AP - 111

Facility-Wide GW Monitoring Work Plan- Updates

GALLUP

Certified Return Receipt: 7012 2920 0000 7606 4367

July 26, 2016

Mr. John Kieling, Chief NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg 1 Santa Fe, NM 87505-6303

> RE: Approval with Modifications, Annual Facility Wide Ground Water Monitoring Report: Gallup Refinery - 2013
> EPA ID # NMD000333211, HWB-WRG-14-006

WNR

Dear Mr. Kieling:

Western Refining, Gallup Refinery has prepared the following responses to the comments in your letter of May 18, 2016 regarding the above referenced report.

Comment 6

On Page 60 the Permittee reports that the analytical results for EP-2 inlet state that benzene was detected at 0.033 mg/L and DRO detected at 2.3 mg/L. The level of benzene reported for the EP-2 inlet should be non-detect since this water has been through both the waste water treatment plant and aerated in STP-1. There appears to be either a source for the benzene that bypasses the treatment system or the treatment system is not effectively treating the waste water. The Permittee must sample the EP-2 inlet on a quarterly basis to monitor the level of benzene being discharged from STP-1 to EP-2. In addition, the Permittee must provide NMED with information regarding any issues with the waste water treatment plant and STP-1 in the response letter. The Permittee revised Table 1 to require annual sampling of the inlet to STP-1 (previously, the pond inlets were sampled quarterly). The EP-2 inlet was sampled twice in 2013 and only one laboratory report is presented in the Report. In the response letter explain why the inlet sampling was modified to annual sampling and explain why EP-2 inlet was sampled twice but only one of the samples was sent to the analytical laboratory. No revision to the Report is required.

Response:

There is no indication of any RCRA listed hazardous waste or RCRA hazardous characteristics in the waste water being discharged from STP-1.

I-40 Exit 39, Jamestown, NM 87347 • 505 722-3833 • <u>www.wnr.com</u> Mail: 92 Giant Crossing Road, Gallup, NM 87301

- The Waste Water Treatment system is in compliance with the conditions set forth in USEPA Docket No. RCRA-06-2009-0936, Compliant and Consent Agreement and Final Order (CAFO), filed September 1, 2010; Item J.
- Inlets to aeration lagoon 1, aeration lagoon 2 and Pond 1 were previously on a quarterly sampling schedule. In 2012 the aeration lagoons were taken out of service due to the startup of the Waste Water Treatment Plant (WWTP) and all flow was diverted into the new unit bypassing the lagoons. Pond 2 inlet at the time was receiving flow from Pond 1 and with the lagoon closure and startup of the WWTP, Pond 2 was now receiving flow from STP-1, therefore the sampling site name was changed to "STP-1 to EP-2" and sampling from this site began in August 2012. Sample frequency has always been on an annual basis
- There was only one sample collected on 9/5/2013 (Hall Report #1309181) from sample site STP-1 to EP-2. It is possible that two samples collected from sample site BW to EP-2 (5/28/13 and 10/15/13) were mistaken for EP-2 inlet.

Comment 9

Appendix A, Separate Phase Hydrocarbons, "Year to Date Hydrocarbon Recovery Logs" RW-5 and RW-6 demonstrate decreasing amounts of product thickness while RW-1 demonstrated decreasing thickness in 2010 and 2011. However RW-1 now displays increasing levels of SPH (SPH level went from 0.53 ft, 0.39 ft, to 1.54 ft for the last several sampling events listed in the Appendix A table). The Permittee must address the apparent continued movement of the SPH plume and provide NMED and OCD with data regarding the tank farm and any inspections to address potential leaking tanks that may be contributing to increasing SPH levels in RW-1. The Permittee has an approved Work Plan for investigation at OW-14 that may address some issues in the tank farm area. Additionally, it appears that the reported product thicknesses for RW-1 in 2005 and 2008 are errors reported at 25.9 ft and 18 ft of measured product thickness respectively. Revise the table to address these errors.

Response: Response: As noted by NMED, an Investigation Work Plan for the OW-14 Source Area, which includes the area near RW-1 and T-572, was recently approved by NMED. Western will address the SPH levels measured in RW-1 in the OW-14 Source Area Investigation Report, which will be prepared based on new information obtained during the upcoming investigation of the area near RW-1. Gallup implements routine inspection of tanks. Records were reviewed for tanks near RW-1. External and internal tank inspections were conducted in October 2015 for T-572 and June 2015 for T-571 and internal tank bottom inspections revealed no penetrations or potential for leaks. External and internal inspections were conducted on T-570 in March 2015 revealing no potential leaks. Six inch diameter sections from the four floor quadrants were removed and no LELs or stained soil was noted. External inspections of T-716 and T-569 were conducted in 2014 and were found in good condition.

The Year to Date table reflects the total for each year. RW-1 (2005) YTD totals are correctly stated at 25.9 feet and 18 feet for 2008. No corrections required on this table in Appendix A.

The Year to Date table reflects the total for each year. RW-1 (2005) YTD totals are correctly stated at 25.9 feet and 18 feet for 2008. No corrections required on this table in Appendix A.

Comment 12

In Section 9 (Well Data DTW/DTB Measurements) there appear to be errors in the table presented in this section. See below:

- a. OW-1 is reported with DTW of 0.0ft on 11/11/2013.
- b. OW-10 is reported with DTW of 0.0ft on 11/11/2013. OW-10 also appears to have greatly fluctuating ground water measurements per quarter: 3.8 ft, 8.0 ft, 0.92 ft, 0 ft, respectively.
- c. The table reports GWM-3 as "dry" for all quarters of 2013, but the log in Appendix C indicated the 1Q depth to ground water measurement was 4.85 ft.
- d. The MKTF wells have fairly large fluctuations in reported DTW and ground water elevations. For example MKTF-01 from 2nd to 3rd quarter ground water elevation reported as 6913.23 ft and 6909.09 ft, respectively.

Revise the Section 9 table to accurately report field measurements. Also, explain any discrepancies in the response letter.

Response:

- a) Reported level of "0.0 ft" in OW-1 for depth to water indicates that the casing was full and no measurement was attainable. In future reports, an explanation of "0.0ft" is included in the definitions.
- b) OW-10 fluctuating levels in the aquifer may be affected by seasonal precipitation.
- c) This was a typo error, as technician used a pre-populated sheet and did not delete previous entry. (Section 9 Table attached)
- *d)* Fluctuating levels may be attributed to seasonal precipitation affecting the water table.

Comment 13

There appears to be an error in Section 10, Table 1, where the last row reads "[a]II wells including Recovery Wells." As per a discussion related to financial assurance, it is not clear where this requirement came from; therefore, remove the statement from Table 1 in future work plans and reports.

Response: The statement will be removed from all future tables and this item was addressed in Western's response to NMED on April 21, 2016.

Comment 14

Figure 8(S-N Section Westerly Plant Area) does not correlate to the information provided in Figure 6. For example, wells OW-05 and OW-03 and OW-24 are not shown on Figure 6. Provide updated figures that show the locations of all ground water monitoring wells. If the wells have been abandoned, note this on the figures. Where appropriate, provide replacement figures with the response letter.

Response: Figure 6 and Figure 8 have been revised with an explanation that wells OW-05, OW-03 and OW-24 are abandoned/closed wells and were only used for cross section lithology reference points only. (Revised Figures 6 and 8 attached)

Comment 15

The Permittee must provide NMED and OCD with documentation of repairs to the NAPIS to demonstrate that the leaks evident from the sampling of the east and west LDUs have been addressed. Provide this information with the response letter. No revision to the Report is required.

Response:

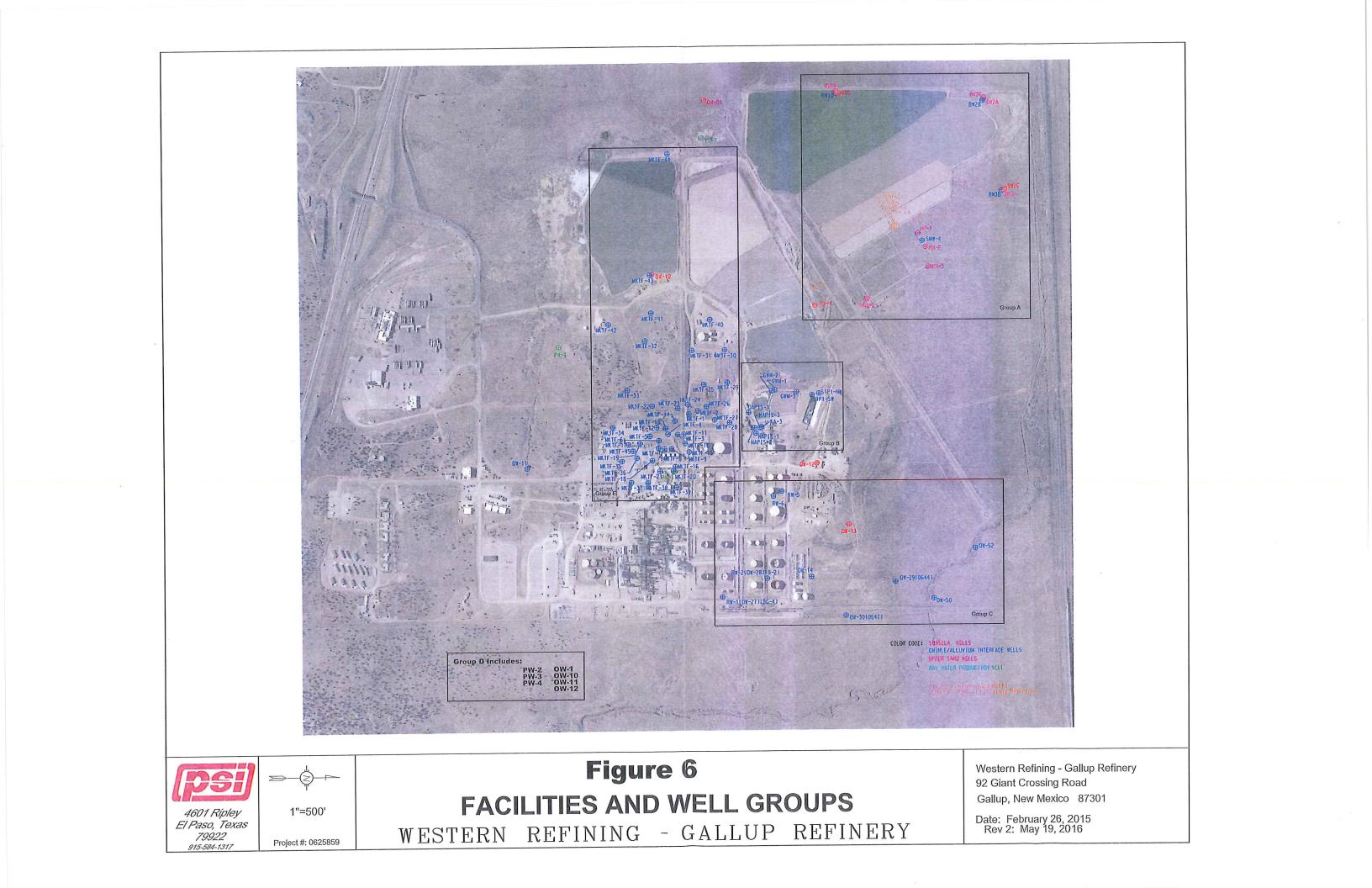
- Repairs to the NAPIS unit was addressed in Western's response to NMED on August 8, 2014, Disapproval, 2011 Facility Wide Ground water Monitoring Report and 2012 Facility Wide Ground Water Monitoring Report (attached). Repairs were made to the west bay with a plate installation in June 2014. The east bay was taken out of service in July 2014 and repairs were made. Both bays were hydro-tested before being placed back in service and showed no signs of leakage.
- Other repairs over the last two years have included calibration of bay level indicators and skimmer repair.
- Recent water column measurements on the west LDU indicate that the bay is leaking into the LDU. The east LDU also contains water but it has been out of service for the past year. Plans are to inspect the east bay, place it back into service and then take the west bay out of service for inspection. The LDUs are pumped out every few months and the maximum recharge to the LDUs takes place over a few weeks following water removal.
- The oil sump LDU continues to show no signs of leakage.

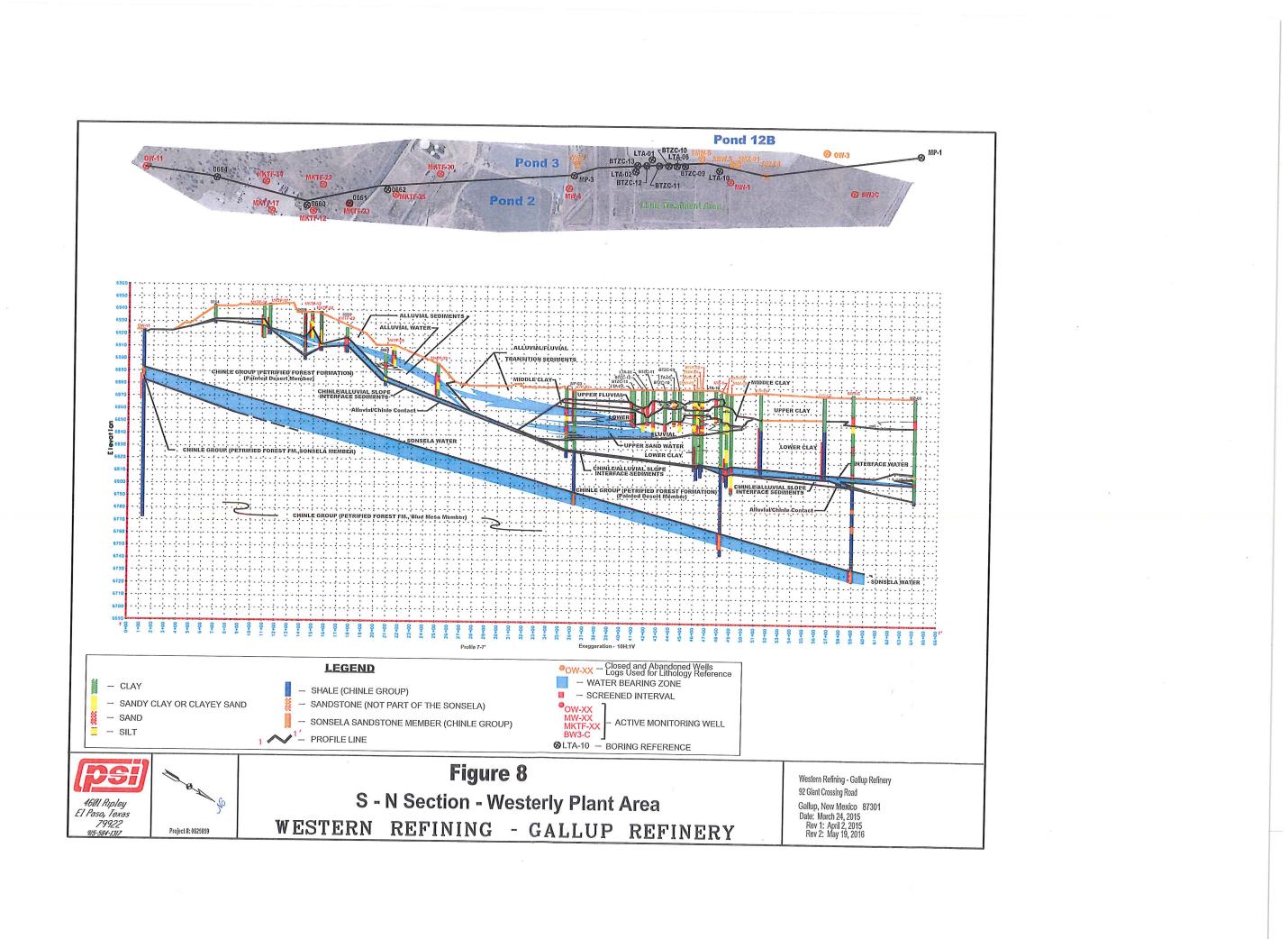
If there are any questions regarding Western's response, please contact Mr. Ed Riege (505) 722-0217.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Daniel J. Statile


Ed Riege, Remediation Manager


cc: K. Van Horn, NMED HWB w/attachment C. Chavez, NM-OCD w/attachment E Riege, Western

ATTACHMENTS

SECTION 9.1 2013 WELL DATA DTB/DTW MEASUREMENTS - Continued

Date of Installation	Well ID Number	Inspection or Sample Date	Casing Diameter (Inch)	2011 Survey ¹ Ground Level Elevations (ft)	2011 Survey ¹ Well Casing Rim Elevations (ft)	2011 Survey ¹ Ground Elevation Inside Steel Sleeve (ft)	Stick-up length (ft)	2011 Survey ¹ Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	Depth to SPH (ft)	SPH ² Column Thickness (ft)	Depth to Water (ft)	Ground water Elevation ³ (ft)	Corrected Water Table ⁴ Elevation (factor 0.8) (ft)	Screened Interval Depth Top to Bottom (ft)	2012 Stratigraphic unit in which screen exists	Purge Volume = 3 Well Vol (gal)
11/10/2003	BW-1A	9/3/2013	2.00	6,874.10	6,876.68	6,872.30	2.58	6,839.06	37.62	N/A	N/A	DRY	DRY	N/A	30 - 35	Upper Sand	N/A
10/28/2003	BW-1B	9/3/2013	2.00	6,874.13	6,876.94	6,876.26	2.81	6,809.49	67.45	N/A	N/A	DRY	DRY	N/A	54.6 - 64.6	Chinle/Alluvium Interface	N/A
11/10/2003	BW-1C	9/3/2013	2.00	6,873.95	6,876.78	6,872.28	2.83	6,740.39	136.39	N/A	N/A	6.69	6,867.26	N/A	125 -135	Sonsela	63.37
11/10/2003	BW-2A	9/3/2013	2.00	6,871.88	6,874.69	6,870.45	2.81	6,807.12	67.57	N/A	N/A	32.09	6,839.79	N/A	55 - 65	Upper Sand	17.35
10/28/2003	BW-2B	9/3/2013	2.00	6,871.66	6,874.50	6,870.06	2.84	6,782.24	92.26	N/A	N/A	27.92	6,843.74	N/A	80 - 90	Chinle/Alluvium Interface	45.12
10/28/2003	BW-2C	9/3/2013	2.00	6,872.90	6,875.30	6,872.02	2.40	6,722.46	152.84	N/A	N/A	20.39	6,852.51	N/A	139.5 - 149.5	Sonsela	64.77
6/15/2004	BW-3A	9/3/2013	2.00	6,875.94	6,878.39	6,875.08	2.45	6,826.04	52.35	N/A	N/A	DRY	DRY	N/A	39.5 - 49.5	Upper Sand	N/A
10/15/2003	BW-3B	9/3/2013	2.00	6,876.16	6,878.59	6,875.41	2.43	6,809.19	69.40	N/A	N/A	33.01	6,843.15	N/A	63 - 73	Chinle/Alluvium Interface	17.79
7/20/2004	BW-3C	9/3/2013	2.00	6,875.72	6,877.95	6,875.27	2.23	6,723.40	154.55	N/A	N/A	8.15	6,867.57	N/A	144.5 - 154.5	Sonsela	71.59
9/25/1981	0W-11	9/3/2013	4.00	6,922.05	6,923.51	6,921.80	1.46	6,857.72	65.79	N/A	N/A	20.68	6,901.37	N/A	43 - 65	Sonsela	100.14
12/15/1980	0W-11 0W-12	9/3/2013	4.00	6,939.57	6,940.69	6,939.04	1.12	6,811.84	128.85	N/A	N/A	47.80	6,891.77	N/A 117.8 - 137.8		Sonsela	179.93
10/14/1981	MW-1	9/3/2013	5.00	6,876.63	6,878.12	6,876.79	1.49	6,747.29	130.83	N/A	N/A	7.13	6,869.50	N/A	117.72 - 127.72	Sonsela	378.52
10/15/1981	MW-2	9/3/2013	5.00	6,878.39	6,880.30	6,878.41	1.91	6,742.82	137.48	N/A	N/A	9.44	6,868.95	N/A	112 - 122	Sonsela	391.8
	MW-4	9/3/2013	5.00	6,879.89	6,881.63	6,879.34	1.74	6,759.91	121.72	N/A	N/A	7.70	6,872.19	N/A	101 - 121	Sonsela	348.9
10/16/1981	MW-5	9/3/2013	4.00	6,880.20	6,882.83	6,881.77	2.63	6,752.00	130.83	N/A	N/A	11.49	6,868.71	N/A	115 - 125	Sonsela	365.18
7/21/1986	SMW-2	9/3/2013	2.00	6,881.63	6,883.97	6,879.07	2.34	6,831.17	52.80	N/A	N/A	25.34	6,856.29	N/A	34.31 - 54.31	Chinle/Alluvium and Upper Sand	13.43
9/26/1985	Carrier	9/3/2013	2.00	6,877.63	6,879.52	6,875.72	1.89	6,809.84	69.68	N/A	N/A	29.24	6,848.39	N/A	51.7 - 71.7	Chinle/Alluvium Interface	19.78
9/25/1985	SMW-4		2.00	6,912.63	6,914.21	6,911.46	1.58	6,850.21	64.00	N/A	N/A	15.97	6,896.66	N/A	48 - 63	Chinle/Alluvium Interface	23.49
10/5/2009	OW-50	9/3/2013	2.00	6,906.53	6,907.68	6,905.31	1.15	6,829.94	77.74	N/A	N/A	17.02	6,889.51	N/A	64 - 79	Chinle/Alluvium Interface	29.69
10/5/2009	OW-52	9/3/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	1.40	6,864.92	N/A	89.3 - 99.3	Sonsela	177.7
1/5/1981	OW-1	3/19/2013		6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	2.13	6,864.19	N/A	89.3 - 99.3	Sonsela	177.7
		6/12/2013	4.00		6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	0.92	6,865.40	N/A	89.3 - 99.3	Sonsela	182.58
		9/3/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	0.00	6,866.32	N/A	89.3 - 99.3	Sonsela	184.37
		11/11/2013	4.00	6,866.32	6,874.91	6,872.59	1.24	6,814.58	60.33	N/A	N/A	3.80	6,869.87	N/A	40 - 60	Sonslea	125.5
11/25/1980	OW-10	3/19/2013	4.00	6,873.67		6,872.59	1.24	6,814.58	60.33	N/A	N/A	8.00	6,865.67	N/A	40 - 60	Sonsela	116.7
		6/13/2013	4.00	6,873.67	6,874.91		1.24	6,814.58	60.33	N/A	N/A	0.92	6,872.75	N/A	40 - 60	Sonsela	131.89
		9/3/2013	4.00	6,873.67	6,874.91	6,872.59	1.24	0,014.30	00.55								

Certified Mail #7013 0600 0001 0294 8436

August 8, 2014

Mr. John E. Kieling, Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg 1 Santa Fe, New México 87505-6303

RE: DISAPPROVAL, 2011 FACILITY WIDE GROUNDWATER MONITORING REPORT AND 2012 FACILITY WIDE GROUNDWATER MONITORING REPORT WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-12-003 and HWB-WRG-13-003 WNR Ioesoide NYSE

Dear Mr. Kieling:

This letter was prepared pursuant to your letter dated May 12, 2014, specifically regarding comment 14 below.

NMED Comment 14

Section 6.3.4 (Leak Detection Units (LDU): East LDU, West LDU, Oil Sump LDU). In Section 7.2 (West Side Ground Water Monitoring) the permittee states, "[a]lso located at the NAPIS are three leak detection units which are inspected and if fluids are detected, samples are collected on a quarterly basis. All three leak detection units continue to have a fluid level." The paragraph goes on, "[q]uarterly analysis of fluid collected from these units and the continued presence of fluid indicate the potential that the fluid may be coming from the NAPIS." The permittee addressed this issue in a letter to NMED dated August 5, 2013 and are using a vacuum truck to remove water which is still present in the LDUs. The permittee must repair the leaks in the NAPIS unit within 90 days of receipt of this letter.

Response

The west bay was repaired with a plate installation in June. The bay was hydro-tested with florescent dye and no leaks were observed. The west LDU and Oil sump LDU were checked and showed no signs of leakage. The west bay was placed back into service on July 8, 2014. The west LDU and oil sump LDU were again checked on August 6, 2014 and continue to show no signs of leakage.

The east bay was taken out of service on July 22, 2014. Cleaning and repair of this unit are underway which could take another couple weeks. After repairs are made, the east bay will be hydro-tested and the east LDU checked to assure there are no leaks before placing this bay back into service.

If there are any questions regarding this response, please contact Mr. Ed Riege at (505) 722-0217.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, /RMCDONDE for Billy McChand

Mr. Billy McClain Refinery Manager Western Refining Southwest, Inc. – Gallup Refinery

cc D. Cobrain NMED HWB email N. Dhawan, NMED email K. Van Horn, NMED email C. Chavez, OCD email

Chavez, Carl J, EMNRD

From:	VanHorn, Kristen, NMENV
Sent:	Wednesday, May 18, 2016 9:02 AM
То:	Riege, Ed
Cc:	Hains, Allen (Allen.Hains@wnr.com); Johnson, Cheryl (Cheryl.Johnson@wnr.com);
	king.laurie@epa.gov; Cobrain, Dave, NMENV; Dhawan, Neelam, NMENV; Chavez, Carl J,
	EMNRD
Subject:	RE: Approval with Modifications 2013 Faciility-wide Groundwater Monitoring Report
Attachments:	ApprwMods_2013FWGWM_Report(May2016).pdf
Cc: Subject:	Hains, Allen (Allen.Hains@wnr.com); Johnson, Cheryl (Cheryl.Johnson@wnr.com); king.laurie@epa.gov; Cobrain, Dave, NMENV; Dhawan, Neelam, NMENV; Chavez, Carl J, EMNRD RE: Approval with Modifications 2013 Faciility-wide Groundwater Monitoring Report

Thanks, Ed. I forgot it.

From: VanHorn, Kristen, NMENV
Sent: Wednesday, May 18, 2016 8:38 AM
To: Riege, Ed
Cc: Hains, Allen (Allen.Hains@wnr.com); Johnson, Cheryl (Cheryl.Johnson@wnr.com); king.laurie@epa.gov; Cobrain, Dave, NMENV; Dhawan, Neelam, NMENV; Chavez, Carl J, EMNRD
Subject: Approval with Modifications 2013 Faciility-wide Groundwater Monitoring Report

Hi Ed,

Attached is the Approval with Modifications letter for the 2013 Facility Wide Groundwater Monitoring Report. We spoke about the submittal schedule at the end of the letter on the phone the other day.

The 2013 Report was presented very well, thank you.

Call or email me if you have any questions, Kristen

Kristen Van Horn

NMED Hazardous Waste Bureau 2905 Rodeo Park Drive East Building 1 Santa Fe, NM 87505 Phone: 505-476-6046 Email: <u>Kristen.VanHorn@state.nm.us</u>

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary

CERTIFIED MAIL – RETURN RECEIPT REQUESTED

May 18, 2016

Mr. Ed Riege Environmental Manager Western Refining Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: APPROVAL WITH MODIFICATIONS ANNUAL FACILITY-WIDE GROUND WATER MONITORING REPORT: GALLUP REFINERY – 2013 WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-14-006

Dear Mr. Riege:

The New Mexico Environment Department (NMED) has reviewed the revised Annual Ground Water Monitoring Report: Gallup Refinery – 2013 (Report), dated August 2014 submitted on behalf of Western Refining Southwest, Inc. Gallup Refinery (the Permittee). NMED hereby issues this Approval with Modifications. The Permittee must address the following comments provided by both NMED and the New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division (OCD):

Comment 1

The Permittee has been including analysis of uranium in groundwater samples per an NMED comment in the December 12, 2012 *Approval with Modifications for the 2010 Facility-Wide Groundwater Monitoring Report*. While some crude oil may contain uranium, the refinery is likely not a source of uranium in groundwater. The Permittee may discontinue the analysis of uranium in groundwater samples. The Permittee must propose this change in the updated Facility-Wide Groundwater Monitoring Work Plan. No revision to the Report is necessary.

Comment 2

Groundwater analytical results for monitoring well OAPIS-1 demonstrate that "[b]enzene and [Methyl tert-butyl ether] MTBE have exceeded applicable standards in all four quarters of 2013 as well as chloride and [diesel range organics] DRO. High concentrations of arsenic, iron, manganese, uranium and cyanide were also detected in OAPIS-1. Only one organic compound, 1-Methylnaphthalene was detected in the first and fourth quarter of 2013." DRO levels appear to be increasing in OAPIS-1 from 1Q at 6.0 mg/L to 4Q at 23 mg/L. Benzene results are reported as increasing from 1Q to 4Q as well (1Q at 0.027 mg/L to 4Q at 0.089 mg/L). MTBE results remained fairly consistent throughout the year (1Q-4Q: 0.42 mg/L, 0.51 mg/L, 0.42 mg/L, and 0.43 mg/L). The above-referenced groundwater monitoring results indicate that there may be contaminant migration in the area of OAPIS-1; therefore, the Permittee must continue quarterly monitoring of OAPIS-1. A work plan for additional investigation at SWMU 1 and SWMU 14 is pending NMED review; additional groundwater investigation associated with the work plan may be required.

Comment 3

On page 7 the Permittee states that the, "2013 sampling results for PW-4 indicate no detectable concentration levels of [benzene, toluene, ethylbenzene, xylenes] BTEX and MTBE. Iron was detected above the applicable standard and low concentrations of three [volatile organic compound] VOCs (1,2-4-Trimethylbenzene, 1,3,5-Trimethylbenzene and n-Propylbenzene) were detected in 2013." Currently, PW-4 is scheduled for sampling every 3 years; however, because VOCs were detected for the first time in 2013 the Permittee must sample PW-4 during the next scheduled sampling event and then semi-annually thereafter in order to collect additional data. Please revise the Facility-Wide Groundwater Monitoring Work Plan as necessary. No revision to the Report is required.

Comment 4

Regarding the analytical results for OW-10, the Permittee states that a, "[I]ow concentration of MTBE has been detected in OW-10 since 2010 and gradually increasing over time. In the first and second quarter of 2013, MTBE exceeded the NMED Tap Water screening level of 0.125 mg/L. Uranium has also been detected in OW-10 at levels exceeding the WQCC standard of 0.03 mg/L since 2010. Low concentrations of three organic compounds (1,1-Dichloroethane, 1,2-Dichloroethane (EDC), and 1,1-Dichloroethane) have been detected in fourth quarter of 2012, and in the first quarter of 2013 in OW-10." Since EDC is a lead scavenger, the Permittee must add analysis for 1,2-Dibromoethane (EDB) in all monitoring wells where EDC has been detected; this change must be incorporated into the updated Facility-Wide Groundwater Monitoring Work Plan. The Permittee must use an analytical method capable of detecting EDB at concentrations less than 0.004 micrograms per liter (e.g., EPA Method 8011). Additionally, EDC was detected in OW-29 in 2008 and in OW-30 in 2007. Since MTBE is increasing over time, OW-10 is likely detecting the leading edge of a contaminant plume. The data reported in Section 8.12 demonstrates that there was a spike in MTBE from 3/22/2012 through 9/4/2013.

The nearest downgradient well is OW-1. Currently, OW-1 is checked for water and if water is present it is sampled and analyzed for major cations and anions, VOC, DRO extended/gasoline range organics (GRO), and Water Quality Control Commission (WQCC) metals. The Permittee must include MTBE, EDC and EDB starting with the next round of quarterly sampling. Update the Facility-wide Groundwater Monitoring Plan as necessary. See also Comment 8. No revision to the Report is required.

Comment 5

In Section 6.2.2, NAPIS-1, NAPIS-2, NAPIS-3, KA-3, page 39 the Permittee states, "[d]uring quarterly inspections upon removing the cover, standing water was observed inside the vault of each well. The standing water was removed from each well and placed inside a container for proper disposal before well cap was removed to continue with quarterly sampling." This is the second time standing water was reported for the NAPIS wells. No later than September 30, 2016, the Permittee must repair the vault seals to ensure that surface water is prevented from entering the wells. No revision to the Report is required.

Comment 6

On page 60 the Permittee reports that the analytical results for EP-2 inlet state that benzene was detected at 0.033 mg/l and DRO detected at 2.3 mg/L. The level of benzene reported for the EP-2 inlet should be non-detect since this water has been through both the wastewater treatment plant and aerated in STP-1. There appears to be either a source for the benzene that bypasses the treatment system or the treatment system is not effectively treating the wastewater. The Permittee must sample the EP-2 inlet on a quarterly basis to monitor the level of benzene being discharged from STP-1 to EP-2. In addition, the Permittee must provide NMED with information regarding any issues with the wastewater treatment plant and STP-1 in the response letter. The Permittee revised Table 1 to require annual sampling of the inlet to EP-2 (previously, the pond inlets were sampled quarterly). The EP-2 inlet was sampled twice in 2013 and only one laboratory report is presented in the Report. In the response letter explain why the inlet sampling was modified to annual sampling and explain why EP-2 inlet was sampled twice but only one of the samples was sent to the analytical laboratory. No revision to the Report is required.

Comment 7

In Section 6.6, ADDITIONAL SAMPLING AND/OR CHANGES, page 63 the Permittee states, "[a] request was also made in the 2011 Work Plan Updates to change analytical sampling method 8021B to 8260B for a more detailed list of VOCs in GWM-2 and GWM-3 which may help in determining the source of the water found in these wells, (Pending approval from NMED)." NMED approved this request in the July 24, 2015 Approval with Modifications letter. No revision necessary.

Comment 8

In Section 7.4, GROUP D GROUND WATER MONITORING, page 70, the Permittee states, "OW-1 is an artesian well located on the west section of the refinery property. OW-1 is a relatively clean well. The only contaminant that has exceeded the WQCC standard since 2010 is uranium which is a naturally occurring element found in rock, soil and water. This particular well may require repair and/or re-location as the concrete base on this well has deep cracks. RECOMMENDATIONS: Continue with inspections/sampling plan. Replace and/or repair well." The Permittee must prepare a work plan for installation of a replacement well and propose to properly abandon OW-1. Additionally, because OW-1 is the only well downgradient from OW-10 (see also Comment 4) the Permittee must propose to install additional groundwater monitoring wells to track and delineate contaminant migration. No revision to the Report is necessary.

Comment 9

Appendix A, Separate Phase Hydrocarbons, "Year to Date Hydrocarbon Recovery Logs" RW-5 and RW-6 demonstrate decreasing amounts of product thickness while RW-1 demonstrated decreasing thickness in 2010 and 2011. However RW-1 now displays increasing levels of SPH (the SPH level went from 0.53ft, 0.39 ft, to 1.54 ft for the last several sampling events listed in the Appendix A table). The Permittee must address the apparent continued movement of the SPH plume and provide NMED and OCD with data regarding the tank farm and any inspections to address potential leaking tanks that may be contributing to increasing SPH levels in RW-1. The Permittee has an approved Work Plan for investigation at OW-14 that may address some issues in the tank farm area. Additionally, it appears that the reported product thicknesses for RW-1 in 2005 and 2008 are errors reported at 25.9 ft and 18 ft of measured product thickness, respectively. Revise the table to address these errors.

Comment 10

In Section 6.3.1, OW-13, OW-14, OW-29, OW-30, page 45, the Permittee discusses OW-29 and OW-30. MTBE concentrations are increasing in these wells. OW-29 and OW-30 are located on the northwest section of the facility. There are two downgradient wells (OW-50 and OW-52) however, it is not clear that those wells are effectively monitoring groundwater movement in relation to the locations of OW-29 and OW-30. On page 18 the Permittee states, "[s]hallow ground water located under refinery property generally flows along the upper contact of the Chinle Formation. Although the prevailing flow direction is from the southeast and toward the northwest; a subsurface ridge has been identified and is thought to deflect some flow in a northeasterly direction in the vicinity of the refinery tank farm." Figure 10 (Chinle GP/Alluvium Interface) also depicts groundwater movement. In Section 7.3, GROUP C GROUND WATER MONITORING, on page 58, the Permittee confirms this stating,

"[d]own gradient from OW-14 is OW-29, and OW-30 and the analytical data from both of these wells indicates that MTBE is present in the ground water at concentration levels

> exceeding the NMED Tap Water standard of 0.125 mg/L since March of 2010 in OW-29 and December 2007 in OW-30. Analytical data for these four wells indicate a steady increase of MTBE concentration levels indicating that the MTBE plume is slowly migrating in a north, north-west direction down-gradient from RW-1 and RW-2. The stratigraphic units in which these wells exist are in what is known as the Chinle/Alluvium Interface. RECOMMENDATIONS: Continue with current sample schedule. MTBE plume is present between OW-13, OW-14, OW-29 and OW-30 and analytical data indicates a very slight increase in concentration levels over time. It was suspected that the migration of the MTBE plume may be in a northeast direction. As a result OW-50 and OW-52 were installed down gradient from these wells. After three years of sampling no contaminants have been detected in the ground water collected quarterly from these wells. It is possible that the MTBE plume may be migrating in a north northwest direction from OW-29 following the natural formation of the Chinle-Alluvium interface. Analytical data indicates that MTBE concentrations have been slowly increasing from year to year in OW-29 as well as OW-30."

Since OW-50 and OW-52 do not intersect contaminant migration in this area, the Permittee must submit a work plan to propose to install additional groundwater monitoring wells to the northnorthwest of OW-30 to capture the plume path and demonstrate that the plume is not migrating off-site. No revision to the Report is required.

Comment 11

Appendix F (MKTF 1-18 – Survey, Boring Logs, Analytical Data) will be reviewed as part of the Permittee's *Hydrocarbon Seep Interim Measures Report*, dated July 2015. Continue to monitor and report on the MKTF wells in the Facility-wide Groundwater Monitoring Report. No revision necessary.

Comment 12

In Section 9 (Well Data DTW/DTB Measurements) there appear to be errors in the table presented in this section. See below:

- **a.** OW-1 is reported with DTW of 0.0ft on 11/11/2013.
- **b.** OW-10 is reported with DTW of 0.0ft on 11/11/2013. OW-10 also appears to have greatly fluctuating groundwater measurements per quarter: 3.8 ft, 8.0 ft, 0.92 ft, 0 ft, respectively.
- c. The table reports GWM-3 as "DRY" for all quarters of 2013, but the log in Appendix C indicated the 1Q depth to groundwater measurement was 4.85 ft.
- **d.** The MKTF wells have fairly large fluctuations in reported DTW and groundwater elevations. For example MKTF-01 from 2nd to 3rd quarter groundwater elevation reported as 6913.23 ft and 6909.09 ft, respectively.

Revise the Section 9 table to accurately report field measurements. Also, explain any discrepancies in the response letter.

Comment 13

There appears to be an error in Section 10, Table 1, where the last row reads "[a]ll wells including Recovery Wells." As per a discussion related to financial assurance, it is not clear where this requirement came from; therefore, remove the statement from Table 1 in future work plans and reports.

Comment 14

Figure 8 (S-N Section Westerly Plant Area) does not correlate to the information provided in Figure 6. For example, wells OW-05 and OW-03 and OW-24 are not shown on Figure 6. Provide updated figures that show the locations of all groundwater monitoring wells. If the wells have been abandoned, note this on the figures. Where appropriate, provide replacement figures with the response letter.

Comment 15

The Permittee must provide NMED and OCD with documentation of repairs to the NAPIS to demonstrate that the leaks evident from the sampling of the east and west LDUs have been addressed. Provide this information with the response letter. No revision to the Report is required.

Comment 16

Appendix H (Summary of Leaks, Spills, and Releases) contains C141 forms submitted to NMED and OCD regarding releases. The Permittee must include more specific information with these forms for future releases. For instance, the latitude and longitude provided are for the location of the Refinery; however, this information is not specific enough to determine where, within the refinery property, the release occurred. Since it is difficult to provide this information with the latitude and longitude, in all future spill reports, the Permittee must submit a figure with the C141 form that demonstrates where the release occurred.

The Permittee must address all of these comments in a response letter (specifically Comments 5, 7 and 13) and provide revised tables for Section 9 and Appendix A. The response letter and revised tables must be submitted to NMED by **August 8, 2016**.

To summarize the required changes to the Facility-wide Groundwater Monitoring Work Plan:

- The Permittee must sample PW-4 during the next scheduled sampling event and then semi-annually thereafter.
- Since EDC is a lead scavenger, the Permittee must add analysis for 1,2-Dibromoethane (EDB) in all monitoring wells where EDC has been detected.

- The Permittee must include analysis for MTBE, EDC and EDB at OW-1 starting with the next round of quarterly sampling.
- The Permittee must sample the EP-2 inlet on a quarterly basis.
- The Permittee may discontinue analysis for uranium in all wells.
- The Permittee must edit Table 1 to remove the statement "[a]ll wells including Recovery Wells."

The Permittee must submit work plans and/or additional information for the following:

- The Permittee must prepare a work plan for installation of a replacement well and propose to properly abandon OW-1. Additionally, the Permittee must submit a work plan to propose additional wells downgradient of the Evaporation Ponds per OCD's requirement, see Comment 8. The work plan must be submitted by November 1, 2016.
- The Permittee must submit a work plan to propose to install additional groundwater monitoring wells to the north-northwest of OW-30. The work plan must be submitted by September 1, 2016.

If you have questions regarding this Approval with Modifications, please contact Kristen Van Horn of my staff at 505-476-6046.

Sincerely, John E. Kieling Chief Hazardous Waste Bureau

- cc: D. Cobrain NMED HWB N. Dhawan NMED HWB K. Van Horn NMED HWB C. Chavez OCD A. Hains WRG C. Johnson WRG L. King EPA Region 6
- File: Reading File and WRG 2016 File HWB-WRG-14-006

RECENCED OCD

Certified Return Receipt: #7011 2970 0003 9281 8138

711年 15日 -7 户 2:11

March 31, 2014

Mr. John E. Kieling, Chief NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg 1 Santa Fe, NM 87505-6303

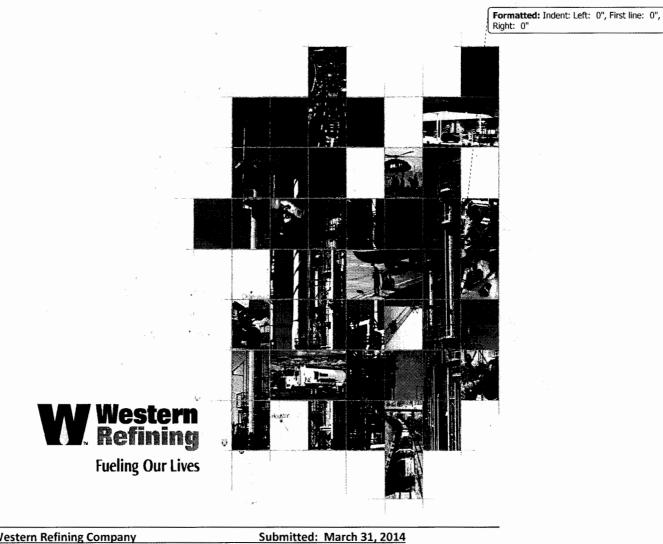
> Re: 2013 Annual update to Site-Wide Ground Water Monitoring Work Plan Western Refining Company Southwest Inc., Gallup Refinery

Dear Mr. Kieling:

Enclosed are the 2013 annual updates to the Site-Wide Ground Water Monitoring Work Plan. A redline version is also attached indicating changes made as well as sent electronically. The following changes were made in the work plan.

- Cover Page and Page ii Submittal dates.
- Page iii Refinery Manager
- Page v updated pages in the Table of Contents
- Page vi Updated Appendix C, added C-2.1; Update Appendix E
- Page 2 Update mailing address
- Page 5 Update first paragraph.
- Page 7 Section 2.2 revisions.
- Page 10 Section 2.4 revisions
- Page 16 Section 4.1 revisions
- Page 26 Section 5.1.1 Addition of new wells MKTF 01-18
- Page 28 Section 5.3.1 revisions to Sampling Plan.
- Appendix C 2012 updates to well summary tables.
- Appendix D Revised to reflect requested changes detailed in Section 5.3.1.
- Appendix E MKTF 01-18 new wells installation information (boring log & analytical information)
- Figures Figure 3 Well Locations; Figure 5 Sonsela and Figure 6 Chinle/Alluvium are currently under revision and will be sent under separate cover as soon as revisions have been completed.

If you have any questions regarding Western's responses, please do not hesitate to contact Cheryl Johnson of my staff at (505) 722-0231.


Sincerely,

il.

Ed Riege Environmental Manager

cc: K. Van Horn, NMED HWB C. Chavez, OCD C. Johnson, Gallup

<u>Facility Wide Ground Water</u> <u>Monitoring Work Plan – 2013 Updates</u>

Western Refining Company	Submitted: March 31, 2014	
Gallup Refinery		
92 Giant Crossing Road		
Gallup, New Mexico 87301	ه	Formatted: Indent: First line: 0"
505-722-3833		Formatted: Font: 12 pt, Bold

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301

Formatted: Font: Calibri

CE	RTIFICATION		Deleted: Facility-Wide Ground Water Monitoring Work Plan ¶ ¶ Gallup Refinery - 2012 Updates¶
I certify under penalty of law that this under my direction or supervision acc personnel properly gather and evalua of the person or persons who manage for gathering the information, the info and belief, true, accurate, and comple for submitting false information, inclu- knowing violations.	y e	Image: The second se	
William C. McClain, Jr. <u>Refinery Manager</u>	Date	4	Formatted: Font: Calibri Formatted: Line spacing: single
		ر مربع د معمد م	Deleted: 1 Formatted: Font: Calibri Deleted:
<u>Prepared by:</u>	<u>R</u> eviewed by:		Formatted: Font: Calibri Formatted: Number of columns: 2 Formatted: Font: Calibri Deleted: ¶[2] Deleted: R
Cheryl Johnson Environmental Specialist	Ed Riege, M.P.H. Environmental Manager		Formatted: Font: Calibri Deleted: Deleted: Formatted: Font: Calibri

Deleted: Deleted: Deleted: Deleted:

Formatted: Font: Calibri

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301

Formatted: Font: Calibri

Formatted: Font: Calibri

Formatted: Font: Calibri

Formatted: Font: Calibri, 11 pt

Formatted: Font: (Default) Calibri, 16 pt

Deleted: ¶

Ex	e	CI	u	ti	v	e	S	u	ır	n	r	Y	ì	a	"	v	

Western Refining conducts quarterly, semi-annual and annual ground water monitoring at its Gallup facility on a site wide basis. The Ground Water Monitoring Work Plan (Plan) documents any additions or revisions in ground water monitoring and also details the sampling procedures used.

This Plan divides the facility into two areas for periodic monitoring: the East Side and the West Side. The East Side includes the refinery complex, recovery wells from which small quantities of free product has been continuously removed, and the northeast set of observation wells and monitoring wells. The West Side includes a cluster of wells in and around the waste water treatment system, boundary wells, shallow monitoring wells in and around land treatment areas, and produced/production water wells. This plan also includes sampling requirements for aeration lagoons, influents, and evaporation ponds located on the West Side. Designated wells and sample points in these two areas will be monitored on a quarterly, semi-annual and annual basis following the procedures presented in this Plan.

Gallup Refinery will periodically review facility-wide monitoring data, and assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented annually for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target chemicals to be analyzed.

