

DCP Midstream 370 17<sup>th</sup> Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX* 

REFERENCED

2014 MY 15 A 9 54

May 19, 2014

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

### RE: 1st Quarter 2014 Groundwater Results DCP Midstream, LP RR Ext. Pipeline Release (AP #55) Unit C, Section 19, Township 20 South, Range 37 East Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 1st Quarter 2014 Groundwater Results for the DCP RR Ext. Pipeline Release located in Lea County, New Mexico (Unit C, Section 19, Township 20 South, Range 37 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

**DCP** Midstream, LP

C.

Stephen Weathers, PG Principal Environmental Specialist

cc: Geoffrey Leking, Hobbs District (Copy on CD) Environmental Files

# First Quarter 2014 Groundwater Monitoring and Activities Summary Report

# RR Extension Pipeline Release Lea County, New Mexico AP #55

Prepared for:



370 17<sup>th</sup> St., Suite 2500 Denver, CO 80202

Prepared by:



6899 Pecos Street, Unit C Denver, Colorado 80221

May 9, 2014



## **Table of Contents**

| 1. |                          | Intro                         | pduction                                   | 1 |  |  |  |  |  |
|----|--------------------------|-------------------------------|--------------------------------------------|---|--|--|--|--|--|
| 2. |                          | Site Location and Background1 |                                            |   |  |  |  |  |  |
| 3. | . Groundwater Monitoring |                               |                                            |   |  |  |  |  |  |
|    | 3.                       | 1                             | Groundwater and LNAPL Elevation Monitoring | 2 |  |  |  |  |  |
|    | 3.                       | 2                             | Groundwater Quality Monitoring             | 2 |  |  |  |  |  |
|    | 3.                       | 3                             | Data Quality Assurance / Quality Control   | 3 |  |  |  |  |  |
| 4. |                          | Rem                           | ediation Activities                        | 4 |  |  |  |  |  |
|    | 4.                       | 1                             | Vacuum Enhanced LNAPL Recovery             | 4 |  |  |  |  |  |
|    | 4.:                      | 2                             | LNAPL Collection Bailer                    | 4 |  |  |  |  |  |
| 5. | . Conclusions            |                               |                                            |   |  |  |  |  |  |
| 6. | Recommendations          |                               |                                            |   |  |  |  |  |  |

#### Tables

| 1 | First Quarter 2014 Summary of Groundwater Elevation Data                      |
|---|-------------------------------------------------------------------------------|
| 2 | First Quarter 2014 Summary of BTEX and Chloride Concentrations in Groundwater |

### Figures

| 1 | Site Location                                         |
|---|-------------------------------------------------------|
| 2 | Site Map with Monitoring Well Locations               |
| 3 | Groundwater Elevation Contour Map – February 27, 2014 |
| 4 | Analytical Results Map – February 27, 2014            |
|   |                                                       |

## Appendices

| Α | Historic Analytical Results – BTEX and Chloride Concentrations in Groundwater |
|---|-------------------------------------------------------------------------------|
| В | Laboratory Analytical Results (Electronic Only)                               |

- Laboratory Analytical Results (Electronic Only)
  - Accutest Job #: D55464



## 1. Introduction

This report summarizes the groundwater monitoring and remediation activities conducted during the first quarter 2014 at the RR-Extension pipeline release (Site) in Lea County, New Mexico (Figure 1). Tasman Geosciences, LLC (Tasman) performed these activities on behalf of DCP Midstream, LP (DCP). The field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and analytical laboratory results collected during the reporting period on February 27, 2014.

## 2. Site Location and Background

The Site is located in the northeastern quarter of the northwestern quarter (Unit C) of Section 19, Township 20 South, Range 37 East (approximate coordinates 32.562339 degrees north and 103.291739 degrees west). It is approximately 4.25 miles south of the intersection of US Highway 322 and County Road 41. The area is sparsely populated and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a natural gas condensate release of approximately 30 barrels (bbl) was reported on December 13, 2006 (Assigned Site Reference #130040). Subsequent to preliminary investigation and characterization activities, an excavation was conducted at the Site (November 10, 2008 to December 7, 2008) whereby approximately 11,356 cubic yards of impacted material were removed. The excavation extended to approximately 20-feet below ground surface over a surface area of approximately 14,800 square feet. Backfill material was placed into the excavation and surface restoration was completed by January 12, 2009. These activities are described within the document *Closure Report – RR Extension Release Site* dated February 2009 prepared by Environmental Plus, Inc.

LNAPL has been identified immediately above the water table at a depth of approximately 30-feet below the ground surface. LNAPL continues to be observed at monitoring well locations to the south and east of the original release and excavation limits. Investigation activities conducted at the Site include installation of groundwater monitoring wells and excavation during the time periods listed below:

- MW-1 through MW-5: Installed March 2008.
- MW-6 through MW-8: Installed June 2008.
- Excavation and Backfill: Initiated November 10, 2008; Completed January 12, 2009.
- MW-9 through MW-12: Installed June 2010.
- MW-13 through MW-16: Installed January 2011.

Ongoing monitoring and sampling of the Site wells listed above has been conducted on an approximate quarterly basis following installation. The historic monitoring data indicate the presence of LNAPL and dissolved-phase impacts in the area of the original release. Progressive installation of monitoring wells has delineated the area in which these impacts are observed.



Boring logs for the Site monitoring wells indicate that the subsurface geology is typical of unconsolidated fine-grained sand, silt, and clay sediments.

## 3. Groundwater Monitoring

This section describes the field and laboratory activities performed during the first quarter 2014 groundwater monitoring event. Quarterly monitoring activities were conducted on February 27, 2014 and included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network utilized to perform these activities at the Site.

## 3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels were measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations in groundwater and LNAPL elevations at the Site. During the first quarter 2014, groundwater levels were measured at sixteen Site monitoring well locations.

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data were later converted to elevation (feet above mean sea level [AMSL]).

Groundwater and LNAPL measurements collected during the reporting period as well as historical elevations are presented in Table 1. A first quarter 2014 groundwater elevation contour map, included as Figure 3, indicates that groundwater flow at the Site trends to the southeast. A groundwater elevations range, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

| Summary of | f Measured | l Hydraulic | Parameters |
|------------|------------|-------------|------------|
|------------|------------|-------------|------------|

|                                         | First Quarter 2014 (2/27/14) |
|-----------------------------------------|------------------------------|
| Maximum Elevation (Well ID)             | 3505.09 (MW-13)              |
| Minimum Elevation (Well ID)             | 3504.38 (MW-6)               |
| Average Change from Previous            | 0.15 foot                    |
| Monitoring Event – All Wells            |                              |
| Hydraulic Gradient (ft/ft) / (Well IDs) | 0.0018 (MW-8 to MW-6)        |

LNAPL was detected at five location with thickness measurements ranging from 0.12-ft to 0.82-ft. The observed LNAPL thickness in these wells exhibited an average decrease of 0.13-ft from the previous monitoring event.

## 3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each monitoring well, groundwater samples were collected for each of the eleven monitoring wells that did not contain measurable LNAPL.



A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collecting groundwater samples. Groundwater samples were collected using dedicated polyethylene bailers, placed in clean laboratory supplied containers for the selected analytical methods, packed in an ice-filled cooler and maintained at approximately four degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Accutest Laboratories (Accutest) in Wheat Ridge, Colorado, for analysis.

Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B and chloride by USEPA Method 300.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the reporting period. Historic analytical results up to and including the February 2014 event are included in Appendix A and the laboratory analytical report for the first quarter event is included in Appendix B. Analytical results are also displayed on Figure 4.

Analytical results/observations are summarized below:

- Benzene concentrations in groundwater samples from MW-1 and MW-2 were in exceedance of the New Mexico Water Quality Control Commission (NMWQCC) Standard.
- The remaining nine sample locations were below laboratory detection limits for BTEX in groundwater.
- LNAPL was detected at five locations as referenced in Section 3.1 above.
- Chloride was detected in all eleven of the sampled wells with concentrations ranging from 358 mg/L in MW-7 to 521 mg/L in MW-8. Chloride values in all of the wells exceeded the NMWQCC suggested guideline of 250 mg/L.

## 3.3 Data Quality Assurance / Quality Control

A matrix spike / matrix spike duplicate (MS/MSD) and field duplicate sample (MW-1) were collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed and indicate that samples were received at the proper temperature with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for the first quarter 2014 include the following:

- A trip blank was not indicated on the laboratory data report or the sample log. Tasman has coordinated with the laboratory to prevent further oversight of trip blanks submitted.
- The field duplicate, collected at MW-1 indicated a Relative Percentage Difference (RPD) of 30% for benzene, which is slightly higher than a typical target maximum of 20%. Given that the



result for the duplicate is uniformly lower, the deviation is most likely a result of sample agitation while decanting sample from the bailer.

The overall QA/QC assessment, based on the data review, indicate that overall data precision and accuracy are acceptable.

## 4. Remediation Activities

A vacuum enhanced recovery (VER) event was conducted during the reporting period along with continued deployment of a passive LNAPL collection bailer. These efforts are described in the subsequent sections.

### 4.1 Vacuum Enhanced LNAPL Recovery

VER was conducted at the Site on March 18, 2014 and included application of high vacuum (using a vacuum truck) to individual well points through a stinger pipe assembly. The stinger was placed slightly below the LNAPL/groundwater interface, thereby removing LNAPL, groundwater, and vapors from the subsurface.

The table below summarizes the wells, pre- and post-VER LNAPL thickness, duration, and recovered volume for the VER activities conducted during the first quarter 2014. The recovered LNAPL and groundwater was transported to and disposed of at the Cooper Disposal Facility in Hobbs, New Mexico.

| Well ID | LNAPL Thickness [ft]<br>(pre-VER) | Duration<br>(hours) | Fluid Removal Volume<br>(bbl*) | LNAPL Thickness [ft]<br>(post-VER) |
|---------|-----------------------------------|---------------------|--------------------------------|------------------------------------|
| MW-3    | 0.12                              | 1.25                | Approx. 5 bbl                  | 0.0                                |
| MW-4    | 0.33                              | 3.25                | Approx. 30 bbl                 | 0.0                                |
| MW-5    | 0.76                              |                     |                                | 0.0                                |
| MW-9    | 0.82                              | 2.75                | Approx. 25 bbl                 | 0.0                                |
| MW-10   | 0.77                              |                     |                                | 0.0                                |
| Total   | 2.8                               | 7.25                | 60 bbl                         | 0.0                                |

Note:

bbl = barrel (42 gallons)

## 4.2 LNAPL Collection Bailer

A passive LNAPL collection bailer has been deployed at monitoring well MW-4. During the first quarter 2014 monitoring event, approximately 1 liter of LNAPL was recovered from the bailer. The LNAPL collection bailer was replaced within MW-4 at the level of the LNAPL/groundwater interface.



## **5.** Conclusions

Comparison of the first quarter 2014 monitoring data and historic information provides the following general observations:

- The groundwater elevation beneath the Site has remained stable with minor seasonal and annual fluctuations since monitoring was initiated in 2008. There was no significant deviation from this trend during the reporting period.
- LNAPL persists in monitoring wells MW-3, MW-4, MW-5, MW-9 and MW-10, however the measured LNAPL thickness indicated an overall decrease from the previous quarter. Subsequent observations will be required to determine if the decrease is indicative of an overall decreasing trend.
- Benzene concentrations in exceedance of NMWQCC standards persist in MW-1 and MW-2. The remaining 9 sample locations exhibited BTEX concentrations below laboratory detection limits during the first quarter 2014 suggesting the dissolved phase petroleum hydrocarbon plume is stagnant, possibly due to attenuation, low permeability aquifer material, low hydraulic gradient, or a combination of these factors.

## 6. Recommendations

Based on evaluation of data from the first quarter 2014 and historical Site observations and monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue quarterly vacuum enhanced recovery events at all 5 Site monitoring wells containing measurable LNAPL.
- Continue to monitor and recover LNAPL from the passive collection bailer installed at MW-4.

Tables

#### TABLE 1 FIRST QUARTER 2014 SUMMARY OF GROUNDWATER ELEVATION DATA RR-EXTENSION PIPELINE RELEASE LEA COUNTY, NEW MEXICO

|          |           | Depth to<br>Groundwater<br>(1) | Depth to<br>Product (1) | Free Phase<br>Hydrocarbon<br>Thickness | Total Depth<br>(2) | TOC Elevation | Groundwater<br>Elevation* | Change in<br>Groundwater<br>Elevation Since<br>Previous Event (3) |
|----------|-----------|--------------------------------|-------------------------|----------------------------------------|--------------------|---------------|---------------------------|-------------------------------------------------------------------|
| Location | Date      | (feet)                         | (feet)                  | (feet)                                 | (feet)             | (feet amsl)   | (feet amsl)               | (feet)                                                            |
| MW-1     | 12/4/2012 | 29.75                          |                         |                                        | 39.05              | 3534.57       | 3504.82                   | 0.00                                                              |
| MW-1     | 2/22/2013 | 29.62                          |                         |                                        | 39.05              | 3534.57       | 3504.95                   | 0.13                                                              |
| MW-1     | 6/2/2013  | 29.60                          |                         |                                        | 39.05              | 3534.57       | 3504.97                   | 0.02                                                              |
| MW-1     | 9/10/2013 | 29.89                          |                         |                                        | 39.05              | 3534.57       | 3504.68                   | -0.29                                                             |
| MW-1     | 12/3/2013 | 29.81                          |                         |                                        | 39.05              | 3534.57       | 3504.76                   | 0.08                                                              |
| MW-1     | 2/27/2014 | 29.68                          |                         |                                        | NM                 | 3534.57       | 3504.89                   | 0.13                                                              |
| MW-2     | 12/4/2012 | 30.50                          |                         | 1                                      | 39.81              | 3535.18       | 3504.68                   | 0.01                                                              |
| MW-2     | 2/22/2013 | 30.39                          |                         |                                        | 39.81              | 3535.18       | 3504.79                   | 0.11                                                              |
| MW-2     | 6/2/2013  | 30.35                          |                         |                                        | 39.81              | 3535.18       | 3504.83                   | 0.04                                                              |
| MW-2     | 9/10/2013 | 30.68                          |                         |                                        | 39.81              | 3535.18       | 3504.50                   | -0.33                                                             |
| MW-2     | 12/3/2013 | 30.57                          |                         |                                        | 39.81              | 3535.18       | 3504.61                   | 0.11                                                              |
| MW-2     | 2/27/2014 | 30.46                          |                         |                                        | NM                 | 3535.18       | 3504.72                   | 0.11                                                              |
|          |           |                                |                         |                                        |                    |               |                           |                                                                   |
| MW-3*    | 12/4/2012 | 32.40                          | 31.50                   | 0.90                                   |                    | 3536.57       | 3504.85                   | -0.02                                                             |
| MW-3*    | 2/22/2013 | 32.03                          | 31.47                   | 0.56                                   |                    | 3536.57       | 3504.96                   | 0.11                                                              |
| MW-3*    | 6/2/2013  | 31.83                          | 31.50                   | 0.33                                   |                    | 3536.57       | 3504.99                   | 0.03                                                              |
| MW-3*    | 9/10/2013 | 32.02                          | 31.74                   | 0.28                                   |                    | 3536.57       | 3504.76                   | -0.23                                                             |
| MW-3*    | 12/3/2013 | 31.98                          | 31.88                   | 0.10                                   | 2124               | 3537.57       | 3505.67                   | 0.90                                                              |
| MW-3*    | 2/27/2014 | 31.78                          | 31.66                   | 0.12                                   | NM                 | 3537.57       | 3505.88                   | 0.22                                                              |
| MW-4*    | 12/4/2012 | 31.60                          | 30.62                   | 0.98                                   |                    | 3535.20       | 3504.34                   | 0.09                                                              |
| MW-4*    | 2/22/2013 | 31.50                          | 30.60                   | 0.90                                   |                    | 3535.20       | 3504.38                   | 0.04                                                              |
| MW-4*    | 6/2/2013  | 31.12                          | 30.54                   | 0.58                                   |                    | 3535.20       | 3504.52                   | 0.14                                                              |
| MW-4*    | 9/10/2013 | 31.71                          | 30.90                   | 0.81                                   |                    | 3535.20       | 3504.10                   | -0.42                                                             |
| MW-4*    | 12/3/2013 | 31.09                          | 30.97                   | 0.12                                   |                    | 3536.20       | 3505.20                   | 1.10                                                              |
| MW-4*    | 2/27/2014 | 31.18                          | 30.85                   | 0.33                                   | NM                 | 3536.20       | 3505.27                   | 0.07                                                              |
| MW-5*    | 12/4/2012 | 32.31                          | 31.18                   | 1.13                                   |                    | 3535.92       | 3504.46                   | -0.01                                                             |
| MW-5*    | 2/22/2013 | 31.98                          | 31.14                   | 0.84                                   |                    | 3535.92       | 3504.57                   | 0.11                                                              |
| MW-5*    | 6/2/2013  | 31.78                          | 31.14                   | 0.64                                   |                    | 3535.92       | 3504.62                   | 0.05                                                              |
| MW-5*    | 9/10/2013 | 32.35                          | 31.37                   | 0.98                                   |                    | 3535.92       | 3504.31                   | -0.31                                                             |
| MW-5*    | 12/3/2013 | 32.42                          | 31.39                   | 1.03                                   |                    | 3536.92       | 3505.27                   | 0.97                                                              |
| MW-5*    | 2/27/2014 | 31.98                          | 31.22                   | 0.76                                   | NM                 | 3536.92       | 3505.51                   | 0.24                                                              |
|          | 7         |                                |                         |                                        |                    |               |                           |                                                                   |
| MW-6     | 12/4/2012 | 31.81                          |                         |                                        | 40.35              | 3536.16       | 3504.35                   | -0.03                                                             |
| MW-6     | 2/22/2013 | 31.71                          |                         |                                        | 40.35              | 3536.16       | 3504.45                   | 0.10                                                              |
| MW-6     | 6/2/2013  | 31.66                          |                         |                                        | 40.35              | 3536.16       | 3504.50                   | 0.05                                                              |
| MW-6     | 9/10/2013 | 31.95                          |                         |                                        | 40.35              | 3536.16       | 3504.21                   | -0.29                                                             |
| MW-6     | 12/3/2013 | 31.91                          |                         |                                        | 40.35              | 3536.16       | 3504.25                   | 0.04                                                              |
| MW-6     | 2/27/2014 | 31.78                          |                         |                                        | NM                 | 3536.16       | 3504.38                   | 0.13                                                              |
| MW-7     | 12/4/2012 | 32.52                          |                         |                                        | 40.25              | 3537.09       | 3504.57                   | 0.01                                                              |
| MW-7     | 2/22/2013 | 32.41                          |                         |                                        | 40.25              | 3537.09       | 3504.68                   | 0.11                                                              |
| MW-7     | 6/2/2013  | 32.37                          |                         |                                        | 40.25              | 3537.09       | 3504.72                   | 0.04                                                              |
| MW-7     | 9/10/2013 | 32.67                          |                         |                                        | 40.25              | 3537.09       | 3504.42                   | -0.30                                                             |
| MW-7     | 12/3/2013 | 32.62                          |                         |                                        | 40.25              | 3537.09       | 3504.47                   | 0.05                                                              |
| MW-7     | 2/27/2014 | 32.48                          |                         |                                        | NM                 | 3537.09       | 3504.61                   | 0.14                                                              |

