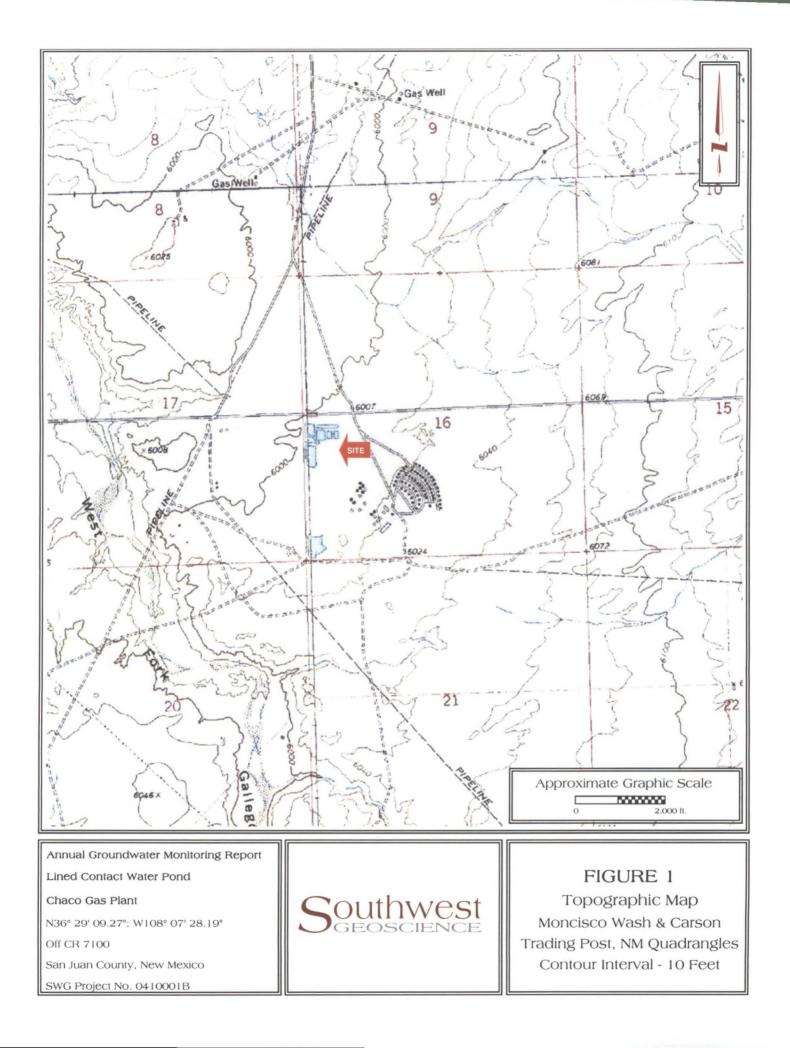
- During the completion of the sampling event, one (1) groundwater sample was collected from each monitoring well (MW-1 through MW-10) utilizing low-flow sampling techniques.
- Prior to sample collection, SWG gauged the depth to fluids in each monitoring well. LNAPL was not observed during the completion of gauging activities.
- The groundwater flow direction at the Site is generally towards the northwest, at an average gradient of 0.020 ft/ft; however, an apparent groundwater mound was noted in the vicinity of monitoring well MW-3, which is likely attributable to infiltration from the unlined non-contact water ponds located at the Site.
- A limited natural attenuation screening has been conducted at the Site to evaluate the occurrence of natural attenuation. Based on the available geochemical data, natural attenuation does appear to be occurring at the Site. Natural attenuation should continue to occur provided electron acceptors (NO₃, Mn⁴⁺, and SO₄²) remain available in on-Site groundwater.
- The groundwater samples collected from monitoring wells MW-8b, MW-9 and MW-10 did not exhibit TPH GRO/DRO and/or BTEX concentrations above the laboratory PQLs, which are below the New Mexico WQCC *Ground Water Standards*.
- The groundwater samples collected from monitoring wells MW-1 through MW-10 did exhibit chloride, sulfate, fluoride and/or TDS concentrations above the New Mexico WQCC *Ground Water Standards*. However, these constituents are likely attributable to the natural breakdown and weathering of the native geologic formation and soils and/or the infiltration of runoff of chemical fertilizers from agricultural production, which is consistent with the direction of groundwater flow, concentration gradient and historic and current use of the up-gradient adjacent property as agricultural production land by the NAPI.

8.0 RECOMMENDATIONS

Based on the results of groundwater monitoring activities no additional investigation or remediation appears warranted at this time. SWG recommends the monitoring well network (MW-1 through MW-10) be plugged and abandoned in accordance with NMAC 19.27.4.30 *RULES AND REGULATIONS GOVERNING WELL DRILLER LICENSING; CONSTRUCTION, REPAIR AND PLUGGING OF WELLS* following New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division and Office of the State Engineer authorization.

.

.


.

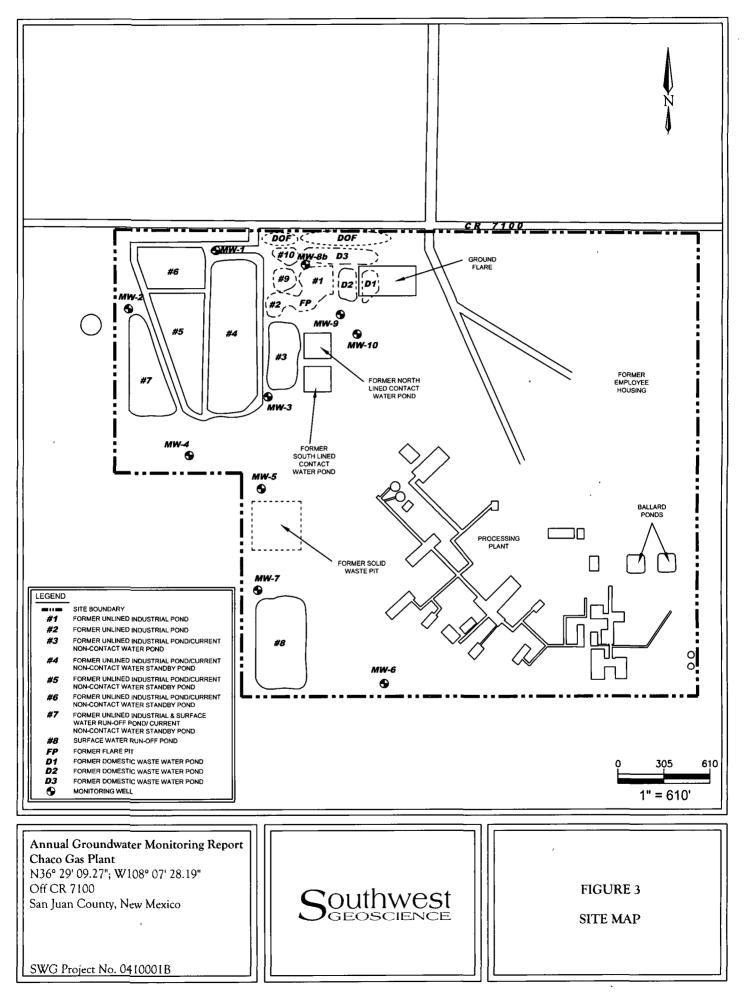
ţ.

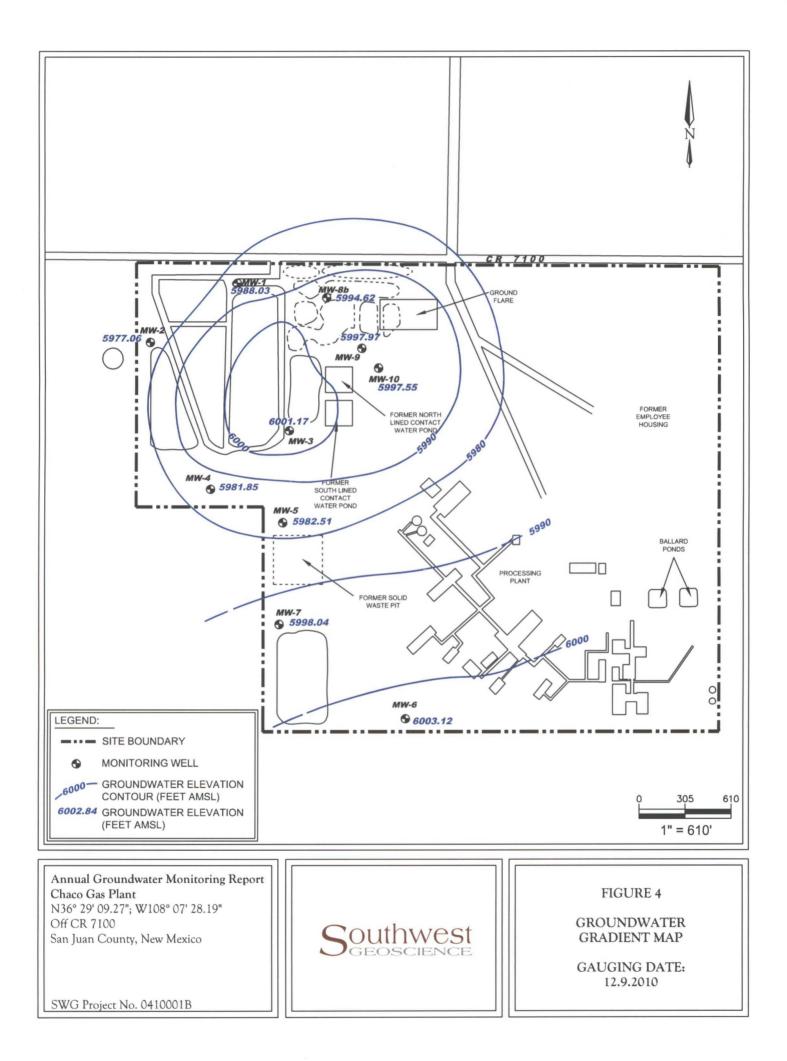
-

APPENDIX A

Figures

N36° 29' 09.27"; W108° 07' 28.19"


