Permit Application

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Volume II Part 2

November 2015 PSC Project # 01058015

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

	· · ·		
·			
	_		
		···	

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

	15-1	
	. ,	
The undersigned hereby certifies that, to the best of his knowledge belief, the foregoing is a true and correct record of the above deschole. Driller $\frac{12/28/08}{(mm/dd/year)}$	and ribed	IE ENOLVER OF FIRE

FOR STATE ENGINEER USE ONLY

Quad ____; FWL ____; FSL ____; Use _____; Location No. _____

Do Not Write Below This Line

	Do Not Wi	rite Below This	Line	
File Number: Form: wr-20	993	page 4 of 4	Trn Number: _	415642

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

NLB

1. OWNER OF WELL
Name: Louisiana Energy Services Work Phone: 505-394-5204
Address: P.O. Box 1789
City: Eunice State: NM Zip: 88231
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. $\frac{NE_{1/4}}{IR} = \frac{SW_{1/4}}{Lea} = \frac{NE_{1/4}}{IR} = \frac{32}{I}$ Township: $\frac{2/S}{2}$ Range: $\frac{38E}{I}$ N.M.P.M.
B. X =feet, Y =feet, N.M. Coordinate System Zone in theGrant. U.S.G.S. Quad Map
C. Latitude: <u>32</u> d <u>26</u> m <u>14.9172</u> s Longitude: <u>103</u> d <u>04</u> m <u>45.4866</u> s
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract of the Of the Subdivision recorded in County.
G. Other:
H. Give State Engineer File Number if existing well: <u>CP-994</u>
I. On land owned by (required): Louisiana Energy Services
3. DRILLING CONTRACTOR
License Number: 1575 Name: Talon Drilling Agent: Shane Currie Mailing Address: 921 N. Bivins
City: Amarillo State: <u>TX</u> Zip: <u>79107</u>
4. DRILLING RECORD
Drilling began: <u>12/5/08</u> ; Completed: <u>12/5/08</u> ; Type tools: <u>Air-Rotary</u> ; Size of hole: <u>7-7/8</u> in.; Total depth of well: <u>36</u> ft.; Completed well is: <u>Monitor</u> (shallow, artesian); Depth to water upon completion of well: <u>Dry</u> ft.
Do Not Write Below This Line
File Number: <u>CP-994</u> Form: wr-20 <i>Page 1 of 4</i> <i>21,38,32,232</i> <i>Monitor</i>

File Number: _____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Fee From To Drv	t Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
<u></u>			

6. RECORD OF CASING

Diameter (inches) <u>4 PVC</u>	Pounds per ft. Sch 40	Threads per in. 2	Depth : Top +3	in Feet Bottom 36	Length (feet) 39	Type of Shoe end cap	Perfo From 26	rations To <u>36</u>
					<u> </u>			
		·		<u> </u>				

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
0	5	7-7/8		<u>20 Sacks</u>	Trimie (Bentonite/Cement)
5	23	7-7/8	5		Poured (Bentonite chips)

_ ____ ___

8. PLUGGING RECORD

		>	111
Plugging Contractor:		-=) m
Address			
Plugging Method:			
Date Well Plugged:			
		-0	
Plugging approved by:			ر ات <u>نتر</u>
<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	State Engineer Representative	••	
			()) (11

	No. Depth Top	in Feet Bottom	Cubic Feetof Cement
1			
2			· <u>······</u> ········
4			
5	<u></u>		

Do Not Write Below This Line

File Number: <u>CP-994</u> Form: wr-20

Trn N page 2 of 4

-

Trn Number: 415643

- -----

.

<u>____</u>

• .]

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth From	in Feet	Thickness in feet	Color and Type of Material Encountered
0	10	10	Sandstone, lightly cemented, burnt orange
10	23	13	Caliche, hard, gray
23	34	11	Gravelly sand, chert gravel, red sand matrix
34	36	2	Claystone, dark purple
_			
			· · · · · · · · · · · · · · · · · · ·
· · ·			an a p
			······································

Do Not Write Below This Line

....

File Number: <u>CP-994</u> Form: wr-20

page 3 of 4

.

Trn Number: 415443

File	Number:			
	(For	OSE	Use	Only)

2

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

		······································		
			ب	
belief, the foregoing is a topole.	irue and corn	rect record of the	above desõji	bed
Driller		(mm/dd/year)	-0	
Driller		(mm/dd/year)	с 	
Driller FOR ST	TATE ENGINEE	(mm/dd/year)		<u>.</u> ==
FOR ST	 ГАТЕ ENGINEE Use;	(mm/dd/year) (mm/dd/year) R USE ONLY		
Driller Driller FOR ST Quad; FWL; FSL; Do	TATE ENGINEE Use; Not Write Be	(mm/dd/year) (mm/dd/year) R USE ONLY Location No		

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

....

. . .

In the second sec

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

..

- .

-1

1. OWNER OF WELL	
Name: Louisianna Every Services	Work Phone: 505-394,5204
Address: P. D. Rex 1789	Home Phone:
	_
City: <u>EvalCe</u>	_ State: <u>Aia</u> Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{5E_{1/4}}{\ln 1} \frac{NE_{1/4}}{Lea} \frac{NE_{1/4}}{NE_{1/4}}$ Section: $\frac{32}{32}$ Township	0: <u>215</u> Range: <u>38E</u> N.M.P.M. County.
B. X = feet, Y =feet, Y =feet, Y =feet, Y =feet, Y =feet, Y =feet, Y =	eet, N.M. Coordinate System Grant.
C Latitude $\frac{37}{2}$ d $\frac{31}{2}$ $\frac{31607}{2}$	
C. Latitude: <u>JL</u> a <u>CG</u> m <u>Z(-101</u> s Longitude:	<u>103 d 04 m 27.019</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wol	
I. On land owned by (required); (required);	
1. On Tand Owned by (required): _ Les County .	N M
3. DRILLING CONTRACTOR	
License Number: _(575	
Name: Talon / LPE	Work Phone: 806,467,0607
Mailing Address: 921 Nr. Bivins	Home Phone: 806, 076.8720
City: Automative	
	State: <u>1x</u> Zip: <u>79107</u>
4. DRILLING RECORD	
Drilling began: $3/15/07$; Completed: $4/03/07$; Size of hole: $7-7\%$ in.; Total depth of well: 220.5 Completed well is: <u>Monitor</u> (shallow, arts: Depth to water upon completion of well: <u>175.53</u>	Type tools: <u>Div rotary</u> ; ft.; sian); ft.
	S S
Do Not Write Below This Lir	
File Number: <u>CF-CF4</u> Trr	Number: 376945
POINT. WI-20 page 1 of 4	
mit	(1,38,32,224) R
1 Criler	
	0 0 CE

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet From To <u>178,83 215.1</u>	Thickness in feet 39.27	Description of water-bearing formation <u>Claystone & siltstone</u>	Estimated Yield (GPM) 〇一〇

6. RECORD OF CASING

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ft.	per in.	Top	Bottom	(feet)	,	From	То
	Sch 40 PVC		0	198.1	1981	N/i2	NA	
	3-h 110 192	2	198.1	-218.1	_20	PVC and cap	198.1	21811
							·	<u> </u>
		<u> </u>						

7. RECORD OF MUDDING AND CEMENTING

Depth From	in Feet To	Hole Diameter	Sacks of mud	Cubic Feet of Cement	Method of Placement
- 15	<u> </u>	<u>- 7/8</u> <u>- 7/8</u>	<u> </u>	_20	tremie - bentonite /cement

- _____ _____

8. PLUGGING RECORD

.....

Plugging Contractor: Address: Plugging Method: Date Well Plugged:					
Plugging approved by:					
	S	tate Engineer Rep	presentative		_
No. Depth Top 1 2 3 4 5	b in Feet Bottom	Cubic Feetof Cer	nent	1001 APR 27 P 2: (STATE ENGINEER OFFI
Do	Not Write	Below This Line		00	Su
File Number: <u>CP. 947</u> Form: wr-20	pa	Trn N age 2 of 4	Jumber: <u>3769</u>	45	-
	\geq	Monitor,	21, 38, 32), ,,,,,,(4

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

-

Depth	in Feet	Thickness	Color and Type of Material Encountered	
From	To	in feet		
Ð	7.	2_	SAND, LOSSE dery browing tau	
	25	2.3	CALIFIC SEEL draw CLADY	
25	20		SANDY CONTRACT ON AND TO THE	
<u> </u>			SKIND AVAJEL OVY OVANCE TO TAM	, .
<u></u>	150		<u>Clay, highly plastic, marcon with gray mottle</u>	incj
<u> (5C </u>	140		- Siltstone, bardidry gray with marcon mot	Hing
140	145	55	Claystone, dry maroon w/ gray mottling	-
_195	205	10	Sillstone, have dry gray wi maroon splotching	4
205	707		claystone, firm dry navoon w/ gray mottling	14
207	215	8	Siltstone with clarstone hard, grav & margo	14
7:5	230	15	clarstone, firm dry marcon w/ aray mottlin	~
				<i>j</i>
	·			
		·		
		· _ · · · · · · · · · · · · · · · · · ·		
	·	·		
·			· · · · · · · · · · · · · · · · · · ·	
	_	·····		
·				
	·			
	·	· · · ·	<u></u>	
<u> </u>			<u> </u>	
				5
				,
				1
				-
		De	o Not Write Below This Line 🖸 🔗 🖌	ń
		2010		
File Numb	er: ('}	- 441	Trn Number: $37694 <$	
F	orm: wr-	20	name 3 of 4	
~			20 0001	
			21, 38, 32, 224	
			D i i L	
			1 MENITON	

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

-

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{Driller}{Driller} \qquad \frac{D4/24/2007}{(mm/dd/year)}$

	2931	RUSN
FOR STATE ENGINEER USE ONLY	kp3 27	ENGINE
Quad; FWL; FSL; Use; Location No	بة 2:01	ER OFFICE
Do Not Write Below This Line		
File Number: $\frac{(P-947)}{\text{Form: wr-20}}$ page 4 of 4 M_{000} : text. Trn Number: $\frac{3766}{.21.38.32}$	745	 /-

••

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

Witt?

1. OWNER OF WELL	
Name: Louisina Energy Services	Work Phone: <u>605.394.52</u> 04
Address: P. C. Box 1789	Home Phone:
City: Eunice	
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{NE}{1/4}$ $\frac{NE}{Lea}$ $\frac{NE}{1/4}$ Section: 32 Township	0.215 Range:38EN.M.P.M. County.
B. X = feet, Y =feet, Y =	eet, N.M. Coordinate System
C. Latitude: <u>37</u> d <u>26</u> m <u>33.098</u> s Longitude:	: <u>103</u> d <u>04</u> m 27.582 s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	1: <u>CP-948</u>
I. On land owned by (required): Lea County	, NM
3. DRILLING CONTRACTOR	
License Number: 1575	
Name: Tolon/LPE	Work Phone: 806.467.0607
Mailing Address: <u>921 N. Bivins</u>	Home Phone: <u>806.676.872</u> 0
City: <u>Amavillo</u>	State: 7× Zip: 79107
4. DRILLING RECORD	
Drilling began: <u>3/15/07</u> ; Completed: <u>4/03/07</u> ; Size of hole: <u>7-7/8</u> in.; Total depth of well: <u>32.2</u> Completed well is: <u>Monitor</u> (shallow, arte Depth to water upon completion of well: <u>DRY</u>	Type tools: <u>Air rotary</u> ; 2 ft.; sian); ft.
Do Not Write Below This Lip	ne min
File Number: <u>CP-948</u> Form: wr-20 page 1 of 4	n Number: <u>376 9460 770</u>
Monitor	21,38,32,222

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet From To	Thickness in feet	Description of water-bearing formation DI2Y	Estimated Yield (GPM)
<u> </u>			
	<u> </u>		

6. RECORD OF CASING

~

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ru.	per In.	төр	BOLLOW	(ieet)		From	То
<u> </u>	<u>504 40 PVC</u>	<u> </u>	<u> </u>	_22.2	22.2	N/4	NI ÍA	
<u> </u>	Sch 40 PVC		27.2	32.2	(0	PVC end Cap	22.2	32.2
<u> </u>								
<u> </u>								

7. RECORD OF MUDDING AND CEMENTING

Depth in Feet From To	Hole Diameter	Sacks of mud	Cubic Feet of Cement	Method of Placement
0 10	<u>- 7- 7/8</u> <u>- 7 - 7/8</u>		2:6 N/A	<u>ircmie - bentonite/cement</u> pour - bentonite chips

- _____

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:		
	State Engineer Representative	
No. Depth Top 1 2 3 4 5	in Feet Cubic Feetof Cement	STATE ENGINEER OFFIC ROSWELL, NEW MEXIC
Do	Not Write Below This Line	0H
File Number: <u>CP-948</u> Form: wr-20	Trn Number: <u>376946</u> page 2 of 4	_
	Monitor 21, 38.32.2	177

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

..

Depth in Feet From To O 3 30 30 30 35	Thickness in feet <u>3</u> 27 	Color and Type of Material Encountered <u>Topsoil - Silt loose; dry, brown</u> <u>Caliche, bard, dry, tan to gray</u> <u>Clay, highly platic, dry, maroon & gray</u>	
	······································		
	· · · · · · · · · · · · · · · · ·		STATE END
		27 27 27 0 27 0	THEER OF FIG
File Number: Form: wr-2	<u>D- 948</u> 0	o Not Write Below This Line - Trn Number: <u>376946</u> page 3 of 4	
		Monitor 21,38,32.5	222

4

.

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{Driller}{Driller} = \frac{O4 \left(\frac{24}{2007}\right)}{(mm/dd/year)}$

	FOR STATE ENGINEER USE ONLY	
Quad; FWL; FSI	L; Use; Location No	STATE ELIGIN ROSVELL, N 2001 AFR 2 T
	Do Not Write Below This Line	
File Number: <u>CP-94</u> Form: wr-20	Trn Number: <u>37</u> page 4 of 4	69460 EXICO
	Monitor 21.38.	32.222

.

and the second second

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

W.C.

.

1. OWNER OF WELL	
Name: Louisiana Eneuropy Services	Work Phone: 505.394.5204
Address: P. C. Box 1789	Home Phone:
City: Eunice	State: NM Zip: _ 85731
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. <u>NW</u> 1/4 <u>NE</u> 1/4 <u>NE</u> 1/4 Section: <u>32</u> Townshi in <u>Lecc</u>	p: <u>215</u> Range: <u>38E</u> N.M.P.M. County.
B. X =feet, Y =f Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System Grant.
C. Latitude: <u>37</u> d <u>76 m 37-895</u> s Longitude	: <u>103 d 04 m 39.176 s</u>
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if evicting we	
The state signed file kumber if existing we	(<u>p= 177</u>
1. On land owned by (required): Lta (ounty)	NM
3. DRILLING CONTRACTOR	
License Number: 1575	
Name: Talon /LPE	Work Phone: 806.467.0607
Mailing Address: <u>921 N. Bivins</u>	_ Home Phone: <u>806.676.87</u> 20
City: Anapollo	- State dy Rine 70107
	State:/ <u>X</u>
4. DRILLING RECORD	
Drilling began: $3/16/07$; Completed: $4/03/07$; Size of hole: $3-7/8$ in.; Total depth of well: 240. Completed well is: $Monitor$ (shallow, arte Depth to water upon completion of well: $D/2Y$	Type tools: <u>Air Potary</u> ; <u>4</u> ft.; sian); ft.
	2 : 22 : 22 : 23 : 23 : 23 : 23 : 23 :
DO NOT Write Below This Li	ne min
File Number: $UP - 9449$ Tr	n Number: 516947 19
page 1 of 4	O C
Without	
· · · · · · · · · · · · · · · · · · ·	21, 38, 32, 221

. . .

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Fe From To	eet Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
<u> </u>			

6. RECORD OF CASING

.

Diameter (inches)	Pounds per ft.	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfor From	ations To
<u>4.0</u> <u>4.0</u>	<u>56h 40 PVC</u> 5.h 40 PVC	 	220.4	220.9 240.9	220.4	N/A PVC end cap	N/A 220.9	240.9
			<u> </u>	·				

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
<u> </u>		Diameter <u>7-78</u>	of mud	of Cement てし	tremis , bentonite / energy
- 15	7.15	_7-7/8	53	NIA	pour - bentonite peilets
_				<u> </u>	

_____ 8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Dept Top 1 2 3 4 5	h in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFFI ROSWELL, NEW HEXT
Ľ	o Not Write Below This Line	02 02
File Number: <u>CP-949</u> Form: wr-20	Trn Number: 376 page 2 of 4	947
	21.38.3 Moniter	222/

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

- '

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	То	in feet	
<u>C</u>	<u> </u>	!4	SAND, LOOSE, dry, orange to light red
<u> </u>		2.6	CALICITE, Moderately hard, chert, dry oranged rec
<u> 30 </u>	<u> </u>	20	SANDY, Gravel, chert, dry, tan to light orange
50		<u> </u>	CLAY, highly DIASTIC, firm, dry, 980 & Marcon
<u> </u>	125	0	Sillione hard moist gray
125	_170	55	claystone, dry, marcon w/ gray motiling
180	140		Siltstone & claystone interbedded, dry CURY
190	235	45	Claystone hard Dry Marcon w/ gray veining
235	240	5	Siltstone "havd to have, dry, gray
240	245	5	Claustone, have , dry marcon w/ gray form mothing
		<u> </u>	
<u> </u>			
-			
			SA
			111.00 171
		D	o Not Write Below This Line 🔅 😤 🖄
	10	0,10	
rite Numbe	er: <u>CP</u>	7 - 7	Trn Number: <u>576947</u>
Fo	orm: wr-2	20	page 3 of 4
			21.38.32 221
			Manita
			v ' lonulon

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{\partial 4}{\partial 24} \frac{\partial 4}{\partial 24} \frac{\partial 7}{\partial 4}$ ler (mm/dd/year) Driller

	1017	STATE I
FOR STATE ENGINEER USE ONLY	pn 2	THCI.
Quad; FWL; FSL; Use; Location No	J D 2:02	HER OFFICE
Do Not Write Below This Line		
File Number: $\frac{CP-949}{\text{Form: wr-20}}$ Trn Number: $\frac{3769}{2}$	47	
Monitor 21,38.3.	22	J. /

and the second second

---- -

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

-

WLB

1. OWNER OF WELL	North Dhanas (AC ZGUI - Z/V)
Contact: Laurie Wetherell	Home Phone:
Address: <u>2.0. Box 1789</u>	_
City: Eunice	State: <u>NM</u> Zip: <u>88731</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{NW_{1/4}}{\ln Lea}$ 1/4 $\frac{NW_{1/4}}{\ln Lea}$ Township	215 Range: <u>38</u> EN.M.P.M. County.
B. X =feet, Y =feet,	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>//6.2</u> s Longitude:	103 a 5 m 2/12 s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	1: <u>CP-959</u>
I. On land owned by (required): Let County	, NIM
3. DRILLING CONTRACTOR	,
License Number: 1575 Name: Talon (LPE Agent: Shave Curvie Mailing Address: 926 AJ, Bivins	Work Phone: <u>806.417.06</u> 07 Home Phone: <u>806.676.8220</u>
City: <u>HMarillo</u>	State: TX Zip: <u>79107</u>
4. DRILLING RECORD	
Drilling began: $3/23/c7$; Completed: $3/24/c7$; Size of hole: $7-7y$ in.; Total depth of well: $23/c7$ Completed well is: <u>Monitor</u> (shallow, arte Depth to water upon completion of well: <u>DRV</u>	Type tools: <u>Air Rotary</u> ft.; sian); ft. PRE PRE PRE PRE PRE PRE PRE PRE PRE PRE
Do Not Write Below This Lin	
File Number: <u>CP-454</u> Form: wr-20 page 1 of 4 Monitor	Number: <u>376939</u> 21, 38, 32, 131

··· ···· -

6

----- ··· -- ·

(For OSE Use Only)

--- ----

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth : From 	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
	·····			

6. RECORD OF CASING

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ft.	per in.	Тор	Bottom	(feet)		From	То
<u> </u>	Sch 40 PVC	<u>Z</u>	<u>0</u>	211	211	NIA		
<u> </u>	<u>5-6 40 PU</u>	Z	_21(231	20	PUC POND CAP	211	231
		<u> </u>		·				

7. RECORD OF MUDDING AND CEMENTING

Depth in Fe	eet Hole	Sacks	Cubic Feet	Method of Placement
From To	Diameter	of mud	of Cement	
$-\frac{0}{2}$	$\frac{0}{2} - \frac{7 - 78}{7}$	(tremie - pentonile / cement
	55 - 7 - 78	<u> </u>		pour - bento nite chips

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Depth Top 1 3 4	in Feet Cubic Feetof Cement	
5	Not Write Below This Line	
File Number: CP-959	Trn Number: 376959	
Form: wr-20	page 2 of 4 21.38.32.131 Monitor	/

(For OSE Use Only)

6

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth in	Feet	Thickness	Color and Type of Material Encountered
From	To	in feet	
	2	<u>Z</u>	_ SAND LOOSE MOIST OVERAGE/ Brown
	ـ _گ		Citulate soft dry ton
- 45	<u>20</u>	5	Gavelly sand loose dry prange to tan
<u>-zo</u>	<u>30</u>	10	Claystone of siltstone marcon & gray
<u> </u>	<u> 45</u> -	65	- Clarstone, or y marcon w/ gray Monthling
$-\frac{45}{10}$	$\frac{110}{120}$		Clarstone of silt stone dry marnoin & gray
-110 - 125	170		Claystone, nave, dry marcon w/ gray mothing
130	<u>- < < /</u>	75	CLAYSTONE UN SUTSTONE CITY MATCON & GVAY
$\frac{1}{2l0}$	210	5	Sitebook with a great and a great
ZIS	7.40	25	(Law store, moderal e hand dow washow i and
	<u></u> .		- and the presence with any maining gray
·			· · · · · · · · · · · · · · · · · · ·
<u> </u>	·		
<u> </u>			
		· · · · ·	
			「「日日」
			し 「 前 県
		Do	Not Write Below This Line
File Number.	\mathcal{O}	P-959	376959 <u>9</u> EA
Form	- Wr-20		Trn Number:
	· •11-20		
			Mi - 21, 38, 32, 131
			(MONITOR)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. Her $\frac{04/24/2007}{(\pi m/dd/year)}$ -----FS 27 FOR STATE ENGINEER USE ONLY Quad ____; FWL ____; FSL ____; Use ____; Location No. _____ Ð ÷ 0 Do Not Write Below This Line

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

 Do Not Write Below This Line

 File Number: CP-959

 Trn Number: 376959

 Form: wr-20

 page 4 of 4

 Monutor

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

.

-.

1. OWNER OF WELL	
Name: Louisiana Energy Services	Work Phone: <u>505.394.5204</u>
Address: P.D. Rox 1789	Home Phone:
	-
City: <u>Eunice</u>	State: <u>NM</u> Zip: <u>8873(</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $SE_{1/4} NE_{1/4} NW_{1/4}$ Section: 32 Township in Lea	o: <u>215</u> Range: <u>38E</u> N.M.P.M. County.
B. X = feet, Y =feet, Y =f	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26 m 23.387</u> s Longitude:	<u>103 d 04 m 57.803 s</u>
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	1: CP958
I. On land owned by (required): Lea County,	NIM
3. DRILLING CONTRACTOR	
License Number: 1575	
Name: Talon /LPE	Work Phone: 806 447 0607
Agent: <u>Shane Currie</u>	Home Phone: <u>\$26, 676, 87</u> 20
721 N. BIV/hS	
city: <u>Amavillo</u>	State: 7 <u>X</u> Zip: <u>79107</u>
4. DRILLING RECORD	ROS
Drilling began: $3/20/07$; Completed: $3/29/07$; Size of hole: $7-76$ in.; Total depth of well: 246 . Completed well is: <u>Monitor</u> (shallow, artes Depth to water upon completion of well: <u>217.19</u>	Type tools: <u>Air (of artan</u> 3ft.; sian); ft.
	2: 0
Do Not Write Below This Lir	
File Number: Form: wr-20 Page 1 of 4 Trr	Number: <u>376958</u>
Moniton	21.38.32.124

(For OSE Use Only)

_ _...

.

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth : From <u>217,19</u>	in Feet To <u>246.3</u>	Thickness in feet ZY://	Description of water-bearing formation <u>claysfone wijsiJisfone</u>	Estimated Yield (GPM) 	
<u> </u>				·	

6. RECORD OF CASING

-

.

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ft.	per in.	Тор	Bottom	(feet)		From	То
	Sch 40 PUC	2	0	226.3	22613	_N/A	NIA	
Ц	Sch 40 PVC	2	226.3	246.3	20	PUC End Cap	226.3	246,3
<u> </u>		······						

_ ____ ___ ___

7. RECORD OF MUDDING AND CEMENTING

the second se

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	1
_0	70	7-7/8	i	18	tremie - cement / bentonito
70	270	7-7/8	43	Nju	pour - bentonite chips
		<u> · · · · · · · · · · · · · · · · · ·</u>			

-- --

8. PLUGGING RECORD

-,

Plugging Contractor: Address: Plugging Method: Date Well Plugged:	
Plugging approved by:	State Engineer Representative
No. Dep Top 1 2 3 4 5 5	n in Feet Cubic Feetof Cement
File Number: <u>CP-958</u> Form: wr-20	Trn Number: <u>376958</u> page 2 of 4 21.38,32.124 Tillokitor

7

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

. .

Depth in Feet	Thickness	Color and Type of Material Encountered
From To	in feet	
0 5		SAND, LODSE, dampy burnt orange
5 35		CALICHE, hard, dry light orange to grav
35 40	5	SANDY GRAVEL, GRAY Sand Matrix
40 70	<u> </u>	CLAY, Plastic, FIRM gray & Marcon
<u> </u>	(12)	CLAUSTONE W/ siltetone doy marcon & gray
<u>-80</u> <u>77.5</u>	145	- Claystone, firm, dry marcon w/ gray moltling
225 245		claystone wisiltstone dry, light red
245 250	<u> </u>	Claystone Stift, dry marioon w/ gray mottling
<u> </u>		
<u> </u>		
<u> </u>		
<u> </u>		
		·····
· · · · · · · · · · · · · · · · · · ·		
·		
	<u></u>	
·		· · · · · · · · · · · · · · · · · · ·
·····		
		ti Cita
	D	o Not Write Below This Line
File Number: ()	1-458	Trn Number 5/6400 0
Form: wr-	20	page 3 of 4
		21 38 20 124
		Allowing to the
		/ VICALUCICI

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. <u>04/24/2007</u> (mm/dd/year) Driller 2 FU 51 :-> FOR STATE ENGINEER USE ONLY 9 Quad ____; FWL ____; FSL ____; Use ____; Location No. _____ Do Not Write Below This Line File Number: CP- 958 Form: wr-20 Trn Number: <u>376958</u> page 4 of 4 .21, 38, 32, 129 .21, 38, 32, 124

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WILD

1. OWNER OF WELL	
Name: LOIUSIANA ENergy Services	Work Phone: 505, 394, 5704
Contact: <u>Laurie Wetherell</u>	Home Phone:
Address: <u>P.O. Box 1789</u>	_
City: Eunice	State: NMZip: 88731
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{NE}{1/4}$ $\frac{NE}{NE}$ 1/4 $\frac{NUU}{1/4}$ Section: 32 Townshi	p: <u>2/5</u> Range: <u>38</u> EN.M.P.M. County.
B. X =feet, Y =f Zone in the U.S.G.S. Quad Mapf	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>33.072</u> s Longitude	: <u>103</u> d <u>05 m z.128 s</u>
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the
G. Other:	county.
	-
H. Give State Engineer File Number if existing we	11: <u>CP-951</u>
I. On land owned by (required): Let County,	11: <u>CP-951</u>
I. On land owned by (required): <u>Let County</u> , 3. DRILLING CONTRACTOR	NM
I. On land owned by (required): Lea County, 3. DRILLING CONTRACTOR	NM
 H. Give State Engineer File Number if existing we. I. On land owned by (required): Let County, 3. DRILLING CONTRACTOR License Number: 1575 	NM
H. Give State Engineer File Number if existing we I. On land owned by (required): <u>Let County</u> , 3. DRILLING CONTRACTOR License Number: <u>1575</u> Name: <u>Talow / LPE</u>	NM Work Phone: <u>806,467,0607</u>
H. Give State Engineer File Number if existing we. I. On land owned by (required): <u>Let County</u> , 3. DRILLING CONTRACTOR License Number: <u>1575</u> Name: <u>Tatou / LPE</u> Agent: <u>Stane Covvic</u> Mailing Address: <u>921</u> M. Riving	11: <u>CP-951</u> <u>NM</u> Work Phone: <u>806,467,0607</u> Home Phone: <u>806,676,822</u> 0
H. Give State Engineer File Number if existing we. I. On land owned by (required): <u>Let County</u> , 3. DRILLING CONTRACTOR License Number: <u>1575</u> Name: <u>1575</u> Name: <u>Talow / LPE</u> Agent: <u>Strave Corrie</u> Mailing Address: <u>921 N. Bivin 5</u>	11: <u>CP-951</u> <u>NM</u> Work Phone: <u>806,467,0607</u> Home Phone: <u>606,676,822</u> 0
H. Give State Engineer File Number if existing we I. On land owned by (required): <u>Let County</u> , 3. DRILLING CONTRACTOR License Number: <u>1575</u> Name: <u>Talow / LPE</u> Agent: <u>Shawe Corrie</u> Mailing Address: <u>921 N. Bivin 5</u> City: <u>Amavillo</u>	11: <u>CP-951</u> <u>NM</u> Work Phone: <u>806,467,0607</u> Home Phone: <u>606,676,822</u> 0 State: TX zip: 79107
 H. Give State Engineer File Number if existing we. I. On land owned by (required): Let Coduly, 3. DRILLING CONTRACTOR License Number: 1575 Name: 1575 Name: 7alou / LPE Agent: 5kaue Corris Mailing Address: 921 N. Bivin 5 City: Amarillo 4. DRILLING RECORD 	NM Work Phone: <u>806,467,0607</u> Home Phone: <u>606,676,822</u> 0 State: T <u>X</u> Zip: <u>79107</u>
H. Give State Engineer File Number if existing we. I. On land owned by (required): Let County, 3. DRILLING CONTRACTOR License Number: 1575 Name: $\underline{1575}$ Agent: $\underline{56ane\ Correc}$ Mailing Address: $\underline{921\ N.\ Bivin S}$ City: $\underline{Amarillo}$ 4. DRILLING RECORD Drilling began: $\underline{3/29/07}$; Completed: $\underline{3/29/07}$; Size of hole: $\underline{7-72}$ in.; Total depth of well: $\underline{261}$. Completed well is: $\underline{Monitor}$ (shallow, arter Depth to water upon completion of well: $\underline{243.31}$	11: <u>CP-951</u> <u>AIM</u> Work Phone: $\frac{806.467.0607}{606.676.8220}$ State: TX zip: <u>79107</u> Type tools: <u>Air (Graver Aller</u> <u>State: TX zip: 19107</u> Type tools: <u>Air (Graver Aller</u> <u>State: TX zip: 19107</u>
H. Give State Engineer File Number if existing we. I. On land owned by (required): Les County, 3. DRILLING CONTRACTOR License Number: 1575 Name: <u>Talow / LPE</u> Agent: <u>Strane Correc</u> Mailing Address: <u>921 N. Bivin 5</u> City: <u>Amavillo</u> 4. DRILLING RECORD Drilling began: <u>3/29/07</u> ; Completed: <u>3/29/07</u> ; Size of hole: <u>7-Vg</u> in.; Total depth of well: <u>261</u> . Completed well is: <u>Monitor</u> (shallow, arter Depth to water upon completion of well: <u>243.31</u> Do Not Write Below This Li	Il: <u>CP-951</u> NM Work Phone: $\frac{506.467.0607}{606.676.8220}$ State: TX zip: <u>79107</u> Type tools: <u>Air (Graver)</u> State: TX zip: <u>19107</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Type tools</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Type tools</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Air (Graver)</u> Type tools: <u>Type tools</u> Type tools: <u>Air (Graver)</u> Type too
H. Give State Engineer File Number if existing we. I. On land owned by (required): Les County, 3. DRILLING CONTRACTOR License Number: 1575 Name: Talou / LPE Agent: Shave Corres Mailing Address: 921 N. Bivin S City: Amarillo 4. DRILLING RECORD Drilling began: 3/29/07; Completed: 3/29/07; Size of hole: 7-15 in.; Total depth of well: 261. Completed well is: Monitor (shallow, arter Depth to water upon completion of well: 243.31 Do Not Write Below This Li File Number: 09-957/ Form: wr-20 Page 1 of 4	11: <u>CP-951</u> <u>NM</u> Work Phone: <u>806.467.0607</u> Home Phone: <u>606.676.8220</u> State: TX zip: <u>79107</u> State: TX zip: <u>79107</u> Type tools: <u>Air (Graver States</u>) <u>5</u> ft.; <u>5</u> ft.; <u>6</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <u>7</u> ft.; <i>1</i>
H. Give State Engineer File Number if existing we. I. On land owned by (required): Lea County, 3. DRILLING CONTRACTOR License Number: 1575 Name: Talou / LPE Agent: Shawe Correct Mailing Address: 921 N. Bivin S City: Amarillo 4. DRILLING RECORD Drilling began: 3/29/07; Completed: 3/29/07; Size of hole: 7-12 in.; Total depth of well: 261. Completed well is: Monitor (shallow, arted Depth to water upon completion of well: 243.31 Do Not Write Below This Li File Number: 09-951/ Form: wr-20 Dage 1 of 4	11: <u>CP-951</u> <u>AIM</u> Work Phone: <u>806.467.0607</u> Home Phone: <u>606.676.8220</u> State: TX zip: <u>79107</u> State: TX zip: <u>79107</u> Type tools: <u>Air (Carrow Married States</u>); <u>state: TX zip: <u>79107</u> <u>arrow Married States</u> <u>arrow Married States</u> <u>ar</u></u>

.

.

8

.

_ ___

..

(For OSE Use Only)

8

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

.

Depth in Feet From To <u>- 건식33 건네.공</u>	Thickness in feet 17.99	Description of water-bearing formation <u>5.14sfone</u> , have, gray	Estimated Yield (GPM) O ~ 2
<u> </u>			

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perforations From To
<u> </u>	<u>sch 40 PVC</u> sch 40 PUC		0 241.3	241.3 261.3	<u>241.3</u> 	N/A PVC end cap	1/A- 241.3 261.3

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method	of Placement
From	10	Diameter	of mud	of Cement		
_0	_75_	<u>- 7/8</u>	1		tramie	bentonite/cement
_ 75_	235	7-7/8	65		pour be	ntonite chips

8. PLUGGING RECORD

Plugging Contractor: _ Address: _ Plugging Method: _ Date Well Plugged: _					
Plugging approved by:					
	5	State Engineer	Representative		
No. D Top 1 2 3 4 5	Pepth in Feet Bottom	Cubic Feetof	Cement	2001 AFR 27 5 2:03	STATE ENGINEER OFFICE ROSWELL, NEW MEXICO
	Do Not Write	Below This Li	.ne		<u></u>
File Number: <u>CP-45</u> Form: wr-20	/	Tr age 2 of 4	n Number: <u>376</u>	949	_
	77	Monite:	21,38,3	3,2,1,2	2 2

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth in Feet Th	nickness Color and	d Type of Material Encountered	
From To	in feet		
$-\frac{0}{1}$ $-\frac{4}{20}$ $-\frac{4}{20}$	4 <u>SAND</u>	loose, Dry tan-brown	
	<u>IG</u> <u>CALICIA</u>	E, soft, chert, dry, tan	
$\frac{20}{75}$ $\frac{25}{45}$	$\frac{2}{2} \frac{1}{2} \frac{1}$	V SHAD, CHEVET, OF BACK SHAD IN	Vist nr.
45 45	$\frac{20}{20}$ $\frac{1}{5}$	have any angu	<i>i</i> n
105 120	55 Clauston	A. LARGE LUX MARKOON WIL 91	Car mant Hing
120 125	5 Clayston	ner interpedited in siltston	e marcova
125 240	115 Clayston	ne, dry marcon w/ gray mo	Hing
240 260	20 <u>siltston</u>	re, hard, damp gray	
240 265	5Clarston	1e, dry, marcon with gray	MOHTling
<u> </u>			
·			
			<u>. </u>
<u> </u>	····	·	
	· · · · · · · · · · · · · · · · · · ·		
			<u> </u>
<u> </u>			<u> </u>
			<u> </u>
			00 <u>00</u>
			m3
			- <u>-</u>
			<u> </u>
			J
			5 ×1
			0 000
			C) CM
	Do Not Writ	e Below This Line	

- - - --

File Number: <u>CP-951</u> Form: wr-20

page 3 of 4 Micritar

Trn Number: <u>376949</u>

· - -• ·

21.38.32.122

Fil	Э	Number	:			
			(For	OSE	Use	Only

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

.

. . .

8

0

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

1. OWNER OF WELL	
Name: Louisiana Energy Services	Work Phone: 506.394.5204
Address: Ro Roy 1799	Home Phone:
City: <u>Evolute</u>	State: <u>Nim</u> Zip: <u>58231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. <u>NE</u> 1/4 <u>NE</u> 1/4 <u>N/W</u> 1/4 Section: <u>32</u> Townshi in <u>Lea</u>	.p: <u>2/5</u> Range: <u>38</u> EN.M.P.M. County.
B. X = feet, Y = f Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>32</u> %01 s Longitude	: (03 d 04 m 59.8/ci s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the
G. Other:	
H. Give State Engineer File Number if existing we	11: CP-950
I. On land owned by (required): Lea County.	11M
3. DRILLING CONTRACTOR	· • • • • • • • • • • • • • • • • • • •
License Number: <u>1575</u> Name: <u>Talon/LPE</u> Agent: <u>Shawe Currie</u> Mailing Address: 921 N. Bivins	Work Phone: <u>806,467,0607</u> Home Phone: <u>606,616,822</u> 0
City: Amarillo	- State: 78 Zip: 79/07
4. DRILLING RECORD	
Drilling began: $\frac{3/21/07}{1.7}$; Completed: $\frac{3/30}{07}$; Size of hole: $\frac{7-7}{7}$ in.; Total depth of well: $\frac{72}{22}$ Completed well is: <u>Montor</u> (shallow, arter Depth to water upon completion of well: $\frac{3}{7}$	Type tools: <u>Air rotavy</u> ; ft.; ft ; ;
Do Not Write Below This Li	ne 🔉 🖓 🖓
File Number: <u>CP- 450</u> Tr	n Number: 376948
Form: wr-20 page 1 of 4	
	ž: C
/Vpritel	12 JOE
C	21,38,32,122

.

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From <u>PRV</u>	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
<u> </u>				

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo	rations
<u> </u>	SCH 40 PVC	 	 	10.1 20.1	10.1	N/A PVC end CAP	<u></u>	20.1

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	ТО	Diameter	of mud	of Cement	
<u> </u>	2	7-7/8	1	0.5	tremie pentonite / cement
_7		1-7/8	2		pour bentomite chips

_ _ 8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Dept Top 1 2 3 4 5 5 0 0 0 0	n in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFFICE ROSVELL, NEW NEXICO
File Number: <u>('P-956</u> Form: wr-20	Trn Number: <u>376948</u> page 2 of 4	//////////////////////////////////////
	Menitor 21.38.32.12	え

9

.

.....

..... . . . -

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

.-

Depth in Feet	Thickness	Color and Type of Material Encountered
From To	in feet	Carlo Laro and La La Laron
<u> </u>		SANVI LOOSE, MOIST, 72h to browin
<u> </u>	12	CALICHE SOLT, check gravel, moist, orange - tain,
-15 -19 -	<u> </u>	GENERALLY SAND, Rant CEMENTATION PROIST TEO SOLO
<u> </u>	<u>~</u>	Clay, highly plastic; firme, eachist, where with up youry much
		· · · · · · · · · · · · · · · · · · ·
	·	
	·	
·	· · ·	
· ·	·······	
<u> </u>	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		
	·	
· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·
	· · · ·	
<u> </u>		
	·	
	·	· · · · · · · · · · · · · · · · · · ·
<u> </u>		
	`	
		mg
	D	o Not write Below This Line
Cile Number: CC	-950	Trn Number 37/0448 3
Form $wr-2$		page 3 of 4
201M. 01 6	-	1/ 20 J~ 10~
		x1,00,0x,1x2
		Monitory

9

and the second second

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

•

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

<u>-C</u> <u>04/24/200</u>7 (mm/dd/year) Driller

Mt====================================	# =28888 88888888888888888888888888888888		~=== = :	
FOF	R STATE ENGINEER USE ON	ILY		
Quad; FWL; FSL	_; Use; Location I	No	7001 APR 27	ROSWELL NE
D	o Not Write Below This	Line	Ξ.	- A
File Number: <u>CP-950</u> Form: wr-20	page 4 of 4	376948 Trn Number:	2: 02	DEFICE
	Monitor	2438.32,	/27	2

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

.

1. OWNER OF WELL	
Name: Louisiana Energy Services	Work Phone: <u>505.394.5204</u>
Address: <u>P. O. Box 1789</u>	nome mone.
City: Eunice	State:Zip:SS23(
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\underline{NW}_{1/4}$ $\underline{NE}_{1/4}$ $\underline{NW}_{1/4}$ Section: $\underline{32}$ Township in $\underline{-Lea}$	0:215 Range:38EN.M.P.M. County.
B. X =feet, Y	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>33.007</u> s Longitude:	: <u>103</u> d <u>05</u> m <u>8,300</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	.1: CP-952
I. On land owned by (required): Lea County,	NM
3. DRILLING CONTRACTOR	
License Number: <u>1575</u> Name: <u>Talon / LPE</u> Agent: <u>Shawe Currie</u> Mailing Address: <u>921 N. Bivins</u>	Work Phone: <u>806.467.0607</u> Home Phone: <u>806.676.87</u> 20
City: Amarillo	State: T <u>K</u> Zip: <u>79/07</u>
4. DRILLING RECORD	1211
Drilling began: $3/21/07$; Completed: $3/29/07$; Size of hole: $7 \cdot \frac{7}{8}$ in.; Total depth of well: <u>Z6.6</u> Completed well is: <u>Monitor</u> (shallow, arter Depth to water upon completion of well: <u>DRY</u>	Type tools: <u>Air Potenting</u> (ft.; sian); ft.
	DEFICE
Do Not Write Below This Li	ne Co
File Number: $(P-4/5)$ Tr Form: wr-20 page l of 4	n Number: <u>376950</u>
Monitai)	21,38,32,121

(For OSE Use Only)

and the second second

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth : From <u>DZY</u>	in Feet Thickness To in feet		Description of water-bearing formation	Estimated Yield (GPM)		
	·					

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo From	rations To
<u> </u>	<u>SCH YOPVC</u> SCH YOPVC	Z	_0 _[b:9	16.9	16.9	N/A PVC End cap	1/17- (6.9	26.9
		<u> </u>		·				

7. RECORD OF MUDDING AND CEMENTING

_ _

Depth	in Feet	Hole	Sacks	Cubic Feel	Method of Placement
From	То	Diameter	of mud	of Cement	
3	<u> </u>	7-7/8	ł	1	tremie - Cement/bentonite
<u> </u>	<u>।</u> म(- 7-7/X		NA	pour - bentonite chips
				· · · · · · · · · · · · · · · · · · ·	· · · ·

_ ____

_ ___

_

____ 8. PLUGGING RECORD

المالية المتعادي المتعاد

Plugging Contractor: Address: Plugging Method: Date Well Plugged:				
Plugging approved by:		State Engine	er Representativ	
		feate brighting		R
No. Depth Top 2 3 4 5	1 in Feet Bottom	Cubic Feet	of Cement	INTE ENGLISEER OFFICE
Dc) Not Write	Below This	Line	
File Number: <u>(P- 952</u> Form: wr-20	F	page 2 of 4 Achiter	Trn Number: <u>37</u> 21,3	7 <u>6950</u> 8, 32. 121
NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

..

-

Depth	in Feet	Thickness	Color and Type of Material Encountered	
From	'TO	in feet		
			- JAND, LODSE, MOIST, BURNT OFRIGE	_
25	<u> </u>	7	CALICHE, realizive soft, chevi, dry tan - light	ovange
- 10			CIROVPILY, SEUDD, CHEFT GODVEL DUINT OVANGE	-
		<u>```</u>	croy many plastic, time, ory mancon.	_
				-
			······································	-
			· · · · · · · · · · · · · · · · · · ·	-
				-
				_
			-	_
				-
				_
				_
			· · · · · · · · · · · · · · · · · · ·	-
				_
				-
				-
			·	-
				-
				-
				-
				_
				-
				-
		<u> </u>		-
			· · · · · · · · · · · · · · · · · · ·	-
	_ <u> </u>			_
				-
				-
				-
				-
				-
				-
				_
				<u>ب</u>
			روا تدین است	1
				5
				-17 1
				10
		D	No Not Write Below This Line	E PF
	1	0-050	376950 0	FIC
TTG NUMU		$\frac{1}{20}$	name 3 of 4	- - - - - - - - - - - - - -
I	OTH: WI-	2.5	1. 38, 32, 12	/
			$\alpha n \vee \gamma \gamma$	

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

_____ _____ ____ _____ _____ _____. _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{Di-C}{Driller} \qquad \frac{04/24/2007}{(mm/dd/year)}$

. . .

			R S S
	FOR STATE ENGINEER USE ONLY	lar vag	NTE ENC ISWELL
Quad	; FWL; FSL; Use; Location No	27	
		-IJ	R O
		ü	۲۲ ۲۲
<u> </u>	Do Not Write Below This Line	9	OCE
File Nur	nber: <u>CP-952</u> Form: wr-20 page 4 of 4 Trn Number: <u>3769</u>	750	·
	21.38	32	121

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

ijv &

1. OWNER OF WELL
Name: Louisiana Energy Dervices Work Phone: 503, 514. 509
Address: P.O. Box 1789
City: Eunice State: MM Zip: \$8231
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. $\frac{NE}{ME} \frac{1}{4} \frac{MW}{MW} \frac{1}{4}$ Section: 32 Township: $\frac{2}{5}$ Range: 38E N.M.P.M. in <u>Lea</u> County.
B. X =feet, Y =feet, N.M. Coordinate System Zone in theGrant. U.S.G.S. Quad Map
C = 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
C. Latitude: $\underline{\mathcal{I}}\underline{\mathcal{I}}$ a $\underline{\mathcal{I}}\underline{\mathcal{I}}$ in $\underline{\mathcal{I}}\underline{\mathcal{I}}\underline{\mathcal{I}}$ is Longitude: $\underline{\mathcal{I}}\underline{\mathcal{I}}\underline{\mathcal{I}}$ a $\underline{\mathcal{I}}\underline{\mathcal{I}}$ in $(\underline{\mathcal{I}}\underline{\mathcal{I}}\underline{\mathcal{I}}\underline{\mathcal{I}})$
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract of the of the County.
G. Other:
H. Give State Engineer File Number if existing well: $(P - 953)$
1. On land owned by (required): <u>Lea County NIM</u>
3. DRILLING CONTRACTOR
License Number: <u>1575</u> Name: <u>Tolon/LPE</u> Agent: <u>Shane Currie</u> Mailing Address: <u>921 N. Biyins</u> Work Phone: <u>806.467.0607</u> Home Phone: <u>806.676.8720</u>
City: Amarillo State: TX Zip: 79/07
Drilling began: <u>3/22/07</u> ; Completed: <u>3/29/07</u> ; Type tools: <u>Any Rotario A</u> Size of hole: <u>7-7/v</u> in.; Total depth of well: <u>257.5</u> ft.; Completed well is: <u>Monitor</u> (shallow, artesian); Depth to water upon completion of well: <u>241.26</u> ft.
Do Not Write Below This Line
File Number: $CP-953$ Form:Trn Number: 376953 FormForm:Trn Number:
Monitor 21.38.32.112

.

14

• • •

(For OSE Use Only)

11

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet	Thickness	Description of	Estimated Yield
FIOM TO	in feet	water-bearing formation	(GPM)
241.6 257.5	16.24	CLAYSTONE w/ interbeded Si	tstore 0-Z

6. RECORD OF CASING

Diameter (inches) <u>4</u>	Pounds per ft. <u>Sch Mo<i>PV</i>(</u> <u>Sch MOPV(</u>	Threads per in. Z. Z	Depth Top <u>D</u> 237.5	in Feet Bottom <u>237.5</u> <u>257.5</u>	Length (feet) <u>237.5</u> 2-0	Type of Shoe <u>N(M</u> <u>PVC Cnel c 7p</u>	Perfor From <u>AV/A-</u> <u>237.5</u>	rations To <u>Z525</u>
		·		·			<u> </u>	

7. RECORD OF MUDDING AND CEMENTING

Depth j From	in Feet To	Hole	Sacks	Cubic Feet	Method of Placement
		<u>7-7/8</u>		\underline{ZO}	trenie - cement/bentonite
_ <u></u>	_ <u>230</u>	_1-48	<u>-2(5</u>	<u></u>	pour - pentonite chips

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:				
Plugging approved by	/:			ROS
		State Engineer	Representative	ELLINE MELLINE
No. T 2 3 4	Depth in Feet 'op Bottom	Cubic Feetof	Cement	T D 2: 04

Do Not Write Below This Line

File Number: <u>CP-953</u> Form: wr-20 Trn Number: <u>376952</u> page 2 of 4 Moniter 21.38.3.2.112

(For OSE Use Only)

11

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

.

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	To	in feet	
<u> </u>	<u></u>	<u> </u>	AND, loose moust bount orange
5	<u>_!S</u>	10	CALICHE, hand dry orange
15	35		CLAY, high plastic marcon w/ gray Mottling
_35			Sitstone, hard dry gray
50	200	150	<u>Claystone</u> , dry marcon
700	210		Claystone, we interbedded sutstane, hard dry marcon
- 210	<u> </u>	35	Caystone, havo, dry maroon w/ gray splatching
756	635		Claystone WI Inter Beddeu SILPStone hard, dry marcon
237	<u></u>	<u>></u>	Clayspone Ward, dry marden yray mothing
			······································
			····
			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
_			
			······
			· · · · · · · · · · · · · · · · · · ·
<u> </u>	·		
		· · · · · ·	<u>P</u>
	·		
	·		
	·		
			् संस्
			0 88

Do Not Write Below This Line

File Number: <u>CP-953</u> Form: wr-20

page 3 of 4

Trn Number: <u>376952</u> 21.38.32.112

Monitor

File Number: (For OSE Use Only) 11

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. $\frac{-2}{\text{Driller}} \frac{4/24/2007}{(mm/dd/year)}$ _____ 00 FOR STATE ENGINEER USE ONLY Quad ____; FWL ____; FSL ____; Use _____; Location No. _____ Do Not Write Below This Line File Number: <u>CP- 953</u> Form: wr-20 Trn Number: <u>376952</u> page 4 of 4 21.38.32.11.2 Moniter

.....

File Number: (For OSE Use Only)

.