#### TABLE 1 FIRST QUARTER 2014 SUMMARY OF GROUNDWATER ELEVATION DATA RR-EXTENSION PIPELINE RELEASE LEA COUNTY, NEW MEXICO

| Location       | Date                   | Depth to<br>Groundwater<br>(1)<br>(feet) | Depth to<br>Product (1)<br>(feet) | Free Phase<br>Hydrocarbon<br>Thickness<br>(feet) | Total Depth<br>(2)<br>(feet) | TOC Elevation<br>(feet amsl) | Groundwater<br>Elevation*<br>(feet amsl) | Change in<br>Groundwater<br>Elevation Since<br>Previous Event (3)<br>(feet) |
|----------------|------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------|------------------------------|------------------------------------------|-----------------------------------------------------------------------------|
| MW-8           | 12/4/2012              | 31.45                                    |                                   |                                                  | 39.42                        | 3536.41                      | 3504.96                                  | 0.00                                                                        |
| MW-8           | 2/22/2013              | 31.33                                    |                                   |                                                  | 39.42                        | 3536.41                      | 3505.08                                  | 0.12                                                                        |
| MW-8           | 6/2/2013               | 31.31                                    |                                   |                                                  | 39.42                        | 3536.41                      | 3505.10                                  | 0.02                                                                        |
| MW-8           | 9/10/2013              | 31.60                                    |                                   |                                                  | 39.42                        | 3536.41                      | 3504.81                                  | -0.29                                                                       |
| MW-8           | 12/3/2013              | 31.52                                    |                                   |                                                  | 39.42                        | 3536.41                      | 3504.89                                  | 0.08                                                                        |
| MW-8           | 2/27/2014              | 31.40                                    |                                   |                                                  | NM                           | 3536.41                      | 3505.01                                  | 0.12                                                                        |
| MW-9*          | 12/4/2012              | 30.03                                    | 29.10                             | 0.93                                             |                              | 3534.20                      | 3504.87                                  | 0.01                                                                        |
| MW-9*          | 2/22/2012              | 29.83                                    | 29.10                             | 0.93                                             |                              | 3534.20                      | 3504.87                                  | 0.01                                                                        |
| MW-9*          | 6/2/2013               | 29.83                                    | 29.02                             | 0.81                                             |                              | 3534.20                      | 3505.01                                  | 0.03                                                                        |
| MW-9*          | 9/10/2013              | 30.28                                    | 29.00                             | 1.02                                             |                              | 3534.20                      | 3504.69                                  | -0.33                                                                       |
| MW-9*          | 12/3/2013              | 30.33                                    | 29.20                             | 1.02                                             |                              | 3535.20                      | 3505.67                                  | 0.98                                                                        |
| MW-9*          | 2/27/2014              | 29.91                                    | 29.09                             | 0.82                                             | NM                           | 3535.20                      | 3505.91                                  | 0.24                                                                        |
|                |                        |                                          |                                   |                                                  |                              |                              |                                          |                                                                             |
| MW-10*         | 12/4/2012              | 29.80                                    | 29.54                             | 0.26                                             |                              | 3534.21                      | 3504.61                                  | 0.00                                                                        |
| MW-10*         | 2/22/2013              | 29.60                                    | 29.44                             | 0.16                                             |                              | 3534.21                      | 3504.73                                  | 0.13                                                                        |
| MW-10*         | 6/2/2013               | 29.53                                    | 29.40                             | 0.13                                             |                              | 3534.21                      | 3504.78                                  | 0.05                                                                        |
| MW-10*         | 9/10/2013              | 29.93                                    | 29.71                             | 0.22                                             |                              | 3534.21                      | 3504.45                                  | -0.33                                                                       |
| MW-10*         | 12/3/2013              | 30.65                                    | 29.52                             | 1.13                                             |                              | 3534.21                      | 3504.41                                  | -0.04                                                                       |
| MW-10*         | 2/27/2014              | 30.13                                    | 29.36                             | 0.77                                             | NM                           | 3534.21                      | 3504.66                                  | 0.25                                                                        |
| MW-11          | 12/4/2012              | 31.73                                    |                                   |                                                  | 39.69                        | 3536.19                      | 3504.46                                  | -0.02                                                                       |
| MW-11          | 2/22/2013              | 31.62                                    |                                   |                                                  | 39.69                        | 3536.19                      | 3504.57                                  | 0.11                                                                        |
| MW-11          | 6/2/2013               | 31.56                                    |                                   |                                                  | 39.69                        | 3536.19                      | 3504.63                                  | 0.06                                                                        |
| MW-11          | 9/10/2013              | 31.91                                    |                                   |                                                  | 39.69                        | 3536.19                      | 3504.28                                  | -0.35                                                                       |
| MW-11          | 12/3/2013              | 31.83                                    |                                   |                                                  | 39.69                        | 3536.19                      | 3504.36                                  | 0.08                                                                        |
| MW-11          | 2/27/2014              | 31.71                                    |                                   |                                                  | NM                           | 3536.19                      | 3504.48                                  | 0.12                                                                        |
| MW-12          | 12/4/2012              | 30.00                                    |                                   |                                                  | 38.56                        | 3534.47                      | 3504.47                                  | -0.03                                                                       |
| MW-12          | 2/22/2013              | 29.88                                    |                                   |                                                  | 38.56                        | 3534.47                      | 3504.59                                  | 0.12                                                                        |
| MW-12          | 6/2/2013               | 29.82                                    |                                   |                                                  | 38.56                        | 3534.47                      | 3504.65                                  | 0.06                                                                        |
| MW-12          | 9/10/2013              | 30.16                                    |                                   |                                                  | 38.56                        | 3534.47                      | 3504.31                                  | -0.34                                                                       |
| MW-12          | 12/3/2013              | 30.09                                    |                                   |                                                  | 38.56                        | 3534.47                      | 3504.38                                  | 0.07                                                                        |
| MW-12          | 2/27/2014              | 29.96                                    |                                   |                                                  | NM                           | 3534.47                      | 3504.51                                  | 0.13                                                                        |
| MW-13          | 12/4/2012              | 31.03                                    |                                   |                                                  | 39.31                        | 3536.08                      | 3505.05                                  | 0.00                                                                        |
| MW-13          | 2/22/2013              | 29.94                                    |                                   |                                                  | 39.31                        | 3536.08                      | 3506.14                                  | 1.09                                                                        |
| MW-13          | 6/2/2013               | 30.90                                    |                                   | 1                                                | 39.31                        | 3536.08                      | 3505.18                                  | -0.96                                                                       |
| MW-13          | 9/10/2013              | 31.20                                    |                                   | 1                                                | 39.31                        | 3536.08                      | 3504.88                                  | -0.30                                                                       |
| MW-13          | 12/3/2013              | 31.10                                    |                                   |                                                  | 39.31                        | 3536.08                      | 3504.98                                  | 0.10                                                                        |
| MW-13          | 2/27/2014              | 30.99                                    |                                   | 1                                                | NM                           | 3536.08                      | 3505.09                                  | 0.11                                                                        |
| MW 14          | 12/4/2012              | 20.19                                    |                                   |                                                  |                              |                              |                                          |                                                                             |
| MW-14<br>MW-14 | 12/4/2012<br>2/22/2013 | 30.18<br>30.10                           |                                   |                                                  | 42.05                        | 3534.96                      | 3504.78                                  | -0.01                                                                       |
| MW-14<br>MW-14 | 6/2/2013               | 30.10                                    |                                   |                                                  | 42.05                        | 3534.96<br>3534.96           | 3504.86<br>3504.94                       | 0.08                                                                        |
| MW-14<br>MW-14 | 9/10/2013              | 30.35                                    |                                   |                                                  | 42.05                        | 3534.96                      | 3504.94                                  | -0.33                                                                       |
| MW-14          | 12/3/2013              | 30.35                                    |                                   |                                                  | 42.05                        | 3534.96                      | 3504.69                                  | 0.08                                                                        |
|                |                        |                                          |                                   |                                                  |                              |                              |                                          | 0.00                                                                        |

#### TABLE 1 FIRST QUARTER 2014 SUMMARY OF GROUNDWATER ELEVATION DATA RR-EXTENSION PIPELINE RELEASE LEA COUNTY, NEW MEXICO

| Location | Date      | Depth to<br>Groundwater<br>(1)<br>(feet) | Depth to<br>Product (1)<br>(feet) | Free Phase<br>Hydrocarbon<br>Thickness<br>(feet) | Total Depth<br>(2)<br>(feet) | TOC Elevation<br>(feet amsl) | Groundwater<br>Elevation*<br>(feet amsl) | Change in<br>Groundwater<br>Elevation Since<br>Previous Event (3)<br>(feet) |
|----------|-----------|------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------|------------------------------|------------------------------------------|-----------------------------------------------------------------------------|
| MW-15    | 12/4/2012 | 30.40                                    |                                   |                                                  | 36.55                        | 3534.90                      | 3504.50                                  | 0.00                                                                        |
| MW-15    | 2/22/2013 | 30.29                                    |                                   |                                                  | 36.55                        | 3534.90                      | 3504.61                                  | 0.11                                                                        |
| MW-15    | 6/2/2013  | 30.23                                    |                                   |                                                  | 36.55                        | 3534.90                      | 3504.67                                  | 0.06                                                                        |
| MW-15    | 9/10/2013 | 30.57                                    |                                   |                                                  | 36.55                        | 3534.90                      | 3504.33                                  | -0.34                                                                       |
| MW-15    | 12/3/2013 | 30.51                                    |                                   |                                                  | 36.55                        | 3534.90                      | 3504.39                                  | 0.06                                                                        |
| MW-15    | 2/27/2014 | 30.36                                    |                                   |                                                  | NM                           | 3534.90                      | 3504.54                                  | 0.15                                                                        |
| MW-16    | 12/4/2012 | 29.29                                    |                                   |                                                  | 42.91                        | 3533.68                      | 3504.39                                  | -0.04                                                                       |
| MW-16    | 2/22/2013 | 29.15                                    |                                   |                                                  | 42.91                        | 3533.68                      | 3504.53                                  | 0.14                                                                        |
| MW-16    | 6/2/2013  | 29.01                                    |                                   |                                                  | 42.91                        | 3533.68                      | 3504.67                                  | 0.14                                                                        |
| MW-16    | 9/10/2013 | 29.43                                    |                                   |                                                  | 42.91                        | 3533.68                      | 3504.25                                  | -0.42                                                                       |
| MW-16    | 12/3/2013 | 29.36                                    |                                   |                                                  | 42.91                        | 3533.68                      | 3504.32                                  | 0.07                                                                        |
| MW-16    | 2/27/2014 | 29.22                                    |                                   |                                                  | NM                           | 3533.68                      | 3504.46                                  | 0.14                                                                        |
|          |           |                                          |                                   | Average of                                       | change in ground             | dwater elevation (1          | 2/3/13 to 2/27/14)                       | 0.15                                                                        |

Notes:

1- Depths measured from the north edge of the well casing.

2- Total depths were collected and recorded during the fourth quarter 2013 monitoring event (with the exception of wells that contained LNAPL).

3- Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

Sample locations are shown on Figure 2 and a groundwater elevation contour map is shown on Figure 3.

amsl - feet above mean sea level.

TOC - top of casing

\* For wells that contained LNAPL, groundwater elevation was corrected for product thickness using the following calculation:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well \* LNAPL Relative Density)

LNAPL relative density was assumed to be approximately 0.75

#### TABLE 2 FIRST QUARTER 2014 SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER RR-EXTENSION PIPELINE RELEASE LEA COUNTY, NEW MEXICO

| Location<br>Identification                                                     | Sample Date            | Benzene<br>(mg/l)   | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments                   |
|--------------------------------------------------------------------------------|------------------------|---------------------|-------------------|------------------------|----------------------------|----------------------|----------------------------|
| New Mexico Water Quality Control<br>Commission Groundwater Standards<br>(mg/L) |                        | 0.01                | 0.75              | 0.75                   | 0.62                       | 250                  |                            |
| MW-1<br>MW-1 (duplicate)                                                       | 2/27/2014<br>2/27/2014 | 0.0449              | <0.002<br><0.002  | 0.0044                 | <0.003                     | 474                  | Duplicate Sample Collected |
| MW-2                                                                           | 2/27/2014              | 4.41 <sup>(3)</sup> | 0.599             |                        |                            | 103                  |                            |
| MW-3                                                                           | 2/27/2014              | LNAPL               | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                            |
| MW-4                                                                           | 2/27/2014              | LNAPL               | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                            |
| MW-5                                                                           | 2/27/2014              | LNAPL               | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                            |
| MW-6                                                                           | 2/27/2014              | <0.001              | < 0.002           | <0.002                 | < 0.003                    | 395                  |                            |
| MW-7                                                                           | 2/27/2014              | <0.001              | <0.002            | < 0.002                | < 0.003                    | 358                  |                            |
| MW-8                                                                           | 2/27/2014              | < 0.001             | <0.002            | <0.002                 | < 0.003                    | 521                  |                            |
| MW-9                                                                           | 2/27/2014              | LNAPL               | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                            |
| MW-10                                                                          | 2/27/2014              | LNAPL               | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                            |
| MW-11                                                                          | 2/27/2014              | <0.001              | <0.002            | < 0.002                | < 0.003                    | 433                  |                            |
| MW-12                                                                          | 2/27/2014              | < 0.001             | < 0.002           | < 0.002                | 0.0024 J                   | 414                  |                            |
| MW-13                                                                          | 2/27/2014              | <0.001              | < 0.002           | <0.002                 | < 0.003                    | 344                  |                            |
| MW-14                                                                          | 2/27/2014              | <0.001              | < 0.002           | <0.002                 | < 0.003                    | 516                  |                            |
| MW-15                                                                          | 2/27/2014              | < 0.001             | < 0.002           | < 0.002                | < 0.003                    | 378                  |                            |
| MW-16                                                                          | 2/27/2014              | <0.001              | < 0.002           | < 0.002                | < 0.003                    | 424                  |                            |

Notes

1.) The environmental cleanup standards for water that are applicable to this Site are the New Mexico Water Quality Control Commission (NMWQCC) Groundwater Standards.

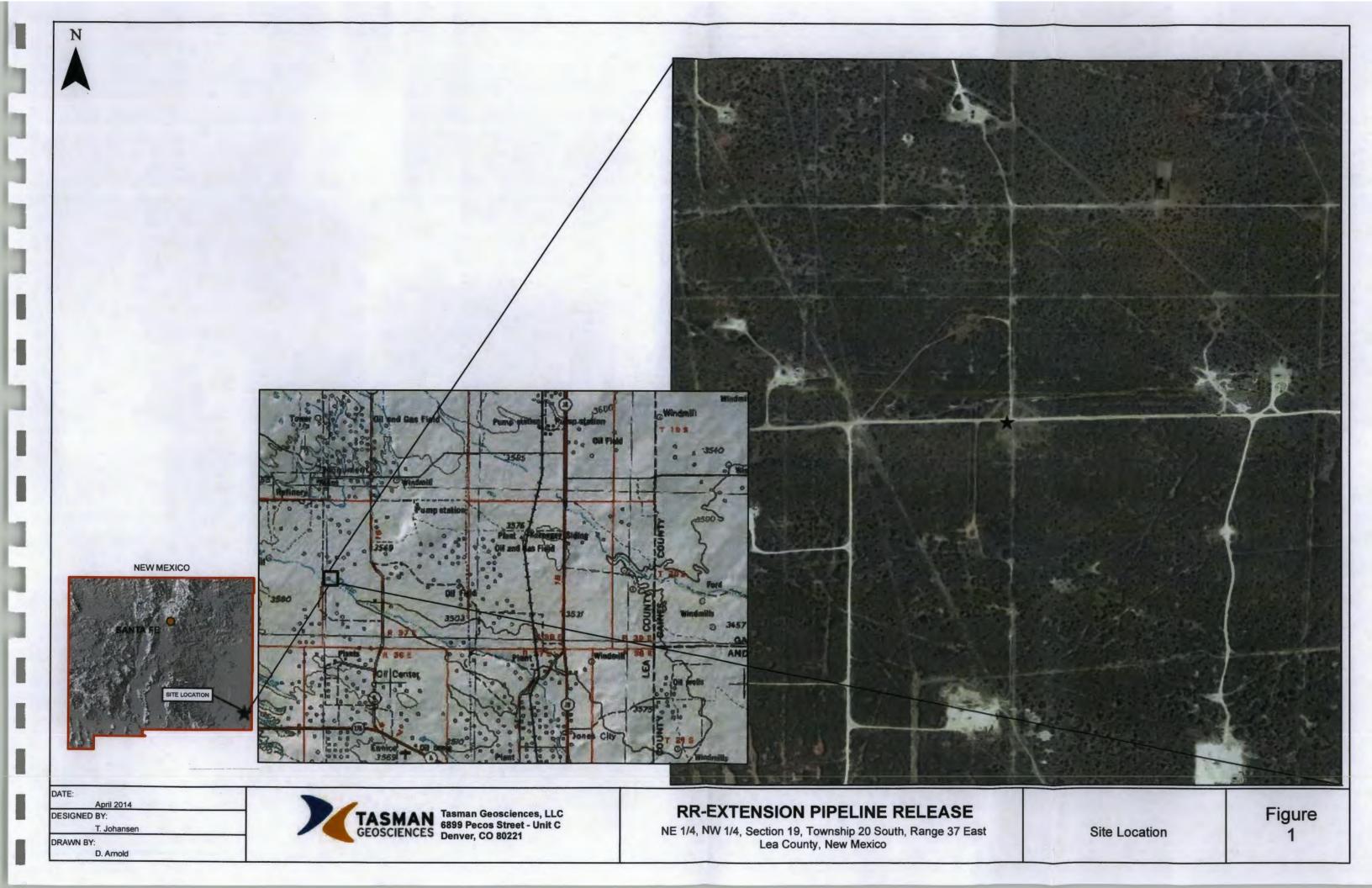
2.) Data presented for the current sampling event. Historic groundwater analytical data are located in Appendix A.