Off CR 7100


San Juan County, New Mexico

SWG Project No. 0410001B

FIGURE 2 Site Vicinity Map 2009 Aerial Photograph

APPENDIX B

-

Tables

· · · · · · · · · · · · · · · · · · ·					GROUNDWA		TABLE 1 ACO GAS PLANT . RESULTS - PETI	ROLEUM HYDROCA	RBONS			
Sample IID.	Date	Benzene:	Tolucne) (µg/L)	Ethylbenzene) (µg/L)	Xylenes (µg/ll)	Total •Naphthalenes (µg/L)	Benzopyrenes	Methylter-butyllEther (MTBE) (µg/L)	trimethylbenzeno) (tig/L)	LL3155 frimethylbenzeno (pt3/L)	CITER SECOND	、TPHODRO) (mg/比)
NM/WQCC Standard for of 10,000 mg/L TDS	Groundwater of Less	0.00	750	750	200	30	047 —	NE	NB	NE	. NB	NE
MW-1	6 24 96							SUFFICIENT SAMPLE				
	<u>3 11 97</u> 9 30 97	<1.0	<1 0 <1 0	<10	<u>30</u> 30	ND ND		NA NA	NA NA	NA	NA NA	NA NA
	9 15 98	<10	<1 0	<10	30	ND	ND	NA	NA	NA	NA	NA
	92199	<0.5	<05	<0.5	<0.5	ND	ND	NA	NA	NA	NA	NA
	9 12 00 10 16.01	<0 5	<0 5 <0 5	<05	<05 28	ND ND		NA NA	NA NA	NA	NA NA	NA NA
	9 20 02	<0.5	<0 5	<05	<10	ND	ND	NA	NA	NA	NA	NA
	8 18 04 9 30 05	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NA	NA	NA	NA	NA
	10 30 05	ND ND	ND	ND ND	ND	ND NA	ND NA	NA ND	NA NA	NA NA	NA NA	NANA
	6 19 07	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NÁ
	6 30 08 6 24 09	ND ND	ND ND	ND ND		NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA
MW-2	6 30 08	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA NA
MW-3	6 30 08	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
MW-4	6 30 08	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
<u>MW-5</u> MW-6	6 30 08 6 30 08	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA
MW-7	6 30 08	ND	ND ND	ND	ND	NA NA	NA NA	ND	ND	ND	NA NA	NA NA
MW-8b	3 12 96	10.0	<10	<10	<30	75	<0.3	NA	NA	NA	NA	NA
	5 29 96	6 62	<10	<10	<30	NA	NA	NA	NA	NA	NA	NA
	7296 9996	<10	<10 <10	<10	<30 <30	NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA
	11196	<1.0	<10	<10	<30	NA	NA	NA	NA	NA	NA	NA
	31197	<10	<10	<10	<30	ND	034	NA	NA	NA	NA	NA
	9 30 97 9 15 98	<1 0	<10 <10	<1 0 <1 0	<30	ND 2 3	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA
	92199	<0.5	<0.5	<0.5	<0.5	ND	ND	NA	NA	NA	NA	NA
	9 12 00	<0 5	<05 <05	<05	<05	ND ND	ND ND	NA NA	NA NA	NA	NA NA	NA NA
	9 20 02	<0.5	<05	<05	<10	ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA
	8 18 04	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA NA
	9 30 05 10 30 06	ND ND	ND ND	ND ND	ND ND	ND NA	ND NA	NA ND	NA ND	NA ND	NA NA	NA NA
	6 19 07	ND	ND	ND	ND	NA	NA	ND	ND ND	ND	NA	NA
	6 30 08	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
	6 24 09 12 15 10	ND <1 0	ND <1.0	ND <1 0	\ <u>ND</u> <2.0	NA NA	NA NA	ND NA	ND NA	ND	NA <0 5	NA <1 0
MW-9	9 30 97	-<10	<10	<10	<30	ND	ND	NA	NA	NA	NA	NA
	9 15 98	<1.0	<1.0	<1 0	<3.0	ND	ND	NA	NA	NA	NA	NA
	9 21 99 9 12 00	<0.5	<0 5 <0 5	<0.5	<0 5 <0 5	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	10 16 01	<0.5	<0 5	<0 5	<0.5	NA	NA	NA	NA	NA	NA	NA
	9 20 02	<0.5	<0.5 ND	<0.5 ND	<1.0 ND	NA NA	NA NA	NA	NA	NA	NA	NA
	8 18 04 9 30 05	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA NA	NA	NA - NA	NA NA	NA NA
	10 30 06	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
	6 19 07 6 30 08	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA
	6 24 09	ND ND	ND	ND ND	ND	NA NA	NA NA	ND ND	ND ND	ND ND	NA NA	NA NA
	12 16 10	<10	<1.0	<10	<2.0	NA	NA	NA	NA	NA	<05	<1 0
MW-10	9 30 97	702	493	34 6 47	241 312	100	ND	NA	NA NA	NA	NA	NA
	9 15 98 9 21 99	<u>923</u> 20	432 9	41	105	ND NA	ND NA	NA NA	NA	NA NA	NA NA	NA NA
	91200	150	6	53	170	NA	NA	NA	NA	NA	NA	NA
	10 16 01 9 20 02	<u>74</u> 91	<5 0 0 93	40	<u> </u>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	8 18 04	30	ND	19	42	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	9 30 05	20	ND	91	17	ND	ND	NA	NA	NA	NA	NA
	10 30 06	23	ND	<u>59</u> 49	<u>ND</u> 34	NA NA	NA NA	ND ND	ND 25	ND ND	NA NA	NA NA
	6 30 08	10	ND	13	ND	NA NA	NA NA	ND ND	ND ND	ND	NA	NA NA
	6 24 09	ND	ND	12	ND	NA	NA	ND	ND	ND	NA	NA
	12 16 10	<1.0	<10	<1.0	<20	NA	NA	NA	NA	NA	0 062	<10

mg/L milligrams per liter µg/L microgram per liter

< - Denotes a construction was not detected above, the method detection limit

Note: Conventionis to bold and yellow exceed the applicable New Mexico WQCC Stockurd