We have created a monitoring work plan with quality assurance practices and controls as well as standard procedures for sampling, and a schedule of activities to monitor ground water at select locations of the Gallup Refinery. The persons responsible for the implementation and oversight of this plan are:

ł	Formatted: Font: Calibri
4	Formatted: Font: Calibri
ļ	Deleted: Vic McDaniel
-1	Formatted: Font: Calibri
• +	Formatted: Font: Calibri

Refine	y Manager
٠	<u>William C. McClain, Jr.</u>

Facility Wide Ground Water Monitoring Work Plan – 2013 Updates Gallup Refinery 92 Giant Crossing Road Gallup, NM 87301	W Western Refining		Formatted: Font: Calibri Formatted Table
Environmental Manager •Ed Riege		م ر ب	Formatted: Font: Calibri
Environmental Specialist		·	Formatted: Indent: Left: 0.5", No bullets or
Cheryl Johnson			numbering
Alvin Dorsey		`.	Deleted: ¶
, , , , , , , , , , , , , , , , , , ,			Formatted: Font: Calibri

.


~~~~{	Formatted	[1]
``•{	Formatted Table	[ [2]

# **TABLE OF CONTENTS**

TABLE OF CONTENTS	·····	
	Formatted	〔… [3]
Eventive Summon (iii	Deleted: 1	[ [4]
Executive Summary	Formatted	[ [5]
1.0 Introduction		
2.0 Background Information		
2.1 Historical and current site uses		
2.2 Potential Receptors <u>7</u> 2.3 Type and characteristics of the waste and contaminants and any known and	Deleted: 3	
possible sources	Deleted: 7	***
2.4 Summary of contaminant releases that could contribute to possible ground water	Deleted: 8	
contamination	Deleted: 10	
3.0 Site Conditions		
3.1 Current site topography and location of natural and manmade structures		
3.2 Drainages		
3.3 Vegetation types		
3.4 Erosion features		
3.5 Subsurface conditions		
3.5.1 Soil types and associations		
3.5.2 Stratigraphy	Deleteu; 14	
3.5.3 Presence and flow direction of ground water <u>16</u>	Deleted: 15	
4.0 Investigation Methods	Deleted: 16	
4.1 Ground water Sampling Methodology <u>17</u> ,	Deleted: 16	
4.1.1 Well Gauging	Deleted: 16	
4.1.2 Well Purging	Deleterate and	
4.2 Ground water Sample Collection		
4.2.1 Sample Handling		
4.3 Analytical Methods	·····	
4.4 Quality Assurance Procedures	Deleted: 19	
4.4.1 Equipment Calibration Procedures and Frequency	Deleted: 19	
4.4.2 Field QA/QC Samples 21,	Deleted: 20	
4.4.3 Laboratory QA/QC Samples	Deleted: 20	
4.4.4 Laboratory Deliverables	Deleted: 20	
4.4.5 Review of Field and Laboratory QA/QC Data	Deleted: 21	
4.4.6 Blanks, Field Duplicates, Reporting Limits and Holding Times	Deleted: 22	
4.4.7 Representativeness and Comparability <u>24</u>	Deleted: 23	
4.4.8 Laboratory Reporting, Documentation, Data Reduction, and Corrective Action	Deleted: 24	
5.0 Monitoring and Sampling Program <u>25</u>		
5.1 East Side	<u></u>	
5.1.1 Sampling Locations	Deleted: 26	

Western Refining Formatted: Font: Calibri

Formatted Table

5.2 West Side	Deleted: 26
5.2.1 Sampling Locations	Deleted: 26
5.3 Monitoring Program Revisions	Deleted: 28
5.3.1 Request for Modifications to Sampling Plan	Deleted: 28

•		Formatted: Normal
List of Appendices		Formatted: Font: Calibri
Appendix A: Approval with Modifications, 9-24-12, from NMED – HWB		Formatted: Font: Calibri, 11 pt
Appendix B: Gallup Field Sampling Collection and Handling Standard		· .
Appendix C: Well Data Tables, C-1, C-2, C-3		
Appendix D: 2014 Ground Water Monitoring Schedule		Deleted: 2
Appendix E: MKTF-1 through MKTF-18 Well Logs and Hall Laboratory Analysis		Formatted: Font: Calibri, 11 pt
L		Deleted: OAPIS-1(SWMU 14-2)
	``.``	Formatted: Font: Calibri, 11 pt
	`.	Formatted: Font: Calibri

## List of Figures

Figure 1: Regional Map	Formatted: Font: Calibri, 11 pt
Figure 2: Topographic Map	
Figure 3: Location of Wells	
Figure 4: Generalized Relationship of Soils	
Figure 5: Map of Ground Water Flow – Sonsela	
Figure 6: Map of Ground Water Flow Chinle	
A	Formatted: Font: Calibri

Foot

Gallons per minute

Nitric Acid

Milliliter

Matrix Spike

Gasoline Range Organics

Hazardous Waste Bureau

Leak Detection Unit

Land Treatment Unit

Matrix Spike Duplicate Methyl Tert Butyl Ether

Investigation Derived Waste

Maximum Contaminant Level

North American Industry Classification System

Facility Wide Ground Water Monitoring Plan

FT.

GPM

GRO

HNO3

HWB

IDW

LDU

LTU

ML

MCL

MS

MSD

MTBE

NAIC

FWGWMP



#### Deleted: ¶ List of Acronyms ¶ AL Aeration Lagoon API American Petroleum Institute BMP **Best Management Practices** BS Blank Spike BSD Blank Spike Duplicate BTEX Benzene, Toluene, Ethylbenzene, Xylene Formatted: Font: Calibri CFR Code of Federal Regulations Formatted Deleted: ¶ DQO Data Quality Objective Formatted: Font: Calibri, 11 pt DRO **Diesel Range Organics** DTB Depth to Bottom DTW Depth to Water EΡ **Evaporation Pond** EPA **Environmental Protection Agency**



---- Formatted: Font: Calibri

Formatted Table

## List of Acronyms - Continued

NAPIS	New American Petroleum Institute Separator	Deleted: List of Acronyms – Continued ¶
NMAC	_New Mexico Administrative Code	Formatted: Font: Calibri
NMED	New Mexico Environment Department	Formatted: Font: Calibri, 11 pt
NOI	Notice of Intent	Formatted: Font: Calibri, 11 pt
OAPIS	Old American Petroleum Institute Separator	
ОВ	Observation Well	
OCD	Oil Conservation Division	
PPE	Personal Protective Equipment	
PPM	Parts per million	
PSTB	Petroleum Storage Tank Bureau	
PW	Process Well	
QA	Quality Assurance	
QC	Quality Control	
RW	Recovery Well	
RCRA	Resource Conservation and Recovery Act	
siç	Standard Industrial Classification	Formatted: Font: Calibri
SOP	Standard Operating Procedure	Formatted: Font: Calibri, 11 pt
SPH	Separate Phase Hydrocarbon	
SVOC	Semi-volatile Organic Compound	
SWMU	_Solid Waste Management Unit	Formatted: Font: Calibri, 11 pt
SWPP	Storm Water Pollution Prevention Program	
ТОС	Total Organic Content	
VOC	Volatile Organic Compound	
WQCC	Water Quality Control Commission	Formatted: Font: Calibri, 11 pt
WWTP	_Waste water treatment plant	Formatted: Font: Calibri, 11 pt



---- Formatted: Font: Calibri

Formatted Table

# 1.0 Introduction

This Facility-Wide Ground Water Monitoring Work Plan (Plan) has been prepared for the implementation of a ground water monitoring program at the Gallup Refinery owned by Western Refining ("Gallup Refinery" or "Facility").

#### 1.1 Scope of Activities

This Plan has been prepared to collect data that will be used to characterize the nature and extent of potential impacts to ground water at the Gallup Refinery. The monitoring plan is also designed to make the facility quickly aware of any levels of contaminants that exceed compliance standards.

This Plan divides the facility into two areas for periodic monitoring: the East Side and the West Side. The East Side includes the refinery complex, recovery wells from which small quantities of free products have been continually removed, and the northeast set of observation wells and monitoring wells. The West Side includes a cluster of wells in and around the waste water treatment system, boundary wells, shallow monitoring wells in and around land treatment areas, and produced/production water wells. This plan also includes sampling requirements for aeration lagoons, influents, and evaporation ponds located in the West Side. Designated wells and sample points in these two areas will be monitored on a quarterly, semi-annual and annual basis following the procedures presented in this Plan.

Gallup Refinery will periodically review facility-wide monitoring data, and assess the monitoring program presented in this Plan. Annual revisions to the Plan will be presented for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target chemicals to be analyzed.

Formatted: Font: Calibri, 16 pt

Formatted: Font: Calibri, 11 pt

Deleted: ¶



Formatted: Font: Calibri

Formatted Table

1.2 Facility Ov	nership and Operation	4.		Formatted: Font: Calibri, 11 pt
			Formatted	
This Plan pertains to the Western Refining Southwest Inc., Gallup Refinery located at Exit 39 on			Formatted: Font: Calibri, 11 pt	
Interstate I-40	. This refinery is known as the Gallup Re	finery and is located at Jamestown, New		
Mexico, appro	ximately 17 miles east of Gallup. Figure	1 shows the regional location of the Gallup		
Refinery.				
The owner is:				
	Western Refining 123 W. Mills Avenue El Paso, TX 79901	(Parent Corporation)		
Operator:	Western Refining Southwest Inc	(Postal Address)		
	92 Giant Crossing Road	<u>_</u>		Deleted: Route 3, Box 7
	Gallup, New Mexico 87301		•	Formatted: Font: Calibri, 11 pt
	Western Refining Southwest Inc I-40, Exit 39 <u>(17 Miles East of Gallup, N</u> Jamestown, New Mexico 87347	(physical address) M)	*****	Formatted: Font: Calibri, 11 pt
-	regulatory identification and permit gove de 2911 (petroleum refining) applies to t			
	PA ID Number NMD000333211			
	tus is corrective action/compliance. Qua	arterly, semi-annual and annual ground		Deleted: Permit OW-32 was rescinded on February 15, 2012. We are required to continue to abate pollution of ground water pursuant to 19.15.30 NMAC (Remediation) under case num
water samplin	g is conducted at the facility to evaluate	present contamination.	1,1	Formatted: Font: Calibri, 11 pt
nate: samplin	B		,	Formatted: Font: Calibri, 11 pt
The refinery is	situated on an 810 acre irregular shape	d tract of land that is substantially located		
within the low	er one quarter of Section 28 and throug	hout Section 33 of Township 15 North,		
Range 15 Wes	t of the New Mexico Prime Meridian. A	small component of the property lies		
within the nor	theastern one quarter of Section 4 of To	wnship 14 North, Range 15 West. Figure 2		
is a topograph	ic map showing the general layout of the	e refinery in comparison to the local		
topography.				

# 2.0 Background Information

#### 2.1 Historical and Current Site Use

Built in the 1950's, the Gallup Refinery is located within a rural and sparsely populated section of McKinley County in Jamestown, New Mexico, 17 miles east of Gallup, New Mexico. The setting is a high desert plain on the western slope of the Continental Divide. The nearest population centers are the Pilot (formerly Giant) Travel Center refueling plaza, the Interstate 40 highway corridor, and a small cluster of residential homes located on the south side of Interstate 40 approximately 2 miles southwest of the refinery (Jamestown). The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at a density of less than six cattle or 30 sheep per section.

The refinery primarily receives crude oil via two 6 inch diameter pipelines; two pipelines from the Four Corners Area enter the refinery property from the north. In addition, the refinery also receives natural gasoline feed stocks via a 4-inch diameter pipeline that comes in from the west along the Interstate 40 corridor from the Conoco gas plant. Crude oil and other products also arrive at the site via railroad cars. These feed stocks are then stored in tanks until refined into products.

The Gallup Refinery is a crude oil refining and petroleum products manufacturing facility. The Standard Industrial Classification (SIC) code is 2911 and the North American Industry Classification Code (NAIC) is 32411. There are no organic chemicals, plastics, or synthetic fibers manufactured that contribute to our process flow of waste water. We do not manufacture lubricating oils.

The refinery incorporates various processing units that convert crude oil and natural gasoline into finished products. These units are briefly described as follows.

• <u>Crude Distillation Unit</u> - separates crude oil into various fractions; including gas, naphtha, light oil, heavy oil, and residuum.

Formatted: Font: Calibri

Western

Refining

	Deleted:
	Formatted: Font: Calibri, 16 pt
	Formatted: Font: Calibri, 11 pt

{	Formatted: Left
[	Deleted:
····{	Formatted: Font: Calibri, 11 pt



Formatted: Font: Calibri

Formatted Table

- <u>Fluidized Catalytic Cracking Unit (FCCU)</u> dissociates long-chain hydrocarbon molecules into smaller molecules, and essentially converts heavier oils into naphtha and lighter oils.
- <u>Alkylation Unit</u> combines specific types of hydrocarbon molecules into a high octane gasoline blending component.
- <u>Reforming Unit</u> breaks up and reforms low octane naphtha molecules to form high octane naphtha.
- <u>Hydro-Treating Unit</u> removes undesirable sulfur and nitrogen compounds from intermediate feed stocks, and also saturates these feed stocks with hydrogen to make diesel fuel.
- <u>Isomerization Unit</u> converts low octane hydrocarbon molecules into high octane molecules.
- <u>Treater Unit</u> remove impurities from various intermediate and blending feed stocks to produce finished products that comply with sales specifications.
- <u>Ammonium Thiosulfate Unit</u> accepts high H2S and ammonia containing gas streams from the Amine and the Sour Water Stripper units, and converts these into a useful fertilizer product, ammonium thiosulfate.
- <u>Sulfur Recovery Unit</u> converts and recovers various sulfur compounds from the gases and liquids produced in other processing units to create a solid elemental sulfur byproduct. This unit only operates when the ammonium thiosulfate unit is inoperable or cannot handle incoming loads.

As a result of these processing steps, the refinery produces a wide range of petroleum products including propane, butane, unleaded gasoline, diesel, and residual fuel. In addition to the aforementioned processing units, various other equipment and systems support the operation of the refinery and are briefly described as follows.

Storage tanks are used throughout the refinery to hold and store crude oil, natural gasoline, intermediate feed stocks, finished products, chemicals, and water and are all located above ground. Capacity of these tanks range in size from 80,000 barrels to less than 1,000 barrels.

Pumps, valves, and piping systems are used throughout the refinery to transfer various liquids among storage tanks and processing units. A railroad spur track and a railcar loading rack are 

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



--- ( Formatted: Font: Calibri

Formatted Table

used to transfer feed stocks and products from refinery storage tanks into and out of railcars. Several tank truck loading racks are used at the refinery to load out finished products and also receive crude oil, other feed stocks, additives, and chemicals.

Gasoline is delivered to the Pilot Travel Center via tanker truck. An underground diesel pipeline exits between the refinery and the Pilot Travel Center. As a result of an off-refinery release, the pipeline was purged of product, filled with nitrogen and temporarily placed out of service. <u>Gallup</u> <u>Refinery worked with the New Mexico Environment Department (NMED) Petroleum Storage</u> Tank Bureau (PSTB) and the New Mexico Oil Conservation Division (NMED-OCD) to place this line back in service. <u>In 2013 the underground diesel line from Gallup Refinery to the Pilot Travel</u> <u>Center was replaced</u>. The replaced line runs above ground from the marketing area of the refinery for approximately 150 feet and continues underground to the Pilot Travel Center. The diesel line was commissioned and put back in service on February 3, 2014.

A firefighting training facility is used to conduct employee firefighting training. Waste water from the facility, when training is conducted, is pumped into a tank which is then pumped out by a vacuum truck. The vacuum truck pumps the oily water into a process sewer leading to the New API Separator (NAPIS).

The process waste water system is a network of curbing, paving, catch basins, and underground piping used to collect waste water from various processing areas within the refinery. The waste water effluent then flows into the equalization tanks and the NAPIS where the oil is separated from water based on the principle that, given a quiet surface, oil will float to the water surface where it can be skimmed off. The skimmed slop is passed to a collection chamber where it is pumped back into the refinery process. The clarified water is routed to the new waste water treatment plant (WWTP) where benzene is removed and the treated water flows into the new pond STP-1. STP-1 consists of two bays, north and south and each bay is equipped with five aerators per bay. Effluent from STP-1 then flows into Evaporation Pond 2 and gravitated to the rest of the ponds.

Deleted: and diesel

Deleted: Western is working	
Formatted: Font: Calibri, 11 pt	
Formatted: Font: Calibri, 11 pt	
Formatted: Font: Calibri, 11 pt	
Deleted: to	
Deleted: .	
Formatted: Font: Calibri, 11 pt	
Formatted: Font: Calibri, 11 pt	

During episodes of unit upsets or major storm events, the waste water is held in one of the three equalization tanks, T-35, T-27 and T-28 which are used to handle large process and storm water flows allowing the flow to the NAPIS to be controlled. These tanks are also used to store waste water if problems are encountered with the downstream equipment, i.e., NAPIS and the WWTP.

The new WWTP was completed and put online in May of 2012 which resulted in the intermittent use of the benzene strippers during this period. In November of 2012, the benzene strippers were taken off line permanently and by January 2013, the benzene strippers were permanently dismantled and removed.

The storm water system is a network of valves, gates, berms, embankments, culverts, trenches, ditches, natural arroyos, and retention ponds that collect, convey, control, and release storm water that falls within or passes through refinery property. Storm water that falls within the processing areas is considered equivalent to process waste water and is sent to tanks T-35, T-27 and T-28 when needed before it reaches the NAPIS, WWTP, STP-1 and into Evaporation Pond 2 where flow is gravitated to the rest of the ponds. Storm water discharge from the refinery is very infrequent due to the arid desert-like nature of the surrounding geographical area.

At the evaporation ponds, waste water is converted into vapor via solar and mechanical windeffect evaporation. No waste water is discharged from the refinery to surface waters of the state.

The Gallup Refinery currently operates under the Multi-Sector Permit 2008 (MSGP-2008). Gallup Refinery submitted a new Notice of Intent (NOI) for coverage under the new MSGP. The refinery maintains a Storm Water Pollution Prevention Plan (SWPPP) that includes Best Management Practices (BMPs) for effective storm water pollution prevention. The refinery has constructed several new berms in various areas and improved outfalls (installed barrier dams equipped with gate valves) to minimize the possibility of potentially impacted runoff leaving the refinery property.

Formatted: Font: Calibri

Nestern

Refining

Deleted: and removal of the strippers for demolition will be completed in February 2013. Formatted: Font: Calibri, 11 pt



Formatted: Font: Calibri
Formatted Table

#### 2.2 Potential Receptors

Potential receptors at the facility also include those that may arise from future land uses. Currently, these include on-site workers, nearby residents, wildlife, and livestock The major route to exposure of humans would be from contaminants reaching a drinking water well. Other routes could be from showering, cooking, etc. with contaminated ground water, raising crops and vegetables with contaminated ground water, or getting exposed to or fishing in surface water that has commingled with shallow ground water. Exposure can also occur through contact with soils and/or plants that have become contaminated themselves through contact with contaminated ground water. However, drinking water wells remain the primary route of possible exposure.

At this time, the nearest drinking water wells are located on-site at the southwest areas of the facility, at depths of approximately 3000 feet which are identified as process or production (PW) wells. These wells are designated as PW-2, PW-3 and PW-4 (See Figure 3 for location). These wells are operated by the facility to provide the refinery's process water, drinking water to nearby refinery-owned houses, to the refinery itself, and to the Pilot Travel Center. PW-2 and PW-4 are sampled every three years and PW-3 is on an annual sampling schedule which began in 2009 due to the detection of 2-methylnaphthalene and phenol during the 2007 annual sampling event conducted in January 2008. <u>Annual sampling results from 2009 through 2013 have</u> indicated no detection levels of volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs). PW-3 sampling continues on an annual basis and Western has requested that this well be placed back on a 3 year schedule in Section 5.3.1H.

Other than the on-site wells, there is no known drinking water wells located within a 4-mile radius of the site. The nearest drinking water wells that could be used by off-site residents are located to the northwest of the site at a distance slightly greater than 4-miles located within the Navajo community of lyanbito (shown on the USGS Topographical Map - Gallup Quadrangle

¹ Note: There is extensive and regular patrolling by security personnel of the facility which operates 24hours – therefore, we can discount the possibility of an inadvertent or deliberate intruder becoming exposed to contamination in groundwater that has reached the surface in some form. Deleted: ¶

Formatted: Font: Calibri, 11 pt

-	Deleted: .
•••	Formatted: Font: Calibri, 11 pt
ì	Formatted: Font: Calibri, 11 pt

Deleted:	
Deleted: which began in 2009 due to the detection of 2-methylnaphthalene and phenol during	ourus,
Formatted: Font: Calibri, 11 pt	
Deleted: which was	_
Formatted: Font: Calibri, 11 pt	
Deleted: 2	Pointer,
Formatted: Font: Calibri, 11 pt	
Deleted: annual sampling results	
Deleted: .	and it:
Formatted: Font: Calibri, 11 pt	
Formatted: Adjust space between Latin and Asian text, Adjust space between Asian text an numbers	d



Formatted: Font: Calibri

Formatted Table

(Revised 1980).) These wells are northwest of the South Fork of the Puerco River which heads towards the southwest from immediately north of the facility. As the shallowest ground water will generally flow in the direction of surface water flow, any possible shallow ground water contamination that left the facility either now or in the future would flow towards the southwest after leaving the facility and away from the community of Iyanbito. The Cibola National Forest lies in the south-east direction and there are no wells or residents in this protected area. Boundary monitoring wells along the southwest to northwest perimeter of the facility have not shown any evidence of contaminants in the wells except for BW-3B which had a detection of bis(2-ethylhexyl)phthalate in 2009, <u>BW-3C in November 2011 and BW-1C in September 2013</u>, <u>...</u>

Artesian conditions at some locations of the site lead to the possibility of ground water emerging onto the surface and thus being able to affect wildlife. No surface water on the site is used for human consumption or primary contact, such as immersion, or secondary contact, such as recreation. The man-made ponds on the site are routinely monitored and are a part of this Plan. Therefore, if they are in contact with shallow ground water that has exhibited elevated levels of contaminants, the Plan will detect any commingling of ground water and surface waters.

Fluctuating ground water elevations can smear contaminants into subsurface soil and rocks, and there is a possibility that plant roots could reach such contaminated soils and bio-concentrate contaminants creating another route of exposure to potential receptors, such as birds and animals that eat the plants. No food crops are currently grown on the site.

2.3 Type and characteristics of the waste and contaminants and any known and possible sources

The types of waste likely include – volatile and semi-volatile organic compounds, primarily hydrocarbons, but could include various other industrial chemicals such as solvents; acids; spent caustic solutions; and heavy metals present in spent chemicals and waste water. These wastes could be in the form of waste water, spent chemicals destined for off-site shipping and disposal packed in drums, sludge, and dry solids. Dry wastes could stem from wind-blown metallic

Deleted: and in BW-3C in the fourth quarter 2011 had a detection level above the EPA MCL (NOV 2012) standard of 0.006 ppm. ¶ Formatted: Font: Calibri, 11 pt



Formatted: Font: Calibri

Formatted Table

powders used as catalysts, and regular municipal solid wastes stored in covered containers destined for municipal landfills.

Most of the wastes and contaminants that could possibly reach ground water have the characteristic that they would biodegrade and naturally attenuate. However, any heavy metals present in dirt and sludge could possibly leach into ground water and would not attenuate. There is a possibility also that certain long-lived chemicals would not biodegrade, or, if they did, it would be at a very slow pace. Possible sources include leaks from buried pipes, tanks, surface spills, and historical dumping of wastes in remote areas of the site.

All above-ground large tanks have leak detection or equivalent systems, such as radar gauges. Pumps that could leak hydrocarbons are within containment areas, and all tanks are located inside earthen bermed areas to contain spills. The NAPIS has double walls and a leak detection system installed.

Similarly, surface impoundments can serve as a source of possible ground water contamination. In the past, waste water from the railroad loading rack flowed to a settling and separation lagoon south of the rack and flow exited at the north end where water leaving the lagoon was distributed across a flat open site known as the fan-out area. The free flow of liquids led to subsurface soil contamination. This area has been identified as SWMU No. 8 and has recently been cleaned up for a corrective action complete with controls status. Disposal of waste water into open fields is not practiced at the Gallup Refinery.

There are fourteen Sold Waste Management Units (SWMU) identified at the Gallup Refinery, and one closed land treatment Area.

Deleted: 1 1 Formatted: Font: Calibri, 11 pt

# Western Refining

Formatted: Font: Calibri

Formatted: Font: Calibri, 11 pt

Formatted Table

Deleted: ¶

RCRA (Resource Conservation and Recovery Act) Regulated Units

• Land Treatment Unit (LTU)

<u>SWMUs</u>

- SWMU 1 Aeration Basin
- SWMU 2 Evaporation Ponds
- SWMU 3 Empty Container Storage Area
- SWMU 4 Old Burn Pit
- SWMU 5 Landfill Areas
- SWMU 6 Tank Farm
- SWMU 7 Fire Training Area
- SWMU 8 Railroad Rack Lagoon
- SWMU 9 Drainage Ditch and the Inactive Land farm
- SWMU 10 Sludge Pits
- SWMU 11 Secondary Oil Skimmer
- SWMU 12 Contact Wastewater Collection System
- SWMU 13 Drainage Ditch between North and South Evaporation Ponds
- SWMU 14 API Separator

Existing ground water monitoring wells effectively surround all of these SWMUs.

# 2.4 Summary of contaminant releases that could contribute to possible ground water contamination

Spills and leaks are known to have occurred on the site in various locations. Although most
hydrocarbons are rapidly picked up for recovery and contaminated soil is removed, some of the
liquids present in a spill enter the subsurface. With precipitation, there is a possibility that some
of the contaminants could leach and reach ground water.  Deleted: out

Separate Phase Hydrocarbons (SPH) floating on shallow ground water has been found at the
northeast end of the facility. A series of recovery wells were installed and SPH has been pumped
out for several years. Recovery through hand-bailing continues on a quarterly basis indicating
that the volume of SPH has continued to drop substantially from year to year in several of these
recovery wells. In 2013, only Recovery Well (RW-1) had measureable levels of hydrocarbons.
Trace levels of benzene have also been found in the wells in this area possibly linked to past
spills. Recovery wells are listed as follows:

Deleted: 2 Formatted: Font: Calibri, 11 pt



Formatted: Font: Calibri Formatted Table

**Recovery Wells** 

•	RW-1	•	RW-5	Formatted: Font: Calibri, 11 pt
٠		•	RW-6	Formatted: Number of columns: 2
				Formatted: Font: Calibri, 11 pt

Years ago a small tank that held Methyl Tert Butyl Ether (MTBE) leaked and created a plume of MTBE in the shallow ground water at the northeast end of the refinery. This tank is no longer in service and was removed. MTBE has not been used at the refinery since April 2006. Several monitoring wells were installed at various depths to monitor SPH and MTBE contaminant plumes from historical contamination. These observation wells (OW) are located downstream on the northeast section of the plant and are designated as follows.

**Observation Wells** 

٠	OW-29	•	OW-14	Formatted: Font: Calibri, 11 pt
٠	OW-30	•	OW-50	Formatted: Number of columns: 2
•	OW-13	•	OW-52	

A unit at the southwest end of the facility that is used to recover and recycle oil back into the process has also - through leakage and spills - caused some MTBE and hydrocarbon contamination in shallow ground water. This unit is known as the NAPIS and was put into service in October 2004. The NAPIS has one up-gradient well NAPIS-1, located on the east side and three down-gradient shallow monitoring wells, NAPIS-2, NAPIS-3 and KA-3 which are located along the west side.

The Aeration Basin, which is designated as SWMU No. 1 in the facility's RCRA Post-Closure Care Permit includes three cells, known as AL-1, AL-2 and holding pond 1 which is currently referred to as EP-1, although it is not an evaporation pond and is not part of the area covered by SWMU No. Formatted: Font: Calibri, 11 pt 2 – Evaporation Ponds. Western has experienced intermittent discharges of oil and oily water into the lagoons and spills to ground surface. Most of these occurrences were the result of unit upsets and or large storm events affecting the old API Separator.

-	Deleted: .
(	Formatted: Font: Calibri, 11 pt
and a second sec	<b>Deleted:</b> AL-1 has received waste water with benzene at levels greater than 0.5 ppm – either through ineffective treatment farther upstream in the process, or through overflows. However the

aeration process and biological action within this lagoon has brought the benzene levels to well below 0.5 ppm and of the order of equal to or less than 0.1

Formatted: Font: Calibri, 11 pt

ppm.

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



Formatted: Font: Calibri

Two ground water monitoring wells (GWM-1, GWM-2) were installed immediately down gradient of the aeration lagoons in 2004 and 2005 in order to detect potential leakage from the aeration basin. GWM-3 was also installed in 2005 on the northwest corner of pond 1 (EP-1).

Analysis of ground water samples collected at GWM-1 and GWM-2 have indicated several organic constituents at concentrations above the screening levels in ground water which would indicate a potential for historical releases from the lagoons. GWM-2 and 3 upon installation in 2005 were found to be dry. Water was first detected in GWM-2 in the first quarter of 2008 and in GWM-3 in the third quarter of 2010. 24-hour notification of the finding was given to NMED and OCD respectively. Analysis of ground water samples collected from GWM-2 and GWM-3 have detected the presence of several constituents at concentration levels above applicable water quality standards such as fluoride, chloride, nitrates, and sulfates. No VOCs have been detected in GWM-2 or GWM-3.

Quarterly inspections in 2011 and 2012 continued to indicate an increase in measurable water levels in GWM-2 and GWM-3; however water levels began to decrease in late 2012. In 2013 no water was detected in GWM-3. Ground water samples collected have indicated non-detectable and/or concentration levels below the screening levels for BTEX constituents since 2010. Fluoride, chloride and sulfate concentration levels are above the screening levels for years 2010 thru 2013. Method 8260B analysis run on the ground water samples have indicated nondetectable levels for 2013. A request was made to NMED in the 2012 Updates to change analytical requirements from 8021B to 8260B + MTBE for a more detailed list of volatile organic compounds and currently awaiting approval for this change.

Both GWM-2 and GWM-3 have been included in the Aeration Basin Corrective Action Work Plan which began investigative soil and water sampling near the aeration basin in the third quarter of 2012 to support selection of a remedy for SWMU NO. 1 and determine the source of water detected in GWM-2 and GWM-3. Figure 3 shows the location of all of the active monitoring wells on the facility. Deleted: 1

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



---- Formatted: Font: Calibri

Formatted Table

Formatted: Font: Calibri, 11 pt

In February of 2012, Western submitted a "Revised Investigation Work Plan Solid Waste Management Unit (SWMU) No. 1 Aeration Basin to include sampling of soils and ground water surrounding the Aeration Basin to determine if there has been a release to the environment and to delineate any such release. In addition, information was collected to help determine the source of ground water that had been observed in monitoring wells GWM-2 and GWM-3. The work plan also included SWMU No. 14 Old API Separator soil and ground water sampling. A new well OAPIS-1 (SWMU 14-2) was installed on the northwest corner where the benzene strippers were located on July 17, 2012 by Enviro-Drill Inc. OAPIS-1 (SWMU 14-2) has been added to the 2014 Monitoring Schedule to be sampled on a quarterly basis.

In February of 2013, the influent to the aeration lagoons was routed to the new Waste Water Treatment Plant (WWTP). The aeration lagoons are no longer in service receiving no influent and are being investigated as described above. Pilot sanitary effluent was also routed to the WWTP in June of 2013.

In June of 2013 during a routine inspection a hydrocarbon seep was discovered in an isolated area approximately 100 yards west of Tank 101/102. A series of excavations were completed in the area of the seep including installation of six (6) temporary sumps for weekly hydrocarbon recovery. To date a total of 211,329 gallons of liquid (hydrocarbon and ground water) have been recovered from the site. There were a total of five (5) hand auger and 22 soil borings with temporary well completions completed at the start of the site investigation. An additional 13 soil borings with temporary wells were completed in late 2013 and to date 18 temporary wells have been converted to permanent flush mount and/or stick up monitoring wells. Western continues to further characterize potential source areas, recovery of liquids from the temporary sumps, and additional soil borings/monitoring wells will be installed for characterization and delineation purposes. A copy of the Well Installation (boring logs) are included in this report in Appendix E as well as the professional engineer's survey report. All 18 wells will be added to the 2014 Ground Water Monitoring Schedule (see Appendix D). 

 Deleted: ill be

 Formatted: Font: Calibri, 11 pt

 Deleted: s

 Formatted: Font: Calibri, 11 pt

-	Deleted: will be
-+	Formatted: Font: Calibri, 11 pt
-	Deleted: 3
	Formatted: Font: Calibri, 11 pt



Formatted: Font: Calibri

### 3.0 Site Conditions

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County. It is situated in the high desert plain on the western flank of the Continental Divide approximately 17 miles east of Gallup. The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at low densities².

#### 3.1 Current site topography and location of natural and manmade structures

Local topography consists of a gradually inclined down-slope from high ground in the southeast to a lowland fluvial plain in the northwest. The highest point on refinery property is located at the southeast corner boundary (elevation approximately 7,040 feet) and the lowest point is located at the northwest corner boundary (elevation approximately 6,860 feet). The refinery processing facility is located on a flat man-made terrace at an elevation of approximately 6,950 feet.

#### 3.2 Drainages

Surface water in this region consists of the man-made evaporation ponds and aeration basins located within the refinery, a livestock watering pond (Jon Myer's Pond) located east of the refinery, two small unnamed spring fed ponds located south of the refinery, and the South Fork of the Puerco River and its tributary arroyos. The various ponds and basins typically contain water consistently throughout the year. The South Fork of the Puerco River and its tributaries are intermittent and generally contain water only during, and immediately after, the occurrence of precipitation.

#### 3.3 Vegetation types

Surface vegetation consists of native xerophytic vegetation including grasses, shrubs, small junipers, and some prickly pear cacti. Average rainfall at the refinery is less than 7 inches per year, although it can vary to slightly higher levels elsewhere in the county depending on elevation.

Deleted: 1

Monitoring well GWM-1 was installed in July 2004 down gradient of the aeration basin in order to detect potential leakage from the aeration basin. Monitoring of this well has indicated several organic constituents at concentrations above the screening levels in ground water which would indicate a potential for historical releases in the area. Two new shallow ground water monitoring wells were installed in the early fall of 2005 to the north of GWM-1 identified as GWM-3 located on the southwest corner of EP-1. GWM-2 was placed at the NW corner of EP-1. GWM-2 and GWM-3 were placed to determine whether there is any evidence of leakage from the aeration basin. GWM-2 and GWM-3 were dry wells when it was installed in 2005. Water was first detected in GWM-2 in the first quarter of 2008 and 24-hour notification of the finding was given to NMED and OCD respectively. In 2010 during the second quarter inspections, GWM-2 and GWM-3 were found to have a water level of 1.5 feet in GWM-2 and 0.88 feet in GWM-3. At the request of NMED, weekly inspections were done to monitor recharge rate. Weekly inspections were ceased as recharge rate was not significant enough to continue with weekly gauging.  $\P$ 

	request of NMED, weekly inspections were done to
	monitor recharge rate. Weekly inspections were
	ceased as recharge rate was not significant enough
	to continue with weekly gauging. ¶
	1
	Quarterly inspections in 2011 and 2012 continued
	to indicate an increase in measurable water levels in
	both GWM-2 and GWM-3. Ground water samples
18	collected have indicated non-detectable and/or
	concentration levels below the screening levels for
13	BTEX constituents since 2010. Fluoride, chloride
13	and sulfate concentration levels are above the
	screening levels for years 2010 thru 2012. Method
	8021B analysis is required for ground water
13	detected in GWM-2 and GWM-3 and Western
	would like to change method 8021B analysis to
	Method 8260B + MTBE for a more detailed list of
	volatile organic compounds.¶
	Both GWM-2 and GWM-3 have been included in the
	Aeration Basin Corrective Action Work Plan which
1	began investigative soil and water sampling in the
1	aeration basin in the third quarter of 2012 to
2	determine the source of water detected in GWM-2
5 . S.	and GWM-3. Figure 3 shows the location of all of
	the active monitoring wells on the facility.¶
5.0 2.0 2.0 2.0	Formatted: Font: Calibri
1111	Formatted: Font: Calibri, 16 pt
1000	Formatted: Font: Calibri, 11 pt

Formatted: Font: Calibri, 11 pt Formatted: Font: Calibri, 11 pt

² See, for example, the web site of McKinley County at <u>http://www.co.mckinley.nm.us/</u>

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



Formatted: Font: Calibri

Formatted Table

On alluvial fans on valley sides and drainage ways, the existing vegetation is usually alkali sacaton, western wheatgrass, Indian rice grass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly and spike muhly. On fan remnants on valley sides we usually find blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbrush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, and twoneedle pinyon.

#### 3.4 Erosion features

The impacts of historic overgrazing are visible at the north-side of the facility, in the form of arroyos that formed when surface run-off cut through the ground and washed away soils that were not able to hold water with their ground cover lost to overgrazing. Now that the facility is fenced and no livestock grazing occurs on the site, vegetation has recovered in these areas. With the facility helping to bring back vegetation in its undeveloped areas the formation and deepening of erosion features on its land has decreased.

#### 3.5 Subsurface conditions

#### 3.5.1 Soil types and associations

Most of the soils found at the surface in the locations where wells are located consist of the Mentmore-Gish complex  $_{\lambda \lambda}^{3}$  These soils occur in alluvial fans on valley sides and fan remnants on valley sides. The parent material for these soils is slope and fan alluvium derived from sandstone and shale. These are well drained soils with moderately slow (0.2 in/hr) to slow permeability (0.06 in/hr). In this association, the Gish and similar soils make up about 45 percent, the Mentmore and similar soils 35 percent, and minor components 20 percent. These minor components are - Berryhill and similar soils 10 percent, and Anodize and similar soils 10 percent. The typical profile for these soils is -0 to 2 inches fine sandy loam, 2 to 72 inches of various kinds of clay loam.

³ Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties, Natural Resources Conservation Service (NRCS), US Department of Agriculture, available at http://soildatamart.nrcs.usda.gov/Manuscripts/NM692/0/McKinley.Area%20NM.pdf



--- Formatted: Font: Calibri

Formatted Table

Drill logs for various wells have been provided electronically to the NMED/HWB. From these well logs we can infer that the soils in the subsurface are generally composed of clays starting at the immediate subsurface, interbedded with narrow sand and silt layers. At about 100 to 150 feet, layers of mudstone, sandstone (from the Chinle formation, Petrified Forest group) and siltstone start to appear. Figure 4 shows a generalized relationship of soils in and around the Gallup Refinery.

#### 3.5.2 Stratigraphy

The 810 acre refinery property site is located on a layered geologic formation. Surface soils generally consist of fluvial and alluvial deposits; primarily clay and silt with minor inter-bedded sand layers. Below this surface layer is the Chinle Formation, which consists of low permeability clay stones and siltstones that comprise the shale of this formation. As such, the Chinle Formation effectively serves as an aquiclude. Inter-bedded within the Chinle Formation is the Sonsela Sandstone bed, which represents the uppermost potential aquifer in the region.

The Sonsela Sandstone bed lies within and parallels the dip of the Chinle Formation. As such, its high point is located southeast of the refinery and it slopes downward to the northwest as it passes under the refinery. Due to the confinement of the Chinle Formation aquiclude, the Sonsela Sandstone bed acts as a water-bearing reservoir and is artesian at its lower extremis. Artesian conditions exist through much of the central and western portions of the refinery property.

#### 3.5.3 Presence and flow direction of ground water

Ground water flow within the Chinle Formation is extremely slow and typically averages less than  $10^{-10}$  centimeters per second (less than 0.01 feet per year). Ground water flow within the surface soil layer above the Chinle Formation is highly variable due to the presence of complex and irregular stratigraphy; including sand stringers, cobble beds, and dense clay layers. As such, hydraulic conductivity may range from less than  $10^{-2}$  centimeters per second in the gravelly sands immediately overlying the Chinle Formation up to  $10^{-8}$  centimeters per second in the clay soil layers located near the surface.



Formatted: Font: Calibri

Formatted Table

Deleted: ¶

Deleted: erly

Shallow ground water located under refinery property generally flows along the upper contact of the Chinle Formation. The prevailing flow direction is from the southeast and toward the northwest. In the past, a subsurface ridge has been identified that was thought to deflect some flow in a northeast direction in the vicinity of the refinery tank farm. This is not clear from the present data.

### 4.0 Investigation Methods

The purpose of this section is to describe the types of activities that will be conducted and the methods that will be used as part of this Plan. Appendix B provides more detailed information on actual sampling procedures that will be used.

#### 4.1 Ground water Sampling Methodology

All monitoring wells scheduled for sampling during a ground water sampling event will be sampled within 15 working days of the start of the monitoring and sampling event.

Appendix C contains the well data summary tables for 2013. C-1 provides the annual and quarterly DTW (depth to water) and DTB (depth to bottom) measurements for 2013 as well as corrected water table elevation with respect to wells that have separate phase hydrocarbon levels; C-2 provides the corrected well elevation summary table for 2013 which includes date of establishment, ground elevation, top of casing elevation, well casing stick-up length, well depth, screening levels, and stratigraphic units in which the wells are located. Appendix C-3 includes well elevations for the artesian wells also known as Process or Production wells (PW). Information provided for the artesian wells was gathered from well boring logs. These wells are encased and therefore measurement for depth to bottom was not field verified.

### 4.1.1 Well Gauging

At the beginning of each quarterly, semi-annual, or annual sampling event, all monitoring and recovery wells listed in Appendix D, Ground Water Monitoring Schedule, will be gauged to record the depth to SPH (if present), the DTW and the DTB of the well. The gauging will be performed using an oil/water interface probe attached to a measuring tape capable of recording

Formatted: Font: Calibri, 16 pt

Formatted: Font: Calibri, 11 pt

• {	Deleted: 2
•{	Formatted: Font: Calibri, 11 pt
(	Deleted: 2
(	Formatted: Font: Calibri, 11 pt
ĺ	Deleted: 2
ĺ	Formatted: Font: Calibri, 11 pt
	Deleted: Western received the "Approval with Modifications, Requirement to Resurvey Ground Water Monitoring Wells and Recovery Wells", from

Water Monitoring Wells and Recovery Wells", fro NMED HWB on September 24, 2012 and is incorporated into this Report (Appendix A).



Formatted: Font: Calibri

measurements to the nearest 0.01 foot. All measurements will be made relative to the same datum for all wells.

Gauging measurements will be recorded on a field gauging form. Data obtained from the gauging will be reported in the annual ground water monitoring report. The data will be used to develop groundwater contour maps and SPH thickness isopleths which will also be included in the annual report.

#### 4.1.2 Well Purging

Each monitoring well will be purged by removing ground water prior to sampling in order to ensure that formation water is being sampled. Generally, at least three well volumes (or a minimum of two if the well has low recharge rate) will be purged from each well prior to sampling. Field water quality measurements must stabilize for a minimum of three consecutive readings before purging will be discontinued. Field water quality measurements will include pH, electrical conductivity, temperature, and dissolved oxygen (DO) %. Field water quality measurement stability will be determined when field parameter readings stabilize to within ten percent between readings for three consecutive measurements. Once the readings are within ten percent, purging will stop and the well is ready for sample collection. The volume of ground water purged, the instruments used, and the readings obtained at each interval will be recorded on the field-monitoring log. Well purging and sampling will be performed using 1 inch x 3 foot disposable polyethylene bailers for ground water sampling and/or appropriately decontaminated portable sampling pumps.