3.) Benzene concentration was from the second analytical run, as indicated in the laboratory report.

Bold red values indicate an exceedance of the NMWQCC groundwater standards for the Site.

Sample locations are shown on Figure 2 and analytical results are illustrated on Figure 4.

J = reflects an estimated value


LNAPL = Light Non-Aqueous Phase Liquid

NM = Not measured.

mg/L = milligrams per liter.

\* Chlorides are subject to the National Secondary Drinking Water Regulations (NSDWR) secondary maximum contaminant levels (SMCLs) and not an enforceably regulated constituent. The 250 mg/L standard is established only as a guideline to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor.

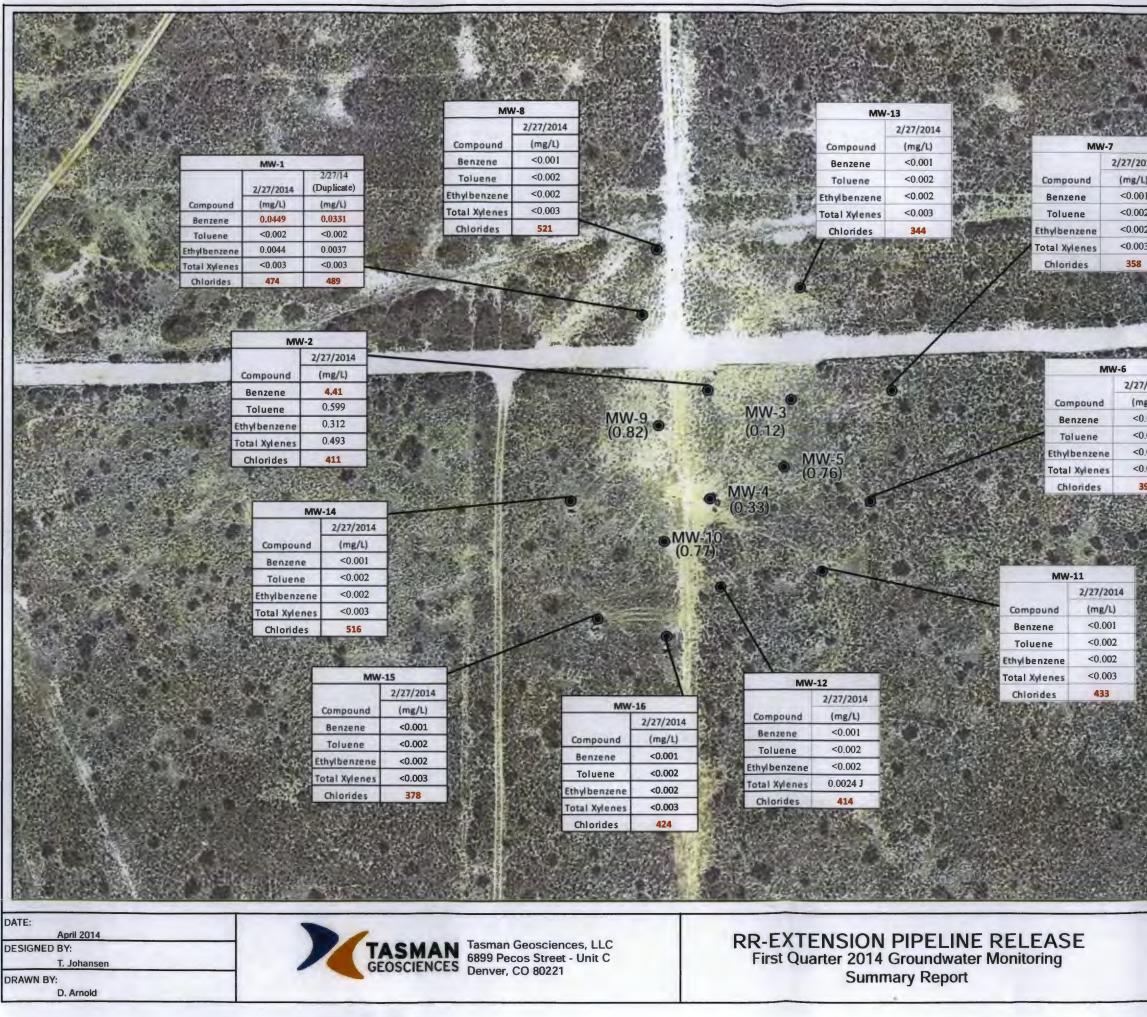
Figures



|                                                                     |                                                         | MW-8<br>MW-1                                                               |                 |
|---------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|-----------------|
|                                                                     |                                                         | MW-2 MV 3 MW-7<br>MW-9<br>MW-8<br>MW-8<br>MW-70<br>MW-75<br>MW-76<br>MW-76 |                 |
| DATE: April 2014<br>DESIGNED BY: T. Johansen<br>DRAWN BY: D. Arnold | Tasman Geoscier<br>Bigg Pecos Stree<br>Denver, CO 80221 | nces, LLC<br>tt - Unit C<br>1                                              | ater Monitoring |

ł

I


I

I



|                                                              |                                                                           | MW-1<br>3505.00<br>3504.89<br>3504.89                                                        |
|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                              | MW-14<br>3504'B2                                                          | MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10<br>MW-10       |
|                                                              | MW-15<br>3504/54                                                          | 5504/36<br>2504/36<br>2504/36<br>2007/36<br>3504/36                                          |
| DATE: April 2014<br>DESIGNED BY:<br>T. Johansen<br>DRAWN BY: | Tasman Geosciences, LLC<br>6899 Pecos Street - Unit C<br>Denver, CO 80221 | RR-EXTENSION PIPELINE RELEASE<br>First Quarter 2014 Groundwater Monitoring<br>Summary Report |





| 0.00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1. ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 122     | A CALLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -60     | THE PLANET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 23    | - 35 - 187 关闭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.42    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1,2)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -       | Place Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 014     | 1. 7 4 1 A M A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L)      | Line Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01      | TE MUNICIPALITY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 02      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 02      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | <b>这一一次,并且</b> 在                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 03      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | S TO A SHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10.5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22.50   | ALCO MAND CATALOGICAL COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 12 19 19 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7/2014  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ng/L)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.002   | A CONTRACTOR OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.002   | 1. 14 P. 1971. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.003   | A PETER AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 395     | Carto Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LANDS.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.00   | の目的に対応する。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5     | Ser Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 4.954年1月第三                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Ter . | E. C. La Sanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P       | in the light states in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R.C.P.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | States 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| in a    | (2) A 19 21 A 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1       | A 23 115 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | in the following the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A. S.   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000    | A DESCRIPTION OF A DESC |
| 1.44    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## Legend



Monitoring Well

(0.82)

Measured LNAPL Thickness

Rev.

| NMWQCC Groundwater Standards |        |  |  |  |  |  |  |  |
|------------------------------|--------|--|--|--|--|--|--|--|
| Compound                     | (mg/L) |  |  |  |  |  |  |  |
| Benzene                      | 0.01   |  |  |  |  |  |  |  |
| Toluene                      | 0.75   |  |  |  |  |  |  |  |
| Ethylbenzene                 | 0.75   |  |  |  |  |  |  |  |
| Total Xylenes                | 0.62   |  |  |  |  |  |  |  |
| Chlorides*                   | 250    |  |  |  |  |  |  |  |

#### Notes:

The chloride value is a secondary maximum contaminant level (SMCL) and has been established as a guideline in the National Secondary Drinking Water Regulations

All aqueous analytical results are presented in milligrams per liter (mg/L)

LNAPL - Light Non-Aqueous Phase Liquid

75

150

Figure

4

Analytical Results Map Appendix A

Historic Analytical Results

| Location<br>Identification                                                  | Sample Date                                                 | Benzene<br>(mg/l)                                   | Toluene<br>(mg/l)                 | Ethylbenzene<br>(mg/l)             | Total<br>Xylenes<br>(mg/l)       | Chlorides*<br>(mg/l)     | Comments                   |
|-----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|------------------------------------|----------------------------------|--------------------------|----------------------------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |                                                             | 0.01                                                | 0.75                              | 0.75                               | 0.62                             | 250                      |                            |
| MW-1                                                                        | 3/2008                                                      | 1.4                                                 | 0.0395                            | 0.948                              | 0.128                            |                          |                            |
| MW-1                                                                        | 6/2008                                                      | 2.75                                                | 0.054                             | 2.17                               | 0.232                            |                          |                            |
| MW-1                                                                        | 9/2008                                                      | 1.1                                                 | 0.0375                            | 0.845                              | 0.131                            | 507                      |                            |
| MW-1                                                                        | 12/2008                                                     | 0.869                                               | 0.0385                            | 0.581                              | 0.0709                           | 447                      |                            |
| MW-1                                                                        | 3/2009                                                      | 0.288                                               | 0.0149                            | 0.107                              | 0.0395                           | 432                      |                            |
| MW-1                                                                        | 5/2009                                                      | 1.38                                                | 0.0705                            | 0.175                              | 0.065                            | 462                      |                            |
| MW-1                                                                        | 9/2009                                                      | 0.267                                               | 0.024                             | 0.0332                             | 0.0078                           | 422                      |                            |
| MW-1                                                                        | 12/2009                                                     | 0.819                                               | 0.088                             | 0.0267                             | 0.012                            | 363                      |                            |
| MW-1                                                                        | 3/2010                                                      | 0.726                                               | 0.0879                            | 0.107                              | 0.0278                           | 800                      |                            |
| MW-1                                                                        | 6/2010                                                      | 0.339                                               | 0.0539                            | 0.0329                             | 0.0079                           | 510                      |                            |
| MW-1                                                                        | 9/2010                                                      | 1.99                                                | 0.0951                            | 0.084                              | 0.0219                           | 442                      |                            |
| MW-1                                                                        | 12/2010                                                     | 0.708                                               | 0.0796                            | 0.0099                             | 0.0047                           | 448                      |                            |
| MW-1                                                                        | 3/30/2011                                                   | 0.0241                                              | < 0.001                           | 0.0136                             | 0.0055                           | 457                      |                            |
| MW-1                                                                        | 6/22/2011                                                   | 0.0735                                              | <0.001                            | 0.0293                             | < 0.02                           | 467                      |                            |
| MW-1                                                                        | 9/17/2011                                                   | 0.0733                                              | 0.038                             | 0.0069                             | 0.0087                           | 472                      | Dumbianta commis collected |
| MW-1                                                                        | 12/8/2011                                                   | 0.076                                               | 0.002                             | 0.0227                             | 0.0087                           | 462                      | Duplicate sample collected |
| MW-1                                                                        | 3/10/2012                                                   | 0.070                                               | <0.002                            | 0.0072                             | <0.0024                          | 402                      | Duplicate sample collected |
| MW-1                                                                        | 6/5/2012                                                    | 0.029                                               | 0.0014                            | 0.0072                             | <0.004                           | 497                      | Duplicate sample collected |
| MW-1                                                                        | 9/9/2012                                                    | 0.009                                               | < 0.0014                          | 0.00112                            | < 0.003                          | 4/0                      | Duplicate sample collected |
| MW-1                                                                        | 12/4/2012                                                   | 0.0210                                              | <0.002                            | 0.0029                             |                                  | 403                      | Duplicate sample collected |
| MW-1<br>MW-1                                                                | 2/22/2012                                                   | 0.0063                                              | < 0.002                           |                                    | <0.003                           |                          | Duplicate sample collected |
| MW-1<br>MW-1                                                                | 6/2/2013                                                    | 0.0003                                              |                                   | 0.00066                            | < 0.003                          | 474                      | Duplicate sample collected |
| MW-1<br>MW-1                                                                |                                                             |                                                     | <0.002                            | 0.0028                             | < 0.003                          | 451                      | Duplicate sample collected |
| MW-1<br>MW-1                                                                | 9/10/2013                                                   | 0.0092                                              | <0.002                            | 0.0016                             | < 0.003                          | 400                      | Duplicate sample collected |
| MW-1<br>MW-1                                                                |                                                             | 0.0087                                              | <0.002                            | 0.00075                            | < 0.003                          | 458                      | Duplicate Sample Collected |
| MW-1<br>MW-1 (duplicate)                                                    | 2/27/2014<br>2/27/2014                                      | 0.0331                                              | <0.002                            | 0.0044                             | <0.003                           | 474 489                  | Duplicate Sample Collected |
| MW-2                                                                        | 3/2008                                                      | 8.98                                                | 0.135                             | 6.58                               | 0.765                            |                          |                            |
| MW-2                                                                        | 6/2008                                                      | 24.3                                                | 0.319                             | 18.5                               | 2.58                             |                          |                            |
| MW-2                                                                        | 9/2008                                                      | 24.5                                                | 0.443                             | 9.79                               | 4.25                             | 109                      |                            |
| MW-2                                                                        | 12/2008                                                     | 21.7                                                |                                   | pled: Remediation                  |                                  | 109                      |                            |
| MW-2<br>MW-2                                                                | 3/2009                                                      | 23.7                                                | 0.538                             | 2.34                               | 1.25                             | 114                      |                            |
| MW-2<br>MW-2                                                                | 5/2009                                                      | 32.7                                                | 0.338                             | 1.31                               | 1.69                             | 109                      |                            |
| MW-2<br>MW-2                                                                | 9/2009                                                      | 29.3                                                | 0.491                             | 0.771                              | 0.371                            | 139                      |                            |
| MW-2<br>MW-2                                                                | 12/2009                                                     | 29.5                                                | 0.491                             | 0.347                              |                                  | 139                      |                            |
| MW-2<br>MW-2                                                                | 3/2010                                                      | 23.8                                                |                                   |                                    | 0.177                            |                          |                            |
| MW-2<br>MW-2                                                                | 6/2010                                                      | 22.9                                                | 0.529                             | 0.71                               | <1.2                             | 700                      |                            |
| MW-2<br>MW-2                                                                | 9/2010                                                      | 17                                                  |                                   |                                    | 0.128                            | 233                      |                            |
| MW-2<br>MW-2                                                                | 12/2010                                                     | 17                                                  | 0.329                             | 0.257                              | <0.8                             | 263<br>278               |                            |
| MW-2<br>MW-2                                                                | 3/30/2011                                                   | 16.6                                                | 0.458                             | 0.399                              | 0.0926                           | 320                      |                            |
| MW-2<br>MW-2                                                                | 6/22/2011                                                   | 9.21                                                | 0.0231                            | 0.403                              | <0.4                             | 320                      |                            |
| MW-2<br>MW-2                                                                | 9/17/2011                                                   | 4.07                                                | 0.415                             | 0.377                              | 0.203                            | 370                      |                            |
| MW-2<br>MW-2                                                                | 12/8/2011                                                   | 1.5                                                 | 0.0415                            | 0.329                              | 0.0254                           |                          |                            |
| MW-2<br>MW-2                                                                | 3/10/2012                                                   | 1.04                                                | <0.0436                           |                                    |                                  | 392                      |                            |
|                                                                             | 5/10/2012                                                   | 1.04                                                | 0.106                             | 0.134                              | < 0.08                           | 444                      |                            |
|                                                                             | 6/5/2012                                                    |                                                     | 0.100                             | 0.158                              | 0.0885                           | 346                      |                            |
| MW-2                                                                        | 6/5/2012                                                    |                                                     | 0.202                             | 0.120                              | 0.14                             |                          |                            |
| MW-2<br>MW-2                                                                | 9/9/2012                                                    | 1.53                                                | 0.203                             | 0.138                              | 0.14                             | 393                      |                            |
| MW-2<br>MW-2<br>MW-2                                                        | 9/9/2012<br>12/4/2012                                       | 1.53<br>1.26                                        | 0.115                             | 0.0854                             | 0.116                            | 385                      |                            |
| MW-2<br>MW-2<br>MW-2<br>MW-2                                                | 9/9/2012<br>12/4/2012<br>2/22/2013                          | 1.53<br>1.26<br>4.53 <sup>(3)</sup>                 | 0.115<br>0.474                    | 0.0854<br>0.298                    | 0.116                            | 385<br>386               |                            |
| MW-2<br>MW-2<br>MW-2<br>MW-2<br>MW-2                                        | 9/9/2012<br>12/4/2012<br>2/22/2013<br>6/2/2013              | 1.53<br>1.26<br>4.53 <sup>(3)</sup><br>1.25         | 0.115<br>0.474<br>0.0582          | 0.0854<br>0.298<br>0.0644          | 0.116<br>0.482<br>0.103          | 385<br>386<br>406        |                            |
| MW-2<br>MW-2<br>MW-2<br>MW-2<br>MW-2<br>MW-2<br>MW-2                        | 9/9/2012<br>12/4/2012<br>2/22/2013<br>6/2/2013<br>9/10/2013 | 1.53<br>1.26<br>4.53 <sup>(3)</sup><br>1.25<br>4.47 | 0.115<br>0.474<br>0.0582<br>0.374 | 0.0854<br>0.298<br>0.0644<br>0.226 | 0.116<br>0.482<br>0.103<br>0.375 | 385<br>386<br>406<br>339 |                            |
| MW-2<br>MW-2<br>MW-2<br>MW-2<br>MW-2                                        | 9/9/2012<br>12/4/2012<br>2/22/2013<br>6/2/2013              | 1.53<br>1.26<br>4.53 <sup>(3)</sup><br>1.25         | 0.115<br>0.474<br>0.0582          | 0.0854<br>0.298<br>0.0644          | 0.116<br>0.482<br>0.103          | 385<br>386<br>406        |                            |