								GROUNDW	ATER ANAL	CHAC	ABLE 2 0 GAS PLA	NT SEOCHEMI	CAL PARAM	TERS							EOSC	
 Sample I.D. 	Date	្ទុក្ខារ	Alcalinity (COJ)	Alcalinity (HCOs)	(Calcium,	Magneelum	Total and Hardness	- Chloride M	Sulfate (SOJ) (ms/L)	(Fluoride)	Nitrate #	Nitrate	#Ammonia *	Bromide :	Phosphate 1 (mg//4)	Polassium	(mg/L)	Total Dissolved Solids (mg/L)	Conductivity (umhos/cm)	Cadmium	Chromlum;	(mg/L)
Groundwater of 10,00	0 mg/L TDS	GtoO.	NE	NE	8B	NB	B	250.0	4.600 M	BKG -	യ	NE	Ne	, NE	NB	N.	NE	Цсоор	(CE)	രതര	0.050	0.002
MW-1	9 30 97 9 15 98 9 21 99		NA NA NA	ΝΑ ΝΔ ΝΔ				ΝΑ ΝΔ ΝΑ						NA NA NA	ΝΑ ΝΑ ΝΑ	NA NA NA	NA NA NA	NA NA NA	NA NA NA	<0.002 <0.0002 ND	<0.004 <0.004 ND	<0.002 <0.0002 ND
	9 12 00 10 16 01 9 20 02 8 18 04	<u>NA</u> NA NA	NA NA NA	N4 N4 N4 N4	NA NA NA			NA NA NA	ΝΑ ΝΑ ΝΑ ΝΔ	NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	ND <0.0004 ND ND	ND 0.0010 ND ND	ND 00174 ND ND
	9 30 05 6 19 07 6 30 08	<u>NA</u> <u>NA</u> NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA		NA NA NA	NA NA NA			NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	ND ND ND	ND ND ND	ND ND ND ND
MW-2	6 24 09 12 15 10 6 24 96	NA NA 7 7	NA NA 0.0	NA NA 426	NA 280 112	NA 48 22 5	NA NA 372	NA 100 162	NA 1,100 714	N4 15 18	NA	NA	NA NA	NA NA	NA 0 64 <0 1	NA 21 1 1	NA 280 493	NA 2,110 1,772	NA NA 2 500	ND NA 0.0008	ND NA 0.008	NDNA
	6 24 97 6 9 98 7 19 99	82 73 72	00	365 420 621	135 99 87	30 0 24 0 24 0	461 346 316	264 197 546	819 768 346	3.3 2.2 1 9	<0.6 0.6 <0.6	<06 06 <06	<02 02 <02	ΝΑ ΝΑ ΝΛ	<06 06 <06	23 29 4	510 504 616.0	1,990 1,836 1,992	2.800 2.640 2.920	<0.0002 0.001 ND	<0.004 0.005 ND	<0.00002 0.002 ND
	6 20 00 6 25 01 6 11 02 8 18 04	74 81 76 81	0.0 490 430 ND	530 480 430 270	110 110 91 130	33 0 	410 425 360 510	1 400 1 700 1,500 47	27 23 19 1,000	170 4.2 2 7 2.2	<012 <010 ND	<0.1 ND <0.10 ND	<0.05 0.42 0.22 ND	NA NA NA	0 018 021 ND	19 27 20 ND	820 1 100 890 440	2,800 3,000 2,800	4 800 5 400 5 000 2 200	<0.005 <0.005 <0.005 ND	<0.005 <0.005 <0.005 ND	<0.0002 0.0031 <0.0002 ND
	8 18 04 6 16 05 10 30 06 6 19 07	81 73 NA	ND 280 NA ND	NS NA 230	210 180 190	47 0 44 0 42 ()	 	47 52 64 51	1,000 1,200 1,200 1,200	2.2 1.8 23 19	ND ND ND	NA D	ND NA NA	ΝΑ ΝΑ ΝΛ 2 3	ND ND ND	ND 17 ND ND	440 350 470 380	1,800 2,200 NA 2,000	2 200 2 700 NA 2,800	ND ND ND		ND ND ND ND
MW-3	6 24 (M) 12 15 10 6 24 96	NA NA 7 7	ND NA 0.0	230 NA 670	210 250 85	45 0 51 20 2	NA NA 296	61 64 42	1,300 1,400 532	18	<0.5	0	NA NA	NA NA NA	ND <0.5 <0.5	ND ND 09	370 370 443	2,000 2,260 1,464	2 500 NA 2 170	ND NA <0.0005	ND NA 0.002	ND NA <0.00024
	6 24 97 6 9 98 7 19 99	82 73 73	00	519 328 383	78 120 124	18 0 24 0 28 0	269 398 425	63 31 27	396 474 435	10 09 <01	<06 06 <02	<06 06 <02	<01 02 <02	NA NA NA	<06 06 <02	29 24 30	315 216 205	1,160 1,080 1,126	1 667 1 562 1 391	0 0050 0 001 ND	0 004 0 005 ND	<0.00002 0.0002 ND
	6 20 00 6 25 01 6 11 02 8 18 04	74		740		86.0	2 700	41	880	NOT	SAMPLED SAMPLED SAMPLED		ENT SAMPLE		ND	54	260	1.600	1 1800	ND	ND	0.00024
	6 16 05 10 30 06 6 19 07	74 74 NA NA	280 NA ND	NS NA 280	530 500 330	55 0 58 0 59 0	1 400 NA NA	62 67 170	870 670 1,200	07 11 09	ND 5	NA	ND NA NA	NA NA 12 0	ND ND ND	54 41 50 48	250 250 190 270	1,800 1,700 NA 3.200	2 200 NA 3.000	ND ND ND		ND ND ND
MW-4	6 24 09 12 15 10 6 24 96	NA NA 7 2	ND NA 0.0	260 NA 559	280 410 458	55 () 78 79 7	NA NA 1 472	160 180 464	1,700 1,800 2,654	09 084 17	<1 6		NA NA	NA NA NA	ND <0.5 <1.6	47 43 83	420 470 1 249	2,700 3,310 5,430	3 000 NA 6 610	ND NA 0.0011	ND NA 0.003	ND NA
	6 24 97 6 9 98 7 19 99	79 69 69	00	579 566 561	395 447 467	62 0 78 0 79 0	1 242 1 437 1 491	272 398 374	2,470 2,701 2,637	1,9 19 16	78 64 29	<11 \ 06 <11	<03 02 <02	NA NA NA	<11 06 <06	11 6 11 3 12 0	1 110 1 133 1 179	4,710 5,250 5,610	5 560 5 930 5 530	<0.0002 0.001 ND	<0.004 0.005 ND	<0.00002 0.0002 ND
	6 20 00 6 25 01 6 11 02 8 18 04	70 75 73 804	0 0 400 350 ND	410 400 350 380	110 530 430 420	81 0 83 0 85 0 58 0	1 400 1 700 1 400 1 300	420 450 450 150	2,500 2,400 2,300 2,200	14 16 15 16	25 23 29 ND	<01 ND <010 ND	0 07 0 12 0 11 ND	NA NA NA	0 08 021 ND	200 200 180 75	930 950 840 690	4,900 4,700 4,700 3,800	5 900 5,600 5 500 4 100	<0 005 <0 005 <0 005 ND	0 010 0 008 0 008 ND	<0 0002 0 0057 <0 0002 ND
	6 16 05 10 30 06 6 19 07	7 0 NA NA	370 NA ND	NA NA 310	350 380 340	55 0 63 0 51	1 100 NA NA	120 140 100	2,200 2,000 1,900	13 1.8 16	0.56	NA	NA NA NA	<u>NA</u> NA 4 6	ND ND ND	79 100 75	650 650 560	3,500 3,500 NA 3,200	4 300 NA 4 000	ND ND ND	ND ND 0 016	ND ND ND
MW-5	6 24 09 12 15 10 6 24 96	ΝΛ ΝΑ 7 5	ND NA 0.0	280 NA 374	330 370 216	50 55 33 2	ΝΛ ΝΑ 676	130 130 19	2,000 1,800 670	15 16 07			NA NA	NA NA NA	ND <0.5 <0.1	73 76 11	520 490 173	3,100 3,100 1,332	3 400 NA 1,709	ND NA <0.0005	ND NA 0.004	ND NA <0.00024
	6 24 97 6 9 98 7 19 99	82 72 72	00	391 361 316	177 318 213 370	39 0 58 0 40 0 68 0	603 1 033 697	47 60 65	559 1,378 987	07 09 09	<02 14 05 08	<02 06 <02 <01	<01 02 <02	NA NA NA	<02 06 <02	18 39 30	192 405 363 670	1,260 2,524 2,060	1 702 3 050 2 300	<0.0002 0.001 ND	<0.004 0.005 ND	<0.00002 0.0002 ND
	6 20 00 6 25 01 6 11 02 8 18 04	70 61 75 81	00 100 68 ND	220 100 68 160	400 460 500	59 0 84 0 72 0	1 200 1 239 1 400 1 600	200 190 360 160	2.200 1,900 2,500 2,500	0.61 0.84 0.52	08 04 085 ND	<01 ND <010 ND	<0.05 0.15 0.10 ND		0 20 0 13 0 18 ND	130 86 130 62	670 530 660 660	3,900 3,500 4,500 4,200	4,700 4,000 5,000 4,200	<0.005 <0.005 <0.005 ND	0 023 0 006 0 016 0 037	<0 0002 0 0025 <0 0002 ND
	6 16 05 10 30 06 6 19 07	6 9 NA NA	150.0 NA ND	NS NA 140	500 540 490	83 0 85 0 87 0	1 600 NA NA	240 330 350	2,600 2,500 2,600	054 051 057		NA ND ND	NA NA NA	NA NA 2.6	ND ND ND	80 72 70	640 710 680	4,400 NA 4,200	5 300 NA 5 400		0 020 0 0062 0 22	ND ND ND
M\\-6	6 24 09 12 16 10 6 24 96	NA NA 8 2	ND NA 0.0	140 NA 399	500 520 37	890 910 104	NA NA 135	400 380 139	3,000 2,900 1,216	0 57 0 67 2.3	<1 0	13	NA NA	NA NA NA	ND <0.5 <1.0	79 82 07	740 720 850	4,600 4,630 2,440	4 700 NA 3,550	ND NA 0.0009	ND NA 0.007	ND NA <0.00024
	6 24 97 6 9 98 7 19 99 6 20 00	82 80 81 81	164 00 00	304 425 438 390	80 93 51 34	150 180 90 58	286 306 164 1 110	277 257 139 130	1,520 1,826 1,176 630	80 2.7 2.3 63	<06 18 08	<06 06 <06 <01	<0.6 0.2 <0.2 <0.05	NA NA NA	<06 06 <06	19 62 30 24	1 010 1 095 790 610	3,180 3,612 2,568 1,800	4 280 5 090 3,410 2 800	<0.0002 0.001 ND <0.005	<0.004 0.005 ND <0.005	<0.00002 0.0002 ND <0.0002
	6 20 00 6 25 01 6 11 02 8 18 04	81 82 83 84	430 450 160	420 440 640	<u>48</u> <u>48</u> 140	82 77 180	150 150 480	120 170 150	290 1,300 1,400	59 7.7 5.4	21 32 ND	ND <0.10 ND	0 10 0 11 ND		0 09 0 12 ND	24 48 24 36	820 780 890	2,300 2,600 2,800	<u>3 300</u> <u>3 600</u> <u>3 600</u>	<0.005 <0.005 <0.005 ND	0.009	<0.0002 0.00037 <0.0002 0.00041
	6 16 05 10 30 06 6 19 07	7.9 NA NA	150 0 NA ND	NA NA 560	500 56 44	830 76 68	1 600 NA NA	240 76 84	2,600 960 1,100	05 5.5 4.6	10 2	4 6	NA NA NA	NA NA 0 6	ND ND ND	80 11 ND	640 690 720	4,400 NA 2,800	5 300 NA 3 500	ND ND ND	0.020 0.019 0.092	ND ND ND
	6 24 09 12 14 10		ND NA	410 NA	98 170	15 0 24 0	NA NA	210 260	2,100 3,100	4.5		5 i l	NA NA	NA NA	ND <0 5	15	1 100	3,900 4,960	4 600 NA	ND NA	0 007 NA	ND NA

.