#### 4.2 Ground water Sample Collection

Ground water samples will be obtained from each well within 24 hours of the completion of well purging. Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody (COC) procedures are described in more detail in Appendix B. Decontamination procedures for reusable water sampling equipment are described in Appendix B.



Formatted: Font: Calibri

Formatted Table

All purged ground water and decontamination water from monitoring wells will be drained into the refinery waste water treatment system upstream of the NAPIS. The procedures for disposing materials are described in Appendix B.

Ground water samples intended for metals analysis will be submitted to the laboratory as total metals samples. Ground water samples obtained for dissolved metals analysis will be filtered through disposable filters with a 0.45 micrometers mesh size.

#### 4.2.1 Sample Handling

All sample containers are supplied by the contracted analytical laboratory and shipped to Western in sealed coolers. Chemical preservation is also provided by the laboratory through prepreserved bottle ware. Collection of containerized ground water samples are in the order of most volatile to least volatile, such as: VOCs, SVOCs, metals, phenols, cyanide, sulfate, chloride, and nitrates. Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard COC procedures as detailed in Appendix B will be followed for all samples collected. All samples will be submitted to the laboratory as soon as possible to allow the laboratory to conduct the analyses within the specified method holding times. Details of the general sample handling procedures are provided in Appendix B.

The following shipping procedures will be performed during each sampling event:

- Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage.
- Each cooler or other container will be delivered directly to the analytical laboratory.
- Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- Plastic containers will be protected from possible puncture during shipping using cushioning material.
- The COC form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.



---- Formatted: Font: Calibri

Formatted Table

 Signed and dated COC seals will be applied to each cooler prior to transport of samples from the site.

#### 4.3 Analytical Methods

Ground water and surface water samples collected during the monitoring events will be analyzed for the constituents listed in Appendix D. In addition, for various locations the list of metals is modified to either be the Skinner list of the NM Water Quality Control Commission list or RCRA 8 metals list. Appendix D provides a summary of target analytes for each EPA analytical method.

#### 4.4 Quality Assurance Procedures

Contract analytical laboratories will maintain internal quality assurance programs in accordance with EPA and industry accepted practices and procedures. At a minimum, the laboratories will use a combination of standards, blanks, surrogates, duplicates, matrix spike/matrix spike duplicates (MS/MSD), blank spike/blank spike duplicates (BS/BSD), and laboratory control samples to demonstrate analytical Quality Assurance/Quality Control (QA/QC). The laboratories will establish control limits for individual chemicals or groups of chemicals based on the longterm performance of the test methods. In addition, the laboratories will establish internal QA/QC that meets EPA's laboratory certification requirements. The specific procedures to be completed are identified in the following sections.

#### 4.4.1 Equipment Calibration Procedures and Frequency

The laboratory's equipment calibration procedures, calibration frequency, and calibration standards will be in accordance with the EPA test methodology requirements and documented in the laboratory's quality assurance (QA) and Standard Operating Procedures (SOP) manuals. All instruments and equipment used by the laboratory will be operated, calibrated, and maintained according to the manufacturers' guidelines and recommendations. Operation, calibration, and maintenance will be performed by personnel who have been properly trained in these procedures. A routine schedule and record of instrument calibration and maintenance will be kept on file at the laboratory.



---- Formatted: Font: Calibri

Formatted Table

#### 4.4.2 Field QA/QC Samples

Field duplicates and trip blanks may be obtained for quality assurance during sampling activities. The samples will be handled as described in Section 4.4.3.

Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte free de-ionized water placed in an appropriate sample container. Trip blanks will be analyzed at a frequency of one for each shipping event involving twenty or more samples. Generally, a trip blank will only be placed in one of the containers, if more than one container is used to ship the set of samples.

#### 4.4.3 Laboratory QA/QC Samples

Analytical procedures will be evaluated by analyzing reagent or method blanks, surrogates, MS/MSDs, BS/BSDs and/or laboratory duplicates, as appropriate for each method. The laboratory QA/QC samples and frequency of analysis to be completed will be documented in the cited EPA or other test methodologies. At a minimum, the laboratory will analyze laboratory blanks, MS/MSDs, BS/BSDs and laboratory duplicates at a frequency of one in twenty for all batch runs requiring EPA test methods and a frequency of one in ten for non-EPA test methods. Laboratory batch QA/QC samples will be project specific.

#### 4.4.4 Laboratory Deliverables

The analytical data package will be prepared in accordance with EPA-established Level II analytical support protocol which will include:

- Transmittal letter, including information about the receipt of samples, the testing methodology performed, any deviations from the required procedures, any problems encountered in the analysis of the samples, any data quality exceptions, and any corrective actions taken by the laboratory relative to the quality of the data contained in the report;
- Sample analytical results, including sampling date; date of sample extraction or preparation; date of sample analysis; dilution factors and test method identification; water sample results in consistent units (milligrams per liter or micrograms per liter (μg/L)); and detection limits for undetected analytes. Results will be reported for all field samples, including field duplicates and blanks, submitted for analysis;

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



--- { Formatted: Font: Calibri

Formatted Table

- Method blank results, including reporting limits for undetected analytes;
- Surrogate recovery results and corresponding control limits for samples and method blanks (organic analyses only);
- Laboratory duplicate results for inorganic analyses, including relative percent differences and corresponding control limits;
- Sample COC documentation;
- Holding times and conditions;
- Conformance with required analytical protocol(s);
- Instrument calibration;
- Blanks;
- Detection/quantitative limits;
- Recoveries of surrogates and/or matrix spikes (MS/MSDs);
- Variability for duplicate analyses;
- Completeness;
- Data report formats;

Data deliverables provided by the laboratory that include analysis of organic compounds will also

include the following:

- A cover letter referencing the procedure used and discussing any analytical problems, deviations, and modifications, including signature from authority representative certifying to the quality and authenticity of data as reported;
- A report of sample collection, extraction, and analysis dates, including sample holding conditions,
- Tabulated results for samples in units as specified, including data qualification in conformance with EPA protocol, and definition of data descriptor codes;
- Final extract volumes (and dilutions required), sample size, wet-to-dry weight ratios, and
  instrument practical detection/quantitative limit for each analyte,
- Analyte concentrations with reporting units identified, including data qualification and a description of the qualifiers,
- Quantification of analytes in all blank analyses, as well as identification of method blank associated with each sample,
- Recovery assessments and a replicate sample summary, including all surrogate spike recovery data with spike levels/concentrations for each sample and all MS/MSD results (recoveries and spike amounts).

#### 4.4.5 Review of Field and Laboratory QA/QC Data

The sample data, field, and laboratory QA/QC results will be evaluated for acceptability with respect to the data quality objectives (DQOs). Each group of samples will be compared with the

DQOs and evaluated using data validation guidelines contained in EPA guidance documents:

industry-accepted QA/QC methods and procedures.



Formatted: Font: Calibri

Guidance Document for the Assessment of RCRA Environmental Data Quality, National	
Functional Guidelines for Organic Data Review, and Laboratory Data Validation Functional	
Guidelines for Evaluating Inorganics Analyses, and the most recent version of SW-846, and	

The laboratory will notify the Gallup Refinery Project Manager of data quality exceptions within one business day of identifying the data quality exception in order to allow for sample reanalysis, if possible. The Gallup Refinery Project Manager will contact NMED within one business day of receipt of laboratory notification of data quality exceptions in order to discuss the implementations and determine whether the data will still be considered acceptable, or if sample re-analysis or re-sampling is necessary.

#### 4.4.6 Blanks, Field Duplicates, Reporting Limits and Holding Times

#### 4.4.6.1 Blanks

The analytical results of field blanks and field rinsate blanks will be reviewed to evaluate the adequacy of the equipment decontamination procedures and the possibility of crosscontamination caused by decontamination of sampling equipment. The analytical results of trip blanks will be reviewed to evaluate the possibility for contamination resulting from the laboratory-prepared sample containers or the sample transport containers. The analytical results of laboratory blanks will be reviewed to evaluate the possibility of contamination caused by the analytical procedures. If contaminants are detected in field or laboratory blanks, the sample data will be qualified, as appropriate.

#### 4.4.6.2 Field Duplicates

Field duplicates will consist of two samples either split from the same sample device or collected sequentially. Field duplicate ground water samples will be collected at a frequency of one per ten regular samples and will be analyzed for the full set of analyses used for the regular sample collected. At a minimum, one duplicate sample per sampling day must always be obtained.

Deleted: ¶
Formatted: Font: Calibri, 11 pt

Deleted: ¶
¶
¶ **Formatted:** Font: Calibri
Formatted: Font: Calibri, 11 pt

- [	Deleted: ¶
	1
-{	Formatted: Font: Calibri
Ì	Formatted: Font: Calibri, 11 pt



---- **Formatted:** Font: Calibri

Formatted Table

#### 4.4.6.3 Method Reporting Limits

Method reporting limits for sample analyses will be established at the lowest level practicable for the method and analyte concentrations and will not exceed ground water or surface water cleanup standards and screening levels. Detection limits that exceed established standards or screening levels and are reported as "not detected" will be considered data quality exceptions and an explanation for its acceptability for use will be provided.

#### 4.4.6.4 Holding Times

Per EPA protocol the sampling, extraction, and analysis dates will be reviewed to confirm that extraction and analyses were completed within the recommended holding times. Appropriate data qualifiers will be noted if holding times are exceeded.

#### 4.4.7 Representativeness and Comparability

#### 4.4.7.1 Representativeness

4.4.7.2 Comparability

Representativeness is a qualitative parameter related to the degree to which the sample data represent the relevant specific characteristics of the media sampled. Procedures will be implemented to assure representative samples are collected and analyzed, such as repeated measurements of the same parameter at the same location over several distinct sampling events. Any procedures or variations that may affect the collection or analysis of representative samples will be noted and the data will be qualified.

	- E
Comparability is a qualitative parameter related to whether similar sample data can be	``
compared. To assure comparability, analytical results will be reported in appropriate units for	
comparison with other data (past studies, comparable sites, screening levels, and cleanup	
standards), and standard collection and analytical procedures will be implemented. Any	
procedure or variation that may affect comparability will be noted and the data will be qualified.	

{	Deleted: 1
	Formatted: Font: Calibri
``{	Formatted: Font: Calibri, 11 pt

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

 Gallup, NM 87301



Formatted: Font: Calibri

Formatted Table

4.4.8 Laboratory Reporting, Documentation, Data Reduction, and Corrective Action Formatted: Font: Calibri, 11 pt Upon receipt of each laboratory data package, data will be evaluated against the criteria outlined in the previous sections. Any deviation from the established criteria will be noted and the data will be qualified. A full review and discussion of analytical data QA/QC and all data qualifiers will be submitted as appendices or attachments to the ground water monitoring reports. Data validation procedures for all samples will include checking the following, when appropriate: Deleted: 1 Holding times Laboratory duplicates Laboratory blanks **Detection limits** • Formatted: Font: Calibri, 11 pt Field equipment rinsate blanks Laboratory matrix spikes • Formatted: Number of columns: 2 Field blanks • Laboratory matrix spike duplicates **Field Duplicates** • Laboratory blank spikes Laboratory blank spike duplicates Trip blanks

Surrogate recoveries

If significant quality assurance problems are encountered, appropriate corrective action will be implemented. All corrective action will be reported and the corrected data will be qualified.

### 5.0 Monitoring and Sampling Program

Reagent blanks

The primary objective of ground water monitoring is to provide data which will be used to assess ground water quality at and near the facility. Ground water elevation data will also be collected to evaluate ground water flow conditions. The ground water monitoring program for the facility will consist of sample collection and analysis from a series of monitoring wells, recovery wells, outfalls, and evaporation pond locations.

The monitoring network is divided into two investigation areas (East Side and West Side). The sampling frequency, analyses and target analytes will vary for each investigation area and well/outfall/evaporation pond location. The combined data from these investigation areas will be used to assess ground water quality beneath and immediately down-gradient of the facility, and evaluate local ground water flow conditions.

	Deleted: 1
.	1
<u>`</u>	Formatted: Font: Calibri, 11 pt
·{	Deleted: 1
	Formatted: Font: Calibri
	Formatted: Font: Calibri, 16 pt
	Formatted: Font: Calibri, 11 pt

Formatted: No bullets or numbering



Formatted: Font: Calibri

Formatted Table

Samples will not be collected from monitoring wells that	t have measurable SPH. For wells that are		
purged dry, samples will be collected if recharge volume	e is sufficient for sample collection within		
24 hours. Wells not sampled due to insufficient recharge	e will be documented in the field log.		
<ul> <li>The following sections outline the monitoring program f</li> </ul>			Deleted: ¶ ¶ ¶
5.1 East Side			
5.1.1 Sampling Locations			
The location of the East Side monitoring and recovery w	ells are shown in Figure 3. The following		
wells will be sampled (as described in Appendix D) within	n the East Side area:		
<u>Recovery wells</u>			Deleted: 1
514 d		<b>4</b>	Formatted: No bullets or numbering
• <u>RW-1</u> • RW-2	• RW-5 • RW-6		Formatted: Number of columns: 2
Monitoring wells	<u> </u>		
• OW-29	•OW-14	<b>*</b>	Formatted: Number of columns: 2
• OW-30	• OW-50		
• <u>OW-13</u>	• OW-52		
5.2 West Side			
5.2.1 Sampling Locations			
The locations of wells on the West Side are shown in Fig	ure 3. The following wells, outfalls, and		

ponds will be sampled (as described in Appendix D, Table 1) within the West Side area. (Note: these outfalls are from one section of the waste water treatment system to another – they do not discharge to any location outside the facility.)

Page i: [1] Formatted	Cheryl Johnson	3/27/2014 3:09:00 PM
Font: Calibri		
Page i: [2] Change	Cheryl Johnson	3/27/2014 3:10:00 PM
Formatted Table		
Page v: [3] Formatted	Cheryl Johnson	3/19/2014 7:06:00 AM
Font: Calibri		
Page v: [4] Deleted	Cheryl Johnson	3/27/2014 3:11:00 PM

# List of Sections

Cheryl Johnson	3/19/2014 7:12:00 AM
Cheryl Johnson	3/27/2014 3:16:00 PM

### 5.2.1 Sampling Locations

The locations of wells on the West Side are shown in Figure 3. The following wells, outfalls, and ponds will be sampled (as described in Appendix D, Table 1) within the West Side area. (Note: these outfalls are from one section of the waste water treatment system to another – they do not discharge to any location outside the facility.)

Page 27: [7] Formatted Cheryl Johnson		3/27/2014 1:52:00 PM	
Bulleted + Level: 1 + Aligned	at: 0.25" + Indent at: 0.5"		
Page 27: [8] Deleted Cheryl Johnson		3/27/2014 1:54:00 P	
Any temporary pond cor	ntaining liquid		

Page 27: [9] Formatted	Cheryl Johnson	3/27/2014 1:55:00 PM
Bulleted + Level: 1 + Aligned at:	0.25" + Tab after: 0.5" + Indent at: 0.5"	

Page 28: [10] DeletedCheryl Johnson3/28/2014 8:59:00 AMThis new well is scheduled to be surveyed by a licensed professional surveyor for horizontal and vertical<br/>positions of the top of the well casing and ground surface and will be added to Figure 3. Horizontal<br/>positions will be measured to the nearest 0.1 foot and vertical elevations will be measured to the<br/>nearest 0.01 foot. See Appendix E for well drilling logs and Hall laboratory analysis.

Page 28: [11] Formatted	Cheryl Johnson	1. 199	3/27/2014 11:18:00 AM
Numbered + Level: 1 + Numbering S	tyle: A, B, C, + $S$	Start at: 1	+ Alignment: Left + Aligned
at: 0.25" + Indent at: 0.5"			

Page 29: [12] Deleted	Cheryl Johnson	3/27/2014 1:11:00 PM
		-,,

Wells OW-13, OW-14, OW_29, OW-30 and OW-12, WQCC metals (total and dissolved) analysis will be added for sampling per NMED's Comment 12, Approval With Modifications Annual Ground Water Monitoring Report: Gallup Refinery 2010, Revision 1, dated December 12, 2012 to monitor wells up gradient from NAPIS-1, NAPIS-2, NAPIS-3, KA-3, OW-1, OW-10 and OW-11 for metals.

Influent to AL-1, Influent to AL-2, effluent from AL-2 to EP-1 and the NAPIS effluent have all been removed from the Outfall section. The influent and effluents are now routed to the new waste water treatment plant via the NAPIS and the levels in the lagoons are slowly dropping. There is no more flow at these sample points in the outfalls except for the Pilot Effluent which continues to flow into AL-1.



Formatted: Font: Calibri

Formatted Table

Ionitoring wells			Deleted: 1
			<#>RW-1¶
NAPIS 1	• MW-1	<ul> <li>BW-1C</li> </ul>	<#>RW-2¶ <#>RW-5¶
NAPIS 2	• MW-2	• BW-2A	<#>RW-6¶
NAPIS 3	• MW-4	• BW-2B	1
• KA-3	• MW-5	• BW-2C	Monitoring wells¶ ¶
• GWM-1	• OW-1	• BW-3A	<#>OW-29¶
• GWM-2	• OW-10	• BW-3B	<pre>&lt;#&gt;OW-30¶ </pre> <pre></pre>
• GWM-3	• OW-11	<ul> <li>BW-3C</li> </ul>	<#>OW-14¶
<ul> <li>OAPIS-1_</li> </ul>	• OW-12	<ul> <li>PW-2</li> </ul>	Monitoring wells¶       ¶       ¶       **>OW-29¶       <#>OW-30¶       <#>OW-13¶       <#>OW-14¶       <#>OW-50¶       <#>OW-52¶       ¶       5.2 West Side¶       ¶
• SMW-2	• BW-1A	• PW-3	1 1
<ul> <li>SMW-4</li> </ul>	• BW-18	• PW-4	5.2 West Side¶
• 510100-4	• 000-10	• [ 10-4	¶   5.2.1 Sampling Locations¶
w Wells			¶ The locations of wells on the West Side are shown
			Figure 3. The following wells, outfalls, and po
<ul> <li>MKTF-01</li> </ul>	<ul> <li>MKTF-07</li> </ul>	<ul> <li>MKTF-13</li> </ul>	Formatted: Font: Calibri, 11 pt
<ul> <li>MKTF-02</li> </ul>	<ul> <li>MKTF-08</li> </ul>	<ul> <li>MKTF-14</li> </ul>	Formatted: Font: Calibri, 11 pt
<ul> <li>MKTF-03</li> </ul>	<ul> <li>MKTF-09</li> </ul>	<ul> <li>MKTF-15</li> </ul>	Formatted: Font: Calibri, 11 pt
<ul> <li>MKTF-04</li> </ul>	<ul> <li>MKTF-10</li> </ul>	<ul> <li>MKTF-16</li> </ul>	
<ul> <li>MKTF-05</li> </ul>	<ul> <li>MKTF-11</li> </ul>	<ul> <li>MKTF-17</li> </ul>	Formatted: Font: Calibri, 11 pt
<ul> <li>MKTF-06</li> </ul>	<ul> <li>MKTF-12</li> </ul>	<ul> <li>MKTF-18</li> </ul>	Formatted: Number of columns: 3
			Deleted: (SWMU 14-2)
			Formatted: Font: Calibri, 11 pt
<u>tfalls</u>			Formatted
			Formatted: Number of columns: 3
<ul> <li>Influent to EP-2 from</li> </ul>			Formatted: Font: Calibri, 11 pt
<ul> <li>Boiler Water Inlet to</li> </ul>	EP-2	•••••••••••••••••••••••••••••••••••••••	Deleted: <#>Pilot Effluent (Travel Center)¶
nds			
• EP-1	• EP-5	• EP-9	Formatted: Font: Calibri, 11 pt
• EP-2	• EP-6	• EP-11	Deleted: <#>Any temporary pond containin
• EP-3	• EP-7	• EP-12A	Formatted: Font: Calibri, 11 pt
• EP-4	• EP-8	<ul> <li>EP-12B</li> </ul>	Formatted
<ul> <li>Any temporary pond</li> </ul>	containing liquid Containment		Deleted: 1
			Formatted: Font: Calibri, 11 pt
APIS secondary containmer	nt (Leak Detection Units -LDU)		Deleted: 1
• East LDU			Formatted: Font: Calibri, 11 pt
West LDU			Deleted: ¶
Oil Sump LDU			Formatted: No bullets or numbering
2			Formatted: Font: Calibri, 11 pt, Underline

Formatted: Font: Calibri, 11 pt, Underline Formatted: Font: Calibri, 11 pt



---- Formatted: Font: Calibri

#### Formatted Table

#### 5.3 Monitoring Program Revisions

Upon review of the analytical results from the monitoring events under this Plan, historic facilitywide monitoring data, available soil boring data, and other related information Western Refining will assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented for agency review and approval on an annual basis. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target analytes.

#### 5.3.1 Request for Modifications to Sampling Plan

A. Gallup Refinery has added eighteen (18) new monitoring wells to the sampling plan identified as:

<ul> <li>MKTF-01</li> </ul>	<ul> <li>MKTF-07</li> </ul>	• MKTF-13
<ul> <li>MKTF-02</li> </ul>	<ul> <li>MKTF-08</li> </ul>	• MKTF-14
<ul> <li>MKTF-03</li> </ul>	<ul> <li>MKTF-09</li> </ul>	• MKTF-15
<ul> <li>MKTF-04</li> </ul>	<ul> <li>MKTF-10</li> </ul>	<ul> <li>MKTF-16</li> </ul>
<ul> <li>MKTF-05</li> </ul>	<ul> <li>MKTF-11</li> </ul>	<ul> <li>MKTF-17</li> </ul>
<ul> <li>MKTF-06</li> </ul>	<ul> <li>MKTF-12</li> </ul>	MKTF-18

<u>These wells will be added to the Facility Wide Ground Water Monitoring Plan</u> (FWGWMP) for 2014. <u>Sampling/inspection</u> frequency will be on a quarterly basis and sampling will be analyzed for VOCs, SVOCs, Water Quality Control Commission (WQCC) metals (total and dissolved), gasoline range organics (GRO), diesel range organics (DRO) extended, and major cations and anions. Sampling will be conducted for four <u>(4)</u> consecutive sampling events in order to establish a base line before Western may propose to modify the sampling frequency. <u>Samples will not be collected from</u> <u>monitoring wells that have a measureable separate phase hydrocarbon (SPH) level.</u>

B. Gallup Refinery proposes the following changes:
 OW-1 and OW-10: Change the guarterly analytical sampling analytes to: VOCs, and
 Major Cations/Anions, Arsenic and Uranium. Annual sampling requirement will not
 change. Recent installations of wells listed in 5.3.1A above are all up-gradient from these
 two wells. There are also the boundary wells which are monitored annually.

	Formatted: Font: Calibri, 11 pt		
1	Deleted: one		
į.	Formatted: Font: Calibri, 11 pt		
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inde at: 0.5"			
ļ	Formatted: Font: Calibri, 11 pt		
//	Formatted: Font: Calibri, 11 pt		
	Formatted: Line spacing: single, Bulleted + Level: 1 + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"		
A	Formatted: Number of columns: 3		
1	Formatted: Font: Not Bold		
4	Formatted: Font: Calibri, 11 pt, Not Bold		
	Formatted: Font: Not Bold		
,	Formatted: Normal, Line spacing: single		
1	Formatted: Section start: Continuous		
1	Formatted: Font: Calibri		
į.	Formatted: Normal, Indent: Left: 0.5"		
	<b>Deleted:</b> OAPIS-1 (SWMU 14-2) resulting from the Investigation Work Plan Solid Waste Management Unit (SWMU) No. 1 Aeration Basin and SWMU No. 14 Old API Separator. OAPIS-1 will be added to the annual Facility Wide Ground Water Monitoring Plan		
	Formatted: Font: Calibri, 11 pt		
Ì	Deleted: 3		
Ì	Formatted: Font: Calibri, 11 pt		
Ì	Formatted: Font: Calibri, 11 pt		
{	Formatted: Font: Calibri, 11 pt		
1	<b>Deleted:</b> This new well is scheduled to be surveyed by a licensed professional surveyor for horizontal and vertical positions of the top of the well casing and ground surface and will be added to Figure 3. Horizontal positions will be measured to		
	the nearest 0.1 foot and vertical elevations [10]		
 	Formatted: Font: Calibri, 11 pt		
	Formatted: Font: Calibri, 11 pt		
	Formatted [[11]		
,    - 	Formatted: Indent: Left: 0.5"		
	Deleted: to c		
	Formatted: Font: Calibri, 11 pt		
1	Formatted: Font: Calibri, 11 pt		

 Facility Wide Ground Water Monitoring Work Plan – 2013 Updates

 Gallup Refinery

 92 Giant Crossing Road

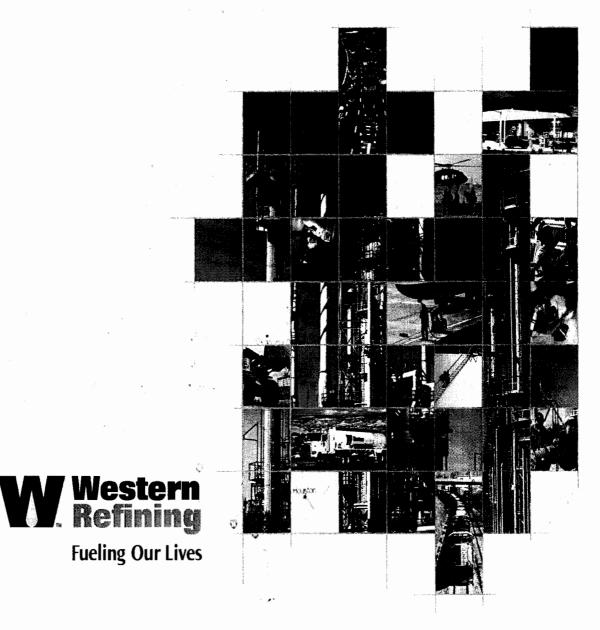
 Gallup, NM 87301



Formatted: Font: Calibri

Formatted Table

<u>C.</u>	BW-1A, BW-1B, BW-1C, BW-2A, BW-2B, BW-2C, BW-3A, BW-3B, BW-3C:	<b>.</b>	Formatted: Nu
	Change to RCRA metals (total and dissolved) and drop SVOCs. Only the analyte bis-2-	*	Numbering Style Alignment: Left at: 0.5"
	ethylhexylphthalate was detected (Possible lab contaminant).	``	Formatted: Inc
<u>D.</u>	OW-11: Reduce analyses to only major cations/anions and WQCC Metals (total and dissolved). No detections of VOCs or SVOCs with exception of single hit of bis-2-	<b>*</b>	Formatted: Nu Numbering Style Alignment: Left at: 0.5"
	ethylhexylphthalate (possible lab contaminant).		Formatted: Inc
F	OW-50 and OW-52: Reduce analyses to only VOCs and WQCC metals (total and	•	Deleted: cal me GWM-2 and GWM Method 8260B fo
<u>L.</u>			Formatted: Fo
E	dissolved). SMW-2: Reduce analyses to only VOCs and WQCC Metals.	•	Formatted: Nu Numbering Style Alignment: Left at: 0.5"
<u>r.</u>	SWW-2. Reduce analyses to only vocs and week metals.	1. N	Formatted: Inc
<u>G.</u>	RW-1, RW-2, RW-5 and RW-6: Remove from annual sampling schedule as these wells are hydrocarbon recovery wells. These wells will continue to be inspected on a quarterly	<	Formatted: Nu Numbering Style Alignment: Left at: 0.5"
	<u>basis.</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Formatted: Lis single, No bulle
			E


 <u>H.</u> PW-3: Return to 3 year sampling schedule beginning in 2016. No VOCs or SVOCs have been detected since August 2008 to present.

These additions and revisions have been incorporated into Table 1: Ground Water Monitoring Schedule in Appendix D pending approval from NMED and OCD.

Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inden at: 0.5"	nt
Formatted: Indent: Left: 0.5"	$\square$
-	
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inden at: 0.5"	nt
Formatted: Indent: Left: 0.5"	$\overline{}$
Deleted: cal method for organic constituents for GWM-2 and GWM-3 from Method 8021B to Method 8260B for a more detailed list of VOCs.	or
Formatted: Font: Calibri, 11 pt	)
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inder at: 0.5"	nt
Formatted: Indent: Left: 0.5"	
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inder at: 0.5"	nt
Formatted: List Paragraph, Line spacing: single, No bullets or numbering	
Formatted: Numbered + Level: 1 + Numbering Style: A, B, C, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Inder at: 0.5"	nt
Formatted: Indent: Left: 0.5"	
Formatted: Font: Calibri, 11 pt	
Formatted: Indent: Left: 0.5"	
Deleted: ¶ Wells OW-13, OW-14, OW_29, OW-30 and OW- WQCC metals (total and dissolved) analysis will be added for sampling per NMED's Comment 12, Approval With Modifications Annual Ground Wa Monitoring Report: Gallup Refinery 2010, Revisi 1, dated December 12, 2012 to monitor wells up gradient from NAPIS-1, NAPIS-2, NAPIS-3, KA-3, 1 , OW-10 and OW-11 for metals. ¶ ¶ Influent to AL-1, Influent to AL-2, effluent from A to EP-1 and the NAPIS effluent have all been	be on OW- AL-2
removed from the Outfall section. The influent a effluents are now routed to the new waste wate treatment plant via the NAPIS and the level	

Deleted:

# Facility Wide Ground Water Monitoring Work Plan – 2013 Updates





Submitted: March 31, 2014



### CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

William C. McClain, Jr. Refinery Manager

McClairf. March 31,2014

Prepared by:

Chervl Johnson **Environmental Specialist** 

Reviewed by:

Ed Riege, M.P.H. **Environmental Manager** 



# **Executive Summary**

Western Refining conducts quarterly, semi-annual and annual ground water monitoring at its Gallup facility on a site wide basis. The Ground Water Monitoring Work Plan (Plan) documents any additions or revisions in ground water monitoring and also details the sampling procedures used.

This Plan divides the facility into two areas for periodic monitoring: the East Side and the West Side. The East Side includes the refinery complex, recovery wells from which small quantities of free product has been continuously removed, and the northeast set of observation wells and monitoring wells. The West Side includes a cluster of wells in and around the waste water treatment system, boundary wells, shallow monitoring wells in and around land treatment areas, and produced/production water wells. This plan also includes sampling requirements for aeration lagoons, influents, and evaporation ponds located on the West Side. Designated wells and sample points in these two areas will be monitored on a quarterly, semi-annual and annual basis following the procedures presented in this Plan.

Gallup Refinery will periodically review facility-wide monitoring data, and assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented annually for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target chemicals to be analyzed.

We have created a monitoring work plan with quality assurance practices and controls as well as standard procedures for sampling, and a schedule of activities to monitor ground water at select locations of the Gallup Refinery. The persons responsible for the implementation and oversight of this plan are:

### **Refinery Manager**

• William C. McClain, Jr.



**Environmental Manager** 

• Ed Riege

**Environmental Specialist** 

- Cheryl Johnson
- Alvin Dorsey



# TABLE OF CONTENTS

Executive Summary	iii
1.0 Introduction	1
2.0 Background Information	
2.1 Historical and current site uses	
2.2 Potential Receptors	7
2.3 Type and characteristics of the waste and contaminants and any known and	1
possible sources	8
2.4 Summary of contaminant releases that could contribute to possible ground	water
contamination	10
3.0 Site Conditions	14
3.1 Current site topography and location of natural and manmade structures	14
3.2 Drainages	
3.3 Vegetation types	14
3.4 Erosion features	-
3.5 Subsurface conditions	15
3.5.1 Soil types and associations	15
3.5.2 Stratigraphy	16
3.5.3 Presence and flow direction of ground water	16
4.0 Investigation Methods	17
4.1 Ground water Sampling Methodology	17
4.1.1 Well Gauging	17
4.1.2 Well Purging	18
4.2 Ground water Sample Collection	18
4.2.1 Sample Handling	19
4.3 Analytical Methods	20
4.4 Quality Assurance Procedures	20
4.4.1 Equipment Calibration Procedures and Frequency	20
4.4.2 Field QA/QC Samples	21
4.4.3 Laboratory QA/QC Samples	21
4.4.4 Laboratory Deliverables	21
4.4.5 Review of Field and Laboratory QA/QC Data	22
4.4.6 Blanks, Field Duplicates, Reporting Limits and Holding Times	23
4.4.7 Representativeness and Comparability	
4.4.8 Laboratory Reporting, Documentation, Data Reduction, and Corrective	Action
	25
5.0 Monitoring and Sampling Program	25
5.1 East Side	
5.1.1 Sampling Locations	26



5.2 West Side	27
5.2.1 Sampling Locations	27
5.3 Monitoring Program Revisions	
5.3.1 Request for Modifications to Sampling Plan	

### **List of Appendices**

Appendix A: Approval with Modifications, 9-24-12, from NMED - HWB

Appendix B: Gallup Field Sampling Collection and Handling Standard

Appendix C: Well Data Tables, C-1, C-2, C-3

Appendix D: 2014 Ground Water Monitoring Schedule

Appendix E: MKTF-1 through MKTF-18 Well Logs and Hall Laboratory Analysis

### **List of Figures**

- Figure 1: Regional Map
- Figure 2: Topographic Map
- Figure 3: Location of Wells
- Figure 4: Generalized Relationship of Soils
- Figure 5: Map of Ground Water Flow Sonsela
- Figure 6: Map of Ground Water Flow Chinle



# List of Acronyms

AL	Aeration Lagoon
API	American Petroleum Institute
ВМР	Best Management Practices
BS	Blank Spike
BSD	Blank Spike Duplicate
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CFR	Code of Federal Regulations
DQO	Data Quality Objective
DRO	Diesel Range Organics
DTB	Depth to Bottom
DTW	Depth to Water
EP	Evaporation Pond
EPA	Environmental Protection Agency
FT.	Foot
FWGWMP	Facility Wide Ground Water Monitoring Plan
FWGWMP GPM	Facility Wide Ground Water Monitoring Plan Gallons per minute
GPM	Gallons per minute
GPM GRO	Gallons per minute Gasoline Range Organics
GPM GRO HNO3	Gallons per minute Gasoline Range Organics Nitric Acid
GPM GRO HNO3 HWB	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau
GPM GRO HNO3 HWB IDW	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste
GPM GRO HNO3 HWB IDW LDU	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit
GPM GRO HNO3 HWB IDW LDU LTU	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit Land Treatment Unit
GPM GRO HNO3 HWB IDW LDU LTU ML	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit Land Treatment Unit Milliliter
GPM GRO HNO3 HWB IDW LDU LTU ML MCL	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit Land Treatment Unit Milliliter Maximum Contaminant Level
GPM GRO HNO3 HWB IDW LDU LTU ML MCL MS	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit Land Treatment Unit Milliliter Maximum Contaminant Level Matrix Spike
GPM GRO HNO3 HWB IDW LDU LTU ML MCL MS MSD	Gallons per minute Gasoline Range Organics Nitric Acid Hazardous Waste Bureau Investigation Derived Waste Leak Detection Unit Land Treatment Unit Milliliter Maximum Contaminant Level Matrix Spike Matrix Spike Duplicate



# List of Acronyms – Continued

NAPIS	New American Petroleum Institute Separator
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NOI	Notice of Intent
OAPIS	Old American Petroleum Institute Separator
ОВ	Observation Well
OCD	Oil Conservation Division
PPE	Personal Protective Equipment
РРМ	Parts per million
PSTB	Petroleum Storage Tank Bureau
PW	Process Well
QA	Quality Assurance
QC	Quality Control
RW	Recovery Well
RCRA	Resource Conservation and Recovery Act
SIC	Standard Industrial Classification
SOP	Standard Operating Procedure
SPH	Separate Phase Hydrocarbon
SVOC	Semi-volatile Organic Compound
SWMU	Solid Waste Management Unit
SWPP	Storm Water Pollution Prevention Program
тос	Total Organic Content
VOC	Volatile Organic Compound
WQCC	Water Quality Control Commission
WWTP	Waste water treatment plant



# **1.0 Introduction**

This Facility-Wide Ground Water Monitoring Work Plan (Plan) has been prepared for the implementation of a ground water monitoring program at the Gallup Refinery owned by Western Refining ("Gallup Refinery" or "Facility").

### **1.1 Scope of Activities**

This Plan has been prepared to collect data that will be used to characterize the nature and extent of potential impacts to ground water at the Gallup Refinery. The monitoring plan is also designed to make the facility quickly aware of any levels of contaminants that exceed compliance standards.

This Plan divides the facility into two areas for periodic monitoring: the East Side and the West Side. The East Side includes the refinery complex, recovery wells from which small quantities of free products have been continually removed, and the northeast set of observation wells and monitoring wells. The West Side includes a cluster of wells in and around the waste water treatment system, boundary wells, shallow monitoring wells in and around land treatment areas, and produced/production water wells. This plan also includes sampling requirements for aeration lagoons, influents, and evaporation ponds located in the West Side. Designated wells and sample points in these two areas will be monitored on a quarterly, semi-annual and annual basis following the procedures presented in this Plan.

Gallup Refinery will periodically review facility-wide monitoring data, and assess the monitoring program presented in this Plan. Annual revisions to the Plan will be presented for agency review and approval. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target chemicals to be analyzed.



### **1.2 Facility Ownership and Operation**

This Plan pertains to the Western Refining Southwest Inc., Gallup Refinery located at Exit 39 on Interstate I-40. This refinery is known as the Gallup Refinery and is located at Jamestown, New Mexico, approximately 17 miles east of Gallup. Figure 1 shows the regional location of the Gallup Refinery.

The owner is:

	Western Refining 123 W. Mills Avenue El Paso, TX 79901	(Parent Corporation)
Operator:	Western Refining Southwest Inc 92 Giant Crossing Road Gallup, New Mexico 87301	(Postal Address)
	Western Refining Southwest Inc I-40, Exit 39 (17 Miles East of Gallup, NI Jamestown, New Mexico 87347	(physical address) M)

The following regulatory identification and permit governs the Gallup Refinery:

- SIC code 2911 (petroleum refining) applies to the Gallup Refinery
- U.S. EPA ID Number NMD000333211
- OCD Discharge Case Number AP-111.

The facility status is corrective action/compliance. Quarterly, semi-annual and annual ground water sampling is conducted at the facility to evaluate present contamination.

The refinery is situated on an 810 acre irregular shaped tract of land that is substantially located within the lower one quarter of Section 28 and throughout Section 33 of Township 15 North, Range 15 West of the New Mexico Prime Meridian. A small component of the property lies within the northeastern one quarter of Section 4 of Township 14 North, Range 15 West. Figure 2 is a topographic map showing the general layout of the refinery in comparison to the local topography.



## 2.0 Background Information

#### 2.1 Historical and Current Site Use

Built in the 1950's, the Gallup Refinery is located within a rural and sparsely populated section of McKinley County in Jamestown, New Mexico, 17 miles east of Gallup, New Mexico. The setting is a high desert plain on the western slope of the Continental Divide. The nearest population centers are the Pilot (formerly Giant) Travel Center refueling plaza, the Interstate 40 highway corridor, and a small cluster of residential homes located on the south side of Interstate 40 approximately 2 miles southwest of the refinery (Jamestown). The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at a density of less than six cattle or 30 sheep per section.

The refinery primarily receives crude oil via two 6 inch diameter pipelines; two pipelines from the Four Corners Area enter the refinery property from the north. In addition, the refinery also receives natural gasoline feed stocks via a 4-inch diameter pipeline that comes in from the west along the Interstate 40 corridor from the Conoco gas plant. Crude oil and other products also arrive at the site via railroad cars. These feed stocks are then stored in tanks until refined into products.

The Gallup Refinery is a crude oil refining and petroleum products manufacturing facility. The Standard Industrial Classification (SIC) code is 2911 and the North American Industry Classification Code (NAIC) is 32411. There are no organic chemicals, plastics, or synthetic fibers manufactured that contribute to our process flow of waste water. We do not manufacture lubricating oils.

The refinery incorporates various processing units that convert crude oil and natural gasoline into finished products. These units are briefly described as follows.

• <u>Crude Distillation Unit</u> - separates crude oil into various fractions; including gas, naphtha, light oil, heavy oil, and residuum.



- <u>Fluidized Catalytic Cracking Unit (FCCU)</u> dissociates long-chain hydrocarbon molecules into smaller molecules, and essentially converts heavier oils into naphtha and lighter oils.
- <u>Alkylation Unit</u> combines specific types of hydrocarbon molecules into a high octane gasoline blending component.
- <u>Reforming Unit</u> breaks up and reforms low octane naphtha molecules to form high octane naphtha.
- <u>Hydro-Treating Unit</u> removes undesirable sulfur and nitrogen compounds from intermediate feed stocks, and also saturates these feed stocks with hydrogen to make diesel fuel.
- <u>Isomerization Unit</u> converts low octane hydrocarbon molecules into high octane molecules.
- <u>Treater Unit</u> remove impurities from various intermediate and blending feed stocks to produce finished products that comply with sales specifications.
- <u>Ammonium Thiosulfate Unit</u> accepts high H2S and ammonia containing gas streams from the Amine and the Sour Water Stripper units, and converts these into a useful fertilizer product, ammonium thiosulfate.
- <u>Sulfur Recovery Unit</u> converts and recovers various sulfur compounds from the gases and liquids produced in other processing units to create a solid elemental sulfur byproduct. This unit only operates when the ammonium thiosulfate unit is inoperable or cannot handle incoming loads.

As a result of these processing steps, the refinery produces a wide range of petroleum products including propane, butane, unleaded gasoline, diesel, and residual fuel. In addition to the aforementioned processing units, various other equipment and systems support the operation of the refinery and are briefly described as follows.

Storage tanks are used throughout the refinery to hold and store crude oil, natural gasoline, intermediate feed stocks, finished products, chemicals, and water and are all located above ground. Capacity of these tanks range in size from 80,000 barrels to less than 1,000 barrels.

Pumps, valves, and piping systems are used throughout the refinery to transfer various liquids among storage tanks and processing units. A railroad spur track and a railcar loading rack are



used to transfer feed stocks and products from refinery storage tanks into and out of railcars. Several tank truck loading racks are used at the refinery to load out finished products and also receive crude oil, other feed stocks, additives, and chemicals.

Gasoline is delivered to the Pilot Travel Center via tanker truck. An underground diesel pipeline exits between the refinery and the Pilot Travel Center. As a result of an off-refinery release, the pipeline was purged of product, filled with nitrogen and temporarily placed out of service. Gallup Refinery worked with the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) and the New Mexico Oil Conservation Division (NMED-OCD) to place this line back in service. In 2013 the underground diesel line from Gallup Refinery to the Pilot Travel Center was replaced. The replaced line runs above ground from the marketing area of the refinery for approximately 150 feet and continues underground to the Pilot Travel Center. The diesel line was commissioned and put back in service on February 3, 2014.

A firefighting training facility is used to conduct employee firefighting training. Waste water from the facility, when training is conducted, is pumped into a tank which is then pumped out by a vacuum truck. The vacuum truck pumps the oily water into a process sewer leading to the New API Separator (NAPIS).

The process waste water system is a network of curbing, paving, catch basins, and underground piping used to collect waste water from various processing areas within the refinery. The waste water effluent then flows into the equalization tanks and the NAPIS where the oil is separated from water based on the principle that, given a quiet surface, oil will float to the water surface where it can be skimmed off. The skimmed slop is passed to a collection chamber where it is pumped back into the refinery process. The clarified water is routed to the new waste water treatment plant (WWTP) where benzene is removed and the treated water flows into the new pond STP-1. STP-1 consists of two bays, north and south and each bay is equipped with five aerators per bay. Effluent from STP-1 then flows into Evaporation Pond 2 and gravitated to the rest of the ponds.

5



During episodes of unit upsets or major storm events, the waste water is held in one of the three equalization tanks, T-35, T-27 and T-28 which are used to handle large process and storm water flows allowing the flow to the NAPIS to be controlled. These tanks are also used to store waste water if problems are encountered with the downstream equipment, i.e., NAPIS and the WWTP.

The new WWTP was completed and put online in May of 2012 which resulted in the intermittent use of the benzene strippers during this period. In November of 2012, the benzene strippers were taken off line permanently and by January 2013, the benzene strippers were permanently dismantled and removed.

The storm water system is a network of valves, gates, berms, embankments, culverts, trenches, ditches, natural arroyos, and retention ponds that collect, convey, control, and release storm water that falls within or passes through refinery property. Storm water that falls within the processing areas is considered equivalent to process waste water and is sent to tanks T-35, T-27 and T-28 when needed before it reaches the NAPIS, WWTP, STP-1 and into Evaporation Pond 2 where flow is gravitated to the rest of the ponds. Storm water discharge from the refinery is very infrequent due to the arid desert-like nature of the surrounding geographical area.

At the evaporation ponds, waste water is converted into vapor via solar and mechanical windeffect evaporation. No waste water is discharged from the refinery to surface waters of the state.

The Gallup Refinery currently operates under the Multi-Sector Permit 2008 (MSGP-2008). Gallup Refinery submitted a new Notice of Intent (NOI) for coverage under the new MSGP. The refinery maintains a Storm Water Pollution Prevention Plan (SWPPP) that includes Best Management Practices (BMPs) for effective storm water pollution prevention. The refinery has constructed several new berms in various areas and improved outfalls (installed barrier dams equipped with gate valves) to minimize the possibility of potentially impacted runoff leaving the refinery property.