| Location<br>Identification                                                  | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments                              |
|-----------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|----------------------|---------------------------------------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |             | 0.01              | 0.75              | 0.75                   | 0.62                       | 250                  |                                       |
| MW-3                                                                        | 3/2008      | 0.759             | 0.0355            | 0.849                  | 0.0786                     |                      |                                       |
| MW-3                                                                        | 6/2008      | 6.18              | 0.287             | 9.46                   | 1.23                       |                      |                                       |
| MW-3                                                                        | 9/2008      | 2.45              | 0.145             | 3.62                   | 114                        | 363                  |                                       |
| MW-3                                                                        | 12/2008     | 0.761             | 0.0492            | 0.938                  | 0.158                      | 301                  |                                       |
| MW-3                                                                        | 3/2009      | 4.03              | 0.18              | 2.83                   | 0.61                       | 273                  |                                       |
| MW-3                                                                        | 5/2009      | 14.7              | 0.808             | 12.6                   | 1.64                       | 313                  |                                       |
| MW-3                                                                        | 9/2009      | 5.5               | 0.271             | 1.09                   | < 0.006                    | 363                  |                                       |
| MW-3                                                                        | 12/2009     | 13.1              | 1.2               | 9.08                   | 2.87                       | 398                  |                                       |
| MW-3                                                                        | 3/2010      | 8.43              | 1.01              | 9.14                   | 2.71                       | 440                  |                                       |
| MW-3                                                                        | 6/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 9/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 12/2010     | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 3/30/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 6/22/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 9/17/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 12/8/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 3/10/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                | · · · · · · · · · · · · · · · · · · · |
| MW-3                                                                        | 6/5/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 9/9/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 12/4/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 2/22/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                | · · · · · · · · · · · · · · · · · · · |
| MW-3                                                                        | 6/2/2013    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 9/10/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 12/3/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-3                                                                        | 2/27/2014   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
|                                                                             |             |                   |                   |                        |                            |                      |                                       |
| MW-4                                                                        | 3/2008      | 0.0102 0.0439     | <0.002            | 0.0093                 | 0.0023                     |                      |                                       |
|                                                                             | 6/2008      |                   |                   | 0.0256                 | 0.0147                     | 210                  |                                       |
| MW-4                                                                        | 9/2008      | 0.514             | 0.0203            | 0.443                  | 0.125                      | 318                  |                                       |
| MW-4                                                                        | 12/2008     | 1.32<br>3.61      | 0.0812            | 1.35                   | 0.239                      | 281                  |                                       |
| MW-4                                                                        | 3/2009      | 4,7               | 0.164             | 3.4                    | 0.831                      | 229                  |                                       |
| MW-4                                                                        | 5/2009      | 4.7<br>LNAPL      | 0.428             |                        | 1.03                       | 226                  |                                       |
| MW-4                                                                        | 9/2009      |                   | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4<br>MW-4                                                                | 12/2009     | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
|                                                                             | 3/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 6/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 9/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 12/2010     | LNAPL<br>LNAPL    | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 3/30/2011   | LNAPL             | LNAPL             |                        | LNAPL                      | LNAPL                |                                       |
| MW-4<br>MW-4                                                                | 6/22/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
|                                                                             | 9/17/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 12/8/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 3/10/2012   | LNAPL<br>LNAPL    | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| <u>MW-4</u><br>MW-4                                                         | 6/5/2012    | LNAPL<br>LNAPL    | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
|                                                                             | 9/9/2012    |                   | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 12/4/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| <u>MW-4</u>                                                                 | 2/22/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 6/2/2013    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 9/10/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 12/3/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |
| MW-4                                                                        | 2/27/2014   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                       |

| Location<br>Identification                                                  | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments                               |
|-----------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|----------------------|----------------------------------------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |             | 0.01              | 0.75              | 0.75                   | 0.62                       | 250                  |                                        |
| MW-5                                                                        | 3/2008      | 0.0019            | <0.002            | 0.0012                 | <0.006                     |                      |                                        |
| MW-5                                                                        | 6/2008      | 0.0037            | < 0.002           | 0.0037                 | < 0.006                    |                      |                                        |
| MW-5                                                                        | 9/2008      | 0.0038            | < 0.002           | 0.0037                 | < 0.006                    | 373                  |                                        |
| MW-5                                                                        | 12/2008     | 0.0031            | < 0.002           | 0.004                  | < 0.006                    | 318                  |                                        |
| MW-5                                                                        | 3/2009      | 0.0067            | < 0.002           | 0.0074                 | <0.006                     | 288                  |                                        |
| MW-5                                                                        | 5/2009      | 0.0064            | < 0.002           | 0.0089                 | < 0.006                    | 363                  |                                        |
| MW-5                                                                        | 9/2009      | 0.0082            | 0.00066           | 0.0132                 | < 0.006                    | 358                  |                                        |
| MW-5                                                                        | 12/2009     | 0.0096            | 0.0013            | 0.0155                 | 0.0021                     | 313                  | · · · · ·                              |
| MW-5                                                                        | 3/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 6/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 9/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 12/2010     | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 3/30/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 6/22/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 9/17/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 12/8/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 3/10/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 6/5/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 9/9/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 12/4/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 2/22/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 6/2/2013    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 9/10/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 12/3/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-5                                                                        | 2/27/2014   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                        |
| MW-6                                                                        | 6/2008      | < 0.002           | < 0.002           | < 0.002                | <0.006                     |                      |                                        |
| MW-6                                                                        | 9/2008      | < 0.002           | < 0.002           | <0.002                 | <0.006                     | 363                  |                                        |
| MW-6                                                                        | 12/2008     | <0.002            | <0.002            | <0.002                 | <0.006                     | 325                  |                                        |
| MW-6                                                                        | 3/2009      | < 0.002           | <0.002            | <0.002                 | <0.006                     | 298                  |                                        |
| MW-6                                                                        | 5/2009      | < 0.002           | <0.002            | <0.002                 | < 0.006                    | 308                  |                                        |
|                                                                             | 9/2009      | < 0.002           | <0.002            | <0.002                 | <0.006                     | 296                  |                                        |
| MW-6                                                                        | 12/2009     | < 0.002           | < 0.002           | < 0.002                | < 0.006                    | 393                  |                                        |
| MW-6                                                                        | 3/2010      | < 0.002           | <0.002            | <0.002                 | < 0.006                    | 700                  |                                        |
| MW-6                                                                        | 6/2010      | < 0.001           | <0.002            | < 0.002                | <0.002                     | 402                  |                                        |
| MW-6                                                                        | 9/2010      | < 0.001           | <0.002            | < 0.002                | <0.002                     | 337                  |                                        |
| MW-6                                                                        | 12/2010     | < 0.001           | <0.002            | <0.002                 | < 0.004                    | 359                  |                                        |
| MW-6                                                                        | 3/30/2011   | < 0.001           | <0.002            | <0.002                 | <0.002                     | 386                  | · · · · ·                              |
| MW-6                                                                        | 6/22/2011   | < 0.001           | <0.002            | <0.002                 | <0.002                     | 376                  |                                        |
| MW-6                                                                        | 9/17/2011   | < 0.001           | < 0.002           | <0.002                 | <0.004                     | 383                  | · · · · · · · · · · · · · · · · · · ·  |
| MW-6                                                                        | 12/8/2011   | < 0.0005          | <0.001            | < 0.001                | <0.001                     | 372                  |                                        |
| MW-6                                                                        | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 406                  |                                        |
| MW-6                                                                        | 6/5/2012    | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 381                  |                                        |
| MW-6                                                                        | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 377                  |                                        |
| MW-6                                                                        | 12/4/2012   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 358                  | ······································ |
| MW-6                                                                        | 2/22/2013   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 385                  |                                        |
| MW-6                                                                        | 6/2/2013    | < 0.001           | <0.002            | <0.002                 | < 0.003                    | 372                  |                                        |
| MW-6                                                                        | 9/10/2013   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 367                  |                                        |
|                                                                             | 12/3/2013   | < 0.001           | <0.002            | <0.002                 | < 0.003                    | 373                  |                                        |
| MW-6                                                                        | 12/3/2013   | -0.001 I          | ~0.002            | <u>∖0.00</u> 2         |                            | 31.3                 |                                        |

| Location<br>Identification                                                  | Sample Date                              | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments |
|-----------------------------------------------------------------------------|------------------------------------------|-------------------|-------------------|------------------------|----------------------------|----------------------|----------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) | an a | 0.01              | 0.75              | 0,75                   | 9.62                       | 250                  |          |
| MW-7                                                                        | 6/2008                                   | < 0.002           | < 0.002           | < 0.002                | <0.006                     |                      |          |
| MW-7                                                                        | 9/2008                                   | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 378                  |          |
| MW-7                                                                        | 12/2008                                  | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 348                  |          |
| MW-7                                                                        | 3/2009                                   | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 283                  |          |
| MW-7                                                                        | 5/2009                                   | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 298                  |          |
| MW-7                                                                        | 9/2009                                   | < 0.002           | < 0.002           | <0.002                 | < 0.006                    | 273                  |          |
| MW-7                                                                        | 12/2009                                  | < 0.002           | < 0.002           | <0.002                 | <0.006                     | 328                  |          |
| MW-7                                                                        | 3/2010                                   | < 0.002           | < 0.002           | < 0.002                | < 0.006                    | 750                  |          |
| MW-7                                                                        | 6/2010                                   | 0.0005            | < 0.002           | < 0.002                | <0.006                     | 385                  |          |
| MW-7                                                                        | 9/2010                                   | 0.00042           | < 0.002           | < 0.002                | < 0.004                    | 326                  |          |
| MW-7                                                                        | 12/2010                                  | < 0.002           | < 0.002           | < 0.002                | < 0.006                    | 345                  |          |
| MW-7                                                                        | 3/30/2011                                | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 382                  |          |
| MW-7                                                                        | 6/22/2011                                | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 390                  |          |
| MW-7                                                                        | 9/17/2011                                | <0.001            | < 0.002           | < 0.002                | < 0.004                    | 374                  |          |
| MW-7                                                                        | 12/8/2011                                | <0.0005           | < 0.001           | < 0.001                | < 0.001                    | 376                  |          |
| MW-7                                                                        | 3/10/2012                                | <0.001            | <0.002            | < 0.002                | < 0.004                    | 392                  |          |
| MW-7                                                                        | 6/5/2012                                 | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 381                  |          |
| MW-7                                                                        | 9/9/2012                                 | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 362                  |          |
| MW-7                                                                        | 12/4/2012                                | <0.001            | <0.002            | < 0.002                | < 0.003                    | 334                  |          |
| MW-7                                                                        | 2/22/2013                                | 0.00059           | < 0.002           | <0.002                 | < 0.003                    | 363                  |          |
| MW-7                                                                        | 6/2/2013                                 | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 361                  |          |
| MW-7                                                                        | 9/10/2013                                | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 332                  |          |
| MW-7                                                                        | 12/3/2013                                | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 350                  |          |
| MW-7                                                                        | 2/27/2014                                | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 358                  |          |
| MW-8                                                                        | 6/2008                                   | 0.0384            | 0.00049           | 0.0255                 | 0.0016                     |                      |          |
| MW-8                                                                        | 9/2008                                   | 0.0301            | < 0.002           | 0.0161                 | 0.002                      | 512                  |          |
| MW-8                                                                        | 12/2008                                  | 0.00233           | < 0.002           | 0.011                  | < 0.006                    | 393                  |          |
| MW-8                                                                        | 3/2009                                   | 0.0218            | < 0.002           | 0.0066                 | <0.006                     | 472                  |          |
| MW-8                                                                        | 5/2009                                   | 0.0098            | < 0.002           | 0.0049                 | <0.006                     | 450                  |          |
| MW-8                                                                        | 9/2009                                   | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 477                  |          |
| MW-8                                                                        | 12/2009                                  | < 0.002           | < 0.002           | < 0.002                | <0.006                     | 472                  | ·····    |
| MW-8                                                                        | 3/2010                                   | < 0.002           | < 0.002           | < 0.002                | < 0.006                    | 800                  |          |
| MW-8                                                                        | 6/2010                                   | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 553                  |          |
| MW-8                                                                        | 9/2010                                   | <0.001            | < 0.002           | < 0.002                | < 0.004                    | 486                  |          |
| MW-8                                                                        | 12/2010                                  | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 533                  |          |
| MW-8                                                                        | 3/30/2011                                | <0.001            | < 0.002           | < 0.002                | < 0.002                    | 529                  |          |
| MW-8                                                                        | 6/22/2011                                | < 0.001           | <0.002            | < 0.002                | < 0.004                    | 524                  |          |
| MW-8                                                                        | 9/17/2011                                | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 507                  |          |
| MW-8                                                                        | 12/8/2011                                | < 0.0005          | < 0.001           | <0.001                 | < 0.001                    | 521                  |          |
| MW-8                                                                        | 3/10/2012                                | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 528                  |          |
| MW-8                                                                        | 6/5/2012                                 | < 0.001           | < 0.002           | <0.002                 | < 0.003                    | 527                  |          |
| MW-8                                                                        | 9/9/2012                                 | < 0.001           | < 0.002           | <0.002                 | < 0.003                    | 509                  |          |
| MW-8                                                                        | 12/4/2012                                | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 500                  |          |
| MW-8                                                                        | 2/22/2013                                | 0.00048           | < 0.002           | <0.002                 | <0.003                     | 530                  |          |
| MW-8                                                                        | 6/2/2013                                 | <0.001            | < 0.002           | <0.002                 | < 0.003                    | 524                  |          |
| MW-8                                                                        | 9/10/2013                                | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 489                  |          |
| MW-8                                                                        | 12/3/2013                                | <0.001            | <0.002            | <0.002                 | < 0.003                    | 508                  |          |
| MW-8                                                                        | 2/27/2014                                | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 521                  |          |

| Location<br>Identification                                                  | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments                                     |
|-----------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|----------------------|----------------------------------------------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |             | 0.01              | 0.75              | 0.75                   | 9.62                       | 250                  |                                              |
| MW-9                                                                        | 6/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | 532**                | ander en |
| MW-9                                                                        | 9/2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 12/2010     | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 3/30/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 6/22/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 9/17/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 12/8/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 3/10/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 6/5/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 9/9/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 12/4/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 2/22/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 6/2/2013    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 9/10/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 12/3/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-9                                                                        | 2/27/2014   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 6-2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | 656**                |                                              |
| MW-10<br>MW-10                                                              | 9-2010      | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 12-2010     | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 3/30/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 6/22/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 9/17/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                | · · · · · · · · · · · · · · · · · · ·        |
| MW-10                                                                       | 12/8/2011   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 3/10/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10<br>MW-10                                                              | 6/5/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                | ·····                                        |
| MW-10<br>MW-10                                                              | 9/9/2012    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 12/4/2012   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 2/22/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10<br>MW-10                                                              | 6/2/2013    | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 9/10/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 12/3/2013   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
| MW-10                                                                       | 2/27/2014   | LNAPL             | LNAPL             | LNAPL                  | LNAPL                      | LNAPL                |                                              |
|                                                                             |             |                   |                   |                        |                            |                      |                                              |
| MW-11                                                                       | 6-2010      | < 0.001           | < 0.002           | < 0.002                | <0.004                     | 407                  |                                              |
| MW-11                                                                       | 9-2010      | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 365                  |                                              |
| MW-11                                                                       | 12-2010     | < 0.001           | <0.002            | < 0.002                | < 0.004                    | 383                  |                                              |
| MW-11                                                                       | 3/30/2011   | <0.001            | < 0.002           | < 0.002                | <0.002                     | 406                  |                                              |
| MW-11                                                                       | 6/22/2011   | < 0.001           | <0.002            | < 0.002                | < 0.004                    | 405                  |                                              |
| MW-11                                                                       | 9/17/2011   | < 0.001           | < 0.002           | <0.002                 | < 0.004                    | 390                  |                                              |
| MW-11                                                                       | 12/8/2011   | < 0.0005          | <0.001            | < 0.001                | < 0.001                    | 399                  |                                              |
| MW-11                                                                       | 3/10/2012   | < 0.001           | <0.002            | <0.002                 | < 0.004                    | 403                  |                                              |
| MW-11                                                                       | 6/5/2012    | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 417                  |                                              |
| MW-11                                                                       | 9/9/2012    | <0.001            | <0.002            | < 0.002                | < 0.003                    | 399                  |                                              |
| MW-11                                                                       | 12/4/2012   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 382                  |                                              |
| MW-11                                                                       | 2/22/2013   | 0.0004            | < 0.002           | <0.002                 | < 0.003                    | 419                  |                                              |
| MW-11                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 424                  |                                              |
| MW-11                                                                       | 9/10/2013   | < 0.001           | <0.002            | <0.002                 | < 0.003                    | 394                  |                                              |
| MW-11                                                                       | 12/3/2013   | <0.001            | <0.002            | <0.002                 | < 0.003                    | 416                  |                                              |
| MW-11                                                                       | 2/27/2014   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 433                  |                                              |

| Location<br>Identification                                                  | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments                                         |
|-----------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|----------------------|--------------------------------------------------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |             | 0,01              | 0.75              | 0.75                   | 0.62                       | 250                  |                                                  |
| MW-12                                                                       | 6-2010      | < 0.001           | < 0.002           | < 0.002                | <0.004                     | 514                  | an dia kanang mang mang mang mang mang mang mang |
| MW-12                                                                       | 9-2010      | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 464                  |                                                  |
| MW-12                                                                       | 12-2010     | <0.001            | < 0.002           | < 0.002                | < 0.004                    | 501                  |                                                  |
| MW-12                                                                       | 3/30/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 498                  |                                                  |
| MW-12                                                                       | 6/22/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 497                  |                                                  |
| MW-12                                                                       | 9/17/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 493                  |                                                  |
| MW-12                                                                       | 12/8/2011   | < 0.0005          | < 0.001           | < 0.001                | < 0.001                    | 493                  |                                                  |
| MW-12                                                                       | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 513                  |                                                  |
| MW-12                                                                       | 6/5/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 507                  |                                                  |
| MW-12                                                                       | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 487                  |                                                  |
| MW-12                                                                       | 12/4/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 469                  |                                                  |
| MW-12                                                                       | 2/22/2013   | 0.00041           | < 0.002           | < 0.002                | < 0.003                    | 484                  |                                                  |
| MW-12                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 461                  | -                                                |
| MW-12                                                                       | 9/10/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 428                  |                                                  |
| MW-12                                                                       | 12/3/2013   | < 0.001           | < 0.002           | < 0.002                | 0.0031                     | 412                  |                                                  |
| MW-12                                                                       | 2/27/2014   | <0.001            | < 0.002           | < 0.002                | 0.0024 J                   | 414                  |                                                  |
| MW-13                                                                       | 3/30/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 326                  |                                                  |
| MW-13                                                                       | 6/22/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 340                  |                                                  |
| MW-13                                                                       | 9/17/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 317                  |                                                  |
| MW-13                                                                       | 12/8/2011   | < 0.0005          | < 0.001           | < 0.001                | < 0.001                    | 328                  |                                                  |
| MW-13                                                                       | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 331                  |                                                  |
| MW-13                                                                       | 6/5/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 335                  |                                                  |
| MW-13                                                                       | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 321                  |                                                  |
| MW-13                                                                       | 12/4/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 317                  |                                                  |
| MW-13                                                                       | 2/22/2013   | 0.00073           | < 0.002           | < 0.002                | < 0.003                    | 337                  |                                                  |
| MW-13                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 333                  |                                                  |
| MW-13                                                                       | 9/10/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 311                  |                                                  |
| MW-13                                                                       | 12/3/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 330                  |                                                  |
| MW-13                                                                       | 2/27/2014   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 344                  |                                                  |
| MW-14                                                                       | 3/30/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 520                  |                                                  |
| MW-14                                                                       | 6/22/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 494                  |                                                  |
| MW-14                                                                       | 9/17/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 478                  |                                                  |
| MW-14                                                                       | 12/8/2011   | < 0.0005          | < 0.001           | < 0.001                | < 0.001                    | 521                  | 5.00 L                                           |
| MW-14                                                                       | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 528                  |                                                  |
| MW-14                                                                       | 6/5/2012    | < 0.001           | < 0.002           | < 0.002                | <0.003                     | 513                  |                                                  |
| MW-14                                                                       | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 536                  |                                                  |
| MW-14                                                                       | 12/4/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 544                  |                                                  |
| MW-14                                                                       | 2/22/2013   | 0.00034           | < 0.002           | < 0.002                | < 0.003                    | 553                  |                                                  |
| MW-14                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 538                  |                                                  |
| MW-14                                                                       | 9/10/2013   | < 0.001           | <0.002            | < 0.002                | < 0.003                    | 486                  |                                                  |
| MW-14                                                                       | 12/3/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 519                  |                                                  |
| MW-14                                                                       | 2/27/2014   | <0.001            | < 0.002           | < 0.002                | < 0.003                    | 516                  |                                                  |