														_							SEOSC	LIENCE
								GROUNDW	ATER ANAL	CHAC	ABLE 2 0 GAS PLA ESULTS - 0		CAL PARAM	ETERS								
Sample I.D.	Date	pH (unitiess)	Alcalinity (CO ₃) (mg/L)	Alcalinity (HCO ₃)	Calcium	Magnesium (mg/L)	Total Hardness / (mg/L)	Chloride	(SOJ)	Fluoride	Nitrate (NO ₃) (mg/L)	(NO ₂) (mg/L)	Ammonia (NH4) (mg/L)	Bromide (Phosphate (mg/L)	Potassium	Sodium	Total Dissolved Solids	Conductivity	Cadmhum (mg/L)	Chromium	(mg/L)
INM WOCC Sum Groundwater of 10.0 Of Lens	00 mg/L TDS	6 to 9	NE	ÑE A	NB	NE	NE	250.0	600	16	, lió	NE	NB	NE	NE	NE	NE	1,000	NE	0 010	0 050 •	0.002
MW'-7	6 24 96 6 24 97	74	00	329 311	302 273	429 430	931 858	295 152	1,336	2.0 34	<0.6 <0.6	<0.6	<01	NA NA	<0.6 <0.6	36 57	547 386	2,860	3 550 2 880	0 0007	0 002	<0 0002
	6998 71999	72	00	343 4(16	188 219	360 420	618 720	126	998 1,171	24 20	06 <06	06 <06	02 <02	NA NA	06	51 40	414 556	2,048	2 690 3,170	0.001 ND	0.005 ND	0 0002 ND
	6 20 00 6 25 01	73	<u>00</u> <u>310</u>	370 310	260 	53 0 74 0	880 1 250	220	1,300 2,100	2,7 2 5	<0 I 0 14	<0.1 ND	0.60	NA NA	0.10	73	620 610	3,000 3,700	3 900 2 200	<0.005	0.012	<0.000
	61102 81804 61605	76 81 75	340 ND 350.0	340 550 NA	330 330 270	64 0 50 0 44 0	1 100 1 000 820	160 120 140	2,100 1,600 1,400	29 28 2.4	0 26 ND ND	<0.10 ND NA	0.87 0.56 NA	NA NA	0 12 ND ND	74	550 550	3,500 2,900	4 000	<0.005 ND	0 008 0 015 ND	<0 000. 0 0002 ND
	10 30 06 6.19 07	NA NA	<u>350 0</u> NA	NA NA 320	270 300 280	44 0 52 0 47 0	NA NA	170	1,400 1,500 1,700	2.4 3.0 2.4	N	I NA ID ID	NA NA	NA NA 0.76	ND ND	<u>39</u> 38 22	530 600 570	2,800 NA 3.000	3,700 NA 4,000	ND ND ND	0.007 0.11	ND ND ND
	6 24 00	NA NA	ND NA	210 NA	370 400	60 0 60	NA NA	420 350	2,500	2.4	N	ip 1 0	NA NA	NA	ND <0.5	32	750	4,100	4 400 NA	ND NA	ND NA	ND
MW-8b	9 9 96 9 30 97	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<0.0002	<0.0057 <0.004	<0.002
	9 15 98 9 21 99	NA NA	NA NA		NA NA	NA NA	<u>ΝΛ</u> ΝΑ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		<0 0002 ND	<0.004 ND	<0.000 ND
	9 12 00 10 16 01	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND <0.004	ND 0.001	0 000
	9 20 02 6 11 02 8 18 04	NA NA	NA NA	NA NA NA	NA NA		NA NA NA	NA NA NA	NA NA	NA NA NA	NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA NA	NA NA	NA NA	NA NA NA	ND ND ND	ND ND ND	ND ND
	930.05	NA NA	NA NA	NA NA			NA NA	NA NA NA		NA NA	NA NA	NA NA	NA NA NA	NA NA	NA NA	NA NA NA	NA NA		NA NA	ND ND	ND ND	ND ND
	6 30 08 6 24 00	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA	NA NA	NA NA	ND	ND ND	ND
MM-9	12 15 10 9 30 97	NA 78	<u>NA</u>	NA 508	110 60	41	NA 222	<u>80</u> 60	850 0 325	2.0	<0		NA <0.1	NA NA	<05	<u>22</u> 15	330 277	1,570	NA 1 450	NA <0.002	NA <0.004	NA <0.000
	9 15 98 12 16 10	NA NA	NA NA	<u>NA</u> NA	NA 160	NA 32	NA NA	NA 82	NA 800	NA 14	NA <	NA 1 0	NA NA	NA NA	NA <0.5	NA 17	NA 280	NA 1,540	NA NA	<0 0002 NA	<0.004 ΝΛ	<0.000 NA
MW-10	9 30 97 9 15 98	73 NA	00 NA	1 105 NA	79 NA	31 4 NA	325 NA	561 NA	168 NA	1 6 NA	<0.6 NA	<0.6 NA	<03 NA	NA NA	<0.6 NA	1 7 NA	678 NA	2,150 NA	3 190 NA	<0.0002 <0.0002	<0.004 <0.004	<0.000
NON CONTACT	12 16 10 6 24 96	NA 82	NA 0.0	NA 118	211	44	NA 605	79 60	810 740	13 2.1	05		NA	NA NA	<05	<1.0 26	320 128	1,510 1,454 0	NA 1 744	NA <0.0005	NA 0 132	<0.00
WASTE WATER	62497 6998	88 82	44 0 00	266 171 100	261 228	47 <u>0</u> 440	845 751	83 27	754 766	2,0	03	<06 02	<01 02	NA NA	<0.6 0.2	379 270	178	1,670	2 010	<0.002 0.0010	0.034	<0.000
- conficts and a cost filters	7 19 99	80	00	100	234	570	819	47	933	1.9		<0.01	<0 02	NA	<0 02	37.0	165	1,814	1 807	ND	ND	ND

.

TABLE 3NATURAL ATTENUATION PARAMETER RESULTS

Sample il/D,	Date	.Temperature .(°C)	рĦ	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (mM)	Concluctivity (mS/cm)	Nilirate - (mg/L)	Sulfate (ng/L)
MW-1	12.15.10	13.39	7.73	4.21	19.4	2.672	1.9	1,100
MW-2	12.15.10	14.4	8.06	0.26	-175.4	2.938	<1.0	1,400
MW-3	12.15.10	12.89	7.58	0.58	-135.8	3.971	<10	1.800
MW-4	12.15.10	13.06	7.7	0.8	-26.6	3.791	<1.0	1,800
MW-5	12.16.10	NA	NA	NA	NA	NA	0.13	2,900
MW-6	12.14.10	16.27	7.85	5.36	98.5	6.3	6.1	3,100
MW-7	12.14.10	17.28	7.85	1.95	87.5	5 181	<1.0	2,500
MW-8b	12.15.10	12.35	7.88	0.27	-51.3	2 23	<1.0	850
MW-9	12.16.10	9.52	8.2	0.36	-142.5	2.12	<1.0	800
MW-10	12.16.10	12 46	8.34	0.21	-317.3	2.14	<1.0	810