#### **2.2 Potential Receptors**

Potential receptors at the facility also include those that may arise from future land uses. Currently, these include on-site workers, nearby residents, wildlife, and livestock.¹ The major route to exposure of humans would be from contaminants reaching a drinking water well. Other routes could be from showering, cooking, etc. with contaminated ground water, raising crops and vegetables with contaminated ground water, or getting exposed to or fishing in surface water that has commingled with shallow ground water. Exposure can also occur through contact with soils and/or plants that have become contaminated themselves through contact with contaminated ground water. However, drinking water wells remain the primary route of possible exposure.

At this time, the nearest drinking water wells are located on-site at the southwest areas of the facility, at depths of approximately 3000 feet which are identified as process or production (PW) wells. These wells are designated as PW-2, PW-3 and PW-4 (See Figure 3 for location). These wells are operated by the facility to provide the refinery's process water, drinking water to nearby refinery-owned houses, to the refinery itself, and to the Pilot Travel Center. PW-2 and PW-4 are sampled every three years and PW-3 is on an annual sampling schedule which began in 2009 due to the detection of 2-methylnaphthalene and phenol during the 2007 annual sampling event conducted in January 2008. Annual sampling results from 2009 through 2013 have indicated no detection levels of volatile organic compounds (VOCs) or semi-volatile organic compounds (SVOCs). PW-3 sampling continues on an annual basis and Western has requested that this well be placed back on a 3 year schedule in Section 5.3.1H.

Other than the on-site wells, there is no known drinking water wells located within a 4-mile radius of the site. The nearest drinking water wells that could be used by off-site residents are located to the northwest of the site at a distance slightly greater than 4-miles located within the Navajo community of Iyanbito (shown on the USGS Topographical Map - Gallup Quadrangle

¹ Note: There is extensive and regular patrolling by security personnel of the facility which operates 24hours – therefore, we can discount the possibility of an inadvertent or deliberate intruder becoming exposed to contamination in groundwater that has reached the surface in some form.



(Revised 1980).) These wells are northwest of the South Fork of the Puerco River which heads towards the southwest from immediately north of the facility. As the shallowest ground water will generally flow in the direction of surface water flow, any possible shallow ground water contamination that left the facility either now or in the future would flow towards the southwest after leaving the facility and away from the community of Iyanbito. The Cibola National Forest lies in the south-east direction and there are no wells or residents in this protected area. Boundary monitoring wells along the southwest to northwest perimeter of the facility have not shown any evidence of contaminants in the wells except for BW-3B which had a detection of bis(2-ethylhexyl)phthalate in 2009, BW-3C in November 2011 and BW-1C in September 2013.

Artesian conditions at some locations of the site lead to the possibility of ground water emerging onto the surface and thus being able to affect wildlife. No surface water on the site is used for human consumption or primary contact, such as immersion, or secondary contact, such as recreation. The man-made ponds on the site are routinely monitored and are a part of this Plan. Therefore, if they are in contact with shallow ground water that has exhibited elevated levels of contaminants, the Plan will detect any commingling of ground water and surface waters.

Fluctuating ground water elevations can smear contaminants into subsurface soil and rocks, and there is a possibility that plant roots could reach such contaminated soils and bio-concentrate contaminants creating another route of exposure to potential receptors, such as birds and animals that eat the plants. No food crops are currently grown on the site.

# 2.3 Type and characteristics of the waste and contaminants and any known and possible sources

The types of waste likely include – volatile and semi-volatile organic compounds, primarily hydrocarbons, but could include various other industrial chemicals such as solvents; acids; spent caustic solutions; and heavy metals present in spent chemicals and waste water. These wastes could be in the form of waste water, spent chemicals destined for off-site shipping and disposal packed in drums, sludge, and dry solids. Dry wastes could stem from wind-blown metallic



powders used as catalysts, and regular municipal solid wastes stored in covered containers destined for municipal landfills.

Most of the wastes and contaminants that could possibly reach ground water have the characteristic that they would biodegrade and naturally attenuate. However, any heavy metals present in dirt and sludge could possibly leach into ground water and would not attenuate. There is a possibility also that certain long-lived chemicals would not biodegrade, or, if they did, it would be at a very slow pace. Possible sources include leaks from buried pipes, tanks, surface spills, and historical dumping of wastes in remote areas of the site.

All above-ground large tanks have leak detection or equivalent systems, such as radar gauges. Pumps that could leak hydrocarbons are within containment areas, and all tanks are located inside earthen bermed areas to contain spills. The NAPIS has double walls and a leak detection system installed.

Similarly, surface impoundments can serve as a source of possible ground water contamination. In the past, waste water from the railroad loading rack flowed to a settling and separation lagoon south of the rack and flow exited at the north end where water leaving the lagoon was distributed across a flat open site known as the fan-out area. The free flow of liquids led to subsurface soil contamination. This area has been identified as SWMU No. 8 and has recently been cleaned up for a corrective action complete with controls status. Disposal of waste water into open fields is not practiced at the Gallup Refinery.

There are fourteen Sold Waste Management Units (SWMU) identified at the Gallup Refinery, and one closed land treatment Area.



#### RCRA (Resource Conservation and Recovery Act) Regulated Units

• Land Treatment Unit (LTU)

#### <u>SWMUs</u>

- SWMU 1 Aeration Basin
- SWMU 2 Evaporation Ponds
- SWMU 3 Empty Container Storage Area
- SWMU 4 Old Burn Pit
- SWMU 5 Landfill Areas
- SWMU 6 Tank Farm
- SWMU 7 Fire Training Area
- SWMU 8 Railroad Rack Lagoon
- SWMU 9 Drainage Ditch and the Inactive Land farm
- SWMU 10 Sludge Pits
- SWMU 11 Secondary Oil Skimmer
- SWMU 12 Contact Wastewater Collection System
- SWMU 13 Drainage Ditch between North and South Evaporation Ponds
- SWMU 14 API Separator

Existing ground water monitoring wells effectively surround all of these SWMUs.

# 2.4 Summary of contaminant releases that could contribute to possible ground water contamination

Spills and leaks are known to have occurred on the site in various locations. Although most hydrocarbons are rapidly picked up for recovery and contaminated soil is removed, some of the liquids present in a spill enter the subsurface. With precipitation, there is a possibility that some of the contaminants could leach and reach ground water.

Separate Phase Hydrocarbons (SPH) floating on shallow ground water has been found at the northeast end of the facility. A series of recovery wells were installed and SPH has been pumped out for several years. Recovery through hand-bailing continues on a quarterly basis indicating that the volume of SPH has continued to drop substantially from year to year in several of these recovery wells. In 2013, only Recovery Well (RW-1) had measureable levels of hydrocarbons. Trace levels of benzene have also been found in the wells in this area possibly linked to past spills. Recovery wells are listed as follows:

## Western Refining

#### **Recovery Wells**

•	RW-1	•	RW-5
•	RW-2	•	RW-6

Years ago a small tank that held Methyl Tert Butyl Ether (MTBE) leaked and created a plume of MTBE in the shallow ground water at the northeast end of the refinery. This tank is no longer in service and was removed. MTBE has not been used at the refinery since April 2006. Several monitoring wells were installed at various depths to monitor SPH and MTBE contaminant plumes from historical contamination. These observation wells (OW) are located downstream on the northeast section of the plant and are designated as follows.

### **Observation Wells**

•	OW-29	•	OW-14
---	-------	---	-------

- OW-30
  - OW-13 OW-52

A unit at the southwest end of the facility that is used to recover and recycle oil back into the process has also – through leakage and spills – caused some MTBE and hydrocarbon contamination in shallow ground water. This unit is known as the NAPIS and was put into service in October 2004. The NAPIS has one up-gradient well NAPIS-1, located on the east side and three down-gradient shallow monitoring wells, NAPIS-2, NAPIS-3 and KA-3 which are located along the west side.

OW-50

The Aeration Basin, which is designated as SWMU No. 1 in the facility's RCRA Post-Closure Care Permit includes three cells, known as AL-1, AL-2 and holding pond 1 which is currently referred to as EP-1, although it is not an evaporation pond and is not part of the area covered by SWMU No. 2 – Evaporation Ponds. Western has experienced intermittent discharges of oil and oily water into the lagoons and spills to ground surface. Most of these occurrences were the result of unit upsets and or large storm events affecting the old API Separator.



Two ground water monitoring wells (GWM-1, GWM-2 )were installed immediately down gradient of the aeration lagoons in 2004 and 2005 in order to detect potential leakage from the aeration basin. GWM-3 was also installed in 2005 on the northwest corner of pond 1 (EP-1).

Analysis of ground water samples collected at GWM-1 and GWM-2 have indicated several organic constituents at concentrations above the screening levels in ground water which would indicate a potential for historical releases from the lagoons. GWM-2 and 3 upon installation in 2005 were found to be dry. Water was first detected in GWM-2 in the first quarter of 2008 and in GWM-3 in the third quarter of 2010. 24-hour notification of the finding was given to NMED and OCD respectively. Analysis of ground water samples collected from GWM-2 and GWM-3 have detected the presence of several constituents at concentration levels above applicable water quality standards such as fluoride, chloride, nitrates, and sulfates. No VOCs have been detected in GWM-2 or GWM-3.

Quarterly inspections in 2011 and 2012 continued to indicate an increase in measurable water levels in GWM-2 and GWM-3; however water levels began to decrease in late 2012. In 2013 no water was detected in GWM-3. Ground water samples collected have indicated non-detectable and/or concentration levels below the screening levels for BTEX constituents since 2010. Fluoride, chloride and sulfate concentration levels are above the screening levels for years 2010 thru 2013. Method 8260B analysis run on the ground water samples have indicated nondetectable levels for 2013. A request was made to NMED in the 2012 Updates to change analytical requirements from 8021B to 8260B + MTBE for a more detailed list of volatile organic compounds and currently awaiting approval for this change.

Both GWM-2 and GWM-3 have been included in the Aeration Basin Corrective Action Work Plan which began investigative soil and water sampling near the aeration basin in the third quarter of 2012 to support selection of a remedy for SWMU NO. 1 and determine the source of water detected in GWM-2 and GWM-3. Figure 3 shows the location of all of the active monitoring wells on the facility.



In February of 2012, Western submitted a "Revised Investigation Work Plan Solid Waste Management Unit (SWMU) No. 1 Aeration Basin to include sampling of soils and ground water surrounding the Aeration Basin to determine if there has been a release to the environment and to delineate any such release. In addition, information was collected to help determine the source of ground water that had been observed in monitoring wells GWM-2 and GWM-3. The work plan also included SWMU No. 14 Old API Separator soil and ground water sampling. A new well OAPIS-1 (SWMU 14-2) was installed on the northwest corner where the benzene strippers were located on July 17, 2012 by Enviro-Drill Inc. OAPIS-1 (SWMU 14-2) has been added to the 2014 Monitoring Schedule to be sampled on a quarterly basis.

In February of 2013, the influent to the aeration lagoons was routed to the new Waste Water Treatment Plant (WWTP). The aeration lagoons are no longer in service receiving no influent and are being investigated as described above. Pilot sanitary effluent was also routed to the WWTP in June of 2013.

In June of 2013 during a routine inspection a hydrocarbon seep was discovered in an isolated area approximately 100 yards west of Tank 101/102. A series of excavations were completed in the area of the seep including installation of six (6) temporary sumps for weekly hydrocarbon recovery. To date a total of 211,329 gallons of liquid (hydrocarbon and ground water) have been recovered from the site. There were a total of five (5) hand auger and 22 soil borings with temporary well completions completed at the start of the site investigation. An additional 13 soil borings with temporary wells were completed in late 2013 and to date 18 temporary wells have been converted to permanent flush mount and/or stick up monitoring wells. Western continues to further characterize potential source areas, recovery of liquids from the temporary sumps, and additional soil borings/monitoring wells will be installed for characterization and delineation purposes. A copy of the Well Installation (boring logs) are included in this report in Appendix E as well as the professional engineer's survey report. All 18 wells will be added to the 2014 Ground Water Monitoring Schedule (see Appendix D).



## **3.0 Site Conditions**

The Gallup Refinery is located within a rural and sparsely populated section of McKinley County. It is situated in the high desert plain on the western flank of the Continental Divide approximately 17 miles east of Gallup. The surrounding land is comprised primarily of public lands and is used for cattle and sheep grazing at low densities².

## 3.1 Current site topography and location of natural and manmade structures

Local topography consists of a gradually inclined down-slope from high ground in the southeast to a lowland fluvial plain in the northwest. The highest point on refinery property is located at the southeast corner boundary (elevation approximately 7,040 feet) and the lowest point is located at the northwest corner boundary (elevation approximately 6,860 feet). The refinery processing facility is located on a flat man-made terrace at an elevation of approximately 6,950 feet.

### 3.2 Drainages

Surface water in this region consists of the man-made evaporation ponds and aeration basins located within the refinery, a livestock watering pond (Jon Myer's Pond) located east of the refinery, two small unnamed spring fed ponds located south of the refinery, and the South Fork of the Puerco River and its tributary arroyos. The various ponds and basins typically contain water consistently throughout the year. The South Fork of the Puerco River and its tributaries are intermittent and generally contain water only during, and immediately after, the occurrence of precipitation.

### 3.3 Vegetation types

Surface vegetation consists of native xerophytic vegetation including grasses, shrubs, small junipers, and some prickly pear cacti. Average rainfall at the refinery is less than 7 inches per year, although it can vary to slightly higher levels elsewhere in the county depending on elevation.

² See, for example, the web site of McKinley County at <u>http://www.co.mckinley.nm.us/</u>



On alluvial fans on valley sides and drainage ways, the existing vegetation is usually alkali sacaton, western wheatgrass, Indian rice grass, blue grama, bottlebrush squirreltail, broom snakeweed, fourwing saltbush, threeawn, winterfat, mat muhly and spike muhly. On fan remnants on valley sides we usually find blue grama, western wheatgrass, Indian ricegrass, big sagebrush, galleta, bottlebrush squirreltail, fourwing saltbrush, needleandthread, oneseed juniper, sand dropseed, spineless horsebrush, rabbitbrush, and twoneedle pinyon.

#### **3.4 Erosion features**

The impacts of historic overgrazing are visible at the north-side of the facility, in the form of arroyos that formed when surface run-off cut through the ground and washed away soils that were not able to hold water with their ground cover lost to overgrazing. Now that the facility is fenced and no livestock grazing occurs on the site, vegetation has recovered in these areas. With the facility helping to bring back vegetation in its undeveloped areas the formation and deepening of erosion features on its land has decreased.

#### 3.5 Subsurface conditions

#### 3.5.1 Soil types and associations

Most of the soils found at the surface in the locations where wells are located consist of the Mentmore-Gish complex.³ These soils occur in alluvial fans on valley sides and fan remnants on valley sides. The parent material for these soils is slope and fan alluvium derived from sandstone and shale. These are well drained soils with moderately slow (0.2 in/hr) to slow permeability (0.06 in/hr). In this association, the Gish and similar soils make up about 45 percent, the Mentmore and similar soils 35 percent, and minor components 20 percent. These minor components are - Berryhill and similar soils 10 percent, and Anodize and similar soils 10 percent. The typical profile for these soils is -0 to 2 inches fine sandy loam, 2 to 72 inches of various kinds of clay loam.

³ Soil Survey of McKinley County Area, New Mexico, McKinley County and Parts of Cibola and San Juan Counties, Natural Resources Conservation Service (NRCS), US Department of Agriculture, available at - <u>http://soildatamart.nrcs.usda.gov/Manuscripts/NM692/0/McKinley.Area%20NM.pdf</u>



Drill logs for various wells have been provided electronically to the NMED/HWB. From these well logs we can infer that the soils in the subsurface are generally composed of clays starting at the immediate subsurface, interbedded with narrow sand and silt layers. At about 100 to 150 feet, layers of mudstone, sandstone (from the Chinle formation, Petrified Forest group) and siltstone start to appear. Figure 4 shows a generalized relationship of soils in and around the Gallup Refinery.

#### 3.5.2 Stratigraphy

The 810 acre refinery property site is located on a layered geologic formation. Surface soils generally consist of fluvial and alluvial deposits; primarily clay and silt with minor inter-bedded sand layers. Below this surface layer is the Chinle Formation, which consists of low permeability clay stones and siltstones that comprise the shale of this formation. As such, the Chinle Formation effectively serves as an aquiclude. Inter-bedded within the Chinle Formation is the Sonsela Sandstone bed, which represents the uppermost potential aquifer in the region.

The Sonsela Sandstone bed lies within and parallels the dip of the Chinle Formation. As such, its high point is located southeast of the refinery and it slopes downward to the northwest as it passes under the refinery. Due to the confinement of the Chinle Formation aquiclude, the Sonsela Sandstone bed acts as a water-bearing reservoir and is artesian at its lower extremis. Artesian conditions exist through much of the central and western portions of the refinery property.

#### 3.5.3 Presence and flow direction of ground water

Ground water flow within the Chinle Formation is extremely slow and typically averages less than  $10^{-10}$  centimeters per second (less than 0.01 feet per year). Ground water flow within the surface soil layer above the Chinle Formation is highly variable due to the presence of complex and irregular stratigraphy; including sand stringers, cobble beds, and dense clay layers. As such, hydraulic conductivity may range from less than  $10^{-2}$  centimeters per second in the gravelly sands immediately overlying the Chinle Formation up to  $10^{-8}$  centimeters per second in the clay soil layers located near the surface.

16



Shallow ground water located under refinery property generally flows along the upper contact of the Chinle Formation. The prevailing flow direction is from the southeast and toward the northwest. In the past, a subsurface ridge has been identified that was thought to deflect some flow in a northeast direction in the vicinity of the refinery tank farm. This is not clear from the present data.

## 4.0 Investigation Methods

The purpose of this section is to describe the types of activities that will be conducted and the methods that will be used as part of this Plan. Appendix B provides more detailed information on actual sampling procedures that will be used.

### 4.1 Ground water Sampling Methodology

All monitoring wells scheduled for sampling during a ground water sampling event will be sampled within 15 working days of the start of the monitoring and sampling event.

Appendix C contains the well data summary tables for 2013. C-1 provides the annual and quarterly DTW (depth to water) and DTB (depth to bottom) measurements for 2013 as well as corrected water table elevation with respect to wells that have separate phase hydrocarbon levels; C-2 provides the corrected well elevation summary table for 2013 which includes date of establishment, ground elevation, top of casing elevation, well casing stick-up length, well depth, screening levels, and stratigraphic units in which the wells are located. Appendix C-3 includes well elevations for the artesian wells also known as Process or Production wells (PW). Information provided for the artesian wells was gathered from well boring logs. These wells are encased and therefore measurement for depth to bottom was not field verified.

### 4.1.1 Well Gauging

At the beginning of each quarterly, semi-annual, or annual sampling event, all monitoring and recovery wells listed in Appendix D, Ground Water Monitoring Schedule, will be gauged to record the depth to SPH (if present), the DTW and the DTB of the well. The gauging will be performed using an oil/water interface probe attached to a measuring tape capable of recording



measurements to the nearest 0.01 foot. All measurements will be made relative to the same datum for all wells.

Gauging measurements will be recorded on a field gauging form. Data obtained from the gauging will be reported in the annual ground water monitoring report. The data will be used to develop groundwater contour maps and SPH thickness isopleths which will also be included in the annual report.

#### 4.1.2 Well Purging

Each monitoring well will be purged by removing ground water prior to sampling in order to ensure that formation water is being sampled. Generally, at least three well volumes (or a minimum of two if the well has low recharge rate) will be purged from each well prior to sampling. Field water quality measurements must stabilize for a minimum of three consecutive readings before purging will be discontinued. Field water quality measurements will include pH, electrical conductivity, temperature, and dissolved oxygen (DO) %. Field water quality measurement stability will be determined when field parameter readings stabilize to within ten percent between readings for three consecutive measurements. Once the readings are within ten percent, purging will stop and the well is ready for sample collection. The volume of ground water purged, the instruments used, and the readings obtained at each interval will be recorded on the field-monitoring log. Well purging and sampling will be performed using 1 inch x 3 foot disposable polyethylene bailers for ground water sampling and/or appropriately decontaminated portable sampling pumps.

#### 4.2 Ground water Sample Collection

Ground water samples will be obtained from each well within 24 hours of the completion of well purging. Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody (COC) procedures are described in more detail in Appendix B. Decontamination procedures for reusable water sampling equipment are described in Appendix B.

18



All purged ground water and decontamination water from monitoring wells will be drained into the refinery waste water treatment system upstream of the NAPIS. The procedures for disposing materials are described in Appendix B.

Ground water samples intended for metals analysis will be submitted to the laboratory as total metals samples. Ground water samples obtained for dissolved metals analysis will be filtered through disposable filters with a 0.45 micrometers mesh size.

#### 4.2.1 Sample Handling

All sample containers are supplied by the contracted analytical laboratory and shipped to Western in sealed coolers. Chemical preservation is also provided by the laboratory through prepreserved bottle ware. Collection of containerized ground water samples are in the order of most volatile to least volatile, such as: VOCs, SVOCs, metals, phenols, cyanide, sulfate, chloride, and nitrates. Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard COC procedures as detailed in Appendix B will be followed for all samples collected. All samples will be submitted to the laboratory as soon as possible to allow the laboratory to conduct the analyses within the specified method holding times. Details of the general sample handling procedures are provided in Appendix B.

The following shipping procedures will be performed during each sampling event:

- Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage.
- Each cooler or other container will be delivered directly to the analytical laboratory.
- Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- Plastic containers will be protected from possible puncture during shipping using cushioning material.
- The COC form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.



• Signed and dated COC seals will be applied to each cooler prior to transport of samples from the site.

#### 4.3 Analytical Methods

Ground water and surface water samples collected during the monitoring events will be analyzed for the constituents listed in Appendix D. In addition, for various locations the list of metals is modified to either be the Skinner list of the NM Water Quality Control Commission list or RCRA 8 metals list. Appendix D provides a summary of target analytes for each EPA analytical method.

#### **4.4 Quality Assurance Procedures**

Contract analytical laboratories will maintain internal quality assurance programs in accordance with EPA and industry accepted practices and procedures. At a minimum, the laboratories will use a combination of standards, blanks, surrogates, duplicates, matrix spike/matrix spike duplicates (MS/MSD), blank spike/blank spike duplicates (BS/BSD), and laboratory control samples to demonstrate analytical Quality Assurance/Quality Control (QA/QC). The laboratories will establish control limits for individual chemicals or groups of chemicals based on the long-term performance of the test methods. In addition, the laboratories will establish internal QA/QC that meets EPA's laboratory certification requirements. The specific procedures to be completed are identified in the following sections.

#### 4.4.1 Equipment Calibration Procedures and Frequency

The laboratory's equipment calibration procedures, calibration frequency, and calibration standards will be in accordance with the EPA test methodology requirements and documented in the laboratory's quality assurance (QA) and Standard Operating Procedures (SOP) manuals. All instruments and equipment used by the laboratory will be operated, calibrated, and maintained according to the manufacturers' guidelines and recommendations. Operation, calibration, and maintenance will be performed by personnel who have been properly trained in these procedures. A routine schedule and record of instrument calibration and maintenance will be kept on file at the laboratory.



#### 4.4.2 Field QA/QC Samples

Field duplicates and trip blanks may be obtained for quality assurance during sampling activities. The samples will be handled as described in Section 4.4.3.

Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte free de-ionized water placed in an appropriate sample container. Trip blanks will be analyzed at a frequency of one for each shipping event involving twenty or more samples. Generally, a trip blank will only be placed in one of the containers, if more than one container is used to ship the set of samples.

#### 4.4.3 Laboratory QA/QC Samples

Analytical procedures will be evaluated by analyzing reagent or method blanks, surrogates, MS/MSDs, BS/BSDs and/or laboratory duplicates, as appropriate for each method. The laboratory QA/QC samples and frequency of analysis to be completed will be documented in the cited EPA or other test methodologies. At a minimum, the laboratory will analyze laboratory blanks, MS/MSDs, BS/BSDs and laboratory duplicates at a frequency of one in twenty for all batch runs requiring EPA test methods and a frequency of one in ten for non-EPA test methods. Laboratory batch QA/QC samples will be project specific.

### 4.4.4 Laboratory Deliverables

The analytical data package will be prepared in accordance with EPA-established Level II analytical support protocol which will include:

- Transmittal letter, including information about the receipt of samples, the testing methodology performed, any deviations from the required procedures, any problems encountered in the analysis of the samples, any data quality exceptions, and any corrective actions taken by the laboratory relative to the quality of the data contained in the report;
- Sample analytical results, including sampling date; date of sample extraction or preparation; date of sample analysis; dilution factors and test method identification; water sample results in consistent units (milligrams per liter or micrograms per liter (µg/L)); and detection limits for undetected analytes. Results will be reported for all field samples, including field duplicates and blanks, submitted for analysis;



- Method blank results, including reporting limits for undetected analytes;
- Surrogate recovery results and corresponding control limits for samples and method blanks (organic analyses only);
- Laboratory duplicate results for inorganic analyses, including relative percent differences and corresponding control limits;
- Sample COC documentation;
- Holding times and conditions;
- Conformance with required analytical protocol(s);
- Instrument calibration;
- Blanks;
- Detection/quantitative limits;
- Recoveries of surrogates and/or matrix spikes (MS/MSDs);
- Variability for duplicate analyses;
- Completeness;
- Data report formats;

Data deliverables provided by the laboratory that include analysis of organic compounds will also

include the following:

- A cover letter referencing the procedure used and discussing any analytical problems, deviations, and modifications, including signature from authority representative certifying to the quality and authenticity of data as reported;
- A report of sample collection, extraction, and analysis dates, including sample holding conditions,
- Tabulated results for samples in units as specified, including data qualification in conformance with EPA protocol, and definition of data descriptor codes;
- Final extract volumes (and dilutions required), sample size, wet-to-dry weight ratios, and instrument practical detection/quantitative limit for each analyte,
- Analyte concentrations with reporting units identified, including data qualification and a description of the qualifiers,
- Quantification of analytes in all blank analyses, as well as identification of method blank associated with each sample,
- Recovery assessments and a replicate sample summary, including all surrogate spike recovery data with spike levels/concentrations for each sample and all MS/MSD results (recoveries and spike amounts).

#### 4.4.5 Review of Field and Laboratory QA/QC Data

The sample data, field, and laboratory QA/QC results will be evaluated for acceptability with respect to the data quality objectives (DQOs). Each group of samples will be compared with the DQOs and evaluated using data validation guidelines contained in EPA guidance documents:



Guidance Document for the Assessment of RCRA Environmental Data Quality, National Functional Guidelines for Organic Data Review, and Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, and the most recent version of SW-846, and industry-accepted QA/QC methods and procedures.

The laboratory will notify the Gallup Refinery Project Manager of data quality exceptions within one business day of identifying the data quality exception in order to allow for sample reanalysis, if possible. The Gallup Refinery Project Manager will contact NMED within one business day of receipt of laboratory notification of data quality exceptions in order to discuss the implementations and determine whether the data will still be considered acceptable, or if sample re-analysis or re-sampling is necessary.

#### 4.4.6 Blanks, Field Duplicates, Reporting Limits and Holding Times

#### 4.4.6.1 Blanks

The analytical results of field blanks and field rinsate blanks will be reviewed to evaluate the adequacy of the equipment decontamination procedures and the possibility of cross-contamination caused by decontamination of sampling equipment. The analytical results of trip blanks will be reviewed to evaluate the possibility for contamination resulting from the laboratory-prepared sample containers or the sample transport containers. The analytical results of laboratory blanks will be reviewed to evaluate the possibility of contamination caused by the analytical procedures. If contaminants are detected in field or laboratory blanks, the sample data will be qualified, as appropriate.

#### 4.4.6.2 Field Duplicates

Field duplicates will consist of two samples either split from the same sample device or collected sequentially. Field duplicate ground water samples will be collected at a frequency of one per ten regular samples and will be analyzed for the full set of analyses used for the regular sample collected. At a minimum, one duplicate sample per sampling day must always be obtained.



#### 4.4.6.3 Method Reporting Limits

Method reporting limits for sample analyses will be established at the lowest level practicable for the method and analyte concentrations and will not exceed ground water or surface water cleanup standards and screening levels. Detection limits that exceed established standards or screening levels and are reported as "not detected" will be considered data quality exceptions and an explanation for its acceptability for use will be provided.

#### 4.4.6.4 Holding Times

Per EPA protocol the sampling, extraction, and analysis dates will be reviewed to confirm that extraction and analyses were completed within the recommended holding times. Appropriate data qualifiers will be noted if holding times are exceeded.

#### 4.4.7 Representativeness and Comparability

#### 4.4.7.1 Representativeness

Representativeness is a qualitative parameter related to the degree to which the sample data represent the relevant specific characteristics of the media sampled. Procedures will be implemented to assure representative samples are collected and analyzed, such as repeated measurements of the same parameter at the same location over several distinct sampling events. Any procedures or variations that may affect the collection or analysis of representative samples will be noted and the data will be qualified.

#### 4.4.7.2 Comparability

Comparability is a qualitative parameter related to whether similar sample data can be compared. To assure comparability, analytical results will be reported in appropriate units for comparison with other data (past studies, comparable sites, screening levels, and cleanup standards), and standard collection and analytical procedures will be implemented. Any procedure or variation that may affect comparability will be noted and the data will be qualified.

## W Western Refining

#### 4.4.8 Laboratory Reporting, Documentation, Data Reduction, and Corrective Action

Upon receipt of each laboratory data package, data will be evaluated against the criteria outlined in the previous sections. Any deviation from the established criteria will be noted and the data will be qualified. A full review and discussion of analytical data QA/QC and all data qualifiers will be submitted as appendices or attachments to the ground water monitoring reports. Data validation procedures for all samples will include checking the following, when appropriate:

- Holding times
- Detection limits
- Field equipment rinsate blanks
- Field blanks
- Field Duplicates
- Trip blanks
- Reagent blanks

- Laboratory duplicates
- Laboratory blanks
- Laboratory matrix spikes
- Laboratory matrix spike duplicates
- Laboratory blank spikes
- Laboratory blank spike duplicates
- Surrogate recoveries

If significant quality assurance problems are encountered, appropriate corrective action will be implemented. All corrective action will be reported and the corrected data will be qualified.

## 5.0 Monitoring and Sampling Program

The primary objective of ground water monitoring is to provide data which will be used to assess ground water quality at and near the facility. Ground water elevation data will also be collected to evaluate ground water flow conditions. The ground water monitoring program for the facility will consist of sample collection and analysis from a series of monitoring wells, recovery wells, outfalls, and evaporation pond locations.

The monitoring network is divided into two investigation areas (East Side and West Side). The sampling frequency, analyses and target analytes will vary for each investigation area and well/outfall/evaporation pond location. The combined data from these investigation areas will be used to assess ground water quality beneath and immediately down-gradient of the facility, and evaluate local ground water flow conditions.



Samples will not be collected from monitoring wells that have measurable SPH. For wells that are purged dry, samples will be collected if recharge volume is sufficient for sample collection within 24 hours. Wells not sampled due to insufficient recharge will be documented in the field log.

The following sections outline the monitoring program for each investigation area.

#### 5.1 East Side

#### 5.1.1 Sampling Locations

The location of the East Side monitoring and recovery wells are shown in Figure 3. The following wells will be sampled (as described in Appendix D) within the East Side area:

#### **Recovery wells**

٠	RW-1	٠	RW-5
٠	RW-2	٠	RW-6

#### Monitoring wells

•	OW-29	•	OW-14
•	OW-30	•	OW-50
•	OW-13	•	OW-52

#### 5.2 West Side

#### 5.2.1 Sampling Locations

The locations of wells on the West Side are shown in Figure 3. The following wells, outfalls, and ponds will be sampled (as described in Appendix D, Table 1) within the West Side area. (Note: these outfalls are from one section of the waste water treatment system to another – they do not discharge to any location outside the facility.)



#### Monitoring wells

- NAPIS 1
- NAPIS 2
- NAPIS 3
- KA-3
- GWM-1
- GWM-2
- GWM-3
- OAPIS-1
- SMW-2
- SMW-4

#### New Wells

- <u>MKTF-01</u>
- <u>MKTF-02</u>
- <u>MKTF-03</u>
- <u>MKTF-04</u>
- <u>MKTF-05</u>
- MKTF-06

#### **Outfalls**

- Influent to EP-2 from STP-1
- Boiler Water Inlet to EP-2

#### **Ponds**

- EP-1 EP-5 EP-9 ٠ ٠ ٠ EP-2 EP-6 EP-11 • . EP-3 EP-7 EP-12A • ٠ • EP-4 EP-8 EP-12B • • •
- Any temporary pond containing liquid Containment

#### NAPIS secondary containment (Leak Detection Units -LDU)

- East LDU
- West LDU
- Oil Sump LDU

- MW-1
- MW-2
- MW-4
- MW-5
- OW-1
- OW-10
- OW-11
- OW-12
- BW-1A
- BW-1B

٠

٠

٠

٠

•

٠

MKTF-07

MKTF-08

MKTF-09

MKTF-10

MKTF-11

MKTF-12

- BW-1C
- BW-2A
- BW-2B
- BW-2C
- BW-3A
- BW-3B
- BW-3C
  PW-2
- PW-3
- PW-4
- <u>MKTF-13</u>
- <u>MKTF-14</u>
- <u>MKTF-15</u>
- <u>MKTF-16</u>
- <u>MKTF-17</u>
- <u>MKTF-18</u>

## Western Refining

#### 5.3 Monitoring Program Revisions

Upon review of the analytical results from the monitoring events under this Plan, historic facilitywide monitoring data, available soil boring data, and other related information Western Refining will assess the monitoring program presented in this Plan. Revisions to the Plan, as necessary, will then be presented for agency review and approval on an annual basis. These revisions may include, but not be limited to, a reduction or change in monitoring locations, monitoring frequency, and/or target analytes.

#### 5.3.1 Request for Modifications to Sampling Plan

A. Gallup Refinery has added eighteen (18) new monitoring wells to the sampling plan identified as:

•	MKTF-01	٠	MKTF-07	٠	MKTF-13
٠	MKTF-02	•	MKTF-08	٠	MKTF-14
٠	MKTF-03	٠	MKTF-09	٠	MKTF-15
٠	MKTF-04	٠	MKTF-10	٠	MKTF-16
٠	MKTF-05	٠	MKTF-11	٠	MKTF-17
٠	MKTF-06	٠	MKTF-12	٠	MKTF-18

These wells will be added to the Facility Wide Ground Water Monitoring Plan (FWGWMP) for 2014. Sampling/inspection frequency will be on a quarterly basis and sampling will be analyzed for VOCs, SVOCs, Water Quality Control Commission (WQCC) metals (total and dissolved), gasoline range organics (GRO), diesel range organics (DRO) extended, and major cations and anions. Sampling will be conducted for four (4) consecutive sampling events in order to establish a base line before Western may propose to modify the sampling frequency. Samples will not be collected from monitoring wells that have a measureable separate phase hydrocarbon (SPH) level.

B. Gallup Refinery proposes the following changes:

OW-1 and OW-10: Change the quarterly analytical sampling analytes to: VOCs, and Major Cations/Anions, Arsenic and Uranium. Annual sampling requirement will not change. Recent installations of wells listed in 5.3.1A above are all up-gradient from these two wells. There are also the boundary wells which are monitored annually.



- C. BW-1A, BW-1B, BW-1C, BW-2A, BW-2B, BW-2C, BW-3A, BW-3B, BW-3C:
   Change to RCRA metals (total and dissolved) and drop SVOCs. Only the analyte bis-2ethylhexylphthalate was detected (Possible lab contaminant).
- D. OW-11: Reduce analyses to only major cations/anions and WQCC Metals (total and dissolved). No detections of VOCs or SVOCs with exception of single hit of bis-2-ethylhexylphthalate (possible lab contaminant).
- E. OW-50 and OW-52: Reduce analyses to only VOCs and WQCC metals (total and dissolved).
- F. SMW-2: Reduce analyses to only VOCs and WQCC Metals.
- G. RW-1, RW-2, RW-5 and RW-6: Remove from annual sampling schedule as these wells are hydrocarbon recovery wells. These wells will continue to be inspected on a quarterly basis.
- PW-3: Return to 3 year sampling schedule beginning in 2016. No VOCs or SVOCs have been detected since August 2008 to present.

These additions and revisions have been incorporated into Table 1: Ground Water Monitoring Schedule in Appendix D pending approval from NMED and OCD.



# Appendix A

# **Approval with Modifications**

## Western Refining

#### Appendix A: Approval with Modifications, dated 9-24-12, from NMED - HWB.



SUSANA MARTINE2 Governor

JOHN A. SANCHEZ Lieutenant Governor

#### NEW MEXICO ENVIRONMENT DEPARTMENT

#### Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us



DAVE MARTIN Secretary

BUTCH TONGATE Deputy Secretary

JAMES H. DAVIS, Ph.D. Director Resource Protection Division

#### **CERTIFIED MAIL - RETURN RECEIPT REQUESTED**

September 24, 2012

Mr. Ed Riege Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery Route 3, Box 7 Gallup, New Mexico 87301

#### RE: APPROVAL WITH MODIFICATIONS REQUIREMENT TO RESURVEY GROUNDWATER MONITORING WELLS AND RECOVERY WELLS WESTERN REFINING COMPANY, SOUTHWEST, INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-11-003

Dear Mr. Riege:

The New Mexico Environment Department (NMED) has received Western Refining Company, Southwest Inc., Gallup Refinery's (Permittee) submittal titled, *Requirement to Resurvey Ground Water Monitoring Wells and Recovery Wells* (Report), dated June 12, 2012. NMED has reviewed the Report and hereby issues this Approval with the following modifications.

#### Comment 1

In Comment 3 of NMED's May 18, 2012 Third Notice of Disapproval (NOD), the Permittee was required to verify that all horizontal data from the June 2011 survey was correct and represented the actual locations of the monitoring wells surveyed. The Permittee cross referenced survey data from Sterling & Mataya Engineers collected on May 13, 1991 (May 1991) and data acquired

## Western Refining

Ed Riege September 24, 2012 Page 2 of 3

by Lynn Engineering and Surveying collected on June 21, 2007 (June 2007) to verify the monitoring well locations. Survey data from the May 1991 survey was converted from NAD27 to NAD83; however, the Permittee did not provide conversions for all of the May 1991 survey data. Provide revised coordinate verification worksheets that include all monitoring wells from the May 1991 survey. In addition, there is a typographical error in the reported elevation for the OW-11 monitoring well conversion. The Permittee reports an elevation of 6923.59 feet and the May 1991 reports it as 6923.89 feet. Correct the typographical errors in revised coordinate verification worksheets.

#### Comment 2

In the 2011 Corrected Well Elevation Summary Table – Revision 3 (June 12, 2012), the Permittee did not report a stick-up length measurement for BW-1B in the "2011 Survey Stick-up Length (feet)" column. In addition, the Permittee did not define the asterisk from the OW-1 "2011 Measuring Point Description" column. Define the symbol in the "Notes" section or remove it from the revised data table. The Permittee is reminded that all data tables must be reviewed and corrected for errors prior to submission. Correct the typographical errors and provide a revised data table.

#### Comment 3

Comments 8 and 11 of NMED's September 24, 2012 Disapproval letter for the *Facility-Wide Ground Water Monitoring Work Plan - 2011 Updates* requires the Permittee to resubmit the tables in Appendix C with the approved survey data in the revised Work Plan. The Permittee must review these tables and ensure the correct information from this Report is incorporated into the final version of the tables in the revised Work Plan.

# Western Refining

Ed Riege September 24, 2012 Page 3 of 3

The Permittee must submit the revised data tables, replacement pages, and response letter with the required information addressing all the comments from this Approval with modifications to NMED by October 9, 2012.

If you have questions regarding this letter please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely, John E. Kieling

Chief Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB

- K. Van Horn, NMED HWB
- L. Tsinnajinnie, NMED HWB
- C. Chavez, OCD

T. Larson, Western Refining Company, Gallup Refinery

C. Johnson, Western Refining Company, Gallup Refinery

A. Haines, Western Refining Company, El Paso, Texas

File: Reading File and WRG 2012 File HWB-WRG-11-003



# Appendix B

# Gallup Field Sampling Collection and Handling Standard



### Appendix B: Gallup Field Sampling Collection and Handling Standard Procedures

#### **Field Data Collection: Elevation and Purging**

All facility monitoring wells and recovery wells are gauged as required through the year. Gallup does not have any recovery well pumps that need to be shut off and removed prior to water elevation measurements.