| Location<br>Identification                                                  | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/ł) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides*<br>(mg/l) | Comments |
|-----------------------------------------------------------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|----------------------|----------|
| New Mexico Water Quality Control Commission<br>Groundwater Standards (mg/L) |             | 0.01              | 0.75              | 0.75                   | 0.62                       | 250                  |          |
| MW-15                                                                       | 3/30/2011   | < 0.001           | < 0.002           | <0.002                 | < 0.002                    | 303                  |          |
| MW-15                                                                       | 6/22/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 297                  |          |
| MW-15                                                                       | 9/17/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 294                  |          |
| MW-15                                                                       | 12/8/2011   | < 0.0005          | < 0.001           | < 0.001                | < 0.001                    | 288                  |          |
| MW-15                                                                       | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 308                  |          |
| MW-15                                                                       | 6/5/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 276                  |          |
| MW-15                                                                       | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 318                  |          |
| MW-15                                                                       | 12/4/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 313                  |          |
| MW-15                                                                       | 2/22/2013   | 0.00034           | <0.002            | < 0.002                | < 0.003                    | 333                  |          |
| MW-15                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 324                  |          |
| MW-15                                                                       | 9/10/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 331                  |          |
| MW-15                                                                       | 12/3/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 365                  |          |
| MW-15                                                                       | 2/27/2014   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 378                  |          |
| MW-16                                                                       | 3/30/2011   | < 0.001           | < 0.002           | < 0.002                | < 0.002                    | 295                  |          |
| MW-16                                                                       | 6/22/2011   | < 0.001           | <0.002            | <0.002                 | <0.002                     | 292                  |          |
| MW-16                                                                       | 9/17/2011   | < 0.001           | <0.002            | <0.002                 | < 0.004                    | 295                  |          |
| MW-16                                                                       | 12/8/2011   | < 0.0005          | < 0.001           | < 0.001                | < 0.001                    | 313                  |          |
| MW-16                                                                       | 3/10/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.004                    | 322                  |          |
|                                                                             | 6/5/2012    | < 0.001           | < 0.002           | <0.002                 | < 0.003                    | 334                  |          |
| MW-16                                                                       | 9/9/2012    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 334                  |          |
| MW-16                                                                       | 12/4/2012   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 339                  |          |
| MW-16                                                                       | 2/22/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 358                  |          |
| MW-16                                                                       | 6/2/2013    | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 364                  |          |
| MW-16                                                                       | 9/10/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 359                  |          |
| MW-16                                                                       | 12/3/2013   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 394                  |          |
| MW-16                                                                       | 2/27/2014   | < 0.001           | < 0.002           | < 0.002                | < 0.003                    | 424                  |          |

Notes:

1.) The environmental cleanup standards for water that are applicable to this Site are the New Mexico Water Quality Control Commission (NMWQCC) Groundwater Standards.

2.) Tasman initiated sample collection during the third quarter 2011 monitroing event.

3.) Benzene concentration was from the second analytical run, as indicated in the laboratory report.

The environmental cleanup standards for water that are applicable to this Site are the New Mexico Water Quality Control Commission (NMWQCC) Groundwater Standards.

Bold red values indicate an exceedance of the NMWQCC groundwater standards for the Site.

Sample locations are shown on Figure 2 and analytical results are illustrated on Figure 4.

J = reflects an estimated value

LNAPL = Light Non-Aqueous Phase Liquid

NM = Not measured.

mg/L = milligrams per liter.

\* Chlorides are subject to the National Secondary Drinking Water Regulations (NSDWR) secondary maximum contaminant levels (SMCLs) and not an enforceably regulated constituent. The 250 mg/L standard is established only as a guideline to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color, and odor.

Appendix B

Laboratory Analytical Report
- Accutest Job #: D55464



03/06/14

## **Technical Report for**

DCP Midstream, LP

TASMCOA:DCP RR EXT

Accutest Job Number: D55464



Sampling Date: 02/27/14

**Report to:** 

Tasman Geosciencec LLC 6899 Pecos Street Unit C Denver, CO 80221 swweathers@dcpmidstream.com; cwasko@tasman-geo.com; dbaggus@tasman-geo.com ATTN: Christine Wasko

Total number of pages in report: 50



Scool with

Scott Heideman Laboratory Director

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Renea Jackson 303-425-6021

Certifications: CO (CO00049), ID, NE (CO00049), ND (R-027), NJ (CO 0007), OK (D9942), UT (NELAP CO00049), TX (T104704511)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Mountain States • 4036 Youngfield St. • Wheat Ridge, CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854 • http://www.accutest.com



# **Table of Contents**

N

ယ

4

S

6

7

### -1-

| Section 1: Sample Summary                        | 3         |
|--------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary    | 5         |
| Section 3: Summary of Hits                       | 7         |
| Section 4: Sample Results                        | 9         |
| <b>4.1:</b> D55464-1: MW-1                       | 10        |
| <b>4.2:</b> D55464-2: MW-2                       | 12        |
| <b>4.3:</b> D55464-3: MW-6                       | 14        |
| <b>4.4:</b> D55464-4: MW-7                       | 16        |
| <b>4.5:</b> D55464-5: MW-8                       | 18        |
| <b>4.6:</b> D55464-6: MW-11                      | 20        |
| <b>4.7:</b> D55464-7: MW-12                      | 22        |
| <b>4.8:</b> D55464-8: MW-13                      | 24        |
| <b>4.9:</b> D55464-9: MW-14                      | 26        |
| <b>4.10:</b> D55464-10: MW-15                    | 28        |
| <b>4.11:</b> D55464-11: MW-16                    | 30        |
| <b>4.12:</b> D55464-12: DUP                      | 32        |
| Section 5: Misc. Forms                           | 34        |
| 5.1: Chain of Custody                            | 35        |
| Section 6: GC/MS Volatiles - QC Data Summaries   | 37        |
| 6.1: Method Blank Summary                        | 38        |
| 6.2: Blank Spike Summary                         | 41        |
| 6.3: Matrix Spike/Matrix Spike Duplicate Summary | 44        |
| Section 7: General Chemistry - QC Data Summaries | <b>47</b> |
| 7.1: Method Blank and Spike Results Summary      | 48        |
| 7.2: Matrix Spike Results Summary                | 49        |
| 7.3: Matrix Spike Duplicate Results Summary      | 50        |



## Sample Summary

### DCP Midstream, LP

Job No: D5

D55464

### TASMCOA: DCP RR EXT

| Sample    | Collected |          | <b>.</b> | Matr |                    | Client    |
|-----------|-----------|----------|----------|------|--------------------|-----------|
| Number    | Date      | Time By  | Received | Code | Туре               | Sample ID |
| D55464-1  | 02/27/14  | 09:20 AF | 02/28/14 | AQ   | Ground Water       | MW-1      |
| D55464-2  | 02/27/14  | 09:25 AF | 02/28/14 | AQ   | Ground Water       | MW-2      |
| D55464-3  | 02/27/14  | 08:45 AF | 02/28/14 | AQ   | Ground Water       | MW-6      |
| D55464-4  | 02/27/14  | 08:55 AF | 02/28/14 | AQ   | Ground Water       | MW-7      |
| D55464-5  | 02/27/14  | 09:15 AF | 02/28/14 | AQ   | Ground Water       | MW-8      |
| D55464-6  | 02/27/14  | 08:35 AF | 02/28/14 | AQ   | Ground Water       | MW-11     |
| D55464-7  | 02/27/14  | 08:30 AF | 02/28/14 | AQ   | Ground Water       | MW-12     |
| D55464-8  | 02/27/14  | 09:05 AF | 02/28/14 | AQ   | Ground Water       | MW-13     |
| D55464-8D | 02/27/14  | 09:05 AF | 02/28/14 | AQ   | Water Dup/MSD      | MW-13     |
| D55464-8M | 02/27/14  | 09:05 AF | 02/28/14 | AQ   | Water Matrix Spike | MW-13     |
| D55464-9  | 02/27/14  | 08:15 AF | 02/28/14 | AQ   | Ground Water       | MW-14     |
| D55464-10 | 02/27/14  | 08:10 AF | 02/28/14 | AQ   | Ground Water       | MW-15     |
| D55464-11 | 02/27/14  | 08:00 AF | 02/28/14 | AQ   | Ground Water       | MW-16     |



# Sample Summary (continued)

DCP Midstream, LP

Job No: D55464

TASMCOA:DCP RR EXT

| Sample    | Collected |          |                           | Matr | rix          | Client    |  |
|-----------|-----------|----------|---------------------------|------|--------------|-----------|--|
| Number    | Date      | Time By  | <b>Received Code Type</b> |      | е Туре       | Sample ID |  |
| D55464-12 | 02/27/14  | 00:00 AF | 02/28/14                  | AQ   | Ground Water | DUP       |  |





## CASE NARRATIVE / CONFORMANCE SUMMARY

| Client: | DCP Midstream, LP  | Job No      | D55464               |
|---------|--------------------|-------------|----------------------|
| Site:   | TASMCOA:DCP RR EXT | Report Date | 3/6/2014 12:14:46 PM |

On 02/28/2014, 12 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 2.5 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D55464 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Volatiles by GCMS By Method SW846 8260B

|   | •                                                                     |          |                                  |         |  |  |
|---|-----------------------------------------------------------------------|----------|----------------------------------|---------|--|--|
|   | Matrix A                                                              | .Q       | Batch ID:                        | V3V1709 |  |  |
| - | All samples were analyzed within the recommended method holding time. |          |                                  |         |  |  |
| - | All method blanks                                                     | for this | batch meet method specific crite | ria.    |  |  |
|   |                                                                       |          |                                  |         |  |  |

Sample(s) D55492-5MS, D55492-5MSD were used as the QC samples indicated.

| Matrix AQ | Batch ID: V3V1712 |  |
|-----------|-------------------|--|
|-----------|-------------------|--|

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D55494-50MS, D55494-50MSD were used as the QC samples indicated.

| Matrix | AQ Batc | h ID: | V6V1332 |
|--------|---------|-------|---------|
|        |         |       |         |

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D55464-8MS, D55464-8MSD were used as the QC samples indicated.

#### Wet Chemistry By Method EPA 300.0/SW846 9056

| Matrix AQ                        | Batch ID: GP12055                    |  |
|----------------------------------|--------------------------------------|--|
| All samples were prepared within | the recommended method holding time. |  |

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D55453-1MS, D55453-1MSD were used as the QC samples for the Chloride analysis.

| Matrix AQ | Batch ID: GP12063 |  |
|-----------|-------------------|--|
|           |                   |  |

All samples were prepared within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

- All method blanks for this batch meet method specific criteria.
- Sample(s) D55464-6MS, D55464-6MSD were used as the QC samples for the Chloride analysis.



AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.



## **Summary of Hits**

| Job Number: | D55464             |
|-------------|--------------------|
| Account:    | DCP Midstream, LP  |
| Project:    | TASMCOA:DCP RR EXT |
| Collected:  | 02/27/14           |

| Lab Sample ID<br>Analyte                                         | Client Sample ID | Result/<br>Qual                        | RL                                                                    | MDL                                | Units                        | Method                                                                           |
|------------------------------------------------------------------|------------------|----------------------------------------|-----------------------------------------------------------------------|------------------------------------|------------------------------|----------------------------------------------------------------------------------|
| D55464-1                                                         | MW-1             |                                        |                                                                       |                                    |                              |                                                                                  |
| Benzene<br>Ethylbenzene<br>Chloride                              |                  | 0.0449<br>0.0044<br>474                | 0.0010<br>0.0020<br>10                                                | 0.00025<br>0.00025                 | mg/l<br>mg/l<br>mg/l         | SW846 8260B<br>SW846 8260B<br>EPA 300.0/SW846 9056                               |
| D55464-2                                                         | MW-2             |                                        |                                                                       |                                    |                              |                                                                                  |
| Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)<br>Chloride |                  | 4.41<br>0.599<br>0.312<br>0.493<br>411 | $\begin{array}{c} 0.050 \\ 0.010 \\ 0.010 \\ 0.015 \\ 10 \end{array}$ | 0.013<br>0.0050<br>0.0013<br>0.010 | mg/l<br>mg/l<br>mg/l<br>mg/l | SW846 8260B<br>SW846 8260B<br>SW846 8260B<br>SW846 8260B<br>EPA 300.0/SW846 9056 |
| D55464-3                                                         | MW-6             |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 395                                    | 10                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |
| D55464-4                                                         | MW-7             |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 358                                    | 10                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |
| D55464-5                                                         | <b>MW-8</b>      |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 521                                    | 13                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |
| D55464-6                                                         | MW-11            |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 433                                    | 10                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |
| D55464-7                                                         | MW-12            |                                        |                                                                       |                                    |                              |                                                                                  |
| Xylene (total)<br>Chloride                                       |                  | 0.0024 J<br>414                        | 0.0030<br>10                                                          | 0.0020                             | mg/l<br>mg/l                 | SW846 8260B<br>EPA 300.0/SW846 9056                                              |
| D55464-8                                                         | MW-13            |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 344                                    | 10                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |
| D55464-9                                                         | MW-14            |                                        |                                                                       |                                    |                              |                                                                                  |
| Chloride                                                         |                  | 516                                    | 13                                                                    |                                    | mg/l                         | EPA 300.0/SW846 9056                                                             |



ω



## Summary of Hits

| Job Number: | D55464             |
|-------------|--------------------|
| Account:    | DCP Midstream, LP  |
| Project:    | TASMCOA:DCP RR EXT |
| Collected:  | 02/27/14           |

| Lab Sample ID<br>Analyte            | Client Sample ID | Result/<br>Qual         | RL                     | MDL                | Units                | Method                                             |
|-------------------------------------|------------------|-------------------------|------------------------|--------------------|----------------------|----------------------------------------------------|
| D55464-10                           | MW-15            |                         |                        |                    |                      |                                                    |
| Chloride                            |                  | 378                     | 10                     |                    | mg/l                 | EPA 300.0/SW846 9056                               |
| D55464-11                           | MW-16            |                         |                        |                    |                      |                                                    |
| Chloride                            |                  | 424                     | 10                     |                    | mg/l                 | EPA 300.0/SW846 9056                               |
| D55464-12                           | DUP              |                         |                        |                    |                      |                                                    |
| Benzene<br>Ethylbenzene<br>Chloride |                  | 0.0331<br>0.0037<br>489 | 0.0010<br>0.0020<br>10 | 0.00025<br>0.00025 | mg/l<br>mg/l<br>mg/l | SW846 8260B<br>SW846 8260B<br>EPA 300.0/SW846 9056 |

Page 2 of 2

ω

B of 50 ACCUTEST D55464

**Section 4** 

4



Sample Results

Report of Analysis



### **Report of Analysis**

| Lab Samj<br>Matrix:<br>Method:<br>Project: | AQ - 0<br>SW84                | 54-1<br>Ground Wa<br>6 8260B | ater<br>P RR EXT         |                 | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                          |                                    |  |
|--------------------------------------------|-------------------------------|------------------------------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------|------------------------------------|--|
| Run #1<br>Run #2                           | <b>File ID</b><br>6V23629.D   | <b>DF</b><br>1               | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a                                       | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>V6V1332 |  |
| Run #1<br>Run #2                           | <b>Purge Volume</b><br>5.0 ml | 2                            |                          |                 |                                                               |                          |                                    |  |

| CAS No.                                      | Compound                                                    | Result                       | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|------------------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | 0.0449<br>ND<br>0.0044<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1                       | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 98%<br>99%<br>97%            |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





#### **Report of Analysis**

Client Sample ID: MW-1 Lab Sample ID: D55464-1 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 10 474 20 02/28/14 19:22 SK mg/l EPA 300.0/SW846 9056





### **Report of Analysis**

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | le ID: D554<br>AQ -<br>SW84 | _  |          |    | Da        | I I I I    | 2/27/14<br>2/28/14<br>/a |
|----------------------------------------------------------|-----------------------------|----|----------|----|-----------|------------|--------------------------|
|                                                          | File ID                     | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch         |
| Run #1                                                   | 6V23630.D                   | 5  | 03/04/14 | BR | n/a       | n/a        | V6V1332                  |
| Run #2                                                   | 3V29256.D                   | 50 | 03/05/14 | BR | n/a       | n/a        | V3V1712                  |
|                                                          | Purge Volum                 | e  |          |    |           |            |                          |
| Run #1                                                   | 5.0 ml                      |    |          |    |           |            |                          |
| Run #2                                                   | 5.0 ml                      |    |          |    |           |            |                          |
| Purgeable                                                | Aromatics                   |    |          |    |           |            |                          |
| CAS No.                                                  | Compound                    |    | Result   | RL | MDL Units | s Q        |                          |

| CAS NO.                 | Compound                            | Result            | KL           | WIDE Units                 |
|-------------------------|-------------------------------------|-------------------|--------------|----------------------------|
| 71-43-2                 | Benzene                             | 4.41 <sup>a</sup> | 0.050        | 0.013 mg/l                 |
| 108-88-3<br>100-41-4    | Toluene<br>Ethylbenzene             | 0.599<br>0.312    | 0.010 0.010  | 0.0050 mg/l<br>0.0013 mg/l |
| 1330-20-7               | Xylene (total)                      | 0.493             | 0.015        | 0.010 mg/l                 |
| CAS No.                 | Surrogate Recoveries                | Run# 1            | Run# 2       | Limits                     |
| 170 (0 07 0             |                                     |                   |              |                            |
| 17060-07-0<br>2037-26-5 | 1,2-Dichloroethane-D4<br>Toluene-D8 | 99%<br>98%        | 105%<br>105% | 62-130%<br>70-130%         |