,

	TABLE 4 Chaco Gas Plant FLUID LEVEL GAUGING DATA												
WellID			Depth to PSH (feet)		PSH Thickness (feet):								
			Monitori	ng Wells									
MW-1	1994**	**	no data	no data	no data	5987 85							
Į	1995*	6002 70		22 9	0 00	5979 80							
	08 20 09**	**	no data	no data	no data	5987 46							
	12 09 10***	6002 92		14.89	0.00	5988 03							
MW-2	1994**	**	no data	no data	no data	5982 20							
	1995*	5997 40	no dula	15 3	0.00	5982 10							
	08 20 09**	**	no data			5976 71							
-	12 09 10***		no daia	no data 20 54	no data 0 00	5977 06							
		5997 60											
MW-3	1994**		no data	 no data 	no dala	6002 23							
	1995*	601168		11 16	+ 0.00	6000 52							
	08 20 09**	**	no data	no data	no data	5995 11							
Ļ	12 09 10***	6011 82		10 65	0 00	6001.17							
MW-4	1994**	**	no data	no data	no data	5985.29							
	1995*	6004 44		1914	0 00	5985.30							
	08.20 09**	**	no data	no data	no data	5981 90							
	12 09 10***	6004 67		22 82	0 00	5981.85							
MW-5	1994**	**	no data	no data	no data	5986 02							
	1995*	6011.07		24.62	0.00	5986 45							
f	08 20 09**	**	no data	no data	no daia	5982 66							
	12 09 10***	6011 07		28 56	0.00	5982 51							
MW-6	1994**	**	no data	no data	no data	6009 98							
	1995*	6021 43	no dala	11 67	0.00	6009 76							
	08 20 09**	**	no data	no daia	no data	6002 84							
	12.09 10***	6021 43		18 31	0.00	6003 12							
MW-7	1994**	**	no data	no data	no data	6006 09							
	1995*	6013.79		9 25	0 00	6004 54							
	08 20 09**	**	no data	no data	no data	5997 96							
	12 09 10***	6013 79		15 75	0.00	5998 04							
MW-8b	1994**	**	no data	no data	no data	not installed							
	1995*	6010 63		17 39	0.00	5993 24							
-	08 20 09**	**	no data	no data	no data	5999 87							
		6005 00		10 38	0.00	5994 62							
MW-9		no data	no data no data	no data	no data	not installed not installed							
-	08 20.09**	no data	no data	no data no data	no dala no dala	no data ·							
	12 09 10***	6010.06		12 09	0.00	5997 97							
MW-10	1994**	no data	no data	no data	no data	not installed							
	1995*	no data	no data	no data	no data	not installed							
	08 20 09**	**	no data	no data	no data	no data							
-	12 09 10***	6009.41		11 86	0.00	5997 55							

--

.

*= using 1995 survey data **= using unknown survey data ***= using 12/15/1997 survey data

,

APPENDIX C

Laboratory Data Reports & Chain-of-Custody Documentation

COVER LETTER

Tuesday, January 04, 2011

Kyle Summers Southwest Geoscience 606 S. Rio Grande Unit A Aztec, NM 87410

TEL: (903) 821-5603 FAX

RE: Chaco Gas Plant

Dear Kyle Summers:

Order No.: 1012701

Hall Environmental Analysis Laboratory, Inc. received 10 sample(s) on 12/17/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Southwest Geoscience	e		Clier	nt Sample 1	D: MW-l	
Lab Order:	1012701						10 2:20:00 PM
Project:	Chaco Gas Plant			D	ate Receive	ed: 12/17/201	10
Lab ID:	1012701-01					ix: AQUEOU	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS			•			Analyst: SRM
Fluoride		1.5	0.10		mg/L	1	12/22/2010 11:47:53 PM
Chloride		100	10		mg/L	20	12/23/2010 12:05:17 AM
Nitrate (As N)+N	Nitrite (As N)	1.9	1.0		mg/L	.5 .	12/28/2010 11:31:57 AM
Phosphorus, Or	thophosphate (As P)	0.64	0.50	н	mg/L	1	12/22/2010 11:47:53 PM
Sulfate		1100	25		mg/L	50	12/27/2010 10:28:21 PM
EPA 6010B: TO	TAL RECOVERABLE N	IETALS					Analyst: RAGS
Calcium		280	5.0		mg/L	5	12/23/2010 3:57:55 PM
Magnesium		48	1.0		mg/L	1	12/23/2010 2:53:51 PM
Potassium		21	1.0		mg/L	1	12/23/2010 2:53:51 PM
Sodium		280	5.0		mg/L	5	12/23/2010 3:57:55 PM
SM2540C MOD	TOTAL DISSOLVED S	OLIDS					Analyst: KS
Total Dissolved	Solids	2110	20.0		mg/L	1	12/21/2010 2:47:00 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

1

Page 1 of 10

CLIENT:	Southwest Geoscienc	e		Clie	nt Sample ID:	MW-2				
Lab Order:	1012701				llection Date:	12/15/20	10 12:00:00 PM			
Project:	Chaco Gas Plant			D	ate Received:	12/17/20	12/17/2010			
Lab ID:	1012701-02				Matrix:	AQUEOU	JS			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	300.0: ANIONS						Analyst: SRM			
Fluoride		1.8	0.10		mg/L	1	12/23/2010 1:14:57 AM			
Chloride		64	10		mg/L	20	12/23/2010 12:22:42 AM			
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	12/28/2010 11:49:23 AM			
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	12/23/2010 1:14:57 AM			
Sulfate		1400	25		mg/L	50	12/27/2010 10:45:46 PM			
EPA 6010B: TO	TAL RECOVERABLE M	ETALS					Analyst: RAGS			
Calcium		250	5.0		mg/L	5	12/23/2010 4:00:53 PM			
Magnesium		51	1.0		mg/L	1	12/23/2010 2:59:38 PM			
Potassium		ND	1.0		mg/L	1	12/23/2010 2:59:38 PM			
Sodium		370	5.0		mg/L	5	12/23/2010 4:00:53 PM			
	: TOTAL DISSOLVED S	OLIDS					Analyst: KS			
Total Dissolved		2260	40.0		mg/L	1	12/21/2010 2:47:00 PM			

Date: 04-Jan-11

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 2 of 10

- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 2

CLIENT:	Southwest Geosciend	ce		Clie	nt Sample ID	: MW-3					
Lab Order:	1012701			Co	llection Date	: 12/15/201	12/15/2010 10:40:00 AM				
Project:	Chaco Gas Plant			D	ate Received	: 12/17/201	0				
Lab ID:	1012701-03				Matrix	: AQUEOL	JS				
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed				
EPA METHOD	300.0: ANIONS					•	Analyst: SRM				
Fluoride		0.84	0.10		mg/L	1	12/23/2010 1:32:22 AM				
Chloride		180	´ 10		mg/L	20	12/23/2010 1:49:47 AM				
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	12/28/2010 6:18:29 AM				
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	12/23/2010 1:32:22 AM				
Sulfate		1800	50		mg/L	100	12/27/2010 11:03:11 PM				
EPA 6010B: TO	TAL RECOVERABLE N	NETALS					Analyst: RAGS				
Calcium		410	10		mg/L	10	12/23/2010 4:03:51 PM				
Magnesium		78	1.0		mg/L	1	12/23/2010 3:03:30 PM				
Potassium		4.3	1.0		mg/L	1	12/23/2010 3:03:30 PM				
Sodium		470	10		mg/L	10	12/23/2010 4:03:51 PM				
SM2540C MOD	: TOTAL DISSOLVED S	OLIDS					Analyst: KS				
Total Dissolved		3310	20.0		mg/L	1	12/21/2010 2:47:00 PM				

Date: 04-Jan-11

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 3

Page 3 of 10

ł

CLIENT:	Southwest Geoscience	e		Clie	nt Sample ID:	MW-4	
Lab Order:	1012701			Co	llection Date:	12/15/2010	12:00:00 PM
Project:	Chaco Gas Plant			D	ate Received:	12/17/2010	
Lab ID:	1012701-04				Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS						Analyst: SRM
Fluoride		1.6	0.10		mg/L	1	12/23/2010 2:07:11 AM
Chloride		130	10		mg/L	20	12/23/2010 2:59:24 AM
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	12/28/2010 6:35:54 AM
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	12/23/2010 2:07:11 AM
Sulfate		1800	. 50		mg/L	100	12/27/2010 11:20:36 PM
EPA 6010B: TO	TAL RECOVERABLE	TALS					Analyst: RAG
Calcium		370	10		mg/L	10	12/23/2010 4:08:32 PM
Magnesium		55	1.0		mg/L	1	12/23/2010 3:07:36 PM
Potassium		7.6	1.0		mg/L	1	12/23/2010 3:07:36 PM
Sodium		490	10		mg/L	10	12/23/2010 4:08:32 PM
M2540C MOD	: TOTAL DISSOLVED S	OLIDS					Analyst: KS
Total Dissolved		3100	20.0		mg/L	1	12/21/2010 2:47:00 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 4 of 10

- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:	Southwest Geoscience	e		Clien	t Sample ID:	MW-5	
Lab Order:	1012701			Col	lection Date:	12/16/2010	10:50:00 AM
Project:	Chaco Gas Plant			Da	te Received:	12/17/2010	
Lab ID:	1012701-05	05 Matrix:			AQUEOUS		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	<u></u>					Analyst: SRM
Fluoride		0.67	0.10		mg/L	1	12/17/2010 10:34:19 PM
Chloride		380	10		mg/L	20	12/17/2010 10:51:44 PM
Nitrogen, Nitrate	e (As N)	0.13	0.10		mg/L	1	12/17/2010 10:34:19 PM
Phosphorus, Or	thophosphate (As P)	ND	0.50		mg/L	1	12/17/2010 10:34:19 PM
Sulfate		2900	50		mg/L	100	12/27/2010 11:38:01 PM
EPA 6010B: TO	TAL RECOVERABLE M	ETALS					Analyst: RAGS
Calcium		520	10		mg/L	10	12/23/2010 4:11:32 PM
Magnesium		91	1.0	1	mg/L	1	12/23/2010 3:11:42 PM
Potassium		8.2	1.0		mg/L	1	12/23/2010 3:11:42 PM
Sodium		720	10	I	mg/L	10	12/23/2010 4:11:32 PM
M2540C MOD	TOTAL DISSOLVED SO	OLIDS					Analyst: KS
Total Dissolved	Solids	4630	20.0		mg/L	1	12/21/2010 2:47:00 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 5 of 10

t

CLIENT:	Southwest Geoscience			Clier	nt Sample ID:	MW-6				
Lab Order:	1012701	`		Co	llection Date:	12/14/2010	1:25:00 PM			
Project:	Chaco Gas Plant			D	ate Received:	12/17/2010				
Lab ID:	1012701-06			Matrix:		AQUEOUS	5			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	300.0: ANIONS						Analyst: SRM			
Fluoride		3.8	2.0		mg/L	20	12/23/2010 3:51:40 AM			
Chloride		260	10		mg/L	20	12/23/2010 3:51:40 AM			
Nitrate (As N)+N	Nitrite (As N)	6.1	1.0		mg/L	5	12/28/2010 8:02:58 AM			
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	12/23/2010 4:43:55 AM			
Sulfate	•	3100	50		mg/L 1	100	12/27/2010 11:55:26 PM			
EPA 6010B: TC	TAL RECOVERABLE M	ETALS					Analyst: RAGS			
Calcium		170	5.0		mg/L	5	12/23/2010 1:35:38 PM			
Magnesium		24	1.0		mg/L	1	12/21/2010 7:01:29 PM			
Potassium		1.4	1.0		mg/L	1	12/21/2010 7:01:29 PM			
Sodium		1400	50		mg/L	50	12/23/2010 1:39:45 PM			
M2540C MOD	: TOTAL DISSOLVED SO	LIDS					Analyst: KS			
Total Dissolved		4960	20.0		mg/L	1	12/21/2010 2:47:00 PM			

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits

.

- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ţ

Page 6 of 10

- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:	Southwest Geoscience	ł			nt Sample ID:					
Lab Order:	1012701			Co	llection Date:	12/14/2010 2:48:00 PM				
Project:	Chaco Gas Plant			D	ate Received:	12/17/2010				
Lab ID:	1012701-07				Matrix:	AQUEOUS	k			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	300.0: ANIONS						Analyst: SRM			
Fluoride		, 2.4	0.10		mg/L	1	12/23/2010 5:01:20 AM			
Chloride		350	10		mg/L	20	12/23/2010 5:18:45 AM			
Nitrate (As N)+N	Nitrite (As N)	ND	1.0		mg/L	5	12/28/2010 8:20:23 AM			
Phosphorus, Or	thophosphate (As P)	ND	0.50	, н	mg/L	1	12/23/2010 5:01:20 AM			
Sulfate		2500	50		mg/L	100	12/28/2010 12:12:51 AM			
EPA 6010B: TO	TAL RECOVERABLE MI	ETALS					Analyst: RAGS			
Calcium		400	10		mg/L	10 ·	12/23/2010 1:42:54 PM			
Magnesium		60	1.0		mg/L	1	12/21/2010 7:05:37 PM			
Potassium		3.5	1.0		mg/L	1	12/21/2010 7:05:37 PM			
Sodium		810	. 10		mg/L	10	12/23/2010 1:42:54 PM			
SM2540C MOD	: TOTAL DISSOLVED SO	LIDS					Analyst: KS			
Total Dissolved	Solids	4180	20.0		mg/L	1	12/21/2010 2:47:00 PM			

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 7

ł

CLIENT:	Southwest Geoscience			Clie	nt Sample ID:	MW-8b	
Lab Order:	1012701			Co	llection Date:	12/15/2010	3:20:00 PM
Project:	Chaco Gas Plant			D	ate Received:	12/17/2010	
Lab ID:	1012701-08				Matrix:	AQUEOUS	
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE				•		Analyst: JB
Diesel Range Or	ganics (DRO)	ND	1.0		mg/L	1	12/22/2010 11:35:19 PM
Surr: DNOP		115	86.9-151		%REC	1	12/22/2010 11:35:19 PM
EPA METHOD 8	015B: GASOLINE RANGI	E					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	0.050		mg/L	1	12/20/2010 1:55:06 PM
Surr: BFB		101	84.5-118		%REC	1	12/20/2010 1:55:06 PM
EPA METHOD 8	021B: VOLATILES						Analyst: NSB
Benzene		ND	1.0		µg/L	1	12/20/2010 1:65:06 PM
Toluene		ND	1.0		µg/L	1	12/20/2010 1:55:06 PM
Ethylbenzene		ND	1.0		µg/L	1	12/20/2010 1:55:06 PM
Xylenes, Total		ND	2.0		µg/L	1	12/20/2010 1:55:06 PM
Surr: 4-Bromot	fluorobenzene	110	81.3-151		%REC	1	12/20/2010 1:55:06 PM
	00.0: ANIONS						Analyst: SRM
Fluoride		1. 1	0.10		mg/L	1	12/23/2010 5:36:09 AM
Chloride		80	10		mg/L	20	12/23/2010 5:53:34 AM
Nitrate (As N)+Nit	trite (As N)	ND	1.0		mg/L	5	12/28/2010 8:37:48 AM
Phosphorus, Orth	ophosphate (As P)	ND	0.50	н	mg/L	1	12/23/2010 5:36:09 AM
Sulfate		850	10		mg/L	20	12/23/2010 5:53:34 AM
PA 6010B: TOT	AL RECOVERABLE MET	ALS					Analyst: RAGS
Calcium		110	5.0		mg/L	5	12/23/2010 4:25:25 PM
Magnesium		41	1.0		mg/L	1	12/23/2010 3:15:58 PM
Potassium		2.2	1.0		mg/L	1	12/23/2010 3:15:58 PM
Sodium		330	5.0		mg/L	5	12/23/2010 4:25:25 PM
M2540C MOD: '		DS					Analyst: KS
Total Dissolved Se	olids	1570	20.0		mg/L	1	12/21/2010 2:47:00 PM

Date: 04-Jan-11

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 8 of 10

- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:	Southwest Geoscience			Client Sample ID:	MW-9	
Lab Order:	1012701			Collection Date:	12/16/2010	9:00:00 AM
Project:	Chaco Gas Plant			Date Received:	12/17/2010	
Lab ID:	1012701-09				AQUEOUS	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE					Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0	mg/L	1	12/23/2010 12:09:10 AM
Surr: DNOP		123	86.9-151	%REC	1	12/23/2010 12:09:10 AM
EPA METHOD	8015B: GASOLINE RANGE	E				Analyst: NSB
Gasoline Range	Organics (GRO)	ND	0.050	mg/L	1	12/20/2010 2:25:06 PM
Surr: BFB		86.2	84.5-118	%REC	1	12/20/2010 2:25:06 PM
EPA METHOD	8021B: VOLATILES					Analyst: NSB
Benzene		ND	1.0	µg/L	1 `	12/20/2010 2:25:06 PM
Toluene		ND	1.0	µg/L	1	12/20/2010 2:25:06 PM
Ethylbenzene		ND	1.0	µg/L	1	12/20/2010 2:25:06 PM
Xylenes, Total		ND	2.0	µg/L	1	12/20/2010 2:25:06 PM
Surr: 4-Bromo	ofluorobenzene	88.4	81.3-151	%REC	1	12/20/2010 2:25:06 PM
EPA METHOD	300.0: ANIONS					Analyst: SRM
Fluoride		. 1.4	0.10	mg/L	1	12/17/2010 9:59:30 PM
Chloride		82	10	mg/L	20	12/17/2010 10:16:55 PM
Nitrogen, Nitrate	(As N)	ND	0.10	mg/L	1	12/17/2010 9:59:30 PM
Phosphorus, Ort	hophosphate (As P)	ND	0.50	mg/L	1	12/17/2010 9:59:30 PM
Sulfate		800	10	mg/L	20	12/17/2010 10:16:55 PM
EPA 6010B: TO	TAL RECOVERABLE MET	ALS				Analyst: RAGS
Calcium		160	5.0	mg/L	5	12/23/2010 4:28:24 PM
Magnesium		32	1.0	mg/L	1	12/23/2010 3:20:08 PM
Potassium		1.7	1.0	mg/L	1	12/23/2010 3:20:08 PM
Sodium		280	5.0	mg/L	5	12/23/2010 4:28:24 PM
SM2540C MOD:	TOTAL DISSOLVED SOLI	DS				Analyst: KS
Total Dissolved	Solids	1540	20.0	mg/L	1	12/21/2010 2:47:00 PM