Each monitoring well is field verified with the well number on the well casing or adjacent to the well to ensure that samples are collected at the correct well location. Wells also have a permanent marked reference point on the well casing from which ground water levels and well depths are measured. The portable pump intake is lowered to the midpoint of the listed screened interval for each specific well using the markings identified on the pump hose which are set every ten feet. In wells with dedicated pumps, the pumps have been installed at the midpoint of the screened interval.

All water/product levels are measured to an accuracy of the nearest 0.01 foot using an electrical conductivity based meter, the Heron Instruments 100 ft. DipperT electric water depth tape complying with US GGG-T-106E, EEC Class II. After determining water levels, well volumes are calculated using the appropriate conversion factors for a given well based on its internal diameter. Volume is equal to the height of the liquid column times the internal cross-sectional area of the well.

Generally, at least three well volumes (or a minimum of two if the well has low recharge) are purged from each well prior to sampling. Field water quality parameters measured during purging (pH, electrical conductivity, temperature, and dissolved oxygen), must stabilize to within 10% for a minimum of three consecutive measurements before collection of ground water samples from each well.

Before sample collection can begin, the water collected from each monitoring well must be fresh aquifer water. Well evacuation replaces stagnant well water with fresh aquifer water. The water



level in the well, total depth of well and thickness of floating product (if any) will be measured using the DipperT electric water depth tape. If product is present, a ground water sample is typically not obtained.

If a well is pumped or bailed dry before two or three well volumes can be evacuated, it requires only that sufficient time elapse for an adequate volume of water to accumulate for the sampling event. The first sample will be tested for pH, temperature, specific conductivity and dissolved oxygen (%). The well will be retested for pH, temperature, specific conductivity and dissolved oxygen (%) after sampling as a measure of purging efficiency and as a check on the stability of the water samples over time. All well evacuation information will be recorded in a log book.

Wells MW-1, MW-2, MW-4, MW-5, BW-1C, BW-2A, BW-2B, BW-3B, SMW-4, OW-1, OW-10, OW13, OW14, OW29 and OW30 are each equipped with a dedicated electrical pump. The remaining wells are purged using a portable Grundfos pump. Recovery wells and NAPIS-1, NAPIS-2, NAPIS-3 and KA-3 are hand-bailed as well as GWM1, GWM2, GWM3 and OAPIS-1 is hand-bailed if the presence of water is detected.

Purged well water from wells is collected in fifty-five gallon drums and drained to the process sewer upstream of the NAPIS. The water is treated in the refinery's waste water treatment system.

#### Sampling Equipment at Gallup

The following sampling equipment is maintained at Gallup and used by the sampling personnel:

- Heron Instruments 100 ft. DipperT electric water depth tape complying with US GGG-T-106E, EEC Class II.
- Pall Corporation Acro 50A 0.45 micron disposable filter used with 60 ml. disposable syringes for filtering water in the field.
- YSI pH/Conductivity meter Model 63, calibrated with a one-point, two-point, or threepoint calibration procedure using pH standards of 7, 4 and 10.



- IQ Scientific Instruments, pH/Temperature/Conductivity/ Dissolved Oxygen meter, Model IQ1806LP.
- Grundfos 2-inch pumps with Grundfos 115-volt AC-to-DC converter.

Calibration and maintenance procedures will be performed according to the manufacturer's specifications.

#### **Order of Collection**

Samples will be collected in the order listed below:

Parameter	Bottle Type
VOC, SVOC	40 ml VOA vials, (H2SO4)
TOC	1 liter glass jar, H2SO4
Extractable Organics	1 liter glass jar with Teflon [™] cap
Metals* Total and Dissolved	500 ml, 125 ml plastic, HNO3
Phenols, Cyanide	1 liter glass jar
Chloride, Sulfate, Nitrates	1 liter plastic, no preservative

* Prefiltration bottle for dissolved metals which is subsequently filtered in the field and transferred to a pint plastic bottle with HNO3 preservative.

#### Filtration

Ground water samples are filtered prior to dissolve metals analysis. For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to force the sample water through a 0.45 micron pore filter paper filter into the proper sample bottle to collect dissolved metals samples. Filtration must be performed within two hours of sample collection. Pour the filtrate into a sample bottle containing HNO3 preservative.

For samples destined for total metals analysis, do not filter the sample, and preserve with HNO3 to pH < 2 in the field.

Gallup sampling personnel carry a cell phone when gathering ground water and other water samples. While sampling procedures are generally well known and the appropriate sample



bottles are ordered to match each sampling event, occasional questions do arise from unforeseen circumstances which may develop during sampling. At such times, sampling personnel contact Hall Environmental Analytical Laboratory to verify that sampling is correctly performed.

#### Sample Handling Procedures

At a minimum, the following procedures will be used when collecting samples:

- Neoprene, nitrile, or other protective gloves will be worn when collecting samples. New disposable gloves will be used to collect each sample.
- All samples collected for chemical analysis will be transferred into clean sample containers supplied by the analytical laboratory. The sample container will be clearly marked. Sample container volumes and preservation methods will be in accordance with the most recent standard EPA and industry accepted practices for use by accredited analytical laboratories. Sufficient sample volume will be obtained for the laboratory to complete the method-specific QC analyses on a laboratory-batch basis.
- Sample labels and documentation will be completed for each sample.

Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard chain-of-custody procedures, as described in Section 4.2.1 of this Plan, will be followed for all samples collected. All samples will be submitted to the laboratory to allow the laboratory to conduct the analyses within the method holding times.

#### **General Well Sampling Procedures**

For safety protection and sampling purity, rubber gloves are worn and changed between each activity.

Prepare for sampling event by making out sample bottle labels and have bottles separated into plastic bags for each well to be sampled and placed in an ice chest ready to take into the field. Bring along a note book and sample log. Document weather conditions, sample date and time. Fill in label with location, date, time, analysis, preservative, and your name. Start sampling by adjusting converter speed for each well. Affix sample label and fill bottle according to lab instructions. For samples intended for VOC analysis, use bottles with septa lids, fill bottle to neck



and add final amount of water with cap to form meniscus. Turn bottles upside down to examine for bubbles, if bubbles are detected in the vial, repeat collection procedure. If no bubbles show, secure lids and pack in bubble wrap and place in cooler until sampling is completed.

Decontaminate equipment that is not dedicated for use in a particular well. Refrigerate completed samples until shipping to lab. Be sure to check holding times and arrange for appropriate shipping method. Be sure that the field effort is adequately staffed and equipped. Check QC requirements before departing—QC samples require additional equipment and supplies.

### **Surface Water Sample Collection**

At the evaporation ponds, samples will be collected as a grab sample at the pond edge near the inlets. This location will be noted in the field notebooks. The sampler will avoid disturbing sediment and gently allow the sample container to fill making sure that undue disturbance does not allow volatile contaminants to be lost. The sample bottle will be used for the sample collection in a shallow location near the bank. If a separate bottle and/or bailer are used to refill the sample container, this will be duly noted in the field log books. The decision to use a separate bottle/bailer will be made, if at all, by the sampler and the reasons for doing so will be noted in the field log book.

Upon arrival at the field site, the sampler will set out safety equipment such as traffic cones and signs (if required). The vehicle will be parked a sufficient distance away so as to prevent sample contamination from emissions. Appropriate sample containers and gloves must be used for the type of analyses to be performed.

### **Decontamination Procedures**

The objective of the decontamination procedures is to minimize the potential for crosscontamination **Facility Wide Ground Water Monitoring Work Plan – 2013 Updates** Gallup Refinery 92 Giant Crossing Road Gallup, NM 87301



The majority of field equipment used for ground water sampling will be disposable and, therefore, not require decontamination. In order to prevent cross-contamination, field equipment that comes into contact with water or soil will be decontaminated between each sampling location. The decontamination procedure will consist of washing the equipment with a non-phosphate detergent solution (examples include Fantastik[™], Liqui-Nox[®]), followed by two rinses of distilled water and air dried.

Decontamination water and rinsate will be contained and disposed of the same way as purge water, as described in Section 4.2. Decontamination procedures and the cleaning agents used will be documented in the daily field log.

### **Field Equipment Calibration Procedures**

Field equipment requiring calibration will be calibrated to known standards, in accordance with the manufacturers' recommended schedules and procedures. Calibration checks will be conducted daily and the instruments will be recalibrated if necessary. Calibration measurements will be recorded in the daily field logs.

If field equipment becomes inoperable, its use will be discontinued until the necessary repairs are made. A properly calibrated replacement instrument will be used in the interim. Instrumentation used during sampling events will be recorded in the daily field logs.

### **Collection and Management of Investigation Derived Waste**

Investigation derived waste (IDW) generated during each groundwater sampling event may include purge water, decontamination water, excess sample material, and disposable sampling equipment. All water from all wells generated during sampling and decontamination activities will be temporarily stored in labeled 55-gallon drums until placed in the refinery wastewater treatment system upstream of the API separator. All other solid waste generated during sampling activities (including sampling gloves, tubing, etc) will be disposed of with the Refinery's general municipal waste.

Facility Wide Ground Water Monitoring Work Plan – 2013 Updates Gallup Refinery 92 Giant Crossing Road Gallup, NM 87301



### **Documentation of Field Activities**

Daily field activities, including observations and field procedures, will be recorded using indelible ink on field sampling forms. The original field forms will be maintained at Gallup Refinery. Completed forms will be maintained in a bound and sequentially numbered field file for reference during field activities. The daily record of field activities will include the following information:

- Well ID/ Evaporation pond location/ Outfall
- Date
- Start and finish sampling time
- Field team members, including visitors
- Weather conditions
- Daily activities and times conducted
- Observations
- Record of samples collected with sample designations
- Photo log (if needed)
- · Field monitoring data, including health and safety monitoring (if needed)
- Equipment used and calibration records, if appropriate
- List of additional data sheets and maps completed
- An inventory of the waste generated and the method of storage or disposal
- Signature of personnel completing the field record

### Sample Custody

All samples collected for analysis will be recorded in the field report or data sheets. Chain-ofcustody forms will be completed at the end of each sampling day, prior to the transfer of samples off site, and will accompany the samples during shipment to the laboratory. A signed and dated custody seal will be affixed to the lid of the shipping container. Upon receipt of the samples at the laboratory, the custody seals will be broken, the chain-of-custody form will be signed as received by the laboratory, and the conditions of the samples will be recorded on the form. The original chain-of-custody form will remain with the laboratory. Gallup Refinery will maintain copies of all chain-of-custody forms generated as part of sampling activities. Copies of the chainof-custody records will be included with all draft and final laboratory reports submitted to NMED and OCD.



## Appendix C

## Well Data Tables

Date of Installation	Well ID Number	Inspection or Sample Date	Casing Diameter (Inch)	A Ground Level Elevations (ft)	Well Casing Rim Elevations (ft)	Ground Elevation Inside Steel Sleeve (ft)	Stick-up length (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	A Depth to SPH (ft)	B SPH Thickness (ft)	C Depth to Water (ft)	D = A-C Ground water Elevation (ft)	= 0.8 B + D Corrected Water Table Elevation	Screened Interval Depth Top to Bottom (ft)	2012 Re-Evaluated Stratigraphic unit in which screen exists	Purge Volume = 3 Well Vol (gal)
11/10/2003	BW-1A	9/3/2013	2.00	6,874.10	6,876.68	6,872.30	2.58	6,839.06	37.62	N/A	N/A	DRY	DRY	N/A	30 - 35	Upper Sand	N/A
10/28/2003	BW-1B	9/3/2013	2.00	6,874.13	6,876.94	6,876.26	2.81	6,809.49	67.45	N/A	N/A	DRY	DRY	N/A	54.6 - 64.6	Chinle/Alluvium Interface	N/A
11/10/2003	BW-1C	9/3/2013	2.00	6,873.95	6,876.78	6,872.28	2.83	6,740.39	136.39	N/A	N/A	6.69	6,867.26	N/A	125 -135	Sonsela	63.37
11/10/2003	BW-2A	9/3/2013	2.00	6,871.88	6,874.69	6,870.45	2.81	6,807.12	67.57	N/A	N/A	32.09	6,839.79	N/A	55 - 65	Upper Sand	17.35
10/28/2003	BW-2B	9/3/2013	2.00	6,871.66	6,874.50	6,870.06	2.84	6,782.24	92.26	N/A	N/A	27.92	6,843.74	N/A	80 - 90	Chinle/Alluvium Interface	45.12
10/28/2003	BW-2C	9/3/2013	2.00	6,872.90	6,875.30	6,872.02	2.40	6,722.46	152.84	N/A	N/A	20.39	6,852.51	N/A	139.5 - 149.5	Sonsela	64.77
6/15/2004	BW-3A	9/3/2013	2.00	6,875.94	6,878.39	6,875.08	2.45	6,826.04	52.35	N/A	N/A	DRY	DRY	N/A	39.5 - 49.5	Upper Sand	N/A
10/15/2003	BW-3B	9/3/2013	2.00	6,876.16	6,878.59	6,875.41	2.43	6,809.19	69.40	N/A	N/A	33.01	6,843.15	N/A	63 - 73	Chinle/Alluvium Interface	17.79
7/20/2004	BW-3C	9/3/2013	2.00	6,875.72	6,877.95	6,875.27	2.23	6,723.40	154.55	N/A	N/A	8.15	6,867.57	N/A	144.5 - 154.5	Sonsela	71.59
9/25/1981	OW-11	9/3/2013	4.00	6,922.05	6,923.51	6,921.80	1.46	6,857.72	65.79	N/A	N/A	20.68	6,901.37	N/A	43 - 65	Sonsela	100.14
12/15/1980	OW-12	9/3/2013	4.00	6,939.57	6,940.69	6,939.04	1.12	6,811.84	128.85	N/A	N/A	47.80	6,891.77	N/A	117.8 - 137.8	Sonsela	179.93
10/14/1981	MW-1	9/3/2013	5.00	6,876.63	6,878.12	6,876.79	1.49	6,747.29	130.83	N/A	N/A	7.13	6,869.50	N/A	117.72 - 127.72	Sonsela	378.52
10/15/1981	MW-2	9/3/2013	5.00	6,878.39	6,880.30	6,878.41	1.91	6,742.82	137.48	N/A	N/A	9.44	6,868.95	N/A	112 - 122	Sonsela	391.8
10/16/1981	MW-4	9/3/2013	5.00	6,879.89	6,881.63	6,879.34	1.74	6,759.91	121.72	N/A	N/A	7.70	6,872.19	N/A	101 - 121	Sonsela	348.9
7/21/1986	MW-5	9/3/2013	4.00	6,880.20	6,882.83	6,881.77	2.63	6,752.00	130.83	N/A	N/A	11.49	6,868.71	N/A	115 - 125	Sonsela	365.18
9/26/1985	SMW-2	9/3/2013	2.00	6,881.63	6,883.97	6,879.07	2.34	6,831.17	52.80	N/A	N/A	25.34	6,856.29	N/A	34.31 - 54.31	Chinle/Alluvium and Upper Sand	13.43
9/25/1985	SMW-4	9/3/2013	2.00	6,877.63	6,879.52	6,875.72	1.89	6,809.84	69.68	N/A	N/A	29.24	6,848.39	N/A	51.7 - 71.7	Chinle/Alluvium Interface	19.78
10/5/2009	OW-50	9/3/2013	2.00	6,912.63	6,914.21	6,911.46	1.58	6,850.21	64.00	N/A	N/A	15.97	6,896.66	N/A	48 - 63	Chinle/Alluvium Interface	23.49
10/5/2009	OW-52	9/3/2013	2.00	6,906.53	6,907.68	6,905.31	1.15	6,829.94	77.74	N/A	N/A	17.02	6,889.51	N/A	64 - 79	Chinle/Alluvium Interface	29.69
1/5/1981	OW-1	3/19/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	1.40	6,864.92	N/A	89.3 - 99.3	Sonsela	177.7
_		6/12/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	2.13	6,864.19	N/A	89.3 - 99.3	Sonsela	177.7
		9/3/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	0.92	6,865.40	N/A	89.3 - 99.3	Sonsela	177
	•	11/11/2013	4.00	6,866.32	6,866.62	6,866.44	0.30	6,772.07	94.55	N/A	N/A	0.00	6,866.32	N/A	89.3 - 99.3	Sonsela	184.37

### WELL DATA 2013 ANNUAL/QUARTERLY SAMPLING DTB/DTW MEASUREMENTS

### WELL DATA 2013 ANNUAL/QUARTERLY SAMPLING DTB/DTW MEASUREMENTS

Date of Installation	Well ID Number	Inspection or Sample Date	Casing Diameter (Inch)	A Ground Level Elevations (ft)	Well Casing Rim Elevations (ft)	Ground Elevation Inside Steel Sleeve (ft)	Stick-up length (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	A Depth to SPH (ft)	B SPH Thickness (ft)	C Depth to Water (ft)	D = A-C Ground water Elevation (ft)	= 0.8 B + D Corrected Water Table Elevation	Screened Interval Depth Top to Bottom (ft)	2012 Re-Evaluated Stratigraphic unit in which screen exists	Purge Volume = 3 Well Vol (gal)
11/25/1980	OW-10	3/19/2013	4.00	6,873.67	6,874.91	6,872.59	1.24	6,814.58	60.33	N/A	N/A	3.00	6,870.67	N/A	40 - 60	Sonslea	125.5
		6/13/2013	4.00	6,873.67	6,874.91	6,872.59	1.24	6,814.58	60.33	N/A	N/A	8.00	6,865.67	N/A	40 - 60	Sonsela	116.17
		9/3/2013	4.00	6,873.67	6,874.91	6,872.59	1.24	6,814.58	60.33	N/A	N/A	0.92	6,872.75	N/A	40 - 60	Sonsela	114
		11/11/2013	4.00	6,873.67	6,874.91	6,872.59	1.24	6,814.58	60.33	N/A	N/A	0.00	6,873.67	N/A	40 - 60	Sonsela	133.93
12/10/1980	OW-13	3/19/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	N/A	N/A	22.54	6,896.41	N/A	78.2 - 98.2	Sonsela	170.07
, , , , , , , , , , , , , , , , , , ,		6/13/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	N/A	N/A	22.74	6,896.21	N/A	78.2 - 98.2	Sonsela	169.63
		9/3/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	N/A	N/A	22.80	6,896.15	N/A	78.2 - 98.2	Sonsela	169.5
		11/11/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	N/A	N/A	22.38	6,896.57	N/A	78.2 - 98.2	Sonsela	170.43
12/17/1980	OW-14	3/19/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	N/A	N/A	24.79	6,899.76	N/A	35 - 45	Chinle/Alluvium Interface	48.24
		6/13/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	N/A	N/A	24.89	6,899.66	N/A	35 - 45	Chinle/Alluvium Interface	48.02
		9/3/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	N/A	N/A	24.92	6,899.63	N/A	35 - 45	Chinle/Alluvium Interface	47.95
		11/11/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	N/A	N/A	24.59	6,899.96	N/A	35 - 45	Chinle/Alluvium Interface	48.68
8/23/1996	OW-29	3/19/2013	4.00	6,913.89	6,917.00	6,912.09	3.11	6,865.92	51.08	N/A	N/A	19.52	6,894.37	N/A	37.5 - 47.5	Chinle/Alluvium Interface	70.06
		6/13/2013	4.00	6,913.89	6,917.00	6,912.09	3.11	6,865.92	51.08	N/A	N/A	18.68	6,895.21	N/A	37.5 - 47.5	Chinle/Alluvium Interface	71.93
		9/3/2013	4.00	6,913.89	6,917.00	6,912.09	3.11	6,865.92	51.08	N/A	N/A	19.70	6,894.19	N/A	37.5 - 47.5	Chinle/Alluvium Interface	e 69.66
		11/11/2013	4.00	6,913.89	6,917.00	6,912.09	3.11	6,865.92	51.08	N/A	N/A	19.30	6,894.59	N/A	37.5 - 47.5	Chinle/Alluvium Interface	70.55
8/28/1996	OW-30	3/19/2013	4.00	6,921.81	6,924.69	6,919.84	2.88	6,874.79	49.90	N/A	N/A	24.00	6,897.81	N/A	37.9 - 47.9	Chinle/Alluvium Interface	57.5
	<b></b>	6/17/2013	4.00	6,921.81	6,924.69	6,919.84	2.88	6,874.79	49.90	N/A	N/A	24.20	6,897.61	N/A	37.9 - 47.9	Chinle/Alluvium Interface	e 57.05
		9/3/2013	4.00	6,921.81	6,924.69	6,919.84	2.88	6,874.79	49.90	N/A	N/A	24.30	6,897.51	N/A	37.9 - 47.9	Chinle/Alluvium Interface	56.83
		11/11/2013	4.00	6,921.81	6,924.69	6,919.84	2.88	6,874.79	49.90	N/A	N/A	23.90	6,897.91	N/A	37.9 - 47.9	Chinle/Alluvium Interface	57.72
7/8/2004	GWM-1	3/18/2013	2.00	6,910.22	6,912.61	6,908.36	2.39	6,886.41	26.20	N/A	N/A	16.87	6,893.35	N/A	17.5 - 23.5	Chinle/Alluvium Interface	4.56
		6/12/2013	2.00	6,910.22	6,912.61	6,908.36	2.39	6,886.41	26.20	N/A	N/A	17.45	6,892.77	N/A	17.5 - 23.5	Chinle/Alluvium Interface	4.85
		9/3/2013	2.00	6,910.22	6,912.61	6,908.36	2.39	6,886.41	26.20	N/A	N/A	17.88	6,892.34	N/A	17.5 - 23.5	Chinle/Alluvium Interface	e 4.07
		11/11/2013	2.00	6,910.22	6,912.61	6,908.36	2.39	6,886.41	26.20	N/A	N/A	18.41	6,891.81	N/Λ	17.5 - 23.5	Chinle/Alluvium Interface	e 3.81

WELL DATA 2013 ANNUAL/QUARTERLY SAMPLING	
DTB/DTW MEASUREMENTS	

Date of Installation	Weli ID Number	Inspection or Sample Date	Casing Diameter (Inch)	A Ground Level Elevations (ft)	Rim Elevations	Ground Elevation Inside Steel Sleeve (ft)	Stick-up length (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	A Depth to SPH (ft)	B SPH Thickness (ft)	C Depth to Water (ft)	D = A-C Ground water Elevation (ft)	= 0.8 B + D Corrected Water Table Elevation	Screened Interval Depth Top to Bottom (ft)	2012 Re-Evaluated Stratigraphic unit in which screen exists	Purge Volume = 3 Well Vol (gal)
9/25/2005	GWM-2	3/18/2013	2.00	6,910.32	6,913.09	6,908.05	2.77	6,894.28	18.81	N/A	N/A	16.77	6,893.55	N/A	3.2 - 16.2	Chinle/Alluvium Interface	: 1
		6/12/2013	2.00	6,910.32	6,913.09	6,908.05	2.77	6,894.28	18.81	N/A	N/A	17.10	6,893.22	N/A	3.2 - 16.2	Chinle/Alluvium Interface	e 0.84
		9/3/2013	2.00	6,910.32	6,913.09	6,908.05	2.77	6,894.28	18.81	N/A	N/A	17.88	6,892.44	N/A	3.2 - 16.2	Chinle/Alluvium Interface	e 0.45
		11/11/2013	2.00	6,910.32	6,913.09	6,908.05	2.77	6,894.28	18.81	N/A	N/A	18.39	6,891.93	N/A	3.2 - 16.2	Chinle/Alluvium Interface	0.21
9/25/2005	GWM-3	3/18/2013	2.00	6,907.35	6,910.25	6,905.48	2.90	6,892.45	17.80	N/A	N/A	DRY	#VALUE!	N/A	3 - 15	Chinle/Alluvium Interface	e 2.4
		6/12/2013	2.00	6,907.35	6,910.25	6,905.48	2.90	6,892.45	17.80	N/A	N/A	DRY	#VALUE!	N/A	3 - 15	Chinle/Alluvium Interface	e 0
		9/3/2013	2.00	6,907.35	6,910.25	6,905.48	2.90	6,892.45	17.80	N/A	N/A	DRY	#VALUE!	N/A	3 - 15	Chinle/Alluvium Interface	e 0
		11/11/2013	2.00	6,907.35	6,910.25	6,905.48	2.90	6,892.45	17.80	N/A	N/A	DRY	#VALUE!	N/A	3 - 15	Chinle/Alluvium Interface	e 0
3/14/2008	NAPIS-1	3/18/2013	2.00	6,913.62	6,913.86	6,913.56	0.24	6,900.33	13.53	N/A	N/A	7.84	6,905.78	N/A	3.7 - 13.7	Chinle/Alluvium Interface	e 2.78
		6/12/2013	2.00	6,913.62	6,913.86	6,913.56	0.24	6,900.33	13.53	N/A	N/A	7.88	6,905.74	N/A	3.7 - 13.7	Chinle/Alluvium Interface	e 2.76
		9/3/2013	2.00	6,913.62	6,913.86	6,913.56	0.24	6,900.33	13.53	N/A	N/A	6.64	6,906.98	N/A	3.7 - 13.7	Chinle/Alluvium Interface	e 3.37
		11/12/2013	2.00	6,913.62	6,913.86	6,913.56	0.24	6,900.33	13.53	N/A	N/A	6.65	6,906.97	N/A	3.7 - 13.7	Chinle/Alluvium Interface	e 3.36
3/14/2008	NAPIS-2	3/18/2013	2.00	6,913.40	6,912.65	6,912.54	-0.75	6,899.04	13.61	N/A	N/A	9.19	6,904.21	N/A	4.2 - 14.2	Chinle/Alluvium Interface	e 2.16
		6/12/2013	2.00	6,913.40	6,912.65	6,912.54	-0.75	6,899.04	13.61	N/A	N/A	9.00	6,904.40	N/A	4.2 - 14.2	Chinle/Alluvium Interface	e 2.25
		9/3/2013	2.00	6,913.40	6,912.65	6,912.54	-0.75	6,899.04	13.61	N/A	N/A	8.34	6,905.06	N/A	4.2 - 14.2	Chinle/Alluvium Interface	e 2.58
		11/12/2013	2.00	6,913.40	6,912.65	6,912.54	-0.75	6,899.04	13.61	N/A	N/A	8.20	6,905.20	N/A	4.2 - 14.2	Chinle/Alluvium Interface	e 2.65
3/14/2008	NAPIS-3	3/18/2013	2.00	6,913.38	6,912.76	6,912.53	-0.62	6,882.34	30.42	N/A	N/A	9.10	6,904.28	N/A	25.4 - 30-4	Chinle/Alluvium Interface	e 10.43
		6/12/2013	2.00	6,913.38	6,912.76	6,912.53	-0.62	6,882.34	30.42	N/A	N/A	8.64	6,904.74	N/A	25.4 - 30-4	Chinle/Alluvium Interface	e 10.65
		9/3/2013	2.00	6,913.38	6,912.76	6,912.53	-0.62	6,882.34	30.42	N/A	N/A	8.92	6,904.46	N/A	25.4 - 30-4	Chinle/Alluvium Interface	e 10.51
		11/12/2013	2.00	6,913.38	6,912.76	6,912.53	-0.62	6,882.34	30.42	N/A	N/A	8.61	6,904.77	N/A	25.4 - 30-4	Chinle/Alluvium Interface	e 10.67
6/11/2007	KA-3	3/18/2013	2.00	6,913.29	6,912.52	6,912.20	-0.77	6,889.32	23.20	N/A	N/A	9.07	6,904.22	N/A	15 - 25	Chinle/Alluvium Interface	e 6.91
		6/12/2013	2.00	6,913.29	6,912.52	6,912.20	-0.77	6,889.32	23.20	N/A	N/A	8.88	6,904.41	N/A	15 - 25	Chinle/Alluvium Interface	e 7
		9/3/2013	2.00	6,913.29	6,912.52	6,912.20	-0.77	6,889.32	23.20	N/A	N/A	8.35	6,904.94	N/A	15 - 25	Chinle/Alluvium Interface	e 7.26
		11/12/2013	2.00	6,913.29	6,912.52	6,912.20	-0.77	6,889.32	23.20	N/Λ	Ν/Λ	7.91	6,905.38	N/A	15 - 25	Chinle/Alluvium Interface	e 7.48

### WELL DATA 2013 ANNUAL/QUARTERLY SAMPLING DTB/DTW MEASUREMENTS

Date of Installation	Well ID Number	Inspection or Sample Date	Casing Diameter (Inch)	A Ground Level Elevations (ft)	Well Casing Rim Elevations (ft)	Ground Elevation Inside Steel Sleeve (ft)	Stick-up length (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	A Depth to SPH (ft)	B SPH Thickness (ft)	C Depth to Water (ft)	D = A-C Ground water Elevation (ft)	= 0.8 B + D Corrected Water Table Elevation	Screened Interval Depth Top to Bottom (ft)	2012 Re-Evaluated Stratigraphic unit in which screen exists	Purge Volume = 3 Well Vol (gal)
7/17/2012	OAPIS-1	3/18/2013	2.00	6,914.37	6,916.73	6,916.50	2.36	6,888.37	28.30	N/A	N/A	11.18	6,903.19	N/A	16 - 26	Chinle/Alluvium Interface	e 8.37
		6/12/2013	2.00	6,914.37	6,916.73	6,916.50	2.36	6,888.37	28.30	N/A	N/A	11.50	6,902.87	N/A	17 - 26	Chinle/Alluvium Interface	e 8.22
		9/3/2013	2.00	6,914.37	6,916.73	6,916.50	2.36	6,888.37	28.30	N/A	N/A	10.69	6,903.68	N/A	18 - 26	Chinle/Alluvium Interface	e 8.61
		11/11/2013	2.00	6,914.37	6,916.73	6,916.50	2.36	6,888.37	28.30	N/A	N/A	10.90	6,903.47	N/A	19 - 26	Chinle/Alluvium Interface	e 8.51
3/28/1995	RW-1	3/26/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	29.11	3.49	32.60	6,910.26	6913.052	25 - 40	Chinle/Alluvium Interface	e NA
		6/17/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	29.37	3.73	33.10	6,909.76	6912.744	25 - 40	Chinle/Alluvium Interface	e 19
		9/16/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.75	4.34	33.09	6,909.77	6913.242	25 - 40	Chinle/Alluvium Interface	e NA
		11/12/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.73	4.38	33.11	6,909.75	6913.254	25 - 40	Chinle/Alluvium Interface	e NA
3/29/1995	RW-2	3/26/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	0.00	0.00	24.74	6,901.66	6901.66	26.1 - 36.1	Chinle/Alluvium Interface	e NA
		6/17/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	0.00	0.00	24.80	6,901.60	6901.6	26.1 - 36.1	Chinle/Alluvium Interface	e 10
		9/16/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	0.00	0.00	24.64	6,901.76	6901.76	26.1 - 36.1	Chinle/Alluvium Interface	e NA
		11/12/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	0.00	0.00	24.66	6,901.74	6901.74	26.1 - 36.1	Chinle/Alluvium Interface	e NA
8/27/1997	RW-5	3/26/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	0.00	0.00	29.45	6,912.08	6912.08	29.5 - 39.5	Chinle/Alluvium Interface	e NA
		6/17/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	0.00	0.00	29.44	6,912.09	6912.09	29.5 - 39.5	Chinle/Alluvium Interface	e 15
		9/16/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	0.00	0.00	28.98	6,912.55	6912.55	29.5 - 39.5	Chinle/Alluvium Interface	e NA
		11/12/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	0.00	0.00	28.96	6,912.57	6912.57	29.5 - 39.5	Chinle/Alluvium Interface	e NA
8/27/1997	RW-6	3/26/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	0.00	0.00	29.59	6,912.37	6912.37	28.5 - 38.5	Chinle/Alluvium Interface	e NA
		6/17/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	0.00	0.00	29.52	6,912.44	6912.44	28.5 - 38.5	Chinle/Alluvium Interface	e 20
		9/16/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	0.00	0.00	29.13	6,912.83	6912.83	28.5 - 38.5	Chinle/Alluvium Interface	e NA
		11/12/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	0.00	0.00	29.10	6,912.86	6912.86	28.5 - 38.5	Chinle/Alluvium Interface	e NA

NOTES:

DTB - Depth to Bottom DTW - Depth to Water

SPH = Separate Phase Hydrocarbons Corrected water table elevations are only provided if SPH was detected.

### 2011 CORRECTED WELL ELEVATION SUMMARY TABLE Revision 4 - September 26, 2012

Date of Installation	Well ID Number	2011 Survey Measurement date ¹	Previous Casing Diameter (Inch)	2011 Verified Casing Diameter ² (lach)	Previous Ground Level Elevation (feet)	2011 Survey Ground Level Elevation ¹ (feet)	Previous Well Casing Rim Elevation (feet)	2011 Survey Well Casing Rim Elevation ¹ (feet)	2011 Measuring Point Description ¹	Previous Stick-up length ³ (feet)	2011 Survey Stick up Length ⁴ (feet)	Previous Well Casing Bottom Elevation (feet)	2011 Survey Well Casing Bottom Elevation ⁵ (feet)	Previous Total Well Depth (feet)	2011 Survey Totał Well Depth ⁶ (feet)	Screened Interval Depth Top to Bottom ⁷ (feet)	Previous Stratigraphic unit in which screen exists	2012 Re-Evaluated Stratigraphic unit in which screen exists ⁸
11/10/2003	BW-1A	6/7/2011	2.00	2.00	6,876.73	6,874.10	6,876.73	6,876.68	North edge PVC casing	4.38	2.58	6,836.73	6,839.06	40.00	37.62	30 - 35	Chinle/Alluvium	Upper Sand
10/28/2003	BW-1B	6/7/2011	2.00	2.00	6,876.91	6874.13 ⁹	6,876.91	6,876.94	North edge PVC casing	2.39	2.81	6,811.71	6,809.49	67.55	67.45	54.6 - 64.6	Chinle/Alluvium	Chinle/Alluvium Interface
11/10/2003	BW-1C	6/7/2011	2.00	2.00	6,876.75	6,873.95	6,876.75	6,876.78	North edge PVC casing	4.52	2.83	6,719.75	6,740.39	157.00	136.39	125 -135	Sonsela Sandstone	Sonsela
11/10/2003	BW-2A	6/7/2011	2.00	2.00	6,874.72	6,871.88	6,874.72	6,874.69	North edge PVC casing	4.27	2.81	6,809.22	6,807.12	65.50	67.57	55 - 65	Chinle/Alluvium	Upper Sand
10/28/2003	BW-2B	6/7/2011	2.00	2.00	6,874.58	6,871.66	6,874.58	6,874.50	North edge PVC casing	4.50	2.84	6,784.08	6,782.24	90.50	92.26	80 - 90	Sonsela sandstone	Chinle/Alluvium Interface
10/28/2003	BW-2C	6/7/2011	2.00	2.00	6,875.40	6,872.90	6,875.40	6,875.30	North edge PVC casing	2.98	2.40	6,724.40	6,722.46	151.00	152.84	139.5 - 149.5	Sonsela sandstone	Sonsela
6/15/2004	BW-2C BW-3A	6/7/2011	2.00	2.00	6,878.22	6,875.94	6,878.22	6,878.39	North edge PVC casing	3.00	2.45	6,828.22	6,826.04	52.60	52.35	39.5 - 49.5	Chinle/alluvium	Upper Sand
10/15/2003	BW-3R BW-3B	6/7/2011	2.00	2.00	6,878.79	6,876.16	6,878.79	6,878.59	North edge PVC casing	3.15	2.43	6,803.79	6,809.19	75:00	69.40	63 - 73	Chinle/alluvium	Chinle/Alluvium Interface
7/20/2004	BW-3B BW-3C	6/7/2011	2.00	2.00	6,878.08	6,875.72	6,878.08	6,877.95	North edge PVC casing	2.69	2.23	6,723.08	6,723.40	155.00	154.55	144.5 - 154.5	Sonsela sandstone	Sonsela
112012001	DW-3C	0/112011	2.00	2.00	0,070.00	0,075.72	0,070.00	0,011.55	Trond of Ber 1 of Browing			0,720100	.,					
1/5/1981	OW-1	6/7/2011	4.00	4.00	6,868.00	6,866.32	6,868.45	6866.62 ¹⁰	North edge PVC casing	1.92	0.3010	6,773.96	6,772.07	94.04	94.55	89.3 - 99.3	Sonsela sandstone	Sonsela
11/25/1980	OW-10	6/7/2011	4.00	4.00	6,872.00	6,873.67	6,875.12	6,874.91	North edge PVC casing	1.59	1.24	6,804.00	6,814.58	68.00	60.33	40 - 60	Chinle/alluvium	Sonsela
9/25/1981	OW-10	6/7/2011	4.00	4.00	6,923.89	6,922.05	6,923.51	6,923.51	North edge PVC casing	2.08	1.46	6,857.27	6,857.72	66.62	65.79	43 - 65	Chinle/alluvium	Sonsela
12/15/1980	OW-11 OW-12	6/7/2011	4.00	4.00	6,940.43	6,939.57	6,940.43	6,940.69	North edge PVC casing	1.88	1.12	6,795.43	6,811.84	145.00	128.85	117.8 - 137.8	Sonsela sandstone	Sonsela
12/10/1980	OW-12 OW-13	6/7/2011	4.00	4.00	6,920.12	6,918.95	6,920.12	6,920.07	North edge PVC casing	4.79	1.12	6,820.12	6,820.92	100.00	99.15	78.2 - 98.2	Sonsela sandstone	Sonsela
12/17/1980	OW-13 OW-14	6/7/2011	4.00	4.00	6,926.64	6,924.55	6,926.64	6,926.65	North edge PVC casing	2.25	2.10	6,881.64	6,880.13	45.00	46.52	35 - 45	Chinle/alluvium	Chinle/Alluvium Interface
8/23/1996	OW-14 OW-29	6/7/2011	4.00	4.00	6,913.50	6,913.89	6,913.50	6,917.00	North edge PVC casing	3.88	3.11	6,864.50	6,865.92	49.00	51.08	37.5 - 47.5	Chinle/alluvium	Chinle/Alluvium Interface
8/28/1996	OW-20	6/7/2011	4.00	4.00	6,921.60	6,921.81	6,921.60	6,924.69	North edge PVC casing	4.85	2.88	6,873.20	6,874.79	48.40	49.90	37.9 - 47.9	Chinle/alluvium	Chinle/Alluvium Interface
10/5/2009	OW-50	6/7/2011	2.00	2.00	6,914.37	6,912.63	6,914.37	6,914.21	North edge PVC casing	2.71	1.58	6,977.37	6,850.21	63.00	64.00	48 - 63	Chinle/alluvium	Chinle/Alluvium Interface
10/5/2009	OW-50 OW-52	6/7/2011	2.00	2.00	6,906.26	6,906.53	6,907.68	6,907.68	North edge PVC casing	2.21	1.15	6,985.26	6,829.94	79.00	77.74	64 - 79	Chinle/alluvium	Chinle/Alluvium Interface
10/3/2009	011-52	0/1/2011	2.00	2.00	0,700.20	0,700.55	0,907.00	0,707.00	Horan Cager / C Cashig	2.21	1115	0,705.20	0,025151	12100				
10/14/1981	MW-1	6/7/2011	5.00	5.00	6,878.52	6,876.63	6,878.15	6,878.12	North edge PVC casing	1.25	1.49	6,746.50	- 6,747.29	132.02	130.83	117.72 - 127.72	Chinle/Alluvium	Sonsela
10/15/1981	MW-2	6/7/2011	5.00	5.00	6,878.40	6,878.39	6,880.84	6,880.30	North edge PVC casing	1.88	1.91	6,741.90	6,742.82	138.94	137.48	112 - 122	Chinle/alluvium	Sonsela
10/16/1981	MW-4	6/7/2011	5.00	5.00	6,882.54	6,879.89	6,882.20	6,881.63	North edge PVC casing	2.31	1.74	6,760.40	6,759.91	122.14	121.72	101 - 121	Sonsela sandstone	Sonsela
7/21/1986	MW-5	6/7/2011	4.00	4.00	6,883.32	6,880.20	6,882.93	6,882.83	North edge aluminum casing	2.02	2.63	6,750.30	6,752.00	133.02	130.83	115 - 125	Sonsela sandstone	Sonsela
3/28/1995	RW-1	6/7/2011	4.00	4.00	6,943.50	6,942.86	6,943.50	6,946.06	North edge PVC casing	4.42	3.20	6,900.50	6,903.02	43.00	43.04	25 - 40	Chinle/alluvium	Chinle/Alluvium Interface
3/29/1995	RW-2	6/7/2011	4.00	4.00	6,927.20	6,926.40	6,927.20	6,928.53	North edge PVC casing	3.58	2.13	6,889.20	6,888.73	38.00	39.80	26.1 - 36.1	Chinle/alluvium	Chinle/Alluvium Interface
8/27/1997	RW-5	6/7/2011	4.00	4.00	6,942.50	6,941.53	6,942.50	6,943.57	West Edge PVC Casing (Existing Mark)	2.92	2.04	6,902.50	6,903.98	40.00	39.59	29.5 - 39.5	Chinle/alluvium	Chinle/Alluvium Interface
8/27/1997	RW-6	6/7/2011	4.00	4.00	6942.6 ¹¹	6,941.96	6942.6 ¹¹	6,944.01	North edge PVC casing	2.58	2.05	6,933.80	6,903.11	38.80	40.90	28.5 - 38.5	Chinle/alluvium	Chinle/Alluvium Interface
9/26/1985	SMW-2	6/7/2011	2.00	2.00	6,884.44	6,881.63	6,884.11	6,883.97	North edge aluminum casing	4.54	2.34	6,827.10	6,831.17	57.34	52.80	34.31 - 54.31	Chinle/alluvium	Chinle/Alluvium Interface and Upper Sand
9/25/1985	SMW-4	6/7/2011	2.00	2.00	6,882.54	6,877.63	6,882.73	6,879.52	North edge aluminum casing	3.83	1.89	6,760.40	6,809.84	122.14	69.68	51.7 - 71.7	Chinle/alluvium	Chinle/Alluvium Interface
7/8/2004	GWM-1	6/7/2011	2.00	2.00	6,912.65	6,910.22	6,912.65	6,912.61	North edge PVC casing	3.88	2.39	6,888.95	6,886.41	23.70	26.20	17.5 - 23.5	Chinle/alluvium	Chinle/Alluvium Interface
9/25/2005	GWM-1 GWM-2	6/7/2011	2.00	2.00	6,913.17	6,910.22	6,913.17	6,913.09	North edge PVC casing	4.75	2.39	6,896.97	6,894.28	18.97	18.81	3.2 - 16.2	Chinle/alluvium	Chinle/Alluvium Interface
9/25/2005	GWM-2 GWM-3	6/7/2011	2.00	2.00	6,912.65	6,910.32	6,912.65	6,910.25	North edge PVC casing	4.85	2.90	6,896.15	6,892.45	17.94	17.80	3 - 15	Chinle/alluvium	Chinle/Alluvium Interface
912312003	O WIVI-J	0///2011	2.00	2.00	0,912.05	0,907.55	0,712.05	0,710.25	Hora cuge I ve casing	1 4.05	2.90	0,000.15	0,072.10		1100		1	

### 2011 CORRECTED WELL ELEVATION SUMMARY TABLE Revision 4 - September 26, 2012

Date of Installation	Well ID Number	2011 Survey Measurement date'	Previous Casing Diameter (Inch)	2011 Verified Casing Diameter ² (Inch)	Previous Ground Level Elevation (feet)	2011 Survey Ground Level Elevation ¹ (feet)	Previous Well Casing Rim Elevation (feet)	2011 Survey Well Casing Rim Elevation ¹ (feet)	2011 Measuring Point Description ¹	Previous Stick-up length ³ (feet)	2011 Survey Stick up Length ⁴ (feet)	Previous Well Casing Bottom Elevation (feet)	2011 Survey Well Casing Bottom Elevation ⁵ (feet)	Previous Total Well Depth (feet)	2011 Survey Total Well Depth ⁶ (feet)	Screened Interval Depth Top to Bottom ⁷ (feet)	Previous Stratigraphic unit in which screen exists	2012 Re-Evaluated Stratigraphic unit in which screen exists ⁸
3/14/2008	NAPIS-1	6/7/2011	2.00	2.00	6,918.43	6,913.62	6,918.43	6,913.86	North edge PVC casing	0.29	0.24	6,904.40	6,900.33	14.00	13.53	3.7 - 13.7	Chinle/alluvium	Chinle/Alluvium Interface
3/14/2008	NAPIS-2	6/7/2011	2.00	2.00	6,917.27	6,913.40	6,917.27	6,912.65	North edge PVC casing	0.10	-0.75	6,902.80	6,899.04	14.50	13.61	4.2 - 14.2	Chinle/alluvium	Chinle/Alluvium Interface
3/14/2008	NAPIS-3	6/7/2011	2.00	2.00	6,917.31	6,913.38	6,917.31	6,912.76	North edge PVC casing	0.29	-0.62	6,886.60	6,882.34	30.70	30.42	25.4 - 30.4	Chinle/alluvium	Chinle/Alluvium Interface
6/11/2007	KA-3	6/7/2011	2.00	2.00	6,917.17	6,913.29	6,917.17	6,912.52	North edge PVC casing	0.17	-0.77	6,892.40	6,889.32	25.00	23.20	15 - 25	Chinle/alluvium	Chinle/Alluvium Interface

#### **NOTES:**

1) Surveyed by DePauli Engineering & Surveying, LLC on June 7, 2011 at request of NMED due to discrepancies on well casing and ground level elevations.

2) Field verified using a tape measure by Gallup Refinery field technician.

3) Original measurements were given in inches and converted to feet by dividing by 12.

4) Stick up length is determined by subtracting 2011 Survey Ground Level Elevation from 2011 Survey Well Casing Rim Elevation.

5) 2011 Survey Well Casing Bottom Elevation is determined by subtracting the 2011 Survey Well Casing Rim Elevation from the 2011 Survey Total Well Depth Measurement.

6) Total well depth was determined using a bottom sensing meter, Testwell Water level meter with bottom sensing indicator.

7) Screened interval for each well was verified to the well boring logs. Settlement may have occurred since installation of well which is why total well depth is higher or equal to the screened interval levels.

8) Stratigraphic interpretation conducted by Peregrine Geoconnect to re-evaluate the named zones they produce water from. Tables were updated to reflect correct stratigraphic zone.

9) BW-1B 2011 Survey Ground Level Elevation is to the lowest concrete pad elevation surrounding the well.

10) OW-1 original stick up length was measured to the top of the pvc casing which is connected to the well shroud with a rubber coupling. 2011 survey measurement was taken to the top segment of pvc casing not connected to the rubber coupling. (Coupling is where elevation is referenced)

11) RW-6 elevation data was originally entered incorrectly as 6972.6 feet. Correct elevation is 6942.6 feet.

12) NAPIS 2, 3 and 4 well shroud is located below ground level therefore values entered in "2011 Survey Stick-Up Length (feet)" indicate a negative value.

13) Previous measurements and elevations are from the Well Data Summary Table from the 2009 Annual Ground Water Monitoring Report.

Appendix C

## **2014 WELL ELEVATION SUMMARY TABLE**

## New Wells MKTF-01 through MKTF-18

Date of Installation	Well ID Number	2014 Survey Measurement Date	Casing Diameter (Inch)	Ground Level Elevations (II)	Well Casing Ahn Elevations (ft)	Ground Elevation Inside Steel Sleeve (ft)	Measuring Point Description	Stick-up length (ft)	Well Casing Bottom Elevations (ft)	Total Well Depth (ft)	Screened Interval Depth Top to Bottom (ft)	Stratigraphic unit in which screen exists
11/14/2013	MKTF-01	1/21/2014	4.00	6,918.28	6,920.67	6,920.67	North edge PVC Casing	2.39	6,902.28	16.00	5 - 15	Chinle/Alluvium Interface
11/14/2013	MKTF-02	1/21/2014	4.00	6,915.00	6,917.45	6,917.18	North edge PVC Casing	2.45	6,926.79	19.00	7 - 17	Chinle/Alluvium Interface
11/7/2013	MKTF-03	1/21/2014	4.00	6,931.73	6,931.69	6,930.85	North edge PVC Casing	-0.04	6,912.73	19.00	3 - 18	Chinle/Alluvium Interface
11/12/2013	MKTF-04	1/21/2014	4.00	6,933.90	6,933.57	6,933.24	North edge PVC Casing	-0.33	6,909.90	24.00	10 - 22	Chinle/Alluvium Interface
11/20/2013	MKTF-05	1/21/2014	4.00	6,939.49	6,942.22	6,941.95	North edge PVC Casing	2.73	6,924.49	15.00	4 - 14	Chinle/Alluvium Interface
11/11/2013	MKTF-06	1/21/2014	4.00	6,944.24	6,946.81	6,946.63	North edge PVC Casing	2.57	6,923.24	21.00	8 - 20	Chinle/Alluvium Interface
11/11/2013	MKTF-07	1/21/2014	4.00	6,944.40	6,947.18	6,947.06	North edge PVC Casing	2.78	6,929.40	15.00	4 - 14	Chinle/Alluvium Interface
11/11/2013	MKTF-08	1/21/2014	4.00	6,944.02	6,947.09	6,942.67	North edge PVC Casing	3.07	6,922.67	20.00	8 - 18	Chinle/Alluvium Interface
11/11/2013	MKTF-09	1/21/2014	4.00	6,943.57	6,946.50	6,945.90	North edge PVC Casing	2.93	6,921.57	22.00	7 - 19	Chinle/Alluvium Interface
10/31/2013	MKTF-10	1/21/2014	4.00	6,937.51	6,937.16	6,936.63	North edge PVC Casing	-0.35	6,919.51	18.00	7 - 17	Chinle/Alluvium Interface
10/31/2013	MKTF-11	1/21/2014	4.00	6,931.61	6,931.34	6,930.86	South edge PVC Casing	-0.27	6,912.61	19.00	8 - 18	Chinle/Alluvium Interface
11/7/2013	MKTF-12	1/21/2014	4.00	6,939.70	6,942.11	6,941.88	North edge PVC Casing	2.41	6,916.70	23.00	12 - 22	Chinle/Alluvium Interface
11/12/2013	MKTF-13	1/21/2014	4.00	6,933.67	6,935.18	6,934.83	North edge PVC Casing	1.51	6,913.67	20.00	8 - 18	Chinle/Alluvium Interface
11/12/2013	MKTF-14	1/21/2014	4.00	6,925.65	6,928.02	6,927.80	North edge PVC Casing	2.37	6,910.65	15.00	4 - 14	Chinle/Alluvium Interface
10/29/2013	MKTF-15	1/21/2014	2.00	6,943.74	6,943.48	6,943.19	North edge PVC Casing	-0.26	6,921.74	22.00	9 - 19	Chinle/Alluvium Interface
11/7/2013	MKTF-16	1/21/2014	2.00	6,951.00	6,950.58	6,950.58	North edge PVC Casing	-0.42	6,935.00	16.00	4 - 14	Chinle/Alluvium Interface
11/14/2013	MKTF-17	1/21/2014	2.00	6,945.79	6,945.76	6,945.64	North edge PVC Casing	-0.03	6,920.79	25.00	14 - 24	Chinle/Alluvium Interface
11/14/2013	MKTF-18	1/13/2014	2.00	6,950.97	6,950.65	6,950.17	North edge PVC Casing	-0.32	6,923.97	27.00	17 - 27	Chinle/Alluvium Interface

## 2011 WELL ELEVATION SUMMARY TABLE FOR ARTESIAN WATER WELLS Revision #2 - March 21, 2012

Date of Installation	Well ID Number	Submersible pump depth (feet)	Casing Diameter (Inch)	Well Head Elevation Mark* (North) (feet)	Well Head Elevation Mark* (West) (feet)	Well Head Elevation Mark* (Z) (feet)	Measuring Point Description	Total Well Depth (feet)	Well Casing Bottom Elevation ¹ (feet)	Stratigraphic unit	Aquifer
9/24/1956	PW-2	800	16.0	3,300.40	4,694.28	162.78	1st Discharge tee or elbow	1,075.00	2,225.40	Chinle	San Andreas/Yeso Aquifer
April 1979	PW-3	900	14.0	2,932.83	1,387.79	248.00	1st Discharge tee or elbow	1,030.00	1,902.83	Chinle	San Andreas/Yeso Aquifer
11/12/1999	PW-4	750	12.0 ²	1,895.73	2,979.78	178.51	1st Discharge tee or elbow	1,020.00 ³	819.73	Chinle	San Andreas/Yeso Aquifer

### NOTES:

* Basis of survey Refinery Control Point at 1000W, 2575N, plant elevation = 254.87 feet and MSL elevation = 6959.41 feet.

1) Well casing bottom elevation using Well Head Elevation Mark (North) as reference point.

2) Actual well casing diameter is 12 inches. The 176 feet of 24 inch steel casing is the actual cemented support for development of the well.

3) The actual total well depth is 1020 feet with additional 56 feet x 7-7/8 inch diameter open exploratory hole which was accounted for as total well depth of 1076 feet.

At the time of the survey by DePauli Engineering the artesian wells were not included as these wells have never been listed on the summary table or had questionable elevations. These wells are sampled every three years and are not required to be gauged when sampling. A copy of an original survey dated February 13, 2003 conducted by DePauli Engineering is attached for reference.



## Appendix D

## 2014 Ground Water Monitoring Schedule

### Table 1: Gallup Refinery - 2014 Proposed Ground Water Monitoring Schedule

Sampling Location ID	Sampling Frequency	Collect GW Elevation, DTW, DTP	Water Quality Parameters	Analytical Suite
NAPI Secondary Containment (3 units)	Q	NA	NA	BTEX+MTBE, GRO/DRO extended, WQCC Metals or check for fluids
RW-17	Q - Inspection	х	NA	Measure DTW, DTP (Hydrocarbon recovery)
RW-27	Q - Inspection	x	NA	Measure DTW, DTP (Hydrocarbon recovery)
RW-57	Q - Inspection	х	NA	Measure DTW, DTP (Hydrocarbon recovery)
RW-67	Q - Inspection	Х	NA	Measure DTW, DTP (Hydrocarbon recovery)
OW-11	Q	x	pH , EC, DO, ORP, Temp, TDS	Visual check for artesian flow conditions and sample for major cations, major anions, VOC, Arsenic, Uranium
OW-10'	Q	х	pH , EC, DO, ORP, Temp, TDS	Water level measurement of the Sonsela Aquifer water table. Major cations/anions, VOC, Arsenic, Uranium.
OW-13	Q	x	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
OW-14	Q	х	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
OW-29	٩	х	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
OW-30	٩	х	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
GWM-1	٩	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals
GWM-2 ²	٩	x	NA	Check for Water - if water is detected report to OCD & NMED within 24 hours. Sample for VOC, GRO/DRO extended, major cations/anions.
GWM-3 ²	Q	x	NA	Check for Water - if water is detected report to OCD & NMED within 24 hours. Sample for VOC, GRO/DRO extended, major cations/anions.
NAPIS-1 (a)	Q	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, BTEX+MTBE, SVOC, GRO/DRO EXTENDED. WQCC Metals
NAPIS-2 (a)	Q	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, BTEX+MTBE, SVOC, GRO/DRO EXTENDED. WQCC Metals
NAPIS-3 (a)	Q	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, BTEX+MTBE, SVOC, GRO/DRO EXTENDED. WQCC Metals
KA- 3(a)	Q	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, BTEX+MTBE, SVOC, GRO/DRO EXTENDED. WQCC Metals
OAPIS-1	Q	×	pH , EC, DO, ORP, Temp, TDS	VOC, SVOC, GRO/DRO EXTENDED, WQCC Metals, Major cations/anions
MKTF-01 thru MKTF-18 ⁹	Q	×	NA	VOC, SVOC, WQCC Metals, GRO/DRO extended, Major cations/anions. Ground water samples will not be collected if SPH is present in any of these wells.
Boiler Water & Cooling Tower Blow down inlet to EP-2	Semi Annual (SA)		pH , EC, DO, ORP, Temp, TDS	Major Cations/Anions
Pond 1(b)	SA		pH , EC, DO, ORP, Temp, TDS	General Chemistry, VOC, SVOC, BOD, COD, E-Coli Bacteria, WQCC Metals
Evaporation Pond 2(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 3(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 4(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1

Sampling Location ID	Sampling Frequency	Collect GW Elevation, DTW, DTP	Water Quality Parameters	Analytical Suite
Evaporation Pond 5 (b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 6(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 7(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 8(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 9(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 11(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 12a(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Evaporation Pond 12b(b)	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
Any temporary Pond containing fluid	SA		pH , EC, DO, ORP, Temp, TDS	Same as Pond 1
BW-1A ³	Annual (A)	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-2A ³	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-3A ³	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-2A ³	A	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
W-2B ³	A	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-2C ³	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-3A ³	А	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-3B ³	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
BW-3C³	A	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, RCRA Metals
Pond 2 Inlet ⁴	А		NA	VOC, GRO/DRO extended, BOD, COD, TDS
MW-1	A	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals, Cvanide
MW-2	А	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals, Cvanide
MW-4	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals, Cvanide
MW-5	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals, Cyanide
OW-115	А	х	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, WQCC Metals
OW-12 (a)	А	х	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
OW-50 ⁶	А	x	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals

Sampling Location ID	Sampling Frequency	Collect GW Elevation, DTW, DTP	Water Quality Parameters	Analytical Suite
OW-52 ⁶	А	x	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
SMW-2 ⁶	А	х	pH , EC, DO, ORP, Temp, TDS	VOC, WQCC Metals
SMW-4	А	x	pH , EC, DO, ORP, Temp, TDS	Major cations/anions, VOC, GRO/DRO extended, WQCC Metals, Cyanide
All wells including the recovery wells containing separate phase hydrocarbons ⁷	Annual Event			Major Cations/Anions, VOC, SVOC, WQCC 20.6.2.3103 Constituents.
PW-3 ⁸	Annual beginning in 2009	x	pH , EC, DO, ORP, Temp, TDS	VOC, SVOC, WQCC Metals, Cyanide, Nitrates
PW-2	Every 3 years. Starting in 2008	х	pH , EC, DO, ORP, Temp, TDS	VOC, SVOC, WQCC Metals, Cyanide, Nitrates
PW-4	Every 3 years. Starting in 2007	х	pH , EC, DO, ORP, Temp, TDS	VOC, SVOC, WQCC Metals, Cyanide, Nitrates

#### NOTES:

a) NAPIS 1, NAPIS 2, NAPIS 3: Detection of product during quarterly monitoring must comply with Section II.F.2 (twenty-four hour reporting) of NMED Post-Closure Care Permit

b) Sample using the State of New Mexico approved analytical methods as required by 20.6.4.14 NMAC, as amended through February 16, 2006 (use methods 9221-E and 9221-F, until EPA approves 40 CFR 136 methods. (Colilert, Colilert - 18, m-Coliblue24, membrane filter method)). Parameters are subject to change. Evaporation Pond samples must be collected at the inlet where waste water flows into the evaporation ponds.

#### KEQUESTED CHANGES TO SAMPLING PLAN:

- 1) Change quarterly sampling to VOC, Major Cations/Anions, Arsenic and Uranium. Annual sampling requirements will remain same.
- 2) Changed BTEX+MTBE analysis to 8260B+MTBE (Pending approval)
- 3) Change to RCRA Metals, and drop SVOCs.
- 4) Pond 2 Inlet stream is now coming from STP-1 and not from Evoporation Pond 1.
- 5) Reduce to Major Cations/Anions, WQCC Metals.
- 6) Reduce to VOC and WQCC Metals.
- 7) Remove from annual sampling event any wells that have separate phase hydrocarbons.
- 8) Return to 3 year sampling schedule beginning 2016.
- 9) New wells installed to be added to sampling schedule.

#### **DEFINITIONS:**

Pond 2 Inlet - Sample collected at the inlet to Evaporation Pond 2 from STP-1

NAPIS 1 = (KA-1R); NAPIS-2 = (KA-2R), NAPIS-3 = KA-3R) - monitor wells positioned around NAPIS to detect leakage

DO- Dissolved Oxygen; ORP - Oxygen Reduction Potential; Temp - Temperature; EC - Electrical or Specific Conductivity

- TDS Total Dissolved Solids; VOC Volatile Organic Compounds-EPA Method 8260, must include MTBE
- SVOC Semi-Volatile Organic Compounds EPA Method 8270, must include phenol
- DRO Diesel Range Organics EPA Method 8015B (or as modified); GRO Gasoline Range Organics EPA Method 8015B (or as modified)
- BTEX Benzene, Toluene, Ethylbenzene, Xylene, plus Methyl Tert-Butyl Ether (MTBE) EPA Method 8021+MTBE

General Chemistry - pH, specific conductance, cations, Anions

DTW - Depth to Water; DTP - Depth to Product; EP - Evaporation Pond; BW - Boundary Wells

GWM wells - located around the aeration lagoons to detect leakage

1W - Monitor Well; OW - Observation Well; RW - Recovery Well; PW - Raw Water Production Well

WQCC metals include the RCRA 8 metals, must be analyzed as totals and dissolved

NA - Not Applicable

### Table 1: Gallup Refinery - Ground Water Monitoring Schedule

### CHANGES FOR 2013 - Pending Approval

A) GWM-2 and GWM-3: Requested changing BTEX+MTBE analysis to 8260B+MTBE (Pending approval).

### The following sampling locations has been deleted from the Monitoring Schedule as this was routed into the Waste Water Treatment Plant

Sampling Location ID	Sampling Frequency	Collect GW Elevation, DTW, DTP	Water Quality Parameters	Analytical Suite
Pilot Effluent	Quarterly (Q)			VOC/DRO extended/GRO/WQCC Metals/BOD/COD



## Appendix E

# New Wells MKTF-01 through MKTF-18 Drilling Logs, Survey Report and Hall Laboratory Analysis

Site Job Geo Drill Drill Drill San	ent: V : Gal No.: Diogis ler: E ling I ling I	lup R ; UEC st: Tr Enviro Rig: Meth g Me	rn Refi efinery 01809 racy Pa acy Pa racy Pa colorill, I CME 7 cod: H	y - Seep ayne Inc. 75 Iollow S Split S	outhwest, Inc. 9 West of Tank 102 9 tem Augers 9 poon W 108 25.782'; Boring	Total Depth: 16' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6920. Elev., PAD (ft. msl): 6918. Elev., GL (ft. msl): Site Coordinates: N 1,633,864.41 E 2,545,561.	67 28
Depth (ft.)	PID (ppm)	Saturation	<b>USCS Class</b>	Recovery (%)	Samp	ple Description	Completion Results
-3 -1 1 3 5 7 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				100	Silty Clay (CL) Low plasticity, soft, on no odor Silty Clay/Clayey Si Low plasticity, very s grading to black, gra separated hydrocart	soft, moist to saturated, brown avelly, bio odor, no phase-	Cave In 10/20 Sieve Sand Filter Pack 40 PVC Cap
RP3 125 Aus	50 S. (	Capit exas	al of To 78746	exas H	wy., Bldg. 3, Suite 200	Sheet: 1 of 1	512/347-7588 512/347-8243

RPS			WELL INSTALLATION
			Well No.: MKTF-02
Client: Western Refining S	outhwest, Inc.	Total Depth: 19' bgl	Start Date: 11/14/2013
Site: Gallup Refinery - Seep	West of Tank 102	Ground Water: Saturated @	9' bgl Finish Date: 11/14/2013
Job No.: UEC01809		Elev., TOC (ft. msl): 6917.45	i de la constante de
Geologist: Tracy Payne		Elev., PAD (ft. msl): 6915.00	
Driller: Enviro-Drill, Inc.		Elev., GL (ft. msl):	
Drilling Rig: CME 75		Site Coordinates:	
Drilling Method: Hollow S	tem Augers	N 1,633,946.93 E 2,545,530.46	•
Sampling Method: Split S			
Comments: N 35 29.360'		g ID HA3	
Depth (ft.) PID (ppm) Saturation USCS Class Recovery (%)	Sam	ple Description	Completion Results
2_			

Depth	PID (p	Satura	nscs	Recov					
3 5 7	400 933			100 100 100	Ground Surface Silty Clay (CL) Low plasticity, firm, damp, brown-reddish brown, no odor Silty Clay (CL) Similar to above, odor at 6' bgl with black discoloration Sandy Clay (CL) Low plasticity, soft, moist to saturated at 9' bgl, hydrocarbon odor, no phase-separated hydrocarbon Sandy Clay/Clayey Sand (SC/CL) Fine grain, compact, saturated, dark brown, hydrocarbon odor, no phase-separated hydrocarbon Sandy Clay/Clayey Sand (SC/CL) Fine grain, compact, saturated, dark brown, hydrocarbon Sandy Clay/Clayey Sand (SC/CL) Fine grain, compact, saturated, dark brown, hydrocarbon Sandy Clay/Clayey Sand (SC/CL) Fine grain, compact, saturated, dark brown, hydrocarbon	Steel Protective Cover w/Locking Cap	4" Sch. 40 PVC Slotted 0.01" Screen Bentonite Pellets	Cave In 10/20 Sieve Sand Filter Pack 9.5" Diameter Hole	4" Flush Threaded Sch. 40 PVC Cap ¹ Saturation 9' 4" Sch. 40 PVC with Threaded Joints
RPS 1250 Aus	6 0 S. ( tin, ⊤	Capit exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>			/347-75 /347-82	



Total Depth: 19' bgl

Well No.: MKTF-03 Start Date: 11/7/2013 Finish Date: 11/7/2013

Site: Gallup Refinery - Seep West of Tank 102 Job No.: UEC01809 Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow Stem Augers Sampling Method: Split Spoon

Comments: N 35 29.328' W108 25.743'; Boring ID - SB01

Client: Western Refining Southwest, Inc.

Ground Water: Saturated @ 8' bgl Elev., TOC (ft. msl): 6931.31 Elev., PAD (ft. msl): 6931.73 Elev., GL (ft. msl): --Site Coordinates: N 1,633,746.53 E 2,545,756.87

(%) **JSCS Class** Saturation Depth (ft.) PID (ppm) Recovery Sample Description **Completion Results** -1. 1.2 Ground Surface Flush Mount Steel Protective Cover 0' Fill (Silt/Sand) Concrete Pad - 4'x4'x6" Fine grain, loose, dry to damp, brown, no odor **Bentonite Pellets** Sch. 40 PVC with Threaded Joints 1' 1-164 60 9.5" Diameter Hole Silty Clay (CL) Low plasticity, firm, damp, brown/reddish brown, no 3' 3-423 40 odor Silty Clay (CL) Similar to above, no odor 5-330 70 Saturation 8' 4 Silty Clay (CL) Similar to above, sandy at base from 7.75-8.0' bgl, 7-75 90 no odor Sch. 40 PVC Slotted 0.01" Screen ā T Sieve Sand Filter Pack ¥ Silty Clay (CL) Fine grain sand seams throughout, saturated, 9-326 90 phase-separated hydrocarbon, hydrocarbon odor, clear phase-separated hydrocarbon poured out of split spoon Silty Clay (CL) Similar to above with sand seams, saturated with 11-312 90 10/20 phase-separated hydrocarbon, hydrocarbon odor, dark brown Gravelly Sand (SW) ß Fine to medium to coarse grain, loose, saturated 13-368 with phase-separated hydrocarbon, black, 80 ß hydrocarbon odor Gravelly Sand (SW) ÷ to 0 Similar to above 15-700 60 RPS 512/347-7588 Sheet: 1 of 2 1250 S. Capital of Texas Hwy., Bldg. 3, Suite 200 512/347-8243 Austin, Texas 78746

Site Job Geo Drill Drill Drill San	nt: V : Gal No.: logi ler: ^E ling l ling l	lup R UEC st: Tr invirc Rig: Meth g Me	ern Refi lefinery C01809 racy Pa o-Drill, I CME 7 cOME 7 cod: H	ayne nc. 5 ollow S Split S	outhwest, Inc. p West of Tank 102 Stem Augers Spoon W108°25.743'; Boring II	Total Depth: 19' bgl Ground Water: Saturated @ 8' bgl Elev., TOC (ft. msl): 6931.31 Elev., PAD (ft. msl): 6931.73 Elev., GL (ft. msl): Site Coordinates: N 1,633,746.53 E 2,545,756.87	ELL INSTALLATION Well No.: MKTF-03 Start Date: 11/7/2013 Finish Date: 11/7/2013
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	le Description	Completion Results
17 19 21 23 25 27 29	225			10	phase-separated hyd Silty Clay (CL) Poor recovery Clay (CH) High plasticity, very c brown, faint odor	ioist, brown, faint odor, no	4" Sch. 40 PVC Slotted 0.01" Screen
RPS 125 Aus	0 S. (	Capita exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200	Sheet: 2 of 2	512/347-7588 512/347-8243

RPS	WE	<b>UL INSTALLATION</b> Well No.: MKTF-04			
Client: Western Refining Southwest, Inc.	Total Depth: 24' bgl	Start Date: 11/12/2013			
Site: Gallup Refinery - Seep West of Tank 102	Ground Water: Saturated @ 14' bgl	Finish Date: 11/12/2013			
Job No.: UEC01809	Elev., TOC (ft. msl): 6933.57				
Geologist: Tracy Payne	Elev., PAD (ft. msl): 6933.90				
Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl):				
Drilling Rig: CME 75	Site Coordinates:				
Drilling Method: Hollow Stem Augers	N 1,633,649.46 E 2,545,752.83				
Sampling Method: Split Spoon					
Comments: N 35 29.310' W 108 25.742'; Boring	ID SB03				

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
-1_ -1_ 	10.2			90	Ground Surface Fill (Silt/Gravel) Low plasticity, very dense, dry, light brown, no odor	n Mount Protective Cover Concrete Pad - 4'x4'x6" 
3	11.7			80	Fill (Silt/Gravel) Similar to above, black, dense at base, no odor	Flush Mount Protective Cover Concrete Pad - 4'x4'x6" c ellets Cement/Bentonite Grout
5	16			90	Silty Clay (CL) Low plasticity, stiff, damp, reddish brown, no odor, calcareous	С С 9.5 9.5
7	26			90	Gravelly Sandy Clay (CL) Low plasticity, loose to firm, damp, brown, no odor	Bentonite Pellets
9	708			70	Silty Clay (CL) Low plasticity, very soft, damp, reddish brown, hydrocarbon odor	10' E
11-	369			80	Clay (CH) High plasticity, firm, damp, reddish brown, hydrocarbon odor	d 0.01" Sc nd Filter F
13	660	14'		90	Sandy Clay/Clayey Sand (SC/CL) Low plasticity, fine grain, soft, damp, reddish brown, hydrocarbon odor	40 PVC
15-	85			90	Sandy Clay (SC) Similar to above, saturated sand seams, hydrocarbon odor, brown	- ↓ Sch.
RP 125 Aus	50 S.	Capit	al of T 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 2</b>	512/347-7588 512/347-8243

Site Job Geo Dril Dril Dril San	ent: V : Gal No.: Diogis ler: E ling I ling I nplin	lup R ; UEC st: Tr Enviro Rig: Meth g Me	rn Refi efinery 01809 racy Pa -Drill, I CME 7 od: H ethod:	ayne nc. 5 ollow S	outhwest, Inc. b West of Tank 102 D West of Tank 102 Elev., TOC (ft. msl): 6933 Elev., PAD (ft. msl): 6933 Elev., GL (ft. msl): Site Coordinates: N 1,633,649.46 E 2,545,752 Spoon W 108°25.742'; Boring ID SB03	.57 90
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
17	64 33	Procession and Proces		70 90	Sandy Clay (SC) Similar to above, moist to saturated, hydrocarbon odor, brown Sandy Clay (SC) Low plasticity, fine grain, soft, moist to saturated, light reddish brown, hydrocarbon odor, gravelly at base Silty Clay (CL) Low plasticity, stiff, damp, light reddish brown grading to yellowish/greenish gray, becomes more silty at base	40 PVC Slotted 0.01" Screen
23					Total Depth = 24' BGL	22.5' X 22.5' 4 BAC: '4 24' 24' 4 Cave Iu 24' 5 24' 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7
29 31						510/047 7500
RP 125 Aus	50 S. I	Capit exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: 2 of 2	512/347-7588 512/347-8243



## WELL INSTALLATION

Well No.: MKTF-05 Start Date: 11/12/2013 Finish Date: 11/12/2013

Client: Western Refining Southwest, Inc. Site: Gallup Refinery - Seep West of Tank 102 Job No.: UEC01809 Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow Stem Augers

Sampling Method: Split Spoon

Comments: N 35 29.282' W 108 25.739'; Boring ID - SB06

Depth (ft.)	PID (ppm)	Saturation	<b>USCS Class</b>	Recovery (%)	Sample Description	Completion Results
3 5 7 9	52.6 180 224 1202 1525 377	Economic Contraction 10'		60 100 90 90 90 90	Ground Surface         Fill (Silty Clay/Gravel)         Low plasticity, firm, damp, brown, faint odor         Silty Clay (CL)         Low plasticity, firm, damp, reddish brown, odor, calcareous         Sandy Clay/Clayey Sand (CL/SC)         Low plasticity, fine grain, damp, dark brown, hydrocarbon odor, sand seams present         Sandy Clay/Clayey Sand (CL)         Similar to above         Sandy Clay/Clayey Sand (CL)         Similar to above         Sandy Clay (CL)         Low plasticity, soft, damp, dark brown, hydrocarbon odor         Sandy Clay (CL)         Low plasticity, soft, damp, dark brown, hydrocarbon odor         Sandy Clay (CL)         Low plasticity, soft, damp, dark brown, hydrocarbon odor         Clayey Sand (SC)         Fine grain, loose to compact, saturated, hydrocarbon odor, dark brown         Sandy Clay (CL)         Low plasticity, soft to firm, moist, dark brown, hydrocarbon odor         Clayey Sand (SC)         Fine grain, loose to compact, saturated, hydrocarbon odor         Daw plasticity, soft to firm, moist, dark brown, hydrocarbon odor	Cave In
RPS 125 Aus	0 S. (	Capita exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243

Total Depth: 15' bgl

Elev., GL (ft. msl): --

Site Coordinates:

Ground Water: Saturated @ 10' bgl

Elev., TOC (ft. msl): 6942.22

Elev., PAD (ft. msl): 6939.49

N 1,633,472.30 E 2,545,769.95

Site Job Geo Dril Dril Dril San	ent: V e: Gal o No.: ologi ler: E ling ling nplin	lup R ; UE( st: T Enviro Rig: Meth g Me	ern Refi Refinery C01809 racy Pa o-Drill, I CME 7 nod: H rethod:	y - Seep ayne inc. 5 ollow S ; Split S	outhwest, Inc. 5 West of Tank 102 Stem Augers Spoon W 108°25.732'; Boring	Total Depth: 21' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6946.8 Elev., PAD (ft. msl): 6944.2 Elev., GL (ft. msl): Site Coordinates: N 1,633,556.28 E 2,545,811.8 ID - SB08	17.5' bgl 1 4	Well N Start D	ISTAI	1/2013	N
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	ble Description		Comp	letion Re	esults	
3 5 7 9 11	15.9 228 1777 264 900			70 60 40  10	Fill (Silty Clay) Low plasticity, stiff, d Fill (Silty Clay/Grave Similar to above, dry Fill (Silty Clay) Similar to above, dar Fill (Silty Clay) Low plasticity, soft, d debris No recovery Fill (Silty Clay/Grave Similar to above	no odor mp, no odor lamp, brown, gravel and wood	Steel Protective Cover w/Locking Cap Concrete Pad - 4'x4'x6"	0, α 4" Sch. 40 PVC Slotted 0.01" Screen Bentonite Pellets		● 10/20 Sieve Sand Filter Pack 9.5" Diameter Hole	4" Sch. 40 PVC with Threaded Joints
RPS 125 Aus	50 S.	Capit exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200	Sheet: 1 of 2				12/347-7588 12/347-8243	

Site Job Geo Dril Dril Dril San	ent: V : Gal No.: ologia ler: E ling I ling I	lup R ; UEC st: Tr Envirc Rig: Meth g Me	erin Refi efinery C01809 racy Pa o-Drill, I CME 7 iod: H	y - Seep ayne Inc. 5 ollow S ; Split S	outhwest, Inc. 5 West of Tank 102 Stem Augers Spoon W 108°25.732'; Boring	Total Depth: 21' bgl Ground Water: Saturated @ - Elev., TOC (ft. msl): 6946.81 Elev., PAD (ft. msl): 6944.24 Elev., GL (ft. msl): Site Coordinates: N 1,633,556.28 E 2,545,811.85 ID - SB08	17.5' bgl	Well No.: MK Start Date: 1	1/11/2013
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	le Description		Completion	
17	225	ESCOSSON 17.5'		100	Gravelly Sandy Clay Low plasticity, firm, m hydrocarbon odor Clayey Gravel Sand Fine to medium grain separated hydrocarbo hydrocarbon odor Sandy Clay (CL) Low plasticity, firm, m	st, oily, hydrocarbon odor (CL) noist, oily, 1" gravel, strong (SC) n, loose, saturated, phase-	20	4" Sch. 40 PVC Slotted 0.01" Screen	Cave In Cave I

RPS 1250 S. Capital of Texas Hwy., Bldg. 3, Suite 200 Austin, Texas 78746



Client: Western Refining Southwest, Inc. Site: Gallup Refinery - Seep West of Tank 102 Job No.: UEC01809 Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow Stem Augers Sampling Method: Split Spoon

Total Depth: 15' bgl Ground Water: Saturated @ 5' bgl Elev., TOC (ft. msl): 6947.18 Elev., PAD (ft. msl): 6944.40 Elev., GL (ft. msl): --Site Coordinates: N 1,633,555.11 E 2,545,885.42 Well No.: MKTF-07 Start Date: 11/11/2013 Finish Date: 11/11/2013

Depth (ft.) PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
-3 -1 1 132 3 235 5 120 7 372 9 11 13 15	2		90 90 50 90	Ground Surface         Fill (Silty Clay)         Low plasticity, firm, dry to damp, brown, faint odor         Fill (Clay/Sand/Gravel)         Damp, hydrocarbon odor         Fill (Clay/Caliche Rock)         Odor       Silty Sand (SM)         Fine grain, loose, saturated, phase-separated hydrocarbon odor         Silty Sand (SM)       Similar to above, saturated         Silty Sand (SM)       Similar to above, saturated         Silty Clay (CL)       Low plasticity, firm, damp, brown, hydrocarbon odor         No recovery       Total Depth = 15' BGL	Cave In 4" Sch. 40 PVC Slotted 0.01" Screen 4" Sch. 40 PVC Slotted 0.01" Screen 4" Sch. 40 PVC Slotted 0.01" Screen 6. Rentonite Pallets 6. Rentonite Pallets 7. Rentonite 7.
RPS 1250 S Austin,	. Capi	tal of Te	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243

Client: Western Ref Site: Gallup Refinery Job No.: UEC01809 Geologist: Tracy Pa Driller: Enviro-Drill, Drilling Rig: CME 7 Drilling Method: H Sampling Method: H	y - See ayne Inc. 75 ollow S : Split S	p West of Tank 102 (                   	Total Depth: 20' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6947.09 Elev., PAD (ft. msl): 6944.02 Elev., GL (ft. msl): Site Coordinates: N 1,633,598.94 E 2,545,885.02		08 1/2013
Depth (ft.) PID (ppm) Saturation USCS Class	Completion Re	sults			
-3 -1 1 1 85 3 273 5 86 7 308 9 11 7 308 9 11 7 308 15 11 7 126 11 126 11 126 11 126 11 126 14 14 14 14 14 14 14 14 14 14	90 80 90 80 80 90	Fill (Silty Clay/Gravel) Low plasticity, firm, dry Fill (Silty Clay/Gravel) Similar to above Clay (CH) High plasticity, stiff, dan pockets of silt, odor Silty Clay (CL) Low plasticity, soft/crum hydrocarbon odor Silty Clay (CL) Low plasticity, soft, dam Silty Clay (CL) Similar to above, moist Silty Clay (CL) Medium grain, loose, sa hydrocarbon, hydrocarb Sandy Silty Clay (CL) Low plasticity, soft to fir Sandy Clay (CL) Low plasticity, soft to co separated hydrocarbon,	np, brown with light brown hbly, dry to damp, brown, np, brown, hydrocarbon odor aturated, phase-separated bon odor, brown m, moist, hydrocarbon odor	Steel Protective Cover w/Locking Cap 18 18 18 18 18 18 18 18 20 20 20 21 21 21 21 21 21 21 21 21 21	Cave In 10/20 Sieve Sand Filter Pack 9.5" Diameter Hole 4" Flush Threaded Sch. 40 PVC Cap 4" Sch. 40 PVC with Threaded Joints 4" Sch. 40 PVC with Threaded Joints

9       Silty Clay (CL) Similar to above       7'         9       Silty Clay (CL) Similar to above       7'         9       Silty Clay (CL) Similar to above       9'         9       Silty Clay (CL) Similar to above, increase in sand and moisture       9'         9       Sandy Clay (CL) Similar to above, moist, hydrocarbon odor, dark brown       9'         11       314       Sandy Clay (CL) Similar to above, moist, hydrocarbon odor, dark brown       9'         13       651       90       Sandy Clay/Clayey Sand (CL/SC) Fine to medium grain, compact, moist to saturated, hydrocarbon odor       9'         13       Sandy Clay/Clayey Sand (CL/SC) Fine to medium grain, compact, moist to saturated, hydrocarbon odor       9'	Clier Site: Job Geo Drill Drill Sam	nt: V ; Gal No.: logi: er: E ing l ing l	Ilup F : UEC st: T Envirc Rig: Meth g Me	ern Refi Refinery C01809 racy Pa o-Drill, I CME 7 nod: H ethod:	y - See ayne Inc. 75 ollow S : Split S	outhwest, Inc. p West of Tank 102 Stem Augers Spoon W 108 °25.715'; Boring	Total Depth: 22' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6946.50 Elev., PAD (ft. msl): 6943.55 Elev., GL (ft. msl): Site Coordinates: N 1,633,681.33 E 2,545,895.90	12' bgl 0 7	Well Start	No.:	TALI MKTF-0 :: 11/11/ te: 11/1	9 2013	101	Ν
1       -1       Ground Surface         1       -21.9       90       Fill (Silty Clay)         3       -32.7       90       Fill (Silty Clay)         3       -32.7       90       Similar to above, gravel         9       Silty Clay (CL)	Depth (ft.)	Depth (ft.) PID (ppm) Countriation Countriation Recovery (%) Recovery (%)							Com	pletic	on Res	ults		
15-3587     Similar to above, saturated, sheen observed on split spoon, black, hydrocarbon odor       RPS     512/347-7588	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	32.7 36.1 37 533 314 551 587			90 90 90 90 90	Fill (Silty Clay) Low plasticity, stiff, dr Fill (Silty Clay) Similar to above, grav Silty Clay (CL) Low plasticity, soft, dr Silty Clay (CL) Similar to above Sandy Clay (CL) Similar to above, incr Sandy Clay (CL) Similar to above, moi brown Sandy Clay/Clayey S Fine to medium grain hydrocarbon odor Sandy Clay/Clayey S Similar to above, satu	ry to damp, no odor, brown vel amp, brown, faint odor ease in sand and moisture st, hydrocarbon odor, dark Sand (CL/SC) n, compact, moist to saturated, Sand (CL/SC) urated, sheen observed on	Steel Protective Cover w/Locking Cap Concrete Pad - 4'x4'x6"	, Bentonite Pellets			10/20 Sieve Sand Filter Pack 9.5" Diameter Hole	<b>X</b> 1-	4" Sch. 40 PVC with Threaded Joints

Site Job Geo Drill Drill Drill Sam	nt: V : Gal No.: logi ler: E ing l ing l	lup R ; UEC st: Tr Enviro Rig: Meth g Me	rn Refi efinery 201809 racy Pa -Drill, I CME 7 c <b>ME</b> 7	- Seep ayne nc. 5 ollow S Split S	outhwest, Inc. 9 West of Tank 102 9 Stem Augers 9 Spoon W 108 25.715'; Boring	Total Depth: 22' bgl Ground Water: Saturated @ 12' bgl Elev., TOC (ft. msl): 6946.50 Elev., PAD (ft. msl): 6943.57 Elev., GL (ft. msl): Site Coordinates: N 1,633,681.33 E 2,545,895.93	ELL INSTALLATION Well No.: MKTF-09 Start Date: 11/11/2013 Finish Date: 11/11/2013
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sam	ple Description	Completion Results
17 19 21 23 25 27 29 31 33				90	Sandy Clay/Clayey Sand (CL/SC) Fine to medium grain, compact, saturated, sheen observed on split spoon, black, hydrocarbon odor Total Depth = 22' BGL		4" Sch. 40 PVC Slotted 0.01" Screen
RPS 125 Aus	0 S. (	Capit	al of Te 78746	exas H	wy., Bldg. 3, Suite 200	Sheet: 2 of 2	512/347-7588 512/347-8243



Well No.: MKTF-10 Start Date: 10/31/2013 Finish Date: 10/31/2013

Client: Western Refining Southwest, Inc. Site: Gallup Refinery - Seep West of Tank 102 Job No.: UEC01809 Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow Stem Augers

Sampling Method: Split Spoon

Comments: N 35 29.336' W 108 25.724'; Boring ID SB16

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
-1 - 1 - 3 - 5 - 9 -	90 14 431 448 654 1559 713	Economic contraction contraction contraction of a second sec		<ul> <li>PC</li> <li>90</li> <li>90</li> <li>90</li> <li>60</li> <li>60</li> <li>90</li> <li>90</li> <li>90</li> </ul>	Ground Surface         Fill (Silt/Gravel)         Low plasticity, loose, dry, light brown         Fill (Silty Clay/Gravel)         Similar to above         Silty Clay (CL)         Low plasticity, stiff, dry, reddish brown, odor, calcareous         Sand (SP)         Fine grain, loose, dry, reddish brown, odor         Sand (SP)         Similar to above, saturated at 9' bgl, phase-separated hydrocarbon, hydrocarbon odor         Clayey Sand (SC)         Fine grain, soft, saturated, phase-separated hydrocarbon, brown to black, hydrocarbon odor         Clayey Sand/Sandy Clay (SC/CL)         Low plasticity, firm to stiff, moist to saturated, hydrocarbon odor         Clayey Sand/Sandy Clay (SC/CL)         Low plasticity, firm to stiff, moist to saturated, hydrocarbon odor         Clayey Sand/Sandy Clay (SC/CL)         Low plasticity, firm to stiff, moist to saturated, hydrocarbon odor, dark brown	Cave In Cave In Threaded Sch. 40 PVC Slotted 0.01" Screen 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
RPS 125 Aus	0 S. (	Capita	al of Te 78746	exas Hv	vy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243

Total Depth: 18' bgl

Elev., GL (ft. msl): --

Site Coordinates:

Ground Water: Saturated @ 9' bgl

Elev., TOC (ft. msl): 6937.16

Elev., PAD (ft. msl): 6937.51

N 1,633,807.47 E 2,545,853.54

	R	DC				WELL INSTALLATION				
	N					Well No.: MKTF-11				
Client: Western Refining Southwest, Inc.						Total Depth: 19' bgl Start Date: 10/31/2013				
Site: Gallup Refinery - Seep West of Tank 102				y - See	o West of Tank 102	Ground Water: Saturated @ 12' bgl Finish Date: 10/31/2013				
Job No.: UEC01809				Э		Elev., TOC (ft. msl): 6931.34				
Geologist: Tracy Payne						Elev., PAD (ft. msl): 6931.61				
Driller: Enviro-Drill, Inc.				Inc.		Elev., GL (ft. msl):				
Dril	ling	Rig:	CME	75		Site Coordinates:				
Dril	ling	Meth	nod: ⊦	lollow S	Stem Augers	N 1,633,806.93 E 2,545,754.77				
San	nplin	g Me	ethod	: Split S	Spoon					
Cor	nme	nts:	N 35°2	9.336'	W 108 25.739'; Boring	g ID - SB17				
			Ś	(%)						
	e l	Ē	ass	Š						

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results		
-1					Ground Surface			
1	4 1			60	Fill (Silty Clay/Gravel) Low plasticity, stiff, dry, light brown	8 9 A		
3	36			70	Fill (Silty Clay) Similar to above	Flush Mount Protective Cover Concrete Pad - 4'x4'x6" - Bentonite Pellets		
5	80			90	Silty Clay (CL) Low plasticity, firm, damp, brown, calcareous	Plush Mou Conc Bent 9.5" Diarr		
7	125			80	Silty Clay (CL) Similar to above	Šch. 40 P		
9	1259			80	Silty Clay (CL) Low plasticity, firm, damp, oily, hydrocarbon odor, dark brown	o ilter Pack on 12'		
	860	12'		70	Silty Clay (CL) Similar to above, moist, hydrocarbon odor, oily, phase-separated hydrocarbon	Sch. 40 PVC Slotted 0.01" Screen		
13	1716			60	Sandy Clay (CL) Low plasticity, soft, moist to saturated, hydrocarbon odor, dark brown	Slotted 0.0		
1 1	1050				Silty Sand (SM) Medium grain, loose, saturated, hydrocarbon odor, dark brown to black	40 PVC 5		
17				70	Sandy/Silty Clay (CL) Low plasticity, firm, saturated, dark brown to black, hydrocarbon odor	18' ⁴ ²		
19					Total Depth = 19' BGL	18.5' 19'		
21						Cave In		
RPS 125 Aus	50 S. (	Capit exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243		

Client: Site: G Job No Geolog Driller: Drilling Drilling Sampli	allup F gist: T Enviro g Rig: g Meth	ern Ref Refinery C01809 racy Pa o-Drill, I CME 7 nod: H ethod:	y - Seep ayne Inc. 5 ollow S Split S	outhwest, Inc. 5 West of Tank 102 Stem Augers Spoon W 108°25.754'; Boring	Total Depth: 23' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6942.1 Elev., PAD (ft. msl): 6939.7 Elev., GL (ft. msl): Site Coordinates: N 1,633,542.07 E 2,545,688.2	9 14' bgl 1 0	L INST Well No.: M Start Date: Finish Date	11/7/2013
Depth (ft.) PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	ole Description		Completion	n Results
-3			90	Silt/Gravel (ML)	round Surface dry/damp, no odor, brown	Steel Protective Cover w/Locking Cap Concrete Pad - 4'x4'x6" 7	0'	d Joints
3   54 5   7		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	80 70	Clayey Sandy Silt (I		Steel Pro Concrete P	n Bentonite Pellets	<ul> <li>Pack 9.5" Diameter Hole</li> <li>4" Sch. 40 PVC with Threaded Joints</li> </ul>
9 5.5			70 60	odor Sandy Clay (CL)	pact, dry to damp, brown, no damp, light brown, no odor	-	Sch. 40 PVC Slotted 0.01" Screen	10/20 Sieve Sand Filter Pack
11 <u>-</u> 5.8 13 <u>-</u> 10	14'		70 70	Similar to above, bro Sandy Clay (CL) Similar to above Silty Sand (SM)		-	12' Sch. 40 F	Saturation 14'

RPS 1250 S. Capital of Texas Hwy., Bldg. 3, Suite 200 Austin, Texas 78746

50

:::t**i 1**4'

15-225

Sheet: 1 of 2

Silty Sand (SM) Fine to medium grain, loose, damp, brown, no odor

Sandy Clay (CL) Low plasticity, firm, moist to saturated in sand seams, hydrocarbon odor, dark brown

512/347-7588 512/347-8243

Ţ

RPS	WE	<b>LL INSTALLATION</b> Well No.: MKTF-12							
Client: Western Refining Southwest, Inc.	Total Depth: 23' bgl	Start Date: 11/7/2013							
Site: Gallup Refinery - Seep West of Tank 102	Ground Water: Saturated @ 14' bgl	Finish Date: 11/7/2013							
Job No.: UEC01809	Elev., TOC (ft. msl): 6942.11								
Geologist: Tracy Payne	Elev., PAD (ft. msl): 6939.70								
Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl):								
Drilling Rig: CME 75	Site Coordinates:								
Drilling Method: Hollow Stem Augers	N 1,633,542.07 E 2,545,688.29								
Sampling Method: Split Spoon	Sampling Method: Split Spoon								
Comments: N 35 °29.294' W 108 °25.754'; Boring ID - SB19									

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results			
17	319			70	Sandy Clay (CL) Similar to above, moist, hydrocarbon odor	PVC Cap			
19	400				Sandy Clay (CL) Similar to above, moist, hydrocarbon odor	ted 0.01" Screen Titter Pack - ted 0.01" Screen T			
21	532	here and a second second			Sandy Clay/Clayey Sand (CL) Very fine grain, compact, moist to saturated, sheen observed in split spoon, hydrocarbon odor	4" Sch. 40 PVC Slotted 0.01" Screen			
23 25 27 29 31 33		**			Total Depth = 23' BGL	4" Sch. 40 PVC Cave in			
RPS 125 Aus	RPS         512/347-7588           1250 S. Capital of Texas Hwy., Bldg. 3, Suite 200         Sheet: 2 of 2         512/347-8243           Austin, Texas 78746         512/347-8243         512/347-8243								

RPS				WELL INSTALLATION					
Client: Western Site: Gallup Refi	Ũ	outhwest, Inc. West of Tank 102	Total Depth: 20' bgl Ground Water: Saturated @	Well No.: MKTF-13 Start Date: 11/12/2013 10' bgl Finish Date: 11/12/2013					
Job No.: UEC01 Geologist: Trac			Elev., TOC (ft. msl): 6935.18 Elev., PAD (ft. msl): 6933.67						
Driller: Enviro-D	Drill, Inc.		Elev., GL (ft. msl): Site Coordinates:						
Drilling Rig: CM Drilling Method	d: Hollow S		N 1,633,625.25 E 2,545,697.39						
	Sampling Method: Split Spoon Comments: N 35 29.307' W 108 25.755'; Boring ID - SB20								
	SCS Class scovery (%)	Samı	ole Description	Completion Results					

Depth (f	PID (ppr	Saturati	uscs c	Recover	Sample Description	Completion Results			
-3 -1 -1 -1 -1 -3 -3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	2.7 3 7 9 165 200			90 90 80 90 90 90	Ground Surface         Silt (ML)         Low plasticity, soft, damp, brown, no odor         Similar to above, trace gravel         Sandy Clay (CL)         Low plasticity, stiff, dry, brown, calcareous         Silty Sand/Sandy Silt (SM/ML)         Very fine grain, loose to compact, dry, calcareous, brown         Sandy Silt (ML)         Similar to above, no odor         Sandy Clay/Clayey Sand (SC/CL)         Medium grain, compact, moist to saturated, hydrocarbon odor, brown         Clayey Sand (SC)         Similar to above, saturated, hydrocarbon odor	Cave In Threaded Sch. 40 PVC Sloted 0.01" Screen 4" Sch. 40 PVC Sloted 0.01" Screen 6" - 4" Sch. 40 PVC Sloted 0.01" Screen 6" - 9" - 9" - 9" - 9" - 9" - 9" - 9" -			
RPS 1250 Austir									



# WELL INSTALLATION

Well No.: MKTF-14 Start Date: 11/12/2013 Finish Date: 11/12/2013

Client: Western Refining Southwest, Inc. Site: Gallup Refinery - Seep West of Tank 102 Job No.: UEC01809 Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75

Drilling Method: Hollow Stem Augers

Sampling Method: Split Spoon

Comments: N 35 °29.323' W 108 °25.769'; Boring ID SB22

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results			
	308 793 504 760	listestatestatestatestatestatestatestates		20 90 90 90	Ground Surface Silty Clay (CL) Low plasticity, soft, damp, brown Silty Clay (CL) Similar to above, odor Sandy Clay (CL) Low plasticity, firm, moist, oily, brown, trace gravel Clayey Sand (SC) Medium grain, loose to compact, saturated, phase- separated hydrocarbon, hydrocarbon odor, black Clayey Sand (SC) Similar to above Total Depth = 15' BGL	Cave In 10/20 Sieve Sand Filter Pack. 10/20 Sieve Sand Filter Pack 10/20 Sieve Sand 10/20 Sieve San			
RP3 125	S 0 S. (	Capita exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243			

Total Depth: 15' bgl

Elev., GL (ft. msl): --

Site Coordinates:

Ground Water: Saturated @ 6' bgl

Elev., TOC (ft. msl): 6928.02

Elev., PAD (ft. msi): 6925.65

N 1,633,719.43 E 2,545,625.96

Clier Site: Job Geol Drille Drilli Drilli Sam	Gall No.: logis er: E ing I ing I plin	Veste lup F UEC st: T Enviro Rig: Metł g Me	ern Ref Refinery C01809 racy Pa o-Drill, I CME 7 nod: H ethod	y - See ayne Inc. 75 ollow S Five-F	outhwest, Inc. p West of Tank 102 Stem Augers Foot Core Barrel W 108 25.708'; Boring	Total Depth: 22' bgl Ground Water: Saturate Elev., TOC (ft. msl): 69 Elev., PAD (ft. msl): 69 Elev., GL (ft. msl): Site Coordinates: N 1,633,845.57 E 2,545,9 ID - SB31	943.48 943.74
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	le Description	Completion Results
-1 -1				0 90 90	Gr Fill (Clay and Grave No recovery Fill (Clay and Grave Reddish brown Fill (Clay and Grave Similar to above, no o Fill (Silty Clay)	I) I)	Flush Mount Protective Cover Concrete Pad - 4'x4'x6" - - - - - - - - - - - - - - - - - - -

1111111 2" Sch. 40 PVC Slotted 0.01" Screen Silty Sandy Clay (CL) Low plasticity, firm to soft, damp, reddish brown, hydrocarbon odor 9-1004 9' 90 Silty Sand (SM) Fine grain, compact, damp, light reddish brown, no 11-293 70 odor Sand (SP) Similar to above, odor, moist to very moist 13-221 80 4 Sand (SP) Fine to medium grain, loose, saturated, brown, 15 11 17 80 hydrocarbon odor, phase-separated hydrocarbon present Sandy Silt (ML) Low plasticity, very soft, damp to moist, brown, 60 hydrocarbon odor RPS Sheet: 1 of 2 1250 S. Capital of Texas Hwy., Bldg. 3, Suite 200 Austin, Texas 78746

512/347-7588 512/347-8243

10/20 Sieve Sand Filter Pack

Saturation 14'

Ŧ

Site Job Geo Drill Drill Drill San	ent: V : Gal No.: ologis ler: E ling I ling I	lup R UEC st: Tr Enviro Rig: Meth g Me	ern Ref efinery 201809 racy Pa -Drill, CME 7 od: H	y - Seep ayne Inc. 75 ollow S Five-F	outhwest, Inc. o West of Tank 102 Stem Augers Foot Core Barrel W 108°25.708'; Boring	Total Depth: 22' bgl Ground Water: Saturated @ 1 Elev., TOC (ft. msl): 6943.48 Elev., PAD (ft. msl): 6943.74 Elev., GL (ft. msl): Site Coordinates: N 1,633,845.57 E 2,545,934.58 ID - SB31	WELL INSTALLATION Well No.: MKTF-15 Start Date: 10/29/2013 09:30 4' bgl Finish Date: 10/29/2013 12:15
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	le Description	Completion Results
19 21 23 25 27 29 31 33 33				90	hydrocarbon odor, da Sandy Silt/Silty Sand Similar to above, satu hydrocarbon odor Silty Clay (CL) Low plasticity, firm, d Silty Clay (CL) Similar to above, odo	ompact, moist to saturated, Irk brown to black d (ML/SM) Irated in silty sand lenses, amp, brown, faint odor	2" Sch. 40 PVC Slotted 0.01" Screen 10/20 Sieve Sand Filter Pack
RPS 125 Aus	0 S. 0	Capita exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200	Sheet: 2 of 2	512/347-7588 512/347-8243

RPS	WE	Well No.: MKTF-16					
Client: Western Refining Southwest, Inc.	Total Depth: 16' bgl Start Date: 11/7/2013 0						
Site: Gallup Refinery - Seep West of Tank 102	Ground Water: Saturated @ 9' bgl	Finish Date: 11/7/2013 11:00					
Job No.: UEC01809	Elev., TOC (ft. msl): 6950.58						
Geologist: Tracy Payne	Elev., PAD (ft. msl): 6951.00						
Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl):						
Drilling Rig: CME 75	Site Coordinates:						
Drilling Method: Hollow Stem Augers	N 1,633,718.14 E 2,546,068.55						
Sampling Method: Split Spoon							
Comments: N 35°29.323' W 108°25.680'; Boring	g ID - SB32						

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
5- 7- 9- 11-	469 1445 1255 1412 439	ie Marchiel		0 10 0 90 90 40 80	Ground Surface         Fill (Clay/Gravel)         Similar to above         Fill (Clay/Gravel)         Similar to baove         Fill (Clay/Gravel)         Similar to above         Fill (Clay/Gravel)         Similar to above         Fill (Clay/Gravel)         Saturated at 9' bgl, black discoloration, hydrocarbon odor         Gravelly Sand (SW)         High plasticity, firm, damp, dark brown, hydrocarbon odor         Clayey Sand (SC)         Similar to above, hydrocarbon odor         Clayey Sand (SC)         Moderate plasticity, firm, damp, brown, hydrocarbon odor         Total Depth = 16' BGL	Flush Mount Protective Cover 9 9 9 9 9 9 9 9 9 9 9 9 9
RPS 125 Aus	0 S. (	Capit	al of Te 78746	exas Hv	wy., Bldg. 3, Suite 200 Sheet: <b>1 of 1</b>	512/347-7588 512/347-8243

Site Job Geo Dril Dril Dril San	ent: V e: Gal o No.: ologi: ler: E ling l ling l nplin	lup F : UE( st: T Envirc Rig: Meth g Me	ern Refi Refinery C01809 racy Pa o-Drill, I CME 7 nod: He ethod:	yne nc. 5 ollow S Split S	buthwest, Inc. Total Depth: 25' bg Ground Water: Sa Elev., TOC (ft. msl Elev., PAD (ft. msl) Elev., GL (ft. msl): Site Coordinates: tem Augers N 1,633,268.93 E 2,5 poon W 108°25.724'; Boring ID - SB33	turated @ 20' bgl Finish Date: 11/14/2013 15:00 ): 6945.76 ): 6945.79 
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description	Completion Results
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		Fill (Asphalt/Base/		10	Ground Surface Fill (Asphalt/Base/Clay) Low plasticity, soft, damp, brown	Flush Mount Protective Cover Concrete Pad - 4'x4'x6" Concrete Pad - 4'x4'x6" 8" Diameter Hole
3	150			10	Fill (Clay) Similar to above	ellets 8" Diameter Hole
5	157			90	Fill (Sand/Gravel/Clay) Moist to very moist, reddish brown, no odor	40 P V
7	92.1			20	Fill (Sand/Gravel/Clay) Similar to above, saturated, odor	2" Sci
9	9 65.9 90 High plasticity, firm, o		Clay (CH) High plasticity, firm, damp, faint odor, brown	and the second se		
11-	17			60	Clay (CH) Similar to above	PVC Slotted 0.01" Screen 10/20 Sieve Sand Filter Pack
13-	55			70	Clay (CH) High plasticity, soft, damp, dark brown and b odor	black, DAL SI

Clay (CH)

Clay (CH)

Similar to above, faint odor

Similar to above, trace fine grain sand

60

10

15-17.5

Sheet: 1 of 2

512/347-7588 512/347-8243

14'

RPS	WE	<b>LL INSTALLATION</b> Well No.: MKTF-17					
Client: Western Refining Southwest, Inc.	Total Depth: 25' bgl	Start Date: 11/14/2013 13:00					
Site: Gallup Refinery - Seep West of Tank 102	Ground Water: Saturated @ 20' bgl	Finish Date: 11/14/2013 15:00					
Job No.: UEC01809	Elev., TOC (ft. msl): 6945.76						
Geologist: Tracy Payne	Elev., PAD (ft. msl): 6945.79						
Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl):						
Drilling Rig: CME 75	Site Coordinates:						
Drilling Method: Hollow Stem Augers	N 1,633,268.93 E 2,545,850.73						
Sampling Method: Split Spoon							
Comments: N 35°29.248' W 108°25.724'; Boring	ID - SB33						
s &							

Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sample Description Completion Results				
	17.2	20'		10	<b>Clay (CH)</b> High plasticity, soft, damp, brown	■ Saturation 20			
	17.5			70	Sandy Clay (CH) Moderate plasticity, soft, very moist to saturated in sand seams	C Slotted 0.01" Screen			
22-				80	Silty Clayey Gravel (GM) Compact to loose, medium grain sand to 1/4"	s Sand F .01" Scr			
24				90	gravel - angular, saturated, brown Clay (CH) Moderate plasticity, firm to stiff, damp, greenish gray	24.33' 2) S lotted 0			
26 28 30 32 34 34			1///.1		Total Depth = 25' BGL	2" Sch. 40 PVC Slotted 0.01" Screen 2" Sch. 40 PVC Slotted 0.01" Screen 2" Flush Threaded			
RP 125 Aus	S 50 S. ( stin, T	Capit exas	al of Te 78746	exas H	wy., Bldg. 3, Suite 200 Sheet: <b>2 of 2</b>	512/347-7588 512/347-8243			

Site Job Geo Drill Drill Drill San	: Gal No.: logis ler: E ling I ling I	Veste iup F UEC st: T Enviro Rig: Meth g Me	ern Refi Refinery C01809 racy Pa D-Drill, I CME 7 nod: He ethod:	- Seep nyne nc. 5 ollow S Split S	outhwest, Inc. 5 West of Tank 102 Stem Augers Spoon W 108°25.692'; Boring	Total Depth: 27' bgl Ground Water: Saturated @ Elev., TOC (ft. msl): 6950.6 Elev., PAD (ft. msl): 6950.9 Elev., GL (ft. msl): Site Coordinates: N 1,633,497.53 E 2,546,006.2	5 7	Star		KTF-18 11/15/2013 1 :: 11/15/2013	
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Samp	le Description		Con	npletion	n Results	
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -					Gi Fill (Gravel and Silt	round Surface y Clay)	ective Cover	0'			
3	1009			20	Fill (Gravel and Silty Similar to above, stro	<b>y Clay)</b> ng hydrocarbon odor, damp	Flush Mount Protective Cover Concrete Pad - 4'x4'x6"			Diameter Hole	2" Sch. 40 PVC with Threaded Joints
5	693			60	Fill (Gravel and Silty Similar to above	y Clay)	Flus	y	2	8"[	ch. 40 PVC w
7-11-1	1108			70	strong hydrocarbon o			Rentonite Dellets			ي. م
9	901			90	Fill (Clay/Sand/Grav Similar to above, satu Clay (CH)	urated, odor, sheen observed	-	ад L			
11 11 11 11	803			60		lamp, brown, hydrocarbon	-	Screen		iter Pack	
13	254			70	Similar to above, ver	y fine grain, sand in partings		2. Sch. 40 DVC Slotted 0.01" Screen		10/20 Sieve Sand Filter Pack	
15	200			30	Similar to above		1	15' 74 OF		- 10/20 S	
17			1111				1	ני ע ו7' ה L			
RPS 125 Aus	0 S. C	Capita		xas Hv	vy., Bldg. 3, Suite 200	Sheet: 1 of 2				512/347-75 512/347-82	

	D	DC					WELL INSTALLATION
	R	73					Well No.: MKTF-18
Clie	nt: V	Veste	rn Ref	ning So	outhwest, Inc.	Total Depth: 27' bgl	Start Date: 11/15/2013 10:00
Site	; Gal	lup R	efinery	- Seep	West of Tank 102	Ground Water: Saturated @ 23'	bgl Finish Date: 11/15/2013 15:00
Job	No.:	UEC	01809	)		Elev., TOC (ft. msl): 6950.65	
			racy Pa			Elev., PAD (ft. msl): 6950.97	
	Driller: Enviro-Drill, Inc.					Elev., GL (ft. msl):	
Drilling Rig: CME 75						Site Coordinates:	
	_	_			tem Augers	N 1,633,497.53 E 2,546,006.29	
San	nplin	g Me	ethod	Split S	Spoon		
Cor	nmei	nts:	N 35°2	9.288'	W 108 °25.692'; Borin	g ID - SB34	
Depth (ft.)	PID (ppm)	Saturation	USCS Class	Recovery (%)	Sam	ple Description	Completion Results
20	112			30	Clay (CH) High plasticity, firm	, damp, brown, faint odor	
=	55		////	20	Clay (CH) Similar to above		1" Screen -

20 55 22 323 24 26 28	I:	20 80 90	Clay (CH) Similar to above Clay (CH) Similar to above Sandy Clay/Clayey Sand (SC/CL) Fine grain, compact, very moist to saturated, brown, hydrocarbon present Clayey Sand (SC) Similar to above, saturated Sandy Clay (CL) Low plasticity, firm, damp, hydrocarbon odor, greenish gray Total Depth = 27' BGL	27' 27.5'	2" Sch. 40 PVC Slotted 0.01" Screen	10/20 Sieve Sand Filter Pack	-2" Flush Threaded Sch. 40 PVC Cap
30 32							
34							
RPS 1250 S. C Austin, Te	Capital of Te exas 78746	xas H	wy., Bldg. 3, Suite 200 Sheet: <b>2 of 2</b>			347-7588 347-8243	

## HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 01, 2013

Cheryl Johnson Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301 TEL: (505) 722-0231 FAX (505) 722-0210

RE: Seep West of Tank 102

OrderNo.: 1307C30

Dear Cheryl Johnson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 7/26/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Er	vironmental Analy	sis Labora	2.	Lab Order <b>1307C30</b> Date Reported: <b>8/1/2013</b>				
CLIENT:	Western Refining Southwest	, Gallup		(	Client Sampl			
Project:	Seep West of Tank 102				Collection I	Date: 7/2	5/2013 1:30:00 PM	
Lab ID:	1307C30-001	Matrix:	AQUEOUS		Received I	Date: 7/2	6/2013 9:07:00 AM	
Analyses		Result	RL Q	)ual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8015D: DIESEL RANG	E					Analys	st: JME
Diesel Ra	ange Organics (DRO)	73	1.0		mg/L	1	7/29/2013 4:35:51 PM	8599
Motor Oil	Range Organics (MRO)	ND	5.0		mg/L	1	7/29/2013 4:35:51 PM	8599
Surr: D	NOP	119	70.1-140		%REC	1	7/29/2013 4:35:51 PM	8599
EPA MET	HOD 8015D: GASOLINE RA	NGE					Analys	st: NSB
Gasoline	Range Organics (GRO)	73	10	Ρ	mg/L	200	7/30/2013 4:17:20 AM	R12268
Surr: B	BFB	98.5	51.5-151	Ρ	%REC	200	7/30/2013 4:17:20 AM	R12268

**Analytical Report** 

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	в	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 1 of 4
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

<b>WHOMMENTUR</b>								
Western Refining Southwest,	Gallup		Client Sample	e ID: SB	19			
Seep West of Tank 102		Collection Date: 7/25/2013 1:45:00 PM						
1307C30-002	Matrix: AQUEOUS Received Date: 7/26/2013 9:07:00 AM							
	Result	RL (	Qual Units	DF	Date Analyzed	Batch		
HOD 8015D: DIESEL RANGE					Analyst	: JME		
inge Organics (DRO)	30	1.0	mg/L	1	7/29/2013 4:57:45 PM	8599		
Range Organics (MRO)	ND	5.0	mg/L	1	7/29/2013 4:57:45 PM	8599		
NOP	127	70.1-140	%REC	1	7/29/2013 4:57:45 PM	8599		
HOD 8015D: GASOLINE RAN	IGE				Analyst	: NSB		
Range Organics (GRO)	19	10	mg/L	200	7/30/2013 4:47:38 AM	R12268		
FB	93.8	51.5-151	%REC	200	7/30/2013 4:47:38 AM	R12268		
	Western Refining Southwest, Seep West of Tank 102 1307C30-002 HOD 8015D: DIESEL RANGE nge Organics (DRO) Range Organics (MRO) NOP HOD 8015D: GASOLINE RAN Range Organics (GRO)	Western Refining Southwest, Gallup Seep West of Tank 102 1307C30-002 Matrix: Result HOD 8015D: DIESEL RANGE nge Organics (DRO) 30 Range Organics (MRO) ND NOP 127 HOD 8015D: GASOLINE RANGE Range Organics (GRO) 19	Western Refining Southwest, Gallup Seep West of Tank 102 1307C30-002 Matrix: AQUEOUS Result RL ( HOD 8015D: DIESEL RANGE nge Organics (DRO) 30 1.0 Range Organics (MRO) ND 5.0 NOP 127 70.1-140 HOD 8015D: GASOLINE RANGE Range Organics (GRO) 19 10	Seep West of Tank 102Collection II1307C30-002Matrix: AQUEOUSReceived IIResult RAUEOUSReceived IIHOD 8015D: DIESEL RANGEnge Organics (DRO)301.0mg/LRange Organics (MRO)ND5.0mg/LNOP12770.1-140%RECHOD 8015D: GASOLINE RANGERange Organics (GRO)1910mg/L10mg/L	Western Refining Southwest, Gallup       Client Sample ID: SB         Seep West of Tank 102       Collection Date: 7/2         1307C30-002       Matrix: AQUEOUS       Received Date: 7/2         Result       RL       Qual       Units         HOD 8015D: DIESEL RANGE       30       1.0       mg/L       1         Range Organics (DRO)       30       1.0       mg/L       1         NOP       127       70.1-140       %REC       1         HOD 8015D: GASOLINE RANGE       19       10       mg/L       200	Western Refining Southwest, Gallup         Client Sample ID: SB19           Seep West of Tank 102         Collection Date: 7/25/2013 1:45:00 PM           1307C30-002         Matrix: AQUEOUS         Received Date: 7/26/2013 9:07:00 AM           Result         RL         Qual         Units         DF         Date Analyzed           HOD 8015D: DIESEL RANGE         Analyst         Analyst         Analyst           nge Organics (DRO)         30         1.0         mg/L         1         7/29/2013 4:57:45 PM           NOP         127         70.1-140         %REC         1         7/29/2013 4:57:45 PM           HOD 8015D: GASOLINE RANGE         Analyst         Analyst           Range Organics (GRO)         19         10         mg/L         200         7/30/2013 4:47:38 AM		

## Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 4
	0	RSD is greater than RSDlimit	Р	Not Detected at the Reporting Limit Page 2 of 4 Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Analytical Report Lab Order 1307C30 Date Reported: 8/1/2013

## Hall Environmental Analysis Laboratory, Inc.

	n Refining Southv est of Tank 102	west, Gallup	1.1.1 · · · · · · · · · · · · · · · · ·						
Sample ID MB-8599	SampType:	MBLK	Tes	tCode: EF	PA Method	8015D: Diese	l Range		
Client ID: PBW	Batch ID:	8599	F	RunNo: 12	2239				
Prep Date: 7/29/2013	Analysis Date:	7/29/2013	S	SeqNo: 34	48455	Units: mg/L			
Analyte	Result PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 1	.0							
Motor Oil Range Organics (MRO)		.0							
Surr: DNOP	1.1	1.000		113	70.1	140			
Sample ID LCS-8599	S-8599 SampType: LCS TestCode: EPA Method 8015D: Diesel Range								
Client ID: LCSW	Batch ID:	8599	F	RunNo: 1	2239				
Prep Date: 7/29/2013	Analysis Date:	7/29/2013	S	SeqNo: 34	48473	Units: <b>mg/L</b>			
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.2 1	.0 5.000	0	105	89.1	151			
Surr: DNOP	0.42	0.5000		84.7	70.1	140			
Sample ID LCSD-8599	SampType:	LCSD	Tes	tCode: EF	PA Method	8015D: Diese	l Range		
Client ID: LCSS02	Batch ID:	8599	F	RunNo: 1	2239				
Prep Date: 7/29/2013	Analysis Date:	7/29/2013	5	SeqNo: 34	48474	Units: mg/L			
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.3 1	.0 5.000	0	106	89.1	151	1.59	20	
Surr: DNOP	0.44	0.5000		88.4	70.1	140	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only. Р
- RL Reporting Detection Limit

Page 3 of 4

1307C30

WO#:

01-Aug-13

## uall Environmental Analysis Laboratory, Inc.

### Western Refining Southwest, Gallup **Client: Project:**

Seep West of Tank 102

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Rang	e	
Client ID: <b>PBW</b>		n ID: R1			RunNo: 1					
Prep Date:	Analysis D	Date: 7/	29/2013	S	SeqNo: 34	48886	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) Surr: BFB	ND 18	0.050	20.00		92.3	51.5	151			
	10		20.00		32.5	51.5	101			
Sample ID 2.5UG GRO LCS		ype: LC		Tes			8015D: Gasol	ine Rang	e	
	SampT	ype: LC	S			PA Method		line Rang	e	
Sample ID 2.5UG GRO LCS	SampT	h ID: <b>R1</b>	S 2268	F	tCode: El	PA Method 2268		line Rang	e	
Sample ID 2.5UG GRO LCS Client ID: LCSW	SampT Batcl	h ID: <b>R1</b>	S 2268 29/2013	F	tCode: EF	PA Method 2268	8015D: Gasol	li <b>ne Rang</b> %RPD	e RPDLimit	Qual
Sample ID 2.5UG GRO LCS Client ID: LCSW Prep Date:	SampT Batch Analysis D	h ID: <b>R1</b> Date: <b>7</b> /	S 2268 29/2013	F	tCode: El RunNo: 1 SeqNo: 34	PA Method 2268 48887	8015D: Gasol Units: mg/L	-		Qual

### Qualifiers:

- Value exceeds Maximum Contaminant Level. * Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Page 4 of 4

01-Aug-13

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505	Antoneniai Anaiysis L 4901 Ha Albuquerque, 1 -345-3975 FAX: 505 e: www.hallenvironn	wkins NE NM 87109 S -345-4107	ample Log-In	Check List
Client Name: Western Refining Gallup Work Order	r Number: 1307C3	0	RcptN	o: 1
Received by/date: MG- 67/26/13				
Logged By: Anne Thorne 7/26/2013 9:0	07:00 AM	Anne ,	Hanne	
Completed By: Anne Thorne 7/26/2013		anne	Im	
Reviewed By:	913			
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No	Not Present	]
2. Is Chain of Custody complete?	Yes 🔽	No No	Not Present	] .
3. How was the sample delivered?	FedEx			
Log In				
4. Was an attempt made to cool the samples?	Yes	Z No		]
5. Were all samples received at a temperature of >0° C to 6.	.0°C Yes 🖌	] No		]
6. Sample(s) in proper container(s)?	Yes	No No		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No No		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🔽	No No		
9. Was preservative added to bottles?	Yes 🗌	] <u>No</u>		]
10.VOA vials have zero headspace?	Yes 🔽	No	No VOA Vials	]
11. Were any sample containers received broken?	Yes	No	# of preserved	
12. Does paperwork match bottle labels?	Yes 🖌	No	bottles checked for pH:	
(Note discrepancies on chain of custody)	N E	7 No	Adjusted?	2 or >12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹 Yes 🔽			
<ul><li>14. Is it clear what analyses were requested?</li><li>15. Were all holding times able to be met? (If no, notify customer for authorization.)</li></ul>	Yes V			
Special Handling (if applicable)		٦    •·	<b>—</b> 5	P
16. Was client notified of all discrepancies with this order?	Yes	No No		<b>_</b>
Person Notified:	Date			
By Whom:	Via: eMail	Phone	Fax I In Person	
Regarding:				
Client Instructions:				]
17. Additional remarks:				

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.0	Good	Yes	1 - 	 	

Client: Mailing Phone :	WEST Address #: 50	ROU GAU	ISTODY RECORD REFINERY TE 3 Box 7 U.P. NM 87.301 72.2-3833 - 863-09.30	Standard Project Name Project #: Project Mana	EST OF	TANK 102		Te		A v awkir 5-34	NWW NS N	<b>AL'</b> hallo E - 75	<b>YS</b> envii Albu Fa	ronn Jque ax 5	nent erque 505- Requ	AE al.co e, NI	30 om M 87 -4107	<b>RA</b> 109		
□ Stan Accredi □ NEL	itation	□ Othe Matrix	Level 4 (Full Validation)	Sampler: TF On Isa Sample Ten	the local division of the second	YNE Lano	BTEX + MTBE + TMB's (8021)	BTEX + MTBE + TPH (Gas only)	TPH 80156 (GRO / DRO / M		(1-1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)			Air Bubbles (Y or N)
7:25:13		GW GW	5818 5819	340mL VOA	HCL	-701 -7072			X											
Date/ 2413 Date:	Time:	Relinquish	X-1- EPS	Received by: Multi Received by:	A	Date Time 7/26/13 (1907 Date Time	Rer	mark	s:											

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

## HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 06, 2013

Cheryl Johnson Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-0231 FAX (505) 722-0210

RE: Seep West of Tank 102

OrderNo.: 1311044

Dear Cheryl Johnson:

Hall Environmental Analysis Laboratory received 5 sample(s) on 11/2/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Han Environmental Analy					Date Reported: 11/6/20	13			
CLIENT: Western Refining Southwes Project: Seep West of Tank 102 Lab ID: 1311044-001	Ĩ	IlupClient Sample ID: SB26Collection Date: 11/1/2013 1:45:00 PMMatrix: AQUEOUSReceived Date: 11/2/2013 8:55:00 AM							
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 8015D: DIESEL RANG	ε				Analys	BCN			
Diesel Range Organics (DRO)	1.5	1.0	mg/L	1	11/5/2013 12:04:38 PM	10156			
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/5/2013 12:04:38 PM	10156			
Surr: DNOP	135	70.1-140	%REC	1	11/5/2013 12:04:38 PM	10156			
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	NSB			
Gasoline Range Organics (GRO)	8.4	1.0	mg/L	20	11/4/2013 3:16:02 PM	R14541			
Surr: BFB	116	80.4-118	%REC	20	11/4/2013 3:16:02 PM	R14541			
EPA METHOD 8021B: VOLATILES					Analyst	: NSB			
Benzene	1200	20	µg/L	20	11/4/2013 3:16:02 PM	R14541			
Toluene	ND	20	µg/L	20	11/4/2013 3:16:02 PM	R14541			
Ethylbenzene	230	20	µg/L	20	11/4/2013 3:16:02 PM	R14541			
Xylenes, Total	ND	40	µg/L	20	11/4/2013 3:16:02 PM	R14541			
Surr: 4-Bromofluorobenzene	113	85-136	%REC	20	11/4/2013 3:16:02 PM	R14541			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Metho
	Е	Value above quantitation range	Н	Holding times for preparation or analysis
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and T
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

- od Blank
- is exceeded
- Page 1 of 8 TOC only.

Hall Environmental Analysis Laboratory, Inc.

**Analytical Report** Lab Order 1311044 Date Reported: 11/6/2013

**Analytical Report** 

Lab Order 1311044

Date Reported: 11/6/2013

## Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Western Refining Southwest	, Gallup		Client Sampl						
Project:	Seep West of Tank 102		Collection Date: 11/1/2013 1:55:00 PM							
Lab ID:	1311044-002	Matrix: AQUEOUS Receiv			ved Date: 11/2/2013 8:55:00 AM					
Analyses		Result	RL Qu	al Units	DF	Date Analyzed	Batch			
EPA ME	THOD 8015D: DIESEL RANG	E				Analy	st: BCN			
Diesel R	ange Organics (DRO)	5.8	1.0	mg/L	1	11/5/2013 12:35:50 P	M 10156			
Motor O	il Range Organics (MRO)	ND	5.0	mg/L	1	11/5/2013 12:35:50 P	M 10156			
Surr:	DNOP	139	70.1-140	%REC	1	11/5/2013 12:35:50 P	M 10156			
EPA ME	THOD 8015D: GASOLINE RA	NGE				Analy	st: NSB			
Gasoline	e Range Organics (GRO)	37	2.5	mg/L	50	11/4/2013 12:14:33 P	M R1454			
C.urr.	DED	105	00 4 110	0/ DEC	50	11/4/2013 12:14:33 0				

Surr: BFB	105	80.4-118	%REC	50	11/4/2013 12:14:33 PM R14541
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	1800	50	µg/L	50	11/4/2013 12:14:33 PM R14541
Toluene	200	50	µg/L	50	11/4/2013 12:14:33 PM R14541
Ethylbenzene	1500	50	µg/L	50	11/4/2013 12:14:33 PM R14541
Xylenes, Total	6400	100	µg/L	50	11/4/2013 12:14:33 PM R14541
Surr: 4-Bromofluorobenzene	110	85-136	%REC	50	11/4/2013 12:14:33 PM R14541

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

		· · · · · · · · · · · · · · · · · · ·				
CLIENT: Western Refining Southwest,Project: Seep West of Tank 102Lab ID: 1311044-003	-	AQUEOUS		Date: 11	528 /1/2013 2:10:00 PM /2/2013 8:55:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	1.4	1.0	mg/L	1	11/5/2013 1:07:02 PM	10156
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/5/2013 1:07:02 PM	10156
Surr: DNOP	121	70.1-140	%REC	1	11/5/2013 1:07:02 PM	10156
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst	: NSB
Gasoline Range Organics (GRO)	8.4	1.0	mg/L	20	11/4/2013 3:46:06 PM	R14541
Surr: BFB	116	80.4-118	%REC	20	11/4/2013 3:46:06 PM	R14541
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	1400	20	µg/L	20	11/4/2013 3:46:06 PM	R14541
Toluene	ND	20	µg/L	20	11/4/2013 3:46:06 PM	R14541
Ethylbenzene	160	20	µg/L	20	11/4/2013 3:46:06 PM	R14541
Xylenes, Total	ND	40	µg/L	20	11/4/2013 3:46:06 PM	R14541
Surr: 4-Bromofluorobenzene	115	85-136	%REC	20	11/4/2013 3:46:06 PM	R14541

Qualifiers:

*

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Value exceeds Maximum Contaminant Level.

- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Page 3 of 8 Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

**Analytical Report** Lab Order 1311044 Date Reported: 11/6/2013

	Lab Order <b>1311044</b>
Laboratory, Inc.	Date Reported: 11/6/201
up	Client Sample ID: SB29
	Collection Date: 11/1/2013 2:20:00 PM
Matrix: AQUEOUS	Received Date: 11/2/2013 8:55:00 AM
	Collection Date: 11/1/2013 2:20:00

Analyses	Result	Result RL Qual Units		Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	θE					Analyst	BCN
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	11/5/2013 1:37:45 PM	10156
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	11/5/2013 1:37:45 PM	10156
Surr: DNOP	135	70.1-140		%REC	1	11/5/2013 1:37:45 PM	10156
EPA METHOD 8015D: GASOLINE RA	ANGE					Analyst	NSB
Gasoline Range Organics (GRO)	1.7	0.050		mg/L	1	11/4/2013 1:15:02 PM	R1454
Surr: BFB	192	80.4-118	S	%REC	1	11/4/2013 1:15:02 PM	R14541
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	570	10		µg/L	10	11/4/2013 4:16:22 PM	R1454
Toluene	8.0	1.0		µg/L	1	11/4/2013 1:15:02 PM	R1454
Ethylbenzene	150	10		µg/L	10	11/4/2013 4:16:22 PM	R14541
Xylenes, Total	2.0	2.0		µg/L	1	11/4/2013 1:15:02 PM	R14541
Surr: 4-Bromofluorobenzene	153	85-136	S	%REC	1	11/4/2013 1:15:02 PM	R14541

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 4 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

### Hall Environmental Analysis Laborat

CLIENT: Western Refining Southwest, Gallup

**Project:** Seep West of Tank 102

Lab ID: 1311044-004

**Analytical Report** 

13

Hall E	nvironmental Analy		Date Reported: 11/6/2013						
CLIENT:	Western Refining Southwest		Client Sampl	e ID: SB	31				
Project:	Seep West of Tank 102	Collection Date: 11/1/2013 2:35:00 PM							
Lab ID: 1311044-005		Matrix:	AQUEOUS	Received I	Date: 11/2	2/2013 8:55:00 AM			
Analyses		Result	RL Q	ual Units	DF	Date Analyzed	Batch		
EPA MET	HOD 8015D: DIESEL RANG	E				Analyst	BCN		
Diesel R	ange Organics (DRO)	2.4	1.0	mg/L	1	11/5/2013 2:08:31 PM	10156		
Motor Oil Range Organics (MRO)		ND	5.0	mg/L	1	11/5/2013 2:08:31 PM	10156		
Surr: I	DNOP	120	70.1-140	%REC	1	11/5/2013 2:08:31 PM	10156		
EPA MET	HOD 8015D: GASOLINE RA	NGE				Analyst	NSB		
Gasoline	Range Organics (GRO)	65	2.5	mg/L	50	11/4/2013 1:45:17 PM	R14541		
Surr: I	BFB	106	80.4-118	%REC	50	11/4/2013 1:45:17 PM	R14541		
EPA MET	THOD 8021B: VOLATILES					Analyst	NSB		
Benzene	2	12000	200	μg/L	200	11/4/2013 11:49:30 PM	R14541		
Toluene		12000	200	μg/L	200	11/4/2013 11:49:30 PM	R14541		
Ethylben	zene	1500	50	μg/L	50	11/4/2013 1:45:17 PM	R14541		
Xylenes,	Total	4800	100	μg/L	50	11/4/2013 1:45:17 PM	R14541		
Surr: 4	4-Bromofluorobenzene	113	85-136	%REC	50	11/4/2013 1:45:17 PM	R14541		

Itere	1 00 01			
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in
	Е	Value above quantitation range	Н	Holding times for p
	J	Analyte detected below quantitation limits	ND	Not Detected at the
	0	RSD is greater than RSDlimit	Р	Sample pH greater
	R	RPD outside accepted recovery limits	RL	Reporting Detection

- S Spike Recovery outside accepted recovery limits
- in the associated Method Blank
- preparation or analysis exceeded
- ne Reporting Limit r than 2 for VOA and TOC only.

**Analytical Report** Lab Order 1311044

- on Limit

# Hall Environmental Analysis Laboratory, Inc.

	n Refining Southvest of Tank 102	vest, Gallup							
Sample ID MB-10156	SampType:	MBLK	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: PBW	Batch ID:	0156	F	RunNo: 1	4573				
Prep Date: 11/4/2013	Analysis Date:	11/5/2013	5	SeqNo: 4	18892	Units: mg/L			
Analyte	Result PQI	_ SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND 1	0							
Motor Oil Range Organics (MRO)	ND 5	0							
Surr: DNOP	1.2	1.000		117	70.1	140			
Sample ID LCS-10156	ple ID LCS-10156 SampType: LCS TestCode: EPA Method 8015D: Diesel Range								
Client ID: LCSW	Batch ID:	0156	F	RunNo: 1	4573				
Prep Date: 11/4/2013	Analysis Date:	11/5/2013	S	SeqNo: 4	18893	Units: <b>mg/L</b>			
Analyte	Result PQI	SPK value	SPK Ref Val	%REC	<b>Low</b> Limit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	7.0 1	0 5.000	0	140	73.3	1 <b>4</b> 5			
Surr: DNOP	0.61	0.5000		121	70.1	140			
Sample ID LCSD-10156	SampType:	_CSD	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: LCSS02	Batch ID:	10156	F	RunNo: 1	4573				
Prep Date: 11/4/2013	Analysis Date:	11/5/2013	S	SeqNo: 4	18894	Units: <b>mg/L</b>			
Analyte	Result PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
el Range Organics (DRO)	6.0 1	0 5.000	0	119	73.3	145	15.6	20	
Jurr: DNOP	0.52	0.5000		103	70.1	140	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

WO#: 1311044

06-Nov-13

Page 6 of 8

# QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		Refining So at of Tank		st, Gallup							
Sample ID	B7	SampTy	pe: MI	3LK	Tes	tCode: El	PA Method	8015D: Gaso	ine Rang	e	
Client ID:	PBW	Batch	ID: <b>R1</b>	4541	F	RunNo: 1	4541				
Prep Date:		Analysis Da	ate: 1	1/4/2013	S	SeqNo: 4	18164	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	ge Organics (GRO)	ND 19	0.050	20.00		93.8	80.4	118			
Sample ID	2.5UG GRO LCS	SampTy	pe: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	LCSW	Batch	ID: R1	4541	F	RunNo: 14	4541				
Prep Date:		Analysis Da	ate: 1	1/4/2013	S	SeqNo: 4	18165	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	0.49	0.050	0.5000	0	97.7	80	120			
Surr: BFB		21		20.00		104	80.4	118			
Sample ID	1311044-001AMS	SampTy	pe: MS	8	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	SB26	Batch	ID: R1	4541	F	RunNo: 1	4541				
Prep Date:		Analysis Da	ate: 1	1/4/2013	5	SeqNo: 4	18172	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	18	1.0	10.00	8.436	91.4	67.7	128			
Surr: BFB		490		400.0		122	80.4	118			S
Sample ID	1311044-001AMS	SampTy	pe: M	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID:	SB26	Batch	ID: <b>R1</b>	4541	F	RunNo: 1	4541				
Prep Date:		Analysis Da	ate: 1	1/4/2013	5	SeqNo: 4	18173	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	17	1.0	10.00	8.436	88.0	67.7	128	2.00	20	
Surr: BFB		470		400.0		118	80.4	118	0	0	S

### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 8

1311044 06-Nov-13

WO#:

## QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Sample ID       B7       SampType:       MBLK       TestCode:       EPA Method 8021B:       Volatiles         Client ID:       PBW       Batch ID:       R14541       RunNo:       14541         Prep Date:       Analysis Date:       11/4/2013       SeqNo:       418215       Units:       µg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       % REC       LowLimit       HighLimit       % RPD       RPDLimit         Benzene       ND       1.0       .0	Qual
Prep Date:       Analysis Date:       11/4/2013       SeqNo:       418215       Units:       µg/L         Analyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit         Benzene       ND       1.0	Qual
Analyte     Result     PQL     SPK value     SPK Ref Val     %REC     LowLimit     HighLimit     %RPD     RPDLimit       Benzene     ND     1.0       Toluene     ND     1.0       Ethylbenzene     ND     1.0       Xylenes, Total     ND     2.0       Surr: 4-Bromofluorobenzene     20     20.00     102     85     136	Qual
Benzene         ND         1.0           Toluene         ND         1.0           Ethylbenzene         ND         1.0           Xylenes, Total         ND         2.0           Surr: 4-Bromofiluorobenzene         20         20.00         102         85         136	Qual
Toluene         ND         1.0           Ethylbenzene         ND         1.0           Xylenes, Total         ND         2.0           Surr: 4-Bromofiuorobenzene         20         20.00         102         85         136	
Ethylbenzene     ND     1.0       Xylenes, Total     ND     2.0       Surr: 4-Bromofiluorobenzene     20     20.00     102     85     136	
Xylenes, Total     ND     2.0       Surr: 4-Bromofluorobenzene     20     20.00     102     85     136	
Surr: 4-Bromofiluorobenzene         20         20.00         102         85         136	
Sample ID 100NG BTEX LCS SampType: LCS TestCode: EPA Method 8021B: Volatiles	
Client ID: LCSW Batch ID: R14541 RunNo: 14541	
Prep Date:         Analysis Date:         11/4/2013         SeqNo:         418216         Units:         μg/L	
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	Qual
Benzene 20 1.0 20.00 0 99.8 80 120	
Toluene 20 1.0 20.00 0 100 80 120	
Ethylbenzene 20 1.0 20.00 0 101 80 120	
Xylenes, Total 62 2.0 60.00 0 103 80 120	
Surr: 4-Bromofluorobenzene         22         20.00         108         85         136	
mple ID 1311044-002AMS SampType: MS TestCode: EPA Method 8021B: Volatiles	
Ulient ID: SB27 Batch ID: R14541 RunNo: 14541	
Prep Date:         Analysis Date:         11/4/2013         SeqNo:         418223         Units:         μg/L	
	Qual
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit	
AnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitBenzene2900501000176410973.4119	
Benzene         2900         50         1000         1764         109         73.4         119	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136           Sample ID         1311044-002AMSD         SampType:         MSD         TestCode:         EPA Method 8021B: Volatiles	
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136           Sample ID 1311044-002AMSD         SampType: MSD         TestCode: EPA Method 8021B: Volatiles           Client ID:         SB27         Batch ID:         R14541         RunNo:         14541	Qual
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136           Sample ID         1311044-002AMSD         SampType:         MSD         TestCode:         EPA Method 8021B:         Volatiles           Client ID:         SB27         Batch ID:         R14541         RunNo:         14541           Prep Date:         Analysis Date:         11/4/2013         SeqNo:         418224         Units:         µg/L	Qual
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136           Sample ID         1311044-002AMSD         SampType:         MSD         TestCode:         EPA Method 8021B:         Volatiles           Client ID:         SB27         Batch ID:         R14541         RunNo:         14541           Prep Date:         Analysis Date:         11/4/2013         SeqNo:         418224         Units:         µg/L           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit	Qual
Benzene         2900         50         1000         1764         109         73.4         119           Toluene         1200         50         1000         201.5         100         80         120           Ethylbenzene         2600         50         1000         1526         107         80         120           Xylenes, Total         9500         100         3000         6401         105         80         120           Surr: 4-Bromofluorobenzene         1100         1000         114         85         136           Sample ID 1311044-002AMSD         SampType: MSD         TestCode: EPA Method 8021B: Volatiles           Client ID:         SB27         Batch ID:         R14541         RunNo:         14541           Prep Date:         Analysis Date:         11/4/2013         SeqNo:         418224         Units:         µg/L           Analyte         Result         PQL         SPK value         SPK Ref Val         %REC         LowLimit         HighLimit         %RPD         RPDLimit           Benzene         2800         50         1000         1764         108         73.4         119         0.260         20	Qual

### Qualifiers:

* Value exceeds Maximum Contaminant Level.

1100

E Value above quantitation range Analyte detected below quantitation limits

Surr: 4-Bromofluorobenzene

- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

85

136

0

H Holding times for preparation or analysis exceeded

114

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

1000

Page 8 of 8

0

WO#: 1311044 06-Nov-13

#### Hall Environmental Analysis Laboratory 4901 Hawkins NE ENVIRONMENTAL Sample Log-In Check List Albuquerque, NM 87105 ANALYSIS TEL: 505-345-3975 FAX: 505-345-4107 ABORATORY Website: www.hallenvironmental.com RcptNo: 1 **Client Name:** Western Refining Gallup Work Order Number: 1311044 Received by/date: Mitrelle Garries Mitrelle Garries 11/2/2013 8:55:00 AM **Michelle Garcia** Logged By: Completed By: **Michelle Garcia** 11/4/2013 8:34:11 AM Reviewed By: 2 Chain of Custody Not Present 1. Custody seals intact on sample bottles? Yes 🔽 No 🗌 No 🗆 Not Present Yes 🗹 2. Is Chain of Custody complete? 3. How was the sample delivered? **Client** Log In No 🗌 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗍 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🔽 No 🗌 Yes 🗸 No 🗌 6. Sample(s) in proper container(s)? Yes 🔽 No 🗌 7. Sufficient sample volume for indicated test(s)? Yes 🔽 No 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No 🗹 9. Was preservative added to bottles? Yes Yes 🗹 No 🗌 No VOA Vials 10.VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked for pH: Yes 🔽 No 🗌 12. Does paperwork match bottle labels?

(<2 or >12 unless noted)

Adjusted?

Checked by:

No 🗌

No 🗌

No 🗌

 $\checkmark$ 

Yes

Yes 🗹 Yes 🗹

15. Were all holding times able to be met?	
(If no, notify customer for authorization.)	
· · ·	
Special Handling (if applicable)	

(Note discrepancies on chain of custody)

14. Is it clear what analyses were requested?

13. Are matrices correctly identified on Chain of Custody?

16.V	Vas client notified of all o	liscrepancies with this order?	2	Yes No No						
	Person Notified:		Date:	· · · · · ·						
	By Whom:		Via:	🗌 eMail 🔲 F	Phone 🔲 Fax 📃 I	n Person				
	Regarding:									
	Client Instructions:				······································	·····				

17. Additional remarks:

### 18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.2	Good	Yes			

	/IICAI		usiouy Necoru		/	-		🗖	•		н	<b>.</b> I I	F	NI V	ТЕ	ەد	Nh	ЛF	N Z	<b>A I</b>	
Client:	WEST	ERN	REFINING SW	□ Standard	Rush e: VEST OF	_24hr															7
300	1,10	Ree	TNERY	Project Name	ə:			] 🖿				ww.ha									1
Vailing	Address	R	UTE 3 Box 7	SEEP V	VECT OF	- Tan	107		۸qr	)1 Hs		s NE						109			
		7.0	5TOWN NM 8730	Project #:	671 UF		106	1				-3975		•	-		-4107				
		JAME	22-3833	4					18	1. 500	J-34J					uest					
			863.0930	Project Mana	ader:				2	6	*										
	Package:	100	005.0150	-	-			12	luo s	MR	£			l Sc	B's						
⊐ Stan	-		□ Level 4 (Full Validation)	CHER	MERYL JOHNSON (1200) Impler: TRACY PAYNE			(Gas	DRO / MRO)	ALL	SIMS)		PO	PCB'							
Accred			· · · · · · · · · · · · · · · · · · ·	Sampler: 7	RALY 1	PAVNE		MB	TPH (Gas only)	۲ Ц			1	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	8081 Pesticides / 8082						
⊐ NEL	AP	□ Oth	er	On Ice:	🔉 Yes	D No.	ikora i Ni	+	+	2 2	418.1)	ou4.1) or 8270		°°°	s / 8		(À				Air Bubbles (Y or N)
	(Type)			Sample Tem	perature: 1,	<u>2°C –</u>		BE	Ш ВШ	<u>0</u>		~   ~	etals	Ž	cide	হ	N N				کا ۳
				Container	Preservative			BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO	(Method	ELLE (Metriod PAH's (8310 (	RCRA 8 Metals	(F,	estic	8260B (VOA)	8270 (Semi-VOA)	BTEX			ples
Date	Time	Matrix	Sample Request ID	Type and #	Type	HEA	L No.	X	X	Т 80	≥  : ⊤   1	L,s	RA	suo	1 P	B	0	Я			Bub
						131	044	BTE	BTI	Ē	HdT	PAH ²	RC	Ani	808	826	827	Ø			Air
1/13	1345	GW	<u>5826 h</u>	HOML VOA	HCLU	VEAT	_ 001			here								~			
1	1355		5827		1		-002			/								-			
	1410		5828			_	-063			1								-			
1	1420		5829				-004			V				$\mathbf{T}$				bar			
T.				1															/		
_	1435		5831			-	-005									<b> </b>	-+	$\rightarrow$			+-
												_	+								+
										_			-			$\left  - \right $	┟──┤				+
														<b>-</b>		$\square$	$\vdash$			_	+
				-								_		<u> </u>				┢━━╋			
	ļ												<u> </u>					┢╼━╋			+
														ļ							_
Date:	Time:	Relinquie	the by:	Received by:	11		Time 24	1	narks	:											
413	085	5 /	7	All	<u>'4/</u>	11/0/1.	\$ (1855														
Date:	Time:	Relinquis	hed by:	Received by:		Date	Time														
						· .															

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

## HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 27, 2013

Cheryl Johnson Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-0231 FAX (505) 722-0210

RE: Seep West of Tank 102

OrderNo.: 1311905

Dear Cheryl Johnson:

Hall Environmental Analysis Laboratory received 5 sample(s) on 11/20/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.       Date Reported: 11/27/2013									
CLIENT: Western Refining Southwest, C Project: Seep West of Tank 102				<b>Date:</b> 11/	19/2013 9:30:00 AM				
Lab ID: 1311905-001	Matrix:	AQUEOUS	Received	Date: 11/	20/2013 9:40:00 AM				
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN			
Diesel Range Organics (DRO)	4.2	1.0	mg/L	1	11/25/2013 4:45:18 PM	10460			
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/25/2013 4:45:18 PM	10460			
Surr: DNOP	113	70.1-140	%REC	1	11/25/2013 4:45:18 PM	10460			
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst:	RAA			
Gasoline Range Organics (GRO)	68	2.5	mg/L	50	11/22/2013 6:09:44 PM	R15041			
Surr: BFB	106	80.4-118	%REC	50	11/22/2013 6:09:44 PM	R15041			
EPA METHOD 8021B: VOLATILES					Analyst:	RAA			
Benzene	9900	500	µg/L	500	11/25/2013 4:03:31 PM	R15067			
Toluene	8200	500	µg/L	500	11/25/2013 4:03:31 PM	R15067			
Ethylbenzene	1900	50	µg/L	50	11/22/2013 6:09:44 PM	R15041			
Xylenes, Total	9800	100	µg/L	50	11/22/2013 6:09:44 PM	R15041			
Surr: 4-Bromofluorobenzene	117	85-136	%REC	50	11/22/2013 6:09:44 PM	R15041			

		te de remining) teken and remining te segui enter		
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated
	Е	Value above quantitation range	Н	Holding times for preparation or an
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

- S Spike Recovery outside accepted recovery limits
- d Method Blank
- analysis exceeded
- mit
  - mit Page 1 of 8 DA and TOC only.

Hall Environmental Analysis Laboratory, Inc.

**Analytical Report** Lab Order 1311905

**Analytical Report** 

Lab Order 1311905

Date Reported: 11/27/2013

## Hall Environmental Analysis Laboratory, Inc.

 CLIENT:
 Western Refining Southwest, Gallup
 Client Sample ID: SB33

 Project:
 Seep West of Tank 102
 Collection Date: 11/19/2013 10:15:00 AM

 Lab ID:
 1311905-002
 Matrix: AQUEOUS
 Received Date: 11/20/2013 9:40:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	5.8	1.0	mg/L	1	11/25/2013 5:07:17 PM	10460
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/25/2013 5:07:17 PM	10460
Surr: DNOP	116	70.1- <b>14</b> 0	%REC	1	11/25/2013 5:07:17 PM	10460
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	RAA
Gasoline Range Organics (GRO)	17	2.5	mg/L	50	11/22/2013 6:39:50 PM	R15041
Surr: BFB	104	80.4-118	%REC	50	11/22/2013 6:39:50 PM	R15041
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	1800	50	μg/L	50	11/22/2013 6:39:50 PM	R15041
Toluene	1600	50	µg/L	50	11/22/2013 6:39:50 PM	R15041
Ethylbenzene	710	50	µg/L	50	11/22/2013 6:39:50 PM	R15041
Xylenes, Total	2700	100	µg/L	50	11/22/2013 6:39:50 PM	R15041
Surr: 4-Bromofluorobenzene	116	85-136	%REC	50	11/22/2013 6:39:50 PM	R15041

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Hall Environmental Analysi		Date Reported: 11/27/2013								
CLIENT: Western Refining Southwest, C Project: Seep West of Tank 102 Lab ID: 1311905-003	-	Client Sample ID: SB23 Collection Date: 11/19/2013 10:50:00 AM Received Date: 11/20/2013 9:40:00 AM								
Analyses	Result	RL C	Qual Units	DF	Date Analyzed	Batch				
EPA METHOD 8015D: DIESEL RANGE					Analyst:	BCN				
Diesel Range Organics (DRO)	2.1	1.0	mg/L	1	11/25/2013 5:29:07 PM	10460				
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/25/2013 5:29:07 PM	10460				
Surr: DNOP	109	70.1-140	%REC	1	11/25/2013 5:29:07 PM	10460				
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst:	RAA				
Gasoline Range Organics (GRO)	6.5	0.25	mg/L	5	11/25/2013 4:33:48 PM	R15067				
Surr: BFB	107	80.4-118	%REC	5	11/25/2013 4:33:48 PM	R15067				
EPA METHOD 8021B: VOLATILES					Analyst:	RAA				
Benzene	1300	50	µg/L	50	11/22/2013 7:09:53 PM	R15041				
Toluene	7.5	5.0	µg/L	5	11/25/2013 4:33:48 PM	R15067				
Ethylbenzene	72	5.0	µg/L	5	11/25/2013 4:33:48 PM	R15067				
Xylenes, Total	16	10	µg/L	5	11/25/2013 4:33:48 PM	R15067				
Surr: 4-Bromofluorobenzene	113	85-136	%REC	5	11/25/2013 4:33:48 PM	R15067				

Analytical Report Lab Order 1311905

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 3 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Analytical Report

### Lab Order 1311905

Date Reported: 11/27/2013

Analyst: BCN

Analyst: RAA

Analyst: RAA

11/25/2013 5:51:04 PM 10460 11/25/2013 5:51:04 PM 10460

11/25/2013 5:51:04 PM 10460

11/25/2013 5:34:09 PM R15067

11/25/2013 5:34:09 PM R15067

11/25/2013 5:34:09 PM R15067

11/25/2013 5:34:09 PM R15067 11/25/2013 5:34:09 PM R15067

11/25/2013 5:34:09 PM R15067

11/25/2013 5:34:09 PM R15067

### Hall Environmental Analysis Laboratory, Inc.

EPA METHOD 8015D: DIESEL RANGE

**EPA METHOD 8015D: GASOLINE RANGE** 

Diesel Range Organics (DRO)

Surr: DNOP

Surr: BFB

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Motor Oil Range Organics (MRO)

Gasoline Range Organics (GRO)

Surr: 4-Bromofluorobenzene

EPA METHOD 8021B: VOLATILES

Analyses		Result	RL Qua	I Umita	DF Date Analyzed	Batch
Lab ID:	1311905-004	Matrix:	AQUEOUS	Received	Date: 11/20/2013 9:40:00 AN	1
Project:	Seep West of Tank 102			Collection	Date: 11/19/2013 12:15:00 P	М
CLIENT:	Western Refining Southwest,	Gallup		Client Samp	le ID: SB30	

1.0

5.0

70.1-140

0.050

1.0

1.0

1.0

2.0

85-136

80.4-118

mg/L

mg/L

mg/L

µg/L

µg/L

µg/L

µg/L

%REC

%REC

%REC

1

1

1

1

1

1

1

1

1

1

ND

ND

114

ND

100

ND

ND

ND

ND

108

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 4 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Hall Environmental Analysis	Date Reported: 11/27/2013					
CLIENT: Western Refining Southwest, G Project: Seep West of Tank 102 Lab ID: 1311905-005		AQUEOUS		<b>Date:</b> 11/	34 /19/2013 1:15:00 PM /20/2013 9:40:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	-				Analyst	BCN
Diesel Range Organics (DRO)	11	1.0	mg/L	1	11/25/2013 6:12:56 PM	10460
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	11/25/2013 6:12:56 PM	10460
Surr: DNOP	120	70.1-140	%REC	1	11/25/2013 6:12:56 PM	10460
EPA METHOD 8015D: GASOLINE RANG	ε				Analyst	RAA
Gasoline Range Organics (GRO)	4.0	2.5	mg/L	50	11/22/2013 8:10:07 PM	R15041
Surr: BFB	102	80.4-118	%REC	50	11/22/2013 8:10:07 PM	R15041
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	330	50	µg/L	50	11/22/2013 8:10:07 PM	R15041
Toluene	370	50	µg/L	50	11/22/2013 8:10:07 PM	R15041
Ethylbenzene	130	50	µg/L	50	11/22/2013 8:10:07 PM	R15041
Xylenes, Total	470	100	µg/L	50	11/22/2013 8:10:07 PM	R15041
Surr: 4-Bromofluorobenzene	108	85-136	%REC	50	11/22/2013 8:10:07 PM	R15041

Analytical Report Lab Order 1311905

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 5 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

чall	Environm	ental A	Analysi	s Labo	ratory,	Inc.

	Western Refining Southwest, Gallup Seep West of Tank 102					
Sample ID MB-10460	SampType: MBLK	TestCode: EPA Method 8015D: Diesel Range				
Client ID: PBW	Batch ID: 10460	RunNo: <b>15015</b>				
Prep Date: 11/21/2013	Analysis Date: 11/25/2013	SeqNo: 434392 Units: mg/L				
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual				
Diesel Range Organics (DRO)	ND 1.0					
Motor Oil Range Organics (MRO)	ND 5.0					
Surr: DNOP	1.1 1.000	107 70.1 140				
Sample ID LCS-10460	SampType: LCS	TestCode: EPA Method 8015D: Diesel Range				
Client ID: LCSW	Batch ID: 10460	RunNo: <b>15015</b>				
Prep Date: 11/21/2013	Analysis Date: 11/25/2013	SeqNo: 434404 Units: mg/L				
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual				
Diesel Range Organics (DRO)	5.3 1.0 5.000	0 106 73.3 145				
Surr: DNOP	0.52 0.5000	104 70.1 140				
Sample ID LCSD-10460	LCSD-10460 SampType: LCSD TestCode: EPA Method 8015D: Diesel Range					
Client ID: LCSS02	Batch ID: 10460	RunNo: <b>15015</b>				
Prep Date: 11/21/2013	Analysis Date: 11/25/2013	SeqNo: 434671 Units: mg/L				
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual				
el Range Organics (DRO)	6.1 1.0 5.000	0 122 73.3 145 13.9 20				
Jurr: DNOP	0.59 0.5000	118 70.1 140 0 0				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 8

WO#: **1311905** 27-Nov-13

### Hall Environmental Analysis Laboratory, Inc.

Client:	Western Refining Southwest, Gallup
Project:	Seep West of Tank 102

Hiert ID:       PBW       Batch ID:       R15041       RunNo:       15041         rep Date:       Analysis Date:       11/22/2013       SeqNo:       434271       Units:       mg/L         analyte       Result       POL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       20       20.00       97.6       80.4       118											
rep Date:       Analysis Date:       11/22/2013       SeqNo:       434271       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       000       97.6       80.4       118	Sample ID 5ML-RB	Samp1	Гуре: МЕ	зlk	Tes	tCode: E	PA Method	8015D: Gasol	ine Rang	e	
nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         Surr: BFB       20       20.00       97.6       80.4       118	Client ID: PBW	Batcl	h ID: <b>R1</b>	5041	F	RunNo: 1	5041				
Soline Range Organics (GRO)       ND       0.050         Surr: BFB       20       20.00       97.6       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID: R15041       RunNo: 15041         rep Date:       Analysis Date:       11/22/2013       SeqNo: 434272       Units: mg/L         nalyte       Result       PQL       SPK kef Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0.5000       0       101       80       120         surr. BFB       21       20.00       107       80.4       118         ample ID 5ML-RB       SampType: MBLK       TestCode: EPA Method 8015D: Gasoline Range       Image Comparises         lient ID:       PBW       Batch ID: R15067       RunNo: 15067       runNo: 15067         rep Date:       Analysis Date:       11/25/2013       SeqNo: 434884       Units: mg/L         nalyte       Result       PQL       SPK kef Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)	Prep Date:	Analysis D	Date: 11	1/22/2013	S	SeqNo: 4	34271	Units: mg/L			
Surr. BFB       20       20.00       97.6       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         litent ID:       LCSW       Batch ID:       R15041       RunNo:       15041         rep Date:       Analysis Date:       11/22/2013       SeqNo:       434272       Units:       mg/L         nalyte       Result       POL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0.5000       0       101       80       120         Surr. BFB       21       20.00       107       80.4       118       118       118         ample ID       SML-RB       SampType:       MBLK       TestCode:       EPA Method 8015D: Gasoline Range       1125/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       POL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       11/25/2013       SeqNo:       434884       Units:	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID:       R15041       RunNo:       15041         rep Date:       Analysis Date:       11/22/2013       SeqNo:       434272       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0.5000       0       101       80       120         Sur: BFB       21       20.00       107       80.4       118       118       118         ample ID       SML-RB       SampType:       MBLK       TestCode:       EPA Method 8015D: Gasoline Range         lient ID:       PBW       Batch ID:       R15067       RunNo:       15067         rep Date:       Analysis Date:       11/25/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       Sa	Gasoline Range Organics (GRO)	ND	0.050								
Hient ID:       LCSW       Batch ID:       R15041       RunNo:       15041         rep Date:       Analysis Date:       11/22/2013       SeqNo:       434272       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0       101       80       120         Surr: BFB       21       20.00       107       80.4       118	Surr: BFB	20		20.00		97.6	80.4	118			
rep Date:       Analysis Date:       11/22/2013       SeqNo:       434272       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0.5000       0       101       80       120         Surr: BFB       21       20.00       107       80.4       118       118       118         ample ID       SML-RB       SampType:       MBLK       TestCode:       EPA Method 8015D:       Gasoline Range         lient ID:       PBW       Batch ID:       R15067       RunNo:       15067         rep Date:       Analysis Date:       11/25/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050         116       80.4       118           soline Range Organics (GRO)       ND       0.050         106       80.4       118 </td <td>Sample ID 2.5UG GRO LCS</td> <td>SampT</td> <td>Type: LC</td> <td>s</td> <td>Tes</td> <td>tCode: E</td> <td>PA Method</td> <td>8015D: Gasol</td> <td>ine Rang</td> <td>e</td> <td></td>	Sample ID 2.5UG GRO LCS	SampT	Type: LC	s	Tes	tCode: E	PA Method	8015D: Gasol	ine Rang	e	
nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       0.51       0.050       0.5000       0       101       80       120         Surr: BFB       21       20.00       107       80.4       118       118         ample ID       5ML-RB       SampType:       MBLK       TestCode:       EPA Method 8015D:       Gasoline Range         lient ID:       PBW       Batch ID:       R15067       RunNo:       15067       rep Date:       Analysis Date:       11/25/2013       SeqNo: 434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       Surr: BFB       21       20.00       106       80.4       118       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode:       EPA Method 8015D:       Gasoline Range         lient ID:       LCSW       Batch ID:       R15067       RunNo:       15067         rep Date:       Analysis D	Client ID: LCSW	Batch	h ID: <b>R1</b>	5041	F	RunNo: 1	5041				
soline Range Organics (GRO) 0.51 0.050 0.5000 0 101 80 120 Surr: BFB 21 20.00 107 80.4 118 ample ID 5ML-RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range lient ID: PBW Batch ID: R15067 RunNo: 15067 rep Date: Analysis Date: 11/25/2013 SeqNo: 434884 Units: mg/L nalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual soline Range Organics (GRO) ND 0.050 Surr: BFB 21 20.00 106 80.4 118 ample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range lient ID: LCSW Batch ID: R15067 RunNo: 15067 rep Date: Analysis Date: 11/25/2013 SeqNo: 434885 Units: mg/L nalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual	Prep Date:	Analysis D	Date: 11	1/22/2013	S	SeqNo: 4	34272	Units: mg/L			
Surr. BFB       21       20.00       107       80.4       118         ample ID       5ML-RB       SampType: MBLK       TestCode: EPA Method 8015D: Gasoline Range         iient ID:       PBW       Batch ID:       R15067       RunNo:       15067         rep Date:       Analysis Date:       11/25/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       Surr: BFB       21       20.00       106       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range       Intermit	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ample ID       SML-RB       SampType:       MBLK       TestCode:       EPA Method 8015D:       Gasoline Range         lient ID:       PBW       Batch ID:       R15067       RunNo:       15067         rep Date:       Analysis Date:       11/25/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050	Gasoline Range Organics (GRO)	0.51	0.050	0.5000	0	101	80	120			
lient ID: PBW Batch ID: R15067 RunNo: 15067 rep Date: Analysis Date: 11/25/2013 SeqNo: 434884 Units: mg/L halyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual soline Range Organics (GRO) Surr: BFB 21 20.00 106 80.4 118 ample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Batch ID: R15067 RunNo: 15067 rep Date: Analysis Date: 11/25/2013 SeqNo: 434885 Units: mg/L halyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual	Surr: BFB	21		20.00		107	80.4	118			
rep Date:       Analysis Date:       11/25/2013       SeqNo:       434884       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GRO)       ND       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050       0.050											
nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual         soline Range Organics (GR0)       ND       0.050         Surr: BFB       21       20.00       106       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID: R15067       RunNo: 15067         rep Date:       Analysis Date: 11/25/2013       SeqNo: 434885       Units: mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	Sample ID 5ML-RB	SampT	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8015D: Gasol	ine Rang	e	
ND       0.050         Surr: BFB       21       20.00       106       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID: R15067       RunNo: 15067         rep Date:       Analysis Date: 11/25/2013       SeqNo: 434885       Units: mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	Sample ID <b>5ML-RB</b> Client ID: <b>PBW</b>							8015D: Gasol	ine Rang	e	
Surr: BFB       21       20.00       106       80.4       118         ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID: R15067       RunNo: 15067         rep Date:       Analysis Date: 11/25/2013       SeqNo: 434885       Units: mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	•	Batch	h ID: <b>R1</b>	5067	F	RunNo: 1	5067		ine Rang	e	
ample ID       2.5UG GRO LCS       SampType: LCS       TestCode: EPA Method 8015D: Gasoline Range         lient ID:       LCSW       Batch ID: R15067       RunNo: 15067         rep Date:       Analysis Date: 11/25/2013       SeqNo: 434885       Units: mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	Client ID: PBW	Batcl Analysis D	h ID: <b>R1</b> Date: <b>1</b> 1	5067 1/25/2013	F	RunNo: <b>1</b> SeqNo: <b>4</b>	5067 34884	Units: <b>mg/L</b>	U		Qual
LCSW     Batch ID:     R15067     RunNo:     15067       rep Date:     Analysis Date:     11/25/2013     SeqNo:     434885     Units:     mg/L       nalyte     Result     PQL     SPK value     SPK Ref Val     %REC     LowLimit     HighLimit     %RPD     RPDLimit     Qual	Client ID: <b>PBW</b> Prep Date:	Batcl Analysis D Result	h ID: <b>R1</b> Date: <b>1</b> 1 PQL	5067 1/25/2013	F	RunNo: <b>1</b> SeqNo: <b>4</b>	5067 34884	Units: <b>mg/L</b>	U		Qual
rep Date:       Analysis Date:       11/25/2013       SeqNo:       434885       Units:       mg/L         nalyte       Result       PQL       SPK value       SPK Ref Val       %REC       LowLimit       HighLimit       %RPD       RPDLimit       Qual	Client ID: <b>PBW</b> Prep Date: Analyte	Batch Analysis D Result ND	h ID: <b>R1</b> Date: <b>1</b> 1 PQL	5067 1/25/2013 SPK value	F	RunNo: 1 SeqNo: 4 %REC	5067 34884 LowLimit	Units: <b>mg/L</b> HighLimit	U		Qual
nalyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual	Client ID: <b>PBW</b> Prep Date: Analyte Gasoline Range Organics (GRO)	Batch Analysis D Result ND 21	h ID: <b>R1</b> Date: <b>1</b> 1 PQL 0.050	5067 1/25/2013 SPK value 20.00	F SPK Ref Val	RunNo: 1 SeqNo: 4 %REC 106	5067 34884 LowLimit 80.4	Units: <b>mg/L</b> HighLimit 118	%RPD	RPDLimit	Qual
	Client ID: <b>PBW</b> Prep Date: Analyte Gasoline Range Organics (GRO) Surr: BFB	Batch Analysis D Result ND 21 SampT	h ID: <b>R1</b> Date: <b>1</b> 1 PQL 0.050	5067 1/25/2013 SPK value 20.00	F SPK Ref Val Tes	RunNo: 1 SeqNo: 4 %REC 106 tCode: E	5067 34884 LowLimit 80.4 PA Method	Units: <b>mg/L</b> HighLimit 118	%RPD	RPDLimit	Qual
soline Range Organics (GRO) 0.44 0.050 0.5000 0 87.1 80 120	Client ID: <b>PBW</b> Prep Date: Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID <b>2.5UG GRO LCS</b>	Batch Analysis D Result ND 21 SampT Batch	h ID: <b>R1</b> Date: <b>1</b> 1 0.050 Fype: <b>LC</b> h ID: <b>R1</b>	5067 1/25/2013 SPK value 20.00 SS 5067	F SPK Ref Val Tes F	RunNo: 1 SeqNo: 4 %REC 106 tCode: E RunNo: 1	5067 34884 LowLimit 80.4 PA Method 5067	Units: mg/L HighLimit 118 8015D: Gasol	%RPD	RPDLimit	Qual
	Client ID: <b>PBW</b> Prep Date: Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID <b>2.5UG GRO LCS</b> Client ID: <b>LCSW</b>	Batch Analysis D Result ND 21 SampT Batch Analysis D	h ID: <b>R1</b> Date: 11 PQL 0.050 Type: <b>LC</b> h ID: <b>R1</b> Date: 11	5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013	F SPK Ref Val Tes F S	RunNo: 1 SeqNo: 4 %REC 106 tCode: E RunNo: 1 SeqNo: 4	5067 34884 LowLimit 80.4 PA Method 5067 34885	Units: mg/L HighLimit 118 8015D: Gasol Units: mg/L	%RPD	RPDLimit e	
Surr: BFB 21 20.00 106 80.4 118	Client ID: <b>PBW</b> Prep Date: Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID <b>2.5UG GRO LCS</b> Client ID: <b>LCSW</b> Prep Date:	Batch Analysis D Result ND 21 SampT Batch Analysis D Result	h ID: <b>R1</b> Date: <b>1</b> 1 0.050 Type: <b>LC</b> h ID: <b>R1</b> Date: <b>1</b> 1 PQL	5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013 SPK value	F SPK Ref Val Tes SPK Ref Val	RunNo: 1 SeqNo: 4 %REC 106 tCode: E RunNo: 1 SeqNo: 4 %REC	5067 34884 LowLimit 80.4 PA Method 5067 34885 LowLimit	Units: mg/L HighLimit 118 8015D: Gasol Units: mg/L HighLimit	%RPD	RPDLimit e	

### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 8

WO#: 1311905

27-Nov-13

чall	Environmental	l Analysis	Laboratory.	Inc.

### Western Refining Southwest, Gallup **Client:**

Seep West of Tank 102 **Project:** 

Sample ID 5	5ML-RB	SampType: MBLK			TestCode: EPA Method 8021B: Volatiles						
Client ID: F	PBW	Batch ID: R15041			RunNo: <b>15041</b>						
Prep Date:		Analysis D	ate: 11	1/22/2013	5	SeqNo: 4	34285	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromof	ofluorobenzene	22		20.00		108	85	136			
Sample ID 1	100NG BTEX LCS	SampT	ype: LC	S	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: L	LCSW	Batch	n ID: <b>R1</b>	5041	F	RunNo: 1	5041				
Prep Date:		Analysis D	ate: 11	1/22/2013	S	SeqNo: 4	34286	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		19	1.0	20.00	0	93.8	80	120			
Toluene		19	1.0	20.00	0	94.6	80	120			
Ethylbenzene		19	1.0	20.00	0	95.1	80	120			
Xylenes, Total		58	2.0	60.00	0	96.0	80	120			
0.10	fuerebenzene	22		20.00		112	85	136			
Surr: 4-Bromot		~~~~		20.00		112					
Surr: 4-Bromof			ype: ME		Tes			8021B: Volat	iles		
ample ID 5		SampT	ype: ME	BLK			PA Method		iles		
ample ID 5	5ML-RB	SampT	n ID: <b>R1</b>	3LK 5067	F	tCode: E	PA Method 5067		iles		
mple ID 5 Client ID: P	5ML-RB	SampT Batch	n ID: <b>R1</b>	3LK 5067 1/25/2013	F	tCode: E RunNo: 1	PA Method 5067	8021B: Volat	iles %RPD	RPDLimit	Qual
mple ID <b>5</b> client ID: P Prep Date:	5ML-RB	SampT Batch Analysis D	n ID: <b>R1</b> vate: <b>1</b> 1	3LK 5067 1/25/2013	F	tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905	8021B: Volat Units: μg/L		RPDLimit	Qual
۲mple ID 5 Client ID: F Prep Date: Analyte	5ML-RB	SampT Batch Analysis D Result	n ID: <b>R1</b> Pate: <b>1</b> 1	3LK 5067 1/25/2013	F	tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905	8021B: Volat Units: μg/L		RPDLimit	Qual
ımple ID <b>5</b> Client ID: <b>P</b> Prep Date: Analyte Benzene	5ML-RB	SampT Batch Analysis D Result ND	n ID: <b>R1</b> Pate: <b>1</b> 1 PQL 1.0	3LK 5067 1/25/2013	F	tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905	8021B: Volat Units: μg/L		RPDLimit	Qual
ımple ID 5 client ID: F Prep Date: Analyte Benzene Toluene	5ML-RB	SampT Batch Analysis D Result ND ND	n ID: <b>R1</b> pate: <b>1</b> 1 <u>PQL</u> 1.0 1.0	3LK 5067 1/25/2013	F	tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905	8021B: Volat Units: μg/L		RPDLimit	Qual
ımple ID 5 client ID: F Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	5ML-RB	SampT Batch Analysis D Result ND ND ND	DID: <b>R1</b> Pate: <b>1</b> 1 PQL 1.0 1.0 1.0	3LK 5067 1/25/2013	F	tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905	8021B: Volat Units: μg/L		RPDLimit	Qual
ımple ID 5 client ID: F Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromof	5ML-RB PBW	SampT Batch Analysis D Result ND ND ND ND 24	DID: <b>R1</b> Pate: <b>1</b> 1 PQL 1.0 1.0 1.0	3LK 5067 1/25/2013 SPK value 20.00	F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC 118	PA Method 5067 34905 LowLimit 85	<b>8021Β: Volat</b> Units: μg/L HighLimit	%RPD	RPDLimit	Qual
Imple ID       5         Client ID:       P         Prep Date:       Analyte         Benzene       Toluene         Ethylbenzene       Xylenes, Total         Surr:       4-Bromof         Sample ID       1	5ML-RB PBW	SampT Batch Analysis D Result ND ND ND 24 SampT	PDID: <b>R1</b> Pate: 11 PQL 1.0 1.0 1.0 2.0	3LK 5067 1/25/2013 SPK value 20.00	F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC 118	PA Method 5067 34905 LowLimit 85 PA Method	<b>8021Β: Volat</b> Units: μg/L HighLimit 136	%RPD	RPDLimit	Qual
Imple ID       5         Client ID:       P         Prep Date:       Analyte         Benzene       Toluene         Ethylbenzene       Xylenes, Total         Surr:       4-Bromof         Sample ID       1	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT	PQL 1.0 1.0 1.0 1.0 2.0 7 7 9 9 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	3LK 5067 1/25/2013 SPK value 20.00	F SPK Ref Val Tes F	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E	PA Method 5067 34905 LowLimit 85 PA Method 5067	<b>8021Β: Volat</b> Units: μg/L HighLimit 136	%RPD	RPDLimit	Qual
umple ID       5         Client ID:       P         Prep Date:       P         Analyte       P         Benzene       P         Toluene       Ethylbenzene         Xylenes, Total       Surr: 4-Bromof         Sample ID       1         Client ID:       L	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT Batch	PQL 1.0 1.0 1.0 1.0 2.0 7 7 9 9 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	3LK 5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013	F SPK Ref Val Tes F	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E RunNo: 1	PA Method 5067 34905 LowLimit 85 PA Method 5067	8021B: Volat Units: µg/L HighLimit 136 8021B: Volat	%RPD	RPDLimit	Qual
Imple ID       5         Client ID:       P         Prep Date:       Analyte         Benzene       Foluene         Toluene       Ethylbenzene         Xylenes, Total       Surr: 4-Bromof         Sample ID       1         Client ID:       L         Prep Date:       P	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT Batch Analysis D	PQL 1.0 1.0 1.0 1.0 2.0 ype: LC 1.D: R1 pate: 11	3LK 5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013	F SPK Ref Val Tes F S	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E RunNo: 1 SeqNo: 4	PA Method 5067 34905 LowLimit 85 PA Method 5067 34906	8021B: Volat Units: μg/L HighLimit 136 8021B: Volat Units: μg/L	%RPD		
Imple ID       5         Client ID:       P         Prep Date:       P         Analyte       P         Benzene       P         Toluene       P         Ethylbenzene       Xylenes, Total         Surr: 4-Bromot       P         Sample ID       1         Client ID:       L         Prep Date:       Analyte	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT Batch Analysis D Result	PQL 1.0 1.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0	3LK 5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013 SPK value	F SPK Ref Val Tes SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 5067 34905 LowLimit 85 PA Method 5067 34906 LowLimit	8021B: Volat Units: µg/L HighLimit 136 8021B: Volat Units: µg/L HighLimit	%RPD		
umple ID       5         Client ID:       P         Prep Date:       Analyte         Benzene       Doluene         Toluene       Ethylbenzene         Xylenes, Total       Surr: 4-Bromof         Sample ID       1         Client ID:       L         Prep Date:       Analyte         Benzene       1         Sample ID       1         Client ID:       L         Prep Date:       Analyte         Benzene       Enzene	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT Batch Analysis D Result 19	PQL 1.0 1.0 1.0 1.0 2.0 7 7 9 9 9 10: <b>R1</b> 9 9 10: <b>R1</b> 10: <b>R1</b> 10: <b>R1</b> 10: <b>R1</b> 10: <b>R1</b> 10 10: <b>R1</b> 10 10 10 10 10 10 10 10 10 10 10 10 10	3LK 5067 1/25/2013 SPK value 20.00 S 5067 1/25/2013 SPK value 20.00	F SPK Ref Val Tes SPK Ref Val 0	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E RunNo: 1 SeqNo: 4 %REC 95.1	PA Method 5067 34905 LowLimit 85 PA Method 5067 34906 LowLimit 80	8021B: Volat Units: µg/L HighLimit 136 8021B: Volat Units: µg/L HighLimit 120	%RPD		
umple ID       5         Client ID:       P         Prep Date:       Analyte         Benzene       Doluene         Toluene       Ethylbenzene         Xylenes, Total       Surr: 4-Bromof         Sample ID       1         Client ID:       L         Prep Date:       Analyte         Benzene       Toluent ID:         Lient ID:       L         Prep Date:       Analyte         Benzene       Toluene         Toluene       Toluene	5ML-RB PBW ofluorobenzene 100NG BTEX LCS	SampT Batch Analysis D Result ND ND ND 24 SampT Batch Analysis D Result 19 19	PQL 1.0 1.0 1.0 1.0 1.0 2.0 7 7 9 9 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3LK 5067 1/25/2013 SPK value 20.00 3S 5067 1/25/2013 SPK value 20.00 20.00	F SPK Ref Val Tes SPK Ref Val 0 0	tCode: E RunNo: 1 SeqNo: 4 %REC 118 tCode: E RunNo: 1 SeqNo: 4 %REC 95.1 95.2	PA Method 5067 34905 LowLimit 85 PA Method 5067 34906 LowLimit 80 80	8021B: Volat Units: µg/L HighLimit 136 8021B: Volat Units: µg/L HighLimit 120 120	%RPD		

### Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Е Value above quantitation range Analyte detected below quantitation limits
- Ο RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 8 of 8

WO#: 1311905 27-Nov-13

#### Hall Environmental Analysis Laboratory 4901 Hawkins NE INVIRONMENTAL Sample Log-In Check List Albuquerque, NM 87109 ANALYSIS TEL: 505-345-3975 FAX: 505-345-4107 ABORATORY Website: www.hallenvironmental.com RcptNo: 1 Western Refining Gallup Work Order Number: 1311905 Client Name: 11/20/13 Received by/date: anne Hom 11/20/2013 9:40:00 AM Anne Thorne Logged By: ame Am 11/20/2013 Completed By: Anne Thorne Reviewed By: Chain of Custody Not Present 1. Custody seals intact on sample bottles? Yes 🗹 No 🗌 Yes 🔽 Not Present No 🗌 2. Is Chain of Custody complete? 3. How was the sample delivered? Client Log In No 🗌 Yes 🗸 4. Was an attempt made to cool the samples? No 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 Yes 🗸 No 🗌 6. Sample(s) in proper container(s)? Yes 🔽 No 🗌 7. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 8. Are samples (except VOA and ONG) properly preserved? Yes No 🔽 NA 🗌 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 🛄 10. VOA vials have zero headspace? Yes 🗋 No 🗸 11. Were any sample containers received broken? # of preserved bottles checked Yes 🖌 No 🗌 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody)

Adjusted?

Checked by:

No 🗌

No 🗌

No 🗌

Yes 🗹

Yes 🔽

Yes 🔽

(If no, notify customer for authorization.)

14. Is it clear what analyses were requested?

15. Were all holding times able to be met?

13. Are matrices correctly identified on Chain of Custody?

### Special Handling (if applicable)

16.\	Was client notified of all d	liscrepancies with this order?	Yes 🗌	No 🗌	NA 🗹
	Person Notified:		Date		
	By Whom:		Via: 🗌 eMail 🗌	Phone 🗌 Fax 📋	In Person
	Regarding:	an de la constante de la const La constante d'a constante de la		a trust diffe on excitate in the set of a	
	Client Instructions:				

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.0	Good	Yes			

			stody Record	Turn-Around	Time:			■		н	ΔI	1	FN	IV	٢R		NR	4EI	NT/	AL	
Client:	TERN	REI	ETNING SW	Standard					HALL ENVIRONMENTAL												
60		RE	FINERY	Project Name:				www.hailenvironmental.com													
Mailing	Address:	RNT	TE 3 Box7	SEEP WEST OF TANKLOZ																	
14	MES		NM 87301	Project #:				Tel. 505-345-3975 Fax 505-345-4107													
Phone	#: 505	5-727	2.3833	1				Analysis Request													
	r Fax#:			Mana	ger:			(yln	sel)					04)							
QA/QC	Package:	•		Λ		-	TMB's (8021)	PH (Gas only)	is/Die					04,8	PCB's						
Standard    Level 4 (Full Validation)     Accreditation				Sampler:		HNSON	AB's	Э) Н	<u>G</u>					0 ^{2, F}	8082						
□ NELAP □ Other					L. PAY		L +	上 +	15B	18,1	64.1	(H)		3°N	~		(F				N N
	) (Type) _			Sample Tem		,0	MTBE		d 80	bd 4	od 5	ם   ה	stals	N,N	cides	<b>F</b>	2	X			Σ
Date	Time	Matrix	Sample Request ID	i i jpo unu "	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SHEAL No.	BTEX + MT	BTEX + MTBE	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	8081 Pesticides	8260B (VOA)	_	BTEX			Air Bubbles (Y or N)
1/19/13	0930	GW	<b>382</b> 5832	4 40ML VOA	HCL& NEAT	-001			X								h	$\mathbf{X}$			
7	1015		SB33			-722			X									X			
	1050		SB2.3			-003			X								ľ	X			Γ
	1215	1	SB30			-004			X									X			Γ
T	13/5		SB34	V	K	Tas			X									$\mathbf{X}$			Γ
7	1			· ·														$\neg$			Γ
	-																				T
																					Γ
																					$\uparrow$
																					Γ
																				-	T
					4																Γ
Date:	Time: 7 0940 Time:	Relinquish	7	Received by Received by:	K II	20 75 0-140 Date Time	Rer	narks	5:												

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

## HALL ENVIRONMENTAL ANALYSIS LABORATORY

July 16, 2013

Cheryl Johnson Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301 TEL: (505) 722-0231 FAX: (505) 722-0210

RE: Seep West of 102

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1307269

Dear Cheryl Johnson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/8/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analy	SIS Labora	Date Reported: 7/16/2013							
CLIENT: Western Refining Southwes Project: Seep West of 102 Lab ID: 1307269-001		PRODUCT		le ID: Seep Hole #6 Date: 7/8/2013 9:45:00 AM Date: 7/8/2013 1:20:00 PM					
Analyses	Result RL		Qual	Units DI		Date Analyzed	Batch		
DRO BY 8015D						Analyst	JME		
Diesel Range Organics (DRO)	55	2.0		wt%	20	7/9/2013 4:30:52 PM	8285		
Motor Oil Range Organics (MRO)	ND	10		wt%	20	7/9/2013 4:30:52 PM	8285		
Surr: DNOP	0	76.7-135	S	%REC	20	7/9/2013 4:30:52 PM	8285		
GRO BY 8015D						Analyst	NSB		
Gasoline Range Organics (GRO)	49	2.5		wt%	1	7/10/2013 11:07:52 AM	8284		
Surr: BFB	127	65.4-138		%REC	1	7/10/2013 11:07:52 AM	8284		
EPA METHOD 300.0: ANIONS						Analyst	JRR		
Fluoride	ND	2.0		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Chloride	ND	10		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Nitrogen, Nitrite (As N)	ND	2.0		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Bromide	ND	2.0		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Nitrogen, Nitrate (As N)	ND	2.0		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	7/9/2013 3:15:53 AM	R11809		
Sulfate	ND	10		mg/L	20	7/9/2013 3:15:53 AM	R11809		
EPA METHOD 200.7: METALS						Analyst	JLF		
Calcium	ND	50		mg/L	1	7/11/2013 1:47:54 PM	8317		
Magnesium	ND	50		mg/L	1	7/11/2013 1:47:54 PM	8317		
Potassium	65	50		mg/L	1	7/11/2013 1:47:54 PM	8317		
Sodium	100	50		mg/L	1	7/11/2013 1:47:54 PM	8317		
SM4500-H+B: PH						Analyst	JML		
рН	7.04	1.68	н	pH units	1	7/12/2013 4:29:00 PM	R11906		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 1 of 7
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

#### Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1307269 Date Reported: 7/16/2013

Western Refining Southwest, Gallup

Project:	Seep West of 102	· •							
Sample ID: MB-831	7 SampType: N	IBLK	Tes	tCode: EP	A Method	200.7: Metals			
Client ID: PBW	Batch ID: 8	317	F	RunNo: <b>11</b>	877				
Prep Date: 7/11/2	013 Analysis Date:	7/11/2013	5	SeqNo: 33	7575	Units: <b>mg/L</b>			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND 1.	D							
Magnesium	ND 1.	D							
Potassium	ND 1.	0							
Sodium	ND 1.	0							
Sample ID: LCS-83	17 SampType: L	CS	Tes	tCode: EP	A Method	200.7: Metals			
Sample ID: LCS-83 Client ID: LCSW	17 SampType: L Batch ID: 8			tCode: EP RunNo: 11		200.7: Metals			
	Batch ID: 8	317	F		877	200.7: Metals Units: mg/L			
Client ID: LCSW	Batch ID: 8	317 7/11/2013	F	tunNo: <b>11</b>	877		%RPD	RPDLimit	Qual
Client ID: LCSW Prep Date: 7/11/2	Batch ID: 8 013 Analysis Date:	317 7/11/2013 SPK value	F S SPK Ref Val	tunNo: <b>11</b> SeqNo: <b>33</b>	877 7576	Units: <b>mg/L</b>	%RPD	RPDLimit	Qual
Client ID: LCSW Prep Date: 7/11/2 Analyte	Batch ID: 8 013 Analysis Date: Result PQL	317 7/11/2013 SPK value 0 50.00	F S SPK Ref Val 0	RunNo: <b>11</b> SeqNo: <b>33</b> %REC	877 7576 LowLimit	Units: <b>mg/L</b> HighLimit	%RPD	RPDLimit	Qual
Client ID: LCSW Prep Date: 7/11/2 Analyte Calcium	Batch ID: 8 013 Analysis Date: Result PQL 50 1.	<b>317</b> <b>7/11/2013</b> SPK value 0 50.00 0 50.00	F S SPK Ref Val 0 0	RunNo: <b>11</b> SeqNo: <b>33</b> %REC 99.4	877 67576 LowLimit 85	Units: <b>mg/L</b> HighLimit 115	%RPD	RPDLimit	Qual

Qualifiers:

**Client:** 

- * Value exceeds Maximum Contaminant Level.
- 7 Value above quantitation range
- Analyte detected below quantitation limits j
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only. Р
- Reporting Detection Limit RL

WO#: 1307269

16-Jul-13

# **QC SUMMARY REPORT**

_

#### Hall Environmental Analysis Laboratory, Inc.

Client:	Western Refining Southwest, Gallup
Project:	Seep West of 102

Sample ID: MB	Samp	Туре: <b>МЕ</b>	BLK	Tes	tCode: E	PA Method	300.0: Anions	5		
Client ID: PBW	Batc	h ID: <b>R1</b>	1809	F	RunNo: 1	1809				
Prep Date:	Analysis [	Date: 7/	9/2013	5	SeqNo: 3	35617	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Bromide	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Phosphorus, Orthophosphate (As P)	ND	0.50								
Sulfate	ND	0.50								
Sample ID: LCS	Samp	Type: LC	s	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batc	h ID: <b>R1</b>	1809	F	RunNo: 1	1809				
Prep Date:	Analysis [	Date: 7/	9/2013	5	SeqNo: 3	35618	Units: <b>mg/L</b>			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.53	0.10	0.5000	0	107	90	110			
Chloride	4.8	0.50	5.000	0	95.5	90	110			
Nitrogen, Nitrite (As N)	0.96	0.10	1.000	0	95.5	90	110			
Bromide	2.5	0.10	2.500	0	99.0	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P)	4.8	0.50	5.000	0	95.3	90	110			
Sulfate	9.7	0.50	10.00	0	96.6	90	110			
Sample ID: 1307280-001AMS	Samp	Type: MS	;	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID: BatchQC	Batc	h ID: <b>R1</b>	1809	F	RunNo: 1	1809				
Prep Date:	Analysis [	Date: 7/	9/2013	5	SeqNo: 3	35622	Units: <b>mg/L</b>			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.1	0.10	0.5000	0.6427	96.1	76.9	114			
Chloride	11	0.50	5.000	5.375	105	89.9	119			
Nitrogen, Nitrite (As N)	0.97	0.10	1.000	0	96.6	84.3	102			
	0.0	0.10	2.500	0.08490	101	92	104			
Bromide	2.6	0.10	2.000							
Bromide Nitrogen, Nitrate (As N)	2.6 3.4	0.10	2.500	0.8637	103	93	113			
						93 73.9	113 120			
Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P)	3.4	0.10	2.500	0.8637	103					
Nitrogen, Nitrate (As N)	3.4 4.9 31	0.10 0.50	2.500 5.000 10.00	0.8637 0 19.89	103 98.6 109	73.9 90.1	120	<u>.</u>		
Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate	3.4 4.9 31 D Samp ⁻	0.10 0.50 0.50	2.500 5.000 10.00	0.8637 0 19.89 Tes	103 98.6 109	73.9 90.1 PA Method	120 116			
Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate Sample ID: <b>1307280-001AMSI</b>	3.4 4.9 31 D Samp ⁻	0.10 0.50 0.50 Type: <b>MS</b> h ID: <b>R1</b>	2.500 5.000 10.00 5D 1809	0.8637 0 19.89 Tes	103 98.6 109 tCode: <b>E</b>	73.9 90.1 PA Method 1809	120 116	\$		
Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate Sample ID: <b>1307280-001AMSI</b> Client ID: <b>BatchQC</b>	3.4 4.9 31 D Samp ^T Batc	0.10 0.50 0.50 Type: <b>MS</b> h ID: <b>R1</b>	2.500 5.000 10.00 5D 1809 9/2013	0.8637 0 19.89 Tes	103 98.6 109 tCode: El RunNo: 1 SeqNo: 3	73.9 90.1 PA Method 1809	120 116 300.0: Anions	%RPD	RPDLimit	Qual
Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate Sample ID: <b>1307280-001AMSI</b> Client ID: <b>BatchQC</b> Prep Date:	3.4 4.9 31 D Samp Batc Analysis [	0.10 0.50 0.50 Type: <b>MS</b> h ID: <b>R1</b> Date: <b>7</b> /	2.500 5.000 10.00 5D 1809 9/2013	0.8637 0 19.89 Tes F S	103 98.6 109 tCode: El RunNo: 1 SeqNo: 3	73.9 90.1 PA Method 1809 35623	120 116 <b>300.0: Anions</b> Units: <b>mg/L</b>		RPDLimit 20	Qual

#### Qualifiers:

* Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits J 0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2 for VOA and TOC only. Ρ

Page 3 of 7

RL Reporting Detection Limit

1307269 16-Jul-13

WO#:

#### Western Refining Southwest, Gallup **Client:**

Seep West of 102

**Project:** 

Sample ID: 1307280-001AMS	D Sampl	ype: MS	SD	Tes	tCode: El	PA Method	300.0: Anions			
Client ID: BatchQC		h ID: R1			RunNo: 1					
Prep Date:	Analysis D	)ate: 7/	9/2013	S	SeqNo: 3	35623	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	0.96	0.10	1.000	0	95.8	84.3	102	0.884	20	
Bromide	2.6	0.10	2.500	0.08490	101	92	104	0.398	20	
Nitrogen, Nitrate (As N)	3.4	0.10	2.500	0.8637	102	93	113	0.600	20	
Phosphorus, Orthophosphate (As P)	4.8	0.50	5.000	0	96. <b>4</b>	73.9	120	2.29	20	
Sulfate	31	0.50	10.00	19.89	106	90.1	116	0.814	20	

#### Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- 3 Value above quantitation range
- Analyte detected below quantitation limits Ĵ
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2 for VOA and TOC only. р
- RL Reporting Detection Limit

WO#: 1307269

Page 4 of 7

16-Jul-13

#### Client: Western Refining Southwest, Gallup

Client:	Western Refining Southwest, Gallup
Project:	Seep West of 102

Sample ID: LCS-8285	Samp	ype: LC	S	Tes	tCode: Df	RO by 8015				
Client ID: LCSW	Batc	h ID: 82	85	F	1794					
Prep Date: 7/9/2013	Analysis [	Date: 7/	9/2013	S	SeqNo: 3	35851	Units: wt%			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	0.40	0.10	0.5000	0	80.5	80	120			
Surr: DNOP	0.040		0.05000		79.3	76.7	135			
Sample ID: LCSD-8285	Samp	ype: LC	SD	Tes	tCode: DI	RO by 8015	D			
Client ID: LCSS02	Batc	h ID: 82	85	F	RunNo: 1	1794				
Prep Date: 7/9/2013	Analysis [	Date: 7/	9/2013	5	SeqNo: 3	35852	Units: wt%			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	0.43	0.10	0.5000	0	85.7	80	120	6.34	20	
Surr: DNOP	0.043		0.05000		85.8	76.7	135	0	0	
Sample ID: MB-8285	Samp	Type: ME	BLK	Tes	tCode: DI	RO by 8015	D			
Client ID: PBW	Batc	h ID: 82	85	F	RunNo: 1	1794				
Prep Date: 7/9/2013	Analysis [	Date: 7/	9/2013	5	SeqNo: 3	35853	Units: wt%			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	ND	0.10								
Diesel Range Organics (DRO)										
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	ND	0.50				76.7	135			

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 5 of 7

WO#: 1307269

16-Jul-13

### ______

Client:	Western Refining Southwest, Gallup
Project:	Seep West of 102

Sample ID: MB-8284	SampType: M	BLK	Tes	tCode: G	RO by 8015	D			
Client ID: PBW	Batch ID: 82	284	F	RunNo: 1	1829				
Prep Date: 7/9/2013	Analysis Date: 7	/10/2013	5	SeqNo: 3	36360	Units: <b>wt%</b>			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 2.5								
Surr: BFB	940	1000		94.1	65.4	138			
Sample ID: LCS-8284	SampType: LO	CS	Tes	tCode: G	RO by 8015	D			
Client ID: LCSW	Batch ID: 82	284	F	RunNo: <b>1</b>	1829				
Prep Date: 7/9/2013	Analysis Date: 7	/10/2013	5	SeqNo: 3	36361	Units: <b>wt%</b>			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27 2.5	25.00	0	106	67.5	133			
Surr: BFB	1000	1000		99.7	65.4	138			
Sample ID: LCSD-8284	SampType: LO	CSD	Tes	tCode: G	RO by 8015	D			
Client ID: LCSS02	Batch ID: 82	284	F	RunNo: 1	1829				
Prep Date: 7/9/2013	Analysis Date: 7	/10/2013	5	SeqNo: 3	36362	Units: <b>wt%</b>			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	26 2.5	25.00	0	103	67.5	133	3.10	8.39	
`urr: BFB	1000	1000		101	65.4	138	0	0	

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 7

WO#: **1307269** *16-Jul-13* 

Client:	Western Refining Southwest, Gallup
Project:	Seep West of 102

Sample ID: 1307269-001ADUP	SampT	ype: DU	P	Tes	tCode:	SM4500-H+B	: pH			
Client ID: Seep Hole #6	Batch	ID: <b>R1</b>	1906	F	lunNo:	11906				
Prep Date:	Analysis D	ate: 7/	12/2013	S	SeqNo:	338410	Units: <b>pH u</b>	nits		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
pH	7.03	1.68						0.142		Н

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 7

WO#: 1307269

16-Jul-13

#### HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

# Sample Log-In Check List

Client Name: Western Refining Gallup	Work Order Number:	13072	69		RcptNo:	1
Received by/date:	07/08/13					
Logged By: Ashley Gallegos	7/8/2013 1:20:00 PM			AZ		
Completed By: Ashley Gallegos	7/8/2013 1:49:57 PM			AZ		
Reviewed By: <u>7</u> 0	07/08/13			U I		
Chain of Custody	. /					
1. Custody seals intact on sample bottles?		Yes	~	No	Not Present	
2. Is Chain of Custody complete?		Yes		No	Not Present	
3. How was the sample delivered?		Clien				
Log in						
4. Was an attempt made to cool the sample	s?	Yes	~	No	NA	
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes	~	No	NA	
		Vee		No		
6. Sample(s) in proper container(s)?		Yes				
7. Sufficient sample volume for indicated tes	t(s)?	Yes	V	No		
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes	V	No		
9. Was preservative added to bottles?		Yes		No 🗸	NA	
10.VOA vials have zero headspace?		Yes	V	No	No VOA Vials	
11. Were any sample containers received bro	ken?	Yes	• •	No 🗸		
					# of preserved bottles checked	-OOLA 1-(
12. Does paperwork match bottle labels?		Yes		No ·	for pH:	-OOT 1 pr >12 unless noted
(Note discrepancies on chain of custody) 13. Are matrices correctly identified on Chain	of Custody?	Yes	~	No	Adjustes2	NARIE TU
14, Is it clear what analyses were requested?	of Custody?	Yes		No		NARE
15. Were all holding times able to be met?		Yes		No	Checked by:	PLANATAS
(If no, notify customer for authorization.)					:	Actes - P
Special Handling (if applicable)						Yr I
16. Was client notified of all discrepancies with	th this order?	Yes		No	NA 🗸	
Person Notified:	Date:		****			
By Whom:	Via:	eM	ail	Phone Fax	In Person	
Regarding:		NA OF THE PARTY OF THE		1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -	<u>, 1979), 1979), 1999), 1997), 1997), 1977</u>	
Client Instructions:				Heleford and a Book L is a bolie of Look Head and Bolie Bolie	an a the construction and a set the data and a set of the set of t	
17. Additional remarks:						
18. Cooler Information						
Cooler No Temp °C Condition	Seal Intact Seal No					

			tody Record	Turn-Around	Time:					Н	AL	LI	EN	VI	RO	NM	1EN	TA	L
Client:	Western R	efining Co	mpany	Standard	X Rush	_ASAP		_		A	NA	L	<b>[</b> S]	[S	LA	BOI	RAT	<b>OF</b>	ł۲
GA		IERY		Project Name	<b>)</b> :		╏■			w	ww.ł	nalle	nviro	nme	ntal.co	om			
Mailing Add	ress:			Seep West o	f 102			490	31 H	awkins	S NE	- Alt	bugu	erqu	e, NM	87109	)		
	7, GALLUP,	NM 8730	1	Project #:			1			5-345-			•	-	345-41				
· · · · · · · · · · · · · · · · · · ·	505-722-3		±	Seep Hole #6	5										eques				
email or Fax		505-863	-0930	Project Mana		· · · · · · · · · · · · · · · · · · ·		0										1	
QA/QC Pack					0-			B											
□ Standard	•		Level 4 (Full Validation)	C. JOHNSON	V (cheryl.johns	son@wnr.com)	~	0											
Accreditatio				Sampler:	C. JOHNSO	N	].	DR		tal Dicent		ions							
		Other		ATTACH TO MAKE A	erature: 7	U No	-	Q	ols	- To	0	SA		щ				ſ	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	1 August 1	8260+MTBE	8015B GR	8270 + Phenols	WQCC Metals - Total WOCC Metals - Dis	(Filtered)	Major Cations/Anions		8021B + MTBE					Also Distribution (V and Al)
7/8/2013	0945	Aqueous	Scep Hole #6			-001		X				x			-				
.,							$\top$							-				+ -	$\square$
		+	· · · · · · · · · · · · · · · · · · ·								-			+				+	
					·		+							-+				+-'	┟╴┾╴
																+	-+-	+	$\vdash$
					<u> </u>		-					_		-+	_+	+			┝┼╴
				<u> </u>							-			-+		+		+	┦╾┥
														$\rightarrow$				+-'	┞╼┾
																			$\square$
Date: 7/8/13	Time: 1000	Relinquish	ed by:	Received by:		Date Time	Ren	narks	s:										
8/18	Time: 13:20	Relinquish	ed by:	Received by:	- 07/0	Date Time 8/13 132()													
	If necess	ary samples s	ubmitted to Hall Environmental may be su	bcontracted to other	accredited laborator	ies. This serves as notice of thi	is poss	ibility.	Any su	ub-contra	cted da	ta will	be clea	arly not	ated on t	he analy	ical repor	ι.	

7

## HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 05, 2013

Cheryl Johnson Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-0231 FAX (505) 722-0210

RE: Seep West Of Tank 102

OrderNo.: 1310D69

Dear Cheryl Johnson:

Hall Environmental Analysis Laboratory received 5 sample(s) on 10/29/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysi	s Ladora	llory, II	IC.			Date Reported: 11/5/20	13	
CLIENT: Western Refining Southwest, C Project: Seep West Of Tank 102 Lab ID: 1310D69-001	Client Sample ID: SB14 Collection Date: 10/28/2013 9:15:00 AM Received Date: 10/29/2013 12:29:00 PM							
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8015D: DIESEL RANGE						Analyst	JME	
Diesel Range Organics (DRO)	87	10		mg/L	10	10/30/2013 3:43:44 PM	10098	
Motor Oil Range Organics (MRO)	ND	50		mg/L	10	10/30/2013 3:43:44 PM	10098	
Surr: DNOP	0	70.1-140	S	%REC	10	10/30/2013 3:43:44 PM	10098	
EPA METHOD 8015D: GASOLINE RANG	GE					Analyst	NSB	
Gasoline Range Organics (GRO)	71	5.0		mg/L	100	11/1/2013 12:42:12 AM	R14497	
Surr: BFB	102	51.5-151		%REC	100	11/1/2013 12:42:12 AM	R14497	
EPA METHOD 8021B: VOLATILES						Analyst	NSB	
Methyl tert-butyl ether (MTBE)	460	250		µg/L	100	11/1/2013 12:42:12 AM	R14497	
Benzene	12000	500		µg/L	500	11/4/2013 2:45:47 PM	R14541	
Toluene	14000	500		µg/L	500	11/4/2013 2:45:47 PM	R14541	
Ethylbenzene	960	100		µg/L	100	11/1/2013 12:42:12 AM	R14497	
Xylenes, Total	4700	200		µg/L	100	11/1/2013 12:42:12 AM	R14497	
1,2,4-Trimethylbenzene	590	100		µg/L	100	11/1/2013 12:42:12 AM	R14497	
1,3,5-Trimethylbenzene	150	100		µg/L	100	11/1/2013 12:42:12 AM	R14497	
Surr: 4-Bromofluorobenzene	110	85-136		%REC	100	11/1/2013 12:42:12 AM	R14497	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 1 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

#### Hall Environmental Analysis Laboratory, Inc.

**Analytical Report** Lab Order 1310D69 Date Reported: 11/5/2013

A	n	aly	tic	al	R	ep	ort	

Lab Order 1310D69

Date Reported: 11/5/2013

100 11/1/2013 1:12:29 AM

100 11/1/2013 1:12:29 AM

100 11/1/2013 1:12:29 AM

100 11/1/2013 1:12:29 AM

R14497

R14497

R14497

R14497

#### Hall Environmental Analysis Laboratory, Inc.

Xylenes, Total

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Surr: 4-Bromofluorobenzene

CLIENT: Western Refining Southwest, C	Gallup		Client Sampl			
Project: Seep West Of Tank 102					28/2013 9:35:00 AM	
Lab ID: 1310D69-002	Matrix:	AQUEOUS	Received	Date: 10/2	29/2013 12:29:00 PM	
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	JME
Diesel Range Organics (DRO)	4.8	1.0	mg/L	1	10/30/2013 2:37:42 PM	10098
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/30/2013 2:37:42 PM	10098
Surr: DNOP	117	70.1-140	%REC	1	10/30/2013 2:37:42 PM	10098
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst	NSB
Gasoline Range Organics (GRO)	46	5.0	mg/L	100	11/1/2013 1:12:29 AM	R14497
Surr: BFB	100	51.5-151	%REC	100	11/1/2013 1:12:29 AM	R14497
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	890	250	µg/L	100	11/1/2013 1:12:29 AM	R14497
Benzene	7300	100	µg/L	100	11/1/2013 1:12:29 AM	R14497
Toluene	7600	100	µg/L	100	11/1/2013 1:12:29 AM	R14497
Ethylbenzene	920	100	µg/L	100	11/1/2013 1:12:29 AM	R14497

200

100

100

85-136

µg/L

µg/L

µg/L %REC

4600

790

220

109

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Hall Environmental Analys		Date Reported: 11/5/2013					
CLIENT: Western Refining Southwest, Project: Seep West Of Tank 102 Lab ID: 1310D69-003	-	AQUEOU		-	<b>Date:</b> 10/2	12 28/2013 10:00:00 AN 29/2013 12:29:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE						Analys	t: JME
Diesel Range Organics (DRO)	110	10		mg/L	10	10/30/2013 4:05:46 PM	1 10098
Motor Oil Range Organics (MRO)	ND	50		mg/L	10	10/30/2013 4:05:46 PM	1 10098
Surr: DNOP	0	70.1-140	S	%REC	10	10/30/2013 4:05:46 PM	1 10098
EPA METHOD 8015D: GASOLINE RAM	IGE					Analys	t: NSB
Gasoline Range Organics (GRO)	22	5.0		mg/L	100	11/1/2013 1:42:43 AM	R14497
Surr: BFB	99.7	51.5-151		%REC	100	11/1/2013 1:42:43 AM	R14497
EPA METHOD 8021B: VOLATILES						Analys	t: NSB
Methyl tert-butyl ether (MTBE)	3500	250		µg/L	100	11/1/2013 1:42:43 AM	R14497
Benzene	2600	100		µg/L	100	11/1/2013 1:42:43 AM	R14497
Toluene	130	100		µg/L	100	11/1/2013 1:42:43 AM	R14497
Ethylbenzene	820	100		µg/L	100	11/1/2013 1:42:43 AM	R14497
Xylenes, Total	3000	200		µg/L	100	11/1/2013 1:42:43 AM	R14497
1,2,4-Trimethylbenzene	870	100		µg/L	100	11/1/2013 1:42:43 AM	R14497
1,3,5-Trimethylbenzene	260	100		µg/L	100	11/1/2013 1:42:43 AM	R14497
Surr: 4-Bromofluorobenzene	108	85-136		%REC	100	11/1/2013 1:42:43 AM	R14497

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 3 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

...

**Analytical Report** Lab Order 1310D69

	<u> </u>		Date Reported: 11/5/2015							
-		Client Sample ID: SB07 Collection Date: 10/28/2013 10:20:00 AM Received Date: 10/29/2013 12:29:00 PM								
Result			DF Date Analyzed Batch							
			Analyst: JME							
24	1.0	mg/L	1 10/30/2013 4:27:56 PM 10098							
ND	5.0	mg/L	1 10/30/2013 4:27:56 PM 10098							
124	70.1-140	%REC	1 10/30/2013 4:27:56 PM 10098							
GE			Analyst: <b>NSB</b>							
21	5.0	mg/L	100 11/1/2013 2:13:02 AM R1449							
100	51.5-151	%REC	100 11/1/2013 2:13:02 AM R1449							
			Analyst: NSB							
4500	250	µg/L	100 11/1/2013 2:13:02 AM R1449							
3200	100	µg/L	100 11/1/2013 2:13:02 AM R1449							
ND	100	µg/L	100 11/1/2013 2:13:02 AM R1449							
1200	100	µg/L	100 11/1/2013 2:13:02 AM R1449							
1600	200	µg/L	100 11/1/2013 2:13:02 AM R1449							
1000	100	µg/L	100 11/1/2013 2:13:02 AM R1449							
160	100	µg/L	100 11/1/2013 2:13:02 AM R1449							
109	85-136	%REC	100 11/1/2013 2:13:02 AM R1449							
	Gallup Matrix: Result 24 ND 124 GE 21 100 4500 3200 ND 1200 1600 1000 160	Matrix:         AQUEOUS           Result         RL         Qual           24         1.0            ND         5.0            124         70.1-140            GE         21         5.0           100         51.5-151            4500         250            3200         100            ND         100            1200         100            1600         200	Gallup         Client Samp Collection           Matrix:         AQUEOUS         Received           Result         RL         Qual         Units           24         1.0         mg/L           ND         5.0         mg/L           124         70.1-140         %REC           GE         21         5.0         mg/L           100         51.5-151         %REC           4500         250         µg/L           3200         100         µg/L           1200         100         µg/L           1600         200         µg/L           160         100         µg/L							

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 4 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

# Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1310D69

Date Reported: 11/5/2013

Hall Environmental Analysi	s Labora	tory, Inc.	Lab Order 1310D69 Date Reported: 11/5/2013							
CLIENT: Western Refining Southwest, O Project: Seep West Of Tank 102	Gallup	C	lient Samp Collection		.3 28/2013 10:40:00 AM					
Lab ID: 1310D69-005	Matrix:	AQUEOUS	Received	Date: 10/	29/2013 12:29:00 PM					
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 8015D: DIESEL RANGE					Analyst:	JME				
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/30/2013 4:49:51 PM	10098				
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/30/2013 4:49:51 PM	10098				
Surr: DNOP	118	70.1-140	%REC	1	10/30/2013 4:49:51 PM	10098				
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst:	NSB				
Gasoline Range Organics (GRO)	3.8	1.0	mg/L	20	11/1/2013 2:43:15 AM	R14497				
Surr: BFB	98.6	51.5-151	%REC	20	11/1/2013 2:43:15 AM	R14497				
EPA METHOD 8021B: VOLATILES					Analyst:	NSB				
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	20	11/1/2013 2:43:15 AM	R14497				
Benzene	690	20	µg/L	20	11/1/2013 2:43:15 AM	R14497				
Toluene	ND	20	µg/L	20	11/1/2013 2:43:15 AM	R14497				
Ethylbenzene	55	20	µg/L	20	11/1/2013 2:43:15 AM	R14497				
Xylenes, Total	160	40	µg/L	20	11/1/2013 2:43:15 AM	R14497				
1,2,4-Trimethylbenzene	190	20	µg/L	20	11/1/2013 2:43:15 AM	R14497				
1,3,5-Trimethylbenzene	26	20	µg/L	20	11/1/2013 2:43:15 AM	R14497				
Surr: 4-Bromofluorobenzene	107	85-136	%REC	20	11/1/2013 2:43:15 AM	R14497				

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 5 of 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

**Analytical Report** Lab Order 1310D69

**Client:** 

# Hall Environmental Analysis Laboratory, Inc.

Western Refining Southwest, Gallup

Project: Seep We	st Of Tank	102									
Sample ID MB-10098	SampTy	/pe: ME	BLK	Tes	TestCode: EPA Method 8015D: Diesel Range						
Client ID: PBW	Batch	ID: 10	098	F	tunNo: 14	4432					
Prep Date: 10/30/2013	Analysis Da	ate: 10	0/30/2013	S	eqNo: 4	15120	Units: <b>mg/L</b>				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	1.0									
Motor Oil Range Organics (MRO)	ND	5.0									
Surr: DNOP	1.2		1.000		115	70.1	140				
Sample ID LCS-10098	SampTy	/pe: LC	s	Tes	tCode: El	PA Method	8015D: Diese	l Range			
Client ID: LCSW	Batch	ID: 10	098	F	RunNo: 14	4432					
Prep Date: 10/30/2013	Analysis Da	ate: 10	0/30/2013	S	eqNo: 4	15196	Units: <b>mg/L</b>				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	5.7	1.0	5.000	0	113	73.3	145				
Surr: DNOP	0.55		0.5000		111	70.1	140				
Sample ID LCSD-10098	SampTy	/pe: LC	SD	Tes	tCode: El	PA Method	8015D: Diese	l Range			
Client ID: LCSS02	Batch	ID: 10	098	F	tunNo: 14	4432					
Prep Date: 10/30/2013	Analysis Da	ate: 10	0/30/2013	S	eqNo: 4	15197	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
sel Range Organics (DRO)	6.0	1.0	5.000	0	120	73.3	145	5.65	20		
Surr: DNOP	0.57		0.5000		113	70.1	140	0	0		

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimitR RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 8

WO#: 1310D69

05-Nov-13

# QC SUMMARY REPORT

#### Hall Environmental Analysis Laboratory, Inc.

Client:	Western Refining Southwest, Gallup
Project:	Seep West Of Tank 102

Sample ID 5ML RB	SampType:	MBLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBW	Batch ID: F	R14497	R	RunNo: 14	4497				
Prep Date:	Analysis Date:	10/31/2013	S	SeqNo: 4	16401	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 0.05	0							
Surr: BFB	19	20.00		92.8	51.5	151			
Sample ID 2.5UG GRO LCS	SampType: L	LCS	Tes	tCode: Ef	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSW	Batch ID: F	R14497	R	RunNo: 14	4497				
Prep Date:	Analysis Date:	10/31/2013	S	SeqNo: 4	16402	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.50 0.05	0 0.5000	0	100	80	120			
Surr: BFB	20	20.00		101	51.5	151			
Sample ID B7	SampType:	MBLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBW	Batch ID: F	R14541	F	RunNo: 14	4541				
Prep Date:	Analysis Date:	11/4/2013	S	SeqNo: 4	18164	Units: %REC	2		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	19	20.00		93.8	80.4	118			
Sample ID 2.5UG GRO LCS	SampType: L	LCS	Tes	tCode: Ef	PA Method	8015D: Gasol	line Rang	e	
Client ID: LCSW	Batch ID: F	R14541	F	RunNo: 14	4541				
Prep Date:	Analysis Date:	11/4/2013	S	SeqNo: 4	18165	Units: %REC	•		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB	21	20.00		104	80.4	118			

#### Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 7 of 8

WO#: 1310D69

05-Nov-13

# QC SUMMARY REPORT

Hall	Environmental	l Ana	lvsis	Laboratory	v. Inc.
			.,		/

#### Western Refining Southwest, Gallup **Client: Project:**

Seep West Of Tank 102

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: EF	iles				
Client ID: PBW	Batcl	n ID: <b>R1</b>	4497	F	RunNo: 14	4497				
Prep Date:	Analysis D	)ate: 10	0/31/2013	5	SeqNo: 4	16431	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	2.5								
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
Surr: 4-Bromofluorobenzene	20		20.00		102	85	136			
Sample ID 100NG BTEX LC	S Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batc	h ID: R1	4497	F	RunNo: 1	4497				
Prep Date:	Analysis E	Date: 10	0/31/2013	S	SeqNo: 4	16432	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	19	2.5	20.00	0	94.0	76.8	124			
Benzene	18	1.0	20.00	0	91.2	80	120			
Toluene	18	1.0	20.00	0	92.0	80	120			
ylbenzene	19	1.0	20.00	0	94.2	80	120			
∧ylenes, Total	58	2.0	60.00	0	96.0	80	120			
1,2,4-Trimethylbenzene	19	1.0	20.00	0	96.0	80	120			
1,3,5-Trimethylbenzene	20	1.0	20.00	0	98.4	80	120			
Surr: 4-Bromofluorobenzene	21		20.00		103	85	136			
Sample ID B7	Samp	Гуре: М	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batc	h ID: R1	4541	F	RunNo: 1	4541				
Prep Date:	Analysis [	Date: 1	1/4/2013	S	SeqNo: 4	18215	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Surr: 4-Bromofluorobenzene	20		20.00		102	85	136			
Sample ID 100NG BTEX LC	Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batc	h ID: <b>R1</b>	4541	F	RunNo: 1	4541				
Prep Date:	Analysis [	Date: 1	1/4/2013	S	SeqNo: 4	18216	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.8	80	120			
				•			400			
Toluene	20	1.0	20.00	0	100	80	120			

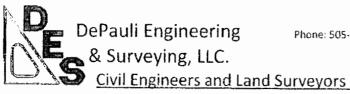
#### Qualifiers:

* Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2 for VOA and TOC only. Р
- RL Reporting Detection Limit

Page 8 of 8


WO#:

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis 4901 F Albuquerque, TEL: 505-345-3975 FAX: 50 Website: www.hallenviron	lawkins NE NM 87105 5-345-4107	Sam	ble Log-In Ch	eck List
Client Name: Western Refining Gallup W	ork Order Number: 1310D	59		RcptNo:	1
Logged By: Lindsay Mangin 10/2	9/2013 12:29:00 PM 9/2013 1:17:35 PM	Other Other	ty Hbyzo ty Hbyzo		
Chain of Custody				·····	
<ol> <li>Custody seals intact on sample bottles?</li> <li>Is Chain of Custody complete?</li> <li>How was the sample delivered?</li> </ol>	Yes Yes <u>Client</u>	_	lo 🗌 lo 🗌	Not Present 🗌 Not Present 🗌	
Log In					
4. Was an attempt made to cool the samples?	Yes		No 🗆	NA 🗌	
5. Were all samples received at a temperature of >	0° C to 6.0°C Yes	V N	lo 🗌		
6. Sample(s) in proper container(s)?	Yes		No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes		lo 🗌		
8. Are samples (except VOA and ONG) properly pre	served? Yes		lo 🗌	_	
9. Was preservative added to bottles?	Yes		No 🔽	NA 🗌	
10.VOA vials have zero headspace?	Yes		No 🗆	No VOA Vials 🖌	
11. Were any sample containers received broken?	Yes		No 🗹	# of preserved bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes		No 🗆		>12 unless noted)
13 Are matrices correctly identified on Chain of Cust			<b>1</b> 0	Adjusted?	
14. Is it clear what analyses were requested?				Checked by:	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	Y r	<b>%o ∐</b>		
Special Handling (if applicable)					
16. Was client notified of all discrepancies with this o	rder? Yes		No 🗌	NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:	Date: Via: 🗌 eMai	il 📋 Phone	Fax	In Person	
17. Additional remarks:					
18. <u>Cooler Information</u>	tact Seal No Seal Da	te Signe	ed By		

Client: Aailing Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phone Phon	Address Address TAM #: 50 r Fax#: Package: idard	ERN RO KO 5-72 505	stody Record <u>REFINITIONS</u> <u>EFINERY</u> <u>UTE 3 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7</u> <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7</u> <u>UTE 10 Box 7 <u>UTE 10 Box 7 <u>UTE 1</u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	Project Man	d <u>Rush</u> le: <i>lest OF</i> ager: (L TOHM	TANK 102_ ISO N	TMB's (8021)	Tel (Aluo st	505- 505-	/kins   345-3	W.hal NE - 975 (SWIS	llenv Alb	siron ouqua ax sis	erqu 505- Req	<b>A</b> E tal.co e, Ni -345-	3 <b>0</b> om M 87 -4107	<b>RA</b> 109 7		
Accred ☐ NEL ☐ EDD Date		Othe Matrix	r Sample Request ID	Sampler: On Ice: Sample Ten Container Type and #	Preservative	<u>9</u> 9	BTEX + MTBE + TM	Ш	TPH 8015B (GRO / I TPH (Mathad 118 1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	BREX & TPH		Air Bubbles (Y or N)
2.28.	13 0914 0935 1000 1020 1040	GW	5814 5815 5812 3807 HA3	4 40mL VO		EAT -001 -002 -003 -004 -005											7777		
Date: 0/29/12 Date:	Time: 7:10 Time:	Relinquish	<u>i</u> <u> </u>	Received by:	8 10	Date Time 2913 23 Date Time	Ren	narks:											

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Phone: 505-863-5440 • Fax: 505-863-1919 • www.depauliengineering.com



307 South 4th Street • Gallup, NM 87301

PO BOX 876 • Gallup, NM 87305

February 11, 2014

Mr. Ed Riege, Environmental Manager Western Refining-Gallup Refinery Route 3 Box 7 Gallup, NM 87301

Re: Western Refining Monitoring Wells

Dear Mr. Riege:

DePauli Engineering & Surveying, LLC completed the field survey of the 18 monitoring wells at Western Refining-Gallup Refinery on January 21, 2014. The wells were surveyed for the following parameter: ground level elevation, ground level elevation inside steel sleeve, center top steel lid elevation, well casing rim elevation and corresponding measuring point description associated with each elevation. Survey conducted enlisted NM Surveyor in Training and a Technician (under my direct supervision), from DePauli Engineering Surveying, LLC and one Gallup Refinery representative to assist with the location of the wells.

The instruments used to complete the survey consisted of a Leica VIVA GS10 GPS (global positing system) and System 1200 GPS. The method used to survey the wells was Real-time Kinematic GPS Surveying (RTK). RTK surveying requires that two or more receivers are operated simultaneously. The aspect of the procedure involves a radio transmitting a signal from the base station. The base station's coordinates are utilized to make the appropriate corrections to the error involved with the GPS signals. The rover receives the corrections thence giving the rover observation corrected valves. The horizontal and vertical positions are determined by differential GPS involving the base line surveyed from local base station to survey position. The base line measurements are surveyed for one minute (60 observations). This is verified by surveying known local control points and bench marks.

The horizontal and vertical positions of the top of the PVC casing (unless otherwise noted) and the vertical positions for the lid, ground elevation inside the steel casing, and the surrounding ground elevation is shown on the attached sheet labeled "Western Refining Monitoring Wells January 21, 2014." The horizontal position is NAD 83 datum and the vertical positions are NGVD 1929. Elevations were taken using the concrete pad surrounding each well and locations noted on the report. Ground elevation was taken using the concrete pad surrounding each well and locations shown on the report.

The requested field survey was complete on January 21, 2014 in accordance with sections 500.1 through 500.12 of the Regulations and Rules of the Board of Registration for Professional Engineers and Surveyors Minimum Standards for Surveying in New Mexico; which horizontal positions were measured to the nearest 0.1-ft and vertical elevations were measured to an accuracy of 0.01-ft.

If you have any questions concerning this survey please do not hesitate to contact our office.

Sincerely,

Marc De Pauli

Marc DePauli, PE/PS

# Western Refining Monitoring Wells January 21, 2014

Well #	Northing	Easting	Elevation	Description
MKTF-10	1,633,807.47	2,545,853.54	6937.16	North edge PVC casing
			6937.51	Center steel lid
			6936.63	North side ground elev. inside steel sleeve
			6937.51	Average corner elevation of concrete collar
				-
MKTF-15	1,633,845.57	2,545,934.58	6943.48	North edge PVC casing
			6943.73	Center steel lid
			6943.19	North side ground elev. inside steel sleeve
			6943.74	**Average elevation of concrete collar
			** Con	crete collar is in general circular shape
MKTF-16	1,633,718.14	2,546,068.55	6950.58	North edge PVC casing
			6950.97	Center steel lid
			6950.58	North side ground elev. inside steel sleeve
			6951.00	Average corner elevation of concrete collar
MKTF-11	1,633,806.93	2,545,754.77	6931.34	South edge PVC casing
			6931.61	Center steel lid
			6930.86	North side ground elev. inside steel sleeve
			6931.61	Average corner elevation of concrete collar
MKTF-03	1,633,746.53	2,545,756.87	6931.31	North edge PVC casing
			6931.69	Center steel lid
			6930.85	North side ground elev. inside steel sleeve
			6931.73	Average corner elevation of concrete collar
MKTF-04	1,633,649.46	2,545,752.83	6933.57	North edge PVC casing
			6933.91	Center steel lid
			6933.24	North side ground elev. inside steel sleeve
			6933.90	Average corner elevation of concrete collar
MKTF-05	1 633 473 30		6942.22	North odgo DVC seeing
WINTF-05	1,633,472.30	2,545,705.95	6942.22	North edge PVC casing Center steel lid
			6942.80	South side ground elev. inside steel sleeve
			6939.49	Average corner elevation of concrete collar
			0333.43	Average corner elevation of concrete collar
MKTF-09	1,633,681.33	2.545.895.93	6946.50	North edge PVC casing
	_,	_,,_,_,_,	6947.21	Center steel lid
			6945.90	South side ground elev. inside steel sleeve
			6943.57	Average corner elevation of concrete collar
			00-10-07	

Well #	Northing	Easting	Elevation	Description
<b>MKTF-08</b>	1,633,598.94	2,545,885.02	6947.09	North edge PVC casing
			6947.48	Center steel lid
			6942.67	South side ground elev. inside steel sleeve
			6944.02	Average corner elevation of concrete collar
MKTF-07	<b>1,633,555.</b> 11	2,545,885.42	6947.18	North edge PVC casing
			6947.84	Center steel lid
			6947.06	South side ground elev. inside steel sleeve
			6944.40	Average corner elevation of concrete collar
MKTF-06	1,633,556.28	2,545,811.85	6946.81	North edge PVC casing
			6947.29	Center steel lid
			6946.63	South side ground elev. inside steel sleeve
			6944.24	Average corner elevation of concrete collar
MKTF-18	1,633,497.53	2,546,006.29	6950.65	**North edge PVC casing
			6950.96	Center steel lid
			6950.17	North side ground elev. inside steel sleeve
			6950.97	Average corner elevation of concrete collar
				** Mark was existing on PVC casing
MKTF-12	1,633,542.07	2,545,688.29	6942.11	North edge PVC casing
			6942.84	Center steel lid
			6941.88	South side ground elev. inside steel sleeve
			6939.70	Average corner elevation of concrete collar
MKTF-13	1,633,625.25	2,545,697.39	6935.18	**North edge PVC casing
			6936.89	Center steel lid
			6934.83	South side ground elev. inside steel sleeve
			6933.67	Average corner elevation of concrete collar
				** PVC casing not typical
MKTF-14	1,633,719.43	2,545,625.96	6928.02	North edge PVC casing
			6928.75	Center steel lid
			6927.80	South side ground elev. inside steel sleeve
			6925.65	Average corner elevation of concrete collar
MKTF-01	1,633,864.41	2,545,561.73	6920.67	**North edge PVC casing
			6921.68	Center steel lid
			6920.67	South side ground elev. inside steel sleeve
			6918.28	**Average corner elevation of concrete collar
				** Inside ground elev. is flush with PVC casing

Well #	Northing	Easting	Elevation	Description
<b>MKTF-02</b>	1,633,946.93	2,545,530.46	6917.45	** North edge PVC casing
			6918.31	Center steel lid
			6917.18	South side ground elev. inside steel sleeve
			6915.00	Average corner elevation of concrete collar
				** PVC casing not typical
MKTF-17	1,633,268.93	2,545,850.73	6945.76	North edge PVC casing
			6946.00	Center steel lid
			6945.64	North side ground elev. inside steel sleeve
			6945.79	** Average corner elevation of concrete collar
			** (	Concrete collar is in general circular shape

Marc DePauli Marc Depauli PS13606

2-11-2014

Date





# FIGURES



Figure 1: Regional map showing the location of the Gallup Refinery (red star along Interstate-40, 20 miles east of the City of Gallup).

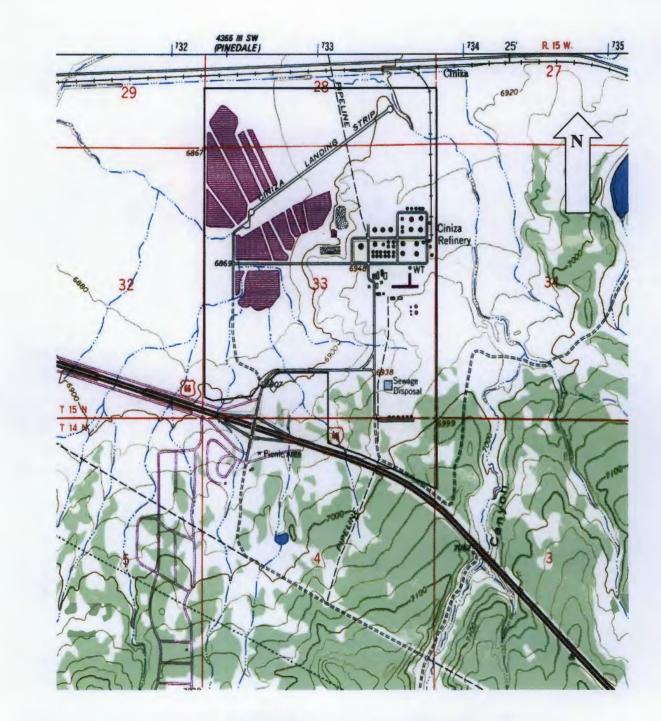



Figure 2: Topographic Map of the Gallup Refinery Site - USGS Topographical Map - Gallup Quadrangle (Revised 1980)

0

# FIGURE 3 CURRENTLY BEING REVISED

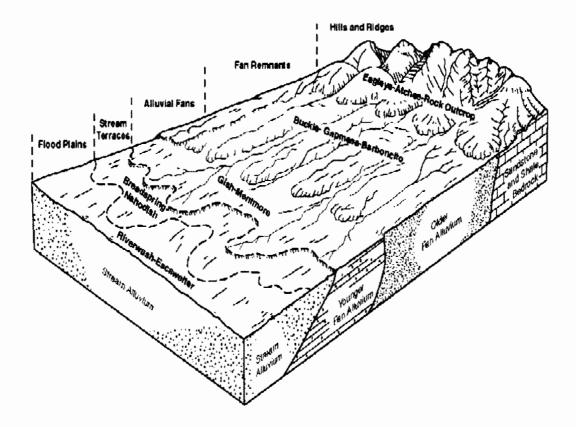



Figure 4: Generalized relationship of soils in the Gallup Refinery area: from NRCS/USDA Soil Survey of McKinley County.

# FIGURES 5 & 6 CURRENTLY BEING REVISED