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



#### **Report of Analysis**

Client Sample ID: MW-2 Lab Sample ID: D55464-2 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 411 10 20 02/28/14 19:34 SK mg/l EPA 300.0/SW846 9056





### **Report of Analysis**

| Lab Sam<br>Matrix:<br>Method:<br>Project: | AQ -<br>SW84 |    |          |    | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |            |                  |  |
|-------------------------------------------|--------------|----|----------|----|---------------------------------------------------------------|------------|------------------|--|
|                                           | File ID      | DF | Analyzed | By | Prep Date                                                     | Prep Batch | Analytical Batch |  |
| Run #1                                    | 6V23631.D    | 1  | 03/04/14 | BR | n/a                                                           | n/a        | V6V1332          |  |
| Run #2                                    | 3V29255.D    | 1  | 03/05/14 | BR | n/a                                                           | n/a        | V3V1712          |  |
|                                           | Purge Volum  | e  |          |    |                                                               |            |                  |  |
| Run #1                                    | 5.0 ml       |    |          |    |                                                               |            |                  |  |
| Kull #1                                   | 5.0 ml       |    |          |    |                                                               |            |                  |  |

| CAS No.    | Compound              | Result          | RL     | MDL Units Q  |
|------------|-----------------------|-----------------|--------|--------------|
| 71-43-2    | Benzene               | ND <sup>a</sup> | 0.0010 | 0.00025 mg/l |
| 108-88-3   | Toluene               | ND              | 0.0020 | 0.0010 mg/l  |
| 100-41-4   | Ethylbenzene          | ND              | 0.0020 | 0.00025 mg/l |
| 1330-20-7  | Xylene (total)        | ND              | 0.0030 | 0.0020 mg/l  |
| CAS No.    | Surrogate Recoveries  | Run# 1          | Run# 2 | Limits       |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 100%            | 104%   | 62-130%      |
| 2037-26-5  | Toluene-D8            | 87%             | 105%   | 70-130%      |
| 460-00-4   | 4-Bromofluorobenzene  | 97%             | 91%    | 69-130%      |

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 1 of 1

D55464

#### **Report of Analysis**

Client Sample ID: MW-6 Lab Sample ID: D55464-3 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 395 10 20 02/28/14 19:45 SK mg/l EPA 300.0/SW846 9056



4.3

4



### **Report of Analysis**

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | ple ID: D5546<br>AQ - Q<br>SW84 | 54-4<br>Ground Wa<br>6 8260B | ater<br>P RR EXT         |                 | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                          |                                    |  |
|----------------------------------------------------------|---------------------------------|------------------------------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------|------------------------------------|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23632.D     | <b>DF</b><br>1               | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a                                       | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>V6V1332 |  |
| Run #1<br>Run #2                                         | <b>Purge Volume</b><br>5.0 ml   |                              |                          |                 |                                                               |                          |                                    |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 99%<br>103%<br>98%   |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



Page 1 of 1



ACCUTEST

D55464

#### **Report of Analysis**

Client Sample ID: MW-7 Lab Sample ID: D55464-4 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 358 10 20 02/28/14 19:57 SK mg/l EPA 300.0/SW846 9056

Page 1 of 1

4.4 4



### **Report of Analysis**

| Client Sar<br>Lab Samı<br>Matrix:<br>Method:<br>Project: | ple ID: D5546<br>AQ - 0<br>SW84 |                |                          |                 | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                          |                             |  |
|----------------------------------------------------------|---------------------------------|----------------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------|-----------------------------|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23633.D     | <b>DF</b><br>1 | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a                                       | <b>Prep Batch</b><br>n/a | Analytical Batch<br>V6V1332 |  |
| Run #1<br>Run #2                                         | <b>Purge Volume</b><br>5.0 ml   | 9              |                          |                 |                                                               |                          |                             |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 99%<br>119%<br>113%  |                                                                     | 62-13<br>70-13<br>69-13                | 80%   |   |

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound



Page 1 of 1

#### 18 of 50 ACCUTEST. D55464

#### **Report of Analysis**

Client Sample ID: MW-8 Lab Sample ID: D55464-5 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 521 13 25 02/28/14 20:09 SK mg/l EPA 300.0/SW846 9056

Page 1 of 1

4.5 **4** 



### **Report of Analysis**

| Client San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | ple ID: D5546<br>AQ - Q<br>SW84 | 54-6<br>Ground Wa<br>6 8260B | ater<br>P RR EXT         |                 | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                          |                             |  |
|----------------------------------------------------------|---------------------------------|------------------------------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------|-----------------------------|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23634.D     | <b>DF</b><br>1               | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a                                       | <b>Prep Batch</b><br>n/a | Analytical Batch<br>V6V1332 |  |
| Run #1<br>Run #2                                         | <b>Purge Volume</b><br>5.0 ml   |                              |                          |                 |                                                               |                          |                             |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 91%<br>102%<br>87%   |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





#### **Report of Analysis**

Client Sample ID: MW-11 Lab Sample ID: D55464-6 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 433 10 20 03/03/14 16:02 SK mg/l EPA 300.0/SW846 9056





### **Report of Analysis**

| Client Sar<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | ple ID: D5540<br>AQ - 0<br>SW84 |                |                          |                 |                         | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                             |  |  |
|----------------------------------------------------------|---------------------------------|----------------|--------------------------|-----------------|-------------------------|---------------------------------------------------------------|-----------------------------|--|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23635.D     | <b>DF</b><br>1 | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                      | Analytical Batch<br>V6V1332 |  |  |
| Run #1<br>Run #2<br><b>Purgeable</b>                     | Purge Volume<br>5.0 ml          | 2              |                          |                 |                         |                                                               |                             |  |  |

| CAS No.                                      | Compound                                                    | Result                   | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>0.0024 | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  | J |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1                   | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 97%<br>99%<br>95%        |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound





#### **Report of Analysis**

Client Sample ID: MW-12 Lab Sample ID: D55464-7 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 414 10 20 03/03/14 16:38 SK mg/l EPA 300.0/SW846 9056





### **Report of Analysis**

| Lab Samj<br>Matrix:<br>Method:<br>Project: | AQ - 0<br>SW84                | <ul> <li>ID: MW-13</li> <li>D55464-8</li> <li>AQ - Ground Water</li> <li>SW846 8260B</li> <li>TASMCOA:DCP RR EXT</li> </ul> |                          |                 |                         | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                             |  |  |
|--------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-------------------------|---------------------------------------------------------------|-----------------------------|--|--|
| Run #1<br>Run #2                           | <b>File ID</b><br>6V23636.D   | <b>DF</b><br>1                                                                                                              | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                      | Analytical Batch<br>V6V1332 |  |  |
| Run #1<br>Run #2                           | <b>Purge Volume</b><br>5.0 ml | 2                                                                                                                           |                          |                 |                         |                                                               |                             |  |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 99%<br>100%<br>95%   |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound





#### **Report of Analysis**

Client Sample ID: MW-13 Lab Sample ID: D55464-8 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 344 10 20 03/03/14 16:50 SK mg/l EPA 300.0/SW846 9056

4.8 **4** 



| Client Sar<br>Lab Samj<br>Matrix:<br>Method:<br>Project: | ple ID: D5546<br>AQ - 0<br>SW84 | 54-9<br>Ground Wa<br>6 8260B | ater<br>P RR EXT         |                 | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                          |                                    |  |
|----------------------------------------------------------|---------------------------------|------------------------------|--------------------------|-----------------|---------------------------------------------------------------|--------------------------|------------------------------------|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23639.D     | <b>DF</b><br>1               | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a                                       | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>V6V1332 |  |
| Run #1<br>Run #2<br><b>Purgeable</b>                     | Purge Volume<br>5.0 ml          | 2                            |                          |                 |                                                               |                          |                                    |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 101%<br>101%<br>96%  |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound



#### **Report of Analysis**

Client Sample ID: MW-14 Lab Sample ID: D55464-9 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 516 13 25 03/03/14 17:03 SK

mg/l

Page 1 of 1

EPA 300.0/SW846 9056

4.9

4



| <b>Report of Analysis</b> |
|---------------------------|
|---------------------------|

| Client Sar<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | AQ - 0<br>SW84              |                |                          |                 |                         | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                                    |  |  |
|----------------------------------------------------------|-----------------------------|----------------|--------------------------|-----------------|-------------------------|---------------------------------------------------------------|------------------------------------|--|--|
| Run #1<br>Run #2                                         | <b>File ID</b><br>6V23640.D | <b>DF</b><br>1 | <b>Analyzed</b> 03/04/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                      | <b>Analytical Batch</b><br>V6V1332 |  |  |
| Run #1<br>Run #2<br><b>Purgeable</b>                     | Purge Volume<br>5.0 ml      |                |                          |                 |                         |                                                               |                                    |  |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 96%<br>107%<br>102%  |                                                                     | 62-13<br>70-13<br>69-13                | 80%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$



#### **Report of Analysis**

Client Sample ID: MW-15 Lab Sample ID: D55464-10 **Date Sampled:** 02/27/14 Matrix: AQ - Ground Water **Date Received:** 02/28/14 Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 378 10 20 03/03/14 17:15 SK mg/l EPA 300.0/SW846 9056

Page 1 of 1

4.10 4



**Report of Analysis** 

| Chent Sar<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | De ID: D5546<br>AQ - 0<br>SW84 | ple ID: MW-16<br>e ID: D55464-11<br>AQ - Ground Water<br>SW846 8260B<br>TASMCOA:DCP RR EXT |                          |                 |                         | Date Sampled:02/27/14Date Received:02/28/14Percent Solids:n/a |                             |  |  |
|---------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------|--------------------------|-----------------|-------------------------|---------------------------------------------------------------|-----------------------------|--|--|
| Run #1<br>Run #2                                        | <b>File ID</b><br>3V29185.D    | <b>DF</b><br>1                                                                             | <b>Analyzed</b> 03/03/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                      | Analytical Batch<br>V3V1709 |  |  |
| Run #1<br>Run #2                                        | Purge Volume<br>5.0 ml         | 2                                                                                          |                          |                 |                         |                                                               |                             |  |  |

| CAS No.                                      | Compound                                                    | Result               | RL                                                                  | MDL                                    | Units | Q |
|----------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------|-------|---|
| 71-43-2<br>108-88-3<br>100-41-4<br>1330-20-7 | Benzene<br>Toluene<br>Ethylbenzene<br>Xylene (total)        | ND<br>ND<br>ND<br>ND | $\begin{array}{c} 0.0010 \\ 0.0020 \\ 0.0020 \\ 0.0030 \end{array}$ | 0.00025<br>0.0010<br>0.00025<br>0.0020 | mg/l  |   |
| CAS No.                                      | Surrogate Recoveries                                        | Run# 1               | Run# 2                                                              | Limi                                   | ts    |   |
| 17060-07-0<br>2037-26-5<br>460-00-4          | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 105%<br>106%<br>89%  |                                                                     | 62-13<br>70-13<br>69-13                | 30%   |   |

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound



| <b>Report of Ar</b> | nalysis |
|---------------------|---------|
|---------------------|---------|

Client Sample ID: MW-16 Lab Sample ID: D55464-11 **Date Sampled:** 02/27/14 **Date Received:** 02/28/14 Matrix: AQ - Ground Water Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 10 424 20 03/03/14 17:27 SK mg/l EPA 300.0/SW846 9056

Page 1 of 1

4.11 4



**Report of Analysis** 

| Chent San<br>Lab Samp<br>Matrix:<br>Method:<br>Project: | AQ - 0<br>SW84              | Ground Wa<br>6 8260B | ater<br>P RR EXT         |                 | Da                      | tte Sampled: 02<br>nte Received: 02<br>rcent Solids: n/ |                                    |
|---------------------------------------------------------|-----------------------------|----------------------|--------------------------|-----------------|-------------------------|---------------------------------------------------------|------------------------------------|
| Run #1<br>Run #2                                        | <b>File ID</b><br>3V29186.D | <b>DF</b><br>1       | <b>Analyzed</b> 03/03/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a                                | <b>Analytical Batch</b><br>V3V1709 |
| Run #1<br>Run #2<br><b>Purgeable</b>                    | Purge Volume<br>5.0 ml      |                      |                          |                 |                         |                                                         |                                    |

#### CAS No. Compound Result RL Units MDL 71-43-2 Benzene 0.0331 0.0010 0.00025 mg/l 108-88-3 Toluene ND 0.0020 0.0010 mg/l 100-41-4 Ethylbenzene 0.0037 0.0020 0.00025 mg/l 1330-20-7 Xylene (total) 0.0030 0.0020 mg/l ND CAS No. **Surrogate Recoveries** Run#1 **Run# 2** Limits 17060-07-0 1,2-Dichloroethane-D4 100% 62-130% 105% 2037-26-5 Toluene-D8 70-130% 460-00-4 4-Bromofluorobenzene 89% 69-130%

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

0



#### **Report of Analysis**

Client Sample ID: DUP Lab Sample ID: D55464-12 **Date Sampled:** 02/27/14 **Date Received:** 02/28/14 Matrix: AQ - Ground Water Percent Solids: n/a **Project:** TASMCOA:DCP RR EXT **General Chemistry** Analyte Result RL Units DF Analyzed By Method Chloride 489 10 20 03/03/14 17:39 SK mg/l EPA 300.0/SW846 9056