Date: 04-Jan-11

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

CLIENT:	Southwest Geoscience			Client Sample ID:	MW-10	
Lab Order:	1012701			Collection Date	12/16/2010	10:10:00 AM
Project:	Chaco Gas Plant			Date Received:	12/17/2010	
Lab ID:	1012701-10			Matrix:	AQUEOUS	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE		······································			Analyst: JB
Diesel Range O	rganics (DRO)	ND	1.0	mg/L	1	12/23/2010 12:43:00 AM
Surr: DNOP		125	86.9-151	· %REC	1	12/23/2010 12:43:00 AM
EPA METHOD	8015B: GASOLINE RANGI	E				Analyst: NSB
Gasoline Range	Organics (GRO)	0.062	0.050	mg/L	1	12/21/2010 1:52:20 PM
Surr: BFB		97.4	84.5-118	%REC	1	12/21/2010 1:52:20 PM
EPA METHOD	8021B: VOLATILES					Analyst: NSB
Benzene		ND	1.0	µg/L	1	12/21/2010 1:52:20 PM
Toluene		ND	- 1.0	µg/L	1	12/21/2010 1:52:20 PM
Ethylbenzene		ND	1.0	µg/L	, 1	12/21/2010 1:52:20 PM
Xylenes, Total		ND	2.0	µg/L	1	12/21/2010 1:52:20 PM
Surr: 4-Bromo	ofluorobenzene	115	81.3-151	%REC	1	12/21/2010 1:52:20 PM
EPA METHOD 3	300.0: ANIONS					Analyst: SRM
Fluoride		1.3	0.10	mg/L	1	12/17/2010 11:09:09 PM
Chloride		79	10	mg/L	20	12/17/2010 11:26:34 PM
Nitrogen, Nitrate	(As N)	ND	0.10	mg/L	1	12/17/2010 11:09:09 PM
Phosphorus, Ort	hophosphate (As P)	ND	0.50	mg/L		12/17/2010 11:09:09 PM
Sulfate		810	10	mg/L	20	12/17/2010 11:26:34 PM
EPA 6010B: TO	TAL RECOVERABLE MET	ALS				Analyst: RAGS
Calcium		99	1.0	mg/L	1	12/23/2010 3:24:13 PM
Magnesium		44	1.0	mg/L		12/23/2010 3:24:13 PM
Potassium		ND	1.0	mg/L		12/23/2010 3:24:13 PM
Sodium		320	. 5.0	mg/L	5	12/23/2010 4:31:22 PM
3M2540C MOD:	TOTAL DISSOLVED SOL	IDS				Analyst: KS
Total Dissolved S	Solids	1510	20.0	mg/L	1	12/21/2010 2:47:00 PM

Date: 04-Jan-11

١

Page 10 of 10

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
 - 10

QA/QC SUMMARY REPORT

Client:Southwest GProject:Chaco Gas P	•							,	Work	Order:	1012701
Analyte	Result	Units	PQL	SPK V	el SPK ref	%Rec L	.owLimit Hi	ighLimit 9	6RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ar	lons										
Sample ID: 1012701-04AMSD		MSD				Batch ID:	R42834	Analysis I	Date:	12/23/2010	2:41:59 A
Fluoride	2.007	mg/L	0.10	0.5	1.596	82.2	71.7		0.0459	20	
Sample ID: MB		MBLK				Batch ID:	R42754	Analysis I	Date:	12/17/2010 1	0:23:10 A
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.50								
Nitrogen, Nitrate (As N)	ND	mg/L	0.10								
Phosphorus, Orthophosphate (As P) ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R42834	Analysis D	Date:	12/22/2010	6:17:03 Pl
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.50								
Nitrogen, Nitrate (As N)	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R42882	Analysis D)ate:	12/27/2010	2:38:14 PM
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.50								
Nitrogen, Nitrate (As N)	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)		mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: LCS		LCS				Batch ID:	R42754	Analysis D)ate:	12/17/2010 10	D:40 [.] 34 AM
Fluoride	0.5166	mg/L	0.10	0.5	0	103	90	110			
Chloride	5.076	mg/L	0.50	5	0	102	90	110			
Nitrogen, Nitrate (As N)	2.565	mg/L	0.10	2.5	ů 0	103	90	110			
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5	0	105	90	110			
Sulfate	10.22	mg/L	0.50	10	õ	102	90	110			
Sample ID: LCS		LCS	0.00		•	Batch ID:	R42834	Analysis D	ate:	12/22/2010	3:34:28 PN
Fluoride	0.5082		0.40	0.5	0	101	90	110			
Chloride	0.5062 4.719	mg/L mg/l	0.10 0.50	0.5 5	0	94.4	90 90	110			
Nitrogen, Nitrate (As N)	2.431	mg/L mg/L	0.30	2.5	õ	97.3	90	110			
Nitrate (As N)+Nitrite (As N)	3.434	mg/L	0.10	3.5	o	98.1	90	110			
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5	Ő	100	90	110			
Sulfate	9.871	mg/L	0.50	10	0	98.7	90	110			
Sample ID: LCS	0.011	LCS	0.00		•	Batch ID:	R42882	Analysis D	ate:	12/27/2010 2	2:55:39 PN
•	0 6040		0.10		0	101	90	110			
Fluoride Chioride	0.5040 4.908	mg/L	0.10 0.50	0.5 5	0 0	98.2	90 90	110			
	4.906 2.520	mg/L mg/l	0.50		0.0208	90.2 100	90 90	110			
litrogen, Nitrate (As N) litrate (As N)+Nitrite (As N)	2.520 3.546	mg/L mg/l	0.10	2.5 3.5	0.0208	100	90 90	110			
Phosphorus, Orthophosphate (As P)		mg/L mg/L	0.20	3.5 5	0	96.4	90 90	110			
Sulfate	4.818 9.990	mg/L	0.50	5 10	0	99.9	90 90	110			
ample ID: 1012701-04AMS	3.330	mg/∟ MS	0.00	10	U	Batch ID:	90 R42834	Analysis D	ate:	12/23/2010 2	24.35 AM
-			• • -		4 666			•	~17.		
luoride	2.007	mg/L	0.10	0.5	1.596	82.0	71.7	114			

Qualifiers:

J

.

E Estimated value

J Analyte detected below quantitation limits

.

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

QA/QC SUMMARY REPORT

	Southwest G Chaco Gas P									Work	Order:	1012701
Analyte		Result	Units	PQL	SPK Val	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimi	Qual
lethod: EPA Met	hod 8016B: D 69	iesel Range	MBLK				Batch ID:	24989	Analysis	a Date:	12/22/2010	9:52:57 PM
Diesel Range Organic Notor Oll Range Orga Jample (D: LCS-240	nics (MRO)	NÐ ND	mg/L mg/L LCS	1.0 5.0		τ	Batch ID:	24969	Analysis	Date:	12/22/2010 1	0:27:05 PM
Diesel Range Organic ample ID: LCSD-2	• •	5.337	mg/L LCSD	1.0	5	0	107 Batch ID:	74 24969	157 Analysis	Date:	12/22/2010 1	1:01:12 PM
iesel Range Organic	s (DRO)	5.348	mg/L	1.0	5	0	107	74	157	0.204	23	
Method: EPA Meth Sample ID: 1012701	nod 8015B: G -09C MSD	asoline Ranj	ge MSD				Batch ID:	R42770	Analysis	Date:	12/20/2010	4:28:15 PM
∃asoline Range Orga Sample ID: 5ML RB		0.5316	mg/L MBLK	0.050	0.5	0	106 Batch ID:	74.6 R42770	134 Analysis	3.80 Date:	17 12/20/2010	9:02:20 AM
asoline Range Organ ample ID: 2.5UG G		ND	mg/L LCS	0.050			Batch iD:	R42770	Analysis	Date:	12/20/2010	4:58:24 PM
Gasoline Range Organ lampte ID: 1012701	• •	0.5428	mg/L MS	0.050	0.5	0	109 Batch ID:	83.7 R42770	124 Analysis	Date:	12/20/2010	3:55:33 PM
lasoline Range Orgai	nics (GRO)	0.5118	mg/L	0.050	0.5	0	102	74.6	134			

Qualifiers:

Ε Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit Н Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

12

Page 2

~

Page 3

QA/QC SUMMARY REPORT

Client:	Southwest Geoscience
Project:	Chaco Gas Plant

Project: Cha	co Gas Plant								Work	Order:	1012701
Analyte	Result	Units	PQL	SPK Val SF	PK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Quał
	8021B: Volatiles			· · · · · · ·							
Sample ID: 1012701-08	C MSD	MSD				Batch ID:	R42770	Analys	is Date:	12/20/2010	5:58:30 PM
Methyl tert-butyl ether (MT	TBE) 18.72	µg/L	2.5	20	0	93.6	55.6	139	0.460	20.9	
Benzene	19.88	µg/L	1.0	20	0	99.4	87.7	108	1.67	13.8	
Toluane	20.32	µg/L	1.0	20	0	102	84.2	115	0.999	17.1	
Ethylbenzene	20.15	µg/L	1.0	20	0	101	81.3	115	1.36	15.3	
Xylenes, Total	62.18	µg/L	2.0	60	0	104	83	118	1.24	13	
1,2,4-Trimethylbenzene	18.53	µg/L	1.0	20	0	92.6	77.1	114	2.91	6.57	
1,3,5-Trimethylbenzene	20.61	µg/L	1.0	20	0	103	88.4	115	1.54	7.92	
Sample ID: 5ML RB		MBLK				Batch ID:	R42770	Analysi	s Date:	12/20/2010	9:02:20 AM
Methyl tert-butyl ether (MT	BE) ND	µg/L	2.5								
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Kylenes, Total	· ND	μg/L	2.0								
1,2,4-Trimethylbenzene	ND	μg/L	1.0								
1,3,5-Trimethylbenzene	ND	µg/L	1.0								
Sample ID: 100NG BTE)	(LCS	LCS				Batch ID:	R42770	Analysi	s Date:	12/20/2010	6:28:37 PM
Methyl tert-butyl ether (MT	BE) 19.26	µg/L	2.5	20	0	96.3	75.5	124			
Senzene	21.24	µg/L	1.0	20	0	106	84.7	118			
loluene	21.67	µg/L	1.0	20	0	108	82	123			
Ethylbenzene	21.39	µg/L	1.0	20	0	107	83	118			
Xylenes, Total	65.41	µg/L	2.0	60	0	109	85.4	119			
i,2,4-Trimethylbenzene	20.23	µg/L	1.0	20	0	101	, 82 .1	113			
1,3,5-Trimethylbenzene	21.87	µg/L	1.0	20	0	109	89.6	119			
Sample ID: 1012701-08C	: MS	- MS				Batch ID:	R42770	Analysis	s Date:	12/20/2010	5:28:24 PM
ethyl tert-butyl ether (MTI	BE) 18.63	µg/L	2.5	20	0	93.2	55.6	139			
anzene	20.21	μg/L	1.0	20	0	101	87.7	108			
oluene	20.52	µg/L	1.0	20	0	103	84,2	115			
Sthylbenzene	20.42	µg/L	1.0	20	0	102	81.3	115			
(ylenes, Total	62.95	µg/L	2.0	60	0,	105	83	118			
2,4-Trimethylbenzene	19.07	µg/L	1.0	20	0	95.4	77.1	1 14			
1,3,5-Trimethylbenzene	20.93	µg/L	1.0	20	0	105	88.4	115			

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

QA/QC SUMMARY REPORT

Client: Southwest Geoscience Project: Chaco Gas Plant

Project: Chaco Gas	Plant				_				Work	Order:	1012701
Analyte	Result	Units	PQL	SPK V	al SPK ref	%Rec L	owLimit H	ighLimit	%RPD	RPDLimi	Qual
Method: EPA 6010B: Total Re	ocoverable M						_				
Sample ID: MB-24935		MBLK				Batch ID:	24935	Analys	s Date:	12/21/2010	3:09:13 PN
Calcium	ND	mg/L	1.0								
Magnesium	ND	mg/L	1.0								
Potassium	ND	mg/L	1.0								
Sodium	ND	mg/L	1.0								
Sample ID: MB-24936		MBLK				Batch ID:	24938	Analys	s Date:	12/23/2010 1	1:45:44 AN
Calcium	ND	mg/L	1.0			×-					
Magnesium	ND	mg/L	1.0								
Potassium	ND	mg/L	1.0								
Sodium	ND	mg/L	1.0								
Sample ID: LCS-24935		LCS				Batch ID:	24935	Analysi	s Date:	12/21/2010	3:12:35 PM
Calcium	49.20	mg/L	1.0	50	0	98.4	80	120			
Magnesium	50.07	mg/L	1.0	50	0.0309	100	80	120			
Potassium	52.68	mg/L	1.0	50	0.2592	105	80	120			
Sodium	49.55	mg/L	1.0	50	0.1008	98.9	80	120			
Sample ID: LCS-24936		LCS				Batch ID:	24936	Analysi	s Date:	12/23/2010 1	1:49:04 AM
Calcium	50.78	mg/L	1.0	50	0	102	80	120			
Magnesium	51.69	mg/L	1.0	50	0	103	80	120			
Potassium	53.71	mg/L	1.0	50	0.0762	107	80	120			
Sodium	50.41	mg/L	1.0	50	0.0339	101	80	120			
Method: SM2540C MOD: Tota	Dissolved S	olida									
Sample ID: 1012701-06AMSD		MSD				Batch ID:	24933	Analysi	s Date:	12/21/2010	2:47 [.] 00 PM
Fotal Dissolved Solids	5980	mg/L	20.0	1000	4955	103	80	120	0.0502	20	
Sample ID: MB-24933		MBLK				Batch ID:	24933	Analysis	·	12/21/2010	2:47:00 PM
Total Dissolved Solids	ND	mg/L	20.0					•			
Sample ID: LCS-24933	116	LCS	20.0			Batch ID:	24933	Analysi	Date:	12/21/2010	2:47:00 PM
Total Dissolved Solids	1010	mg/L	20.0	1000	0	101	80	120			
Sample ID: 1012701-06AMS	1010	MS	20.0	1000	U	Batch ID:	24933	Analysis	Date ^r	12/21/2010	2.47.00 DM
•								•			2.77.VU P1VI
otal Dissolved Solids	5977	mg/L	20.0	1000	4965	102	80	120			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

Page 4

ί.

	Sample	Receipt	Checklist		
Client Name SOUTHWEST GEOSCIENCE			Date Receive	d:	12/17/2010
Work Order Number 1012701			Received by	:: LNM	\sim
Checklist completed by: Muhul	l Cyà	12/	Sample (D in 17/0 Date	abels checked by:	Initials
Matrix:	Carrier name:	FedEx			J
Shipping container/cooler in good condition?		Yes 🗹	No 🗔	Not Present	
Custody seals intact on shipping container/cooler	?	Yes 🗹	/ No 🗆	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗹	ng No 🗆	N/A - 🗹	
Chain of custody present?		Yes 🗹	21 No []		
Chain of custody signed when relinquished and re	ceived?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels?		Yes 🗹			
Samples in proper container/bottle?		Yes 🗹	No 🗔		
Sample containers intact?		Yes 🗹	No 🗔		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗖		
All samples received within holding time?		Yes 🗹	No 🗖		Number of preserved
Water - VOA viais have zero headspace?	No VOA vials subm	nitted 🗌	Yes 🗹		bottles checked for pH:
Water - Preservation labels on bottle and cap mate	ch?	Yes 🗹	No 🗔	N/A	20
Water - pH acceptable upon receipt?	5	Yes 🗹	No 🗔	N/A 🗍	<2>>12 unless noted below.
Container/Temp Blank temperature?		5.8°	<6° C Acceptabl		
COMMENTS:			If given sufficient	time to cool.	
		····· ····			
Client contacted Di	ate contacted:		Perso	on contacted	
Contacted by: Re	egarding:	·			
Comments: Trip Blank					
		IVC S.		1 Cont	
				<u></u>	
				···	و سیست میں ایف روز دیا ہے۔ پر والا پر میں منابع میں والا ہو تھا ہ
Corrective Action					······································
·					

15

										W.	CHAIN OF CUSTODY RECORD
Southwest SGEOSCIENCE Environmental & Hydrogeologic Consultants Office Location <u>Aztec</u> Project Manager K, Surewett Sampler's Name Kylic - KM M. OK	Laboratory: Address: 4 Address: 4 Contact: A Contact: A Phone: 5 PO/SO #: Sampler's gignatur	101 Hou M 8- V Free 5-34 110001	107 7107 num 5-39		Anal Requ	VSIS UESTE VDVVVVV		Northe Turner		And Color	Lab use only Due Date: Temp. of coolers when received (C°): 5\$ 1 2 3 4 5 Pageof
Proj. No. 04/00018 Project Name	x Name Naco Gos Plant			No/Type of Containers			40		3		1012701
Matrix Date Time C G I Identifying	Marks of Sample(s)	on Depth	A A/G 2	50 P/O	80%	S S	2	WS/	L /		Lab Sample ID (Lab Use Only)
W 12/15/10 1420 X MW	-1			3		X	X		\mathbf{X}^{-}		- 1
1 12/15/10/200 1 MW	-2			3		1	1		1		- 7
12/15/10/040 MW	-3			3							- ?
12/15/10 1200 MW	-4			3			\uparrow				- U
12/16/18 1050 MW	1-5			3							- 5
3/14/10 1325 MW	-6			3			-11-				- (0
12/14/18 1448 MM.W.	-7			3	\vdash	╶┼┲╂┼		┼╂┽			
12/15/10 1.520 MW	-86	(2)	NIS	3	X>	c +11			╏╎──		- 8
12/14/10 0900 MW	-9	125	ES -	3	XY	<u>i l</u>		┽╂┼	┨┼──		A A
12/18/10 1010 E M. 11/1	1-10	THE	NS T	3	XX	č J	-	5.			- 10
Turn around time Schormal 25% Rush	•	0% Rush						1 1	•	L!	
Relinguisted by (Signature) Date: Time: Deceived by Signature Date: Time: NOTES: ON TPH Samples NIVOLGIU											
Relinquished by (Signature) Date: Time: Received by: (Signature) Date: Relinquished by (Signature) Date: Time: Received by: (Signature) Date:					Metalo- constracted						
Relinquished by (Signature) Date:		by: (Signature)	Date	e:	Time:	-				
Matrix WW - Wastewater W - Water Container VOA - 40 ml vial A/G - Amber	S - Soil SD - Solid r / Or Glass 1 Liter	L - Liquid 250 ml - Glas	A - Air Bag s wide mour		- Charco /O - Plast	al tube ic or othe	SL - s	ludge	0-0	Da	

SOUTHWEST GEOSCIENCE • 2351 W. Northwest Hwy., Suite 3321 • Dallas, Texas 75220 • Office: 214-350-5469 • Fax 214-350-2914