**Section 5** 

S



Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody



|                      | ACCUTEST                                          |                           |                           |             | CHAI       | N                       | OF (                    | CUS                    | то                  | D                   | [             |          |                  |                 |           |               |                        |          |         |          |                        | P        | AGE          | =                              | Lo                                    | F <u>2</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|---------------------------------------------------|---------------------------|---------------------------|-------------|------------|-------------------------|-------------------------|------------------------|---------------------|---------------------|---------------|----------|------------------|-----------------|-----------|---------------|------------------------|----------|---------|----------|------------------------|----------|--------------|--------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | LABORATORIE                                       |                           |                           |             | 4036 Your  | gfield S                | treet, Whea             | t Ridge, C             | O 800               | 33                  |               |          |                  | L               | ED-EX     |               |                        |          |         |          | Bottle Order Control # |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | Client / Reporting Information                    | oversee the second second | References                |             | 8          | ww                      | 021 FAX                 |                        | -6854               |                     |               |          |                  | ′               | Accutest  | Quote I       | *                      |          |         |          | Accutest Job # DS5464  |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Compa                | any Name                                          | Project Name:             |                           |             | Project    | Infor                   | mation                  |                        |                     |                     |               |          |                  |                 |           | Rec           | ueste                  | d Ana    | iysis   | (see     | TEST                   | COD      | E sheet      | t)                             |                                       | Matrix Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ta                   | sman Geosciences                                  | DCP RR Exte               | ension                    | Pineline    | Release    |                         |                         |                        |                     |                     |               |          |                  |                 |           |               |                        |          |         |          |                        |          |              |                                |                                       | DW - Drinking Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | Address                                           | Street                    |                           | - ipenne    | Kelease    | 94800                   |                         |                        |                     |                     |               |          |                  |                 |           |               |                        |          |         |          |                        |          |              |                                |                                       | GW - Ground Water<br>WW - Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| City                 | 99 Pecos St - Unit C                              | City                      |                           |             | State      | Billin                  | g Informati<br>any Name | on ( )/ diff           | erent l             | from R              | eport to      | )        |                  |                 |           |               |                        |          |         |          |                        |          |              |                                |                                       | SW - Surface Water<br>SO - Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | nver, CO 80221                                    |                           |                           |             |            | 1                       |                         |                        |                     |                     |               |          |                  |                 |           |               | ×                      |          |         |          |                        |          |              |                                |                                       | SL-Sludge<br>SED-Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                    | Contact<br>n Baggus <u>dbaggus@tasman-geo.com</u> | Project #                 |                           |             |            | Street                  | Street Address          |                        |                     |                     |               | -        |                  |                 | BT<br>BT  |               |                        |          |         |          |                        |          |              | Of - Oil<br>LIQ - Other Liquid |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Phone                | #                                                 | Client Purchase Order #   |                           |             |            | City                    |                         |                        |                     |                     |               |          |                  |                 | 326(      |               |                        |          |         |          |                        |          |              | AIR - Air<br>SOL - Other Solid |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | 0) 635-9675                                       | Design Manager            |                           |             |            |                         |                         |                        |                     |                     |               |          |                  |                 |           | چ<br>ا        |                        |          |         |          |                        |          |              |                                | WP - Wipe<br>FB-Field Blank           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UV                   | er(s) Name(s)<br>INSTWE WAYLD                     | Renea Jacks               | rolect Manager Attention; |             |            |                         |                         |                        |                     |                     |               |          |                  | ۲               |           | <u>ā</u>      |                        |          |         |          |                        |          |              |                                | EB-Equipment Blank<br>RB- Rinse Blank |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |                                                   | - Conce Cucha             |                           |             | Collection | ļ                       | _                       |                        |                     | Numbe               | w of pres     | erved E  | Bottles          |                 | 8         |               | 1SL                    |          |         |          |                        |          |              |                                |                                       | TB-Trip Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Accutest<br>Sample # | Field ID / Point of Collection                    | MEOH/DI Vial #            |                           | Date        | _          | Sample                  | ed                      |                        |                     | HO60                | H2SO4<br>NONE | DI Water | MEOH             |                 | V8260BTX  | сĦ            | MS/MSD for V8260BTX    |          |         |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | MW-1                                              |                           |                           | 714         | Time:      | by<br>1911              | Matrix                  | # of bottlet           |                     | 2 f                 |               | Δ        | ₩ 2              | <u>↓</u>        |           |               | 2                      |          |         |          | -                      | <u> </u> |              |                                | <u> </u>                              | LAB USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | MW-2                                              |                           | 216                       | TIFT        | 920        | n                       |                         | 4                      | 3                   |                     | _ 1           | $\vdash$ |                  |                 | X         | X             |                        |          |         | <u> </u> |                        | _        |              | <u> </u>                       |                                       | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-6                                              |                           |                           |             | CNC        | $\left  - \right $      | GW                      | 4                      | 3                   |                     | 1             | $\vdash$ |                  |                 | X         | X             |                        |          |         |          |                        | <u> </u> |              |                                |                                       | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-7                                              |                           |                           |             | 200        | +                       | GW                      | 4                      | 3                   |                     | 1             |          |                  |                 | X         | X             |                        | ·        |         |          |                        |          |              | -                              | <u> </u>                              | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-8                                              |                           |                           | łi          | 915        | $\left  \right $        | GW                      | 4                      | 3                   | +                   | - 1           |          |                  |                 | X         | X             |                        |          |         | L        |                        |          |              | 4                              |                                       | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-11                                             |                           |                           |             | SEC        | $\vdash$                | GW                      | 4                      | 3                   | +                   | 1             | $\vdash$ |                  |                 | X         | X             |                        |          |         |          |                        |          |              |                                | <b> </b>                              | Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>             | MW-12                                             |                           |                           |             | 830        | $\left  + \right $      | GW                      | 4                      | 3                   |                     | 1             |          | +                |                 | X<br>X    | X             |                        |          |         | <u> </u> |                        | <u> </u> |              |                                |                                       | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-13                                             |                           |                           |             | 905        | $\vdash$                | GW                      | 4                      | 3                   | +                   | 1             | $\vdash$ |                  |                 |           | X             |                        |          |         |          | <u> </u>               | <u> </u> |              |                                |                                       | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-13 MS/MSD                                      |                           |                           |             | GOS        | $\vdash$                | GW                      | 4                      | 3                   |                     | 1             |          |                  |                 | <u>X</u>  | X             | х                      |          |         |          |                        |          |              |                                |                                       | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-14                                             |                           |                           |             | 815        | $\left  + \right $      | GW                      |                        | 6                   |                     | -             | -        | +                |                 | x         | x             | ~                      |          |         |          |                        |          | +            | -                              |                                       | ODASISD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | MW-15                                             |                           |                           |             | SID        | $\left  + \right $      | GW                      | 4                      | 3                   | -                   | 1             | $\vdash$ |                  |                 |           | <del>^</del>  |                        |          |         |          |                        | ┣        | <u> </u>     |                                |                                       | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | MW-16                                             |                           |                           |             | and a      | $\overline{\mathbf{v}}$ | GW                      | 4                      | 3                   |                     | $\frac{1}{1}$ |          | +                |                 |           | $\frac{2}{x}$ |                        |          |         |          |                        |          | +            | -                              |                                       | (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      |                                                   |                           | (SIONAN)                  | Alternation |            | X                       | GW                      |                        |                     | erable              | Informa       | ation    |                  |                 |           |               |                        |          |         | Com      | ments                  | / Spec   | ial Instru   | uctions                        | 100345060                             | )(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | X Std. 15 Business Days                           | Approved By (Accu         | test PM): .               | Date:       |            |                         | Commerc<br>Commerc      |                        |                     |                     | _             |          | Form             |                 |           |               |                        |          |         |          |                        |          |              |                                | A SCALLED WA                          | ATTACK OF STREET, STREE |
|                      | 5 Day RUSH                                        |                           |                           |             |            |                         | COMMBN                  |                        | evel 2              | ,                   |               |          | Forms<br>at by F |                 | ate       | ł             |                        |          | ·       |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | 3 Day Emergency<br>2 Day Emergency                |                           |                           |             |            |                         | COMMBN                  | +                      |                     |                     |               | -        | rt by P<br>Forma |                 | NLY       |               |                        |          |         | ·        |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | 1 Day Emergency                                   |                           |                           |             |            |                         |                         | Commerc                |                     |                     | its Only      |          |                  | τ.              |           |               |                        |          |         |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | irgenicy & Rush T/A data available VIA Lablink    |                           |                           |             |            |                         |                         | Commercia<br>Commercia | :al "B"<br>i BN = f | = Resu<br>Results/0 | its + QC      | Sum      | mary<br>= chrom  | aloorar         |           |               |                        |          |         |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relin                | aushay by Sampler Al                              |                           | Received                  | Barr        |            |                         |                         |                        |                     |                     |               |          | - Unitern        | 11.0ភ្នា ពា     | 1147      |               |                        |          |         |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                    | adre Al-                                          |                           | 1                         |             |            |                         |                         |                        | rteling<br>2        | uished l            | Sy:           |          | 4                | VP              | 5         |               |                        | Date Tin | ie;     |          | Receive<br>2           | od By:   | П.           | -                              | 2.2                                   | 8-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Relina<br>3          | alished by Sampler:                               |                           | Received By:<br>3         |             |            |                         |                         | Reling                 | uished I            | By:                 |               |          |                  |                 |           |               | Date Tims: Received By |          |         |          |                        |          |              |                                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relina<br>5          | quished by:                                       |                           | Received                  | Ву:         |            |                         |                         |                        | Custor              | dy Seat i           | v             |          |                  | Int             |           |               | reserve                |          | applica | ble      | 4                      |          | On Ice       |                                | Cooler                                | Temp. 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5                    |                                                   |                           | 5                         |             |            |                         |                         |                        |                     |                     |               |          |                  | □ <sub>No</sub> | el intact |               |                        |          |         |          |                        |          | <del>P</del> |                                |                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### D55464: Chain of Custody Page 1 of 2



5.<u>1</u>

G

|                   |                                                | 7                | (                  | CHAI       | N O            | FC       | UST                  | 0                | DY                 |                |                                        |          |           |            |        |           |               |          |                     | PAC                  | GE .         |           | _of      | 2_                                   |
|-------------------|------------------------------------------------|------------------|--------------------|------------|----------------|----------|----------------------|------------------|--------------------|----------------|----------------------------------------|----------|-----------|------------|--------|-----------|---------------|----------|---------------------|----------------------|--------------|-----------|----------|--------------------------------------|
| 1                 | ACCUTEST                                       |                  |                    | 4036 Young | Sold Stree     | t Wheet  | Didna CO             | 8003             | 2                  |                |                                        |          | FED-E     | X Tracki   | ng#    |           |               |          | Bottle On           | ttle Order Control # |              |           |          |                                      |
|                   | LABORATORIE                                    | <u>83</u>        |                    | TEL. 303   | -425-6021      |          | 303-425-6            |                  | -                  |                |                                        |          | Accute    | est Quote  | #      |           |               |          | Accutes Job# DSS464 |                      |              | 64        |          |                                      |
| C C               | Client / Reporting Information                 |                  |                    | Project I  |                |          |                      |                  |                    |                |                                        |          |           | Re         | queste | d Ana     | ysis (        | see Ti   | EST C               | ODE si               | neet)        |           |          | Matrix Codes                         |
| Company N         | ame                                            | Project Name:    |                    |            |                |          |                      |                  |                    |                |                                        |          |           | 1          | 1      |           |               |          |                     |                      |              |           | _        | W - Drinking Water                   |
|                   | n Geosciences                                  |                  | nsion Pipeline f   | Release    | 10/10/01/02/02 |          | in the second second | 00/03/04         | CONTRACTOR IN      | 1003530        | NTI HATA                               | ummuni   |           |            |        |           |               |          |                     |                      | 1            |           | Ĭ        | GW - Ground Water<br>WW - Water      |
| Street Addre      |                                                | Street           |                    |            | CORRESPONDENCE |          | m ( If diffe         | 348365           | IBHERRES<br>I DATE | <u>1866680</u> | ANDRALIA                               | BARBOAR  | 1449      |            |        |           |               |          |                     |                      |              |           | 5        | SW - Surface Water<br>SO - Soil      |
| City              | ecos St - Unit C                               | City             |                    | State      | Company        |          | n (n unie            | rent n           | rom ræ             | ponti          | <u> </u>                               |          | -         |            |        |           |               |          |                     |                      |              |           |          | SL-Sludge<br>SED-Sediment            |
|                   | r, CO 80221                                    |                  |                    |            | Street Ad      |          |                      |                  |                    |                |                                        |          |           |            |        |           |               |          |                     |                      |              |           |          | OI - Oil<br>LIQ - Other Liquid       |
| Project Cont      |                                                | Project #        |                    |            | 20.6er VC      | 01855    |                      |                  |                    |                |                                        |          |           |            |        |           |               |          |                     | [                    | 1            | AIR - Air |          |                                      |
| Don Ba<br>Phone # | aggus dbaggus@tasman-geo.com                   | Client Purchase  | Order #            |            | City           |          |                      |                  |                    |                |                                        |          | -         |            |        |           |               |          |                     |                      | 1            |           |          | SOL - Other Solid<br>WP - Wipe       |
|                   | 35-9675                                        |                  |                    |            |                |          |                      |                  |                    |                |                                        |          | _         |            |        |           |               |          |                     |                      |              |           | E        | FB-Field Blank<br>EB-Equipment Blank |
| Sampler(s)        |                                                | Project Manager  |                    |            | Attention      |          |                      |                  |                    |                |                                        |          | ΙĔ        |            |        |           |               |          |                     |                      |              |           |          | RB- Rinse Blank<br>TB-Trip Blank     |
| <u>h skim</u>     | Bhnewasker                                     | Renea Jacks      | on                 | Collection | <u> </u>       |          |                      |                  | Numbe              | r of pre       | served B                               | otties   | V8260BTX  |            |        | 1         |               |          |                     |                      |              |           |          |                                      |
| Accutes!          |                                                |                  |                    |            | Sampled        |          |                      |                  | E S                | ā 🗏            | Vater                                  | E B      | 826       | GFL        |        |           |               |          |                     |                      |              |           |          | 1                                    |
| Sample #          | Field ID / Point of Collection                 | MECH/DI Vial #   | Date               | Time       | by             | Matrix   | # of bottles         | 오                | HN03               | H2SQ<br>NONE   | DI Wat                                 | E A      |           |            |        |           |               |          |                     |                      |              |           |          | LAB USE ONLY                         |
|                   | DUP                                            |                  | European .         | -          | AF-            | GW       | 4                    | 3                |                    | 1              |                                        |          | <u> </u>  | <u> </u>   |        |           |               |          |                     |                      |              |           |          | 12                                   |
|                   |                                                |                  |                    |            |                |          |                      |                  |                    |                |                                        |          |           |            |        |           |               |          |                     |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            |                |          |                      |                  |                    |                |                                        |          |           |            |        |           |               |          |                     |                      |              |           |          | 78-13                                |
|                   |                                                |                  |                    |            |                |          |                      |                  |                    |                | TT                                     | Π        |           |            |        |           | 1             |          |                     |                      |              |           |          | 1.428M                               |
|                   |                                                |                  |                    |            |                |          |                      |                  |                    |                |                                        |          |           | 1          |        |           |               |          |                     |                      |              |           |          | m 2 28 M                             |
|                   |                                                |                  |                    |            |                |          |                      |                  |                    |                | +                                      |          |           | +          | -      |           | 1             |          |                     |                      |              |           | -        | //                                   |
|                   |                                                |                  |                    |            |                |          |                      | +                |                    | -              |                                        |          |           | +          |        |           |               |          |                     |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            |                |          |                      | +                |                    | -              | ††                                     | -+-+     |           | -          | -      |           |               |          | 1                   |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            |                |          |                      | ++               |                    |                | +                                      | - +      | _         |            |        | +         | -             |          |                     |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            |                |          |                      | $\left  \right $ |                    |                |                                        | +        |           |            |        | +         |               | -        |                     | <u>-</u>             |              |           |          |                                      |
|                   |                                                |                  |                    |            |                | <b> </b> |                      | -                |                    | _              | +                                      |          |           |            |        |           |               | $\vdash$ | <u>+</u>            |                      |              |           |          |                                      |
| ŀ                 |                                                |                  |                    |            |                |          |                      |                  |                    |                | +                                      |          |           | .          |        |           | <u> </u>      | <u> </u> |                     |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            |                | <u> </u> |                      | Ц                |                    |                |                                        |          | HERRIC    | NISSING IN |        | niomana   | Langer (1919) | 0.0      | 1                   | / Specia             | 1 Inete -    | rtions    | ARADAR   |                                      |
|                   |                                                | NUMBER OF        | -test ON: (Date)   |            |                | Commer   | Data<br>clal "A" (I  |                  | verable            | Infor          |                                        | e Forma  | s Requir  | ed         |        | 101000000 | FRANKROS      | 1 Con    | ments.              | / Specia             | i )(isti u   | Cuons     | REPERING |                                      |
|                   | Std. 15 Business Days<br>Std. 10 Business Days | Approved By (Acc | utest Pmj. / Date. |            |                |          | cial "B" ( I         |                  |                    |                |                                        |          | s to Stat |            |        |           |               |          |                     |                      |              |           |          |                                      |
|                   | 5 Day RUSH                                     |                  |                    |            |                | COMMBI   |                      |                  |                    |                |                                        | ort by P |           |            |        |           |               |          |                     |                      |              |           |          |                                      |
|                   | 3 Day Emergency<br>2 Day Emergency             |                  |                    |            |                | COMMBI   | N+                   |                  |                    |                |                                        | Forma    | DF ONL    | .ч         |        |           |               |          |                     |                      |              |           |          |                                      |
|                   | 1 Day Emergency                                |                  |                    |            |                |          | Commer               |                  |                    | ults O         | μy                                     |          |           |            |        |           |               |          |                     |                      |              |           |          |                                      |
|                   |                                                |                  |                    |            | 1              |          | Commer<br>Commerci   |                  |                    |                |                                        |          | natograms | >          |        |           |               |          |                     |                      |              |           |          |                                      |
| Emerge            | ency & roam the gate avgradue vie caultin      |                  |                    |            |                |          |                      |                  |                    |                | `````````````````````````````````````` |          |           |            | •      | Date 1    |               |          | Receiv              |                      | 77           |           |          |                                      |
| Relinqui          | shod by Sempler                                |                  | Received By:<br>1  |            |                |          |                      | Relia            | nquished           | By:            |                                        | 5        | SP        | S          |        | Date 1    | 1016:         |          | Receiv<br>2         | an phi               | $\mathbb{N}$ | "(        | - 2-     | 28-14                                |
| Rohaqui           | ishey by Sampler:                              |                  | Received By:       |            |                |          |                      | +-               | nguished           | By:            |                                        |          | 1         |            |        | Date 1    | ime:          |          | Receiv<br>4         | red By: /            |              |           |          | (017                                 |
| 3<br>Relinqui     | V                                              |                  | 3<br>Received By:  |            |                |          |                      | Cus              | tody Sea           | 1#             |                                        |          | Inter     |            | Prese  | arved whe | ine applic    | able     |                     |                      | On lo        |           | Cooler   | Temp. 2.5                            |
| reanqui<br>5      | and by                                         |                  | 5                  |            |                |          |                      | 1                |                    |                |                                        |          | Not:      | Intact     |        | Ľ         |               |          |                     |                      |              | -         |          |                                      |

D55464: Chain of Custody Page 2 of 2



5.<u>1</u>

G

**Section 6** 

6



#### GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries



#### Method Blank Summary Job Number: D55464

460-00-4

4-Bromofluorobenzene

| Job Numbe<br>Account:<br>Project:            | er: D55464<br>DCPMCODN DC<br>TASMCOA:DCP             |                |                        |                          |                 |                            |                              |                      |       |                                    |
|----------------------------------------------|------------------------------------------------------|----------------|------------------------|--------------------------|-----------------|----------------------------|------------------------------|----------------------|-------|------------------------------------|
| Sample<br>V3V1709-N                          | <b>File ID</b><br>4B 3V29173.D                       | <b>DF</b><br>1 | <b>Analy</b><br>03/03/ |                          | <b>By</b><br>BR | Pre<br>n/a                 | ep Date                      | <b>Prep</b> i<br>n/a | Batch | <b>Analytical Batch</b><br>V3V1709 |
|                                              | ported here applies to<br>D55464-12                  | the foll       | owing samj             | ples:                    |                 |                            |                              | Method:              | SW84  | 6 8260B                            |
| CAS No.                                      | Compound                                             |                | Result                 | RI                       | L               | MDL                        | Units                        | Q                    |       |                                    |
| 71-43-2<br>100-41-4<br>108-88-3<br>1330-20-7 | Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total) |                | ND<br>ND<br>ND<br>ND   | 1.0<br>2.0<br>2.0<br>3.0 | 0<br>0          | 0.25<br>0.25<br>1.0<br>2.0 | ug/l<br>ug/l<br>ug/l<br>ug/l |                      |       |                                    |
| CAS No.                                      | Surrogate Recoveries                                 | 5              |                        | L                        | limits          |                            |                              |                      |       |                                    |
| 17060-07-0<br>2037-26-5                      | 1,2-Dichloroethane-D<br>Toluene-D8                   | 4              | 100%<br>105%           |                          | 2-130<br>0-130  |                            |                              |                      |       |                                    |

69-130%

90%

#### Method Blank Summary Job Number: D55464

| Project:             | TASMCOA:DC                  | P RR EX        | Г                        |          |                         |                          |                             |
|----------------------|-----------------------------|----------------|--------------------------|----------|-------------------------|--------------------------|-----------------------------|
| Sample<br>V6V1332-MB | <b>File ID</b><br>6V23623.D | <b>DF</b><br>1 | <b>Analyzed</b> 03/03/14 | By<br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | Analytical Batch<br>V6V1332 |
| The QC repor         | ted here applies to         | o the follo    | wing samples:            |          |                         | Method: SW84             | 6 8260B                     |

D55464-1, D55464-2, D55464-3, D55464-4, D55464-5, D55464-6, D55464-7, D55464-8, D55464-9, D55464-10

| CAS No.                                      | Compound                                             | Result               | RL                       | MDL                        | Units Q                      |
|----------------------------------------------|------------------------------------------------------|----------------------|--------------------------|----------------------------|------------------------------|
| 71-43-2<br>100-41-4<br>108-88-3<br>1330-20-7 | Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total) | ND<br>ND<br>ND<br>ND | 1.0<br>2.0<br>2.0<br>3.0 | 0.25<br>0.25<br>1.0<br>2.0 | ug/l<br>ug/l<br>ug/l<br>ug/l |
| CAS No.                                      | Surrogate Recoveries                                 |                      | Limit                    | 5                          |                              |

| 17060-07-0 | 1,2-Dichloroethane-D4 | 99%  | 62-130% |
|------------|-----------------------|------|---------|
| 2037-26-5  | Toluene-D8            | 98%  | 70-130% |
| 460-00-4   | 4-Bromofluorobenzene  | 116% | 69-130% |





#### Method Blank Summary Job Number: D55464

| Job Numbe<br>Account:<br>Project:   | r: D55464<br>DCPMCODN D<br>TASMCOA:DCI                    |                |                        |       |                         |            |         |                          |                                    |
|-------------------------------------|-----------------------------------------------------------|----------------|------------------------|-------|-------------------------|------------|---------|--------------------------|------------------------------------|
| <b>Sample</b><br>V3V1712-N          | <b>File ID</b><br>1B 3V29252.D                            | <b>DF</b><br>1 | <b>Analy</b><br>03/05/ |       | <b>By</b><br>BR         | Pre<br>n/a | ep Date | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>V3V1712 |
| <b>The QC rep</b><br>D55464-2, 1    | ported here applies to                                    | the follo      | wing samp              | oles: |                         |            |         | Method: SW84             | 16 8260B                           |
| CAS No.                             | Compound                                                  |                | Result                 | RI    |                         | MDL        | Units   | Q                        |                                    |
| 71-43-2                             | Benzene                                                   |                | ND                     | 1.0   | )                       | 0.25       | ug/l    |                          |                                    |
| CAS No.                             | Surrogate Recoverie                                       | s              |                        | L     | imits                   |            |         |                          |                                    |
| 17060-07-0<br>2037-26-5<br>460-00-4 | 1,2-Dichloroethane-E<br>Toluene-D8<br>4-Bromofluorobenzer |                | 107%<br>105%<br>92%    | 70    | 2-130<br>0-130<br>9-130 | %          |         |                          |                                    |

## **Blank Spike Summary**

| Job Numb<br>Account:<br>Project: | er: D55464<br>DCPMCODN D<br>TASMCOA:DC |                 | , LP                        |                 |                         |                          |                                    |
|----------------------------------|----------------------------------------|-----------------|-----------------------------|-----------------|-------------------------|--------------------------|------------------------------------|
| <b>Sample</b><br>V3V1709-I       | <b>File ID</b><br>3S 3V29172.D         |                 | <b>Analyzed</b><br>)3/03/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | <b>Analytical Batch</b><br>V3V1709 |
| -                                | ported here applies to<br>, D55464-12  | ) the following | samples:                    |                 |                         | Method: SW84             | 6 8260B                            |
| CAS No.                          | Compound                               | Spi<br>ug/1     |                             | BSP<br>%        | Limits                  |                          |                                    |
| 71-43-2                          | Benzene                                | 50              | 44.1                        | 88              | 70-130                  |                          |                                    |
|                                  | Ethylbenzene                           | 50              | 47.3                        | 95              | 70-130                  |                          |                                    |
| 100-41-4                         |                                        |                 | 16.0                        | 94              | 70-130                  |                          |                                    |
| 100-41-4<br>108-88-3             | Toluene                                | 50              | 46.8                        | 94              | 70-130                  |                          |                                    |

| CAS No.    | Surrogate Recoveries  | BSP  | Limits  |
|------------|-----------------------|------|---------|
| 17060-07-0 | 1,2-Dichloroethane-D4 | 99%  | 62-130% |
| 2037-26-5  | Toluene-D8            | 105% | 70-130% |
| 460-00-4   | 4-Bromofluorobenzene  | 91%  | 69-130% |

6.2.1 6

#### Blank Spike Summary Job Number: D55464

| Account:<br>Project:                                                                   | DCPMCODN D<br>TASMCOA:DC    |                | <i>,</i>                 |                 |                         |                          |                             |
|----------------------------------------------------------------------------------------|-----------------------------|----------------|--------------------------|-----------------|-------------------------|--------------------------|-----------------------------|
| Sample<br>V6V1332-BS                                                                   | <b>File ID</b><br>6V23622.D | <b>DF</b><br>1 | <b>Analyzed</b> 03/03/14 | <b>By</b><br>BR | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | Analytical Batch<br>V6V1332 |
| The QC reported here applies to the following samples:       Method:       SW846 8260B |                             |                |                          |                 |                         |                          |                             |

D55464-1, D55464-2, D55464-3, D55464-4, D55464-5, D55464-6, D55464-7, D55464-8, D55464-9, D55464-10

| CAS No.   | Compound             | Spike<br>ug/l | BSP<br>ug/l | BSP<br>% | Limits |
|-----------|----------------------|---------------|-------------|----------|--------|
| 71-43-2   | Benzene              | 50            | 53.1        | 106      | 70-130 |
| 100-41-4  | Ethylbenzene         | 50            | 54.2        | 108      | 70-130 |
| 108-88-3  | Toluene              | 50            | 52.8        | 106      | 70-130 |
| 1330-20-7 | Xylene (total)       | 150           | 150         | 100      | 70-130 |
| CAS No.   | Surrogate Recoveries | BSP           | Lir         | nits     |        |

| 17060-07-0 | 1,2-Dichloroethane-D4 | 100% | 62-130% |
|------------|-----------------------|------|---------|
| 2037-26-5  | Toluene-D8            | 98%  | 70-130% |
| 460-00-4   | 4-Bromofluorobenzene  | 102% | 69-130% |

6.2.2

ດ

# Blank Spike Summary

460-00-4 4-Bromofluorobenzene

| Job Numbe<br>Account:<br>Project: | r: D55464<br>DCPMCODN DO<br>TASMCOA:DCF |                |               | þ                     |                    |                         |                          |                             |
|-----------------------------------|-----------------------------------------|----------------|---------------|-----------------------|--------------------|-------------------------|--------------------------|-----------------------------|
| <b>Sample</b><br>V3V1712-B        | <b>File ID</b><br>S 3V29251.D           | <b>DF</b><br>1 |               | <b>lyzed</b><br>05/14 | <b>By</b><br>BR    | <b>Prep Date</b><br>n/a | <b>Prep Batch</b><br>n/a | Analytical Batch<br>V3V1712 |
| <b>The QC rep</b><br>D55464-2, 1  | <b>Dorted here applies to</b>           | the follo      | owing sar     | mples                 | :                  |                         | Method: SW840            | 5 8260B                     |
| CAS No.                           | Compound                                |                | Spike<br>ug/l | BSI<br>ug/l           |                    | Limits                  |                          |                             |
| 71-43-2                           | Benzene                                 |                | 50            | 50.2                  | 2 100              | 70-130                  |                          |                             |
| CAS No.                           | Surrogate Recoverie                     | S              | BSP           |                       | Limits             |                         |                          |                             |
| 17060-07-0<br>2037-26-5           | 1,2-Dichloroethane-D<br>Toluene-D8      | 4              | 102%<br>105%  |                       | 62-130%<br>70-130% |                         |                          |                             |

69-130%

94%

### Matrix Spike/Matrix Spike Duplicate Summary

| Job Number: | D55464                     |
|-------------|----------------------------|
| Account:    | DCPMCODN DCP Midstream, LP |
| Project:    | TASMCOA:DCP RR EXT         |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| D55492-5MS  | 3V29179.D | 1  | 03/03/14 | BR | n/a       | n/a        | V3V1709          |
| D55492-5MSD | 3V29180.D | 1  | 03/03/14 | BR | n/a       | n/a        | V3V1709          |
| D55492-5    | 3V29178.D | 1  | 03/03/14 | BR | n/a       | n/a        | V3V1709          |
|             |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: SW846 8260B

D55464-11, D55464-12

| CAS No.                                      | Compound                                                      | D55492-5<br>ug/l Q   | Spike<br>ug/l         | MS<br>ug/l                  | MS<br>%                  | MSD<br>ug/l                   | MSD<br>%                | RPD              | Limits<br>Rec/RPD                                |
|----------------------------------------------|---------------------------------------------------------------|----------------------|-----------------------|-----------------------------|--------------------------|-------------------------------|-------------------------|------------------|--------------------------------------------------|
| 71-43-2<br>100-41-4<br>108-88-3<br>1330-20-7 | Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total)          | ND<br>ND<br>ND<br>ND | 50<br>50<br>50<br>150 | 50.7<br>53.3<br>53.1<br>161 | 101<br>107<br>106<br>107 | 49.2<br>52.5<br>52.1<br>159   | 98<br>105<br>104<br>106 | 3<br>2<br>2<br>1 | 62-130/30<br>63-130/30<br>60-130/30<br>67-130/30 |
| CAS No.                                      | Surrogate Recoveries                                          | MS                   | MSD                   | D5:                         | 5492-5                   | Limits                        |                         |                  |                                                  |
| 17060-07-0<br>2037-26-5<br>460-00-4          | ) 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 98%<br>105%<br>92%   | 98%<br>105%<br>92%    | 102<br>104<br>89%           | 1%                       | 62-130%<br>70-130%<br>69-130% | 6                       |                  |                                                  |



6.3.1

#### Matrix Spike/Matrix Spike Duplicate Summary

| Job Number: | D55464                     |
|-------------|----------------------------|
| Account:    | DCPMCODN DCP Midstream, LP |
| Project:    | TASMCOA:DCP RR EXT         |

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| D55464-8MS  | 6V23637.D | 1  | 03/04/14 | BR | n/a       | n/a        | V6V1332          |
| D55464-8MSD | 6V23638.D | 1  | 03/04/14 | BR | n/a       | n/a        | V6V1332          |
| D55464-8    | 6V23636.D | 1  | 03/04/14 | BR | n/a       | n/a        | V6V1332          |
|             |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: SW846 8260B

D55464-1, D55464-2, D55464-3, D55464-4, D55464-5, D55464-6, D55464-7, D55464-8, D55464-9, D55464-10

| CAS No.                                      | Compound                                                      | D55464-8<br>ug/l Q   | Spike<br>ug/l         | MS<br>ug/l                  | MS<br>%                  | MSD<br>ug/l                   | MSD<br>%                | RPD              | Limits<br>Rec/RPD                                |
|----------------------------------------------|---------------------------------------------------------------|----------------------|-----------------------|-----------------------------|--------------------------|-------------------------------|-------------------------|------------------|--------------------------------------------------|
| 71-43-2<br>100-41-4<br>108-88-3<br>1330-20-7 | Benzene<br>Ethylbenzene<br>Toluene<br>Xylene (total)          | ND<br>ND<br>ND<br>ND | 50<br>50<br>50<br>150 | 54.6<br>53.9<br>53.9<br>150 | 109<br>108<br>108<br>100 | 54.1<br>53.4<br>53.0<br>148   | 108<br>107<br>106<br>99 | 1<br>1<br>2<br>1 | 62-130/30<br>63-130/30<br>60-130/30<br>67-130/30 |
| CAS No.                                      | Surrogate Recoveries                                          | MS                   | MSD                   | D5                          | 5464-8                   | Limits                        |                         |                  |                                                  |
| 17060-07-0<br>2037-26-5<br>460-00-4          | ) 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 101%<br>98%<br>101%  | 103%<br>98%<br>101%   | 999<br>100<br>959           | )%                       | 62-1309<br>70-1309<br>69-1309 | 6                       |                  |                                                  |



### Matrix Spike/Matrix Spike Duplicate Summary

| Job Number: | D55464                     |
|-------------|----------------------------|
| Account:    | DCPMCODN DCP Midstream, LP |
| Project:    | TASMCOA:DCP RR EXT         |

| Sample       | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|--------------|-----------|----|----------|----|-----------|------------|------------------|
| D55494-50MS  | 3V29266.D | 25 | 03/05/14 | BR | n/a       | n/a        | V3V1712          |
| D55494-50MSD | 3V29267.D | 25 | 03/05/14 | BR | n/a       | n/a        | V3V1712          |
| D55494-50    | 3V29265.D | 25 | 03/05/14 | BR | n/a       | n/a        | V3V1712          |
|              |           |    |          |    |           |            |                  |

#### The QC reported here applies to the following samples:

Method: SW846 8260B

D55464-2, D55464-3

| CAS No.                             | Compound                                                    | D55494-50<br>ug/l Q | Spike<br>ug/l       | MS<br>ug/l        | MS<br>% | MSD<br>ug/l                   | MSD<br>% | RPD | Limits<br>Rec/RPD |
|-------------------------------------|-------------------------------------------------------------|---------------------|---------------------|-------------------|---------|-------------------------------|----------|-----|-------------------|
| 71-43-2                             | Benzene                                                     | 1430                | 1250                | 2620              | 95      | 2690                          | 101      | 3   | 62-130/30         |
| CAS No.                             | Surrogate Recoveries                                        | MS                  | MSD                 | D55494-50         |         | Limits                        |          |     |                   |
| 17060-07-0<br>2037-26-5<br>460-00-4 | 1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 104%<br>104%<br>95% | 101%<br>105%<br>92% | 106<br>105<br>88% | %       | 62-130%<br>70-130%<br>69-130% | ,<br>)   |     |                   |

ດ

Section 7



General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

#### Login Number: D55464 Account: DCPMCODN - DCP Midstream, LP Project: TASMCOA:DCP RR EXT

| Analyte           | Batch ID        | RL     | MB<br>Result | Units | Spike<br>Amount | BSP<br>Result | BSP<br>%Recov | QC<br>Limits |
|-------------------|-----------------|--------|--------------|-------|-----------------|---------------|---------------|--------------|
| Bromide           | GP12055/GN23802 | 0.050  | 0.0          | mg/l  | 0.5             | 0.531         | 106.2         | 90-110%      |
| Bromide           | GP12063/GN23819 | 0.050  | 0.0          | mg/l  | 0.5             | 0.531         | 106.2         | 90-110%      |
| Chloride          | GP12055/GN23802 | 0.50   | 0.0          | mg/l  | 5               | 5.15          | 103.0         | 90-110%      |
| Chloride          | GP12063/GN23819 | 0.50   | 0.0          | mg/l  | 5               | 5.02          | 100.4         | 90-110%      |
| Fluoride          | GP12055/GN23802 | 0.10   | 0.0          | mg/l  | 1               | 1.07          | 107.0         | 90-110%      |
| Fluoride          | GP12063/GN23819 | 0.10   | 0.0          | mg/l  | 1               | 1.05          | 105.0         | 90-110%      |
| Nitrogen, Nitrate | GP12055/GN23802 | 0.010  | 0.0          | mg/l  | 0.1             | 0.102         | 102.0         | 90-110%      |
| Nitrogen, Nitrite | GP12055/GN23802 | 0.0040 | 0.0          | mg/l  | 0.05            | 0.0509        | 101.8         | 90-110%      |
| Sulfate           | GP12055/GN23802 | 0.50   | 0.0          | mg/l  | 5               | 5.23          | 104.6         | 90-110%      |
| Sulfate           | GP12063/GN23819 | 0.50   | 0.0          | mg/l  | 5               | 5.11          | 102.2         | 90-110%      |

Associated Samples:

Batch GP12055: D55464-1, D55464-2, D55464-3, D55464-4, D55464-5 Batch GP12063: D55464-6, D55464-7, D55464-8, D55464-9, D55464-10, D55464-11, D55464-12 (\*) Outside of QC limits 7

7.1



#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

#### Login Number: D55464 Account: DCPMCODN - DCP Midstream, LP Project: TASMCOA:DCP RR EXT

| Analyte           | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec  | QC<br>Limits |
|-------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|-------|--------------|
| Bromide           | GP12055/GN23802 | D55453-1     | mg/l  | 0.0                | 1               | 1.0          | 100.0 | 80-120%      |
| Bromide           | GP12063/GN23819 | D55464-6     | mg/l  | 3.4                | 10              | 13.6         | 102.0 | 80-120%      |
| Chloride          | GP12055/GN23802 | D55453-1     | mg/l  | 15.2               | 10              | 25.5         | 103.0 | 80-120%      |
| Chloride          | GP12063/GN23819 | D55464-6     | mg/l  | 433                | 100             | 532          | 99.0  | 80-120%      |
| Fluoride          | GP12055/GN23802 | D55453-1     | mg/l  | 0.85               | 2               | 2.8          | 97.5  | 80-120%      |
| Fluoride          | GP12063/GN23819 | D55464-6     | mg/l  | 3.4                | 20              | 23.8         | 102.0 | 80-120%      |
| Nitrogen, Nitrate | GP12055/GN23802 | D55453-1     | mg/l  | 0.094              | 0.2             | 0.30         | 103.0 | 80-120%      |
| Nitrogen, Nitrite | GP12055/GN23802 | D55453-1     | mg/l  | 0.0                | 0.1             | 0.084        | 84.0  | 80-120%      |
| Sulfate           | GP12055/GN23802 | D55453-1     | mg/l  | 30.3               | 10              | 40.3         | 100.0 | 80-120%      |
| Sulfate           | GP12063/GN23819 | D55464-6     | mg/l  | 252                | 100             | 353          | 101.0 | 80-120%      |

Associated Samples:

Batch GP12055: D55464-1, D55464-2, D55464-3, D55464-4, D55464-5 Batch GP12055: D55464-6, D55464-7, D55464-8, D55464-9, D55464-10, D55464-11, D55464-12 (\*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits





#### MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

#### Login Number: D55464 Account: DCPMCODN - DCP Midstream, LP Project: TASMCOA:DCP RR EXT

| Analyte           | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MSD<br>Result | RPD | QC<br>Limit |
|-------------------|-----------------|--------------|-------|--------------------|-----------------|---------------|-----|-------------|
| Bromide           | GP12055/GN23802 | D55453-1     | mg/l  | 0.0                | 1               | 1.0           | 0.0 | 20%         |
| Bromide           | GP12063/GN23819 | D55464-6     | mg/l  | 3.4                | 10              | 13.5          | 0.7 | 20%         |
| Chloride          | GP12055/GN23802 | D55453-1     | mg/l  | 15.2               | 10              | 25.4          | 0.4 | 20%         |
| Chloride          | GP12063/GN23819 | D55464-6     | mg/l  | 433                | 100             | 533           | 0.2 | 20%         |
| Fluoride          | GP12055/GN23802 | D55453-1     | mg/l  | 0.85               | 2               | 2.8           | 0.0 | 20%         |
| Fluoride          | GP12063/GN23819 | D55464-6     | mg/l  | 3.4                | 20              | 23.2          | 2.6 | 20%         |
| Nitrogen, Nitrate | GP12055/GN23802 | D55453-1     | mg/l  | 0.094              | 0.2             | 0.29          | 3.4 | 20%         |
| Nitrogen, Nitrite | GP12055/GN23802 | D55453-1     | mg/l  | 0.0                | 0.1             | 0.085         | 1.2 | 20%         |
| Sulfate           | GP12055/GN23802 | D55453-1     | mg/l  | 30.3               | 10              | 40.2          | 0.2 | 20%         |
| Sulfate           | GP12063/GN23819 | D55464-6     | mg/l  | 252                | 100             | 354           | 0.3 | 20%         |

Associated Samples:

Batch GP12055: D55464-1, D55464-2, D55464-3, D55464-4, D55464-5 Batch GP12055: D55464-6, D55464-7, D55464-8, D55464-9, D55464-10, D55464-11, D55464-12 (\*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits