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

1. OWNER OF WELL	
Name: <u>LOUIS (ANA ENEVERY Services</u> Contact: Lawre wethone)	Work Phone: <u>505.394.67</u> 04
Address: P. U. Box 1789	
City: <u>Eunice</u>	State:NM Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{NW_{1/4}}{\ln Lea}$ $\frac{NW_{1/4}}{Lea}$ $\frac{NW_{1/4}}{\ln Lea}$ Townshi	p: <u>315</u> Range: <u>38</u> N.M.P.M. County.
B. X =feet, Y =f Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System
C. Latitude: <u>32 d 26 m 27.646</u> s Longitude	: <u>103 d 05 m 22.714</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract _ Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing we I. On land owned by (required): Lea County	11: <u>CP-954</u> , NM
3. DRILLING CONTRACTOR	'
License Number: <u>1575</u> Name: <u>Talou / LPE</u> Agent: <u>Shan't Curvie</u> Mailing Address: <u>971 N. Biyins</u> City: <u>Magacillo</u>	Work Phone: <u>806.467.0607</u> Home Phone: <u>806.676.87</u> State: TV Zip: 79/07
A DEH LINC RECORD	
Drilling began: $3/22/07$; Completed: $5/30/07$ Size of hole: $7-7/8$ in.; Total depth of well: $23L$ Completed well is: <u>Monifor</u> (shallow, arto Depth to water upon completion of well: <u>DRY</u>	; Type tools: <u>Air Rotar</u> ; <u>4</u> ft.; esian); ft. The Provide the Provide th
Do Not Write Below This L	ine <u>O</u> CO
File Number: $CPG54$ Form: wr-20 page 1 of 4 Monitor)	rn Number: <u>376954</u> 2/, 38, 32, 111
	1

الجارية المراجع المراجع والمراجع والمتعمين والمتعاد والمتعادي والمتعادي والمتعادي والمتعاد والمتعاد والمتعاد

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From <u>PRV</u>	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
	·			

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo. From	rations To
<u> </u>	<u>5ch 40 PVC</u> 5ch 40 PVC	2	216.4	216.4 236.4	216.4	N/A PVL PND CRD	<u>N/A</u> 2/6.4	23604
	·							

7. RECORD OF MUDDING AND CEMENTING

Depth From	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
	15_	7 - 7/8	or mua l	of Cement ここ	+ comie - coment / too tomito
75	710	-7-7/8	43		pour - bentonite chips
·					
					······

_ __ 8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Toj 1 2 3 4 5	epth in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFF ROSWELL, NEW MEXT
File Number: <u>CP-954</u> Form: wr-20	Trn Number: <u>376957</u> page 2 of 4	
	Monital 21,39, 3.2.	///

(For OSE Use Only)

12

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

. -

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	То	in feet	
	<u> </u>		SAND, time, loose, moist, burnt orange
_(.O			<u>_CALICITE soft light avange</u>
<u>-70</u> 25			- Siltstone; have any gray
<u> </u>	<u>- 42</u>		- Claystone, have by marcon wigray mothleng
<u>-45</u>			- 124STONP W/ MEPUBEOJPO SILFSTOMP Maron & 91/24
	- <u></u>		- Clarstone, ory, maroow ul gray mottling
	105	7.0	Claustone have have have all a stone in marking
105	110	<u> </u>	Siltstning wi interpretation clariting backing
_110	130	20	Claustone : COLY Marcona us grav most find
130	160	30	Clarstone, with siltstone buy marcon & avar
160	170	10	Clarstone, duy manpoin to surple w/ and mothing
(70)			Siltstone, handidry, guar
175	180	5	claystone, hard dry maroon w/ gray mottling
180	<u> (90 </u>	10	Siltstone w/ claystone dry gray & marcon
190	215	-22	Claystone, hand, dry, marcon w/ gray & marcon
215	275	2S	silfstone, hand, dry, gray
637	_245		Claystone, hard, dry maron w/ Gray
		<u> </u>	
		·	
		·	
	· ·		
	. <u> </u>		
<u> </u>			
		· · · ·	
			C SE
		_	
		D	o Not Write Below This Line
ile Numb	or. CF	2-954	Bur Number 271/0511
	orm: wr=3	20	Trn Number: $\underline{0}/\underline{0}/\underline{0}/\underline{0}$
Ę			hade o nt a

Trn Number: <u>376954</u>

page 3 of 4 Monitor

21,39,32,111

(For OSE Use Only)

12

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

and the second second

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

/i ___e__ 21-----Driller

04/24/2007 (mm/dd/year)

			201	ROSW
FO	R STATE ENGINEER USE ONL	Y		
Quad; FWL; FSL	; Use; Location No.	•	ې 2: 0	W MEXICO
[Do Not Write Below This L	line		
File Number: <u>CP-954</u> Form: wr-20	page 4 of 4 Micruitor	rn Number: <u>376</u> 21,39,	954 32,1	

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

12-13

1. OWNER OF WELL	Nort Phone: 505-394-5204
Contact: Laurie Wetherell	Home Phone:
Address: P.O. Box 1789	
City: Eunice	State: <u>NM</u> Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{SW}{1/4} \frac{1/4}{e^{\alpha}} \frac{NE}{1/4} \frac{1}{4} \frac{SW}{1/4} \frac{1}{4} \frac{1}{4} \frac{SW}{1} \frac{1}{4} \frac$: <u>2/S</u> Range: <u>386</u> N.M.P.M. County.
B. X = feet, Y = fe Zone in the U.S.G.S. Quad Map	et, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>14.8482</u> s Longitude:	<u>103 d 04 m 40.2564</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County,
G. Other:	co (M
H. Give State Engineer File Number if existing wel	1: <u>CP-995</u> $$
3. DRILLING CONTRACTOR	
1575	
License Number: 1575 Name: Talon Drilling Agent: Shane Currie Mailing Address: 921 N. Bivins	Work Phone: <u>806.467.06</u> 07 Home Phone: <u>806.467.06</u> 22
City: Amarillo	State: <u>TX</u> Zip: _ <u>79107</u>
4. DRILLING RECORD	
Drilling began: <u>12/5/08</u> ; Completed: <u>12/5/08</u> ; Size of hole: <u>7-7/8</u> in.; Total depth of well: <u>38</u> Completed well is: <u>Monitor</u> (shallow, arte Depth to water upon completion of well: <u>Dry</u>	Type tools: <u>Air-Rotary</u> ; ft.; esian); ft.
Do Not Write Below This Li	ne
File Number: <u>CP-995</u> Tr	n Number: 418652
Form: wr-20 page 1 of 4	21,38,32,233
Monitor	

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From Drv	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
_				
				· · · · · · _ · _ · _ · _ · _ · _

6. RECORD OF CASING

Diameter (inches) <u>4</u> PVC	Pounds per ft. Sch 40	Threads per in. 2	Depth Top <u>+3</u>	in Feet Bottom 38	Length (feet) 41	Type of Shoe end cap	Perfor From 28	rations To <u>38</u>
			<u> </u>					

7. RECORD OF MUDDING AND CEMENTING

Depth : From 0 5	in Feet To <u>5</u> 25	Hole Diameter 7-7/8 7-7/8	Sacks of mud 6	Cubic Feet of Cement 20 Sacks	Methoo Trimie Poured	i of Placeme <u>(Bentonit</u> (Bentonit	ent <u>e/Ce</u> e ch	<u>ment</u>) ips)
8. PLUGGIN	G RECOR	D						STATE
Pluggi	ng Contr Ad	actor:						
Pli	ugging M	ethod:					्रे	
Date	Well Pl	ugged:		·				
Pluggi	ng appro	ved by:		State Engine	er Repres	sentative	 	
							0	177

	No. Depth Top	in Feet Bottom	Cubic Feetof Cement
1	-		
2			
З			
4		<u></u>	
5			

Do Not Write Below This Line

Trn Number: 418652

File	Number:	CP-995
	Form:	wr-20

page 2 of 4

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

-

•

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	То	in feet	
0	9	9	Sand, lightly cemented, tan to lt orange
9	24	13	Caliche, relative soft, lt gray
4	36	12	Gravelly sand, chert, tan to lt red matrix
36	38	2	Claystone, purple
· · · · · · · · ·		_	
	•		
			<u>^0</u>
			c`
			<u>N</u> 5

Do Not Write Below This Line Trn Number: 418652

File Number: <u>CP-995</u> Form: wr-20

page 3 of 4

13

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

_							
		······					
							-
							,
						·	
						CD	
			1 - 6 - 1 - 11))	Ū.	
The unc belief, hole.	dersigned hered the foregoing	by certifies t g is a true ar C Driller	hat, to th d correct	e best of his record of the <u>/2/29/()8</u> mm/dd/year)	knowled above d	ige and lescrib	eď
The unc belief, hole.	dersigned hered the foregoing	by certifies t g is a true ar C Driller	hat, to th d correct	e best of his record of the <u>/2/29/()8</u> mm/dd/year)	knowled above d	ige and escrib	ed
The unc belief, hole.	dersigned hered the foregoind	by certifies t g is a true ar Driller FOR STATE EN	Shat, to the correct	e best of his record of the <u>/2/29/()8</u> mm/dd/year)	knowled above d	ige and escrib	ed
The und belief, hole.	dersigned hered the foregoing	by certifies t g is a true ar Driller FOR STATE EN SL; Use	NGINEER USI	e best of his record of the <u>/2/29/()8</u> mm/dd/year) CONLY ion No.	knowled above d	ge and escrib	ed
The und belief, hole.	dersigned hered the foregoind	by certifies t g is a true ar Driller FOR STATE EN SL; Use Do Not Wr:	hat, to th d correct	e best of his record of the <u>12/29/()8</u> mm/dd/year) CONLY ion No This Line	knowled above d	ige and escrib	ed
The und belief, hole.	dersigned hered the foregoing	by certifies t g is a true ar Driller FOR STATE EN SL; Use Do Not Wr:	NGINEER USI	e best of his record of the <u>/2/29/()8</u> mm/dd/year) CONLY ion No	knowled above d	ge and escrib	

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

NLB

.

1. OWNER OF WELL	Work Phone: 505-394-5204
Contact: Laurie Wetherell	Home Phone:
Address: P.O. Box 1789	
City: <u>Eunice</u>	_ State: <u>NM</u> Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{5W_{1/4}}{\ln Lea} \frac{5W}{1/4} \frac{NE}{1/4}$ Section: $\frac{32}{32}$ Township	p: <u>2/5</u> Range: <u>38E</u> N.M.P.M. County.
B. X = feet, Y = f Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>13,383</u> s Longitude	: <u>103</u> d <u>04</u> m <u>52.212</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	
G. Other:	<u> </u>
H. Give State Engineer File Number if existing we	11; <u>CP-996</u>
I. On land owned by (required): Louisiana Ener	gy Services
3. DRILLING CONTRACTOR	
License Number: 1575 Name: Talon Drilling Agent: Shane Currie Mailing Address: 921 N. Bivins	Work Phone: <u>806.467.06</u> 07 Home Phone: <u>806.467.06</u> 22
City: Amarillo	
4. DRILLING RECORD	
Drilling began: <u>12/5/08</u> ; Completed: <u>12/5/08</u> Size of hole: <u>7-7/8</u> in.; Total depth of well: <u>39</u> Completed well is: <u>Monitor</u> (shallow, art Depth to water upon completion of well: <u>Dry</u>	; Type tools: <u>Air-Rotary;</u> ft.; esian); ft.
	ino
	4181.52
File Number: CY-776 Form: wr-20 page 1 of 4	$\frac{71000}{2138.32.233}$
Monitar	anouro

File Number: ____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From Dry	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)		

6. RECORD OF CASING

Diameter (inches) 4 PVC	Pounds per ft. Sch 40	Threads per in. _2	Depth : Top <u>+3</u>	in Feet Bottom 39	Length (feet) 42	Type of Shoe end cap	Perfor From 21	rations To <u>36</u>

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method	l of Placement
From	То	Diameter	of mud	of Cement		
0	5	7-7/8		20 Sacks	<u>Trimie</u>	(Bentonite/Cement)
5	20	7-7/8	5		Poured	(Bentonite chips)

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method:					
Date Well Plugged:				<u> </u>	
Plugging approved by:					- Sert
		State Engineer	Representative	- 3	
No. To 2 3 4 5	Depth in Feet p Bottom 	Cubic Feetof	Cement	0 +: 20	

Do Not Write Below This Line

File Number:	CP-996		Trn Number:	418653
Form:	wr-20	page 2 of 4		

File Number: ____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9, LOG OF HOLE

-

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	To	in feet	
0	10	10	Sandstone, lightly cemented, burnt orange
10	21	11	<u>Caliche, soft, lt orange to tan</u>
21	37	16	Gravelly sand, abundant chert, lt orange-tan
37	39	2	Claystone, purple
	•		
			······································
		·	
<u> </u>			
			<u> </u>
			<u> </u>

Do Not Write Below This Line

File Number: <u>CP-996</u> Form: wr-20

Trn Number: <u>4/8653</u> page 3 of 4

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

				:
<u> </u>				د
	ned hereby certif:	ies that, to	the best of his	knowledge and
The undersign belief, the shole.	foregoing is a tru J Driller	ue and corre	ct record of the $\frac{12/24/08}{(mm/dd/year)}$	above described
The undersign belief, the s hole.	foregoing is a tro	ue and corre	ct record of the <u>12/29/08</u> (mm/dd/year)	above described
The undersign pelief, the s nole.	foregoing is a tro Driller FOR STA	ue and corre	ct record of the <u>12/29/08</u> (mm/dd/year) USE ONLY	above described
Quad; FW	foregoing is a true Driller FOR STA L; FSL; Us	ue and corre	ct record of the <u>IZ/29/08</u> (mm/dd/year) USE ONLY ocation No.	above described
Quad; FW	foregoing is a tro Driller FOR STA L; FSL; Us Do No	ue and corre	<pre>ct record of the <u>//2//08</u> (mm/dd/year) USE ONLY ocation No w This Line</pre>	above described

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

.

.. ~

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

. . .

. J

I. OWNER OF WELL	
Name: Louisiana Energy Services	_ Work Phone: <u>505.</u> 394.6704
Contact: <u>Laurie Wetherell</u>	Home Phone:
Address, <u>P. C. Box [189]</u>	_
City: Eunice	_ State: <u>VM</u> Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $5W_{1/4} NW_{1/4} SW_{1/4}$ Section: 32 Township in Lea	215 Range: 38E N.M.P.M. County.
B. X = feet, Y =feet, Y =	eet, N.M. Coordinate System
C. Latitude: <u>32</u> d <u>25</u> m <u>56.857</u> s Longitude	: 103 d 05 m 23.671 s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	1: <u>CP-955</u>
I. On land owned by (required): Lea County,	AI M
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR	AIM
I. On land owned by (required): <u>Lea County</u> 3. DRILLING CONTRACTOR License Number: 1575	AIM
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: 15/5 Name: 15/5 Agent: Share Currie Mailing Address: 971 A). Buting	AIM Work Phone: <u>806.467.06</u> 07 Home Phone: <u>806.676.87</u> 20
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: 15/00/LPC Agent: Shane Currie Mailing Address: 921 D. Bivins City: Amarillo	AIM Work Phone: <u>806.467.0607</u> Home Phone: <u>806.676.87</u> 20 State: TX Zin: 79107
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: 15/00/LPC Agent: Shane Currie Mailing Address: 971 D. Bivins City: Amarillo	AIM Work Phone: <u>806.467.06</u> 07 Home Phone: <u>806.676.87</u> 20 State: TX Zip: <u>79107</u>
I. On land owned by (required): <u>Lea County</u> 3. DRILLING CONTRACTOR License Number: <u>1575</u> Name: <u>Talon/LPC</u> Agent: <u>Shane Currie</u> Mailing Address: <u>921 N. Bivins</u> City: <u>Amarillo</u> 4. DRILLING RECORD	AIM Work Phone: <u>806.467.06</u> 07 Home Phone: <u>806.676.87</u> 20 State: TX Zip: <u>79107</u>
I. On land owned by (required): Lea County, 3. DRILLING CONTRACTOR License Number: 1575 Name: $13/on/LPC$ Agent: Shane Currie Mailing Address: 971 A), Bivins City: $Amarillo$ 4. DRILLING RECORD Drilling began: $3/23/07$; Completed: $3/29/07$; Size of hole: $7-7/8$ in.; Total depth of well: 230 Completed well is: $Monitor$ (shallow, arter Depth to water upon completion of well: DRY	Mim Work Phone: <u>806.467.0607</u> Home Phone: <u>806.616.87</u> State: <u>TX</u> Zip: <u>79107</u> Type tools: <u>Mir Votary</u> ; oft.; sian); ft.
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: $\overline{10 on/LPC}$ Agent: Shake Currie Mailing Address: 921 A). $Bivins$ City: $\overline{Amarilo}$ 4. DRILLING RECORD Drilling began: $3/23/07$; Completed: $3/29/07$; Size of hole: $7-7/8$ in.; Total depth of well: 230 Completed well is: <u>Monitor</u> (shallow, arter Depth to water upon completion of well: DRY	AIM Work Phone: 806.467.0607 Home Phone: 806.676.5720 State: Type tools: Type tools: Air Votary; sian); Type tools: ft. Type tools:
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: $\overline{Talon/LPC}$ Agent: Shane Corrie Mailing Address: 921 N. Bivins City: $\overline{Amarillo}$ 4. DRILLING RECORD Drilling began: $3/23/07$; Completed: $3/29/07$; Size of hole: $7-7/8$ in.; Total depth of well: 236 Completed well is: $Monitor$ (shallow, arter Depth to water upon completion of well: DRY	MIM Work Phone: <u>806.467.0607</u> Home Phone: <u>806.676.8720</u> State: <u>TX</u> Zip: <u>19107</u> Type tools: <u>Mir Vofary</u> ; State: <u>TX</u> Zip: <u>19107</u> Type tools: <u>Mir Vofary</u> ; ft.; Sian); ft.
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: 13/00/LPC Agent: Shane Currie Mailing Address: 971 D. Bivins City: Amarillo 4. DRILLING RECORD Drilling began: 3/23/07; Completed: 3/29/07; Size of hole: 7-7/2 in.; Total depth of well: 230 Completed well is: Monitor (shallow, arter Depth to water upon completion of well: DRY Do Not Write Below This Li	MIM Work Phone: <u>806.467.0607</u> Home Phone: <u>806.616.87</u> State: <u>Tx</u> Zip: <u>79107</u> Type tools: <u>Mir Votary</u> ; oft.; sian); ft.
I. On land owned by (required): Lea County / 3. DRILLING CONTRACTOR License Number: 1575 Name: 1000/LPC Agent: Shane Corrie Mailing Address: 921 N. Bivins City: Amarillo 4. DRILLING RECORD Drilling began: 3/23/07; Completed: 3/29/07; Size of hole: 7-7/x in.; Total depth of well: 230 Completed well is: Monitor (shallow, arter Depth to water upon completion of well: DRY Depth to water upon completion of well: DRY File Number: 0-955 Form: wr-20 page 1 of 4	Mork Phone: <u>806.467.0607</u> Home Phone: <u>806.616.87</u> State: <u>TX</u> Zip: <u>19107</u> Type tools: <u>Mir Vofary</u> ; sian); ft. <u>ne</u> n Number: <u>376955</u>

15

/

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From <u>DRY</u>	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)		

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth . Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo From	rations To
 <u></u>	<u>50H 46 PVC.</u> 50H 40 PVC	22	216	216	216	N/A PULENÓ CAP	N/14- ZIC	236
						i		
· · · _ · · · · · · · · · · · · · · · ·								

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
	<u> </u>	<u></u>	t	20	tremie - cement / benton Le
75	210	<u></u>	42		pour - pentonite chips

8. PLUGGING RECORD

_ ----

Plugging Contract Addre Plugging Meth Date Well Plugg	tor: ess: hod: ged:	
Plugging approved	d by:	
	State Engineer Representative	
1 2 3 4 5	No. Depth in Feet Cubic Feetof Cement	STATE ENGINEER OFFICE
	Do Not Write Below This Line	
File Number: <u>CD-0</u> Form: wr-20	955 Trn Number: <u>376955</u> page 2 of 4 21,38,32,31	3

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

÷ ..

Depth in Feet	Thickness	Color and Type of Material Encountered	
From To	in feet	SAMO I	
-0 10	10	JAND, LOOSE DAMP TAN	
<u> 10 </u>		CALICITE, Soft Chert gravel with orange pink	
-30 -32 -		SANDE GVANELI CLERT ALY LIGHT POD SANCI	
<u></u>	<u> </u>	City, heguly plastic, firm,	
$\frac{-27}{60}$ $\frac{-160}{270}$	>	Claystone with stiffstone when any marching	Ł
270 7.25		Siltstone un claritain innot don 10000000	
225 240	15	Silty claystone dry light people dank cod marco	rt N
			`
<u> </u>			
·····			
·			
· · · · · · · · · · · · · · · · · · ·			
<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	-		
	<u> </u>		
		-	
<u> </u>			
· · · ·			
			i
			Ĵ
			5
		ان بن این د	m.
			50
			3
			3
	_	Q 2	Sm
	E	Do Not Write Below This Line	
File Numbers PL	2-955	B- 11-050	
File Number: <u>Cr</u>	20	$\frac{1}{2} \text{ Trn Number: } \frac{2}{2} \frac{\sqrt{2}}{3} \frac{\sqrt{2}}{3}$	
roru: wr-	20		
		21,38,32.313	

Monitor

15

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{04/24/2007}{(mm/dd/year)}$ Since

	<u>5957</u>
FOR STATE ENGINEER USE ONLY	ATE EN
Quad; FWL; FSL; Use; Location No	27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0
	22 C
Do Not Write Below This Line	🗇 🖂 🖂
File Number: $\frac{CP-955}{\text{Form: }wr-20}$ Trn Number: $\frac{376}{4}$	955
Monitor 21.3	8,32.313

WLB

(For OSE Use Only)

16

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL				
Name: Louisia	<u>ana Energy Servic</u>	es	_ Work Phone: <u>5</u>	<u>05-394-52</u> 04
Contact: Laurie	Wetherell		_ Home Phone:	
Address: <u>P.O. Bo</u>	<u>5X 1789</u>		-	
City: Eunice			State: <u>NM</u> Zip;	88231
2. LOCATION OF WELL (A, B, C, or D required, E or	F if known)		
A. <u>NW</u> 1/4 <u>NE</u> 1 in <u>Lea</u>	14 <u>SW</u> 1/4 Section:	<u>32</u> Townshi	p: <u>215</u> _{Range:} 38	E _{N.M.P.M.} County.
B. X =Zone i Zone i U.S.G.S. Quad	feet, Y = n the Map	f	eet, N.M. Coordin	Grant.
C. Latitude: <u>32</u>	d <u>26 m 1.1718</u>	s Longitude	: <u>103</u> d <u>05</u> m	<u>5.5062</u> s
D. East	(m), North	(m), UTM	Zone 13, NAD	(27 or 83)
E. Tract No.	_, Map No of	the	Hydrogram	phic Survey
F. Lot No,	Block No of Subdivision r	Unit/Tract _ ecorded in _		of the County.
G. Other:				
H. Give State Eng	jineer File Number if	existing we	11: <u>CP-999</u>	
I. On land owned	by (required): Loui	<u>siana Ener</u>	gy Services	7 3
3. DRILLING CONTRACT	OR			H: 2
License Number:	1575			[-2
Name:	Talon Drilling		Work Phone: 8	06.467.0607
Agent: Mailing Address:	921 N. Bivins		Home Phone: 8	06.467.0622
Citv	Amarillo		- State· TX Zip·	79107
city.				
4. DRILLING RECORD				
Drilling began: Size of hole: <u>7-7</u> Completed well is Depth to water up	<u>12/4/08</u> ; Completed <u>7/8 in.; Total depth</u> : <u>Monitor</u> (pon completion of wel	: <u>12/4/08</u> of well: <u>43</u> shallow, art 1: <u>Dry</u>	; Type tools: <u>Ai</u> ft.; ft.; .esian); ft.	<u>r-Rotary</u> ;
	Do Not Write	Polou mbie t	inc	
		Derow INIS L	. /	
File Number: $CP - C$	144	Т	rn Number: <u>4/.</u>	5856
Form: wr-20	pa	ge 1 of 4		

page 1 of 4 Maniter 21.38,32.321

File Number: ____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From _Dry	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
	·			

6. RECORD OF CASING

Diameter	Pounds	Threads	Depth :	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ft.	per in.	Тор	Bottom	(feet)	_	From	То
4 PVC	<u>Sch 40</u>		+3	43	46	end cap	28	43
	· · · · · · · · · · · · · · · · · · ·							
						<u> </u>		

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method	of Placement
From	То	Diameter	of mud	of Cement		
0	5	7-7/8		20 Sacks	Trimie	(Bentonite/Cement)
5	22	7-7/8	5		Poured	(Bentonite chips)
	•	·		<u> </u>		

- -

- -

8. PLUGGING RECORD

_ _

Plugging Contractor: Address: Plugging Method: Date Well Plugged:					
Plugging approved by	:			د. ا [. ۲	STX
		State Engineer	Representative		
No. T 1 2 3 4 5	Depth in Feet p Bottom	Cubic Feetof	Cement	P I: 22	EES OFFICE

Do Not Write Below This Line

File	Number:	CP-999
	Form:	wr-20

page 2 of 4

Trn Number: 415856

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

.

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	То	in feet	
0	11	11	Sand, lightly cemented, burnt orange
11	29	18	Caliche, relatively soft, gray to lt orange
23	34	11	Gravelly sand, chert gravel, red sand matrix
34	36	2	Claystone, dark purple
		·	
			· · · · · · · · · · · · · · · · · · ·
		·	
	· ·· ··		
		·	
			<u> </u>
·····			
	<u> </u>		

Do Not Write Below This Line

page 3 of 4

File Number: CP-999 Form: wr-20

Trn Number: 415856

File Number: _____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

MW-26 3 ာ The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole. - Filo -·... $\frac{12}{24}$ (s.) (s.) FOR STATE ENGINEER USE ONLY Quad ____; FWL ____; FSL ____; Use _____; Location No. _____ Do Not Write Below This Line File Number: <u>CP-999</u> Form: wr-20 Trn Number: 415856 page 4 of 4

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

NLB

1. OWNER OF WELL	
Name: Louisiana Energy Services Work Phone: 505-394	<u>1-52</u> 04
Address: P.O. Box 1789	
City: Eunice State: NM Zip: 88231	
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{NE_{1/4}}{\ln Lea}$ $\frac{NE_{1/4}}{Lea}$ $\frac{SW_{1/4}}{SW_{1/4}}$ Section: $\frac{32}{32}$ Township: $\frac{215}{215}$ Range: $\frac{38E}{S}$ N.M.	P.M. inty.
B. X = feet, Y = feet, N.M. Coordinate Sy Zone in the Gr	stem
U.S.G.S. Quad Map	
C. Latitude: <u>32</u> d <u>26</u> m <u>1.071</u> s Longitude: <u>103</u> d <u>05</u> m <u>3.048</u>	<u>}</u> s
D. East (m), North (m), UTM Zone 13, NAD (27 or	: 83)
E. Tract No, Map No of the Hydrographic Su	irvey
F. Lot No, Block No of Unit/Tract of	The
G. Other:	
H. Give State Engineer File Number if existing well: <u>CP-998</u>	
I. On land owned by (required): Louisiana Energy Services	<u> </u>
3. DRILLING CONTRACTOR	FICE
License Number: 1575	
Name: Talon Drilling Work Phone: 806.46	<u>7.06</u> 07
Mailing Address: 921 N. Bivins	1.0622
City: Amarillo State: TX Zip: 7910	17
City. <u>Analilio</u> State. IX 219. <u>1910</u>	<u> </u>
4. DRILLING RECORD	
Drilling began: <u>12/4/08</u> ; Completed: <u>12/4/08</u> ; Type tools: <u>Air-Rot</u> Size of hole: <u>7-7/8</u> in.; Total depth of well: <u>250</u> ft.; Completed well is: <u>Monitor</u> (shallow, artesian); Depth to water upon completion of well: <u>Dry</u> ft.	<u>ary</u> ;
Do Not Write Below This Line	
11184.5	5
File Number: <u>CF-770</u> Form: wr-20 Dage 1 of 4	

page 1 of 4 Monitor

21,38,32,322

File Number: ____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From Dry	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth : Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo From	rations To
4 PVC	Sch 40	2	+3	250	253	end cap	230	250

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method	d of Placement
From	То	Diameter	of mud	of Cement		
0	20	7-7/8		20 Sacks	<u>Trimie</u>	(Bentonite/Cement)
20	206	7-7/8	68		Poured	<u>(Bentonite chips)</u>

_ _

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:	
Plugging approved by:	
State E	ingineer Representative
No. Depth in Feet Cubic Top Bottom	Feetof Cement

Do Not Write Below This Line

File	Number:	CP- 998
	Form:	wr-20

Trn Number: <u>418655</u>

page 2 of 4

File Number: ______(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth i From 0 12 25 36 70 72 153 215 218 230 235	n Feet To 12 25 36 70 72 153 215 218 230 235 250	Thickness in feet 12 13 11 34 2 81 62 3 12 5 15	Color and Type of Material Encountered Sand, lightly cemented, burnt orange Caliche, relatively soft, gray to lt orange Sandstone, lightly cemented, burnt orange Claystone, maroon Siltstone, hard gray Claystone, light red with maroon to purple Claystone, maroon to lt red Siltstone, interbeded w/claystone, gray Claystone, interbeded siltstone, maroon-gray Siltstone, interbeded w/claystone, gray Claystone, lt red to maroon

Do Not Write Below This Line

File Number: <u>CP-998</u> Form: wr-20

page 3 of 4

Trn Number: 4/8655

File Number: _____

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

MW-25 1 -- 1 . ۱. сЭ ات ا 17 The undersigned hereby certifies that, to the best of his knowledge and ΞÌ belief, the foregoing is a true and correct record of the above described in hole.

 $\frac{12/29/05}{(mm/dd/year)}$

hole.

FOR STATE ENGINEER USE ONLY

Quad ____; FWL ___; FSL ___; Use ____; Location No. ____

Do Not Write Below This Line

File	Number:	CP-998					
	Form:	wr-20	page	4	of	4	

Trn Number: <u>418655</u>

WLB

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL	
Name: Louisiana Energy Services	Work Phone: <u>505-394-52</u> 04
Contact: Laurie Wetherell	Home Phone:
Address: P.O. BOX 1789	-
City: Eunice	State: <u>NM</u> Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. $\frac{SE}{1/4}$ $\frac{NE}{1/4}$ $\frac{SW}{3}$ 1/4 Section: $\frac{32}{32}$ Township	:2/S Range:38EN.M.P.M. County.
B. Xfeet, Y =fe Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>1.0998</u> s Longitude:	: <u>103</u> d <u>05</u> m <u>1.086</u> s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
	· ·
E. Tract No, Map No of the	Hydrographic Survey
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract Subdivision recorded in	Hydrographic Survey of the County 22
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract G. Other:	Hydrographic Survey
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract G. Other: H. Give State Engineer File Number if existing wel	Hydrographic Survey of the County 11: CP-997
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract Subdivision recorded in G. Other: H. Give State Engineer File Number if existing well I. On land owned by (required): Louisiana Energy	Hydrographic Survey of the County 11: CP-997
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract Subdivision recorded in G. Other: H. Give State Engineer File Number if existing well I. On land owned by (required): Louisiana Energy 3. DRILLING CONTRACTOR	Hydrographic Survey of the County 11: CP-997 gy Services
E. Tract No, Map No of the F. Lot No, Block No of Unit/Tract Subdivision recorded in G. Other: H. Give State Engineer File Number if existing well I. On land owned by (required): Louisiana Energy J. DRILLING CONTRACTOR License Number: 1575 Name: Talon Drilling Agent: Shane Currie Mailing Address: 921 N. Bivins	Hydrographic Survey of the County 11: CP-997 gy Services Work Phone: 806.467.0607 Home Phone: 806.467.0622

4. DRILLING RECORD

Drilling began: <u>12/4/08</u>; Completed: <u>12/4/08</u>; Type tools: <u>Air-Rotary</u>; Size of hole: <u>7-7/8</u>in.; Total depth of well: <u>40</u> ft.; Completed well is: <u>Monitor</u> (shallow, artesian); Depth to water upon completion of well: <u>Dry</u> ft.

	Do Not Write Below Th	his Line	
File Number: $\frac{P-997}{Form}$	page 1 of	Trn Number: 418654	
	Moxitor	21.38.32.324	

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
Dry				
				

6. RECORD OF CASING

-

Diameter (inches) <u>4 PVC</u>	Pounds per ft. Sch 40	Threads per in. 2	Depth : Top +3	in Feet Bottom 40	Length (feet) 43	Type of Shoe end cap	Perfor From 25	rations To <u>40</u>
_								
<u> </u>				<u> </u>		··	<u> </u>	

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method	l of Plac	ement
From	Τo	Diameter	of mud	of Cement			
0	5	7-7/8		20 Sacks	<u>Trimie</u>	(Bento	<pre>nite/Cement)</pre>
5	20	7-7/8	5		Poured	(Bentor	<u>nite chips)</u>
						·	<u> </u>
·	·			·			

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:					
Plugging approved by:	s	State Engineer	Representative	· · · · ·	<u></u>
No. D	enth in Feet	Cubic Feetof	Cement		
Top	Bottom			5 5	inter ú
3 4 5				1:21	

Do Not Write Below This Line

File Number:	CP-997		Trn	Number:	418654
Form:	wr-20	page 2 of 4			

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

•

•

-

Depth :	in Feet	Thickness	Color and Type of Material Encountered				
From	To	in feet					
0	11	11	Sandstone, slight cemented, burnt orange				
<u>11</u>	_29	18	Caliche, soft, gray to lt orange				
29	37	8	Gravelly sand, abundant chert, orange sand				
37	40	3	Claystone, maroon				
							
			· · · · · · · · · · · · · · · · · · ·				
							
			· · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · ·				
		·					
		:					
		<u>.</u>					
			۱۰				
.							

Do Not Write Below This Line

page 3 of 4

File Number: $\frac{CP-9977}{\text{wr-20}}$

Trn Number: 418654

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
	· · · · · · · · · · · · · · · · · · ·	
		·
	1	
	1	
The undersigned hereby co belief, the foregoing is hole.	ertifies that, to the best of his knowledge and a true and correct record of the above description $2 - \frac{12}{29/08}$	d bed
The undersigned hereby co belief, the foregoing is hole. Drill	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12/24/0}{(mm/dd/year)}$	d bed
The undersigned hereby co belief, the foregoing is hole. Drill	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12}{240}$ ler $\frac{12}{(mm/dd/year)}$	d bed
The undersigned hereby co belief, the foregoing is hole. Drill	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12}{240}$ ler $\frac{12}{240}$ (mm/dd/yéar) R STATE ENGINEER USE ONLY	d bec
The undersigned hereby co belief, the foregoing is hole. Drill	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12}{240}$ ler $\frac{12}{240}$ (mm/dd/yéar) R STATE ENGINEER USE ONLY	d bed
The undersigned hereby co belief, the foregoing is hole. Drill FO Quad; FWL; FSL	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12/24/0}{(mm/dd/year)}$ R STATE ENGINEER USE ONLY; Use; Location No	d bec
The undersigned hereby combelief, the foregoing is hole.	ertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12/24/08}{(mm/dd/year)}$ R STATE ENGINEER USE ONLY; Use; Location No	d bed
The undersigned hereby co belief, the foregoing is hole. Drill Prill Quad; FWL; FSL	Pertifies that, to the best of his knowledge and a true and correct record of the above description $\frac{12/24/08}{(mm/dd/year)}$ R STATE ENGINEER USE ONLY ; Use; Location No	d bed

NTS OD FYPLANATIONS 1(

. .

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

. **N**

þ

1. OWNER OF WELL
Name: LOUISIANA Energy Services Work Phone: 505. 394. 5704
Address: P.O. Box 1789
City: Eunice State: NM Zip: 88231
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. <u>NW1/4 3E 1/4 SW 1/4 Section: 32</u> Township: <u>215</u> Range: 38 E. M.P.M. in Lea County.
B. X = feet, Y = feet, N.M. Coordinate System Zone in the Grant. U.S.G.S. Quad Map
C. Latitude: <u>37</u> d <u>25m 52.499</u> s Longitude: <u>103</u> d <u>05 m 7.607</u> s
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract of the of the County.
G. Other:
H. Give State Engineer File Number if existing well: $CD = 951$
I. On land owned by (required): $1/27$ County, Aligh
3. DRILLING CONTRACTOR
License Number: 15 Name: Talon / LPG Agent: Strance Currie Mailing Address: 921 N. Biv: AS
City: Amavillo State: TX Zip: 79107
4. DRILLING RECORD
Drilling began: $3/28/07$; Completed: $4/3/07$; Type tools: $Air rearrance of Air rearrance of hole: 7-7% in.; Total depth of well: 237 ft.; Completed well is: Monitor (shallow, artesian); Depth to water upon completion of well: DRY ft.$
File Number: <u>CP-956</u> Form: UP-20
page 1 of 4 $21.38.32.341$
Monitor

. ··· .

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)		
<u>l2⊭¥</u>						
·	<u> </u>					

6. RECORD OF CASING

Diameter	Pounds	Threads	Depth	in Feet	Length	Type of Shoe	Perfo	rations
(inches)	per ft.	per in.	Тор	Bottom	(feet)		From	То
<u> </u>	<u>Sch 40 PK</u>	_ 2	<u> </u>	217.1	1.715	N/A	NA	
4	sch 48 PVC	Z	2.17.1	237.(Z0_	PVC end cap	217.1	237.1
	<u></u>					·		

7. RECORD OF MUDDING AND CEMENTING

Depth i	.n Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
<u> </u>	-15	1-7/8	<u> </u>	20	tremie - cement / bentomite
	<u> </u>	_7.78	_48_	N/n	pour - bentonite chips
	<u> </u>				

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Dep Top 1 2 3 4 5	pth in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFFICE ROSWELL, NEW MEXICO 2007 NPR 27 P 2: 05
<u> </u>	Do Not Write Below This Line	
File Number: <u>CP-956</u> Form: wr-20	Trn Number: <u>37695</u> page 2 of 4	56
	Monitor 21.38.3.	2,341
~ ·

File Number: ______(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

,__

-

Depth From	in Feet	Thickness	Color and Type of Material Encountered
- 10m	<u>د</u>	TU TEEC	SAND Fine days budt - man
<u> </u>	25	2.0	Caliebe solt dry, and to the
25	40		SANDY GRAVEL CLARICH ON BUSINE ACTIVITY
40	<u>in</u>	20	Clay from dry marcon will show mo filing
<u> </u>		25	Clarston & will siltstone band down war song down in
- 55	165	80	CLEWSTONE DIV MERIONA W GUER MATHING
165	190	25	Claystone wil siltstone, hard, dry marcon
190	270	30	claystone, hard, dry marcon w/ oray mottling
220	235	15	clarstone, w/ siltstone hard, dry light red
235	240		claustone, have, dry, marcon ill grow mothing
		. <u> </u>	
	· ·		
<u> </u>			
	. <u>.</u>	·	
	·		
<u> </u>			· · · · · · · · · · · · · · · · · · ·
	•		
	· ·		
	·	<u> </u>	
		<u> </u>	
		·	
			() 前身
		_	
		D	o Not Write Below This Line
File Numb	m. M.	2-9512	1 271.957-
олши этгэ Я	orm: wr-	20	$\operatorname{Trn Number:} \underline{\bigcirc 10100}$
1	97101 VYT		page J UI 4 $a/an a a/l$
			21,38,32,341
			Monitor

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Si______ Driller 04/24/07 (mm/dd/year)

		() جزین لیسی که محمد محمد محمد محمد محمد محمد محمد محم	ROT
FOR STA	TE ENGINEER USE ONLY	100	ELL
Quad; FWL; FSL; Us	e; Location No	 12 21	INER OFFICE
Do Not	t Write Below This Line	e	1 -1.
File Number: <u>CP-956</u> Form: wr-20	Trn page 4 of 4	Number: <u>376950</u>	0
	Maritar	21,38,32.	341

File Number: _______(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

_.

WLB

1. OWNER OF WELL
Name: Louisiana Energy Services Work Phone: 505.394.5204
Address: P. O. Box 1789
City: <u>EUNICE</u> State: <u>NM</u> Zip: <u>\$8231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. <u>NE1/4</u> <u>NE1/4</u> <u>SE</u> 1/4 Section: <u>32</u> Township: <u>2/S</u> Range: <u>38</u> EN.M.P.M. in <u>Lea</u> County.
B. X =feet, Y =feet, N.M. Coordinate System Zone in theGrant. U.S.G.S. Quad Map
C. Latitude: <u>32</u> d <u>Z6</u> m <u>5.327</u> s Longitude: <u>103</u> d <u>04</u> m <u>Z6.985</u> s
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract of the of the County.
G. Other:
H. Give State Engineer File Number if existing well: $CP-946$
I. On land owned by (required): Lea County, NM
3. DRILLING CONTRACTOR
License Number: 1575 Name: <u>Taion/LPE</u> Agent: <u>Shave Currie</u> Mailing Address: 97(A). <u>Bivins</u>
City: <u>Amarillo</u> State: <u>TK</u> Zip: <u>79107</u>
4. DRILLING RECORD
Drilling began: $3/16/01$; Completed: $4/03/01$; Type tools: Air Rotary; Size of hole: $7 \cdot \frac{1}{18}$ in.; Total depth of well: 225.8 ft.; Completed well is: Monitor (shallow, artesian); Depth to water upon completion of well: 220.49 ft.
Do Not Write Below This Line

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet	Thickness	Description of	Estimated Yield
From To	in feet	water-bearing formation	(GPM)
220.99 225.8	ול יכ	Claystone	0-1
	<u> </u>		
	· · ·		

6. RECORD OF CASING

.

Diameter (inches)	Pounds per ft.	Threads per in.	Depth : Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfor From	cations To
<u> </u>	SCH 40 PVC SCH 40 PVC		0	205,8	205.8 Z.C	N/A PVC end cap	N/A 205.8	225.8
					<u> </u>			
	_							

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
_0		8 5.7	t	20	topmie - bentouite /concent
_15	200	7-7/8	48	/H	- Poused - bentovite pellets
	·		<u> </u>		

_ ____

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Depth Top 1 2 3 4 5	in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFF ROSVELL, ILL MEXIMEXI
Dc	> Not Write Below This Line	
File Number: <u>CP- 946</u> Form: wr-20	Trn Number: <u>37694</u> page 2 of 4	4
	Monitor 21.38.32	422

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth in Feet Thickness Color and Type of Material Encountered From То in feet - SAND, lonse dry, burnt evange - CALICHE, Maderately hand, dry gray - Gravely SAND, fine grained light gray C. г 2 2 lS 25 35 20 15 CLAY, highly plastic, tirm, dry, Marach 35 70 35 CLAY Stone, any marcon with gray and green motiling CLAY Stone, any marcon with gray and green motiling Claystone, interbedded silfstone, dry, marcond gray 70 80 10 95 60 15 95 100 5 _____ claystone, firm dry marcon & gray ______ claystone, interpedded sittstone marcon 100___ 15 115 _45 ______ i O. _ claystone, dry marcon 125 125 50 175 185 clarstone, inter bedded wi sutstone, dry maronn IO_{-} 10 Siltstone, hard dry gray 185 195 200 195 5 - siltstone, hard dry gray 200 215 15 claystone, hard dry mation silfstone, damp, gray 220 215 5 220 135 15 claystone; firm, dry, marcon ì 22 32 m i S Ū Do Not Write Below This Line File Number: <u>P-944</u> Form: wr-20 Trn Number: _ プ page 3 of 4 Monitor 21,38,32,422

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{\int -\frac{O4/24/07}{(mm/dd/year)}}{Driller}$

	ROS ROS
FOR STATE ENGINEED	R USE ONLY
Quad; FWL; FSL; Use;	Location No D FEER OF FICE
Do Not Write Bel	ow This Line
File Number: <u>CP-946</u> Form: wr-20 page	Trn Number: <u>376944</u> 4 of 4 21.38.32.4.22

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

WLB

Mark Dhone, Louis Canada Canada Mark Dhone, 505 49	11 / march
Name: LOUISIANA ENERGY SEVVICES WORK PHONE: 303-31	4.5204
Contact: <u>Laurie Wethereil</u> Home Phone:	
Address:V.U. Kox 1789	
City: Eunice State: NM Zip: 882	31
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. <u>SE</u> 1/4 <u>SE</u> 1/4 <u>SE</u> 1/4 Section: <u>32</u> Township: <u>2/5</u> Range: <u>38</u> EN.M. in <u>/ea</u> Cou	P.M. Inty.
B. X = feet, Y = feet, N.M. Coordinate Sy Zone in the Gr U.S.G.S. Quad Map	vstem cant.
C. Latitude: <u>32</u> d <u>25 m 46.785</u> s Longitude: <u>103</u> d <u>4 m 31,81</u>	<u>5</u> s
D. East (m), North (m), UTM Zone 13, NAD (27 or	5 83)
E. Tract No, Map No of the Hydrographic Su	irvey
F. Lot No, Block No of Unit/Tract of	the inty.
G. Other:	
ዘ. Give State Engineer File Number if existing well: <u>ርዮ- ዓዛና</u>	
I. On land owned by (required): LCZ County, NM	
3. DRILLING CONTRACTOR	
3. DRILLING CONTRACTOR License Number: 1575 Name: Taion/LPE Agent: Shawe Corrie Mailing Address: 921 N. Bivins Name: 906.46 Home Phone: 806.46 Home Phone: 806.676	<u>1.0607</u> 6.8220
3. DRILLING CONTRACTOR License Number: 1575 Name: Taion/LPE Agent: Shawe Corrie Mailing Address: 921 N. Bivins City: Amarillo State: TX Zip: 7910	<u>7.06</u> 07 <u>6.82</u> 20
3. DRILLING CONTRACTOR License Number: 1575 Name: Talon/LPE Agent: Shawe Corrie Mailing Address: 921 N. Bivins City: Amarillo State: TX Zip: 7910 4. DRILLING RECORD	<u>1.0601</u>
3. DRILLING CONTRACTOR License Number: 1575 Name: Talon/LPE Agent: Shawe Corrie Mailing Address: 921 N. Bivins City: Amavillo State: TX Zip: 7910 4. DRILLING RECORD Drilling began: 3/14/01; Completed: 913/07; Type tools: Air Retains Size of hole: 778 in.; Total depth of well: 241.2 ft.; Completed well is: Monitor (shallow, artesian); Depth to water upon completion of well: p2Y ft.	1.0607 STATE ENGINEER OF
3. DRILLING CONTRACTOR License Number: 1575 Name: Taion/LPE Agent: Skawe Corrie Mailing Address: 92(1 N. Bivins City: Amarillo State: TX Zip: 7910 4. DRILLING RECORD Drilling began: 3/14/01; Completed: 4/3/07; Type tools: Air Rets Size of hole: 17g in.; Total depth of well: 241.2 ft.; Completed well is: Monitor (shallow, artesian); Depth to water upon completion of well: p2y ft.	1.0607 STATE ENGINEER OFFIC
3. DRILLING CONTRACTOR License Number: 1575 Name: Taion/LPE Agent: Shawe Corrie Mailing Address: 921 N. Bivins City: Amavillo State: TX Zip: 7910 4. DRILLING RECORD Drilling began: 3/14/01; Completed: 9/3/07; Type tools: Air Reta Size of hole: 178 in.; Total depth of well: 241.2 ft.; 53 Completed well is: 178 in.; Total depth of well: 241.2 ft.; 53 Depth to water upon completion of well: p29 ft. 53 Do Not Write Below This Line 73 File Number: 02045 Trn Number: 37688	1.0607 STATE ENGINEER OFFICE

. - - -

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth i From	n Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
	<u> </u>		· · · · · · · · · · · · · · · · · · ·	

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per in.	Depth : Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo: From	rations To
4	sch 40 PVC	2 2	221.2	<u>_221,2</u> _ <u>241,2</u>	221.2	N/A PVC end cap	N/A 221.2	241.2

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
0	15	7-7/8	<u> </u>	20	tremie - bentonite / cement
75	215	7-7/4	48	N/A	poured - bentonite chips
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

- ----8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Depth Top 1 2 3 4 5 5 5 5 5	in Feet Cubic Feetof Cement Bottom	STATE ENGINEER OFFICE ROS VELL. L'EW MEXICO 2001 APR 21 C 1: 5
File Number: <u>C.P- 945</u> Form: wr-20	page 2 of 4 Monitar 21,38,	<u>887</u> 32.444

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

. - -

9. LOG OF HOLE

.

Depth in Feet	Thickness	Color and Type of Material Encountered
From To	IN IGEC	CAUD ()
		SAND, FINE GVAINED, LOSSE DRY, DYGLOR TO HIGHE OVANGE
10 25	15	CALICHE, Moderately soft, ory, orange and white
<u>Z5</u> 60	35	Clay, Stiff dry, gray and maroon, mottled.
<u>60</u> 19 6	130	<u>claystone</u> , ory marcen
140 200		Sutstone, hand damp; light gray
200 260	60	claystone, firm dry manon
	_	<u> </u>
		
		· · · · · · · · · · · · · · · · · · ·
		
· · · · · · · · · · · · · · · · · · ·		
······································		
	<u> </u>	
<u> </u>	<u>.</u>	
- <u></u>	<u></u>	
		רייני דייני רייני דייני
		2 • 9
	,	Do Not Write Polow This Line
File Number:	P.945	Trn Number. 2768877
Form: wr-	-20	page 3 of 4
I OLIN, WI		μο ch
		1 28 27 11/16
		M. to XII DOI DXI 447
		1 Mondol

21

.

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

....

_____ _____ _____ _____ _____ _____ _____ ____ _____

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

 $\frac{1-c}{\text{Driller}} \qquad \frac{04/24/2007}{(\text{mm}/\text{dd/year})}$

=== ;;====== = = = = = ======		
F	OR STATE ENGINEER USE ONLY	STATE ROS ¹ 2001
Quad; FWL; FSL _	; Use; Location No	iengine Ieul, ne Ieul, ne
	Do Not Write Below This Line	
File Number: <u>CP-945</u> Form: wr-20	Trn Number: page 4 of 4	3768878
	Moxiter 21.	38.32.444

whe

- .

File Number: (For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL	
Name: LOUISIANA ENErgy Services	Work Phone: <u>505. 374.5</u> 204 Home Phone:
Address: P. O. Box (789	
City: Eunice	State:NM Zip: <u>88231</u>
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)	
A. <u>NW</u> 1/4 <u>SW</u> 1/4 <u>SE</u> 1/4 Section: <u>32</u> Township in <u>Lea</u>	: <u>315</u> Range: <u>38</u> EN.M.P.M. County.
B. X = feet, Y = feet, Y = fe Zone in the U.S.G.S. Quad Map	eet, N.M. Coordinate System Grant.
C. Latitude: <u>32</u> d <u>25</u> m <u>50.439</u> s Longitude:	103 d 04 m 52.541 s
D. East (m), North (m), UTM	Zone 13, NAD (27 or 83)
E. Tract No, Map No of the	Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number if existing wel	1: CP-957
I. On land owned by (required): Lea County	NIN
3. DRILLING CONTRACTOR	
License Number: (575	
Name: Taion / LPE Agent: Shawe Curre Mailing Address: 921 N. Bivins	Work Phone: <u>806.467.060</u> 7 Home Phone: <u>806.676.82</u> 20
City: Amavillo	State: <u>TX</u> Zip: <u>74107</u>
4. DRILLING RECORD	
Drilling began: $3/20/07$; Completed: $4/3/07$; Size of hole: $7-7/8$ in.; Total depth of well: 231.7 Completed well is: $Mon(40n)$ (shallow, arte Depth to water upon completion of well: DRV	Type tools: <u>Air I of ary</u> ; Y ft.; ft.
	USI STE
Do Not Write Below This Li	ne to the
File Number: <u>CF-95</u> Form: wr-20 Tr page 1 of 4	n Number: 3/695/200

1------

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth From DZY	in Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)

6. RECORD OF CASING

Diameter (inches)	Pounds per ft.	Threads per_in.	Depth Top	in Feet Bottom	Length (feet)	Type of Shoe	Perfo From	rations To
<u> </u>	<u>5ch 40PVL</u> 5ch 40PVL	Z Z	0	211.4 231.4	<u>211.4</u> 20	PUC end cap	<u>N/A</u> 216.4	231.4

7. RECORD OF MUDDING AND CEMENTING

Depth i	n Feet	Hole	Sacks	Cubic Feet	Method	of Placement
From	То	Diameter	of mud	of Cement		. 1
0	15	7-7/4	(20	tremie	- conent/bentonite
15	205	7-7/8	48		poured -	bentonite chips
<u> </u>					,	· · · · · · · · · · · · · · · · · · ·

8. PLUGGING RECORD

Plugging Contractor: Address: Plugging Method: Date Well Plugged:		
Plugging approved by:	State Engineer Representative	
No. Depth Top 1 2 3 4 5	in Feet Cubic Feetof Cement Bottom	STATE ENGLISHEER OFFIC ROSWELL, HEER MEXIC
Do	Not Write Below This Line	<u> </u>
File Number: <u>CP- 45</u> Form: wr-20	Trn Number: $\frac{3}{6}$,451_
	Monetor 21,38,32.	431

.----

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

Depth in Feet From To	Thickness in feet	Color and Type of Material Encountered
0 10	10	SAND fine, loose, dry orange to tan
10 35	_25	CALICHE, have dry, orange & grav
35 40		SANDY GRAVEL, MAROON
<u>40 85</u>	<u>45</u>	<u>Clay, highly plastic tirm ary maroon</u>
$\frac{p_3}{q_5}$ $\frac{75}{105}$	$\underline{10}$	Clarkburg halt not
105 100		Sitstone of Claustone civer & Marcon
110 170	60	claystone, dry manoour whereas motiling
170 195	2.5	Siltstone wil claystone have dry gray & marcon
195 720		Claystone, Org, Marcon
230 240	$-\frac{10}{10}$	Claustone will charge site address will charge another
$\underline{-270}$ $\underline{-270}$		CARTONE DI SUBJE SILL MAILLE DE GRAF MOITHING
·	····	
·· ·		· · · · · · · · · · · · · · · · · · ·
		
		· · · · · · · · · · · · · · · · · · ·
		, ,
		··
····		
		3
		D = 20
	<u>E</u>	Not Write Below This Line
File Numbers (7	D- 95-	7 Number 3769570 55
Form: wr-	20	page 3 of 4
		1/2000/121
		Marton 21,38, 32, 4-21

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

S-e $\frac{4/24/20}{(mm/dd/year)}$

<u>|70</u>07

.

		
FOR	STATE ENGINEER USE ONLY	TEST ST
Quađ; FWL; FSL	_; Use; Location No	
Dc	D Not Write Below This Line	0 000
File Number: <u>CP-957</u> Form: wr-20	Trn Number page 4 of 4	376957
		21.38.32,431
	Monitar	

WAB

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL Name: Waste Control Specialists, LLC Contact: Mike Burney Address: 9998 W. Highway 176 Work Phone: 868-789-2183 Home Phone: 505-3941-4300
City: Andrews State: TX Zip: 79714
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. <u>NE 1/4 NE 1/4 NW 1/4</u> Section: <u>33</u> Township: <u>2 5</u> Range: <u>386</u> N.M.P.M. in County.
B. X =feet, Y =feet, N.M. Coordinate System Zone in theGrant. U.S.G.S. Quad Map
C. Latitude: <u>32 d 26 m 29 s</u> Longitude: <u>103 d 03 m 58 s</u>
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in Subdivision recorded in
G. Other:
H. Give State Engineer File Number if existing well: $CP - 979$
I. On land owned by (required): Waste Control Specialists, LEE
3. DRILLING CONTRACTOR $\qquad \qquad \qquad$
License Number: <u>1575</u> Name: <u>Talon Drilling, L. P.</u> Agent: <u>Shane Currie</u> Mailing Address: <u>921 N. Bivins</u>
City: Amarillo State: TX Zip: 79107
4. DRILLING RECORD
Drilling began: $\frac{2/20/08}{5}$; Completed: $\frac{2/20/08}{5}$; Type tools: Air Rotary Rig Size of hole: $\frac{5}{78}$ in.; Total depth of well: $\frac{2}{28}$ ft.; Completed well is: Monitor (shallow, artesian); Depth to water upon completion of well: $\frac{5}{74}$ ft.
De Net Write Deley This Line
File Number: <u>CP-979</u> Form: wr-20 page 1 of 4 Trn Number: <u>399475</u>
Monitar 21.38.33, 122

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet From To	Thickness in feet	Description of water-bearing formation 	Estimated Yield (GPM)

6. RECORD OF CASING

-

inches) pe <u>ک</u>	er ft. j <u>40 R_{VL} -</u>	per in. 	Тор О	Bottom <u>28</u>	(feet)	Prc end	<u>cəp</u>	From 13	TO ZS
									

7. RECORD OF MUDDING AND CEMENTING

Depth	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	То	Diameter	of mud	of Cement	
0	5	5-5/8	Z0		tremie - bentonite/cement
_ 5_	10	5-5/8	2		poured - pentonite chips
<u> </u>					· · · · · · · · · · · · · · · · · · ·

_ _

_ _

- -

8. PLUGGING RECORD

Plugging Contractor:		1-2	251
Address:		3	_ <u>_</u>
Plugging Method:			111
Date Well Plugged:		24	<u> </u>
Plugging approved by:		1	
	State Engineer Representative	\land	22
		Ţ	E M
No. Depth Top	in Feet Cubic Feetof Cement Bottom		SĘ
1			
2			
3			
4			
5			

Do Not Write Below This Line

File Number: <u>CP-979</u> Form: wr-20 page 2 of 4

Trn Number: _____

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE

-

Depti	n in Feet	Thickness	Color and Type of Material Encountered		
From	То	in feet			
δ	0.5	0.5	Surface Soil		
0.5	15	14,5	Caliche		
15	17	2	Gravelly Sand		
17	25	8	Clavey Silty Sand		
25	28.5	3.5	grav szudstone		
		<u> </u>			
				• • • ••=•	
·					<u>-</u>
				<u>-</u> _	
		· ·		23	
					ానష్
					11
				- 25	
			· · · · ·]	្រះ
				0	207
				~	
				.	्न
				ω	0
				ω.	<u>ा</u> ः

Do Not Write Below This Line

page 3 of 4

File Number: <u>CP-979</u> Form: wr-20

Trn Number:

(For OSE Use Only)

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

	·
	<u>с</u> т
The undersigned hereby certibelief, the foregoing is a thole.	ifies that, to the best of his knowledge and $\frac{1}{2}$ true and correct record of the above described $\frac{03/03/2008}{(mm/dd/year)}$
FOR ST	TATE ENGINEER USE ONLY
Quad; FWL; FSL; U	Use; Location No
Do N	ot Write Below This Line
ile Number: $\frac{P-979}{\text{Form: wr-20}}$	Trn Number:

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

.

For OSE Use User

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD and DRILLING LOG

1. PERMIT HOLDER(S) Name:WASTE CONTROL SPECIALISTS Address: P.O. BOX 1129 City: ANDREWS State: TX Zip: 79714 Phone: (505) 394-4300 Contact: MICHAEL BURNEY Contact Phone: (505) 394-4300 2. STATE ENGINEER REFERENCE NUMBI File # CP 975 EXPLORE Well 3. LOCATION OF WELL (The Datum Is Assured)	Name: Address: City: State: Phone: # C med To Be WG	_Zip: .P. 975 S 84 Unless Otherv	vise Specified)	
Latitude: 32 Deg 2	5 Min	45.8	Sec	
Longitude: 103 Deg 04	4 Min	20.4	Sec	
(Enter Lat/Long To At Datum If Not WGS 84: 4. DRILLING CONTRACTOR License Number: WD1184	Least 1/10 th Of	A Second)		Ian la Kose
Name: WEST TEXAS WATER WELL SER	VICE Worl	(432) k Phone:	530-2696	
Drill Rig Serial Number:	261602	,,,,,,,,,	·	
Process: RON	NY KEITH			
5. DRILLING RECORD			N. 27	
Drilling Began: <u>1-21-08</u> ; Completed:	4-29-08 ;	Drilling Method	MUD ROTARY	
Diameter Of Bore Hole: $7-7/8$ (in);		u _		
Total Depth Of Well: 2,020	(ft):			
Completed Well Is (Circle One): Shallow Artesi	an			
Depth To Water First Encountered: 1 092	,) / (#)-			
Depth To Water Upon Completion Of Well:	<u>N/A</u>	(ft).		
TRN Number: <u><u><u> </u></u></u>	<u>S Line</u>	File Num		-

21,38,33,333

page 1 of 4 Explore

OSE FILE NUMBER

For OSE Use Use

NEW MEXICO OFFICE OF THE STATE ENGINEE	R
WELL RECORD and DRILLING LOG	

6. RECORD	OF CASING					
Diameter (inches)	Pounds (per fl.)	Threads (per inch)	Depth (feet)	Length Top to Bottom (feet)	Type of Shoe	Perforations (from to)
13-3/8	48	8	2' AGL	40 '		
8-5/8	24	8	3' AGL	1,440'	FLOAT GUIDE	
		İ				

7. RECORD OF MUDDING AND CEMENTING

Depth (feet)	Hole (diameter)	Mud Used (# of sacks)	Cement (cubic feet)	Method of Placement
0 - 40	17-1/2		35	TRIMMIE
0 - 1,440	12-1/4		574	POSITIVE
1,380-2,020	7-7/8		275	TRIMMIE
	··			
		· · · · · · · · · · · · · · · · · · ·		
				TS ST
				I A I
				2.
	Do	Not Write Below Thi	is Line	
Trn Number:			File Numb	er:

Trn Number: Form: wr-20 May 07

.

page 2 of 4

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

Dept (fee	th t)	Thickness	For Water Bearing	
From	То	(Feet)	Strata Enter The Estimated Yield in GPM	Color and Type of Material Encountered
			SEE ATTACHED	GEOLOGIC LOG
				<u> </u>
				· · · · · · · · · · · · · · · · · · ·
	1			
		ļ		
•				
				NY LENG
			·	
	.			I

8. LOG OF HOLE. For Each Water Bearing Strata, Estimate The Yield Of The Formation In Gallons Per

Do Not Write Below This Line

Tm Number: _____ Form wr-20 May 07

page 3 of 4

File Number: _____

CP-975 Geologic log

.

1402

0-6 ft (_v	pad fill and fine brown sand
6-10 ft	white sandy limestone (Mescalero caliche) Ogada a
10-29 ft 19	sand, light brown, and brown calcareous sandstone (Gatuña Formation)
29-576 ft 54	interbedded sandstone, siltstone, and claystone; reddish-brown to gray; bioturbated (Cooper Canyon Formation)
じ2 576-708 ft ろ	sandstone and siltstone, gray to reddish brown (Trujillo Formation)
708-1092 ft	interbedded very fine sandstone and siltstone, gray to dark reddish brown (Tecovas Formation)
1092-1384 ft	gray, fine sandstone with interbedded reddish brown and weak red siltstone and claystone (Santa Rosa Formation)
1384-1566 ft	reddish brown, very fine sandstone and siltstone, with some fibrous gypsum in lower part (Dewey Lake Formation)
1566-1602 ft	30 gray anhydrite beds, with intermediate reddish-brown and gray siltstone (Forty-niner Member of the Rustler Formation)
1602-1609 ft	' (gray anhydrite and wavy thin laminae of dolomite (Magenta Dolomite Member of the Rustler Formation)
1609-1736 ft	<pre>// (gray anhydrite beds, with intermediate halite including anhydrite and polyhalite (Tamarisk Member of the Rustler Formation)</pre>
1736-1807 ft	halite with thin two thin anhydrite beds and basal reddish-brown, very fine sandstone (Los Medaños Member of the Rustler Formation)
イは 1807-2020 ft	halite with anhydrite/polyhalitic marker beds (MB103 and uppermost MB109) (Salado Formation)
	2: 0 2: 0
	с - Э́́́́н

.

,

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

	,, _,, _
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2-
	£
	10
	<del>0</del>
· ····	

true 11 file this well record with the Office Of The State Engineer and permit holder within 20 days after completion of the well drilling.

٢. arth Driller

05-12-08 (mm/dd/year)

Do Not Write Below This Line

Trn Number: Form wr-20 May 07

.

page 4 of 4

File Number:

File Number:	OS - Oplys
NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT TO DRILL AN EXPLORATORY WELL	2-24474 1320°
I. APPLICANT:Name:Waste Control Specialists LLCWork PhoneContact:Mike BurneyHoneAddress:9998 W. Highway 176	: 888-789-2783 : 505-394-4300
City: Andrews State: TX Z	ip: 79714
2. LOCATION OF WELL (A, B, C, or D required, E or F if known):	
A. <u>NE</u> 1/4 <u>NW</u> 1/4 <u>NW</u> 1/4 Section: <u>33</u> Township: <u>2/</u> 5 Range in <u>Lea</u>	County.
B. X =feet, Y =feet, N.M. Coo Zone in the U.S.G.S. Quad Map	ordinate System Grant.
C. Latitude: <u>32</u> d <u>26</u> m <u>30.145</u> s Longitude: <u>103</u> d <u>04</u>	m <u>10.962</u> s
D. East (m), North (m), UTM Zone 13, NAD	(27 or 83)
E. Tract No, Map No of the Hydro	ographic Survey
F. Lot No, Block No of Unit/Tract Subdivision recorded in	of the County.
G. Other:	
H. Give State Engineer File Number of existing well:	
I. On land owned by (required): Waste Control Specialists LLC	
3. WELL INFORMATION:	
Approximate depth 75 feet; Outside diameter of casing 2 in	nches. >
Name of well driller and driller license number Jose Salas/#1575	
4. ADDITIONAL STATEMENT OR EXPLANATIONS:	53 CE

This piezometer (TP-63) is being installed to determine the presence or absence of shallow groundwater in the Ogallala/Antlers/Gatuna formations on top of the Triassic Dockum group "red bed clays" in support of licensing activities by Waste Control Specialists LLC. No pumping or use of groundwater is intended; the piezometer is being installed solely to monitor groundwater levels, if any.

RENAMED "PZ-41"

FEB 29 Do Not Write Below This Line Trn Number: <u>39594</u> File Number: <u>CP-972</u> Form: wr-07 page 1 of 2

File Number: (For OS. . Only)

#### NEW MEXICO OFFICE OF THE STATE ENGINEER APPLICATION FOR PERMIT TO DRILL AN EXPLORATORY WELL

#### ACKNOWLEDGEMENT

(T, We) Mike Burney	affirm that the
(Please Frint)	
foregoing statements are true to the best of my knowledge	and belief.
Applicant Signature Applicant Signa	ture

#### ACTION OF STATE ENGINEER

This application is approvedXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	s not l is no to to to	IVLS
	29	
see attached conditions of approval	<u> </u>	
Witness my hand and seal this $2nl$ day of January , 20	08	<u> - 5</u>
John R. D'Artonio, Jr., P.F., State Engineer By: Hundle Hermonet Kenneth M. Fresquez, Acting District IO Supervisor	2001 DEC 31 · A 9:58	STATE ENGINEER OFFICE Roswell, Hewmexico

#### Do Not Write Below This Line

File Number: <u>CP-972</u> Form: wr-07

.

page 2 of 2

Trn Number: <u>395941</u>

W=15

# NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL Name: Waste Control Specialists Contact: Mike Burney Address: 9998 W. Highway 176 Work Phone: 888-789-2783 Home Phone: 505-394-4300
City: Andrews State: TX Zip: 79714
2. LOCATION OF WELL (A, B, C, or D required, E or F if known)
A. <u>NE</u> 1/4 <u>NW</u> 1/4 Section: <u>33</u> Township: <u>ZIS</u> Range: <u>386</u> N.M.P.M. in County.
B. X =feet, Y =feet, N.M. Coordinate System Zone in theGrant. U.S.G.S. Quad Map
C. Latitude: <u>32</u> d <u>26</u> m <u>29</u> s Longitude: <u>103</u> d <u>04</u> m <u>13</u> ; s
D. East (m), North (m), UTM Zone 13, NAD (27 or 83)
E. Tract No, Map No of the Hydrographic Survey
F. Lot No, Block No of Unit/Tract of the of the county > Subdivision recorded in County >
G. Other:
H. Give State Engineer File Number if existing well: CP-97Z N
I. On land owned by (required): Waste Control Specialists >
3. DRILLING CONTRACTOR
License Number: 1575 Name: Talon Drilling, L.P. Work Phone: $\underline{806-467-6607}$ Agent: Shave Currie Home Phone: $\underline{806-676-8220}$ Mailing Address: 921 Ab Bivins
City: Amavillo State: TX Zip: 79107
4. DRILLING RECORD
Drilling began: $1/21/0$ ; Completed: $2/9/08$ ; Type tools: <u>Air Rotary Rig</u> Size of hole: 5-96 in.; Total depth of well: <u>49</u> ft.; Completed well is: <u>Monitor</u> (shallow, artesian); Depth to water upon completion of well: <u>Pry</u> ft.
Do Not Write Below This Line
File Number: $\frac{(P-972)}{\text{Form: wr-20}}$ page 1 of 4 Trn Number: $\frac{395941}{395941}$
Maxita 21, 38, 33, 112

(For OSE Use Only)

### NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

#### 5. PRINCIPAL WATER-BEARING STRATA

Depth i From	n Feet To	Thickness in feet	Description of water-bearing formation	Estimated Yield (GPM)
·				

#### 6. RECORD OF CASING

Diameter	Pounds	Threads	Depth :	in Feet	Length	Type of Shoe	Perfor	cations
(inches)	per ft.	per in.	Тор	Bottom	(feet)		From	То
2	Sch 40 PVL	2	0	<u> </u>	37	NIA	NA	
<u> </u>	Sch 40 PVL	2	37	<u> 49</u>	_12	PVC end cap	<u>31</u>	<u> </u>
			<u> </u>					

#### 7. RECORD OF MUDDING AND CEMENTING

Depth in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From To	Diameter	of mud	of Cement	i i la la la la marte
0 5	5-5/8			tremie - Dentchife / ceruent
5_35	5-5/8			poured - bentonite chips
<u></u>				

#### 8. PLUGGING RECORD

Plugging Contractor:			
Address:		r 1	24
Plugging Method:		25	<u>್</u> ಷ
Date Well Plugged:			11
		- 63	
Plugging approved by:		N	ି ୍ର
	State Engineer Representative	e.	
		~	
		2	
			्रम
No. Depth :	n Feet Cubic Feetof Cement	U	5
Тор	Bottom		$\sim$
1			
2			
3			
4	·		
5			

			Do	Not	Write	Below	This	Line	
File	Number:	CP-972						Trn Number:	375941
	Form:	wr-20			pa	age 2 d	of 4		11 -12 -12 11-2
					,				21,35,30,114
					Y	10 xit	60		

# NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

#### 9. LOG OF HOLE

Depth i	in Feet	Thickness	Color and Type of Material Encountered
From	ТО	in feet	
б	Z	2	Silly Sand, tan
2	1	- <u> </u>	Caliche Hard, tan
7	30	23	Caliche, moderate hard, tan
30	45	15	Silly Sand, tan
45	49	5	clay, reddish
		<u> </u>	
		<u> </u>	
		<u> </u>	
- · -			<u></u> <u></u>
	·		
	·		
	·		
	·		
	·		

Do Not Write Below This Line

File Number: <u>CP-972</u> Form: wr-20

Trn Number: <u>395941</u> page 3 of 4 21, 38, 33:112 Maxitan

26

26

#### NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

#### 10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

 $\sim$ 0 ⊳

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

<u>Ozizuizoos</u> (mm/dd/year) Driller

## FOR STATE ENGINEER USE ONLY

Quad ____; FWL ____; FSL ____; Use _____; Location No. _____

Do Not Write Below This Line

page 4 of 4 *Trn Number: <u>395941</u> 21,38.33,112 Mexiter* File Number: Form: wr-20



# STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER ROSWELL

John R. D'Antonio, Jr., P.E. State Engineer 1900 WEST SECOND STREET ROSWELL, NM 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

January 3, 2008

Waste Control Specialists LLC % Mike Burney 9998 W. Hwy 176 Andrews, TX 79714

RE: CP-971; CP-972; CP-973: CP-974

Greetings:

Enclosed is your copy of the Exploratory / Monitoring Permits, which have been approved subject to the conditions set forth on the approval page thereof.

In accordance with Condition C, a well record shall be filed in this office twenty days after completion of drilling. The well record is proof of completion of well. IT IS YOUR RESPONSIBILITY TO ASSURE THAT THE WELL LOGS BE FILED WITHIN 20 DAYS OF DRILLING OF THE WELLS.

These permits will expire on or before 01/31/09 unless the wells have been drilled and the well logs filed in this office.

Sincerely,

Andy Morley (575) 622-6521, ext 113

Enclosure

cc: Santa Fe Office

2009 FEB	
29	
$\triangleright$	ER
<u> </u>	E.

### NEW MEXICO STATE ENGINEER PERMIT TO EXPLORE / MONITOR

### SPECIFIC CONDITIONS OF APPROVAL

- 4 No water shall be appropriated and beneficially used under this permit.
- B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated.
- C Driller's well record must be filed with the State Engineer within 20 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- C2 No water shall be diverted from this well except for testing purposes which shall not exceed ten (10) cumulative days, and well shall be plugged or capped on or before 01/31/09, unless a permit to use water from this well is acquired from the Office of the State Engineer.

The well shall be constructed, maintained and operated that each water shall be confined to the aquifer in which it is encountered.

LOG The Point of Diversion CP-972 Monitor Well must be completed and the Well Log filed on or before 01/31/09.

#### ACTION OF STATE ENGINEER

Notice of Intention Rcvd:		Date Rcvd. Corrected:
Formal Application Rcvd:	12/31/07	Pub. Of Notice Ordered:
Date Returned – Correction:		Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.

Witness my hand and seal this 2 n day of January, 2008.

John R. D'Antonio, Jr., P.E., State Engineer lang By: Kenneth M. Fresquez, Acting District II Supervisor



16

W B 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604						LO	G OF SC	). <u>B-1</u>	B-101			
	$\frac{C}{\frac{ATE}{NE}}$	(312) 922-1030 * * INE R LEVEL DATA Not Encountered	DIANA (219) 923-9609           Started         11/2           Completed         11/2	/22/97 /22/97		<u>FILE #</u> OCAT	10N <u>Propos</u>	sed Lea Cou	nty Landfill	SHEET		
NE	FT.	AT COMPLETION AT HR. A.D.	Driller <u>Alla</u> Helper <u>F</u> Drilling Method <u>Air</u> Sampling Method Drill	n Eades reddy Rotary Cuttings	c	Eunice, New Mexico         CLIENT       Camino Real Landfill         Sunland Park, New Mexico						
	GRO	OUND ELEVATION: 3408	3.62 (Ft., MSL) Northing: 9800 Easting: 9898.	0.52 Co .97 De	mpletic	on 1.0		SAM	PLE DATA		bgs)	
Depth (FT.,bg	Type	ST SOIL GR	RATA DEPTH DESCRIPTION APHIC LOG		ļ	Strata Depth (FT.,bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT.,	
		Dark reddish-brown, fin Reddish-brown, sandy L	e SAND, some roots, no organ OAM to poorly cemented loan	nics ny SAND,		2.0	No No	Dry Dry	7.5YR 5/6 7.5YR 6/6		- 5.0	
- 5.0 -		Pinkish-white, sandy CA nodules of caliche	ALICHE, moderately weak stru fine SAND with moist friable s	acture, friab	lc es,	6.0	Moderate	Dry	2.5YR 8/2		- 10.0 - 15.0	
- 15.0 20.0 25.0 -		very few calcareous	nodules reous pebbly SAND, pebbles a color banded gniess, little cher	are dominan rt, angular.	tly	21.0	Moderate	Dry	2.5YR 7/6		20.0	
- 30.0 -		Pebbles increase wit Pink, sandy, pebbly fin	e GRAVEL, dominantly quart	zite, well gr	aded,	34.0 36.0	Moderate	Dry	5YR 7/4		- 30. - 35. - 35.	
- 40.0 -		Reddish-brown MUDS cuttings, some chert	TONE/CLAYSTONE, sandy, t pebbles and calcareous clasts,	dry, blocky , poorly indi	urated		Slight Slight	Dry Barely Damp	2.5YR 7/3 2.5YR 4/6		- - 40 - - 45	
- 50.0 -		BORING TERMINAT	ED AT 50.0'			50.0					- 50	
NOTI	CS:_	<ol> <li>Dry monitoring well in</li> <li>Drilling Company: Ea</li> </ol>	nstalled in borchole. des Drilling and Pump Service.		<u>LEG</u> I 殳 W.	<u>END</u> ,D, - Wi	ILE DRILLING	¥ A.D AFT	ER DRILLING	.♥ HOUR(S) AFTE	DRILLIN	
1												

L

									2	8
WB	C	WEAVER BOO 200 S. MICHIGAN AV (312) 922-1030 * * IND	OS CONSULTANT ENUE, CHICAGO IL, 60604 MANA (219) 923-9609	S, INC.	LO file	G OF S	OIL BO	RING NO.	B-1 SHEET 1	)2 OF 1
NE NE	FT.	ER LEVEL DATA = Not Encountered W.D. AT COMPLETION AT HR. A.D. AT HR. A.D.	Started Completed DrillerAl Helper Drilling Method Sampling Method Completed Northing: 84	11/20/97 11/20/97 Uan Eades Freddy Nir Rotary ill Cuttings 67.05 { Compl	LOCA CLIEN etlon	TION <u>Prop</u> <u>Eunie</u> T <u>Cami</u> <u>Sunta</u>	osed Lea Con ce, New Mex ino Real Lan ind Park, No	inty Landfill ico dfill w Mexico		
Depth (FT.,bgs)	Lithology	STI SOIL GR	RATA DEPTH DESCRIPTION APHIC LOG	93,22 Depth:	Strata Depuh (FT.,bgs)	Calcarcous	Moisture	Munseli	Notes	Depth (FT.,bgs)
5.0		Brown, fine to medium S some roots, no organi	AND with caliche grains, gr cs	ranular structure,	7.0	No Minor	Dry Dry	7.5YR 4/6 7.5YR 5/6		5.0
10.0 -		Brownish-white calcarcon nodules, not as floury and chert when wetter	us finc SAND, some calcare as other caliche, gritty, abu d	ous cement sand indant coarse sand	1	Yes	Dry	7.5YR 7/3		- 10.0
20.0 -		Pinkish-white sandy CAI fine sandstone (not fr	LICHE, many pebbles of har lable)	rd angular cherty	- 16.0	Yes	Dry	7.5YR 7/3		20.0
25.0 -		Pink, fine to medium SA and cemented sandsto White sandy CALICHE	ND, calcareous very small r ne with calcareous sand matrix	and abundant	26,0	Yes	Dry	2.5YR 7/3		- 25.0
30.0 - 35.0 -		chert clasts. Clasts ar and black, some quar Rose and white PEBBLE angular quartzite. W	e angular, coarse gravel size tzite 25, with very little sand, don hite pebbles are hard limesto	nimantly hard, ver	- 33.0 y 36.0	Yes	Barely Damp	2.5YR 8/2 2.5YR 6/4		- 30.0 - 35.0
40.0 -		\ grains Reddish-brown MUDST sandy, micaceous cla	ONE/CLAYSTONE, slicky, sls infrequently, poorly indu	, occasionally trated		Yes	Barely	2.5YR 4/4		- 40.(
45.0 - 50.0 -		BORING TERMINATE	D AT 50 0'		50.0	Yes	Barely	2.5YR 4/6		- 45.( - - 50./
			· .				Zamp			
NOTE	<u>S:</u>	1. Dry monitoring well lns	alled in borchole.	LEC	GEND		in .			
!		2. Drilling Company: Eade	s Drilling and Pump Scrvice.	¥ ₩	Y.D WH	ILE DRILLING	¥ A.D AFTI	er drilling 🔍 h	OUR(S) AFTER DI	RILLING

117		WEAVED DOG	OS CONSTITUAN	TS INC		<u> </u>			2	<u> </u>
۷۷ E	3	200 S. MICHIGAN AVI	ENUE, CHICAGO IL, 606	04 (1 <b>5</b> , <b>I1C</b> .	LO	G OF S	OIL BO	RING NO.	<u> </u>	<u>03</u>
NE NE	VATI NE FT. FT. FT.	(312) 922-1030 * * IND ER LEVEL DATA = Not Encountered W.D. AT COMPLETION AT HR. A.D. AT HR A.D.	IANA (219) 923-9609 Started Completed Driller Helper Drilling Method Sampling Method	11/21/97 11/21/97 Allan Eades Freddy Air Rotary Drill Cutings	LOCA	TION <u>Prop</u> <u>Eunia</u> T <u>Cami</u>	2.10 osed Lea Cou ce, New Mex no Real Lan and Park, Ne	unty Landfill ico idfill w Mexico	SHEET	<u> </u>
 ©	GR	OUND ELEVATION: 3,402	.54 (Ft., MSL) Northing:	9711.58 Comp 8682.07 Dentil	pletion		SAM	IPLE DATA		(S
Depth (FT.,bg	Lithology Type	STF SOIL I GRA	ATA DEPTH DESCRIPTION APHIC LOG		Strata Depth (FT.,bgs)	Calcareous	Moisture	Munsell	Notes	Denth (FT ho
5.0 -		Reddish-brown, sandy LG blocky, friable Pinkish-white, sandy CA	OAM to poorly cemented	loamy SAND,	6.0	No No Yes	Dry Barely Damp Dry	7.5YR 4/6 7.5YR 5/6 7.5YR 8/4		5.
0.0 - 5.0 -		Reddish-brown, loamy fi very few calcareous n	ne SAND with moist fria locales	ble sandy nodules,	14.0	Yes	Dry	7.5YR 7/3		
5.0 ·		Light red to pink, calcard	cous pebbly SAND, pebb	les are dominantiy chert, angular.	26.0	Yes	Dry	7.5YR 8/2		
35.0 · 40.0 ·		Pebbles increase with Rose and white PEBBLE angular quartzite. Wi grains Reddish-brown MUDST sandy, micaceous classical statements of the statement of the stat	depth 25, with very little sand, of hite pebbles are hard lime ONE/CLAYSTONE, slic sts infrequently, poorly in	iominantly hard, ve stone with quartzit ky, occasionally idurated	33.0 cry. e 36.0	Yes Yes	Dry Barely Damp	2.5YR 7/3 2.5YR 4/4		
5.0						Slight	Barely Damp	2.5YR 4/4		
55.0		BORING TERMINATE	D AT 55.0'		- 55.0	No	Barely Damp	2.5YR 4/6		
ITOM	<u> </u>	Boring grouted after corr and 5% bentonite.     Drilling Company: Eade:	npletion with 95% portland s Drilling and Pump Servic	i cemeni <u>Li</u> ce. Z		_i ule drilling	: ¥ A.D AFTI	ER DRILLING . VI	IOUR(S) AFTER I	DRILLI

									3	)
W		WEAVER BOO	DS CONSULT	ANTS, INC. 60604	LO	G OF S	OIL BO	RING N	O. <u>B-10</u>	)4
	C	(312) 922-1030 * * IND	IANA (219) 923-9609		FILE	# 9504	2.10	<u> </u>	SHEET 1	OF 1
۲	NE :	= Not Encountered	Started	<u>11/21/97</u> 11/21/97	LOCA	TION Prop	osed Lea Cou	mty Landfil	<u>1</u>	
<u>NE</u>	_ FT.	W.D.	Driller	Allan Eades		Eunio	ce. New Mex	ico		
( III	FT.	AT HR, A.D.	Helper — Drilling Method	Air Rolary	CLIEN	T <u>Cami</u>	ino Real Lan	dfill		
	FT.	AT HR. A.D.	Sampling Method	Drill Cuttings	1	Sunla	und Park, No	w Mexico		
(5	GR	OUND ELEVATION: 3,404	.38 (Ft., MSL) North	ing: 8518.93 Cor	npletion th: 60.0		SAM	IPLE DATA		(\$\$
[.,bg		CVENT		<b>H</b>	ų d					r.,b
E	ology	SOIL	DESCRIPTION		Dep.	Calcareous	Moisture	Munsell	Notes	L H
lepti	Ц Ц	GR	APHIC LOG		FT (FT					Cept
								 	· · · · ·	
É :		Dark reddish-brown, fine	e SAND, some roots,	no organics		Slight	Barely	7,5YR 5/4		
- 5.0 -		Reddish-brown, sandy Lo blocky, friable	OAM to poorly cemen	ited loaniy SAND,	6.0	Slight	Damp Dry	7.5YR 6/4		E 5.0 -
		Pinkish-white, sandy CA	LICHE, moderately w	eak structure, friable	*		_			
- 10.0 -		nounes of canene				Moderate	Dry	2,5YR 8/4		- 10.0-
					ł					
- 15.0 - : -										
- 20.0	懛									20.0
- 20.0 -	Ē				21.0					E
- - 25.0 -		Light red to pink, calcard guarizite, some rose c	cous peoply SAND, picture cours and ed gniess, li	ebble are dominantly title chert, angular.		Moderate	Dry	2.5YR 8/2		- 25.0-
Ē		Pebbles increase with	depth		ļ	1				
- 30.0 -										30.0
ŀ	E									
- 35.0 -	E									- 35.0-
ŧ										
- 40.0 -		Very light brown mediur	m GRAVEL with calc	areous sand matrix,	40.0					40.0-
		gravel is brown when chert, some quartzite	i wei, very cherty, ang	gular, white and brow	vn / 44.0	Moderate	Dry	2.5YR 8/2		45.0
F 43.0 -		White to light brown pet	bly coarse GRAVEL	with some fine	but ∫ 46.0					
- - 50.0 ·		also gniess and quart	zite	sandy, dry, poorly	/	Moderate	Dry	2.5YR 7/4		- 50.0-
-		indurated, cuttings ar calcareous clasts	e blocky, some chert	pebbles and white		Moderate	Dry	2.5YR 4/6		Ē
55.0	Ē		•							- 55,0
	E					Slight	Barely	2.5YR 5/6	Pitcher Bell Sample obtained at 60.0'	<u>-</u> -
60.0	}	BORING TERMINATE	D AT 60.0'		60.0	Slight	Barely	2.5YR 4/4		60.0
1	ļ						Damp			
					ļ	]				ł
				·		1	·.			
NOT	<u>:S:</u>	1. Boring grouted after con and 5% bentonite.	npletion with 95% port	and cement	LEGEND		Tin im	70 1011 1 100		
		2. Drilling Company: Bade	s Dritting and Pump Se	rvice.	₩. <b>D</b> ₩Н	ILE DRILLING	∉ Λ. <b>υ.</b> - ΛΓΊΙ	AN DAILLING	- HOUK(S) AFTER DE	urrende.
I										
I I										

C     C103 172-100-*1101AAA (219) 373-000     FULE #	W WEAVER BOOS CONSULTANTS, INC. B 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604					LO	G OF SO	D. <u>B-1</u>	<u>B-105</u>					
NB     F. AU     Complete Complete Delay     Complete Price		C VATE	(312) 922-1030 * * IND R LEVEL DATA	IANA (219) 923-9609	9		FILE	SHEET 1	OF 1					
NE     FT. AT     COMPLETION Biller     Delite Freder Datiling Method     Alla Edds. Freder Aff.     Tomice, New Mesice       FT. AT     IR. A.D.     Simpling Method     Aff. Adapt     CLURY     Camizo Roul Landfill       FT. AT     IR. A.D.     Simpling Method     Aff. Adapt     Simpling Method     Simpling Method       GROUND BLEVATION     STRATA DEPTH GROUND STRATE     STRATA DEPTH GROUND STRATE     Strate Strate       500     Grayith-hown loany fire SAND, granule: can expende, few or straining, flubbe centreled andsone nodule; (Wintblewn Sand)     Yes     Dry     7.5YR 8/2     5.0       500     Firk fire is median estanceus SAND, with few calcanceus nodules maker (fable, no other large class     Yes     Dry     7.5YR 7/4     5.0       500     Firk celearceus fire SAND to very firstured sandy CALICHE, few to method back, nore quartering     33.0     33.0     33.0     33.0       500     Firk celearceus fire SAND to very firstured sandy CALICHE, few to method fire Calif. Class are agadar, coare gravel sinc, front, while and back, nore quartering     33.0     35.0     35.0       500     Firk celearceus fir	NE	NE =	Not Encountered	Completed	11/19/97		LUCA		<u>seu nea coc</u>		· · · · · · · ·			
Image: Print of the state	NE NE	_ Ff.	AT COMPLETION	Driller –	Allan Eade Freddy	<u>s</u>	Eunice, New Mexico							
PF. AT     IBR. AD     Sampling Multid     Sample Geb 32       GROWN BLEWATION: 3,38.507 (PL, MSL)     Parking: 738.63     Completion     SAMPLIE DATA       GROWN BLEWATION: 3,38.507 (PL, MSL)     Parking: 738.63     Completion     SAMPLIE DATA       GROWN BLEWATION: 3,38.507 (PL, MSL)     Parking: 738.63     Completion     SAMPLIE DATA       GROWN BLEWATION: 3,38.507 (PL, MSL)     STRATA DEPTH     GROWN BLEWATION: 3,38.507 (PL, MSL)     Multicul Note:       GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     Multicul Note:       GROWN BLEWATION: 3,38.507 (PL, MSL)     STRATA DEPTH     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)       GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)       GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)       GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)     GROWN BLEWATION: 3,38.507 (PL, MSL)       15.0     Grown BLEWATION: 3,38.507 (PL, MSL)       15.0     Find fine company BLEWATION: 3,38.507 (PL, MSL)     GR		_Fſ.	AT HR. A.D.	Drilling Method	Air Rotary		CLIEN	T <u>Camir</u>	no Real Lan	dfill	<u> </u>			
GROUND ELEVATION: 3,58.07 (R., MS3)     Deather 7335.60     Deather 95.0     SAMPLE DATA       Base     STRATA DEPTH     Base     SAMPLE DATA       Base     SOIL DESCRIPTION GRAPHIC LOG     Base     Catescous     Mointure     Muncell     Notes       Courte plat-how homey face 5AND, standard, no organiza, few staining, friable cancented standards on adults (Windblown Sands)     Yes     Dry     7.5YR 82     5.0       10.0     Pink fine to medium catescout 5AND, with few calcareous notules     14.0     Yes     Dry     7.5YR 7/4       20.0     Distance of the class. Callede is very hard, not frable     28.0     Soil     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede is very hard, not frable     35.0       20.0     Distance of the class. Callede and domainant with quartile     40.0       20.0     Redition-how many CALICHE with extenso		FT, AT HR, A.D. Sampling Method Drill Cuttings					letion	Sunla	nd Park, Ne	W Mexico				
Brief     STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG     Brief     Calcarceus     Moiauce     Munsell     Notes     Brief       100     Graylab-brown loamy fine SAND, grandler, no organics, few calcarceus molates increasing will depth, amail routs, no increasing entermined analosone accurate analosone accurate (Windblown Sasul)     Yes     Dry     7.5YR 8/2     5.0       100     Pink fine to medium calcarceus SAND, with few calcarceus needules     14.0     Yes     Dry     7.5YR 7/4     20.0       100     Pink fine to medium calcarceus SAND, with few calcarceus needules     14.0     Yes     Dry     7.5YR 7/4     20.0       100     Pink calcarceus fine SAND to very frazured andy CALL/CHE, few to CALPROCK?     28.0     28.0     3.0     3.0       100     The calcarceus fine SAND to very frazured andy CALL/CHE, few to CALPROCK?     28.0     3.0     3.0       100     The calcarceus fine SAND to very frazured and yean data with and abundant the calcarceus fine stand.     3.0     3.0     3.0       100     The calcarceus fine SAND to very frazured and year (and analy and very rescurate.     7.5YR 7/4     20.0       100     The calcarceus fine SAND to very frazured and year (and analy very rescurate.     3.0     3.0       100     The calcarceus fine SAND to very frazured and year (analy and very rescurate.     3.0     3.0       100     The calcarceus fine SAND, while public	(sgo	GRO	UND ELEVATION: 3,388	.07 (Ft., MSL) East	ting: 7335.60	Depth	1 50.0		SAM	PLE DATA		(sgq		
B     SOIL DESCRIPTION GRAPHIC LOG     B     Calcareous     Moisture     Munsch     Notes     G       1     Graylab-hown loavy fine SAND, grandar, no organles, few calcareous notules increasing with depth, small roots, no iron ratining, finable cemened sandsione addules (Windblown Sands)     Yes     Dry     7.5YR 8/2     50       10.0     Pink fine to medium calcareous SAND, with few calcareous notules     14.0     Yes     Dry     7.5YR 8/2     10.0       15.0     Pink fine to medium calcareous SAND, with few calcareous notules     14.0     Yes     Dry     7.5YR 7/4     10.0       20.0     Pink calcareous fine SAND to year fitzeneed andry CALICHE, few to CALECKY)     23.0     23.0     23.0     23.0       35.0     Stat are frakile, no other large clasts     35.0     35.0     35.0     35.0       35.0     Edit and block (some quartific and block (some quartific set and white PEBLES, with year hind; and abundant calcadeone (fribid).     35.0     35.0     35.0       35.0     Edit and block (some quartific and block (fribid).     Some and white PEBLES, with year hind; and abundant and block (some quartific and abundant and block (fribid).     35.0     35.0       35.0     Edit and block (fribid).     Some and white PEBLES, with year hind; and abundant and block (fribid).     40.0     Yes     Dry     7.5YR 7/2       45.0     Edit Stat Chacke aregular accue and whith PEBLES, w	FT.,t	e er	STI	RATA DEPTH			Septh Sgs)					E.		
A     Orapital-brown insurption should increasing with depth, small roots, no income introduce increasing with depth, small roots, no increasing with depth, small roots, while and black, some quartite. While pebbles are lated linking with depth, and y day, day, blocky cutlings, some calcaroous stains, poor inducated frame.     35.0     35.0     35.0     35.0	) thợa	Linol Typ	SOIL I GR	DESCRIPTION			(FT.,)	Calcareous	Moisture	Munsell	Notes	Cepth		
Graylab-brown hoany file SAND, graniler, no organies, few discussion and the ferming, finible cemened sandstone nodules (Windblown Sands)     Yes     Dry     7.5YR 8/2     5.0       10.0     Fink fine to medium calcareous SAND, with few calcareous nodules     14.0     Yes     Dry     7.5YR 8/2     5.0       20.0     Fink fine to medium calcareous SAND, with few calcareous nodules     14.0     Yes     Dry     7.5YR 7/4     20.0       20.0     Fink fine to medium calcareous SAND, with few calcareous nodules     14.0     Yes     Dry     7.5YR 7/4     20.0       20.0     Fink calcareous fane SAND to very fractured andy CALICHE, few to calcareous and matrix and abundant ther claim. Calcular to varie fared large class?     35.0     35.0       20.0     Fink calcareous fane SAND to very fractured andy CALICHE, few to calcareous cancer and matrix and abundant ther claim. Calcular to vint yet with and abundant ther claim. Calcular to vint yet with and abundant ther claim. Calcular to vint yet with quartifie     35.0       45.0     Readinabre (minhole)     Readinabre (minhole)     Yes     Dry     7.5YR 7/2       45.0     Readinabre (minhole)     Sandy dry, blocky     Sandy     Sandy     Sandy       50.0     Readinabre (minhole)     Sandy dry, blocky     Sandy     Sandy       50.0     Readinabre (minhole)     Sandy dry, blocky     Yes     Dry     2.5YR 6/4       50.0     San	Ă						Ś							
5.0       staining, friable camened standations nodules (Winkblown Sailus)         10.0       Pink fine to medium calcareous SAND, with few calcareous nodules         13.0       Pink fine to medium calcareous SAND, with few calcareous nodules         14.0       Yes         20.0       Sole         20.0       Pink calcareous fane SAND to very fractured sandy CALICHE, few to calcareous rand matrix and abundant income y hard, not friable and black, some quartifier. While yearly calculate with quartifier and black, some quartifier. While yearly field sare angular, coares gaved size, brown, while and black, some quartifier. While yearly calculate. While yearly field sare angular, coares gaved size, brown, while and black, some quartifier. While yearly field sare angular, coares gaved size, brown, while and black, some quartifier. While yearly field sare, down, while and block some quartifier. The pebbles are hard infrastone will quartifier.       33.0         35.0       Sole       Sole       Sole         40.0       Readifier hown starty LOAM with pebbles of calcareous camented friable.       Yes       Dry       7.5YR 7/2         50.0       Readifier hown starty LOAM with pebbles of calcareous camented friable.       Yes       Dry       2.5YR 6/4         50.0       Sole       Yes       Dry       2.5YR 6/4       Sole         50.0       Sole       Yes       Dry       2.5YR 6/4       Sole         50.0       Sole       Yes       Dry <td></td> <td></td> <td>Grayish-brown loarny fin calcareous nodules in</td> <td>e SAND, granular, creasing with depth,</td> <td>no organics, few small roots, no i</td> <td>ron</td> <td></td> <td>Yes</td> <td>Dry</td> <td>7.5YR 8/2</td> <td></td> <td></td>			Grayish-brown loarny fin calcareous nodules in	e SAND, granular, creasing with depth,	no organics, few small roots, no i	ron		Yes	Dry	7.5YR 8/2				
10.0     Pink fine to medium calcareous SAND, with few calcareous nodules     14.0     Yes     Dry     7.5YR 7/4     15.0       15.0     Pink fine to medium calcareous SAND, with few calcareous nodules     14.0     Yes     Dry     7.5YR 7/4     20.0       20.0     Pink calcareous fine SAND to very fractured sandy CALICHE, few to nCAPROCKY)     28.0     28.0     20.0     25.0       30.0     White sate values are angular, coarse grave size, brown, white and abundant and bundant and bundant and fine calcareous size, brown, white sate, coarse grave size, brown, white sate, some quartifie     35.0     38.0       40.0     Reddish-stown ganztifie     Yes     Dry     7.5YR 7/4       40.0     Reddish-town ganztifie     36.0     38.0       50.0     Reddish-town ganztifie     Yes     Dry     7.5YR 7/2       41.0     Yes     Dry     2.5YR 6/4       50.0     Reddish-town ganztifie     40.0     Yes     Dry     2.5YR 6/4       50.0     Reddish-town ganztifie     Ganztifie     40.0     Yes     Dry     2.5YR 6/4       50.0     Redish-town ganztifie     Ganztifie     Ganztifie     So.0     Yes     Dry     2.5YR 6/4       50.0     Redish-town ganztifie     So.0     Yes     Dry     2.5YR 6/4     50.0       50.0     Redish-town ganztif	- 5.0 -		staining, friable ceme	nted sandstone nodu	iles (Windblown )	Sands)						5.0		
10.0       Image: second	ł													
13.0     Pink fine to medium calcareous SAND, with few calcareous nodules that are friable, no other large class     14.0     Yes     Dry     7.5YR 7/4     20.0       20.0     25.0     25.0     28.0     28.0     28.0     28.0     29.0       35.0     25.0     28.0     28.0     28.0     28.0     28.0       35.0     26.0     28.0     28.0     28.0     28.0     28.0       35.0     36.0     36.0     36.0     36.0     36.0       40.0     angular quartice. White pebbes are hard lineation with quart erry grains.     44.0     Yes     Dry     7.5YR 7/2       45.0     Reditish-brown sandy LOAM with pebbes of calcareous cemented and store (friable).     44.0     Yes     Dry     2.5YR 6/4       50.0     Reditish-brown sandy LOAM with pebbes of calcareous cemented and store (friable).     50.0     Yes     Dry     2.5YR 6/4       50.0     Reditish-brown sandy LOAM with pebbes of calcareous cemented and store (friable).     50.0     Yes     Dry     2.5YR 6/4       50.0     Reditish-brown sandy LOAM with pebbes of calcareous cemented and store (friable).     90.0     Yes     Dry     2.5YR 6/4       50.0     Reditish-brown sandy LOAM with pebbes of calcareous cemented and store (friable).     90.0     Yes     Dry     2.5YR 6/4       50.0	- 10.0 -													
20.0     Image: and are friable, no other large class     Yes     Dry     7.5YR 7/4       20.0     -     -     -     -       23.0     -     Fink calcareous fine SAND to very fractured sandy CALICHE, few to no elvert or other class. Callefe is very hard, not friable (CAPROKR)     -     -       30.0     -     Fink calcareous fine SAND to very fractured sandy CALICHE, few to no elvert or other class. Callefe is very hard, not friable (CAPROKR)     -     -       30.0     -     White sandy CALICHE with calcareous sand matrix and abundant and been date. some game class are angular, coarse gravel size, brown, while and black, some game class are angular, coarse gravel size, brown, while and black, some game class are angular, coarse gravel size, brown, while and black, some game classes of calcareous commented and sandstone (friable).     -     -       40.0     Reddish brown sandy LOAM with pebbles of calcareous commented sandstone with game classes of calcareous commented and sandstone (friable).     Yes     Dry     7.5YR 7/2       50.0     -     -     -     -     -       60.0     -     Reddish brown sandy LOAM with pebbles of calcareous commented and seconds stains, poor inducated friable.     Yes     Dry     2.5YR 6/4       50.0     -     -     -     -     -     -       70.0     -     -     -     -     -     -       70.0     -     -     -     <	- 15.0 -		Pink fine to medium calo	areous SAND with	few calcareous r	 nodules	14.0		ļ			- 15.0-		
20.0       20.0       20.0       20.0         23.0       Pink calcareous fine SAND to very fractured sandy CALICHE, few to no chert or other class. Class with regular ise, torow, white and black, some quartite. White sand, coarse gared lize, torow, white and black, some quartite. The sand to chert of ass. Class are angular, coarse gared lize, torow, white and black, some quartite. White pebbles are hard linestone with quartite.       35.0       35.0         40.0       White sandy CALICHE with calcareous sand matrix and abundant are garans.       36.0       38.0         40.0       Read with pebbles are hard linestone with quartite garans.       44.0       44.0         45.0       Read with pebbles of calcareous camented sandstore (finable).       46.0       47.0       Yes       Dry       7.5YR 7/2       45.0         46.0.0       Read with pebbles of pebber of a stareous camented sandstore (finable).       40.0       47.0       Yes       Dry       2.5YR 6/4       45.0         50.0       Read with pebbles are hard linestone with quartite with a stareous stains, poor industried/finable.       50.0       Yes       Dry       2.5YR 6/4       50.0         50.0       Read with pebbles are hard linestone with a stareous stains, poor industried/finable.       50.0       Yes       Dry       2.5YR 6/4       50.0         50.0       With stare and stareous stains, poor industried/finable.       With stare and stare and stareous stains, po			that are friable, no ot	her large clasts				Yes	Dry	7.5YR 7/4				
23.0       23.0         20.0       Pink ckareous fine SAND is very fractured sandy CALICHE, few to rester to other class. Caliche is very hard, not friable       28.0         30.0       While sandy CALICHE with calcareous sand matrix and abundant chert class. Class are angular, coarse gravel size, brown, while and blek, some quartize may angular quartize. While pebbles are hard linestone with quartize gravitie.       35.0         40.0       While sandy CALICHE with calcareous sand matrix and abundant chert class. Class are angular, coarse gravel size, brown, while angular quartize. While pebbles are hard linestone with quartize gravitie.       35.0         40.0       Redish-brown sandy LOAM with pebbles of calcareous cemented sandstone (friable).       36.0         41.0       Yes       Dry       7.5YR 7/2         42.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown gandy LOAM with pebbles of calcareous cemented sandstone (friable).       50.0       Yes         50.0       Redish-brown gandy LOAM with pebbles of calcareous cemented sandstone (friable).       50.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown gandy LOAM with pebbles of calcareous cemented sandstone (friable).       So       Yes       Dry       2.5YR 6/4         50.0       Yes       Dry       2.5YR 6/4       So.0       So.0         10.0       Yes       Dry       2.5YR 6/4	- 20.0 -	-										20.0		
23.0       23.0         30.0       Pink calcareous fine SADD to very fractured sandy CALICHE, few to mo and or other class. Caliche is very hard, not friable       28.0         35.0       White sandy CALICHE with calcareous sand matrix and abundant chert clasts. Clasts are angular, coarse gravel size, brown, white and blex, some quartize and blex, some quartize.       35.0         40.0       Redish-brown sandy LOAM with pebbles of calcareous cemented sandistone (friable).       44.0       Yes         45.0       Redish-brown sandy LOAM with pebbles of calcareous cemented sandistone (friable).       47.0       Yes       Dry       7.5YR 7/2         45.0       Redish-brown sandy LOAM with pebbles of calcareous cemented sandistone (friable).       50.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown sandy LOAM with pebbles of calcareous cemented sandistone (friable).       50.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown sandy LOAM with spebbles of calcareous cemented sandistone (friable).       50.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown sandy COAM with 95% poor indumted/friable.       50.0       Yes       Dry       2.5YR 6/4         50.0       Redish-brown sandy completion with 95% poor indumted/friable.       50.0       Yes       Dry       2.5YR 6/4         50.0       Soff perioditing and Pump Service.	E E						ł							
30.0       Pink calcareous fine SAND to very fractured sandy CALICHE, few to no cheer or other of class. Calche is very hard, not friable       28.0         30.0       Pink calcareous fine SAND to very fractured sandy CALICHE, few to no cheer or other of class. Calche is very hard, not friable       35.0         33.0       White sandy CALICHE with calcareous sand matrix and abundant chert class. Class are angular, coarse gravel size, brown, white and black, some quartize mand black, some quartize grains.       35.0         40.0       Rose and white PEDBLES, with very life sand, dominantly hard very grants.       44.0         45.0       Reditab-frown sandy LOAM with pebbles of calcareous cemented satisme. (friable).       44.0         45.0       Reditab-frown sandy LOAM with pebbles of calcareous cemented satisme. (friable).       45.0         50.0       Redidiab-frown sandy LOAM with pebbles of calcareous cemented satisme. (friable).       45.0         50.0       Redidiab-frown sandy LOAM with pebbles of calcareous cemented satisme. (friable).       50.0         50.0       Redidiab-frown sandy LOAM with pebbles are liard.       50.0         90.0       Redidiab-frown sandy LOAM with pebbles are liard.       50.0         90.0       Redidiab-frown sandy CALY STONE, sandy, dry, blocky so.0       Yes       Dry       2.5YR 6/4         50.0       Redidiab-frown sandy black satisme.       So.0       Yes       Dry       2.5YR 6/4 <tr< td=""><td>- 25.0 -</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>ł</td><td></td><td></td><td></td><td></td></tr<>	- 25.0 -	_						ł						
100 Cleft of Oder Totals. Calcule is very land, not finded       35.0       35.0         35.0       White sandy CALICHE with calcareous sand matrix and abundant chant black, some quartile.       35.0         40.0       Roce and white PEBBLES, with very little sand, dominandly hard very angular quartile. While pebbles are hard linestone with quartile.       38.0         40.0       Reddish-brown sandy LOAM with pebbles of calcareous cemented standstone (friable).       44.0         45.0       Reddish-brown sandy LOAM with pebbles of calcareous cemented standstone (friable).       47.0       Yes       Dry       7.5YR 7/2         45.0       Reddish-brown sandy LOAM with pebbles of calcareous cemented standstone (friable).       50.0       Yes       Dry       2.5YR 6/4         50.0       Reddish-brown MUDSTONE/CLAYSTONE, saudy, dry, blocky cuttings, some calcareous stains, poor indurated/friable.       50.0       Yes       Dry       2.5YR 6/4         50.0       Ves       Dry       2.5YR 6/4       50.0       50.0         100 TESt       1. Boring grouted after completion with 95% portland cement and 5% bentonite.       Vm while DRULLING ¥ A.D AFTER DRULLING ¥ HOUR(S) AFTER DRULLING         2. Drilling Company: Eades Drilling and Punp Service.       W.D WHILE DRULLING ¥ A.D AFTER DRULLING ¥ HOUR(S) AFTER DRULLING	- 30.0 -		Pink calcareous fine SA	ND to very fractured	i sandy CALICH	E, few	to 28.0					- 30.0		
33.0       White sandy CALICHE with calcareous sand matrix and abundant the process of the process o	-	巨	(CAPROCK?)	is. Canone is very i	nard, not mable									
40.0       And black, some quartite       38.0         40.0       Redish-brown sandy LOAM with pebbles are lard linestone with quartite       38.0         45.0       Redish-brown sandy LOAM with pebbles of calcareous cemented       44.0         8.0       The data black is a sand since (friable).       45.0         8.0       Redish-brown sandy LOAM with pebbles of calcareous cemented       47.0         9.0       Redish-brown sandy LOAM with pebbles of calcareous cemented       47.0         9.0.0       Redish-brown MUDSTONE/CLAYSTONE, sandy, dry, blocky       7.0         9.0.0       Yes       Dry       2.5YR 6/4         9.0.0       Cuttings, some calcareous stains, poor indurated/finable.       50.0       Yes       Dry       2.5YR 6/4         9.0       Yes       Dry       2.5YR 6/4       50.0       50.0       50.0         NOTES:       1. Boring grouted after completion with 95% portland cement       2.       2.       Dry       2. STR 6/4       50.0         NOTES:       1. Boring grouted after completion with 95% portland cement       2.       2.       W.D WHILE DRILLING ¥ A.D AFTER DRILLING ¥ HOUR(S) AFTER DRILLING         W.D WHILE DRILLING ¥ A.D AFTER DRILLING ¥ HOUR(S) AFTER DRILLING       1.       1.       1.	- 35.0		White sandy CALICHE	with calcareous sand	d matrix and abu	ndant	- 35.0	1				- 35.0-		
40.0       The search of the PEBBLES, with very little sand, dominantly hard very angular quartite. While pebbles are lard linestone with quartite grains.       44.0       Yes       Dry       7.5YR 7/2       45.0         45.0       Reddish-brown sandy LOAM with pebbles of calcareous cemented sandstone (friable).       47.0       Yes       Dry       2.5YR 6/4       45.0         50.0       Reddish-brown MUDSTONE/CLAYSTONE, sandy, dry, blocky cuttings, some calcareous stains, poor inducated/friable.       47.0       Yes       Dry       2.5YR 6/4       50.0         50.0       cuttings, some calcareous stains, poor inducated/friable.       50.0       Yes       Dry       2.5YR 6/4       50.0         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% benonite.       2. Drilling Company: Eades Drilling and Pump Service.       LEGEND       ¥ W.D WHILE DRILLING ¥ A.D AFTER DRILLING ▼ HOUR(S) AFTER DRILLING		讝	chert clasts. Clasts and black, some quar	e angular, coarse gr rtzite	avel size, brown,	, white	38.0							
45.0       Reddish-brown sandy LOAM with pebbles of calcareous cemented sandstone (friable).       44.0       Reddish-brown MUDSTONE/CLAYSTONE, sandy, dry, blocky       47.0       Yes       Dry       2.5YR 6/4       50.0         So.0       cuttings, some calcareous stains, poor indurated/friable.       90.0       Yes       Dry       2.5YR 6/4       50.0         So.0       cuttings, some calcareous stains, poor indurated/friable.       90.0       Yes       Dry       2.5YR 6/4       50.0         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.       2. Drilling Company: Eades Drilling and Pump Service.       LEGEND       ¥ N.D WHILE DRILLING ¥ A.D AFTER DRILLING ▼ HOUR(S) AFTER DRILLING	- 40.0 -		Rose and white PEBBLI angular quartzite. W	ES, with very little sa Thile pebbles are har	and, dominantly i d limestone with	hard ve quartzit	ry e	Yes		7 5YB 7/2				
Image: Standard (friable).       Standard (friable).       47.0       Yes       Dry       2.5YR 6/4       50.0         Standard (friable).       Standard (friable).       Yes       Dry       2.5YR 6/4       50.0         Standard (friable).       Standard (friable).       Yes       Dry       2.5YR 6/4       50.0         Standard (friable).       Yes       Dry       2.5YR 6/4       50.0         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% benomic.       LEGEND       Yes       Yes         Yes       Dry       2.5YR 6/4       Yes       Yes       Yes         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% benomic.       Yes       Yes       Yes         Yes       Dry       2.5YR 6/4       Yes       Yes       Yes       Yes         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% benomic.       Yes       Yes       Yes       Yes         Yes       Dry       Yes       Yes       Yes       Yes       Yes       Yes         Yes       Dry       Yes       Yes       Yes       Yes       Yes       Yes         Yes       Yes       Yes       Yes       Yes       Yes	45.0	-	grains. Reddish-brown sandy L	OAM with pebbles of	of calcareous cem	nented	44.0					45.0		
50.0       Yes       Dry       2.5YR 6/4       - 50.0-         50.0       Yes       Dry       2.5YR 6/4       - 50.0-         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEGEND       Vestication       Vestication         NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEGEND       Vestication       Vestication         V.D WHILE DRILLING       V.D WHILE DRILLING       V.D AFTER DRILLING       HOUR(5) AFTER DRILLING	• - •		sandstone (friable). Reddish-brown MUDST	ONE/CLAYSTONI	E, sandy, dry, blo	ocky	47.0	Yes	Dry	2.5YR 6/4				
NOTES:       1. Boring grouted after completion with 95% portland centent and 5% benonite.         2. Drilling Company: Eades Drilling and Pump Service.	- 50.0 -	-	cuttings, some calcar	eous stains, poor inc	durated/friable,		50.0	Yes	Dry	2.5YR 6/4		- 50,0 -		
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.       LEGEND         ¥       W.D WHILE DRILLING ¥ A.D AFTER DRILLING ¥ HOUR(S) AFTER DRILLING														
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.									1					
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.             Image: Imag														
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.             W.D WHILE DRILLING ¥ A.D AFTER DRILLING ♥ HOUR(S) AFTER DRILLING														
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.             Yes             LEGEND             Yes             Image: Second Symptotic Symp							ł							
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.       LEGEND         Image: W.D WHILE DRILLING       Image: W.D AFTER DRILLING         Image: W.D WHILE DRILLING       Image: W.D AFTER DRILLING														
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEGEND         2. Drilling Company: Eades Drilling and Pump Service.							ĺ							
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.         Image: Service of the s														
NOTES:       1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.       LEGEND            \Vec{V}         W.D WHILE DRILLING         \Vec{V}         A.D AFTER DRILLING         \Vec{V}         HOUR(S) AFTER DRILLING         \Vec{V}         HOUR(S) AFTER DRILLING         \Vec{V}         HOUR(S) AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         \vec{V}         HOUR(S)         AFTER DRILLING         HOUR(S)         AFTER DRILLING         HOUR(S)         AFTER DRILLING         HOUR(S)         AFTE														
and 5% bentonite. 2. Drilling Company: Eades Drilling and Pump Service.	NOT	 5.S:	1. Boring grouted after con	mpletion with 95% no	ortland cement	L	I ZGEND	.I		I	<u> </u>			
			and 5% bentonite. 2. Drilling Company: Ead	es Drilling and Pump	Service.	₽ ₽	W,D WF	ILE DRILLING	¥ Λ.D ΛFT	ER DRILLING	♥ HOUR(S) AFTER I	RILLING		
	1													
W	W WEAVER BOOS CONSULTANTS, INC 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604						LOG OF SOIL BORING NO. <u>B-106</u>							
---------------------------	-----------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------	-----------------------------------------------------------------	---------------------------------------------------------------	---------------------	---------------------------	-------------------------------------	--------------------	---------------	-------------------	--------------	--		
	Ċ	(312) 922-1030 * * INE	DIANA (219) 923-96	i09		FILE	#9504;	2.10		SHEET	IOF1			
NE	VATI NE	R LEVEL DATA = Not Encountered	Started Completed	<u>11/21/97</u> 11/21/97	' '	LOCA	TION Propo	osed Lea Cou	unty Landfill					
NE	_ FT.	AT COMPLETION	Driller	<u>Allan Eade</u> Freddy	<u>es</u>		Eunic	e, New Mex	ico					
Í	_ _ FT.	AT HR. A.D.	Helper Drilling Method	Air Rotar	y	CLIEN	T <u>Cami</u>	<u>no Real Lau</u>	dfill					
	_ FT.	AT HR. A.D.	Sampling Method	Drill Cuttin	ngs		Sunla	nd Park, No	w Mexico					
s)	GRO	OUND ELEVATION: 3,401	1.06 (Ft., MSL)	orthing: 5968.89 sting: 9285.60	Comple Denth:	etion 66.5		SAM	IPLE DATA		(S)			
Depth (FT.,bg	Lithology Type	STI SOIL GR	RATA DEPTH DESCRIPTION APHIC LOG	1	-	Strata Depth (FT.,bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT.,b			
- 5.0 -		Grayish-brown loamy fir calcareous nodules in staining, friable ceme	ne SAND, granular creasing with deput inted sandstone not	r, no organics, few 3, small roots, no lules (Windblown	/ iron Sands)		No	Dry	7.5YR 5/6		5.0			
- 10.0 - - - 15.0 -		Pink fine to medium calc that are friable, no of	careous SAND, with her large clasts	h few calcareous i	nodules	- 11.0	Moderate	Dry	2.5YR 8/3		- 10.0			
- 20.0 - -		Pink calcareous fine SAI no chert or other clas	ND to very fracture its. Caliche is very	ed sandy CALICH hard, not friable	IE, few to		Moderate	Dry	2.5YR 7/6		20.0			
- 25.0 -		(CAFROCKI)				- 33.0					- 25,0			
- 35.0 - - - 40.0 -		White sandy CALICHE chert clasts. Clasts ar and black, some quan	with calcareous sa e angular, coarse g rtzite	nd matrix and abu gravel size, brown	ndant , white		Moderate	Dry	2.5YR 8/3		- 35.0			
45.0 -											45.0			
- 55,0 -			· .								- 55.0			
- 60.0 ·		Rose and white PEBBI	FS with very little	sand dominantly	hard yer	63.0	Moderate	Dry	2.5YR 7/3					
- 65.0		angular quartzite. W grains. Reddish-brown MUDST cuttings, some calcar BORING TERMINATE	ONE/CLAYSTOP Teous stains, poor i D AT 66.0'	vE, sandy, dry, bl ndurated/friable.	quartzite	66.0 66.5	Slight	Dry	2.5YR 5/6		- 65.0 -			
NOTE	<u></u>	1. Boring grouted after cor	npletion with 95% p	portland cement	LEG	END								
		and 5% bentonite. 2. Drilling Company: Eade	s Drilling and Pum	p Service.	¥ ₩	V.D WH	ILE DRILLING	¥ A.D AFT	R DRILLING 🦻	7 hour(s) after e	RILLING			

C (312) 922-1030 * * H WATER LEVEL DATA NE = Not Encountered 	NDIANA (219) 923-9609         Started       11/22/97         Completed       11/22/97         Driller       Allan Eades         Helper       Freddy         D.       Sampling Method       Air Rolary         D.       Sampling Method       Drill Cuttings         405.43 (Ft., MSL)       Northing: 4016.88       C         TRATA DEPTH       L DESCRIPTION       RAPHIC LOG         P fine SAND to sandy LOAM, blocky, frial grading to light brown loarny SAND       LOAM to poorly cemented loarny SAND,         2, moderately weak with friable nodules of cemented sand, fewer nodules with depth       SAND, calcareous very small nodules of castone	FILE LOCA CLIE: Completion Depth: 92.0 FIE: Completion Depth: 92.0 FIE: Completion CLIE: Completion CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CL	2 # 9504 TION Propo Eunic VT Cami Sunla Calcareous No No Moderate Moderate	2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	unty Landfill cico Idfill cw Mexico IPLE DATA Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	<u> </u>
NE       Not Encountered	Started       11/22/97         Completed       11/22/97         Driller       Allan Eades         Helper       Freddy         Drilling Method       Air Rolary         D. Drilling Method       Drill Cuttings         405.43 (FL, MSL)       Northing: 4016.88       C         TRATA DEPTH       L DESCRIPTION         RAPHIC LOG       Fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND         LOAM to poorly cemented loamy SAND,         S. moderately weak with friable nodules of cemented sand, fewer nodules with depth         SAND, calcareous very small nodules of castone	LOCA CLIE: CLIE: CLIE: Completion Septh: 92.0 CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE: CLIE:	TION <u>Prope</u> <u>Eunic</u> VT <u>Cami</u> <u>Sunla</u> Calcareous No No Moderate Moderate	no Real Lan no Real Lan nd Park, No SAM Moisture Dry Dry Dry Dry	unty Landfill cico idfill cw Mexico IPLE DATA Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
NE       FT. AT       COMPLETION         FT. AT       HR. A.I         FT. AT       HR. A.I         FT. AT       HR. A.I         FT. AT       HR. A.I         FT. AT       SOUND ELEVATION: 3,4         FT. AT       SOUND ELEVATION: 3,4         FT. AT       Reddish-brown, loamy very few organics,         State       SOUND ELEVATION: 3,4         FT. AT       Reddish-brown, loamy very few organics,         State       Pink, sandy CALICHI caliche and poorly         State       Pink, fine to medium and cemented sand         Point       Pink, fine to medium financemented sand	Driller Freddy Helper Freddy Drilling Method Air Rotary Sampling Method Drill Cuttings 405.43 (Ft., MSL) Northing: 4016.88 C Easting: 9228.40 L TRATA DEPTH L DESCRIPTION RAPHIC LOG fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND LOAM to poorly cemented loamy SAND, a, moderately weak with friable nodules of cemented sand, fewer nodules with depth SAND, calcareous very small nodules of castone	CLIE: CLIE: Completion Septh: 92.0 THE CLIE: Sector CLIE: Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	Eunic VT <u>Cami</u> <u>Sunla</u> Calcareous No No Moderate Moderate	e, New Mex no Real Lan And Park, No SAM Moisture Dry Dry Dry Dry	tico Idfill tw Mexico IPLE DATA Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
FT. AT HR. A.I FT. AT HR. A.I FT. AT HR. A.I GROUND ELEVATION: 3,4 GROUND ELEVATION: 3,4 SOIJ GROUND ELEVATION: 4,4 SOIJ GROUND ELEVATION: 4,4 SOIJ GROUND ELEVATION: 4,4 SOIJ GROUND ELEVATION: 4,4 SOIJ GROUND ELEVATION: 4,4 SOIJ GROUND ELEVATION: 4,4 SOIJ FT. AT Reddish-brown, loamy very few organics, 5.0 - Reddish-brown, sandy blocky, friable Pink, sandy CALICHI caliche and poorly 15.0 - Pink, fine to medium and cemented sand	Drilling Method       Air Rolary         D.       Sampling Method       Drill Cuttings         A05.43 (Ft., MSL)       Northing: 4016.88       C         TRATA DEPTH       Easting: 9228.40       L         TRATA DEPTH       DESCRIPTION       RAPHIC LOG         fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND       LOAM to poorly cemented loamy SAND,         Commented sand, fewer nodules with depth       SAND, calcareous very small nodules of castone	CLLE:	VT <u>Cami</u> <u>Sunla</u> Calcareous No No Moderate Moderate	no Real Lan nd Park, <u>No</u> SAM Moisture Dry Dry Dry Dry	1dfill ew Mexico IPLE DATA Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
FI. AT HR. A.I GROUND ELEVATION: 3,4 GROUND ELEVATION: 3,4 GROUND ELEVATION: 3,4 SOIN GROUND ELEVATION: 3,4 SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SOIN SO	1.1.1       Sampling Method	ble, aliche	Calcareous No No Moderate Moderate	Moisture Dry Dry Dry Dry	PLE DATA PLE DATA Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
Image: Second State State State       Image: Second State State       Image: Second State	TRATA DEPTH L DESCRIPTION RAPHIC LOG fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND LOAM to poorly cemented loamy SAND, 3, moderately weak with friable nodules of comented sand, fewer nodules with depth SAND, calcareous very small nodules of castone	ble, aliche	Calcareous No No Moderate Moderate	Dry Dry Dry Dry Dry	Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
H       B       S         H       B       SOII         SO       G       SOII         SO       G       G         Reddish-brown, loamy very few organics,       blocky, friable         Plnk, sandy CALICHI caliche and poorly       G         SO       Fink, fine to medium and cemented sand         SO       G       G         SO       G </td <td>TRATA DEPTH L DESCRIPTION RAPHIC LOG fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND LOAM to poorly cemented loamy SAND, 3, moderately weak with friable nodules of cemented sand, fewer nodules with depth SAND, calcareous very small nodules of castone</td> <td>LT. Post</td> <td>Calcareous No No Moderate Moderate</td> <td>Moisture Dry Dry Dry Dry</td> <td>Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3</td> <td>Notes</td> <td></td>	TRATA DEPTH L DESCRIPTION RAPHIC LOG fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND LOAM to poorly cemented loamy SAND, 3, moderately weak with friable nodules of cemented sand, fewer nodules with depth SAND, calcareous very small nodules of castone	LT. Post	Calcareous No No Moderate Moderate	Moisture Dry Dry Dry Dry	Munsell 7.5YR 6/6 7.5YR 5/6 2.5YR 8/3	Notes	
<ul> <li>Reddish-brown, loamy very few organics,</li> <li>5.0</li> <li>Reddish-brown, sandy blocky, friable</li> <li>10.0</li> <li>Pink, sandy CALICHI caliche and poorly</li> <li>15.0</li> <li>Pink, fine to medium and cemented sand</li> <li>20.0</li> </ul>	fine SAND to sandy LOAM, blocky, frial grading to light brown loamy SAND LOAM to poorly cemented loamy SAND, 3, moderately weak with friable nodules of cemented sand, fewer nodules with depth SAND, calcareous very small nodules of ca stone	6.0 8.0 13.0 Niiche	No No Moderate Moderate	Dry Dry Dry Dry	7.5YR 6/6 7.5YR 5/6 2.5YR 8/3		
<ul> <li>Reddish-brown, sandy blocky, friable</li> <li>10.0</li> <li>Pink, sandy CALICHI caliche and poorly</li> <li>15.0</li> <li>Pink, fine to medium and cemented sand</li> <li>20.0</li> </ul>	LOAM to poorly cemented loamy SAND, 3, moderately weak with friable nodules of cemented sand, fewer nodules with depth SAND, calcareous very small nodules of ca stone	6.0 8.0 13.0 Rliche	No Moderate Moderate	Dry Dry Dry	7.5YR 5/6 2.5YR 8/3		
Pink, fine to medium and cemented sand	SAND, calcareous very small nodules of c stone	13.0	Moderate	} Drv			
and cemented sand	stone				2.5YR 5/6		
- 30.0		31.0					
- 35.0 - 35.0 	areous pebbly SAND, pebbles are domina ise color banded gniess, little chert, angula ith depth	ntly r.	Moderate	Dry	2.5YR 6/4		
- 45.0 - 50.0 - 55.0	• •.						
- 60.0 - 65.0 - 70.0							
75.0 Pink, sandy CALICH (Continued)	E with caprock chips	75.0	Moderate	Dry	2.5YR 8/3		
NOTES: 1. Boring grouted after c and 5% bentonite. 2. Drilling Company: Ea	completion with 95% portland cement ides Drilling and Pump Service.	LEGEND ¥ W.D WI	ule drilling	} ≚ A.D AF∏	ER DRILLING .	HOUR(S) AFTER	DR

W	R	WEAVER BOOS CONSULTANTS, INC.	LO	G OF S	OIL BO	RING NO	. <u>B-1</u>
1	<u>C</u>	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	2 #9504	2.10		SHEET 2
Depth (FT., bgs)	Lîthology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes
90.0		(Continued from page 1) Pink, sandy CALICHE with caprock chips Reddish-brown, sandy MUDSTONE/CLAYSTONE, dry, poorly indurated, some small calcareous cemented sandstone nodules, little to no mica BORING TERMINATED AT 92.0'	83.0 92.0	Moderate Slight Slight No	Dry Barely Damp Barely Damp Barely Damp	2.5YR 5/6 2.5YR 7/3 2.5YR 5/3 2.5YR 5/2	
					- -		
)							
		۰.					
NOT	<u>'ES:</u>	1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEG         2. Drilling Company: Eades Drilling and Pump Service.       Y	<u>3END</u> 7.D Wi	IILE. DR ILLING	¥ A.D AFT	ER DRILLING .	HOUR(S) AFTER D
					•.		

							_			4	34
W	ł	WEAVER BOO	OS CONSU	JLTANTS, IN	[C.	LO	GOFS	OIL BO	RING N	NO. <u>B-1</u>	08
۸ ۲	C	(312) 922-1030 * * IND	DIANA (219) 923	-9609		FILE	.#9504	2.10		SHEET 1	OF 3
	NE	= Not Encountered	Started Completed	11/20/97	·	LOCA	TION Prop	osed Lea Co	<u>unty Landfi</u>	11	
<u>NE</u>	FT.	AT COMPLETION	Driller	Allan Ead Freddy	es		Eunie	ce, New Mex	tico		
	_ FT.	AT HR. A.D.	Drilling Metho	d Air Rotar	y	CLIEN	√T <u>Cami</u>	ino Real Lan	dfill		
	-FT	AT HR. A.D.	Sampling Meth	Northing: 9696.33	Comple	eilon	Sunla	and Park, No	EW MEXICO		
, bgs)				Easting: 7439.48	Depth:	215.0	···				} (sgd,
Depth (FT	Lithology Type	STH SOIL I GRA	RATA DEPT DESCRIPTIO APHIC LOG	H ON		Strata Depti (FT.,bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT
		Brown, fine to medium S	AND with calic	he grains, granular s	tructure,						
- - 5.0 ·		Brownish-white calcareou	IS fine SAND	some calcareous cem	ent sand	4.0	Yes	Dry	7.5YR 6/3		- 5.0 -
	]	nodules, not as floury and cliert when wetter	as other caliche	e, gritty, abundant co	arse sand						
- 10.0 -							Strong	Dry	7.5YR 8/2		- 10.0
- 15.0 -	-										- 15.0-
r F		Pinkish-white sandy CAL	ICHE, many p	ebbles of hard angula	ar cherty	- 17.0					
- 20.0		fine sandslone (not fri	able)				Strong	Dry	2.5YR 8/2		20.0
25.0		Disk ward fine CAND				- 24.0					- 25.0-
-	Ē	chert		occasional peoples of	granne,		Mild	Dry	2.5YR 7/4		
- 30.0 ·											30.0
- - 35.0 ·		Dark brown sandy CLA	YSTONE, weat	nered, blocky, very f	ew calich	- 33.0 .c					- 35.0-
ľ		clasis, dry, friable/po	orly indurated				Mild	Dry	2.5YR 6/2		
40.0	]= ]										40.0-
- 45.0							Mild	Dry	2.5YR 5/3		45 0-
		Reddish-brown MUDST	ONE/CLAYST	ONE, slicky, occasio	nally	46.0					
- 50.0		sandy, micaceous cias	sis infrequently,	poorly indurated			Mild	Dry	2.5YR 5/2		50.0
- 55 0			· .								
Ę							Mild	Dry	2.5YR 5/3		
- 60.0 :							Mild	Dry	2.5YR 7/3	Pitcher Bell Sample	- 60.0
- 65 0							Mild	Dry	2.5YR 4/3	obiained at 60,0°	- 65 0-
70.0								:.			- 70.0
75.0											~ 75.0
		(Continued)									
	1 	Backfilled with curines a	n 120', prouted (	o surfice with 05	1.50	END	L	l			
	<u></u>	with 95% portland cemen 2. Drilling Company: Eades	it and 5% benton Drilling and Pu	ite, mp Service.	<u>∠</u> ⊈ w	.D WH	ILE DRILLING	¥ Л.D ЛГТИ	R DRILLING	V HOUR(S) AFTER DR	ILLING
<u> </u>											

	WEAVER BOOS CONSULTANTS, INC 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	2.	LO FILE	G OF S	OIL BO 12.10	RING I	NO. <u>B-1</u> ( SHEET 2	08 OF 3
Depth (FT., bgs) Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG		Strata Depth (FT., bgs)	Calcareous	SAM Moisture	IPLE DATA Munsell	Notes	Depth (FT., bgs)
85.0	(Continued from page 1) Reddish-brown MUDSTONE/CLAYSTONE, slicky, occasiona sandy, micaccous clasts infrequently, poorly indurated	lly		Mild	Barely Damp	2.5YR 5/3		85.0
90.0				Mild	Barely	2.5YR 5/3	Pitcher Bell Sample	90.0
-105.0							obtained at 100.0'	-105.0
-115.0				Mild	Barely Damp	2.5YR 4/4		-115.0
-130.0								-125.0
				No	Barely Damp	2.5YR 5/6		-135.0 -140.0
-145.0	••			No	Barely Damp	2.5YR	Pitcher Beil Sample	-145.0 - - - 150.0
-155.0								-155.0
-165.0	(Continued)			No	Barely Damp	2.5YR 4/3		-165.0 -170.0
NOTES:	<ol> <li>Backfilled with cuttings to 120', grouted to surf-ce with 95 with 95% portland cement and 5% bentonite.</li> <li>Drilling Company: Eades Drilling and Pump Service.</li> </ol>	LEGE V.	D WHI	LE DRILLING	¥ Л.Д ЛЕТЕ	R DRILLING	.♥ HOUR(5) AFTER DR	ILLING

WB	С	WEAVER BOOS CONSUL/TANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	LC FILI	GOFS	OIL BO	RING N	NO. <u>B-108</u> SHEET 3 OF 3		
Depth (FT., bgs)	LINOIOGY	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcarcous	<u>SAM</u> Moisture	Munsell	Notes	Depth (FT., bgs)	
-175.0-		(Continued from page 2) Reddish-brown MUDSTONE/CLAYSTONE, slicky, occasionally sandy, micaceous clasts infrequently, poorly indurated						-175.0- -180.0- -185.0-	
		Light reddish-gray SILTSTONE, with green laminae, slick, less sand poorly indurated, dry	191.0 y,	Mild Mild	Barely Damp Barely Damp	2.5YR 7/2		-190.0-	
-200.0		Reddish-brown CLAYSTONE, dry, poorly indurated, no bedding or laminae	201.0	Mild	Barely Damp	2.5YR 5/2		200.0	
210.0-2		BORING TERMINATED AT 215.0	- 215.0	No	Barely Damp	2.5YR 4/3	Pitcher Bell Sample obtained at 215.0'	-215.0	
		•.							
NOTES	:1 2	. Backfilled with cuttings to 120', grouted to surf-ce with 95 with 95% portland cement and 5% bentonite. . Drilling Company: Eades Drilling and Pump Service.	<u>GEND</u> W.D WH	ULE DRILLING	¥ A.D AFTE	R DRILLING	7 HOUR(S) AFTER DR	LLING	
)								~~~	

W	}	WEAVER BOOS CONSULTANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604	LOG OF SOIL BORING NO. <u>B-109</u>						
c	C VATTI	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	2 #9504	2.10		SHEET 1	OF 2	
\'	NE	= Not Encountered Started 11/21/97 Completed 11/21/97	LOCA	TION Prop	osed Lea Cou	inty Landfi	<u>11</u>		
	, ^{1 भ} गन्न	AT COMPLETION Driller Allan Eades		Eunio	ce. New Mex	 ico			
[	~ гт. гт.	AT HR. A.D. Drilling Method Air Rotary	CLIE	T Cami	ino Real Lan	dfill			
	_ FT.	AT HR. A.D. Sampling Method Drill Cuttings		Sunla	nd Park, Ne	w Mexico			
	GRO	DUND ELEVATION: 3,404.76 (FL, MSL) Northing: 7717.16 Com	letion		SAM	PLE DATA		6	
l igd.		Easting: 9920.72   Dept	: 120.0			ļ		, bg	
E	S log	STRATA DEPTH	Dep()					(FT	
pth	ι Ε Ε	CRAPHIC LOC	FT.,	Calcareous	MOISIULE	Munsell	Noles	epth	
مً			Sc St	}		2		A	
		Gravich-brown loamy fine SAND granular no organics few	1						
50		calcareous nodules increasing with depth, small roots, no iron					ļ		
		Stanling, matter conclused salestone notaties (whitebown sales)				1			
- 10.0 -	Ш.	Pinkish-white, sandy CALICHE, moderately weak structure, friable	0.0					- 10.0-	
E		nodules of callene							
15.0 -								= 15.0	
: :				1	-				
- 20.0 -			- 21.0					20.0	
Ę	Ē	Light red to pink, calcareous pebbly SAND, pebbles are dominantly quartrite, some rose color banded gniess, little chert, angular,				1			
25.0 -		Pebbles increase with depth						25.0	
F 30.0 -							-	- 30.0-	
1									
F 33.0 -		White sandy CALICHE with calcareous sand matrix and abundant	- 36.0						
40.0 -		chert clasts. Clasts are angular, coarse gravel size, brown, white						- 40.0	
ł	害								
45.0 -	Ē				· ·			- 45.0-	
[									
50.0 -			- 51.0					- 50.0-	
ĺ.		Rose and white PEBBLES, with very little sand, dominantly hard, ye	лу						
- 55.0 -		grains	- 56.0					55.0	
Ę		Reddish-brown MUDSTONE/CLAYSTONE, sandy, dry, blocky cuttings, some chert pebbles and calcareous clasts, poorly indurated	ed			ł		= =	
- 60.0 -								- 60.0-	
F 65.0 -	Ē							- 65.0-	
-									
F 70.0 .									
- 75.0								- 75.0-	
		Reddish-brown, sandy CLAYSTONE, micaceous with occasional	76.0						
<u> </u>		green siltstone beds				Ì	Pitcher Bell Sample		
NOTE	<u>S;</u>	1. Boring grouted after completion with 95% portland cement and 5% bentonite.	GEND		-		¥71		
l		2. Drilling Company: Eades Drilling and Pump Service.	Y.D WE	ILE DRILLING	를 A.D AFTI	R DRILLING	.V HOUR(S) AFTER DR	ILLING	
I									

W _B C	W B C (312) 922-1030 * * INDIANA (219) 923-9609			C. LOG OF SOIL BORING NO						
Depth (FT., bgs) Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	•	Strata Depth (FT., bgs)	Calcarcous	Moisture	IPLE DATA Munsell	Notes	Depth (FT., bgs)		
- 90.0 - 90.0 - 95.0 - 100.0 - 110.0 - 115.0 - 120.0 - 120.0	(Continued) (Continued from page 1) Reddish-from, sandy CLAYSTONE, micaceous with occasion green siltstone beds BORING TERMINATED AT 120'	al	120.0				Pitcher Bell Sample obtained at 120'	90.0 95.0 100.0 110.0 115.0		
	and 5% bentonite. . Drilling Company: Eades Drilling and Pump Service.	¥ w.d	WHI	ile drilling	¥ A.D AFTE	R DRILLING	.♥ HOUR(S) AFTER DR	ILLING		

								۲			36
W	3	WEAVER BOO 200 S. MICHIGAN AV	DS CONSULT BNUE, CHICAGO IL,	ANTS, INC 60604		LO	G OF S	DIL BO	RING NO.	<u>B-1</u>	.10
NE NE	VATI NE FT. FT. FT.	(312) 922-1030 * INL CR LEVEL DATA = Not Encountered W.D. AT COMPLETION AT HR. A.D. AT HR. A.D.	Started Completed Driller Helper Drilling Method Sampling Method	11/17/97 11/19/97 Allan Eades Freddy Air Rotary Drill Cuttings		LOCA	TION <u>Prope</u> <u>Eunic</u> T <u>Cami</u>	2.10 Dised Lea Con Real Lan No Real Lan Ind Park, No	unty Landfill tico tdfill ew Mexico	SHEET	
(SS	GRO	DUND ELEVATION: 3,397	.38 (Ft., MSL) North East	hing: 7924.34 ing: 8019.53	Completi Depth: 6	ion 00.0		SAM	IPLE DATA		gs)
Depth (FT.,b	Lithology Type	STI SOIL I GR	RATA DEPTH DESCRIPTION APHIC LOG			Strata Depth (FT.,bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT.,b
		Yellowish-red to reddish- structure,	-brown, loamy fine S	AND, weak granu	ılar /	2.0	No	Dry	5YR 5/8		
- 5.0 -		Reddish-brown, loamy fi very few organics, gr	ne SAND to sandy L ading to light brown	OAM, blocky, fria loamy SAND	able,		No	Dry	5YR 6/8		5.0
- 10.0 -							No	Dry	5YR 6/8		F 10.0
		Pink, sandy CALICHE,	moderately weak with	h friable nodules o	of	11.0	Strong	Dry	5YR 8/4		
- 15.0 -		canono and poorty co									- 15.0
- 20.0 -							Mild	Dry	5YR 8/3		20.0
	爴		<u></u>			24.0		ł			
- 25.0 - - 30.0 -		Pink, fine to medium SA and cemented sandsto	ND, calcareous very me	small nodules of a	caliche			ļ			- 30.0
- 35.0 -					i		Mild	Dry	5YR 8/2		- 35.0 -
- 40.0 - - - 45,0 -		Reddish-brown, pebbly, Pebbles are predomin quartzite, all angular Light reddish-brown, CI	coarse GRAVEL with antly chert, white, re to subangular AYSTONE with trac	h loamy sand matt d, black and rose ce sand and calcard	rix.	39.0 43.0	Mild	Dry	2.5YR 6/4		- 40.0 - 45.0
		cemented sandtone pe	ebbles, cullings are b	locky, some chert		49.0	Mild	Deu	2 SVD 6/2		
- 50.0 -		Reddish-brown, sandy N indurated, some smal	UDSTONE/CLAYS	TONE, dry, poorl d sandstone nodule	ly cs, littlc		Mild	Dry	2.5YR 4/6		- 50.0  -
- 55.0 -		to no mica	• .								55.0
- 60.0 -							Mild	Dry	2.5YR 6/3		- - 60.0
- 65.0 -							Mild	Dry	2.5YR 4/6		65.0
- 10.0 -											E /0.0
- 75.0 -								_			[ 75.0
		(Continued)					Mild	Dry	2.5YR 6/4		-
NOTE	<u>'S:</u>	<ol> <li>Boring grouted after com and 5% bentonite.</li> <li>Drilling Company: Eade</li> </ol>	apletion with 95% port s Drilling and Pump S	tland cement ervice.	<u>LEGE</u> 도 w.d	<u>ND</u> ) WIE	ile drilling	¥ A.D AFTE	R DRILLING 🦉 HO	DUR(5) AFTER I	DRILLING

W	)	WEAVER BOOS CONSULTANTS, INC.	LC	G OF S	OIL BO	RING N	NO. <u>B-11</u>	[0
Ĺ	C	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	c#9504	2.10		SHEET 2	OF 7
(sĝ					SAM	PLE DATA		(sg
Depth (FT., b	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., b
- 85.0 - - 90,0 - - 95.0 - - 100.0-		(Continued from page 1) Reddish-brown, sandy MUDSTONE/CLAYSTONE, dry, poorly indurated, some small calcareous cemented sandstone nodules, little to no mica Reddish-brown, sandy CLAYSTONE, micaceous with occasional green siltstone beds	84.0	Minor	Barely Damp	2.5YR 4/4	Pitcher Bell Sample obtained at 90'	- 85.0 - 90.0 - 95.0 - 100.0
·105.0-			110.0					-1105.0
-115.0-		Reddish-brown, sandy MUDSTONE/CLAYSTONE, dry, poorly indurated, some small calcareous comented sandstone nodules, littl to no mica	B	Slight	Barely Damp	2.5YR 4/4		-115.0
-125.0- -130,0-				Ycs	Barely Damp	2.5YR 3/4		125.0
-135.0- -140.0- -145.0-		•.		Yes	Barely Damp	2.5YR 4/4	Pitcher Bell Sample obtained at 140'	- 135.0 - 140.0 - 145.0
-150.0+ -155.0+ -160.0+				No	Barcly Damp	2.5YR 4/6		F150.0 F155.0 F155.0 F160.0
- 165.0 - 170.0		(Continued)						- - - - - - - - - - - - - - - - - - -
NOTE	<u>iS:</u>	<ul> <li>Boring grouted after completion with 95% portland cement and 5% bentonite.</li> <li>Drilling Company: Eades Drilling and Pump Service.</li> </ul>	<u>eend</u> 7.d Wh	ILE DRILLING	¥ л.D АFTE	R DRILLING	.∜ HOUR(S) AFTER DR	ILLING

W _F	WEAVER BOOS CONSULTANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604		LOG OF SOIL BORING NO. <u>B-110</u>						
	C	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	9504	2.10		SHEET 3	OF 7	
gs)					SAM	PLE DATA		(sgc	
Depth (FT., b	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., 1	
<u> </u>		<u>, , , , , , , , , , , , , , , , , , , </u>							
-175.0-		(Continued from page 2)				ĺ		-175.0-	
F		Reddish-brown, sendy MUDSTONE/CLAYSTONE, dry, poorly						6 3	
1.		indurated, some small calcareous cemented sandstone nodules, little						-180.0-	
-				ł				=	
					ł			E 185 0	
-105.0-									
	E		100.0					F	
-190.0-			1 190.0					E190.0	
Ē		Light reddish-brown MUDSTONE, slick, siltier, no bedding			Develu	2 6370 6/2		- -	
-195.0-					Damp	2.31K 0/3		-195.0-	
Ē			1	ĺ				E	
-200.0-								200.0	
 -								F :	
-205.0-				!				205.0	
Ē									
-210.0								-210.0	
ţ			211.0					Ē	
[. 		Reddish-brown MUDSTONE/CLAYSTONE, micaceous, no bedding	1			1		-215.0	
- 21.3.0		of familie		N-	Develop	2.530.54		-	
1				NO	Damp	2.518 5/4		Fann	
-220,0-				1				E220.0	
Į.								2	
-225.0				NO		2.51R 4/6		-225.0	
ŀ						1		E	
-230.0							Pitcher Bell Sample	_230.0	
			ļ				obtained at 230'		
-235.0								235.0	
ł	1	· .						F	
-240.0						1		-240.0	
Ė				No	Dry	2.5YR 5/4		Ę	
-245.0	-===							-245.0	
F								F	
E250.0	1			No	Dry	2.5YR 4/6		E250 0	
. 250.0								F	
÷	巨								
E ^{255.0}								E ^{235.0}	
[								Ę	
-260.0	-=			NO	Dry	2.5YR 6/3		<u></u>  -260.0	
-		(Continued)						Ē.	
NOTE	S:	1. Boring grouted after completion with 95% portland cement LEG	KND						
	:	and 5% bentonite. 2. Drilling Company: Endes Drilling and Pump Service, $\forall w$	.D WH	BLE DRILLING	🛓 Л. D ЛЕТЕ	R DRILLING	♥ HOUR(S) AFTER DR	ILLING	
1									
4									

W	W _D WEAVER BOOS CONSULTANTS, INC. LOG OF				OIL BO	OB-11	0	
Ľ	°C	200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	FILF	c#95042	2.10		SHEET 4	OF 7
(sg	$\overline{[]}$				SAM	PLE DATA		bgs)
Depth (FT., b	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., l
-265.0-		(Continued from page 3)		No	D-1/	2 EVD 5/6		-265.0-
-270.0-				140	Dry	2.518 5/0		
-275,0-		Reddish-brown, MUDSTONE/CLAYSTONE, micaccous, no bedding or laminae						
-285.0						;		-285.0-
-290.0				Yes	Dry	2.5YR 5/4		-290.0-
-295.0								295.0
-300.0 [.]					4			-300.0-
-305.0 ⁻								305.0
[ -310.0 								310.0
-315.0								-315.0-
-320.0				No	Dry	2 5VR 4/4		-320.0-
-325,0 - - - - - - -					Diy			
-335.0								-335.0-
-340.0								340.0
- - -345.0				Yes	Dry	2.5YR 5/4		-345.0-
-350.0							Pitcher Bell Sample obtained at 350'	-350.0-
-355.0		(Continued)					1	-355.0-
NOTI	<u></u> <u></u>	1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEC         2. Driiling Company: Eades Drilling and Pump Service.       Y	<u>JEND</u> Y.D WI	ULE DRILLING	¥ A.D AFTI	R DRILLING	♥ HOUR(S) AFTER DR	ILLING
( 								

Ŵ	<u> </u>	WEAVER BOOS CONSULTANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604	LO	G OF S	OIL BO	RING N	IO. <u>B-11</u>	0
	C	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	;# <u>950</u> 4	2.10		SHEET 5	OF 7
35)					SAM	IPLE DATA		(s ²
Depth (FT., bg	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Maisture	Munsell	Nates	Depth (FT., b
	<u></u>							-
-360.0-		(Continued from page 4)						-360.0
-365.0-		Reddish-brown, MUDSTONE/CLAYSTONE, micaccous, no bedding or laminae		Minor	Dry	2.5YR 4/4		-365.0
-370.0-					Ĩ			- 370.0
-375.0-				Minor	Dry	2.5YR 4/6		-375.0
-380.0-								-380.0
-385.0-								-385.0
-390.0-								-390.0
-395.0-			1					
- 400.0-								400.0
- - - 405.0-								405,0
- - 410.0-								- -410.0
-415.0-				ł				415.0
-420.0-								- 420.0
- -425,0-								-425.0
- 430.0- -								- 430.0
- -435.0-				Minor	Ъгу	2.5YR 4/8		- 435.
- 440,0- -								- -440. -
-445.0-		(Continued)						-445.
NOTE	<u>S:</u>	1. Boring grouted after completion with 95% portland cement and 5% bentonite.       LEG         2. Drilling Company: Eades Drilling and Pump Service.       V	END .D WII	ILE DRILLING	Y A.D AFTE	R DRILLING	.V HOUR(S) AFTER DR	ILLING

)-

W _R	WEAVER BOOS CONSULTANTS, INC.	LC	G OF S	OIL BO	RING NO	). <u> </u>	0
	(312) 922-1030 * * INDIANA (219) 923-9609	FILI	c# <u>9504</u>	2.10		SHEET 6	OF 7
<u>s</u>				" SAM	IPLE DATA		gs)
Depth (FT., bg Lithology	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., b
							450 0
F430.0-							
⊧≣	(Continued from page 5)						
L 455.0-E	Reddish-brown, MUDSTONE/CLAYSTONE, micaceous, no beddin	g			ļ		-400.04
-460.0-							F460.0-
					Į		
-465.0-E							-465.0-
							2 3
-470.0-							470.0
		1					
-475.0-							<b>475.0</b>
							= =
F480.0							480.0
					Í		
485.0-							485.0-
				1			E 3
490.0-							F490.0-
		Ì					
495.0-							495.0
		ĺ					
F 303.07							E
							È.
							-510.0
							<u>-</u>
-515.0-							-515.0
			Mana	Deut	2 670 614		-
E 520.0-E			101 HOL	Dry	2.3 IK 3/4		E ^{520.0}
							F
-525.0-		Ì					-525.0
							E
-530.0-							-530.0
							Ē
-535.0-							535.0
	(Continued)						F
<b>[]</b>				1			F
NOTES	1. Boring grouted after completion with 95% portland cement 11 and 5% bentonite.	GEND		~			
	2. Drilling Company: Eades Drilling and Pump Service. $\bigvee$	W.D WI	HILE DRILLING	록 л.D АFTI	ER DRILLING	IIOUR(S) AFTER DR	ILLING
1							

W	2	WEAVER BOOS CONSULTANTS, INC.	LO	G OF S	OIL BO	RING N	NO. <u>B-11</u>	0
1	C	(312) 922-1030 * * INDIANA (219) 923-9609	FILE	s#9 <u>504</u>	2.10		SHEET 7	OF 7
(sg		· · · · · · · · · · · · · · · · · · ·			SAM	IPLE DATA		gs)
Depth (FT., b	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., b
	<u> </u>			Minor	Dry	7.5YR 5/4		<u> </u>
- - 545.0-		(Continued from page 6)			}   			-545.0
[ [-550.0-		Reddish-brown, MUDSTONE/CLAYSTONE, micaceous, no bedding or laminae						550.0
- 				Minor	Dry	2.5YR 4/4		- -555.0 -
- -560.0 -								-560.0
-565.0					1			
-570.0			ļ	Yes Yes	Dry Dry	2.5YR 6/3 2.5YR 6/2		-570.0
Ę				Yes	Dry	2.5YR 4/4		
-575.0			576 0					-575.0
- 		Light reddish-gray, clayey SILTSTONE, gritty, sandy, no bedding	570.0	Yes	Dry	2.5YR 6/1		- 
-585.0			588.0	Yes	Dry	2.5YR 6/1		-585,0 -
-590.0		Keddish-gray, silty SANDSTONE	595.0	Ycs	Dry	2.5YR 6/1		-590.0
-600.0	-	Light reddish-gray, silty SANDSTONE	600.0	Yes	Dry	2.5YR 7/1		
		BORING IERMINATED AT 600 FEET			t t			
		· .						
NOT							<u> </u>	
NOTE	<u>/S:</u>	1. Boring grouted after completion with 95% portland cement and 5% bentonlte.       LEG:         2. Drilling Company: Endes Drilling and Pump Service.       V	<u>END</u> .D WH	ile drilling	🐺 Л.D ЛГТЕ	R DRILLING	.♥ HOUR(S) AFTER DRI	LLING

B       2005. MICHIGAN AVENUE, CHICAGO L, 66604       FILE #       95042.10       SHEET 1 OF 7         WATER LEVEL DATA       Started       1/13/97       LOCATION       Proposed Lea County Landfill         598.0       FT. AT       Completed       1/13/97       LOCATION       Proposed Lea County Landfill         598.0       FT. AT       COMPLETION       Helper       Freidy       CLIENT       Canino Real Landfill         FT. AT       HR. A.D.       Sampling Method       Air Rotary       Culters       Sunland Park, New Mexico         GROUND ELEVATION: 3,404.33 (81, MSL)       Northing: 9140.36       Completion       Sunland Park, New Mexico         GRAUND ELEVATION: 3,404.33 (81, MSL)       STRATA DEPTH       GRAPHIC LOG       Graphic Culters       Cultareous       Moisture       Munsell       Notes         SOIL       DESCRIPTION       GRAPHIC LOG       Graphic Cultareous       Moisture       Munsell       Notes       Graphic Cultareous       Moisture       Munsell       Notes       Graphic Cultareous         SOIL       DESCRIPTION       Graphic Cultareous       Moisture       Munsell       Notes       Graphic Cultareous       Moisture       Munsell       Notes       Graphic Cultareous       Moisture       Munsell       Notes       Graphic Cultareous
WATER LEVED DATA NE = Not Encountered 598.0       Started Not FN W.D.       Started Completed 11/13/97 FT. AT COMPLETION FT. AT
S98.0       FT. W.D.       Completed       11/13/97         FT. AT       OMPLETION       Allan Edges       Eunice, New Mexico         FT. AT       HR. A.D.       Allan Edges       CLIENT       Camino Real Landfill         FT. AT       HR. A.D.       Sampling Method       Drilling Method       Drilling Method       Sunland Park, New Mexico         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9140.96       Completion       SAMPLE DATA       Galarian
FT. AT       COMPLETION FT. AT       Driller Heiper FT. AT       Interferedy FT. AT       Eunice, New Mexico         FT. AT       HR. A.D.       Sampling Method       Drill Cutings       CLIENT       Camino Real Landfill         FT. AT       HR. A.D.       Sampling Method       Drill Cutings       Sunland Park, New Mexico         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9130.76       Deplit: 598.0       SAMPLE DATA         STRATA DEPTH       Sold Street       Sold Street       Sampling Method       Deplit: 598.0         STRATA DEPTH       GRAPHIC LOG       Street       Moisture       Munsell       Notes         Streeture, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       8.0       Strong       Dry       SYR 5/6       5.4         10.0       Pale rod to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       12.0       Mild       Dry       2.5YR 6/6       115.         15.0       Reddish-brown loamy fine SAND, weak granular, cacherous concretions       20.0       Mild       Dry       2.5YR 6/6       12.0         15.0       Pale rod to pinkish-white fine sandy loam nodules, concretions       20.0       Mild       Dry       2.5YR 6/6       20.0         20.0       Light brown loamy fine SAND, pi
FT. AT       HR. AD.       Dritting Method       Air Rotary       CLIENT       Camino Real Landfill         FT. AT       HR. AD.       Sampling Method       Dritt Cutings       Sunland Park, New Mexico         GROUND ELEVATION: 3,404.35 (FL, MSL)       Northing: 9130.76       Completion       SAMPLE DATA         Brief       STRATA DEPTH       Besting: 9138.76       Depth: 598.0       SAMPLE DATA         GROUND ELEVATION: 3,404.35 (FL, MSL)       STRATA DEPTH       Besting: 9138.76       Calcareous       Moisture       Munsell       Notes         Brief       SOIL DESCRIPTION       GRAPHIC LOG       Galcareous       Moisture       Munsell       Notes       FG         Structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       8.0       Strong       Dry       2.5YR 7/2       10.0         Fabe rod to pinkish-white fine sandy CALICHE, moderately weak, concretions       12.0       Mild       Dry       2.5YR 6/6       15.0         15.0       Reddish-brown loamy fine SAND, with moist sandy loam nodules, coated with calcareous concretions and salightly sicky, very little calcareous concretions       20.0       Mild       Dry       2.5YR 6/6       15.0         15.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated wi
FT. AT       HR. A.D.       Sampling Method       Drill Cutifnes       Sunland Park, New Mexico         GROUND ELEVATION: 3,404.35 (Ft., MSL)       Northing: 9130.76       Completion       SAMPLE DATA         GROUND ELEVATION: 3,404.35 (Ft., MSL)       Northing: 9138.76       Depth: 598.0       SAMPLE DATA         GROUND ELEVATION: 3,404.35 (Ft., MSL)       STRATA DEPTH       Gradie       Gradie       Gradie         GROUND ELEVATION: 3,404.35 (Ft., MSL)       STRATA DEPTH       Gradie       Gradie       Moisture       Munsell       Notes         Gradie       SOIL DESCRIPTION       Gradie       Gradie       Calcareous       Moisture       Munsell       Notes         Soil       GRAPHIC LOG       Strong       Dry       SYR 5/6       5.1         10.0       Pale red to reddish-brown loamy fine SAND, weak granular structure, friable nodules of callecle       8.0       Strong       Dry       2.SYR 7/2       10         10.0       Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable and slightly sicky, very line calcareous concretions       12.0       Mild       Dry       2.SYR 6/6       12.0         15.0       Reddish-brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy loam nodules, coated
GROUND ELEVATION: 3,404.35 (Ft., MSL)       Infilting: 9138.76       Calmin: 598.0       SAMPLE DATA         Image: Stream of the stream of th
Image: Strata DEPTH SOIL DESCRIPTION GRAPHIC LOG       Image: Strata DEPTH Strata DEP
E       B       DIMPHAL DDF MA         G       SOIL DESCRIPTION GRAPHIC LOG       Calcareous       Moisture       Munsell       Notes         Soil       Yellowish-red to reddish-brown loamy fine SAND, weak granular structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       No       Dry       SYR 5/6       5.0         Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       No       Dry       2.5YR 7/2       10.         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sicky, very little calcareous concretions       Strong       Dry       2.5YR 6/6       10.         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, filour-like, few sandy nodules, friable when wet       20.0       Mild       Dry       2.5YR 6/6       20.         21.00       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       Strong       Dry       2.5YR 8/1       230
B       GRAPHIC LOG       E         5.0       Yellowish-red to reddish-brown loamy fine SAND, weak granular structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       No       Dry       5YR 5/6       5.0         10.0       Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       No       Dry       2.5YR 7/2       10.0         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sicky, very little calcareous concretions       8.0       Strong       Dry       2.5YR 6/6       15.0         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy loam nodules, coated with calcareous nordite, grow and sandy loam nodules, coated with calcareous nordite, finable entert pebble       25.0       Mild       Dry       2.5YR 8/1       25.0         25.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       Strong       Dry       2.5YR 8/1       30
5.0       Yellowish-red to reddish-brown loamy fine SAND, weak granular structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       No       Dry       5YR 5/6       5.0         10.0       Pale red to pinkish-white fine sandy CALICHE, inoderately weak, friable nodules of caliche       No       Dry       2.5YR 7/2       10.0         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       8.0       Strong       Dry       2.5YR 6/6       15.0         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with carbonates, some organic matter, one chert pebble       20.0       Mild       Dry       2.5YR 6/6       20.0         25.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       25.0       Strong       Dry       2.5YR 8/1       30
5.0       Yellowish-red to reddish-brown loamy fine SAND, weak granular structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depth       No       Dry       SYR 5/6       5.0         10.0       Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       No       Dry       2.5YR 7/2       10.0         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       12.0       Mild       Dry       2.5YR 6/6       15.0         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy nodules, friable when wet       25.0       Strong       Dry       2.5YR 8/1         20.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       25.0       Strong       Dry       2.5YR 8/1         20.0       Strong       Dry       2.5YR 8/1       30
S.0Yellowish-red to reddish-brown loamy fine SAND, weak granular structure, friable, very few organics, some roots, increasing caliche nodules with depth and slightly loamier with depthNoDrySYR 5/65.010.0Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of calicheNoDry2.5YR 7/210.15.0Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretionsStrongDry2.5YR 6/65.020.0Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy nodules, friable when wet25.0MildDry2.5YR 8/120.0Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wetStrongDry2.5YR 8/130.0StrongDry2.5YR 8/130
10.0       Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       8.0       Strong       Dry       2.5YR 7/2       10.         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       12.0       Mild       Dry       2.5YR 6/6       15.         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy nodules, friable when wet       25.0       Mild       Dry       2.5YR 8/1       25.0         90.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       Strong       Dry       2.5YR 8/1       30
10.0       Pale red to pinkish-white fine sandy CALICHE, moderately weak, friable nodules of caliche       Strong       Dry       2.5YR 7/2       10.         15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       12.0       Mild       Dry       2.5YR 6/6       15.         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy nodules, friable when wet       25.0       Mild       Dry       2.5YR 6/6       20.         90.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       25.0       Strong       Dry       2.5YR 8/1       30.
15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       12.0       Mild       Dry       2.5YR 6/6       15.0         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy loam nodules, coated with calcareous concretions and sandy loam nodules, coated with carbonates, some organic matter, one chert pebble       25.0       Mild       Dry       2.5YR 6/6       20.0         25.0       Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       Strong       Dry       2.5YR 8/1       30.0
15.0       Reddish-brown loamy fine SAND with moist sandy loam nodules, nodules are friable and slightly sticky, very little calcareous concretions       20.0       Mild       Dry       2.5YR 6/6       20.0         20.0       Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with calcareous, some organic matter, one chert pebble       25.0       Strong       Dry       2.5YR 8/1         30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0       30.0
concretions       20.0       Mild       Dry       2.5YR 6/6       20.0         Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with carbonates, some organic matter, one chert pebble       25.0       Mild       Dry       2.5YR 6/6       20.0         Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       25.0       Strong       Dry       2.5YR 8/1       30
20.0       Mild       Dry       2.5YR 6/6       20.0         Light brown loamy fine SAND, pisolitic, slightly indurated with calcareous concretions and sandy loam nodules, coated with carbonates, some organic matter, one chert pebble       25.0       Strong       Dry       2.5YR 8/1         Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       Strong       Dry       2.5YR 8/1
- 25.0       Englit blown loainy file SATD, pisonic, sightly inducted with calcareous concretions and sandy loam nodules, coated with carbonates, some organic matter, one chert pebble       25.0       25.0         Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet       25.0       25.0         30.0       Image: Strong in the second structure in the second s
25.0 Carbonates, some organic matter, one client people 25.0 Pink to white CALICHE, probably massive, cuttings are very fine, flour-like, few sandy nodules, friable when wet 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.
flour-like, few sandy nodules, friable when wet Strong Dry 2.5YR 8/1 30.0
Very light brown medium GRAVEL with calcareous sand matrix, gravel is brown when wet very cherty, angular, white and brown of 37.0
chert, some quartzite
40.0 While to light blown bebory coarse GRAVEL with some time to the calcareous sand matrix. Pebbles are less angular, mostly chert but
Reddish-brown MUDSTONE/CLAYSTONE, sandy, dry, poorly 44.0 Mild Dry 2.5YR 4/4
indurated, cuttings are blocky, some chert pebbles and white calcareous clasts
Reddish-brown sandy MUDSTONE/CLAYSTONE, micaceous, - 50.0
beds, otherwise massive, very few laminae or bedding, moderately indurated No Barely 10R 4/6
- 55.0 - Domp - 55
Mild Barely 2.5YR 5/3
- 65.0 - Damp - 65
70.0
Mild Barely 2.5YR 6/4
Pitcher Bell Sample
(Continued)
NOTES: 1. Boring grouted after completion with 95% portland cement LEGEND
and 5% bentonite. 2. Drilling Company: Eades Drilling and Pump Service.

W	WEAVER BOOS CONSULTANTS, INC.	LC	G OF S	OIL BO	RING 1	NOB-11	1
	200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	FILE	c#950	42.10		SHEET 2	OF 7
Depth (FT., bgs) Lithology	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	SAM Moisture	Munsell	Notes	Depth (FT., bgs)
90.0	(Continued from page 1) Reddish-brown sandy, MUDSTONE/CLAYSTONE, micaceous, especially biotile, occasional chert pieces. occasional green siltston beds, otherwise massive, very few laminae or bedding, moderately indurated		Minor Slight Yes	Barely Damp Barely Damp Barely Damp	2.5YR 5/4 2.5YR 6/3 2.5YR 4/4 2.5YR 5/3		90.0 90.0 95.0 100.0 105.0
-125.0-				Damp			125.0
-140.0- -145.0- -155.0- -160.0- -165.0-			No	Barely Damp	2.5YR 5/3	Pitcher Bell Sample obtained at 140'	- 140.0 - 145.0 - 150.0 - 155.0 - 155.0 - 160.0 - 165.0
-170.0-	(Continued)         1. Boring grouted after completion with 95% portland cement and 5% bentonite.         2. Drilling Company: Eades Drilling and Pump Service.	END .D WHI	LE DRILLING	¥ A.D AFTEI	R DRILLING	♥ HOUR(S) AFTER DRI	-170.0-

ŴŢ		WEAVER BOOS CONSULTANTS, INC.	LO	G OF S	OIL BO	RING N	NOB-11	1
	C	200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	FILE	C#9504	2.10		SHEET 3	OF 7
(sgq					SAM	IPLE DATA		bgs)
ET.,	ogy	STRATA DEPTH	Depth bgs)					(FT.,
pth (	Typ	SOIL DESCRIPTION	FT.	Calcareous	Moisture	Munsell	Notes	spth
۵		GRAI IIIC 200	N N					Ď
		(Continued from page 2)		]				
-175.0-				No	Bacaly	2 5VP 5/6		F175.0H
		Reddish-brown sandy MUDSTONE/CLAYSTONE, micaceous, especially biolile, occasional chert pieces, occasional green siltstone		110	Darciy	2.5 11 5/6		-180.0-
- - -		indurated		No	Barely	2.5YR 4/4		
-185.0-		Light reddict brown claves SILTEONE	185.0		Į			-185.0
		Red, clayey SILTSTONE	187.0	No	Dry	2.5YR 6/4	1	
F 190.0- E				No	Barely	2 5 VR 5/6		
-195.0-	┇║║	· · · · · · · · · · · · · · · · · · ·	195.0		Damp	2.511 5/0		-195.0-
ί. -	-	Pink, clayey SILTSTONE					l l	
-200.0-				No	Barely Damp	7.5YR 7/3	Pitcher Bell Sample	-200.0-
-	-				ł		obtained at 200	
-205,0-					1			
-210.0-			211 0					-210.0-
[		Reddish-brown sandy MIIDSTONE/CLAYSTONE, micaceous.	211.0					
-215.0-		especially biotile, occasional chert pieces, occasional green siltstone beds, otherwise massive, very few laminae or bedding, moderately		No	Dry	2.5YR 6/2		-215.0-
Émo.		indurated	j					
F ^{220.0}					ļ			220.0
-225.0-								225.0
ł				:				
-230.0								-230,0-
-235.0-								-235.0-
1		·	}					
-240.0-					ļ			-240.0
1								
-245.0·		,						-245.0
-250.0								-250.0
				No	Dry	2.5YR 4/6		
-255.0	▤	,						-255.0
-	圕			Yes	Dry	2 5 YR 4/4		
-260.0	·			100	0.5	2.518 4/4		-200.0
NOTE	<u>1</u>	(Continued)	L	.	. <u>.</u>	.1		. [
	<u></u>	and 5% bentonite. 2. Drilling Company: Eades Drilling and Pump Service. $\mathbf{\nabla}$ w.	D 1931	ILE DRILLING	🐇 A.D AFTE	R DRILLING	♥ HOUR(S) AFTER DR	ILLING
l 1								
Í								
l					·			

	WE	3	WEAVER BOOS CONSULTANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	LO	G OF S	OIL BO	RING N	NO. <u>B-11</u> SHEET 4	1
			(512) 722-1050 MIDIAIA (217) 325-7007		/	SAM	IPLE DATA		<u>ି</u> ଜ
1	Depth (FT., bg	Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (IT., bg
	-265.0-								-265.0-
	-270.0-		(Continued from page 3)						-270.0
	-275.0-		Reddish-brown, sandy MUDSTONE/CLAYSTONE, micaceous, especially biotile, occasional chert pieces, occasional green siltstone beds, otherwise massive, very few laminae or bedding, moderately indurated						-275.0-
	-280,0-				ł		ļ		
	-285.0-								-285.0-
	-290.0-	ļļļ							290.0
	-295.0~				No	Dry	10R 4/6		-295.0-
	-300.0-								-300.0
	-305.0-								-305.0-
)	-310.0-								-310.0
	-315.0-					,			-315.0-
	-325.0-								-325.0
	-330,0-		••		Yes	Dry	10R 4/4		-330.0-
	-335.0-						ļ		-335.0-
	-340.0-			ļ					-340.0
	-345.0-								-345.0-
	-350.0-								-350.0-
	-355.0-		(Continued)						-355.0-
Ì	NOTE	<u>S:</u>	Boring grouted after completion with 95% portland cement and 5% bentonite.       LEGE         Drilling Company: Eades Drilling and Pump Service.       ¥	<u>ND</u> D WHI	LE DRILLING	¥ А.D АFTEI	R DRILLING	V HOUR(S) AFTER DRI	LLING

.

.

W	WEAVER BOOS CONSULTANTS, INC.	LC	G OF S	OIL BO	RING N	NO. <u>B-11</u>	1
^D C	(312) 922-1030 * * INDIANA (219) 923-9609	FILI	⊆#9504	42.10		SHEET 5	OF7
(SS)				SAN	IPLE DATA		gs)
Depth (FT., b Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Calcareous	Moisture	Munsell	Notes	Depth (FT., t
	(Continued from page 4)						
-360.0	Reading transformer and MUDSTONE/CLAYSTONE micaceous.			ļ			-360.0-
	especially biotile, occasional chert pieces, occasional green siltsto beds, otherwise massive, vcry few laminae or bedding, moderatel indurated	ne y	Minor	Drv	2 SYR 4/6		
-370.0-			(MILIO)	<i>D</i> ()	2.518 4/0		
-375.0							-375.0
-380.0-							-380.0
-385,0-							-385.0-
390.0			Miner	Dry	2.5YR 5/6		
-395.0							-395.0
400.0							- 400.0-
-410.0-							-410.0-
415.0-							415.0
420.0-	·						420.0
425.0							425.0
-430.0			1				- 430.0-
-435,0-			Minor	Dry	2.5YR 4/6		-135.0-
440.0							-440.0-
-445.0	(Continued)						
NOTES:	Boring grouted after completion with 95% portland cement and 5% bentonite.     Z. Drilling Company; Eades Drilling and Pump Service.	<u>GEND</u> W.D WH	ILE DRILLING	🛓 Л.D АFTE	R DRILLING	♥ HOUR(S) AFTER DRI	LLING

W _B	WEAVER BOOS CONSULTANTS, INC. 200 S. MICHIGAN AVENUE, CHICAGO IL, 60604 (312) 922-1030 * * INDIANA (219) 923-9609	LC FILI	G OF S	OIL BO	RING I	NO. <u>B-11</u> SHEET 6	1 0f 7
Depth (FT., bgs) Lithology	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depili (FT., bgs)	Calcareous	Moisture	IPLE DATA	Notes	Depth (FT., bgs)
-450.0 -455.0 -460.0 -465.0 -465.0 -470.0 -485.0 -485.0 -485.0 -490.0 -500.0 -505.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -511.0 -5	(Continued from page 5) Reddish-brown, sandy MUDSTONE/CLAYSTONE, micaceous, especially biotile, occasional chert pieces, occasional green silison bedding, moderately indurated (Continued) (Continued) I. Boring grouted after completion with 95% portland cement and 5% bentonite. 2. Dritting Company: Eades Drilling and Pump Service.	е ЕПД WH	Minor	Dry ¥ A.D AFTER	2.5YR 6/4	Pitcher Bell Sample obtained at 485'	450.0 4455.0 465.0 465.0 465.0 465.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 4455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0 455.0000000000

W _B	WEAVER BOOS CONSULTANTS, INC.	LO	G OF S	OIL BO	RING NO	. <u> </u>	1
ЪС	(312) 922-1030 * " INDIANA (219) 923-9609	FILL	<u># 9504</u>	2.10		SHEET 7	OF 7
Depth (FT., bgs) Lithology Type	STRATA DEPTH SOIL DESCRIPTION GRAPHIC LOG	Strata Depth (FT., bgs)	Całcarcous	Moisture	Munsell	Notes	Depth (FT., bgs)
-545.0 -550.0 -555.0 -560.0 -575.0 -575.0 -580.0 -585.0 -590.0 -595.0 -595.0	(Continued from page 6) Reddish-brown, sandy MUDSTONE/CLAYSTONE, micaceous, especially biolile, occasional chert pieces, occasional green siltstom bedd, otherwise massive, very few laminae or bedding, moderately indurated Fink CLAYSTONE Light reddish-gray, clayey SILTSTONE Reddish-gray, sandy SILTSTONE BORING TERMINATED AT 598 FEET	- 566.0 568.0 576.0 581.0 598.0	Minor Minor Yes Yes Yes	Dry Dry Dry Dry Dry	2.5YR 6/4 2.5YR 8/3 2.5YR 7/1 10R 6/1 10R 6/1		
NOTES:	<ol> <li>Boring grouted after completion with 95% portland cement and 5% bentonite.</li> <li>Drilling Company: Eades Drilling and Pump Service.</li> </ol>	<u>end</u> 7.d WH	HE DRILLING	¥ A.D AFTE	R DRILLING ♥ 1	IOUR(S) AFTER DR	ILLING

APPENDIX H.C SITE BORING LOGS

LOG	LOG OF BORING NO. BH-01								
Proje	ct Des	cription: CK Disposal				<b>CAREL</b>			
Depth, feet	Samples Svmbol/USCS	Location: Eunice, NM Top of PVC El.: feet MSL Surface El.: 3382 feet MSL Completion Depth: 175 fee Date Boring Started: 5/26/2 Date Boring Completed: 5/	t 2015 26/2015	Northing: 521233.96 Easting: 924924.72	Monitor Well Construction Details	Monitor Well Description			
		MATERIA	L DESCRIF	PTION					
5 10 15 20 25 30 35 40 45 50		CLAYEY SAND, brown well sorted, subrounder slightly moist, none HC SILTY SAND, with cali sorted, well rounded, v strong HCL reaction CLAYSTONE, reddish moist to dry, weak HCL	to reddish d, fine to me L reaction che, light broch ery fine to fing brown some reaction	brown, moderately edium grained, own to white, well ne grained, dry, e gray, slightly	_				
55 60 65 70 75 80									
85 90 95 100 105									
Drilling ( Drilling   Samplin Geologis	Contrac Method g Meth st: Stev No : 15	tor: HCI Drilling Air Rotary od: Cuttings en J. Wimmer -04-22	Groundw Date 5/26/15	ater Observations Depth to Water (ft) Dry	Remarks	: 5 1/8" diameter boring; TH60 Atlas Copco Drill Rig			
LOG O PAGE	F BOF 1 of 1	NNG NO. BH-01	The stratificat In situ, the tra	ion lines represent approxir ansition may be gradual.	nate strata I	^{poundaries.} ^I Water level at time of drilling. ^I Water level at end of drilling. ^I Water level after drilling.			

LOG OF BORING NO. BH-02									
Project Description	on: CK Disposal				<b>CAREL</b>				
Depth, feet Samples Symbol/USCS	ocation: Eunice, NM op of PVC EI.: feet MSL urface EI.: 3391.8 feet MS ompletion Depth: 175 feet ate Boring Started: 5/26/20 ate Boring Completed: 5/2	N E D15 6/2015	Northing: 521273.70 Easting: 928310.35	Monitor Well Construction Details	Monitor Well Description				
	MATERIAL		NOIT						
5 10 15 15	LAYEY SAND, brown ell sorted, subrounded ightly moist, none HCL ILTY SAND, with calic	to reddish I , fine to me <u>reaction</u> he, light bro	prown, moderately edium grained,	ſ					
20 25 30 30	trong HCL reaction	ry nne to ni	ie grained, dry,						
35 40 45 40 45	LAYSTONE, reddish t CL reaction, some pur	prown with g ple	gray, dry, weak						
55 60 65									
70 le le 75 l	ess gray and purple; sli	ghtly moist	to dry						
85 90 95 100									
105									
140									
155 160 165									
Drilling Contractor: HC	CI Drilling	Groundw	Depth to Water (#)	Remarks	: 5 1/8" diameter boring; TH60 Atlas Copco Drill Rig				
Sampling Method: Cut	ttings	5/26/15	Depth to Water (ft) Dry						
Geologist: Steven J. V	Vimmer		-						
5 Project No.: 15-04-22 LOG OF BORING I PAGE 1 of 1	NO. BH-02	The stratificati In situ, the tra	ion lines represent approxin nsition may be gradual.	nate strata b	oundaries.				

Project Description: CK Disposal       Control: Lenice, NM       Northing: SDR07.21       Imaging: SDR07.21	LOG OF BORING NO. BH-03							
Northing:     Statistics     Northing:     Statistics     Monitor Well Description       Northold     Service     Service     Service     Service     Service       Northold     Service     Service     Service     Service     Service       Service     Service     Servi	Project Description: CK Disposal							
MATERIAL DESCRIPTION         5       CLAYEY SAND, radiatio brown, moderately well         sorted, subbunded, fire to medium grained, slightly         75       SILTY SAND, with caliche, light brown to white, well         sorted, with caliche gravel up to 1* in diameter         CLAYEY TONE, roddish brown some gray, slightly         moist to dry, weak HCL reaction         335       Quartz and Caliche gravel up to 1* in diameter         CLAYSTONE, roddish brown some gray, slightly         moist to dry, weak HCL reaction         336       medium brown from 130' to 135'         765       medium brown from 130' to 135'         775       reddish brown to brown         110       medium brown from 130' to 135'         776       medium brown from 130' to 135'         777       reddish brown to brown         776       medium brown from 130' to 135'         777       medium brown from 130' to 135'         776       medium brown from 1	Depth, feet	teg teg teg teg teg teg teg teg			F SL 015 26/2015	Northing: 520437.21 Easting: 926605.28	Monitor Well Construction Details	Monitor Well Description
5       Output:       CLAYET SAND, redish brown, moderately well softwared, slightly moist, none HCL reaction         16       SILTY SAND, with calche, light brown to white, well software difference of the time grained, dry, strong HCL reaction         30       Subtry SAND, with calche, light brown to white, well software difference of the time grained, dry, strong HCL reaction         400       CLAYET CHARACTER Code of the time grained, dry, strong HCL reaction         400       CLAYET CHARACTER Code of the time grained, dry, strong HCL reaction         401       CLAYET CHARACTER Code of the time grained, dry, strong HCL reaction         403       CLAYET CHARACTER Code of the time  time to the time to the time of the time, time to the time to the time of the time, time to the time to the time of the time, time to the time to the time of the time, time to the time to the time of the time, time to the time to the time.         400       Fording Monto Cuttings       The transform to the time to the time of the time, time to the time to the time.         400       Fording Monto Cuttings       The transform to the time to the time to the time.       Year Level at time of the time.         400       Fording Monto Cuttings       The transform to the time to the time to the time.       Year Level at time of the time.         400       Fording Monto Cuttings       The transform to the time to the time tof the time.       Year Level at time of the time.				MATERIA	L DESCRIF	TION		
22       SLTY SAND, with calcide, light brown to while, well sorted, well rounded, very fine to fine grained, dry, strong HCL reaction         23          33          40          40          Cuartz and Caliche gravel up to 1" in diameter         CLAYSTONE, reddish forwn some gray, slightly         Classifier         CLAYSTONE, reddish forwn some gray, slightly         Classifier         Classifier         103         104         105         105         106         107         108         108         109         101         102         103         104         105         105         106         107         108         109         101         102         103         104         105         105         106         106         106         107         108         109         1010         1011	5 10 15			CLAYEY SAND, reddis sorted, subrounded, fin moist, none HCL reacti	h brown, m e to mediun on	oderately well n grained, slightly		
23       Ouartz and Caliche gravel up to 1" in diameter         CLAYSTONE, reddish brown some gray, slightly         26         26         27         28         29         20         29         20         21         22         23         24         25         26         27         28         29         29         21         22         23         24         25         26         27         28         29         29         20         20         210         22         23         24         25         26         26         27         28         29         29         20         20         20         20         21         22         23         24         25      <	20 25 30	l		SILTY SAND, with calic sorted, well rounded, ve strong HCL reaction	che, light bro ery fine to fi	own to white, well ne grained, dry,		
Topological       CLAYSTONE, reddish brown some gray, slightly         Model       moist to dry, weak HCL reaction         Model       moist to dry, weak HCL reaction         Model       medium brown from 130' to 135'         Ted       medium brown from 130' to 135'         Ted       reddish brown to brown         Model       medium brown from 130' to 135'         Ted       reddish brown to brown         Model       Formation         Model       Format	35		 	Quartz and Caliche gra	vel up to 1"	in diameter		
Fig       Image: Solution of the second	40 45 50			CLAYSTONE, reddish moist to dry, weak HCL	brown some reaction	e gray, slightly		
66 90 96 100 100 100 100 100 100 100 100 100 10	55 60							
Image: Second	65 70 75							
90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90 <td< td=""><td>80</td><td></td><td></td><td colspan="4"></td><td></td></td<>	80							
100       medium brown from 130' to 135'         111       115         122       reddish brown to brown         133       for an endium brown from 130' to 135'         reddish brown to brown       reddish brown to brown         105       for an endium brown from 130' to 135'         reddish brown to brown       Remarks: 5 1/8" diameter boring; TH60 Atlas Copco Drill Rig         Drilling Contractor: HCl Drilling       Date         Drilling Method: Air Rotary       Date         Samping Method: Cuttings       Date         Geologist: Steven J. Wimmer       Free         Project No: 15-04-22       Instatification lines represent approximate strata boundaries.         LOG OF BORING NO. BH-03       The stratification may be gradual.	90							
Image: Second	100	ľ						
110       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       1	110							
Project No.: 15-04-22       The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.	115							
135       reddish brown to brown         440       150         150       150         165       165         175       165         775       175         165       165         177       175         175       175         175       175         175       175         175       165         165       165         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         175       175         176       150         1	<u>2</u> 125 130	I		medium brown from 13	0' to 135'			
145       150         150       155         150       155         160       155         170       155         170       155         170       155         175       170         175       175         175       175         175       175         176       175         177       175         176       175         177       175         175       175         176       175         177       175         175       175         175       175         175       175         175       175         176       155         177       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15         175       1526/15	135			reddish brown to brown				
155       160       155       160       165       160       165       170       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       175       1	§ 145 2 150							
165       170       165       170       175         175       170       175       175       175         Drilling Contractor: HCI Drilling       Groundwater Observations       Remarks: 5 1/8" diameter boring; TH60 Atlas Copco Drill Rig         Drilling Method: Air Rotary       Date       Depth to Water (ft)       15/26/15         Sampling Method: Cuttings       5/26/15       Dry         Geologist: Steven J. Wimmer       100       100         Project No.: 15-04-22       100       100         LOG OF BORING NO. BH-03       The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Vater level at time of drilling.         Water level at end of drilling.       Water level at end of drilling.       Vater level at end of drilling.								
Image: State of 1       Im								
Drilling Contractor: HCI Drilling       Groundwater Observations         Drilling Method: Air Rotary       Date       Depth to Water (ft)         Sampling Method: Cuttings       5/26/15       Dry         Geologist: Steven J. Wimmer       5/26/15       Dry         Project No.: 15-04-22       The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Vater level at time of drilling.         Water level at end of drilling.       Water level at end of drilling.								
Sampling Method: Cuttings     5/26/15     Dry       Geologist: Steven J. Wimmer     5/26/15     Dry       Project No.: 15-04-22     Image: Steven J. Wimmer     Image: Steven J. Wimmer       LOG OF BORING NO. BH-03     The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.     Image: Steven J. Wimmer       PAGE 1 of 1     The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.     Image: Steven J. Wimmer		Con	tractor	: HCI Drilling r Rotary	Groundw	Depth to Water (ft)	Remarks	: 5 1/8" diameter boring; TH60 Atlas Copco Drill Rig
Geologist: Steven J. Wimmer Project No.: 15-04-22 LOG OF BORING NO. BH-03 PAGE 1 of 1	Samplir	ng N	lethod:	Cuttings	5/26/15	Dry		
Project No.: 15-04-22       Image: Constraint of the stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Image: Constraint of the stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Image: Constraint of the stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Image: Constraint of the stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. In situ, the transition may be gradual.       Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaries. Image: Constraint of the stratification lines represent approximate strata boundaris. Image: Constraint of the stratification lines repre	5 Geologist: Steven J. Wimmer							
	EProject LOG C PAGE	No.: DFE 1 o	<u>15-04</u> BORIN f 1	-22 IG NO. BH-03	The stratificat In situ, the tra	ion lines represent approxir insition may be gradual.	nate strata I	^{poundaries.} ∑Water level at time of drilling. ∑Water level at end of drilling.

LOG OF BORING NO. BH-04							
Project Description: CK Disposal							
teg     se     o     c     Location: Eunice, NM       teg     se     o     O     O       teg     d     o     O     O       teg     o     o     o     o	Norti East ISL et /2015 /26/2015	hing: 519600.94 ing: 924941.30	Monitor Well Construction Details	Monitor Well Description			
MATERI	AL DESCRIPTIO	ON					
5 CLAYEY SAND, redd sorted, subrounded, fi moist, none HCL reac	sh brown, mode ne to medium gi tion	erately well rained, slightly					
SILTY SAND, with cal sorted, well rounded, strong HCL reaction	iche, light browr /ery fine to fine (	n to white, well grained, dry,					
$\begin{bmatrix} 30 \\ 35 \\ 40 \\ 40 \end{bmatrix}$ intermixed reddish broken	wn claystone to	50'					
50 55 55 55 55 55	brown to purple	_					
60 65 70							
75 80 85							
dark brown to reddish	dark brown to reddish brown						
105							
145         1           155         1							
160 165 170							
	Groundwater	Groundwater Observations		E 1/0" diamates having TLICO Alles Osses Dell D'			
Drilling Method: Air Rotary	Date	Depth to Water (ft)	Remarks	. 5 176 diameter boring; I Hou Atlas Copco Drill Rig			
Sampling Method: Cuttings		,					
Geologist: Steven J. Wimmer							
LOG OF BORING NO. BH-04 PAGE 1 of 1	The stratification li In situ, the transition	ines represent approxir on may be gradual.	nate strata b	^{youndaries.} ^Ţ Water level at time of drilling. [¶] Water level at end of drilling. [¶] Water level at end of drilling.			

LO	LOG OF BORING NO. BH-05								
Proje	Project Description: CK Disposal								
Depth, feet	Samples	Symbol/USCS	Location: Eunice, NM Top of PVC EI.: feet MSL Surface EI.: 3386.1 feet MS Completion Depth: 175 feet Date Boring Started: 5/27/2 Date Boring Completed: 5/2	015 27/2015	Northing: 519636.20 Easting: 928326.86	Monitor Well Construction Details	Monitor Well Description		
5 10 15 20 25 30 35 40 45 50			MATERIA CLAYEY SAND, reddis sorted, subrounded, fin moist, none HCL reaction SILTY SAND, with calic sorted, well rounded, ve strong HCL reaction intermixed gravel to 45" CLAYSTONE, reddish weak HCL reaction	L DESCRIPTION sh brown, moderately well te to medium grained, slightly on che, light brown to white, well ery fine to fine grained, dry, brown, slightly moist to dry,					
55 60 65 70 75 80 85 90 95 100			medium brown, some s dark brown to reddish b	and					
			dark brown and purple	rown					
155 160 165 165 170 170 177 177			dark brown and purple reddish brown	Groundu	votor Obconvotions				
Drilling Drilling Sampli Geolog Project	Contractor. For Drilling     Drilling Method: Air Rotary     Sampling Method: Cuttings     Geologist: Steven J. Wimmer     Project No: 15-04-22				Depth to Water (ft)	Remarks	5 1/8" diameter boring; TH60 Atlas Copco Drill Rig		
LOG OF BORING NO. BH-05 PAGE 1 of 1 The stratification lines represent approximate strata boundaries. In situ, the transition may be gradual. ↓ Water level at time of drilling. ↓ Water level at time of drilling.							oundaries. ✓ Water level at time of drilling. ✓ Water level at end of drilling.		

[⊥] Water level after drilling.

# **Permit Application**

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment I Sampling and Analysis Plan

November 2015 PSC Project # 01058015



PARKHILLSMITH&COOPER

# ATTACHMENT I SAMPLING AND ANALYSIS PLAN (SAP)

# PROPOSED C.K. DISPOSAL E&P LANDFILL AND PROCESSING FACILITY

Eunice, New Mexico

Project No: 15-04-22

Prepared for:

# C.K. Disposal LLC

October 2015

Prepared by:





# CONTENTS

1.0	SAMPLING PROCEDURES						
	1.1	Monitoring Schedule	1				
	1.2	Field Setup	1				
	1.3	Field Measurements	1				
	1.4	Well Purging	2				
	1.5	Sample Collection	2				
	1.6	Sample Containers and Labeling	3				
	1.7	Sample Preservation and Shipment	3				
	1.8	Quality Assurance and Quality Control	3				
	1.9	Chain-of-Custody Documentation	4				
	1.10	Equipment Decontamination	5				
	1.11	Field Documentation	5				
2.0	VADOSE ZONE MONITORING REQUIREMENTS						
	2.1	Analyzed Constituents	6				
	2.2	Verification Resampling	6				
	2.3	Vadose Zone Monitoring Result Submittals	6				

# Tables

I.1 Vadose Zone Monitoring Constituents and the Recommended Sampling, Preparation, and Storage Procedures

# **1.0 SAMPLING PROCEDURES**

This Sampling and Analysis Plan (SAP) has been prepared for the C.K. Disposal E&P Landfill and Processing Facility.

The following sampling procedures are designed to aid in obtaining the earliest possible detection of a potential fluid release from the Landfill. Chemical analysis of water samples, if present, and comparison to leachate samples and/or samples from a leak detection system will be used to determine whether the water is a result of a release from the facility. The presence of water in the vadose zone monitoring wells may be the result of infiltration from other sources such as surface water during excavation, construction of the landfill cells, or from proximal stormwater detention ponds.

These or equivalent procedures are to be followed by all personnel conducting vadose zone monitoring.

# 1.1 MONITORING SCHEDULE

After construction begins, the monitoring wells will be monitored on a monthly basis for a period of 12 months. After 12 months, the monitoring frequency will reduce to semi-annual.

## 1.2 FIELD SETUP

The well-head area should be examined for anything unusual such as damage to the well head, spilled materials, etc., and all observations recorded on the field data sheet. Insect repellent or other topical skin applications that contain organic compounds should not be used by sampling personnel. Plastic sheeting should be placed around the well riser and sample handling area to prevent contact with the surrounding ground.

Sampling equipment should include a calibrated 5-gallon bucket for measuring bailed or purged well fluids and a small glass container for measuring temperature, specific conductance, and pH. A decontamination area should be set up and should include a water bucket, rinsing bucket, phosphate-free detergent, and additional rinsing bottles.

## 1.3 FIELD MEASUREMENTS

The monitoring wells will be sounded for the presence of water. All measurements should be taken from the top of the well casing and the measurement recorded on field data sheets. If the well is dry the well depth measurement should be recorded with the same electronic device and recorded on the field data sheet. The water-level measuring device should be decontaminated between wells. Water levels or well depths are to be measured and reported to the nearest hundredth of a foot.

#### 1.4 WELL PURGING

Three well volumes of water should be removed from each well in order to obtain a representative sample and not "stagnant" water from the borehole or filter pack. If all water is removed from the well before three well volumes are obtained, purging will be deemed to be complete. Well volumes can be measured with use of a calibrated 5-gallon bucket.

Non-dedicated, reusable purging and sampling equipment is to be decontaminated in accordance with Section 1.10. Appropriate disposable gloves are to be worn during purging and sampling to reduce the possibility of cross-contamination between wells.

## 1.5 SAMPLE COLLECTION

If the water-level measuring device indicates the presence of water within the well, samples will be collected using a dedicated or disposable sampling bailer. If there is a sufficient quantity of water to allow sample collection, the water will be tested for the field parameters (temperature, specific conductance, and pH) prior to sampling.

The following sampling procedures should be performed:

- The temperature, specific conductance, and pH of a sample collected in a container not used for laboratory analysis should be measured in that order and recorded on the field data sheet.
- The samples should be collected by pouring the water from the bailer directly into each of the required containers.
- Under normal conditions, the sample bottles must be filled in the order of decreasing volatilization sensitivity. Generally, that will be in the following order, as applicable:

Volatile organic compounds (VOC) RCRA Metals Other inorganic parameters

Filling VOC sample containers involves extra care. The water should be gently discharged into each vial, until a positive meniscus is formed over the top of the container. After the cap has been placed on the vial and tightened, the vial should be checked for air bubbles by turning it upside down and tapping with your finger. If an air bubble is seen rising to the bottom of the vial, the process outlined above should be repeated. Air bubbles can be eliminated by removing the cap, topping off the vial with water to a positive meniscus, and resealing. If no air bubbles are seen in each vial, the process is complete.

## 1.6 SAMPLE CONTAINERS AND LABELING

Water samples collected in the field are to be placed into laboratory-cleaned bottles of the appropriate size and construction for the chemical parameters to be analyzed. A list of chemical parameters and corresponding recommended types and sizes of sample containers are shown in Table I.1. Sample containers must be marked as described below.

Sample labels are to be affixed to each sample container and must contain the following information in waterproof ink:

- Project name and number (includes site name)
- Sample and well number
- Date and time of sample collection
- Type of preservatives added
- Special handling instructions

QA/QC samples, such as trip, field, and equipment blanks, will be labeled accordingly.

#### 1.7 SAMPLE PRESERVATION AND SHIPMENT

Groundwater samples should be chilled to about 4°C upon containment in the field and during transport to the testing laboratory. Many constituents to be analyzed require a chemical additive for preservation. Table I.1 shows preservation requirements for organic and inorganic chemical parameters. Groundwater samples collected for organic analysis should be placed in glass bottles that have been specially prepared with the appropriate type and quantity of chemical additive. Samples that are to be analyzed are not to be filtered.

Samples to be shipped are to be packed in a hard-sided insulated shipping container precooled with water ice. The sample containers must be packed to prevent breakage. The water/ice used to pre-cool the shipping container should be discarded and adequate chemical icepacks added to maintain the temperature at about 4°C during the shipment. Dry ice must not be used.

#### 1.8 QUALITY ASSURANCE AND QUALITY CONTROL

To document that sample collection and handling procedures utilized in the field have not affected the quality of the water samples, blanks are to be prepared and analyzed. These blanks consist of one trip blank and one field blank per sampling event.

A trip blank is prepared by filling a water sample container with Type II reagent-grade water, transporting to the site, handling as a sample, and transporting to the laboratory for

analysis. A field blank is prepared by filling a sample container with Type II reagentgrade water in the field adjacent to one of the wells being sampled and transporting to the laboratory for analysis. The field blank should be prepared at a downwind well. Field blanks and trip blanks are to be analyzed for VOCs only.

An equipment blank is required if dedicated pumps or disposable bailers are not used. Equipment blanks are used to confirm proper field decontamination procedures on nondedicated equipment utilized in the field. An equipment blank is prepared in the field immediately following decontamination cleaning procedures on non-dedicated equipment used for purging, sampling, or sample filtration. Field supply deionized water will be passed through the non-dedicated equipment in the same procedure as a water sample. Equipment blanks will be analyzed for VOCs. Equipment blanks shall be collected at a minimum frequency of one blank (1) per ten (10) wells at which non-dedicated purge or sampling equipment are utilized per monitoring event.

## 1.9 CHAIN-OF-CUSTODY DOCUMENTATION

A chain-of-custody (COC) form must be maintained in order to track possession and handling of samples from field collection through laboratory testing. COC records show the custody of samples at all times. Samples are in custody of an individual when they are either in the individual's sight or locked securely under the individual's control.

COC documentation is maintained on a chain-of-custody record form. Each sample must be logged onto the COC record form as it is collected. Information on the COC record form includes the following.

- Project name and number (includes site name)
- Site location
- Sample number
- Sample date and time
- Sample type
- Number and type of sample containers
- Analyses required
- Sample preservative
- Lab destination
- Carrier/shipping number
- Special instructions
- Spaces for signatures of sampler(s) and everyone assuming sample custody

The COC record must contain the signatures of anyone assuming custody of the samples. Each time custody changes hands, the party releasing the samples should sign under "Relinquished By" and record the date and time. The party receiving the samples should sign under the heading "Received By" and record the date and time. The COC form is typically provided by the analytical laboratory. If available or required, COC seals can be placed over the shipping container lid or sample container lids to deter sample tampering by unauthorized parties.

#### 1.10 EQUIPMENT DECONTAMINATION

Reusable purging and sampling equipment and measurement instruments coming in contact with the groundwater in wells or in samples are to be decontaminated before use at each well location.

The following decontamination standards or equivalent procedures are to be followed for non-dedicated well purging and sampling equipment. The equipment should be washed with a nonphosphate detergent and rinsed with tap water and Type II reagent-grade water. The sampling equipment should be thoroughly dried before use to ensure that residual cleaning agents are not carried over to the sample.

Disposable bailers and non-dedicated bailer line must be discarded along with disposable health and safety garments. Water and cleaning agents are to be disposed of in accordance with applicable regulations.

#### 1.11 FIELD DOCUMENTATION

Field activities must be thoroughly documented on field data sheets. Below is an outline of the information that should be documented during field activities.

- Project name and number
- Date and time of all activities
- Weather conditions
- Sampling personnel
- Field instrument calibration remarks
- Well identification number
- Description of well condition
- Depth to the well bottom with point of reference (from well records)
- Physical description of groundwater (color, odor, turbidity)
- Sampling equipment and remarks
- Initial temperature, conductivity, and pH measurements
- Sample time and date
- Description of sample
- Quality control remarks
# 2.0 VADOSE ZONE MONITORING REQUIREMENTS

# 2.1 ANALYZED CONSTITUENTS

The vadose zone monitoring constituents at the facility will be as specified in Table I.1 of this SAP.

## 2.2 VERIFICATION RESAMPLING

No later than 30 days after each sampling event, the owner or operator shall determine whether the initial field and laboratory data show evidence that the water encountered is the result of surface water infiltration; or potential impacts from the Landfill. If there is evidence of a potential release (i.e., BTEX or TPH detection), the owner or operator shall notify the Oil Conservation Division (OCD) and conduct a verification resampling event as soon as practical. During the initial monthly sampling, the verification resampling event can coincide with the subsequent monthly sampling event. At the time of verification sampling, fluid samples from the proximal upslope Landfill sump and leak detection system also will be collected and analyzed for the parameters in Table I.1.

In the event that one or more constituents are confirmed through verification resampling in any downgradient well, the Facility will submit an Action Plan to the OCD within approximately 90 days of the confirmation sampling date. The Action Plan will implement the course of action to further investigate the source of a potential release and/or complete any mitigation measures. The resampling and leachate analytical comparison results will also be included within the Action Plan.

# 2.3 VADOSE ZONE MONITORING RESULT SUBMITTALS

Two (2) copies of an annual vadose zone monitoring report describing sampling and analysis results will be completed and submitted to the OCD no later than ninety (90) days after the facility's last sampling event in a calendar year. The annual report will include information determined since the previously submitted annual report.

#### Table I.1

#### C.K. Disposal E&P Landfill and Processing Facility Vadose Zone Monitoring Constituents and the Recommended Sampling, Preparation, and Storage Procedures

Constituent	Sampling Container ⁽¹⁾	<b>Preservation</b> ⁽¹⁾					
	Field Parameters						
Temperature							
Specific Conductance	Measured	in the Field					
pН							
Vo	latile Organic Compounds	(VOC)					
BTEX	3x40 mL VOA Vials	HCL ⁽²⁾					
TPH							
	Inorganic Compounds						
TDS	250 mL Clear Plastic	None ⁽²⁾					
Major Cations							
Calcium							
Magnesium	250 mL Clear Plastic	Nitric Acid ⁽²⁾					
Sodium		(IINO3)					
Potassium							
	<b>Major Anions</b>						
Bicarbonate		N (2)					
Chloride	4 oz. Glass Jar	None					
Sulfate							
	<b>RCRA</b> Metals						
Arsenic							
Barium							
Cadmium							
Chromium	250 mL Clear Plastic	Nitric Acid ⁽²⁾					
Lead		$(\Pi NO_3)$					
Mercury							
Selenium							
Silver							

Notes: (1) – EPA Sample Container and Preservation List (http://www.epa.gov/region9/lab/container.html) (2) – Samples should be chilled to  $\sim 4^{\circ}C$ 

# **Permit Application**

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment J Drainage Study NMAC 19.15.36.13.C(1)&(2)



PARKHILLSMITH&COOPER

#### **ATTACHEMENT J - DRAINAGE STUDY**

1.0	INTF	RODUCTION	1
	1.1	Summary of Calculation Methods	1
	1.2	Existing Site Hydrology	3
	1.3	Post-Development Site Hydrology	4
	1.4	Existing/Post-Development Hydrology Comparison	6
	1.5	Hydraulic Structure Design	7
	1.6	Erosion Control	7
	1.7	Conclusions	8

#### **APPENDICES**

APPENDIX A - EXISTING DRAINAGE APPENDIX B - DEVELOPED DRAINAGE APPENDIX C - DEVELOPED HYDRAULIC STRUCTURES APPENDIX D - SELECTED PAGES – REFERENCE MATERIAL

#### FIGURES

Figure J.1	Existing Drainage Area
------------	------------------------

- Figure J.2 Existing Drainage Schematic
- Figure J.3 Soils Map
- Figure J.4 Developed Drainage Areas
- Figure J.5 Developed Drainage Schematic
- Figure J.6 Developed Drainage Structure Plan
- Figure J.7 Final Cover Drainage Structure Plan
- Figure J.8 Detention Pond Details
- Figure J.9 Nearest Ephemeral Water

#### TABLES

- Table J.125-Yr. Hydrology: Existing
- Table J.225-Yr. Hydrology: Proposed

# **1.0 INTRODUCTION**

This drainage study is prepared as part of the permit for the C.K. Facility in Lea County, New Mexico. All drainage analysis and design is in accordance with NMAC 19.15.36.

Existing and proposed hydrologic and hydraulic conditions of the site are detailed herein, as well as hydraulic structures design, erosion stability and the management of storm water run-on and run-off from the C. K. Facility site in the event of a 25-year, 24-hour storm event. All hydrologic computations were performed using United States Army Corps HEC-HMS software and SCS unit hydrograph hydrology. Selected appendices are provided following this report with detailed model input and output documents, as well as details for proposed hydraulic structures.

#### **1.1 Summary of Calculation Methods**

#### A. Rational Method Hydrology

Peak flow rates for top-of-waste perimeter channels and let-down channels were calculated using rational method hydrology:

$$Q_{25} = CI_{25}A$$

Where:

- $Q_{25} = Design storm peak flow rate (cfs)$
- $I_{25} = Design storm rainfall intensity$

$$I_{25} = \frac{P_{25}}{t_c}$$

- A = Drainage Area (acres)
- $P_{25} = Total percipitation in a 25 year, 24 hour storm (inches)$

### B. SCS Unit Hydrograph Hydrology

Peak flow rates for all drainage areas were calculated using SCS Unit Hydrograph analysis in HEC-HMS. Maximum volume of runoff for all drainage areas was also calculated using the SCS Unit Hydrograph method in HEC-HMS:

#### Type – II SCS Storm

25 - yr, 24 - hr Storm Event = 4.8 - inCurve numbers (CN): Weighted by area, considering soil type & land use Initial Abstraction (I_a) = 0.2S  $S = \frac{1000 - 10CN}{CN}$ 

#### C. Time of Concentration

Time of concentration for all watershed analyses, existing and proposed, was calculated using the Natural Resource Conservation Service (NRCS) Time of Concentration method as outlined in SCS Module 206-A hydraulic design manual:

$$t_c = t_{sh} + t_{sc} + t_{ch}$$

Where:

$$t_{sh} = \frac{0.007(n_{ol}L_{sh})^{0.8}}{(P_2)^{0.5}S_{sh}^{0.4}}$$

- $t_{sh} = sheet flow travel time (hr)$
- $n_{ol} = overland flow roughness coefficient$
- $L_{sh} = sheet flow length (ft)$
- $P_2 = 2$  year, 24 hr rainfall depth (in)
- $S_{sh} = sheet flow slope (ftft)$

$$t_{sc} = \frac{L_{sc}}{3600KS_{sc}^{0.5}}$$

- $t_{sc} = shallow concentrated flow travel time (hr)$
- $L_{sc} = shallow concentrated flow length (ft)$
- $S_{sc} = shallow concentrated flow slope (ftft)$
- K = 16.13 for unpaved surface, 2.32 for paved surface

$$t_{ch} = \frac{L_{ch}}{3600 \frac{1.49}{n} R^{2/3} S_{ch}^{0.5}}$$

- $t_{ch} = channel flow travel time (hr)$
- $L_{ch} = channel flow length (ft)$
- $S_{ch} = channel flow slope ({^{ft}}/_{ft})$
- *n* = *Manning's* roughness coefficient

#### D. Culvert & Channel Hydraulics

All hydraulic calculations for flow capacity and flow velocity were computed using the Manning's Equation solution algorithm in Bentley FlowMaster computer software:

$$Q=\frac{1.49}{n}AR^{2/3}\sqrt{S}$$

Where:

- Q = Design flow rate
- n = Manning's Roughness Coefficient
- A = Flow area
- *R* = *Channel/culvert* wetted perimeter
- S = Bed Slope

#### **1.2 Existing Site Hydrology**

#### A. Existing Conditions

The permitted landfill site encompasses 316.97-acres, and is located within an approximate 4,784-acre drainage area. The property is on the south side of New Mexico State Highway 234, approximately 0.65-mile west of the New Mexico-Texas Border, east of Eunice, NM. Prevailing grade across is the site is to the southwest at 0.005-ft/ft with natural grass and mesquite trees serving as the main vegetative cover. The majority of the existing drainage area is undeveloped rural acreage, with some industrial impact in the upper half of the drainage area.

The landfill site lies on a ridge between two (2) sub-drainage areas, both of which drain to an unnamed draw (the Draw) approximately 2.0-mile southwest of the waste footprint. The Draw is not a design consideration for fully-developed landfill hydrology. A proximity to ephemeral water map can be seen in Figure J.9 in Appendix A. Also in Appendix A is a letter of certification from Lea County Floodplain Administrator, Cassie Corley, CFM, stating the permitted landfill is not in a regulated Special Flood Hazard Area (SFHA).

For the purpose of this report, the two (2) existing sub-drainage areas are referred to as DA-01 and DA-02. The two (2) existing drainage areas can be seen in Figure J.1 in Appendix A. A previously constructed berm (by others) immediately north of the C.K. Facility north property line prevents any off-site drainage from entering the permitted landfill facilities. This berm represents the upstream limits of DA-01 and is shown in Figure G-003.

As can be seen in the Figure J.3 (soil map), the majority of the soils in the drainage areas are hydrologic drainage Class B soils. Undeveloped areas of natural grass and mesquite were modeled as 'fair brush' and assigned Natural Resource Conservation Service (NRCS) curve numbers found in SCS Technical Report 55. Industrial areas were also assigned NRCS curve numbers based on an average impervious area of 72%. Asphalt

and caliche-paved roads were modeled as impervious areas and assigned a curve number of 98. A soil detail page and weighted curve number analysis can be seen in Appendix A.

#### **B. Existing Drainage Calculations**

Existing drainage for the site was analyzed in two (2) separate sub-drainage areas. As can be seen in Figure J.1, each drainage area discharges into the Draw southwest of the permitted landfill site through sheet flow or shallow concentrated flow. No flow is transferred from one drainage area to another, and there are no point discharges from these drainage areas into the Draw.

Because there are no discernable gullies in either DA-01 or DA-02, time of concentration for each existing drainage area was calculated with no consideration for channelized flow. Time of concentration and a weighted NRCS curve number were input into HEC-HMS along with total drainage area acreage. For this analysis, an initial abstraction ratio of 0.2S was applied to both drainage areas. No curve number reduction factor was applied.

An existing hydrologic conditions summary table is shown below, with detailed calculations and model input outlined in Appendix A.

DA	Acres	T _c (min)	CN	Peak Flow (cfs)	Average Velocity (ft/s)	Volume (Ac-ft)
1	1117.40	181	54.69	209.30	1.97	484.6
2	3662.80	392	64.71	728.50	2.70	89.8

Table J.1 – 25-YEAR HYDROLOGY: EXISTING

### 1.3 Post-Development Site Hydrology

#### A. Developed Conditions

Once the landfill is fully developed, the waste footprint will cover 141.78-acres of the 316.97-acre property. This waste footprint will have a maximum height above adjacent grade of 143-foot, with sideslopes at 4H:1V.

Construction of the C.K. Facility will alter existing drainage patterns across the site. Once fully developed, drainage from the two (2) existing drainage areas will be divided into ten (10) drainage areas. These drainage areas will contribute to the areas of existing DA-01 and DA-02 which are not disturbed by landfill construction.

The undisturbed areas of existing DA-01 and DA-02 are modeled as proposed areas DA-09 and DA-10. Developed drainage areas DA-01 through DA-08 discharge into DA-09 and DA-10 via drainage structures, which are discussed in §1.4 of this report. The referenced drainage structures ensure that discharge into developed areas DA-09 and DA-10 does not exceed existing volume or flow-rates generated in a 25-year, 24-hour storm event. Fully developed drainage areas can be seen on Figure J.4 in Appendix B.

The final landfill cover is comprised of 3-foot of soil covered with native grasses and vegetation. As such, the final landfill top slope and perimeter slopes were modeled as

meadow, and assigned NRCS curve numbers assuming a hydrologic drainage Class B soil.

Areas within the property limits but not impacted by landfill construction were modified from a 'brush' cover description to a 'meadow' cover description. This modification of curve numbers is based on the assumption that these areas will be mowed periodically, causing natural grass cover to increase.

An area of 28.89-acres was removed from the developed drainage calculations. This area will contain twelve (12) evaporation ponds and will not discharge any surface drainage into the developed drainage structures. The evaporation ponds are each 9.73-ac/ft in size, and have 3.5-foot of freeboard. This results in a surplus storage of 75.40-ac/ft which will fully contain all surface drainage from roads within this 28.89-acre area.

#### **B. Developed Drainage Calculations**

Peak flow and total volume of runoff for developed condition hydrology were calculated with SCS unit hydrograph methodology using HEC-HMS software. A 25-year, 24-hour storm event was analyzed which is a total  $P_{25} = 4.88$ -inches. An initial abstraction value of 0.2S was applied to all developed drainage areas, with no curve number reduction factor.

Time of concentration was calculated for each drainage area using NRCS time of concentration formulas outlined in SCS module 206-A. Travel times were analyzed for sheet flow, shallow concentrated flow, and channelized flow. A detailed time of concentration calculation sheet can be found in Appendix B.

Comparison points CP-A and CP-B can be seen on Figure J.4. These are locations where developed drainage areas discharge into areas not impacted by construction. Downstream of CP-A and CP-B developed hydrology discharges into the Draw in the same manner of sheet flow and shallow concentrated flow as existing hydrology. A full comparison of existing vs. developed hydrology is discussed in §1.3 of this report.

Below is a fully-developed hydrology summary table with detailed calculations and model input outlined in Appendix B.

#### Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

	Table J.2 – 25- I EAK H I DROLOGY: PROPOSED						
DA	Acres	T _c (min)	CN	Peak Flow (cfs)	Average Velocity (ft/s)	Volume (Ac-ft)	
1	35.80	15	57.85	50.50	3.0	4.3	Run-off
2	30.90	24	58.53	31.20	2.3	3.2	Run-off
3	23.70	33	58.91	21.50	1.1	2.6	Run-off
4	23.19	43	73.78	47.30	1.1	6.3	Run-off
5	44.50	9	58.90	66.20	3.0	4.6	Run-off
6	43.75	9	59.69	71.10	3.0	5	Run-off
7	44.70	9	59.70	73.40	3.7	5.1	Run-off
8	45.30	10	60.10	75.50	3.0	5.2	Run-off
9	834.30	146	53.24	165.30	2.0	63	Run-off
10	3662.80	395	64.89	733.00	2.7	488.4	Run-on

VEAD INVDDALAGY DDADAGED

*Minimum time of concentration used for hydrologic calculation is 10-min.

#### 1.4 Existing/Post-Development Hydrology Comparison

Existing hydrology produces a total of 574.4-ac/ft. of runoff at a maximum flow rate of 728.5-cfs. There is no concentrated discharge point from any existing drainage area. All flow discharged into the Draw is discharged as sheet flow or shallow concentrated flow. Fully developed drainage will produce a total of 587.7-ac/ft. of discharge into the Draw at a maximum flow rate of 733-cfs.

99.3-ac/ft. of discharge from developed hydrology will be run-off drainage from the C.K. Facility. This will occur initially as sheet flow and shallow concentrated flow and will be intercepted by drainage channels. The flow will then be concentrated in one of two (2) detention ponds which will be constructed on the property. These detention ponds will overflow into drainage areas downstream of the landfill which are not impacted by construction. The two (2) detention pond overflow areas are identified as CP-A and CP-B in the developed hydrology map seen on Figure J.4. Overflow weir construction at these detention ponds ensures that discharge in a 25-year, 24-hour storm event will not exceed flow rates experienced by the downstream watersheds under existing hydrologic conditions.

448-ac/ft of developed hydrology discharge into the Draw will occur as run-on drainage. All run-on drainage will occur as sheet flow and shallow concentrated flow from upstream reaches of existing drainage areas that will not be impacted by construction. Most of the drainage experienced in DA-10 will pass by the landfill without impacting developed hydrology. Any sheet flow or shallow concentrated flow that does impact the landfill will be routed through Detention Pond 1 before it reaches the active working face.

Any precipitation that falls directly onto the active working face will be treated as contaminated surface water and transmitted to the leachate evaporation pond via the leachate collection system. The evaporation pond will store leachate and allow it to naturally evaporate. If the pond nears the high water volume, it will be drained and transported to the onsite liquid waste evaporate ponds as outlined in Section III.4 of this Permit.

#### 1.5 Hydraulic Structure Design

All hydraulic structures are shown on Figures J.6 and J.7 in Appendix C.

#### A. Channel Design

The three (3) trapezoidal open channels planned for the fully-developed C.K. Facility were designed using the Manning's Formula Friction Solution in the Bentley FlowMaster program. For a given channel, the maximum flow rate calculated using the NRCS unit hydrograph method during developed hydrology calculations was applied to a proposed cross section. Manning's friction coefficient, channel slope, and proposed geometry are input parameters for Bentley FlowMaster, which yields a normal depth and velocity for the proposed geometry based on input parameters. A 6-in freeboard has been applied to every channel depth above the normal depth calculations yielded by Bentley FlowMaster. A Manning's n value of 0.05 was applied to each channel to accurately model re-vegetation of channels with natural grasses following construction.

#### **B.** Culvert Design

All culverts were designed similarly using the Manning's formula friction solution in Bentley FlowMaster. A Manning's n value of .015 was applied to each culvert and as peak flow from the upstream channel. All culverts will be constructed of reinforced concrete pipe, reinforced concrete box, or corrugated metal pipe.

#### C. Weir Design

The broad-crested weirs drainage which serves as overflow crests from the site detention basins into the downstream drainage areas, were also designed using Bentley FlowMaster. Because both weirs will discharge sheet flow into their respective downstream drainage, areas over a crest of 1-foot, no tailwater effects were considered in the broad-crested weir design. Both weirs will have a gravel crest with a minimum crest width of 6-inches.

#### D. Hydraulic Structure Maintenance

All hydraulic structures should be inspected weekly, and within 48-hrs of any precipitation event. Inspection should ensure that all channels, culverts, and inlet structures are free from obstruction and sediment buildup. Any necessary maintenance identified by an inspection should be initiated within one (1) calendar week of identification.

#### **1.6 Erosion Control**

Erosion control will be managed during construction by employing best management practices. An intermediate cover of 6-inches. natural soil will be applied to any exposed working face at the end of each working day.

As each new cell is opened, the perimeter road and perimeter drainage channel will be constructed past the most upstream and downstream extents of new construction to ensure than any run-off drainage will be intercepted and re-routed away from the working face.

As final cover is established, perimeter channels constructed of articulated concrete block mattress will be installed at the top of slope. These channels will minimize sheet flow down the final perimeter slopes, which will have a final 25% grade, by intercepting sheet flow from the top slope and transferring it to one (1) of four (4) let-down channels. These channels will be constructed of articulated concrete block mattress and will transfer storm water runoff from the final cap to the perimeter drainage channel at the toe of slope.

By intercepting sheet flow from the top slope, the maximum sheet flow velocity across the final top slope in a 25-yr, 24-hr storm is 1.61-fps. The corresponding maximum velocity of sheet flow down the perimeter slopes 1.34-fps. Example velocity calculations for final cover slopes can be seen in Appendix C.

Final cover drainage structures are detailed in Figure J.7.

#### 1.7 Conclusions

In conclusion, existing drainage patterns are not adversely affected by development of the C.K. Facility. A 25-yr, 24-hr storm event will be managed by hydraulic structures on the permitted site, which will ensure developed discharge rates into downstream drainage areas are not increased. A 100-yr, 24-hr storm can also be passed through the developed hydraulic structures.

# APPENDIX A

# **EXISTING DRAINAGE**

Existing Drainage Area 1				
Acres	Percent of Total Area	Description	CN	
947.8	84.8%	brush - fair 'B'	56	
134.0	12.0%	brush - fair 'A'	35	
4.4	0.4%	Industrial 'B'	88	
25.0	2.2%	Pavement	98	
6.2	0.6%	Industrial – 'A'	81	
1117.4	100.0%	Weighted Cumulative	54.69	

# Existing Drainage Curve Number Analysis

Existing Drainage Area 2				
Acres	Percent of Total Area	Description	CN	
2408.5	65.8%	brush - fair 'B'	56	
385.7	10.5%	brush – 'D'	77	
116.2	3.2%	Brush - Fair 'A'	35	
18.4	0.5%	Industrial – 'A'	81	
380.3	10.4%	Industrial 'D'	93	
39.4	1.1%	Pavement	98	
314.3	8.6%	Industrial – 'B'	88	
3662.8	100.0%	Weighted Cumulative	64.71	

Existing	Drainage	Time of	Concentration	Analysis

	Existing Area 1				
<b>DA-1</b>	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.005	0.11	7	
t _{sc}	11912	0.005	2.90	174	
t _{ch}	-	-	-	-	
			Cumulative T _c	181	

Existing Area 2				
DA-2	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)
t _{sh}	300	0.1	0.03	2
t _{sc}	26671	0.005	6.50	390
t _{ch}			-	-
			Cumulative T _c	392





# MAP REFERE

United States Geologic North American Datum of 1 World Geodetic System of 1 1 000-meter grid: Universal 10 000-foot ticks: Texas Co central zone), New Mexico zone)

North American Vertic Eunice NE, TX-NM 2012



N N 500' 1000'	PSC PSC WITH & COOPER
	£
	C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY
NDFILL PROPERTY/PERMIT BOUNDARY	NMED PERMIT NO.
ISTING DRAINAGE AREA	NEW LANDFILL SITE
HEMERAL STREAM	& PROCESSING FACILITY
AINAGE AREA LABEL	LEA COUNTY, NEW MEXICO
NCE	KEY PLAN
ical Survey 1983 (NAD83) 1984 (WG584). Projection and al Transverse Mercator, Zone 135 oordinate System of 1983 (north o Coordinate System of 1983 (east cal Datum of 1998	
20683 PA	1 09/23/15 ISSUE FOR REVIEW NO DATE DESCRIPTION ISSUING OFFICE: EL PASO PROJECT NO: 0580.15
BOTTOS IONAL ENGINE	EXISTING DRAINAGE AREAS
11/6/2015	FIG.J.1
	· · · · · · · · · · · · · · · · · · ·





# C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO. ____

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN

ISSUE FOR REV	IEW
DESCRIPTION	
E: EL PASO	PROJECT NO: 0580.15
	SSUE FOR REV DESCRIPTION E: EL PASO



FIG.J.2

#### DRAINAGE AREA #

DETENTION POND

OUTLET

JUNCTION

REACH

CONNECTION









# C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN

-					
_		4			
_	7				
_	-				
_					
1	09/23/15	ISSUE FOR REVIEW			
NO	DATE	DESCRIPTION			
ISSUING OFFICE: EL PASO PROJECT NO: 0580.15					





Soils Classification Chart				
Map Symbol	Soil Name	Hydraulic Rating		
BcB	Blakeney and Conger soils	D		
FdB	Faskin and Douro soils	В		
ImB	Ima loamy fine sand	А		
JPC	Jalmar-Penwell association	В		
KmB	Kimbrough soils	D		
RaB	Ratliff soils	В		
TwB	Triomas and Wickett Soils	В		
AB	Amarillo-Arvana loamy fine sands assoc.	В		
BE	Berino-Cacique loamy fine sands assoc.	В		
BF	Berino-Cacique fine sandy loams assoc.	В		
BO	Brownfiend-Springer Assoc.	В		
BS	Brownfield-Springer assoc. hummocky	В		
CLP	Caliche pit	D		
GF	Gomez fine sand	А		
GM	Gomez loamy fine sand	А		
KmB	Kermit soils and dune sand	А		
MN	Ratliff-Wink fine sandy loams	В		
MU	Mixed alluvial land	А		
PG	Portales and fomez fine sandy loams	В		
PU	Pyote and maljamar fine sands	А		
SA	Sharvana loamy fine sand	D		
SE	Simona fine sandy loam	D		
SR	Simona Upton assco.	D		
TB	Tivoli-Brownfield fine sands	А		
TF	Tonuco loamy fine sand	D		
WK	Wink loamy fine sand	А		

EXIST.basin Basin: EXIST Last Modified Date: 17 September 2015 Last Modified Time: 18:50:07 Version: 3.5 Filepath Separator: \ Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No Enable Sediment Routing: No Enable Quality Routing: No End: Subbasin: DA-01 Canvas X: -2360.197368421053 Canvas Y: 2302.6315789473683 Area: 1.7 Downstream: NO NAME DRAW Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 2.2 Curve Number: 54.69 Transform: SCS Lag: 108.4 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: DA-02 Canvas X: 74.01315789473665 Canvas Y: 740.1315789473683 From Canvas X: 2434.2105263157896 From Canvas Y: -1562.5 Area: 5.72 Downstream: NO NAME DRAW Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 1.1 Curve Number: 64.71 Transform: SCS Lag: 235.0 Unitgraph Type: STANDARD Baseflow: None End: Sink: NO NAME DRAW Canvas X: -3511.513157894737 Canvas Y: -1940.7894736842109

Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Maximum View N: 5000.0 Maximum View S: -5000.0 Maximum View S: -5000.0 Maximum View E: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Gridlines: No Draw Flow Direction: No Fix Element Locations: No Fix Hydrologic Order: No

#### End:

# **APPENDIX B**

# **DEVELOPED DRAINAGE**

# Developed Drainage Curve Number Analysis

Developed Drainage Area 1			
Acres	Percent of Total Area	Description	CN
3.2	8.9%	Pavement	98
2.3	6.4%	Meadow - Good 'A'	30
30.3	84.6%	Meadow - Good 'B'	58
35.8	100.0%	Weighted Cumulative	57.85

Developed Drainage Area 2			
Acres	Percent of Total Area	Description	CN
29.3	94.8%	Meadow - Good 'B'	58
0.7	2.3%	Meadow - Good 'A'	30
0.9	2.9%	Pavement	98
30.9	100.0%	Weighted Cumulative	58.53

Developed Drainage Area 3			
Acres	Percent of Total Area	Description	CN
21.8	92.0%	Meadow- Good 'B'	58
0.8	3.4%	Meadow- Good 'A'	30
1.1	4.6%	Pavement	98
23.7	100.0%	Weighted Cumulative	58.91

Devleoped Drainage Area 4				
Acres	Percent of Total Area	Description	CN	
9.15	39.5%	Pavement	98	
14.0	60.5%	Meadow- Good 'B'	58	
23.2	100.0%	Weighted Cumulative	73.78	

Developed Drainage Area 5				
Acres	Percent of Total Area	Description	CN	
1.0	2.2%	Pavement	98	
43.5	97.8%	Meadow - Good 'B'	58	
44.5	100.0%	Weighted Cumulative	58.90	

Developed Drainage Area 6				
	Percent of			
Acres	Total Area	Description	CN	
41.9	95.8%	Meadow – Good 'B'	58	
1.9	4.2%	Pavement	98	
43.8	100.0%	Weighted Cumulative	59.69	

Developed Drainage Area 7				
	Percent of			
Acres	Total Area	Description	CN	
42.8	95.7%	Meadow - Good 'B'	58	
1.9	4.3%	Pavement	98	
44.7	100.0%	Weighted Cumulative	59.70	

Developed Drainage Area 8				
	Percent of			
Acres	Total Area	Description	CN	
43.7	97.8%	Meadow - Good 'B'	58	
1.6	3.6%	Pavement	98	
45.3	100.0%	Weighted Cumulative	60.21	

Developed Drainage Area 9				
Acres	Percent of Total Area	Description	CN	
712.3	85.4%	Brush - Good 'B'	58	
103.5	12.4%	Brush - Good 'A'	30	
18.5	2.2%	Pavement	98	
834.3	100.0%	Weighted Cumulative	53.24	

Developed Drainage Area 10			
Acres	Percent of Total Area	Description	CN
2408.5	65.8%	Brush - Fair 'B'	56
385.7	10.5%	Brush – 'D'	77
104.9	2.9%	Brush - Fair 'A'	35
18.4	0.5%	Industrial – 'A'	81
391.6	10.7%	Industrial 'D'	93
39.4	1.1%	Pavement	98
314.3	8.6%	Industrial – 'B'	88
3662.8	100.0%	Weighted Cumulative	64.89

	Developed Drainage Area 1					
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)		
t _{sh}	300	0.005	0.11	7		
t _{sc}	0	0.005	0.00	0		
t _{ch}	2492	0.005	0.14	9		
			Cumulative T _c	15		

# **Developed Drainage Time of Concentration Analysis**

	Developed Drainage Area 2					
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)		
t _{sh}	300	0.005	0.11	7		
t _{sc}	619	0.005	0.15	9		
t _{ch}	2277	0.005	0.13	8		
			Cumulative T _c	24		

	Developed Drainage Area 3				
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.005	0.11	7	
t _{sc}	1799	0.005	0.44	26	
t _{ch}	-	-	-	_	
			Cumulative T _c	33	

	Developed Drainage Area 4				
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.005	0.11	7	
t _{sc}	2479	0.005	0.60	36	
t _{ch}	0	-	-	_	
			Cumulative T _c	43	

	Developed Drainage Area 5					
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)		
t _{sh}	300	0.03	0.05	3		
t _{sc}	1336	0.050	0.10	6		
t _{ch}	30	0.250	0.00	0		
			Cumulative T _c	9		

			Cumulative I _c	9		
	Developed Drainage Area 6					
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)		
t _{sh}	300	0.030	0.05	3		
t _{sc}	1355	0.050	0.10	6		
t _{ch}	30	0.250	0.00	0		
			Cumulative T _c	9		

	Developed Drainage Area 7				
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.030	0.05	3	
t _{sc}	1707	0.050	0.10	6	
t _{ch}	30	0.250	0.00	_	
			Cumulative T _c	9	

	D	<b>Developed Drain</b>	age Area 8	
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)
t _{sh}	300	0.03	0.05	3
t _{sc}	1566	0.05	0.12	7
t _{ch}	30	0.250	0.00	-
			Cumulative T _c	10

	Developed Drainage Area 9				
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.005	0.11	7	
t _{sc}	9520	0.005	2.32	139	
t _{ch}	-	-	-	-	
			Cumulative T _c	146	

	Developed Drainage Area 10				
	Linear Feet	Slope (ft/ft)	T _c (Hr)	T _c (min)	
t _{sh}	300	0.01	0.08	5	
t _{sc}	26671	0.005	6.50	390	
t _{ch}	-	-	-	-	
			Cumulative T _c	395	





#### MAP REFERENCE AREA LABEL

United States Geological Survey North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid: Universal Transverse Mercator, Zone 13S 10 000-foot ticks: Texas Coordinate System of 1983 (north central zone), New Mexico Coordinate System of 1983 (east zone) North American Vertical Datum of 1998

Eunice NE, TX-NM 2012







#### LANDFILL PROPERTY/PERMIT BOUNDARY

PROPOSED DRAINAGE AREA

EPHEMERAL STREAM

# C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN

_				
_				
_				
-				
_				
1	09/23/15	ISSUE FOR REV	/IEW	
NO	DATE	DESCRIPTION		
ISS	ISSUING OFFICE: EL PASO PROJECT NO: 0580.15			



FIG.J.4





THIS DOCUMENT IS RELEASED ON SEPT. 23, 2015 FOR THE PURPOSE OF INTERIM REVIEW UNDER THE AUTHORITY OF NICHOLS N. YBARRA, P.E. NEW MEXICO LICENSE 20683. IT IS NOT TO BE USED FOR REGULATORY APPROVAL, CONSTRUCTION, BIDDING OR PERMIT PURPOSES. PARKHILL, SMITH & COOPER, INC.

# C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN

_				
_				
_				
_				
1	09/23/15	ISSUE FOR REV	/IEW	
NO DATE DESCRIPTION				
ISS	ISSUING OFFICE: EL PASO PROJECT NO: 0580.15			



# FIG.J.5

Top Slope									
P _d	0.7	in		Longest Run	1700	ft			
t _c	10	min		Unit Flow Width	1	ft			
Ι	5.9	in/hr		Area	0.039	ac			
С	0.5			Slope	0.036	ft/ft			
Manning's n	0.03			Q (flow)	0.115	cfs			
				y (depth)	0.071	ft			
				Velocity	1.614	fps			

#### Velocity for Final Cover Top Slope and Perimeter Slope

Perimeter Slope								
P _d	0.7	in		Longest Run	250	ft		
t _c	10	min		Unit Flow Width	1	ft		
Ι	5.9	in/hr		Area	0.006	ac		
С	0.5			Slope	0.250	ft/ft		
Manning's n	0.03			Q (flow)	0.017	cfs		
				y (depth)	0.013	ft		
				Velocity	1.344	fps		

DEVELOPED.basin Basin: DEVELOPED Last Modified Date: 17 September 2015 Last Modified Time: 18:43:09 Version: 3.5 Filepath Separator: \ Unit System: English Missing Flow To Zero: No Enable Flow Ratio: No Allow Blending: No Compute Local Flow At Junctions: No Enable Sediment Routing: No Enable Quality Routing: No End: Subbasin: Subbasin-1 Canvas X: 5738.461538461539 Canvas Y: 3692.3076923076924 Area: 0.056 Downstream: Junction-8 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 8.9 Curve Number: 57.85 Transform: SCS Lag: 9.15 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-2 Canvas X: 5507.6923076923085 Canvas Y: 2507.6923076923076 Area: 0.048 Downstream: Reach-7 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 2.9 Curve Number: 58.53 Transform: SCS Lag: 14.1 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-3 Canvas X: 6533.333333333334 Canvas Y: 1628.5714285714284 Area: 0.037 Downstream: Detention 2

Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 4.6 Curve Number: 58.91 Transform: SCS Lag: 19.7 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-4 Canvas X: 4430.577223088923 Canvas Y: -257.4102964118565 Area: 0.036 Downstream: Junction-4 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 39.5 Curve Number: 73.78 Transform: SCS Lag: 25.7 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-5 Canvas X: 764.8026315789475 Canvas Y: -312.5 Area: 0.070 Downstream: Junction-5 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 2.2 Curve Number: 58.9 Transform: SCS Lag: 6 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-6 Canvas X: -1932.5657894736842 Canvas Y: -394.73684210526335 Area: 0.068 Downstream: Detention-1

Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 4.2 Curve Number: 59.69 Transform: SCS Lag: 6 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-7 Canvas X: -2090.4836193447736 Canvas Y: 3143.5257410296413 Area: 0.070 Downstream: Junction-7 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 4.3 Curve Number: 59.7 Transform: SCS Lag: 6 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-10 Canvas X: 6190.476190476191 Canvas Y: -1704.7619047619046 Area: 5.72 Downstream: Junction-10 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 1.1 Curve Number: 64.89 Transform: SCS Lag: 236 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-8 Canvas X: 1446.1538461538457 Canvas Y: 3430.7692307692305 Label X: 6.0 Label Y: -16.0

DEVELOPED.basin Area: 0.071 Downstream: Junction-1 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 3.6 Curve Number: 60.21 Transform: SCS Lag: 6 Unitgraph Type: STANDARD Baseflow: None End: Subbasin: Subbasin-9 Canvas X: -5366.614664586583 Canvas Y: -1318.252730109204 Area: 1.30 Downstream: Junction-9 Canopy: None Surface: None LossRate: SCS Percent Impervious Area: 2.2 Curve Number: 53.24 Transform: SCS Lag: 87.4 Unitgraph Type: STANDARD Baseflow: None End: Reservoir: Detention-1 Canvas X: -3037.735849056604 Canvas Y: -1358.4905660377362 Rating Table Name: Detention 1 Downstream: Junction-9 Route: Modified Puls Routing Curve: Elevation-Area-Outflow Initial Outflow Equals Inflow: Yes Elevation-Area Table: Detention 1 Elevation-Outflow Table: Detention 1 Primary Table: Elevation-Outflow End: Reservoir: Detention 2 Canvas X: 6533.333333333334 Canvas Y: 142.85714285714312 Rating Table Name: Detention 2 Downstream: Junction-10 Route: Modified Puls Routing Curve: Elevation-Area-Outflow Initial Outflow Equals Inflow: Yes Elevation-Area Table: Detention 2 Page 4
DEVELOPED.basin Elevation-Outflow Table: Detention 2 Primary Table: Elevation-Outflow End: Reach: Reach-1 Canvas X: 3775.3510140405615 Canvas Y: 2503.90015600624 From Canvas X: 3712.9485179407166 From Canvas Y: 3346.3338533541346 Label X: -67.0 Label Y: 4.0 Downstream: Junction-8 Route: Kinematic Wave Channel: Kinematic Wave Length: 850 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.05 Number of Increments: 2 Width: 5 Side Slope: 4 Invert Elevation: 3392.5 Channel Loss: None End: Junction: Junction-1 Canvas X: 3712.9485179407166 Canvas Y: 3346.3338533541346 Label X: -13.0 Label Y: 34.0 Downstream: Reach-1 End: Reach: Reach-2 Canvas X: 3744.14976599064 Canvas Y: 1583.4633385335414 From Canvas X: 3775.3510140405615 From Canvas Y: 2503.90015600624 Label X: -74.0 Label Y: 3.0 Downstream: Junction-2 Route: Kinematic Wave Channel: Kinematic Wave Length: 700 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.05 Number of Increments: 2 Width: 5 Side Slope: 4 Invert Elevation: 3383.36 Channel Loss: None End: Junction: Junction-2 Canvas X: 3744.14976599064 Canvas Y: 1583.4633385335414 Downstream: Reach-3 End: Reach: Reach-3

DEVELOPED.basin Canvas X: 3619.344773790952 Canvas Y: -928.2371294851791 From Canvas X: 3744.14976599064 From Canvas Y: 1583.4633385335414 Label X: -71.0 Label Y: 8.0 Downstream: Junction-4 Route: Kinematic Wave Channel: Kinematic Wave Length: 900 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.05 Number of Increments: 2 Width: 5 Side Slope: 4 Invert Elevation: 3379.86 Channel Loss: None End: Reach: Reach-4 Canvas X: 1372.8549141965677 Canvas Y: -1443.0577223088922 From Canvas X: 3619.344773790952 From Canvas Y: -928.2371294851791 Label X: -37.0 Label Y: 15.0 Downstream: Junction-5 Route: Kinematic Wave Channel: Kinematic Wave Length: 100 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.05 Number of Increments: 2 Width: 6 Side Slope: 4 Invert Elevation: 3375.36 Channel Loss: None End: Junction: Junction-4 Canvas X: 3619.344773790952 Canvas Y: -928.2371294851791 Downstream: Reach-4 End: Reach: Reach-5 Canvas X: -3037.735849056604 Canvas Y: -1358.4905660377362 From Canvas X: 1372.8549141965677 From Canvas Y: -1443.0577223088922 Label X: -11.0 Label Y: 14.0 Downstream: Detention-1 Route: Kinematic Wave Channel: Kinematic Wave Length: 1500 Energy Slope: 0.005 Shape: Trapezoid

DEVELOPED.basin Mannings n: 0.05 Number of Increments: 2 Width: 6 Side Slope: 4 Invert Elevation: 3379.86 Channel Loss: None End: Junction: Junction-5 Canvas X: 1372.8549141965677 Canvas Y: -1443.0577223088922 Downstream: Reach-5 End: Reach: Reach-7 Canvas X: 3744.14976599064 Canvas Y: 1583.4633385335414 From Canvas X: 5400.0 From Canvas Y: 2446.153846153846 Downstream: Junction-2 Route: Kinematic Wave Channel: Kinematic Wave Length: 1900 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.015 Number of Increments: 2 Width: 5 Side Slope: 4 Invert Elevation: 3389.36 Channel Loss: None End: Junction: Junction-7 Canvas X: -3088.9235569422776 Canvas Y: 2488.2995319812794 Downstream: Reach-8 End: Reach: Reach-8 Canvas X: -3037.735849056604 Canvas Y: -1358.4905660377362 From Canvas X: -3088.9235569422776 From Canvas Y: 2488.2995319812794 Downstream: Detention-1 Route: Kinematic Wave Channel: Kinematic Wave Length: 100 Energy Slope: 0.005 Shape: Trapezoid Mannings n: 0.05 Number of Increments: 2 width: 5 Side Slope: 4 Invert Elevation: 13 Channel Loss: None End: Junction: Junction-8 Canvas X: 3775.3510140405615 Canvas Y: 2503.90015600624

Label X: -94.0 Label Y: 4.0 Downstream: Reach-2 End: Junction: Junction-9 Canvas X: -3853.3541341653663 Canvas Y: -2862.714508580343 Downstream: No-Name Draw End: Junction: Junction-10 Canvas X: 5070.202808112324 Canvas Y: -2472.698907956318 Downstream: No-Name Draw End: Sink: No-Name Draw Canvas X: 842.4336973478939 Canvas Y: -4485.179407176287 End: Basin Schematic Properties: Last View N: 5000.0 Last View S: -5000.0 Last View W: -5000.0 Last View E: 5000.0 Maximum View N: 5000.0 Maximum View S: -5000.0 Maximum View W: -5000.0 Maximum View E: 5000.0 Extent Method: Elements Buffer: 0 Draw Icons: Yes Draw Icon Labels: Yes Draw Map Objects: No Draw Gridlines: No Draw Flow Direction: No Fix Element Locations: No Fix Hydrologic Order: No End:

## **APPENDIX C**

### **DEVELOPED HYDRAULIC STRUCTURES**



Ë NAGE DR/



## C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN

_				
_				
_				
_				
1	09/23/15	ISSUE FOR REV	IEW	
NO	DATE	DESCRIPTION		
ISS	ISSUING OFFICE: EL PASO PROJECT NO: 0580.15			



FIG.J.6





POND Ċ



## C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO

KEY PLAN



FIG.J.8

**DETENTION POND** 

& DETAILS

## **APPENDIX D**

### SELECTED PGS. – REFERENCE MATERIAL



## LEA COUNTY FLOODPLAIN MANAGEMENT

Lorenzo Velasquez CFM Director Cassie Corley CFM Coordinator 1923 N. Dal Paso Suite A Hobbs, NM 88240 Phone (575) 391-2983 Phone (575) 391-2976 Fax (575) 397-7413 <u>lvelasquez@leacounty.net</u> ccorley@leacounty.net

#### **FLOODPLAIN DETERMINATION**

Date: August 7, 2015

	Owner/Agent: Parkhill Smith & Cooper	Phone: 806-473-3675
--	--------------------------------------	---------------------

Property Address: 286 Andrews Hwy, Eunice, NM 88231

Mailing Address: 4222 85th Street, Lubbock, TX 79423

**NON-SFHA** 

**J** PROPERTY IN SFHA

PROPERTY	PARTIAL S	FHA AREA-S	STRUCTURE	NON SFHA
----------	-----------	------------	-----------	----------

ZONE: D BFE: N/A

FIRM PANEL: 1700D DATED: 12/16/08

COMMUNITY NFIP NUMBER: 35025

🗖 SITE BUILT	<b>MOBILE HOME</b>	COMMERCIAL	RESIDENTIAL	🗖 MOD
<b>ADDITION</b>	INSURANCE	<b>ADDRESSING</b>	BANK	OWNER

REAL ESTATE

#### COMMENTS: NOT APPROVED TO BUILD UNTIL BUILDING APPLICATION IS SUBMITTED.

## ZONE D IS NOT DEFINED AS BEING IN THE SPECIAL FLOOD HAZARD AREA. HOWEVER, THE PROPERTY MAY STILL BE SUBJECT TO LOCAL FLOODING OR OTHER UNMAPPED FLOOD HAZARDS.

NOTE: This information is based on the FIRM for this community. This letter does not imply that the referenced property will or will not be free from flooding or damage. A property not in a Special Flood Hazard Area may be damaged by a flood greater than that predicted on the FIRM. This letter does not create liability on the part of the City, or any officer or employee thereof, for any damage that results from reliance on this information.

County Floodplain Manager alle Color CFM Date 8.7.15
------------------------------------------------------





# **Permit Application**

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment K Site Operation Plan NMAC 19.15.36

November 2015 PSC Project # 01058015



PARKHILLSMITH&COOPER

#### ATTACHMENT K - SITE OPERATION PLAN

1.0	INTRODUCTION1		
2.0	PERS	SONNEL, TRAINING, AND SITE EQUIPMENT	2
	2.1	Personnel	2
	2.2	Training and Experience	2
	2.3	Equipment	3
3.0	GEN	ERAL FACILITY INFORMATION AND OPERATIONAL REQUIREMENTS	4
	3.1	Access Control	4
	3.2	Site Security	4
	3.3	Site Signs and Traffic	4
	3.4	Noise Control	4
	3.5	Odor Control	4
	3.6	Dust Control	5
	3.7	Minor Spills/Releases	5
4.0	C.K.	FACILITY OPERATIONS	6
	4.1	Landfill Phasing Plan	6
	4.2	Waste Characteristics	7
	4.3	Waste Acceptance	7
	4.4	Prohibited Waste	8
	4.5	Waste Capacity and Site Life	8
	4.6	Gas Safety	8
	4.7	Leachate Monitoring	9
	4.8	Operating Hours	10
5.0	LIQU	JIDS PROCESSING	11
6.0	WAT	TER TREATMENT AND REUSE	12
	6.1	Stripping Tower	12
	6.2	Greensand Filters	12
	6.3	Reverse Osmosis	12
7.0	INSP	PECTION AND MAINTENANCE	14
	7.1	Evaporative Spray System	15
	7.2	Landfill	15
	7.3	General Facility Operation	15
	7.4	Liquid Processing Area	15
	7.5	Pond Operations	16
APPE	NDIC	ES	

APPENDIX A – H₂S MANAGEMENT PLAN APPENDIX B – CONTINGENCY PLAN APPENDIX C – OCD FORMS APPENDIX D – EVAPORATION CALCULATIONS

#### TABLES

Table K.1 – Necessary Site Personnel Table K.2 – Landfill Facility Equipment List Table K.3 – Estimated Site Life

Table K.4 – Facility Inspections

## **1.0 INTRODUCTION**

This Site Operating Plan (SOP) has been prepared for the proposed facility consistent with NMAC 19.15.36 and includes provisions for site management and site operating personnel to meet the general and site-specific requirements consistent with NMAC 19.15.36. The SOP will remain onsite throughout the active life of the facility and throughout the post-closure care maintenance period.

## 2.0 PERSONNEL, TRAINING, AND SITE EQUIPMENT

#### 2.1 Personnel

The proposed site will maintain qualified personnel with experience in waste disposal operations and earthmoving construction projects. Personnel will undergo training in  $H_2S$  and the contingency plan before beginning work. The following list is the expected site personnel and rank onsite. Table K.1 shows the number of employees needed for each site.

- 1. <u>General Manager</u> Responsible for assuring adequate personnel and equipment are available to guarantee facility operations in accordance with the SOP. The landfill general manager is responsible for general facility management and designated as the contact person for regulatory compliance. The manager will have at least three (3) years of supervisory experience in landfill operations. The landfill general manager will obtain and maintain all applicable operator license.
- 2. <u>Operations Manager</u> Under direction of landfill general manager and responsible for daily operations and emergency coordination. The landfill operations manager is responsible for coordinating with equipment operators regarding a waste disposal operation including active workface, excavation operations, and placement of intermediate cover. The landfill operations manager will obtain and maintain all applicable operator licenses.
- 3. <u>Equipment Supervisor</u> Responsible for safe operation of site and operating facility equipment in a manner that achieves compliance with the SOP. The equipment supervisor must be on alert for any potentially dangerous conditions and careless or improper actions on the part of landfill patrons and visitors while on the premises. This employee will report any such observations directly to the landfill operations manager.
- 4. <u>Laborer</u> Directs vehicles to the proper unloading area at the working face, observes unloading, looks for prohibited wastes, and directs vehicles as they maneuver near the active area. The landfill operations manager may assign additional responsibilities to employee(s) as necessary.
- 5. <u>Other Supplemental Personnel</u> Onsite as necessary for duties such as cell construction, operation and maintenance of the leachate management system, groundwater monitoring, landfill gas monitoring, site maintenance, and litter cleanup.

Position	Number of Employees		
General Manager	1		
<b>Operations Manager</b>	1-2		
Equipment Supervisor	4-6		
Laborer	2-4		

 Table K.1 – NECESSARY SITE PERSONNEL

#### 2.2 Training and Experience

All personnel will be familiar with the SOP and other permit documents. Annual training events will be conducted for facility personnel, which must include permit conditions,

emergencies, proper sampling methods, general operations, and identification of exempt and non-exempt waste and hazardous waste.

#### 2.3 Equipment

Equipment requirements will vary in accordance with the method and scope of activities onsite at a given time. Additional or different units of equipment may be provided as necessary to enhance operational efficiency. Table K.2 lists the types and sizes of equipment provided at the facility.

Equipment Type	Function
Rubber-Tire Loader Used for earthmoving activities and landfill unit construction, deliv application of cover material, excavation of soil, and movement of	
Compactor Used for the compaction and movement of waste, application of daily and other workface related activities.	
Dozer	Used to move waste and soil short distances, rework sideslope erosion rills, limited waste compaction, and daily cover operations.
Scrapers	Used to excavate future landfill units and daily cover material, transport material from longer distances, apply daily or intermediate cover
Water Truck	Used for dust control and firefighting support.
Motor Grader	Assists in roadway construction, maintenance, grading, and drainage improvements.

#### Table K.2 - LANDFILL FACILITY EQUIPMENT LIST

In addition to the list in Table K.2, miscellaneous pickups, vans, and other light utility vehicles as well as various pumps, instruments, and safety and training equipment will be onsite as necessary for facility operations. As operations evolve or because of significant volume increases of waste stream, an increase in the number of equipment or additional unspecified equipment may be required to meet the needs of the facility operations.

## 3.0 GENERAL FACILITY INFORMATION AND OPERATIONAL REQUIREMENTS

#### 3.1 Access Control

Public access to the landfill is controlled by a perimeter fence located along the facility boundary. Access to the landfill is limited to the entrance road from Andrews Highway. All access must enter the site through one (1) of the scalehouse areas.

#### 3.2 Site Security

Site security measures are designed to prevent unauthorized persons from entering the site, protect the facility and equipment from possible damage caused by trespassers, and prevent disruption of facility operations caused by unauthorized site entry. The perimeter fence, consisting of barbed wire, chain link, woven wire, pipe fencing or other suitable materials located along the facility boundary and entrance gate, will control unauthorized entry to the site. A gate constructed of suitable fencing materials will be located on the entrance road, remaining locked when the landfill is not accepting waste.

Site personnel will monitor the entrance during waste acceptance hours but outside of operating hours, the gate will be locked. Entry to the active portion of the site will be restricted to designated personnel, approved waste haulers, and properly identified persons whose entry is authorized by a site representative. Visitors may be allowed on the active area only when accompanied by a site representative.

#### 3.3 Site Signs and Traffic

Once authorized vehicles are onsite, signage will be placed to efficiently direct the vehicles. Waste-hauling vehicles will be directed to the active fill area by the use of these signs. Private, commercial, or public solid waste vehicles are not allowed to access any other areas of the landfill. Roads not used for access to disposal areas will be blocked or marked for no entry. Once vehicles have unloaded the waste, they must depart the site. Site personnel will provide traffic directions if necessary to facilitate safe movement of vehicles.

#### 3.4 Noise Control

Sounding land around the C.K. Facility is used for gas exploration, cattle grazing, industrial, or landfill activities. Noise nuisance will not be a concern for nearby residences or businesses. Due to high volume of gas, oil, industrial, and landfill activities, the proposed site will not greatly increase noise nuisance in the area.

#### 3.5 Odor Control

Potential odor sources associated with the C.K. Facility include the wastes being delivered to the landfill, the open working face, ponded water, and landfill gas. Methods used to control odors include waste management procedures, the placement of cover materials, control of ponded water, leachate, and landfill gas control. H₂S gas is known for a foul odor which can be dangerous at high concentration levels. Loads with high levels of H₂S gas will be treated with calcium hypochlorite to lower H₂S concentrations. The surrounding land is used for gas,

oil, industrial, and landfill activities so the proposed site will not greatly increase an odor nuisance in the area.  $H_2S$  management plan is included in Appendix A.

#### 3.6 Dust Control

Dust control will be maintained using at least one (1) water wagon. This truck will be used as needed to prevent excess dust release from C.K. Facility. A speed limit throughout C.K. Facility will be posted as 15-mph.

#### 3.7 Minor Spills/Releases

Spills at the C.K. Facility will most commonly involve fuel or other vehicular fluids. C.K. Facility will be equipped with necessary equipment to control and clean fuel, E&P wastes, and other fluid spills. All spills will be controlled, cleaned, and documented immediately.

## 4.0 C.K. FACILITY OPERATIONS

#### 4.1 Landfill Phasing Plan

C.K. Facility will develop the landfill units in accordance with Attachment B – Engineered Design Plans. The liquid processing area phasing of the C.K. Facility will consist of four (4) phases: Initial Landfill-Produced Water Processing Operation, Jet Out Pit Operation, Expanded Produced Water Processing Operations, and Ultimate Produced Water Processing Facility.

#### A. Phase I - Initial Landfill-Produced Water Processing Operation

- Initial landfill cell (23.6-acres).
- Four (4) produced water load-out points.
- Tank farm berm (complete).
- Boiler (75HP) running a heat transfer fluid tank farm.
- Four (4) produced water receiving tanks 1,000-barrel capacities each.
- Sixteen (16) settling tanks with 1,000-barrel capacities each.
- One (1) crude oil recovery tank with 1,000-barrel capacity.
- One (1) oil sale tank with 1,000-barrel capacity.
- The mechanical oil/water separation unit.
- Four (4) ponds capable of evaporating 3,000-barrels of liquid per day.

Six (6) barrels per day is the anticipated oil recovery output from Phase I. The oil will be pumped to the heated crude oil recovery tank for further processing and separated before pumped to the oil sales tank.

#### B. Phase 2 - Jet Out Pit Operation

- Six (6) jet out pits for handling basic sediment and water, tank bottoms, oily drilling muds, and tank wash outs.
- One (1) additional crude oil recovery tank with a 1,000-barrel capacity.
- Installation of the 5-acre stabilization and solidification area.

The oil recovered from the jet out pit will be pumped to a heated crude oil recovery tank installed in the tank farm for processing. Oil recovered from the produced water tanks will also be pumped to this tank. Water recovered from the pit will be pumped to the produced water tanks. Sediments from the pit will be bucket-loaded out of the pit and transferred to the stabilization and solidification area for processing prior to being taken to the landfill.

#### C. Phase 3 - Expanded Produced Water Processing Operation

- Four (4) produced water load-out points.
- Four (4) additional produced water receiving tanks with 1,000-barrel capacities each.
- Sixteen (16) additional settling tanks with 1,000-barrel capacities each.
- Three (3) additional crude oil recovery tanks with 1,000-barrel capacities each.

- Two (2) additional oil sales tanks with 1,000-barrel capacities each.
- Two (2) additional mechanical/oil water separation units.
- Four (4) additional ponds capable of evaporating 5,000-barrels of liquid per day.

Six (6) barrels per day is the anticipated oil recovery from the expanded produced water processing operation process. This will be pumped to the crude oil recovery tanks for further processing.

#### D. Phase 4 - Ultimate Produced Water Processing Facility

- Four (4) additional produced water receiving tanks with 1,000-barrel capacities each.
- Sixteen (16) additional settling tanks with 1,000-barrel capacities each.
- One (1) additional oil sales tank with 1,000-barrel capacity.
- One (1) additional mechanical/oil water separation unit.
- Four (4) additional ponds capable of evaporating 4,000-barrels of fluid per day.
- The additional oil recovered from the ultimate produced water processing facility will be pumped to the crude oil recovery tank for further processing.

The totals are eight (8) produced water load out points, sixteen (16) produced water receiving tanks, one (1) boiler, forty-eight (48) settling tanks, five (5) crude oil recovery tanks, four (4) oil sales tanks, four (4) mechanical oil/water separation units, twelve (12) evaporation ponds, six (6) jet out pits and one (1) solidification and stabilization area. Water treatment and reuse facility and saltwater disposal well may be added as necessary during any phase. The addition of these services will be dependent on market conditions and the actual amount of liquid waste being disposed.

The phase development may change based on the needs of the facility. The site development sequence is also subject to change and may be updated to reflect market conditions.

#### 4.2 Waste Characteristics

Oil and gas exploration and production operation exempt oilfield waste will be accepted at the C.K. Facility. Neither hazardous nor non-exempt oilfield waste will not be accepted for processing or disposal. OCD Form C138 - Request for Approval to Accept Solid Waste will be required before any waste is accepted by the C.K. Facility. Wastes failing the paint filter test will be accepted in the liquids processing area on the site. The following are anticipated types of accepted waste:

- Contaminated soil.
- Drilling mud.
- Stabilized tank bottoms.
- Other oilfield activity waste.

#### 4.3 Waste Acceptance

C.K. Facility requires a certification on form C138, signed by the generator or authorized agent, that represents and warrants the oilfield wastes are generated from oil and gas

exploration and production operations, are exempt waste and not mixed with non-exempt waste. The operator shall have the option to accept such certifications on a monthly, weekly or per-load basis. The operator shall maintain and make the certificates available for the division inspection. C.K. Facility requires the oilfield waste document, form C138, signed by the generator or authorized agent. This form shall be accompanied by acceptable documentation to determine the oilfield waste is non-hazardous. C.K. Facility requirements may accept non-hazardous, non-oilfield wastes in an emergency if ordered by the Department of Public Safety (DPS). C.K. Facility requires generators to complete form C138 describing the waste, accompanied by the DPS order. C.K. Facility will maintain records reflecting the generator, the location of origin, the location of disposal within the commercial facility, the volume and type of oilfield waste, the date of disposal, and the hauling company for each load or category of oilfield waste accepted at the commercial facility. C.K. Facility will maintain records for a period of not less than five (5) years after the commercial facility closure, subject to division inspection. Disposal at C.K. Facility shall occur only when an attendant is on duty unless loads can be monitored or otherwise isolated for inspection before disposal. C.K. Facility will be secured to prevent unauthorized disposal.

#### 4.4 **Prohibited Waste**

Only exempt oilfield waste as stated in NMAC 19.15.36.13.F will be accepted at the C.K. Facility. The following wastes are prohibited at the site:

- Regulated non-exempt hazardous waste.
- Non-exempt Naturally Occurring Radioactive Materials (NORM) waste. •

Any haulers or generators of the previously mentioned prohibited wastes will be referred to a U.S. EPA RCRA permitted facility.

#### 4.5 Waste Capacity and Site Life

C.K. Facility has an approximate gross airspace of 24,585,056-cubic yards. A contingency of 15% was applied to the total airspace to account for daily and intermediate cover loss, variation in waste density, and other operational losses that may occur during the life of the facility. Approximately 20,897,298-cubic yards of waste capacity remains after the 15% contingency loss. An estimate of 500-cubic yards/day was used for an initial projected incoming waste volume. Table K.3 illustrates the estimated site life per 365-days/year:

Table K.3 – ESTIMATED SITE LIFE			
500 cubic yards per day	115 years		
1,000 cubic yards per day	57 years		
1,500 cubic yards per day	38 years		

## 

#### 4.6 Gas Safety

Typical landfill gas expected at municipal solid waste landfills is not normally produced in oilfield waste. C.K. Facility will not have dedicated gas-monitoring wells. Vadose zone monitoring will be conducted in accordance with Attachment H - Vadose Monitoring Plan. Methane and H₂S are both known to produce particular smells. If these are suspected to be in the proposed vadose zone monitoring wells, they will be tested for gas and appropriate measures will be taken.

#### 4.7 Leachate Monitoring

Appendix B will describe the anticipated amount of leachate generated using weather data from Roswell, New Mexico. This was the closest available data for the site and is in a slightly wetter climate which will show a worse case scenario than to be expected per year.

Leachate piping system is at least 6-inches in diameter and sloped at a minimum of 2% to promote positive drainage to each unit sumps. Each unit will be constructed with perforated leachate pipes, textile enclosing the pipe to minimize fines intruding in the pipe. Leak detection layer will be constructed between two (2) HDPE liners monitored in the monthly inspection.

In accordance with NMAC 19.15.36.14.F, liners and leachate collection systems will be designed to ensure performance of the system does not allow for a leachate head accumulation to exceed 12-inches. Attachment E - HELP Model, has demonstrated the head on the proposed liner does not exceed 12-inches. Leachate levels on the floor will be pumped routinely and maintained so the liner head stays below the regulatory threshold. Leachate generation is projected to ultimately approach zero. Due to waste passing the paint filter test before disposal at the solid waste landfill, the leachate will be generated by rainfall. With the dry climate and high evaporation rates of the region, the leachate generation will be zero after the first lift of waste is placed on the liner system. The evaporation rate in the site region and field capacity of the waste offsets the volume of rainfall expected for the site. Leachate will continue to be monitored through the life and post-closure care of the facility to ensure the liner head does not exceed 12-inches.

Leachate sumps will be pumped with portable submersible pumps, vacuum trucks, or other approved equivalent device. Remote level sensors can be equipped to the dedicated submersible pumps for constant monitoring of leachate levels. At a minimum, leachate sumps will be monitored each month and extracted quarterly as protective measures to keep head less than 12-inches on liner.

Leachate will be disposed of in the produced water receiving tanks and processed through the evaporative pond process. If excess leachate is encountered and cannot be disposed of, C.K. Facility will seek alternative OCD-approved facilities for disposal. After closure of the C.K. Facility and following approval by the OCD, the leachate will be transported to the most effective treatment or disposal technology.

Leak detection monitoring of the units and evaporation ponds will be inspected monthly. Any liquids in the leak detection layer will be removed and treated or disposed as leachate. Based on "Leakage through Liners Constructed with Geomembranes, Part 1 – Geomembrane Liners" by J. P. Giroud and R. Bonaparte, the projected leakage rate for HDPE liner at the C.K. Facility will be roughly 10- to 140-gal/acre/day. The average of the projected leakage (75-gal/acre/day) will be anticipated for the site. If excess liquid is found in leak detectors, the OCD will be notified within 24-hours and the facility will start corrective measures including but not limited to:

- Increase liquid level monitoring and frequency of sumps and leak detection layer.
- Testing liquid collected in sump and leak detection layer to isolate a problem.

If excess liquids are found in the evaporative pond leak detection layer, the pond will be drained and site personnel will take action to find the source of the leak. Liquid testing of the liquids in the leak detection layer will be submitted to the OCD. If the source of the leak is found, repairs will be made by qualified liner installers. After repairs are made, monitoring of the leak detection layer will be completed bi-monthly until verified the leak is properly repaired.

### 4.8 Operating Hours

The C.K. Facility will accept waste 24-hours/day for 7-days/week. Signage will specify operating hours for the site. The site will operate under all weather conditions and the active working face may be relocated during inclement weather to allow for easier access for waste haulers. C.K. Facility may reduce operating hours based on reduction of waste stream. OCD will be notified if operating hours change.

## 5.0 LIQUIDS PROCESSING

The estimated acceptance rate expected at the C.K. Facility is 9,000-barrels/day. As market conditions and technology changes, the site anticipates the liquid waste acceptance rate to vary. C.K. Facility has been designed to process roughly 12,000-barrels/day. Liquids processing rate will rely on evaporation rates for the region. If evaporation ponds are near capacity, the C.K. Facility will stop collecting liquid waste until evaporation of produced water is reduced for extra capacity. The C.K. Facility shall also treat water for reuse in frack operations.

Produced water will be received in the produced water load-out stations. The produced water will then be transferred to the heated tanks to separate oil, water, and sediments. The separated oil will be transferred to the oil recovery tanks prior to storage in oil sales tanks. Sediments will be transferred to the solidification area until the paint filter test is passed. Once the paint filter test is passed, it can be placed in the solid waste disposal workface area. Water from the site will either be transferred to the evaporation ponds or to the water treatment and reuse area.

## 6.0 WATER TREATMENT AND REUSE

An alternative to the evaporation of produced water is treatment and reuse of the water. After solids and oil separation activities, water will be diverted to a treatment plant. The end goal of treatment is water that can be sold for use in the oil and gas industry. The plant is expected to receive a peak flow of 12,000-barrels of water a day. Following treatment, 7,140-barrels of water are expected to be available for sale. The following are key constituents of concern for the water treatment facility: Volatiles remaining after oil-water separation, solids, iron and manganese, biological including algae, total dissolved solid, and chlorides. These constituents are known to adversely affect oil and gas operations and the minimization is paramount to the ability to sell the produced water. The proposed plant would utilize a 3-stage treatment process including a stripping tower, greensand filters, and reverse osmosis. As incoming and produced water quality information becomes more readily available, treatment units may adjust to fit the particular application requirements. Treated water will be stored in tanks and sold via a water loadout station.

#### 6.1 Stripping Tower

Volatiles and dissolved gasses can be problematic in other treatment activities as well as oil and gas use. The treatment goal of the stripping tower is to minimize these harmful constituents in effluent water. The stripping tower would be 7-feet in diameter and of packed tower design. The water would enter the tower pressurized to be misted through nozzles at the top of the vessel. The water would then be deposited on packing material to allow maximum contact with the ambient air. Treated water would collect at the bottom of the stripper before continuing on to further treatment. Air would be pulled from the bottom of the stripper, through the packed media bed, and out the top of the stripper. At this time, expected air would simply be off-gassed to the ambient atmosphere. Further air treatment could be incorporated as necessary. Periodic cleansing of the stripping tower would be necessary to maintain an efficient level of treatment. Cleansing water would be deposited in the evaporation ponds onsite. After moving through the stripping tower, water would continue on to filtration.

#### 6.2 Greensand Filters

Filtration of the water is an essential pre-treatment step for further treatment and minimization of solids. Water is expected to be free of readily settle-able solid material but fine solids may still persist. Greensand filtration is known to reduce suspended solids and other metal constituents. Iron and manganese can create other treatment issues as well as corrosion in oil and gas use. Greensand filtration is expected to significantly reduce iron and manganese in the water. Four (4) greensand filters with 8-feet diameters, requiring periodic backwashing, are proposed to treat the water. The system will be designed to operate with one (1) filter out of service for backwashing at a time. Backwash flow will be directed to the evaporation ponds for final disposal. After filtration, the water will be sent to the reverse osmosis (RO) units.

#### 6.3 Reverse Osmosis

High chlorides and dissolved solids are expected in the feedwater. These constituents present corrosion and material degradation issues when used in oil and gas work. The control of

these constituents to acceptable levels will be required. RO can significantly reduce dissolved solids by utilizing spiral wound membranes and pressure. Pre-treatment with anti-scalant is required to maintain proper pressure on the membranes. The membranes will be cleaned with a clean, in-place system periodically. Expected recovery on the RO system is 60%. The concentrated water will be deposited in the onsite evaporation ponds. Post-treatment from the RO will be a biocide to reduce any biological growth in post-treatment storage tanks.

BS&W wastes will be separated after discharged in the jet out pit. Solids will settle over time and liquids will be removed and processed. Solids will be transferred to the stabilization and solidification area before ultimately being landfilled.

Drilling mud will be deposited in the stabilization and solidification area and combined with dry soil as needed to accelerate the solidification process. As all other waste in the stabilization and solidification area, the waste must pass the paint filter test before transported to be landfilled.

## 7.0 INSPECTION AND MAINTENANCE

C.K. Facility staff will conduct inspections of onsite facilities in accordance with Table K.4. If repairs are needed, they will be conducted as soon as is safe to proceed with repairs.

Component	Frequency	Recording Form
Evaporation Spray System Weather Station Plume Height Overspray	Daily	Facility Inspection Form
Landfill Disposal Operations and Location Free Liquids Stormwater Controls Litter, Vectors, Odors Daily Cover	Daily	Facility Inspection Form
Overall Facility Operation Signs Security (fencing/gates) Stormwater Control Systems (run-on/run-off) Access Roads OCD Permit Compliance Construction Activity	Weekly	Facility Inspection Form
Treatment Plant, Tanks, and Sumps Containment Berm Tank Condition Tank Leak Test (annual) Signage Pipe and Valve Condition Sump Condition	Weekly	Facility Inspection Form
Tank Farm and Pump System (Process Area)Containment and LinerTank ConditionTank Leak Test (annual)SignagePipe and Valve ConditionSump Condition	Weekly	Facility Inspection Form

Table K 4 -	FACILITY	<b>VINSPECTIONS</b>
I able K.4 -	<b>FAULLI</b>	

Component	Frequency	<b>Recording Form</b>	
Pit and Pond Operation			
Depth of Liquids in Sumps	Wookhy	Pond Integrity/Leak Detection Inspection Form	
Pond Levees	WEEKIY		
Piping Condition and Status			
Solid Waste Disposal Landfill	Monthly	Equility Inspection Form	
Leachate Collection Sump	Wollding	Facility inspection Form	
<b>Pond Containment System</b>	Quarterly	Pond Integrity/Leak Detection Inspection Form	
Rainfall			
Wind Speed/Direction			
Damage Assessment			
Landfill and Process Area	Quartarly	Facility Inspection Form	
Vadose Zone Monitoring	Quarterly		

 Table K.4 - FACILITY INSPECTIONS

#### 7.1 Evaporative Spray System

Evaporative spray system consists of three (3) mechanical evaporators per evaporation pond. The mechanical evaporators will be inspected daily for plume height and overspray based on the weather station. Facility staff will continuously monitor each evaporator to ensure proper function and prevent overspray from landing outside of the pond area. Evaporators will be adjusted according to current conditions.

#### 7.2 Landfill

Landfill area will be inspected daily by facility staff. Location and size of workface will be inspected by equipment operators and managers of landfill activities to ensure proper size. Staff will inspect for free liquids, storm water, litter, vectors, odors, and daily cover. Any deficiencies will be repaired in a safe and timely manner.

#### 7.3 General Facility Operation

The facility will be inspected weekly including but is not limited to all liquid processing areas, sumps, and landfill. Inspection documentation will be kept in the scalehouse and made available to the OCD upon request.

#### 7.4 Liquid Processing Area

Each week, delivery area, tanks, leak detection, and sumps will be inspected. All piping will be inspected to ensure proper liquid flow. Boiler will be inspected by trained personnel familiar with boiler operation. If issues are found that may endanger workers or the overall system, the liquid processing area shall be shut down until repairs are made. Tanks will be inspected for defects which may present safety hazards or environmental issues. If defects are found, the liquid processing area will be shut down until necessary repairs are made. Leak detection will be inspected weekly to ensure proper functions. If the sump integrity

fails, all sump contents and contaminated soils will be landfilled and necessary repairs made before operations can resume.

#### 7.5 Pond Operations

Sump and leak detection systems will be inspected weekly. Liquids will be removed from the primary liner and leak detection system. As needed, the ponds will be cleaned and repaired to ensure proper functionality. If excessive leakage (ie 1.5-feet of water) is found in the leak detection system, the corresponding pond will be drained and the ODC will be notified within 24-hours. Prior to the pond being operational, the following corrective action shall be taken:

- Locate area(s) of leakage.
- Repair liner.
- Monitor sump liquid level on OCD-approved interval.
- Test liquids.

All areas of the site will be inspected after large rainfall event or at least monthly to address any erosion concerns.

## APPENDIX A

## H₂S MANAGEMENT PLAN

## **1.0 INTRODUCTION**

Hydrogen Sulfide ( $H_2S$ ) is a colorless, flammable, and hazardous gas that emits a rotten egg smell. H₂S is heavier than air and can collect in lower and enclosed areas. The following sections describe measures to take at the facility securing safety for customers, visitors, workers, general public, and nearby landowners. Training of the personnel will ensue each year for all new and existing employees or if changes have been made to the plan. New employees shall have H₂S training sessions before they can begin working for the facility.

The facility will have designated local emergency contacts as shown in Table K.A.1. A meeting will be scheduled with the local agencies to discuss notification, emergency response procedures and evacuation plans. The H₂S monitoring program will be implemented during the active life of the facility.

Agency/Organization	Emergency Number
1. Fire	
Eunice Fire Department	911 or (575) 394-3258
2. Police	
Eunice County Police Department	911 or (575) 394-2112
Lea County Sheriff Department	911 or (575) 396-3611
New Mexico State Police	911 or (575) 392-5580
3. Medical/Ambulance	
Eunice Fire Department	911 or (575) 394-3258
Lea Regional Medical Center	(575) 492-5000
5419 N. Lovington Highway	
Hobbs, NM 88240	
4. Response Firm	
Phoenix Environmental, LLC.	(575) 391-9685
2113 French Drive	
Hobbs, NM 88240	
5. OCD Emergency Response Contacts	
Oil Conservation Division - District 1	(575) 393-6161 (office)
1625 N. French Drive	(575) 370-3186 (mobile)
Hobbs, NM 88240	
Oil Conservation Division - Main Office	(505) 476-3440
1220 South St. Francis Drive	
Santa Fe, NM 87505	
6. State Emergency Response Contacts	
Environmental Emergency (24 hr) (NMED)	(505) 827-9329
New Mexico Environment Department	(505) 827-0197
Solid Waste Bureau, Santa Fe	
7. Local Emergency Response Contacts	
Lea County Emergency Management	(575) 391-2983
8. Federal Emergency Response Contacts	
National Emergency Response Center	
(U.S. Coast Guard)	(800) 424-8800
Region VI Emergency Response Hotline	
(USEPA)	(214) 665-2200

 Table K.A.1 - EMERGENCY CONTACTS

#### Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

In accordance with NMAC 19.15.36.8.C.8, the prevention and contingency plan will comply with the provisions of NMAC 9.15.11 that apply to surface waste management facilities.

## Table K.A.2 - API RECOMMENDED PRACTICE 55 IMMEDIATE ACTION PLAN

Each contingency plan should contain a condensed Immediate Action Plan followed by designated personnel any time they receive notice of a potentially hazardous hydrogen sulfide or sulfur dioxide discharge. For personnel protection (including the general public) and abatement of the discharge, the Immediate Action Plan should include but not be limited to the following provisions:

**a**. Alert and account for facility personnel.

- 1. Move away from hydrogen sulfide or sulfur dioxide source and leave affected area.
- 2. Equip personnel with proper breathing equipment.
- 3. Alert other affected personnel.
- 4. Assist personnel in distress.
- 5. Proceed to designated emergency assembly area.
- 6. Account for onsite personnel.

**b**. Take immediate measure to control present or potential hydrogen sulfide or sulfur dioxide discharge and eliminate possible ignition sources. Emergency shutdown procedures should be initiated as necessary to correct or control specific situations. When required action cannot be accomplished in time to prevent exposing operating personnel or public to hazardous concentration of hydrogen sulfide or sulfur dioxide, proceed to the following steps as appropriate for the site specific conditions.

- 1. Alert the public (directly or through appropriate government agencies) subjected to an atmosphere exposure exceeding 30-ppm²¹ or 10-ppm²¹ of sulfur dioxide.
- 2. Initiate evacuation operations.
- 3. Contact the first available designated supervisor on the call list. Notify supervisor of circumstances and whether immediate assistance is needed. The supervisor should notify other supervisors and other appropriate personnel (including public officials) on call list.
- 4. Make recommendations to public officials regarding blocking unauthorized access to the unsafe area and assist as needed.
- 5. Make recommendations to public officials regarding evacuating the public and assist.
- 6. Notify, as required, state and local officials and the National Response Center to comply with release reporting requirements (i.e., 40 *Code* of *Federal Regulations Parts 302* and 355).
- 7. Monitor the ambient air in the area of exposure (after following abatement measures) to determine when safe for re-entry.

Emergency Response Planning Guide Level 2 (ERPG-2), refer to Reference 27. ERPG-2 is defined as the maximum airborne concentration below believed that nearly all individuals could be exposed for up to 1-hr without experiencing or developing irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action.

<u>Note</u>: This sequence should be altered to fit the prevailing situation. Certain actions, especially those dealing with the public, should be coordinated with public officials.

#### **1.1 Emergency Coordinators**

In accordance with NMAC 19.15.36.13.N.3, the facility will have a specialist with the responsibility and authority to take responsive measures when an emergency threatens freshwater, public health, safety, or environment.

Primary Emergency Coordinator					
Name:	TBD	Work Phone:	(575) TBD		
Title:	Facility Manager	Mobile Phone:	(575) TBD		
Alternate Emergency Coordinator					
Name:	TBD	Work Phone:	(575) TBD		
Title:	Facility Operator	Mobile Phone:	(575) TBD		
On-site Emergency Coordinator					
Name:	TBD	Work Phone:	(575) TBD		
Title:	Facility Operator	Mobile Phone:	(575) TBD		

Table K.A.3 -	LIST OF	EMERGENCY	COORDINATORS
1 anit 11.A.J -		EMERGENCI	COORDINATORS

These emergency contacts will be able to respond 24-hours/day, 7-days/week and the authority required for the implementation of this plan. A facility employee will attempt to contact all emergency contacts until contact is made. The first emergency contact to arrive onsite will assume responsibility for initiating response measures. The higher-ranking emergency contact will assume responsibility if more than one contact responds.

#### 1.2 Monitoring

All oilfield waste loads will be monitored for H₂S upon arriving at the site. OCD Form 138 will be obtained and monitoring results be recorded. The form will be kept in the operating records. Employees will be equipped with monitors in case H₂S gas may be present. These monitors will sound off and light up when H₂S is detected at 10-ppm. If H₂S gas is detected at this concentration, the driver and generator of the waste will be notified and given the option to allow facility employees to treat the onsite load by adding calcium hypochlorite in accordance with Table K.A.4. Calcium hypochlorite will be mixed with the load and continually tested until the H₂S reading is below 1-part/million. After the testing of the load verifies the load is below 1-part/million H₂S, the load will be directed to the correct receiving area. If treatment by facility staff is not allowed, the load will not be accepted and the hauler will leave the facility.
H ₂ S PPM	Ca(ClO) ₂ (34.5-ounces x number below)
<50	1
50-100	1.5
100-150	2
150-200	2.5
200-250	3
250-300	3.5
300-350	4
350-400	4.5
400-450	5
450-500	5.5
500-550	6
550-600	6.5
600-650	7
650-700	7.5
700-750	8
750-800	8.5
800-850	9
850-900	9.5
900-950	10
950-1000	10.5

### Table K.A.4 - H₂S TREATMENT FOR VEHICLES

### **1.3 Evaporation Pond Monitoring**

H₂S monitors will be placed around evaporative ponds in accordance with Attachment B - Engineered Design Plans. These monitors will continuously monitor H₂S levels and wired to communicate with scalehouse personnel. Wind direction, speed, and  $H_2S$ concentrations will be recorded two (2) times a day and recorded on the Daily Air and Water Inspection Form. If monitors detect  $H_2S$  above 10-ppm, personnel will take a secondary reading downwind of the berm within one (1) hour if the sample can be taken in a safe manner. As soon as is safe, a dissolved oxygen and dissolved sulfides concentration test will be tested of the pond. H₂S readings will be taken at the property boundary downwind of the evaporation pond. If a second consecutive reading is taken over 10 parts per million, the OCD office in Hobbs shall be notified immediately. Monitoring will ensue hourly for the next 24-hours. Pond level will be lowered to achieve better circulation in the pond. If H₂S is detected at more than 20 parts per million at the downwind property boundary, the facility will be evacuated. New Mexico state police. Lea County Sherriff. Lea County Emergency Management, and the ODC will be notified. If mitigation of H₂S is needed, Phoenix Environmental will be contacted to provide response personnel, equipment and supplies. Logs of incidences will be maintained for at least five (5) years at the scalehouse or other secure location and made available to the OCD per request.

### 1.4 Dissolved Oxygen and pH Monitoring

Daily tests will be taken for pH and dissolved oxygen in all evaporation ponds. Dissolved oxygen and pH play key roles in the treatment and removal of  $H_2S$  during the aeration process provided by the mechanical evaporators. Optimum levels for the pH range from 8.2-9.0 and sodium hydroxide will be added as needed to ponds to ensure pH levels remain within the optimum range. As needed, the aeration will be increased to introduce more dissolved oxygen into the evaporation ponds. The optimum level of dissolved oxygen is above 0.5 parts per million.

### **1.5 H₂S Management Plan Coordination**

Organizations listed in this plan will be provided a copy and will familiarize themselves with the plan. They are responsible for identifying the types of emergencies and responses that needed. All organizations are invited to visit the facility and assess the site operations, locations of processing areas, and provide insight on emergency response procedures.

# **APPENDIX B**

# **CONTINGENCY PLAN**

# **1.0 INTRODUCTION**

In accordance with NMAC 19.15.36.13.N, the following sections provide a contingency plan. The plan is designed to minimize hazards to fresh water, public health, safety, or the environment from fires, explosions, or an unplanned sudden or non-sudden release of contaminants or oilfield waste to air, soil, surface water, or ground water. The operator shall carry out plan provisions immediately whenever there is a fire, explosion, or release of contaminants or oilfield waste constituents that could threaten fresh water, public health, safety, or the environment; provided the emergency coordinator may deviate from the plan as necessary in an emergency situation. Emergency coordinators are provided in Table K.B.1 and will act as the contingency plan emergency coordinators. If no emergency contact can be reached, the employee who identified the situation shall follow the necessary steps until an emergency contact is available. Emergency contact may amend the plan during an emergency, as necessary, to protect fresh water, public health, safety, or the environment. Table K.B.2 lists the response agencies and contacts.

Primary Emergency Coordinator								
Name:	TBD	Work Phone:	(575) TBD					
Title:	Facility Manager	Mobile Phone:	(575) TBD					
Alternate Emergency Coordinator								
Name:	TBD	Work Phone:	(575) TBD					
Title:	Facility Operator	Mobile Phone:	(575) TBD					
Onsite Emergency Coordinator								
Name:	TBD	Work Phone:	(575) TBD					
Title:	Facility Operator	Mobile Phone:	(575) TBD					

 Table K.B.1 - LIST OF FACILITY EMERGENCY COORDINATORS

	Table K.B.2 -	- EMERGENCY	RESPONSE	AGENCIES AND	CONTACTS
--	---------------	-------------	----------	--------------	----------

Ag	ency/Organization Eme	rgency Number
1.	Fire	
	Eunice Fire Department	911 or (575) 394-3258
2.	Police	
	Lea County Sheriff Department	911 or (575) 396-8200
	New Mexico State Police	911 or (505) 827-3394
3.	Medical/Ambulance	
	Lea County EMS	911
	Lea Regional Medical Center	(575) 492-5000
	5419 N. Lovington Highway	
	Hobbs, NM 88240	
4.	Response Firm	
	Phoenix Environmental, LLC.	(575) 391-9685
	2113 N French Drive	
	Hobbs, NM 88240	
5.	<b>OCD Emergency Response Contacts</b>	
	Hobbs Oil Conservation Division	(575) 393-6161
	1625 N. French Drive	(575) 371-3186 (mobile)
	Hobbs, NM 88240	
	Santa Fe Oil Conservation Division	(505) 476-3440
	1220 South St. Francis Drive	
	Santa Fe, NM 87505	
6.	State Emergency Response Contacts	
	Environmental Emergencies (24 hr) (NM	ED) (505) 827-9329
	New Mexico Environment Department	(505) 827-0197
	Solid Waste Bureau, Santa Fe	
7.	Local Emergency Response Contacts	
	Lea County Emergency Management	(575) 391-2983
8.	Federal Emergency Response Contacts	
	National Emergency Response Center	
	(U.S. Coast Guard)	(800) 424-8802
	Region VI Emergency Response Hotline	
	(USEPA)	(214) 665-2200

### **1.1 Emergency Response Team Coordination**

Eunice Police Department, Eunice Fire Department, hospitals, contractor, and local response teams will be given copies of the contingency plan. It is encouraged that the listed organizations familiarize themselves with the contingency plan and make a site visit to become familiar with daily operations as well as provide input regarding the contingency plan.

### **1.2 Fire Prevention and Preparedness**

Employees will be trained before working at the facility and annually thereafter to take preventative measures to avoid fires. This includes regular inspections of incoming waste and vehicles onto the site. Table K.B.3 includes a list of emergency equipment at the surface

waste management facility, such as fire-extinguishing systems, spill control equipment, communications and alarm systems, and decontamination equipment, containing a physical description of each item on the list and a brief outline of its capabilities.

Equipment Description	Quantity	Location	Use(s)
10-lb ABC rated fire extinguisher	2	Gatehouse/Scalehouse ²	Firefighting
10-lb ABC rated fire extinguisher	2	Trucks	Firefighting
10-lb ABC rated fire extinguisher	1	Heavy equipment	Firefighting
20-lb ABC rated fire extinguisher	1	Oil process tanks	Firefighting
20-lb ABC rated fire extinguisher	1	Oil sales tanks	Firefighting
20-lb ABC rated fire extinguisher	1	Produced water receiving tanks	Firefighting
20-lb ABC rated fire extinguisher	1	Diesel storage tank	Firefighting
Loader	1	Facility	Berm repair
Oil Booms	4	NE corner of pond	Oil containment
Self-contained breathing apparatus	1 per employee	Gatehouse/Scalehouse ²	Protective gear for employees
Pair leather gloves	1 per employee	Assigned to employee	Protective gear for employees
Nomex coveralls	7 per employee	Assigned to employee	Protective gear for employees
Pair safety glasses	1 per employee	All employee workstations	Protective gear for employees
Round-point wood handle shovels	2	Gatehouse/Scalehouse ²	Contain spillage, putting out fires
First aid kit	1	Gatehouse/Scalehouse ²	First aid
First aid kit	1 per vehicle	Facility vehicles	First aid
Eye wash station	1	Produced water receiving tanks	First aid
Portable 2-way radio	1 per employee	Basic unit at the gatehouse/scalehouse ²	Communications
Cell phones	min. 3	Facility manager Facility operator Facility operator	Communications
Office phone	2	Gatehouse/Scalehouse ²	Communications
Mobile pressure washer	1	Mobile	Decontaminating equipment

### Table K.B.3 - EMERGENCY RESPONSE EQUIPMENT LIST¹

### 1.3 Implementation

In the event of a fire, explosion, or release of contaminants or oilfield waste constituents, Table K.B.4 shall be followed to assess the emergency. Table K.B.5 shall be followed for notification of the release or fire.

# Table K.B.4 - IMPLEMENTATION, ASSESSMENT, AND NOTIFICATION PROCEDURES FOR RELEASES

### (BREAKS, LEAKS, SPILLS, RELEASES, FIRES, OR BLOWOUTS)

- 1. Notify the EC: The employee who first becomes aware of the emergency will immediately notify the Primary EC, Alternate EC, and Onsite EC, if necessary. Notification will be made in person, or via telephone, or radio. The responding EC will assume full authority over the situation.
- 2. Assess source, amount, and extent of release: The EC will assess the source, amount and extent of spill or release, or released material resulting from a fire or explosion and determine possible hazards to fresh water, public health, safety, or the environment.
- **3.** Contain and prevent spread of release: The EC assessment of the emergency situation will be the basis for attempting to control the release or implementing an evacuation, as well as notifying appropriate state and local authorities if needed.
- **4.** Notification of emergency authorities: If deemed safe by the EC, the appropriate C.K. Facility response equipment and personnel will be dispatched to the scene of the release. Personnel will initiate actions within their scope of training to contain the release and prevent the spread and/or windblown dispersion of the release. Depending on the type of release, appropriate equipment may include deployment of absorbents for spills, fire extinguishers, and/or earthmoving equipment.
- **5.** Notification of emergency authorities: If the EC assessment indicates a need to notify appropriate state and local emergency authorities, notification will be initiated immediately. OCD will be notified as necessary.
- **6. Divert traffic and restrict persons from area:** C.K. Facility personnel not actively involved in release control operations will be restricted from the area until the area is determined safe by the EC and, if appropriate, the on-scene senior emergency authority (i.e., fire, police, hazard, or other official). Vehicular traffic will be diverted away from release response activities until situation is abated.

### Table K.B.5 - PART 29: RELEASE NOTIFICATION

19.	15.29	9.7	DEFINITIONS:
Α.	"N	Aajor	release" means:
	(1)	An	unauthorized release of a volume, excluding gases, in excess of 25-barrels;
	(2)	An	unauthorized release of a volume that:
		<b>(a)</b>	Results in a fire;
		<b>(b)</b>	Will reach a watercourse;
		(c)	May with reasonable probability endanger public health; or
		(d)	Results in substantial damage to property or the environment;
	(3)	An	unauthorized release of gases in excess of 500-MCF; or
	(4)	Rele	ease of a volume that may with reasonable probability be detrimental to water or
		exce	eed the standards in Subsections A and B or C of NMAC 19.15.30.9.
В.	"N	linor	release" means an unauthorized release of a volume, greater than 5-barrels but
	no	t more	e than 25-barrels; or greater than 50-MCF but less than 500-MCF of gases.

19.1	5.29.8 RELEASE NOTIFICATION:
А.	The emergency contact shall notify the division of unauthorized release occurring during
	the drilling, producing, storing, disposing, injecting, transporting, servicing or processing
	of oil, gases, produced water, condensate or oil field waste including regulated NORM,
	or other oilfield related chemicals, contaminants or mixture of the chemicals or
	contaminants, in accordance with the requirements of NMAC 19.15.29.
В.	The emergency contact shall notify the division in accordance with NMAC 19.15.29 with
	respect to a release from a facility of oil or other water contaminant, in such quantity as
	may with reasonable probability be detrimental to water or exceed the standards in
	Subsections A and B, or C of NMAC 19.15.30.9.
19.1	<b>5.29.9 REPORTING REQUIREMENTS:</b> The emergency contact shall provide
	notification of releases in NMAC 19.15.29.8 as follows:
А.	The person shall report a major release by giving both immediate verbal notice and
	timely written notice pursuant to Subsections A and B of NMAC 19.15.29.10.
В.	The person shall report a minor release by giving timely written notice pursuant to
	Subsection B.
19.1	5.29.10 CONTENTS OF NOTIFICATION:
А.	The emergency contact shall provide immediate verbal notification within 24-hrs of
	discovery to the division district office for the area within which the release takes place.
	In addition, the person shall provide immediate verbal notification of a release of a
	volume that may with reasonable probability be detrimental to water or exceed the
	standards in Subsections A and B or C of 19.15.30.9 NMAC to the division's
	environmental bureau chief. The notification shall provide the information required on
_	form C-141.
В.	The emergency contact shall provide timely written notification within 15-days to the
	division district office for the area within which the release occurs by completing and
	filing form C-141. In addition, the person shall provide timely written notification of a
	release of a volume that may with reasonable probability be detrimental to water or
	exceed the standards in Subsections A and B or C of 19.15.30.9 NMAC to the division's
	environmental bureau chief within 15-days after the release is discovered. The written
	notification shall verify the prior verbal notification and provide appropriate additions or
10.1	corrections to the information contained in the prior verbal notification.
19.1	5.29.11 CORRECTIVE ACTION: The emergency contact shall complete division-
	approved corrective action for releases that endanger public health or the environment.
	I ne responsible person shall address releases in accordance with a remediation plan
	submitted to and approved by the division or with an abatement plan submitted in
	accordance with 19.15.30 NMAC.

### 1.4 Evacuation Plan

A generalized fire or threat of fire/explosion or a spill or leak cannot be avoided due to the type of waste accepted at the facility. The following evacuation plan shall be followed for emergencies when site condition constitutes an evacuation of the site:

- 1. All facility personnel will be contacted by facility radios, cellular devices, or the facility telephone.
- 2. Any incoming waste loads and vehicles will be diverted away from the area where the emergency is occurring.

- 3. Incoming waste loads and vehicles will be routed toward facility exits in accordance with Figure A.13.
- 4. All site personnel will be directed to the liquids processing scalehouse or the landfill scalehouse where the emergency contact will do a headcount to identify any missing persons.
- 5. Once all personnel are accounted for and assembled, they will assist the emergency contact as needed or evacuate the site upon directions from the emergency contact.

### **1.5** Notification of Authorities

The emergency coordinator will immediately notify onsite personnel by use of onsite communication systems when there is imminent or an actual emergency situation. The following list of contacts will also be contacted by the emergency contact immediately when there is imminent or an actual emergency situation:

<u>OCD</u>

•	Hobbs office	(575) 393-6161
•	Mobile phone	(575) 370-3180
•	Santa Fe office	(575) 476-3440
•	New Mexico State Police	911 or (575) 392-5580
•	Lea County Sherriff Department	911 or (575) 396-3611
•	Lea County Emergency Management	911 or (575) 391-2983

### **1.6 Control Procedures**

The emergency contact will focus initial efforts on the safety and protection of the facility personnel and the persons using the facility. Control procedures shall only be implemented by the emergency contact once an assessment of situation and the possible hazards to fresh water, public health, safety, or the environment has been completed. No facility personnel or persons utilizing the site shall attempt to contain or control fires, explosions, spills, or leaks beyond their corresponding scope of safety, training, and available equipment.

### 1.7 Fire Control

Fire control shall not be implemented by facility staff until untrained personnel and customers are a safe distance from the fire. Table K.B.6 shows the control guidelines to be utilized.

### Table K.B.6 - FIRE/EXPLOSION: CONTROL GUIDELINES

**1. Initiate fire control:** The EC and C.K. Facility personnel will initiate response actions within the scope of their training to control the spread of the fire.

**2. P.A.S.S. Method:** Fires will generally be controlled with ABC-type fire extinguishers using the P.A.S.S. method (Pull pin, Aim nozzle, Squeeze trigger, Sweep from side to side to extinguish).

**3.** Smother Method: Fires may also be smothered with cover materials (i.e., soil, caliche) when possible to extinguish.

4. Available water sources: Fires may be doused or hosed with available equipment, water truck, etc.

**5. Evacuate and notify emergency authorities:** If at any time the scope of the fire is beyond the capabilities of C.K. Facility personnel to contain and/or extinguish, the EC will contact the local Fire Department or the Lea County Emergency Management (**Table K.B.2**) for assistance. Personnel and visitors will be instructed to evacuate the area.

**6. Monitor situation:** The EC will monitor for leaks, pressure buildup, gas generation, or rupture in valves, pipes, or equipment as appropriate (NMAC 19.15.36.13.N(11)).

**7. Recordkeeping/reporting:** The EC will complete an Incident Report Form (**Appendix C**) and maintain a copy in the Facility Operating Record, readily accessible for OCD inspection.

The EC will meet with personnel and response agencies to assess the cause of the emergency as needed and document the incident. The identified causative agent shall be removed from the facility if re-ignition may occur. Personnel involved with the handling, transportation, and placement of materials will be informed of resultant actions. If needed, the EC will update this contingency plan to mitigate further issues.

### **1.8 Spills/Release Control**

Site personnel will be trained to inspect incoming loads to intercept potential unauthorized wastes or loads of concern. Containment, control, and characterization of the release will be conducted by the EC after all untrained personnel and persons utilizing the site are at a safe distance. Immediately after the emergency situation, the EC will characterize the release to properly contain and control. The EC will then make necessary plans for the separation, storage, if needed, or disposal of wastes, water, or contaminated materials. An incident report will be completed to document the details of the emergency and the resulting action. Table K.B.7 lists the spill/release control guidelines to follow.

### Table K.B.7 - SPILL/RELEASE: CONTROL GUIDELINES

**1. Initiate control:** The EC and C.K. Facility personnel will initiate response actions within the scope of their training to control the spill/release.

**2. Removal or segregation:** Determine if the material can be safely removed to a designated waste inspection/segregation area for further evaluation. If the materials cannot be safely relocated, contain them for investigation and sampling using the spill control list. If necessary, shut down operations until safe conditions are restored.

3. Contain release: Attempt to contain the release to the smallest area possible.

Examples of equipment available for spill containment are non-reactive sorbent materials, oil booms, sand, shovels and heavy equipment. A third-party contractor is also available for emergency response to augment efforts by on-site personnel.

**4. Sampling:** After isolating the contaminants and contaminated media, inspect them to determine if sampling is appropriate. If appropriate, isolate contaminants in the waste inspection or segregation area, or in designated leak-proof containers, until characterization is complete.

**5.** Cleanup: After the release has been contained and necessary samples have been obtained, cleanup will be initiated by removing the spilled materials, sorbent materials, soils used for containment, etc.

**6. Equipment monitoring:** Liners and equipment in use, including valves and pipes, will be monitored for leaks, pressure buildup, gas generation or rupture as appropriate (NMAC 19.15.36.13.N(11)).

**7. Verification sampling:** Dependent on the type of material spilled, the EC will assess requirements for cleanup verification including the collection of samples for appropriate analytical testing.

**8. Disposal or processing:** When visual and/or laboratory characterization is complete, determine appropriate processing or disposal procedures for that waste type. Send residuals for disposal to a facility that is approved for managing that type of waste.

**9. Evacuate and notify emergency authorities**: If at any time the scope of the spill/release is beyond the capabilities of the on-site personnel to contain and/or extinguish it, the EC will contact the local Fire Department or Lea County Emergency Management (**Table K.B.2**) for assistance. Personnel and visitors will be instructed to evacuate the area.

**10. Recordkeeping/reporting:** The EC will complete an Incident Report Form **(Appendix C)** and maintain a copy in the Facility Operating Record, readily accessible for OCD inspection.

### **1.9 Equipment Maintenance**

All equipment used for the emergency response will be inspected, decontaminated, cleaned, and made ready to use or replaced if necessary immediately following the incident. The EC will verify that equipment has been maintained after the emergency response and will be fit for reuse for the next emergency incident.

### 1.10 Storage and Treatment of Released Material

Spilled or contaminated material approved to be disposed of at the C.K. Facility may be disposed of following standard operating practices. Hazardous material(s) not approved for disposal at the site will be containerized and stored with the applicable local, state, and federal regulations. Phoenix Environmental may be called upon for 3rd party services as well. No oilfield waste, which may be compatible with the release material shall be treated, stored, or disposed of until all cleanup procedures are complete.

### 1.11 Plan Amendment

Amendments to the contingency plan will be made within five (5) working days in the event of the facility permit being revised or modified, the plan fails in the event of an emergency,

the surface waste management facility changes design, construction, operation, maintenance, or other circumstances in a way that increases the potential for fires, explosions, or releases of oilfield waste constituents that could threaten fresh water, public health, safety, or the environment or change the response necessary in an emergency, the list of emergency coordinators, or their contact information changes, or the list of emergency equipment changes.

# **APPENDIX C**

## **OCD FORMS**



#### Lea County C.K. Diposal E&P Landfill and Processing Facility Daily Air and Waer Inspection form

DATE:										
Morning Ambient Air H ₂ S										
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
Sampler and Time										
H ₂ S Reading (ppm)										
Wind Speed (mph)										
Wind Direction										
Afternoon Ambient Air H ₂ S										
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
Sampler and Time										
H ₂ S Reading (ppm)										
Wind Speed (mph)										
Wind Direction										
			Sump Levels							
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
Morning Sampler and Time										
Morning Pond Level (ft)										
Morning Loading Area										
Morning Cement Slab										
Morning Pump House Sump										
Afternoon Sampler and Time										
Afternoon Loading Area										
Afternoon Pump House										
Wind Direction										
		Load	ding Sump Emp	otied						
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
Initials and Time										
	0	Con	crete Slab Emp	tied	<b>T</b> 1 1.	E data				
	Sunday	Monday	Tuesday	wednesday	Thursday	Friday	Saturday			
Initials and Time										
	Cundou	Manday	ond Condition	<u>S</u>	Thursday	Friday	Coturdou			
	Sunday	wonday	Tuesday	wednesday	Thursday	Friday	Saturday			
Pond Level										
Diversion Color										
Water Tempurature										
Dissolved Oxygen										
Total chlorine										
Dissolved H ₂ S/Sulfides										
		L	homicala Adda							
Cilefilicais Auueu Sunday Monday Tuesday Modnosday Thursday Eriday Saturday										
Chamical	Ounday	wonday	Tuesday	Wednesday	marsaay	Thoay	Gaturday			
Time		}	<u> </u>				}			
Personnel			<u> </u>							
Chemical		1	1				1			
Time		1	1				1			
Personnel		1	1	1			1			
		Ma	anager Signatu	re						
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
Manager				, , , , , , , , , , , , , , , , , , ,						

# C.K. FACILITY LEACHATE MONITORING FORM

	Leachate Level Data			Pumping Data			
Date	Sump I.D.	Time	Monitored By	Date	Company	Volume Pumped (gal)	Notes

## C.K. FACILITY Pond Integrity/Leak Detection Inspection Form

Date: Time:		Inspector(s):		
Weather: Temperature	deg. F	Precipitation (last 24 hours)	ir	nches
Skies Wind Speed	mph			
Wind Direction				

### NOTES:

"D" indicated that a Deficiency has been noted. "P" indicated that a Photograph has been taken. "S" indicated that a Sample has been collected. Complete descriptions of Deficiencies, Photographs, and Samples are provided on attached pages. Items are referenced by Location.

### **Pond Condition**

	Item							
Location	Erosion	Vegetation Establishment	Vectors	Sample				

### Leak Detection System

Dison #	Defie	ciency
Kiser #	Depth of H ₂ O	Structural Defect

### Extra information or details:

# C.K. FACILITY INCIDENT REPORT FORM

<b>Type of Incident and General Informati</b>	ion			
[ ] Work Related injury/Illness	[ ]	Unsafe Act/	Near Miss	
[ ] Property Damage	[ ]	Vandalism/	Criminal Activity	
[] Vehicular Accident	[ ]	Other		
		(i.e. spill, re	lease, fire, explosion, hot	load, etc.)
Employee Name:		Job Title:		
Phone No.:	Date of I	Incident:	Time of Incident:	AM/PM
Location of Incident:		Weath	er:	
Date and Time Reported to Management:	Date:		Time:	AM/PM
Reported to:	Title:	Repo	orted by:	
What was the injury category of incider	nt at the tim	e it was first i	reported to managemen	t?
[] N/A/ Employee does not claim an a	injury associ	iated with this	incident.	
[ ] Notice Only of Injury, Declined M	edical Treat	ment at this tir	ne.	
[ ] First Aid done on site, Declined M	edical Treat	ment at this tir	ne.	
[ ] Medical Treatment. Transported by	у		to	
[] Fatality, Employee				
(Section be	elow to be filled	out by EMPLOYE	CE)	
Employee's Description of Incident				
Were you injured? [ ] yes		[] <b>no</b>		
Type of Injury:				
Part of Body:	_			
In your own words, explain the incident:				
Employee Signature:				
Date:				

# **APPENDIX D**

# **EVAPORATION CALCULATIONS**

# HOBBS LEA CO AP, NEW MEXICO

			S	tatior	n:(294	028)	HOBBS FA	A AI	RPOR	T				
				F	From Y	Year=	=1941 To Ye	ar=20	12					
						Preci	pitation					Total	Snov	vfall
	Mean	High	Year	Low	Year	1]	Day Max.	>= 0.01 in.	>= 0.10 in.	>= 0.50 in.	>= 1.00 in.	Mean	High	Year
	in.	in.	-	in.	-	in.	dd/yyyy or yyyymmdd	# Days	# Days	# Days	# Days	in.	in.	-
January	0.36	2.09	1949	0.00	1953	0.68	04/1958	3	1	0	0	1.4	9.0	1958
February	0.31	1.02	1958	0.00	1942	0.68	21/1958	3	1	0	0	2.5	21.2	1956
March	0.29	1.41	1958	0.00	1954	0.52	20/1949	2	1	0	0	1.3	13.0	1958
April	0.83	2.26	1942	0.00	2011	1.40	12/1950	4	2	1	0	0.1	0.8	1949
May	1.76	5.02	1954	0.00	2011	1.72	17/1951	6	3	1	0	0.0	0.0	1942
June	0.74	3.19	1950	0.00	2011	1.68	20/1950	3	1	1	0	0.0	0.0	1948
July	1.47	3.49	1948	0.00	1954	1.98	22/1948	5	3	1	0	0.0	0.0	1948
August	1.61	4.08	1954	0.14	2011	2.28	18/1957	6	3	1	1	0.0	0.0	1948
September	2.27	5.84	1949	0.05	1951	2.13	09/1949	4	3	2	1	0.0	0.0	1941
October	1.70	3.81	1941	0.00	1952	1.73	04/1941	5	3	1	0	0.0	0.0	1941
November	0.18	1.07	1952	0.00	1948	0.68	04/1952	2	1	0	0	0.6	7.0	1957
December	0.19	0.89	2011	0.00	1950	0.72	24/2011	1	1	0	0	0.8	8.3	2011
Annual	11.72	18.66	1949	5.06	1956	2.28	19570818	43	22	8	3	6.7	21.2	1956
Winter	0.86	2.50	1949	0.02	2011	0.72	20111224	7	2	0	0	4.7	21.2	1956
Spring	2.89	6.32	1954	0.00	2011	1.72	19510517	11	6	2	1	1.4	13.0	1958
Summer	3.82	9.19	1950	0.36	2011	2.28	19570818	14	7	2	1	0.0	0.0	1948
Fall	4.15	6.25	1949	0.41	1951	2.13	19490909	11	7	3	1	0.6	7.0	1957

### **Period of Record General Climate Summary - Precipitation**

Table updated on Oct 31, 2012

For monthly and annual means, thresholds, and sums: Months with 5 or more missing days are not considered Years with 1 or more missing months are not considered Seasons are climatological not calendar seasons

Winter = Dec., Jan., and Feb. Spring = Mar., Apr., and May Summer = Jun., Jul., and Aug. Fall = Sep., Oct., and Nov. Western Regional Climate Center, <u>wrcc@dri.edu</u>

#### Evaporation Stations

Standard daily pan evaporation is measured using the four-foot diameter Class A evaporation pan. The pan water level reading is adjusted when precipitation is measure to obtain the actual evaporation. Most Class A pans are installed above ground, allowing effects such as radiation on the side walls and heat exchnges with the pan material. These effects tend to increase the evaporation totals. The amounts can then be adjusted by multiplying the totals b 0.70 or 0.80 to more closely estimate the evaporation from naturally existing urfaces such as a shallow lake, wet soil or other moist natural surfaces.

Many stations do not measure pan evaportation during winter months. A "0.00" total indicates no measurement is taken.

Stations marked with an asterisk (*) have estimated totals computed from meteorological measurements using a form of the Penman equation.

Click on a State: <u>Arizona</u>, <u>California</u>, <u>Colorado</u>, <u>Hawaii & Pacific Islands</u>, <u>Idaho</u>, <u>Montana</u>, <u>Nevada</u>, <u>New Mexico</u>, <u>Oregon</u>, <u>Utah</u>, <u>Washington</u>, <u>Wyoming</u>

#### ALASKA

MONTHLY AVERAGE PAN EVAPORATION (INCHES)

	1	PERIOD	1													
	Í.	OF RECORD	Ì.	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
BROOKS RIVER		1967-1990		0.00	0.00	0.00	0.00	0.00	2.48	2.88	1.63	0.73	0.00	0.00	0.00	7.72
CENTRAL 2	- I	1962-2005	1	0.00	0.00	0.00	0.00	0.00	3.97	4.00	2.43	2.19	0.00	0.00	0.00	12.59
COPPER CENTER	1	1961-1982	1	0.00	0.00	0.00	0.00	0.00	6.03	4.06	3.14	1.71	0.00	0.00	0.00	14.94
JUNEAU AP	1	1949-2005	1	0.00	0.00	0.00	0.00	3.33	3.29	3.82	3.14	1.02	0.00	0.00	0.00	14.60
MATANUSKA AES	1	1917-2005	1	0.00	0.00	0.00	0.00	4.22	4.44	3.92	3.05	1.83	0.00	0.00	0.00	17.46
MC GRATH WB AIRPORT	1	1939-2005	1	0.00	0.00	0.00	0.00	4.20	4.42	3.65	2.29	1.40	0.00	0.00	0.00	15.96
MCKINLEY PARK	1	1949-2005	1	0.00	0.00	0.00	0.00	0.00	2.96	2.55	1.75	0.53	0.00	0.00	0.00	7.79
OIL WELL ROAD E P	1	1967-1974	1	0.00	0.00	0.00	0.00	0.00	5.17	3.83	2.81	1.40	0.00	0.00	0.00	13.21
OLD EDGERTON	1	1970-1996	1	0.00	0.00	0.00	0.00	3.31	4.56	4.16	3.04	1.65	0.00	0.00	0.00	16.72
PALMER AAES	1	1949-2005	1	0.00	0.00	0.00	0.00	4.44	4.71	4.12	2.96	1.75	0.00	0.00	0.00	17.98
RAMPART 2	1	1963-1978	1	0.00	0.00	0.00	0.00	4.23	4.56	3.79	2.56	1.54	0.00	0.00	0.00	16.68
COLLEGE UNIV EXP STN		1931-2005	1	0.00	0.00	0.00	0.00	4.25	5.04	4.56	2.82	1.38	0.00	0.00	0.00	18.05

#### ARIZONA

MONTHLY AVERAGE PAN EVAPORATION (INCHES)

PERIOD														
OF RECORD	I	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1939-2005	I	3.92	4.92	7.10	10.02	13.77	16.21	15.56	13.95	12.10	9.66	5.86	4.47	117.54
1948-2005		0.00	0.00	0.00	6.93	8.83	10.12	7.99	7.02	5.70	3.94	0.00	0.00	50.53
1958-1977	1	7.49	7.46	9.75	12.78	16.71	19.48	19.87	17.91	14.64	12.03	8.40	7.80	154.32
1948-1961	1	3.54	5.13	7.60	9.30	11.33	13.33	13.14	12.15	9.51	7.24	5.38	3.88	101.53
1948-2005	1	0.00	0.00	0.00	11.34	13.19	13.55	10.66	10.27	8.18	6.44	0.00	0.00	73.63
1909-2005		0.00	0.00	0.00	0.00	5.86	7.37	6.03	4.91	3.35	0.00	0.00	0.00	27.52
1957-1977	1	0.00	0.00	0.00	0.00	6.94	10.45	8.79	8.12	6.83	4.91	0.00	0.00	46.04
1976-2005		0.00	0.00	0.00	0.00	7.46	9.80	8.94	7.29	6.10	4.45	0.00	0.00	44.04
1967-1988		0.00	0.00	0.00	0.00	7.57	8.55	6.89	5.48	4.68	0.00	0.00	0.00	33.17
1951-1975	1	0.00	3.66	5.45	9.18	12.23	15.14	12.87	10.88	9.40	6.54	3.26	2.16	90.77
1933-2005		0.00	0.00	0.00	0.00	7.86	8.25	6.60	5.98	4.90	3.97	0.00	0.00	37.56
1896-2005		3.03	4.02	6.11	8.64	11.33	12.67	13.10	11.87	9.69	6.81	4.15	2.96	94.38
1952-2005		3.59	4.46	7.01	9.35	11.91	13.31	10.00	8.28	8.06	7.17	4.49	3.57	91.20
1957-2005		0.00	2.60	5.84	8.27	10.72	12.86	13.06	11.38	8.42	5.13	2.29	0.00	80.57
1905-2005		2.44	3.54	5.90	8.64	11.96	14.50	14.36	12.27	10.10	6.78	3.68	2.32	96.49
1908-2005		3.83	5.15	7.51	10.06	13.56	14.89	13.69	12.05	10.20	7.91	4.94	3.63	107.42
1948-2005		2.63	3.83	7.14	10.54	13.81	15.38	13.13	10.68	8.73	5.90	3.28	2.52	97.57
1948-2005		2.25	3.27	5.66	8.40	11.70	13.94	13.43	11.40	9.23	6.31	3.53	2.18	91.30
1913-1979		2.19	2.93	4.58	6.42	8.97	10.94	10.39	8.88	8.00	6.22	3.50	2.37	75.39
1965-1998		0.00	0.00	0.00	0.00	11.03	14.38	11.29	9.12	7.96	6.45	3.40	0.00	63.63
1948-2005		3.52	4.56	6.94	10.04	13.11	14.27	14.44	13.10	10.69	7.95	4.53	3.08	106.23
1953-2005		1.56	2.93	4.79	7.04	9.44	10.85	10.99	9.92	7.63	5.14	2.56	1.44	74.29
1894-2005		3.25	4.57	6.95	9.88	12.87	14.91	13.17	11.65	10.35	7.81	4.73	3.37	103.51
1982-2005		3.94	4.68	7.53	10.57	14.14	16.51	14.61	12.17	10.71	8.05	4.93	3.23	111.07
1961-2005	1	1.95	2.77	6.30	9.42	12.82	14.94	15.26	13.31	10.06	7.06	3.69	2.60	100.18
1900-2005		1.69	2.94	5.84	8.01	9.92	11.70	9.48	8.47	7.68	5.87	3.51	2.54	77.65
1942-1980	1	3.12	4.03	7.00	9.98	12.40	13.90	11.19	9.84	9.56	7.51	4.31	2.94	95.78
1920-2005		3.58	4.36	6.81	9.17	11.75	13.19	13.85	12.28	9.51	6.91	4.43	3.37	99.21
	PERIOD OF RECORD 1939-2005 1948-2005 1958-1977 1948-1961 1948-2005 1909-2005 1957-1977 1976-2005 1967-1988 1951-1975 1933-2005 1948-2005 1948-2005 1948-2005 1948-2005 1948-2005 1948-2005 1948-2005 1948-2005 1961-2005 1942-1980 1920-2005	PERIOD   OF RECORD   1939-2005   1948-2005   1958-1977   1948-1961   1948-2005   1909-2005   1957-1977   1976-2005   1967-1988   1951-1975   1933-2005   1908-2005   1908-2005   1948-2005   1961-2005   1961-2005   1942-1980   1920-2005	PERIOD         I           OF RECORD         JAN           1939-2005         3.92           1948-2005         0.00           1958-1977         7.49           1948-2005         0.00           1958-1977         7.49           1948-2005         0.00           1907-1977         0.00           1976-2005         0.00           1967-1988         0.00           1951-1975         0.00           1933-2005         3.03           1952-2005         3.03           1952-2005         3.03           1952-2005         3.03           1952-2005         3.03           1952-2005         3.69           1905-2005         2.44           1908-2005         2.25           1913-1979         2.19           1965-1978         0.00           1948-2005         3.52           1953-2005         3.52           1953-2005         3.52           1962-2005         3.94           1961-2005         1.95           1962-2005         3.94           1961-2005         1.95           1900-2005         1.69	PERIOD         I           OF RECORD         JAN         FEB           1939-2005         3.92         4.92           1948-2005         0.00         0.00           1958-1977         7.49         7.46           1948-2005         0.00         0.00           1958-1977         7.49         7.46           1948-2005         0.00         0.00           1909-2005         0.00         0.00           1957-1977         0.00         0.00           1967-1988         0.00         0.00           1957-1975         0.00         0.00           1957-1988         0.00         0.00           1957-2005         3.03         4.02           1952-2005         3.59         4.66           1957-2005         2.63         3.83           1948-2005         2.25         3.27           193-1979         2.19         2.93           1965-1998         0.00         0.00           1948-2005         3.52         4.56           1953-2005         1.56         2.93           1965-1998         0.00         0.00           1948-2005         3.52         4.57      <	PERIOD         I           OF RECORD         JAN         FEB         MAR           1939-2005         I         3.92         4.92         7.10           1948-2005         I         0.00         0.00         0.00           1958-1977         I         7.49         7.46         9.75           1948-2005         I         0.00         0.00         0.00           1948-2005         I         0.00         0.00         0.00           1948-2005         I         0.00         0.00         0.00           1975-1977         I         0.00         0.00         0.00           1957-1988         I         0.00         0.00         0.00           1967-2005         I         0.00         0.00         0.00           1951-1975         I         0.00         0.00         0.00           1962-2005         I         3.03         4.02         6.11           1952-2005         I         3.03         4.02         6.11           1952-2005         I         2.63         3.83         7.14           1905-2005         I         2.63         3.83         7.14           1948-2005	PERIOD         I           OF RECORD         JAN         FEB         MAR         APR           1939-2005         3.92         4.92         7.10         10.02           1948-2005         0.00         0.00         0.00         6.93           1958-1977         7.49         7.46         9.75         12.78           1948-2005         0.00         0.00         0.00         1.34           1909-2005         0.00         0.00         0.00         0.00           1957-1977         0.00         0.00         0.00         0.00           1957-1977         0.00         0.00         0.00         0.00           1967-1988         0.00         0.00         0.00         0.00           1967-1975         0.00         3.66         5.45         9.18           1933-2005         0.00         0.00         0.00         0.00           1967-2005         3.03         4.02         6.11         8.64           1952-2005         3.59         4.46         7.01         9.35           1957-2005         0.00         2.63         3.83         7.14         10.54           1908-2005         3.83         5.15	PERIOD         I           OF RECORD         JAN         FEB         MAR         APR         MAY           1939-2005         3.92         4.92         7.10         10.02         13.77           1948-2005         0.00         0.00         0.00         6.93         8.83           1958-1977         7.49         7.46         9.75         12.78         16.71           1948-2005         0.00         0.00         0.00         11.33         1948-2005         0.00         0.00         11.34         13.19           1909-2005         0.00         0.00         0.00         11.34         13.19           1976-2005         0.00         0.00         0.00         0.00         6.94           1976-2005         0.00         0.00         0.00         0.00         7.46           1967-1988         0.00         0.00         0.00         7.66         182.23           1933-2005         0.00         0.00         0.00         7.66         18.64         11.33           1952-2005         3.03         4.02         6.11         8.64         11.67           1905-2005         0.00         2.60         5.84         8.27         10.72<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PERIOD         I           OF RECORD         JAN         FEB         MAR         APR         MAY         JUN         JUL           1939-2005         I         3.92         4.92         7.10         10.02         13.77         16.21         15.56           1948-2005         I         0.00         0.00         6.93         8.83         10.12         7.99           1958-1977         I         7.49         7.46         9.75         12.78         16.71         19.48         19.83           1948-1961         I         3.54         5.13         7.60         9.30         11.33         13.33         13.14           1948-2005         I         0.00         0.00         0.00         6.86         7.37         6.03           1957-1977         I         0.00         0.00         0.00         6.94         10.45         8.79           1976-2005         I         0.00         0.00         0.00         7.57         8.55         6.89           1951-1975         I         0.00         0.00         0.00         7.57         8.55         6.89           1952-2005         I         3.03         4.02         6.11         8	PERIOD         I           OF RECORD         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG           1939-2005         3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95           1948-2005         0.00         0.00         6.93         8.83         10.12         7.99         7.02           1958-1977         7.49         7.46         9.75         12.78         16.71         19.48         19.87         17.91           1948-2005         0.00         0.00         0.00         11.33         13.33         13.14         12.15           1948-2005         0.00         0.00         0.00         13.41         13.19         13.55         10.66         10.27           1999-2005         0.00         0.00         0.00         5.86         7.37         6.03         4.91           1957-1977         0.00         0.00         0.00         7.76         8.55         6.89         5.48           1951-1975         0.00         0.00         0.00         7.66         8.25         6.6         5.98           1967-2005         3.03         4.02	PERIOD                     OF RECORD         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP           1939-2005         3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10           1948-2005         0.00         0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70           1958-1977         7.49         7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64           1948-1961         3.54         5.13         7.60         9.30         11.33         13.14         12.15         9.51           1948-2005         0.00         0.00         0.00         1.03         13.55         10.66         10.27         8.18           1909-2005         0.00         0.00         0.00         7.46         9.80         8.94         7.29         6.10           1967-1988         0.00         0.00         0.00         7.57         8.55         6.89         5.48         4.68           1951-1975         0.00         0.00         0.00	PERIOD         I         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP         OCT           1939-2005                   3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10         9.66           1948-2005                   0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70         3.94           1958-1977                   7.49         7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64         12.03           1948-1961                   3.54         5.13         7.60         9.30         11.33         13.33         13.14         12.15         9.51         7.24           1948-2005                   0.00         0.00         0.00         5.86         7.37         6.03         4.91         3.35         0.00           1957-1977                   0.00         0.00         0.00         7.76         8.55         6.89         5.48         4.68         0.00           1951-1975                   0.00         0.00 <td< td=""><td>PERIOD         I         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP         OCT         NOV           1939-2005                   3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10         9.66         5.86           1948-2005                   0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70         3.94         0.00           1958-1977                   7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64         12.03         8.40           1948-1961                   3.54         5.13         7.60         9.30         11.33         13.31         1.14         12.15         9.51         7.24         5.38           1948-2005                   0.00         0.00         0.00         7.66         8.73         8.12         6.83         4.91         0.00           1957-1977                   0.00         0.00         0.00         7.57         8.55         6.89         5.48         4.91         0.00         1.00</td><td>PERIOD         I         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP         OCT         NOV         DEC           1939-2005         I         3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10         9.66         5.86         4.47           1948-2005         I         0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70         3.94         0.00         0.00           1958-1977         I         7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64         12.03         8.40         7.80           1948-2005         I         0.00         0.00         1.00         13.35         10.66         10.27         8.18         6.44         0.00         0.00         0.00         10.00         10.00         10.00         0.00         0.00         0.00         0.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00</td></td<>	PERIOD         I         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP         OCT         NOV           1939-2005                   3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10         9.66         5.86           1948-2005                   0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70         3.94         0.00           1958-1977                   7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64         12.03         8.40           1948-1961                   3.54         5.13         7.60         9.30         11.33         13.31         1.14         12.15         9.51         7.24         5.38           1948-2005                   0.00         0.00         0.00         7.66         8.73         8.12         6.83         4.91         0.00           1957-1977                   0.00         0.00         0.00         7.57         8.55         6.89         5.48         4.91         0.00         1.00	PERIOD         I         JAN         FEB         MAR         APR         MAY         JUN         JUL         AUG         SEP         OCT         NOV         DEC           1939-2005         I         3.92         4.92         7.10         10.02         13.77         16.21         15.56         13.95         12.10         9.66         5.86         4.47           1948-2005         I         0.00         0.00         6.93         8.83         10.12         7.99         7.02         5.70         3.94         0.00         0.00           1958-1977         I         7.46         9.75         12.78         16.71         19.48         19.87         17.91         14.64         12.03         8.40         7.80           1948-2005         I         0.00         0.00         1.00         13.35         10.66         10.27         8.18         6.44         0.00         0.00         0.00         10.00         10.00         10.00         0.00         0.00         0.00         0.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00

#### CALIFORNIA

MONTHLY AVERAGE PAN EVAPORATION (INCHES)

		PERIOD   OF RECORD	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
ANTIOCH PUMP PLANT 3	I	1955-2005	1.17	1.99	4.25	6.27	8.96	10.84	11.60	10.06	7.77	4.91	2.07	1.22	71.11
AUBURN DAM PROJECT	1	1972-1984	1.42	1.89	3.13	4.89	7.73	10.08	11.66	10.70	8.08	5.00	1.97	1.36	67.91

http://www.wrcc.dri.edu/htmlfiles/westevap.final.html

TIBER DAM	1952-2005	0.00	0.00	0.00	0.00	4.51	6.46	7.65	5.56	4.34	0.00	0.00	0.00	28.52
VALIER	1911-2005	0.00	0.00	0.00	0.00	5.37	6.49	7.33	5.62	4.72	0.00	0.00	0.00	29.53
WESTERN AG RESEARCH CNT	1965-2005	0.00	0.00	0.00	0.00	5.08	6.03	7.26	6.07	4.14	2.25	0.00	0.00	30.83
YELLOWTAIL DAM	1948-2005	0.00	0.00	0.00	0.00	6.94	8.84	10.60	9.74	6.58	4.86	0.00	0.00	47.56

#### NEVADA

#### MONTHLY AVERAGE PAN EVAPORATION (INCHES)

		PERIOD	I.													
		OF RECORD		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
BEOWAWE U OF N RANCH	I	1972-2005	I	0.00	0.00	0.00	3.98	7.17	8.68	10.42	9.52	6.97	4.43	0.00	0.00	51.17
BOULDER CITY	Í.	1931-2004	i	3.71	4.68	7.56	10.67	13.79	16.57	16.45	14.41	11.51	8.11	4.87	3.69	116.02
CALIENTE	- È	1928-2005	1	0.00	0.00	3.97	6.82	8.57	10.58	11.13	9.41	6.89	4.35	1.91	0.00	63.63
CENTRAL NEVADA FIELD LA		1965-1986		0.00	0.00	2.98	5.95	8.69	10.49	12.24	11.31	8.08	4.88	1.73	0.00	66.35
FALLON EXPERIMENT STN		1950-1992		1.34	2.23	4.39	6.15	7.70	8.91	9.87	8.63	6.10	3.90	1.91	1.37	62.50
LAHONTAN		1948-2005	1	0.00	0.00	0.00	7.18	9.64	11.58	13.75	12.23	7.83	4.51	2.09	0.00	68.81
LOGANDALE		1968-1992		2.55	3.61	5.26	8.96	12.44	14.20	14.38	12.07	8.67	7.66	3.86	2.89	96.55
RUBY LAKE		1948-2005	1	0.00	0.00	0.00	5.10	7.09	8.90	10.54	9.37	6.51	3.95	0.00	0.00	51.46
RYE PATCH DAM		1948-2005		0.00	0.00	3.71	5.83	7.38	9.23	11.15	10.06	6.95	4.30	0.77	0.00	59.38
SILVERPEAK		1967-2005	1	0.00	3.84	7.26	10.13	13.60	16.31	17.98	15.92	11.32	6.88	2.94	0.00	106.18
TOPAZ LAKE		1957-2005		0.00	0.00	0.00	7.15	9.11	10.94	12.68	11.56	8.80	5.95	2.79	0.00	68.98

#### NEW MEXICO

MONTHLY AVERAGE PAN EVAPORATION (INCHES)

	PERIOD												
	OF RECORD	JAN	FEB	MAR APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
ABIQUIU DAM	1957-2005	0.00	0.00	6.06 7.43	9.95	11.39	10.52	8.90	7.23	5.30	3.13	2.22	72.13
AGRICULTURAL COLLEGE	1892-1959	3.01	4.00	7.89 10.20	8.65	13.99	12.33	11.16	8.31	6.28	4.35	2.89	93.06
ALAMOGORDO DAM	1939-1975	3.73	4.35	8.21 11.30	12.88	14.43	13.66	11.59	9.17	7.19	4.89	3.46	104.86
ANIMAS	1923-2005	3.87	4.91	8.29 10.78	12.36	14.25	11.60	11.07	8.54	6.71	4.69	3.61	100.68
ARTESIA 6 S	1914-2005	4.38	3.03	7.25 7.66	12.11	13.13	10.86	10.44	9.36	6.34	3.12	0.00	87.68
BITTER LAKES WL REFUGE	1950-2005	2.67	3.93	6.82 9.60	11.31	12.62	11.88	10.16	8.02	5.85	3.53	2.50	88.89
BOSQUE DEL APACHE	1914-2005	3.21	4.20	7.76 10.20	11.61	13.13	11.56	10.36	8.03	6.25	3.66	2.54	92.51
BRANTLEY DAM	1987-2005	4.65	0.00	8.62 11.77	14.61	15.46	14.19	12.22	9.88	7.97	5.77	4.34	109.48
CABALLO DAM	1938-2005	4.42	5.10	8.56 11.37	13.59	14.80	13.08	11.35	9.26	7.27	4.78	3.48	107.06
CAPULIN NATL MONUMENT	1966-1979	0.00	0.00	0.00 0.00	9.08	10.57	9.71	9.18	7.65	0.00	0.00	0.00	46.19
CLOVIS 13 N	1929-2005	3.83	4.12	6.63 8.72	10.15	11.45	11.65	9.55	7.64	5.78	3.95	3.21	86.68
COCHITI DAM	1975-2005	0.00	4.14	6.44 8.48	11.07	12.95	12.38	10.62	8.91	6.29	3.94	2.79	88.01
CONCHAS DAM	1938-2005	0.00	0.00	7.35 8.88	10.29	11.69	11.37	10.06	8.24	6.18	4.04	2.79	80.89
EAGLE NEST	1937-2005	0.00	0.00	0.00 4.91	7.67	7.83	7.07	5.87	5.30	4.31	0.00	0.00	42.96
EL VADO DAM	1923-2005	0.00	0.00	3.61 5.43	7.46	8.84	8.52	6.91	5.66	3.84	1.72	0.00	51.99
ELEPHANT BUTTE DAM	1917-2005	3.47	4.87	8.61 12.22	14.94	16.37	14.15	12.05	9.78	7.70	4.91	3.34	112.41
ESTANCIA	1914-2005	0.00	0.00	3.26 6.79	8.56	9.27	8.61	7.10	5.60	3.82	2.62	0.00	55.63
FARMINGTON AG SCIENCE C	1978-2005	0.00	0.00	0.00 7.97	10.06	12.00	12.52	10.70	8.15	5.41	0.00	0.00	66.81
FLORIDA	1939-1992	3.54	4.81	8.10 10.94	13.03	14.80	11.84	10.10	8.51	6.58	4.57	3.11	99.93
GALLUP RANGER STN	1966-1975	0.00	0.00	0.00 6.61	9.31	12.12	10.50	8.70	7.95	5.07	2.20	0.00	62.46
JEMEZ DAM	1953-2005	0.00	0.00	0.00 9.91	12.27	13.95	14.29	11.45	9.80	6.72	3.65	0.00	82.04
JORNADA EXP RANGE	1925-2005	2.50	4.18	7.24 10.06	11.94	12.85	10.88	9.53	7.82	5.71	3.61	2.50	88.82
LAGUNA	1914-2005	0.00	0.00	0.00 8.47	9.33	11.98	10.76	8.88	6.83	5.00	1.98	0.00	63.23
LAKE AVALON	1914-1979	4.49	5.33	9.42 12.36	14.31	15.16	14.14	12.33	9.25	7.26	4.68	4.20	112.93
LAKE MC MILLAN	1941-1949	0.00	0.00	0.00 13.78	8.14	14.26	13.38	13.45	10.35	6.15	0.00	0.00	79.51
LOS LUNAS 3 SSW	1923-2005	1.87	2.81	5.27 7.77	9.74	10.49	10.06	8.67	6.58	4.64	2.75	2.45	73.10
NARROWS	1948-1964	3.09	5.67	7.62 11.07	13.37	15.44	13.07	11.42	9.97	7.20	4.32	2.64	104.88
NAVAJO DAM	1963-2005	0.00	0.00	0.00 6.58	9.10	11.07	11.24	9.66	7.22	4.74	0.00	0.00	59.61
PORTALES 7 WNW	1934-1960	3.26	4.57	8.24 8.85	10.72	12.16	10.44	9.28	7.95	5.98	4.15	3.53	89.13
HOOD RANGER STN	1954-2005	0.00	0.00	0.00 7.84	9.02	10.81	8.25	6.87	6.12	5.14	2.65	0.00	56.70
ROSWELL WSO AIRPORT	1893-1972	0.00	0.00	0.00 11.29	0.00	15.87	12.11	12.63	7.92	6.97	4.66	4.51	75.96
SANTA FE	1867-1972	0.00	0.00	3.00 7.28	8.73	10.93	9.95	8.26	7.15	5.10	2.50	0.00	62.90
SANTA FE 2	1972-2005	0.00	0.00	0.00 7.10	9.76	11.31	10.36	9.20	7.41	5.08	0.00	0.00	60.22
SHIPROCK	1926-2005	0.00	0.00	0.00 7.84	10.57	14.44	13.17	10.80	9.80	6.54	0.00	0.00	73.16
SOCORRO	1914-2005	0.00	0.00	4.83 7.09	9.17	9.35	8.56	7.57	5.73	4.14	0.00	0.00	56.44
STATE UNIVERSITY	1959-2005	3.00	4.33	7.40 9.90	12.03	12.91	12.05	10.34	8.14	6.17	3.85	2.79	92.91
SUMNER LAKE	1921-2005	0.00	0.00	7.33 10.22	12.35	13.54	13.36	11.16	9.02	6.97	4.92	3.17	92.04
TUCUMCARI 4 NE	1904-2005	0.00	0.00	0.00 9.83	11.53	13.11	13.00	11.13	8.96	6.74	0.00	0.00	74.30
UTE DAM	1965-2005	4.38	4.91	7.53 8.78	10.75	10.49	10.92	9.42	7.56	6.68	4.98	3.04	89.44

#### OREGON

MONTHLY AVERAGE PAN EVAPORATION (INCHES)

	 	PERIOD OF RECORD	 	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
ASTOR EXPERIMENT STN	I	1948-1973	I	0.56	0.96	1.47	2.21	3.75	3.95	4.65	4.10	2.95	1.65	0.87	0.70	27.82
BEND 7 NE	1	1991-2005	1	0.00	0.00	0.00	4.25	6.14	6.69	8.66	7.91	5.42	0.00	0.00	0.00	39.07
CORVALLIS STATE UNIV	1	1889-2005	1	0.00	0.00	1.79	2.96	4.59	5.86	7.70	7.07	5.06	2.33	0.96	0.00	38.32
COTTAGE GROVE DAM	1	1943-2005	1	0.00	1.27	2.16	3.07	4.56	5.60	7.75	6.70	4.47	2.06	0.82	0.00	38.46
DETROIT DAM	1	1954-2005	1	0.19	1.16	1.69	2.51	4.38	5.90	7.68	6.64	4.24	2.05	0.88	0.46	37.78
DORENA DAM	1	1948-2005	1	0.00	1.01	1.94	2.95	4.98	6.11	8.19	7.15	4.66	2.01	0.00	0.00	39.00
FERN RIDGE DAM	1	1943-2005	1	0.39	0.79	1.92	3.17	5.03	6.21	8.12	7.09	4.76	2.21	0.67	0.34	40.70

### Evaporator Water Balance

### C.K. Disposal E&P Landfill and Processing Facility

	January	February	March	April	May	June	July	August	September	October	November	December	Total
Rainfall (in.)	0.36	0.31	0.29	0.83	1.76	0.74	1.47	1.61	2.27	1.70	0.18	0.19	11.71
Pan Evaporation (in.)	4.49	5.33	9.42	12.36	14.31	15.16	14.14	12.33	9.25	7.26	4.68	4.20	112.93
Actual Evaporation (in.)	3.14	3.73	6.59	8.65	10.02	10.61	9.90	8.63	6.48	5.08	3.28	2.94	79.05
Net (in.)	-2.78	-3.42	-6.30	-7.82	-8.26	-9.87	-8.43	-7.02	-4.21	-4.10	-3.10	-2.75	-67.34
Net Evaporation (bbl/pond)	4,620	5,679	10,465	12,985	13,707	16,388	13,990	11,655	6,980	5,614	5,139	4,565	111,786

Notes:

1. Rainfall obtained from Hobbs FAA Airport and is average monthly rainfall from 1941-2012.

2. The input is the maximum monthly produced water than can be introduced to evaporation ponds based on water balance.

3. Evaporation rates obtained from Lake Avalon, New Mexico 1914-1979.

4. Actual evaporation rates represent 70% of reported pan evaporation rate.

5. Pond surface area 1.88 acres.

6. Based on the Hobbs Wind Rose, the wind speed in this area is below 14 mph 63% of the time.

7. The net evaporation is **306.26 bbl/pond per day** based off the total for the year of 111,786 bbl/pond.

### Mechanical Evaporation Analysis

Mechanical Evaporation Rate (GPM)	1-ME	2	3	4	5	6	7	8	9	12	18	24
10	343	686	1029	1371	1714	2057	2400	2743	3086	4114	6171	8229
20	686	1371	2057	2743	3429	4114	4800	5486	6171	8229	12343	16457
30	1029	2057	3086	4114	5143	6171	7200	8229	9257	12343	18514	24686
40	1371	2743	4114	5486	6857	8229	9600	10971	12343	16457	24686	32914
50	1714	3429	5143	6857	8571	10286	12000	13714	15429	20571	30857	41143
60	2057	4114	6171	8229	10286	12343	14400	16457	18514	24686	37029	49371

Notes:

1. Evaporation Rate per Mechanical Evaporator (ME) expressed in bbls per day

2. Wind speed <14 MPH 63% of the time.

3. US Barrel=42 Gallons

Evaporation by month	January	February	March	April	May	June	July	August	September	October	November	December	Annual BBL	BBL/Day
2-ME@10GPM	21257	19200	21257	20571	21257	20571	21257	21257	20571	21257	20571	21257	250286	686
3-ME@10GPM	31886	28800	31886	30857	31886	30857	31886	31886	30857	31886	30857	31886	375429	1029
6-ME@10GPM	63771	57600	63771	61714	63771	61714	63771	63771	61714	63771	61714	63771	750857	2057
9-ME@10GPM	95657	86400	95657	92571	95657	92571	95657	95657	92571	95657	92571	95657	1126286	3086
12-ME@10GPM	127543	115200	127543	123429	127543	123429	127543	127543	123429	127543	123429	127543	1501714	4114
18-ME@10GPM	191314	172800	191314	185143	191314	185143	191314	191314	185143	191314	185143	191314	2252571	6171
24-ME@10GPM	255086	230400	255086	246857	255086	246857	255086	255086	246857	255086	246857	255086	3003429	8229

Minimum Anticipated Mechanical Evaporation Potential

# **Permit Application**

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment L Closure Plan/Post-Closure Plan NMAC 19.15.36.8.C(9) and 19.15.36.18

November 2015 PSC Project # 01058015



PARKHILLSMITH&COOPER

### ATTACHMENT L - CLOSURE PLAN AND POST-CLOSURE PLAN

1.0	FINA	L CLOSURE ACTIVITIES	. 1
	1.1	Closure Procedures	. 1
	1.2	Post-Closure Plan	.4
	1.3	Financial Assurance	.4

### APPENDICES

APPENDIX A – COST ESTIMATE

# **1.0 FINAL CLOSURE ACTIVITIES –** NMAC 19.15.36.8.C.(9) and 19.15.36.18

In accordance with NMAC 19.15.36.8.C(9) and 19.15.36.18, a copy of the Closure Plan will be placed in the site operating record. The Closure and Post-Closure Plan will include procedures to take for sequential closure of cells following final acceptance of waste. The oilfield waste processing and disposal infrastructure is anticipated to be developed and operated over time. An outline is provided of the projected phase development; however, the order in which these improvements are constructed may change. The Plan may be modified. Changes must be submitted and approved thirty (30) days prior to the implementation of the change. This plan may also be amended at the request of the OCD per NMAC 19.15.36.18.a(5). The operator shall notify the divisional environmental bureau at least sixty (60) days prior to cessation of operations at the surface waste management facility and provide a proposed schedule for closure. If the division does not provide comments or changes, the C.K. Facility will proceed with closure activities.

### **1.1 Closure Procedures**

### A. Processing Area

### i. Treatment Plant

After removal of all liquids and solids from the system, the treatment plant will be dismantled. Piping will be removed, cleaned, and recycled for reuse, if possible. If piping is not recoverable, it will be disposed of at an OCD-approved waste facility. After the removal and disposal of all treatment plant equipment, the site will be inspected for contamination. If contamination is present in soil, the soil will be excavated and disposed of at OCD-approved waste facilities. When this is completed, testing for contamination will occur until soil meets requirements listed in NMAC 19.15.36.

### ii. Jet Wash Facility

The above-grade installations are to be removed or recycled (if possible), or disposed. The liner and gravel will be dried, removed, and disposed of onsite. The tanks will be cleaned for re-use or disposed of. If the waste capacity has been reached at the C.K. Facility, materials will be disposed of at an OCD-approved waste management facility.

### iii. Liquids Removal

Any remaining liquid (including oil and water) in the tanks will be transferred to the evaporation ponds or disposed of at an OCD-approved facility. A mechanical evaporation system will be used in the aid of evaporation for produced water taken to the ponds. To expedite solidification, soils may be introduced by C.K. Facility. Once liquids have completed the solidification process, the solidified material will be transferred to the landfill or to an OCD-approved waste facility.

### iv. Evaporation Pond Liner Removal

The C.K. Facility staff will remove all liquids and sludge from the evaporation ponds. Once solidified and passed the paint filter test, the solids will be disposed of at an OCD-approved waste facility.

The evaporation pond liner system will be dried and cleaned per NMAC 19.15.35. After cleaning, the evaporation pond liner system will be removed and disposed of at an OCD-approved facility. If geomembrane liner component of the liner is still in good condition, it may be recycled and reused.

The leak detection pipe will be removed and disposed of at an OCD-approved waste facility.

### v. Tank Removal

Liquids will be disposed of in evaporation ponds and sludge will be transferred to the solidification area. Tanks will either be reused, recycled, or disposed of at an OCD-approved waste facility within ninety (90) days of the C.K. Facility closure.

### vi. Site Sampling

The site will be sampled in accordance with Chapter 9 of United States Environmental Protection Agency (EPA) publication SW-846 - Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, once processing area tanks, equipment, and liners are removed. Sampling must occur before completing any earthwork to ensure accurate test results. Soil samples will be taken along the 150-foot sampling grid provided in Figure A.15. The soil samples will be taken at a depth of 1-foot and another sample at depths ranging between 36 to 42-inches below existing grade. Samples will be evaluated for:

- BTEX.
- TPH.
- Metals and organics listed in Water Quality Control Commission (WQCC) 20.6.2.3103. A&B.

Sample results will be submitted to OCD. Closure activities will not commence until samples indicate no contamination onsite. If contamination above allowable levels is found in the samples taken 36- to 42-inches below ground, staff will excavate to the sampled depth and proceed with sampling procedures.

### vii. Final Site Closure – Processing Area

At site sampling completion and indication of no contamination onsite, the C.K. Facility can proceed with closure activities. The evaporation ponds and stabilization and solidification area will be filled with existing berm material and onsite soil, to match top of pond elevations. Once determined no contamination is

present at the C.K. Facility at allowable levels, the processing area will be re-graded to the intended final use. Activities conducted during this period include:

- Site grading and re-contouring;
- Site revegetation Submittal of Notice of Intent (NOI) to the EPA for a Construction General Permit;
- CGP and Stormwater Pollution Prevention Plan (SWPPP) implementation; and
- Evaporation and sedimentation pond berm removal and backfilling.

Site seeding will occur per techniques listed in the Final Closure Quality Control Plan (FCQCP). The FCQCP provides soil preparation, seed mix, and seeding techniques. The facility must acquire a minimum of 70% of the natural site coverage.

### **B. Solid Waste Disposal Area**

The final cover system will be a combination of two (2) performance-based liner systems. One (1) design is for the cap and the other for the side slopes. The cap design will follow the design outlined in the NMAC but will replace the drainage layer with a geocomposite liner. The design for the cap is as follows (bottom to top):

- 12-inch foundation layer;
- 60-mil HDPE GML;
- Geocomposite liner;
- 24-inch infiltration layer; and
- 12-inch soil erosion layer.

The side slope design will be a performance-based water balance cover. With the assistance of 4:1 slopes, the majority of water will run off the side slopes and infiltrate cap. The design of the final side slope final cover is as follows (bottom to top):

- 12-inch foundation layer;
- 24-inch infiltration layer; and
- 12-inch soil erosion layer.

Final cover will be installed within one (1) year of achieving the final waste elevations. The overall final grading contours can be found in Attachment B, on sheet C-102. Site seeding will occur per techniques listed in the FCQCP. The FCQCP provides soil preparation, seed mix, and seeding techniques. The facility must acquire a minimum of 70% of the natural site coverage.

### C. Building and Structure Removal

All structures onsite will be removed, reused, or disposed of at either a New Mexico Environmental Department municipal solid waste facility or if contaminated, an OCD-approved waste facility.

### 1.2 POST-CLOSURE PLAN

The post-closure care maintenance will begin upon the completion of final closure requirements set forth in the Closure Plan. Post-closure care will continue for thirty (30) years unless the division approves decreased time. Post-closure care maintenance will consist, at a minimum, of the following requirements:

- Conduct maintenance and/or remediation activities, as needed, to maintain the integrity and effectiveness of the final cover, site vegetation, and drainage control system. Activities may include regrading, placement of additional soil, seeding, and repair of erosion control features. (70% of vegetative natural cover must be achieved).
- Conduct quarterly site inspections.
- Correct any effects of settlement, subsidence, ponded water, erosion, and other events or failures that are detrimental to the integrity of the closed landfill. Corrective measures may include regrading, placement of additional soil, and seeding.
- Control surface run-on and run-off to minimize the erosion of the final cover system. Maintenance may include cleaning of channels and inspection after any storm larger than 24-hour, 25-year.
- Maintain and operate a leachate collection system. The site must demonstrate that leachate no longer poses a threat to fresh water, public health, safety, or the environment.
- Maintain and operate the vadose monitoring system and monitor the vadose zone per Attachment H.

### A. Decreasing Post-Closure Care Period

The length of the post-closure care may be decreased by the division if the owner/operator of the C.K. Facility submits to the executive director for review and approval. Submittals must include a document certification, signed by an independent licensed professional engineer, and all applicable documentation necessary to support the certification. This documentation should demonstrate the reduced period is sufficient to protect fresh water, public health, safety, or the environment.

### **1.3 FINANCIAL ASSURANCE**

### A. Closure/Post Closure Cost Estimate

As required by NMAC 19.15.36.8.C(9), the cost estimate for closure and post-closure activities described above is presented in current dollars and assumes a third party will perform closure and post closure activities at the site. Preparation of the Cost Estimate also assumes no contamination or remedial activities are required due to releases into the environment. The current estimate for Phase I of C.K. Facility closure construction and post-closure operations is provided in Appendix A. The estimate will also be revised annually upon receiving waste. C.K. Disposal, LLC will choose a financial assurance mechanism according to NMAC 19.15.36.11.E and provide proper documentation to the OCD based on estimates provided.

### **B. Release of Financial Assurance**

Upon completion of the closure activities for the entire site and approval of the division, the owner/operator will request release of the closure portion of the financial assurance. After the post-closure care period, three (3) years for ponds/pits and thirty (30) years for landfill, and the establishment of vegetation onsite, the owner will request the release of the remainder of the financial assurance.

# APPENDIX A

# COST ESTIMATES



#### Lea County C.K. Diposal E&P Landfill and Processing Facility

Closure Cost Estimate (assume 23.6 Acres to be closed)

ITEM UNITS QUANTITY UNIT COST TOTAL COST Landfill Closure Engineering Topographic Survey HR 75 8,700.00 \$ 115.00 \$ Site Evaluation and Plans LS \$ 30,000.00 \$ 30,000.00 1 **Construction Observation** LS 1 \$ 56,500.00 56,500.00 \$ Subtotal Engineering Cost 95,200.00 \$ Contingency (10%) SY 12,000 \$ 35.00 \$ 9,520.00 Total Engineering LF 6.900 \$ 85.00 \$ 104,720.00 Construction Cap Geomembrane Liner SF 202,990 0.51 103,600.00 \$ \$ Geocomposite Drainage Layer 202,990 111,700.00 SF \$ 0.55 \$ Infiltration Layer (244nch) CY 15,036 \$ 2.00 \$ 30,100.00 Soil Erosion Layer (124nch) CY 7,518 \$ 2.00 \$ 15,100.00 Articulated Block Channel 28,000 196,000.00 SF \$ 7.00 \$ Side Slopes Infiltration Layer (244nch) CY 61,307 \$ 2.00 \$ 122,700.00 CY 30,653 Soil Erosion Layer (124nch) \$ 2.00 \$ 61,400.00 Subtotal Construction \$ 640,600.00 Contingency (10% of Subtotal) 64.060.00 \$ Total Construction \$ 704,660.00 **Evaporation Pond** Liquids Transport/Disposal BBL \$500 Transport Liquid 286 \$1.75 Disposal Liquids BBL 286 \$0.95 \$271 Remove/Transport Sludge TON 4444 \$6.50 \$28,889 4444 Disposal Sludge TON \$15.00 \$66,667 Liner Removal/Transport CY 2966 \$4.00 \$11,862 2966 **Disposal Liner** CY \$4.25 \$12,603 Pond Backfill and Contouring CY \$0.00 Soil On4site 0 \$1.00 Place and Compact Soil CY 11,853 \$3.00 \$35,557.87 Subtotal Ponds \$156,350.44 \$200.00 Sampling EACH 360 \$72,000.00 Seeding acres AC 22 \$1,200.00 \$26,412.00 Subtotal \$98,412.00 Site Work Tank Removal LS 1 \$25,000 \$25,000 \$25,000 **Building Removal** LS 1 \$25,000 Process Equipment Removal LS 1 \$25,000 \$25,000 LS 1 \$10,000 \$10,000 Earthwork Site Work Subtotal: \$85,000 **Total Closure Cost** \$1,149,142

 $\label{eq:linear} $$ \begin{tabular}{llllll} linear the linear state on the linear state on the linear state on the linear state of the linear s$ 

11/6/2015



### Lea County C.K. Diposal E&P Landfill and Processing Facility

Post Closure Cost Estimate (Based on 126 Acres Landfill area and a total of 312 Acres for the Entire Site) 11/6/2015

ITEM	UNITS	QUANTITY	UNIT COST	TOTAL COST
Engineering Costs				
Site Inspection and Record Keeping	40	HR	\$75	\$3,000
Vadose Monitoring/Lab and Report (11 monitoring	2	E۸	\$4,500	000.02
wells semi4annually)	2		φ4,500	\$9,000
Subtotal Engineering Costs				\$12,000
Construction and Maintenance Costs				
Cap and Sideslope Repairs and Revegetation	40	HR	\$75	\$3,000
Mowing (final cover twice per year) ⁽¹⁾	126	AC	\$50	\$6,300
Vadose Monitoring System Maintenance	1	LS	\$1,000	\$1,000
Perimeter Fence and Gates Maintenance	1	LS	\$1,000	\$1,000
Access and Rights of Way Maintenance	40	HR	\$75	\$3,000
Drainage System Cleanout /Repairs	40	HR	\$75	\$3,000
Subtotal Construction and Maintenance Costs				\$17,300
Leachate Management				
Inspection	1	LS	\$1,000	\$1,000
Leachate Disposal	4	EA	\$1,000	\$4,000
Subtotal Leachate Management Cost				\$5,000
Subtotal Post4Closure Costs				\$34,300
Contingency (10% of Subtotal)				\$3,430
Third Party Administration & Project Management				\$1.029
Costs (3% of Subtotal)				\$1,020
Annual Post4Closure Costs				\$38,759
30-Year Post Closure Costs				\$1,162,770

Note: Year 2015 dollars

⁽¹⁾ Based on final cap area of 126-acres at \$25 per acre per mow

# **Permit Application**

Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Attachment M Engineering Design Calculations



May 2016 REVISION 2 PSC Project # 01058015



PARKHILLSMITH&COOPER

### ATTACHMENT M – ENGINEERING DESIGN CALCULATIONS

1.0	LANDFILL VOLUMETRIC CALCULATIONS						
2.0	PIPE	STRENGTH CALCULATIONS	2				
	2.1	Pipe Strength Calculations for 6-inch Schedule 80 PVC Perforated Pipe	2				
	2.2	Loads Acting on the PVC Leachate Collection Pipe					
	2.3	PVC Correction of Load on Pipe with Perforations	4				
	2.4	PVC Deflection	4				
	2.5	PVC Wall Buckling	6				
	2.6	PVC Equipment Loading	7				
	2.7	Perforated PVC Pipe Loading Summary					
	2.8	6-inch SDR 11.0 HDPE Pipe	8				
	2.9	Correction of Load on Pipe with Perforations (HDPE SDR 11.0)	9				
	2.10	HDPE Deflection	9				
	2.11	HDPE Wall Buckling	11				
	2.12	HDPE Wall Crushing	11				
	2.13	HDPE Equipment Loading	11				
	2.14	HDPE Pipe Loading Results	12				
3.0	LINE	R DESIGN	13				
	3.1	Calculation of Tensile Stresses in Geosynthetics and Sideslope Liner Stability	14				
	3.2	Tensile Stress in Liner System	16				
	3.3	Calculation of Tensile Stresses in Geosynthetics due to Equipment Loading	18				
	3.4	Anchor Trench Pullout Analysis	19				
	3.5	Geocomposite: Double-Sided Textured Geomembrane Interface	20				
	3.6	Geosynthetic Slippage Analysis	20				
	3.7	Minimum Liner Thickness					
4.0	EROS	SION CALCULATIONS	27				
	4.1	Rainfall Erosion Loss Calculations					
	4.2	Wind Erosion Loss Calculations	30				
5.0	SETTLEMENT CALCULATIONS						
	5.1	Foundation Soils Settlement	32				
	5.2	Waste Settlement Calculations	34				
	5.3	Soil Cover Settlement Calculations	36				
	5.4	Conclusion	37				
6.0	GEO	NET COMPRESSION UNDER OVERBURDEN	38				
	6.1	Transmissivity	39				
	6.2	Summary	39				
7.0	GEO	ΓΕΧΤΙLE RETENTION	40				
	7.1	Permittivity	40				
	7.2	Porosity (GSE Drainage Design Manual)	41				
8.0	GEO	FECHNICAL DESIGN – SLOPE STABILITY	42				
	8.1	Model Input Parameters	42				
	8.2	Static Slope Stability					
	8.3	Pseudo-static Slope Stability	43				
# Lea County, New MexicoEngineering Design CalculationsC.K. Disposal E & P Landfill and Processing FacilityAttachment MPermit No. TBDMay 2016

#### APPENDICES

APPENDIX A - STATIC MODEL INPUTS AND OUTPUTS

APPENDIX B – PSEUDO – STATIC MODEL INPUTS AND OUTPUTS

APPENDIX C – ROC SCIENCE SUPPORTING DOCUMENTATION

APPENDIX D – GEOTECHNICAL ENGINEERING PRINCIPLES AND PRACTICES EXCERPT

#### TABLES

- Table 1.1 Soil Necessary for Operations
- Table 2.1 6—Inch Diameter Leachate Collection Pipes
- Table 2.2 PIPE Loading Calculation
- Table 2.3 PVC Pipe Results
- Table 2.4 SDR 11.0 HDPE Pipe Results Dncs Environmental Solutions
- Table 3.1 Geosynthetic Interface Friction Angles and Adhesions, Sideslope Liner System
- Table 3.2 Geosynthetic Interface Friction Angles and Adhesions, Floor Liner System
- Table 3.3 Translational Failure Analysis
- Table 3.4 Translational Failure Analysis Factor of Safety Summary
- Table 4.1 RUSLE Equation
- Table 4.2 C-Factor Calculation
- Table 5.1 Settlement and Angular Distortion of Foundation Soils between Points; Cross Section A-A
- Table 5.2 Waste Settlement and Angular Distortion between Points; Cross Section A-A
- Table 5.3 Soil Cover Settlement and Angular Distortion between Points; Cross Section B-B
- Table 6.1 Geonet Compression
- Table 8.0 Factor of Safety

# **1.0 LANDFILL VOLUMETRIC CALCULATIONS**

Landfill volumetric calculations were computed based on Attachment B – Engineered Design Plans. Landfill volumetric calculations include waste capacity analysis and the soil material balance. The C.K. Disposal facility has a gross airspace of approximately 24,585,056-cubic yards (yd³). Assuming a contingency of 15% for variation in waste density and other operational uses, resulting in approximately 20,897,298-cubic yards of waste capacity remaining. A cut/fill analysis was computed for the site which shows a 7,717,488-cubic yard volume of cut. Table 1.1 shows the soil needed onsite for operations (see attached calculations):

Table 1.1 – Son Necessary I	for Operations
Soil Type	Cubic Yards
Protective Soil	472,707
Final Cover	928,451
Perimeter Berm	5,124
Daily and Intermediate Cover	4,179,460
TOTAL	5,585,742
Volume of Cut	7,717,4881
Soil Remaining	27.6%

### Table 1.1 – Soil Necessary for Operations

Therefore, the site will have ample soil for use as protective cover, final cover, daily cover, intermediate cover, and waste perimeter berm.

# 2.0 PIPE STRENGTH CALCULATIONS

Pipe Strength Calculations confirm that solid or perforated pipe made from Schedule 80 polyvinyl chloride (PVC) or high-density polyethylene (HDPE) standard dimension ratio (SDR 11) solid piping will withstand structural loading and other stresses at the C.K. Disposal facility. The basic design approach consists of calculating the leachate collection pipe deflection (which cannot exceed the allowable value), with a minimum factor of safety against failure of 1.0.

Attributes	Schedule 80 PVC	HDPE
Dimension Ratio	16	11.0
Method of Joining	Gasketed	Welded
Outside Diameter (in)	6.625	6.625
Minimum Wall Thickness (in)	0.432	0.602
Nominal Weight/ft (lb/ft)	5.313	4.970
Modulus of Elasticity (psi)	400,000 ⁽¹⁾	35,000 ⁽²⁾

|--|

(1) Reference 2

(2) Reference 4

#### 2.1 Pipe Strength Calculations for 6-inch Schedule 80 PVC Perforated Pipe

To confirm 6-inch Schedule 80 PVC Perforated Collection Piping can withstand maximum stresses from overlying soil loading, pipes were analyzed for protection against ring deflection, wall buckling, and equipment loading. The following PVC pipe dimensions were used (from Reference 2):

•	Pipe Nominal Diameter:	6-inch
•	Pipe Outside Diameter (OD):	6.625-inch
•	Pipe Wall Thickness (t):	0.432-inch
•	Pipe Inner Diameter (ID):	5.76-inch
•	Perforation Hole (/FT):	12 perforation holes
•	Perforated Hole Diameter (IN):	0.5-in

#### 2.2 Loads Acting on the PVC Leachate Collection Pipe

To calculate total vertical load on pipes (P_T), pressure from each overlying layer was calculated and summed. Each layer includes:

- 3-foot thick final cover
- 1-foot thick intermediate cover
- Fifteen, 10-foot thick layers of waste for 150 feet of total waste thickness
- 2-feet of protective soil layer
- A 1-foot thick leachate collection layer

Based on the known thickness of each layer and assigned unit weights, the pressure exerted by each layer was calculated. The results for  $P_T$  are presented in Table 2.2.

Layer	Thickness (ft)	Unit Weight (pcf)	Actual Load (psf)
Firm Cover Soil	3	110	330
Intermediate Cover Soils	1	110	110
Waste	150	74	11,100
Protective Soil Layer	2	110	220
Drainage Rock above Pipe	1	130	130
Total Astual Load (D)		11,890 psf	
Total Actual Load (PT)			(82.6 psi)

 Table 2.2 – Pipe Loading Calculation

#### 2.3 PVC Correction of Load on Pipe with Perforations

Perforating pipes reduce the effective pipe length available to carry loads and resist deflection. The effect of perforations can be taken into account by using an increased load per nominal unit length of pipe. The increased vertical stress to be used equals:

Static Vertical Load per Unit Length of Pipe (W_c):

 $W_c = (P_T)(D_O)/(1 - ((n)(d)/12))$  (Reference 1)

Where:

 $P_T$  = Total Actual Load (psi)

 $D_0$  = Outside Diameter of the Pipe (in)

n = Number of Perforated Holes per Foot of Pipe

d = Diameter of Perforated Hole on the Pipe (in)

 $W_c = [(82.6 \text{ psi})(6.625)]/[1-((12)(0.5 \text{ in})/12)]$ 

 $W_c = 1,094.45 \text{ lbs/in} = 13,133.4 \text{ lbs/ft}$ 

#### 2.4 PVC Deflection

The standard formula used for solid waste industry applications in calculating flexible pipe deflection under earth loading is developed by Sprangler. This equation, also known as the Modified Iowa formula, is presented together with suggested values for the various constants in Reference 1, and is as follows:

$$\Delta X \quad (D_L)(K)(W_c)(r^3)$$
 (Reference 1)  
= (E)(I)+0.061(E')(r^3)

Where:

 $\Delta X$  = horizontal and vertical deflection of the pipe (in)

- $D_L$  = conservative value of 1.5, compensating for the lag or time dependent behavior of the soil/pipe systems (dimensionless). (Reference 1)
- $W_c$  = vertical load acting on the piper per unit of pipe length (1,094.45 lbs/in).

r = mean radius of the pipe (OD - t) = ((6.625 in - 0.432 in)/2) = 3.1 in

- E = modulus of elasticity of the pipe materials (400,000 psi) (Reference 2)
- E' = modulus of passive soil resistance in crushed rock (3,000 psi) (Reference 2)
- K = bedding constant, reflecting the support the pipe receives from the bottom of the trench (assumes bedding angle =  $180^{\circ}$ ; therefore K = 0.083) (Reference 2)

[Continued on the next page]

[Continued from previous page]

I = moment of inertia of pipe wall per unit of length (in⁴/in); for any round pipe

 $I = t^3/12$  where t is the average thickness (in) = ((0.432)^3/12) = 0.0067 in^4/in

$$\Delta X = \frac{(1.5)(0.083)(1094.45)(3.1^3)}{(400,000)(0.0067) + 0.061(3,000)(3.1^3)}$$
$$\Delta X = \frac{(4,059.3 \text{ lbs/in}^2)}{(8,131.75 \text{ lbs/in})}$$

 $\Delta X = 0.5 \text{ in}$ 

The percent (%) Ring Deflection (RD) is defined by the following equation:

 $\% RD = [\Delta X / (D_i + t)] x 100$ 

Where:

 $D_i$  = Internal Pipe Diameter t = Pipe Wall Thickness %RD = [0.5/(5.76+0.432)]x100 %RD = 8.1%

Recognizable reversal of curvature is found in buried PVC pipe at a deflection of 30% (Reference 2); this deflection is a conservative performance limit. The deflection of 8.1% has a factor of safety of 30%/8.1%=3.7.

#### 2.5 PVC Wall Buckling

Wall buckling may govern design of flexible pipes under conditions of loose soil burial, if external load exceeds the pipe material compressive strength. For a circular ring subjected to a uniform external pressure, the critical buckling pressure ( $P_{cr}$ ) is defined as:

 $P_{cr} = 2 x \{ [(E')/(1-v^2)][(E)(I)/r^3] \}^{0.5}$  (Reference 1)

Where:

 $P_{cr}$  = critical buckling pressure, psi

E' = modulus of soil reaction = 3,000 psi

E = modulus of elasticity of pipe = 400,000 psi

v = Poisson's Ratio = 0.38 for PVC pipe (Reference 2)

I = moment of inertia of the pipe wall per unit length =  $t^3/12 = 0.0067$  in⁴/in

t = pipe wall thickness = 0.432 in

r = mean radius of pipe = 3.1 in

 $P_{cr} = 2 x \{ [(3,000 \text{ psi})/(1-(0.38^2))][(400,000)(0.0067)/29.79] \}^{0.5}$ 

 $P_{cr} = 2 x \{[3,506.3][89.96]\}^{0.5}$ 

 $P_{cr} = 1,123.3 \text{ psi}$ 

The factor of safety is then determined:

 $FS = P_{cr} / Actual Total Load$ 

FS = 1,123.3 psi / 82.6 psi

FS = 13.6

#### 2.6 PVC Equipment Loading

Worst-case conditions would include equipment operating over the leachate collection pipe after 2-feet of protective soil layer has been placed. A loaded CAT 627 Scraper was used conservatively as the piece of equipment operating on top of the leachate collection pipe. The CAT 627 Scraper has the following specifications:

- Tractor Weight = 48,061 lbs
- Scraper Weight = 33,399 lbs
- Soil Load (20 cy) = 48,000 lbs
- Total Weight = 129,460 lbs
- Maximum Weight per Tire = 32,365 lbs (assuming equal distribution)
- D = Tire Width = Approximately 18 inches = 1.5 foot
- M = Tire Contact Length = Approximately 4 inches = 0.33 foot
- Tire Contact Area =  $(18 \text{ inches})(4 \text{ inches}) = 72 \text{ inches}^2 = 0.50 \text{ foot}^2$

Superimposed loads distributed over an area during equipment operations are determined from the following equation:

 $W_{SD} = (C_s)(p)(F)(B_c)$ 

Where:

 $W_{SD} = load on pipe (lbs/ft)$ 

p = intensity of distributed load (lbs/ft²)

F = impact factor = 1.2, Table 4C.4 (Reference 3)

 $B_c$  = outside diameter of pipe (ft) = 6.625 inches = 0.55 foot

 $C_s = load \ coefficient = 0.053$ 

C_s is from Table 4C.3 (Reference 3)

The table uses D/2H and M/2H to find the corresponding  $C_s$  value.

- D/2H = 1.5 ft / 2(3 ft) = 0.25
- M/2H = 0.33 ft / 2(3 ft) = 0.055

Therefore:

 $W_{SD} = (0.053)[(32,365 \text{ lbs})/(1.5 \text{ ft})(0.33 \text{ ft})](1.2)(0.55)$ 

 $W_{SD} = 2,287 \text{ lbs/ft} = 190 \text{ lbs/in}$ 

The superimposed load due to equipment loading is less than static loading conditions ( $W_c$ ) calculated as 1,094.45 lbs/in; therefore the static loading conditions govern.

#### 2.7 Perforated PVC Pipe Loading Summary

The critical design criteria of ring deflection and wall buckling for PVC pipe were evaluated and results are summarize in Table 2.3.

Design Criteria	Critical Value	Actual Value	Factor of Safety
Ring Deflection	30%	8.1%	3.7
Wall Buckling	1,123.26 psi	82.6 psi	13.6

 Table 2.3 – PVC Pipe Results

As shown, for each limiting design criterion, the factor of safety is greater than design criteria, thus the performance standard for the selected pipe is adequate.

#### 2.8 6-inch SDR 11.0 HDPE Pipe

To determine the capability of 6-inch HDPE SDR 11.0 perforated collection pipes to withstand maximum stresses from the overlying soil profile, the pipes were analyzed for adequate protection against ring deflection and wall buckling using Reference 4.

Wall buckling occurs if the total external soil pressure exceeds the pipe-soil system's critical buckling pressure, and excessive ring deflection occurs if the vertical strain in the surrounding soil envelope is greater than the allowable ring deflection of the pipe. Standard dimension ratio (SDR) is the ratio of the outside pipe diameter to the pipe wall thickness SDR = OD/t. The dimensions are:

•	Pipe Nominal Diameter:	6 inches
•	Pipe Outside Diameter (OD):	6.625 inches
•	Pipe Wall Thickness (t):	0.602 inch
•	Pipe Inner Diameter (ID):	5.35 inches
•	SDR:	11.0
•	Perforation Hole (/FT):	12 perforation holes
•	Perforated Hole Diameter (IN):	0.5 inch

The total actual load is the pressure from each overlying layer of soil and waste:

- 3-foot thick final cover
- 1-foot thick intermediate cover
- Fifteen, 10-foot thick layers of waste for 150 feet of total waste
- 2-feet of protective soil layer
- 1-foot thick leachate collection layer

Based on the known thickness of each layer and assigned unit weights, the pressure that will be exerted by each layer was calculated. The total actual load is the same load applied to the PVC pipe (82.6 psi).

#### 2.9 Correction of Load on Pipe with Perforations (HDPE SDR 11.0)

Perforating pipes reduce the effective length of pipe available to carry loads and resist deflection. The effect of perforations can be taken into account by using an increased load per nominal unit length of the pipe. The increased vertical load per unit length of pipe is calculated as follows:

Static vertical load per unit length of pipe (W_c):

 $W_c = (P_T)(D_O)/(1-((n)(d)/12))$  (Reference 1)

Where:

 $P_T = total actual load (psi)$ 

 $D_O$  = outside diameter of the pipe (in)

n = number of perforated holes per foot of pipe = 12

d = diameter of perforated hole on the pipe (in) = 0.5 in

 $W_c = [(82.6 \text{ psi})(6.625)]/[1-((12)(0.5 \text{ in})/12)]$ 

 $W_c = 1,094.45 \text{ lbs/in} = 13,133.4 \text{ lbs/ft}$ 

The design value in psi is found by dividing the design load in lbs/in by the diameter of pipe.

 $P_D = 1,094.45/6 = 182.4 \text{ psi}$ 

#### 2.10 HDPE Deflection

The ring deflection of the pipe can be calculated from the following Modified Iowa formula:

$$\Delta X = \frac{(D_L)(K)(W_c)(r^3)}{(E)(I) + 0.061(E^2)(r^3)}$$
 (Reference 1)

Where:

 $\Delta X = ring deflection (in)$ 

 $D_L$  = conservative value of 1.5, compensating for the lag or time dependent behavior of the soil/pipe systems (dimensionless). (Reference 1)

K = bedding factor = 0.083 (Reference 2)

 $W_c$  = vertical load per unit of pipe length, lb/in (1,094.45 lbs/in).

r = mean radius of the pipe (OD - t) = ((6.625 in - 0.602 in)/2) = 3.0 in

[Continued on next page]

[Continued from previous page]

E = modulus of elasticity = 35,000 psi (Reference 4) I = moment of inertia =  $t^3/12$  (in⁴/in) = ((0.602)³/12) = 0.0182 E' = soil modulus = 3,000 psi (Reference 2)

$$\Delta X = \frac{(1.5)(0.083)(1,094.45)(3^3)}{(35,000)(0.0182) + (0.061)(3,000)(3^3)}$$
$$\Delta X = \frac{(3,678.99)}{(637.0) + (4,941)}$$
$$\Delta X = 0.66 \text{ in}$$

The ring deflection is then used to determine the ring bending strain using the equation:

 $\epsilon = f_{D\,(}\Delta x/D_{M\,+}\,2C/D_{M)}$ 

Where:

 $\varepsilon$  = wall strain f_D = deformation shape factor = 6.0 (Reference 5)  $\Delta x$  = deflection from previous calculation = 0.66in

 $D_M$  = mean diameter, in

C = distance from outer fiber to wall centroid, in

C = 0.5(1.06t), where t = wall thickness

C = 0.5 x 1.06 x 0.602 = 0.319 in

$$\varepsilon = 6.0 \left( \frac{0.66}{6} \right) \left( \frac{2(0.319)}{6} \right) = 0.07 = 7.0\%$$

The wall strain of 7.0% is less than 8% (Reference 5), which has an acceptable factor of safety of 8%/7.0% = 1.14.

#### 2.11 HDPE Wall Buckling

Wall buckling may govern design of flexible pipes under conditions of loose soil burial, if the external load exceeds the compressive strength of the pipe material. To determine a factor of safety for wall buckling, the pipe critical–collapse differential pressure  $P_c$  must be calculated using the following formula (Reference 4):

 $P_c = 2.32(E)/SDR^3$  where E is the modulus of elasticity, approximately 35,000 psi

 $P_c = (2.32)(35,000)/11.0^3 = 61.0 \text{ psi}$ 

The critical-collapse pressure can then be used to determine the critical buckling pressure from the following relation (Reference 4):

$$P_{cb} = 0.0.8 \sqrt{(E')(Pc)}$$

Where:

 $P_{cb} = critical buckling pressure$ 

E' = long term degree of compaction of bedding = 3,000 psi

$$P_{cb} = 0.8 \sqrt{(3,000)(61.00)} = 342.23 \ psi$$

The factor of safety is then determined:

 $FS = P_{cb} / P_D = 342.23/182.4 = 1.88$ 

#### 2.12 HDPE Wall Crushing

To determine a factor of safety for wall crushing, the following equations were used (Reference 4):

 $S_A = ((SDR-1)/2) \times P_D$ 

Where:

 $S_A$  = actual compressive stress, psi

 $P_D$  = total external pressure on top of the pipe, psi

 $P_D = W_c/D = 1,094.45/6 = 182.4 \text{ psi}$ 

For a SDR of 11.0 the actual compressive stress is:

S_A = ((11.0-1)/2) x 182.4 = 912 psi

The factor of safety can then be found using the compressive yield strength of HDPE pipe of 1,500 psi (Reference 4):

FS = 1,500 psi/910 psi = 1.64

#### 2.13 HDPE Equipment Loading

Equipment loading on the HDPE pipe is based on the same assumptions as the PVC pipe calculation; therefore, the static vertical load will govern.

#### 2.14 HDPE Pipe Loading Results

Calculations for ring deflection, wall crushing, and wall buckling due to dead and live loading stresses for the existing and proposed 6-inch laterals were completed and Table 2.4 summarizes the results.

Design Criteria	Critical Value	Actual Value	Factor of Safety
	Dead Lo	oad Only	
Ring Deflection	8.0%	7%	1.1
Wall Buckling	342.23 psi	182.4 psi	1.88
Wall Crushing	1,500 psi	912 psi	1.64

#### Table 2.4 – SDR 11.0 HDPE Pipe Results Dncs Environmental Solutions

As shown, for each limiting design criterion, the factor of safety is greater than design criteria, thus the performance standard for the HDPE pipes is adequate.

# 3.0 LINER DESIGN

The liner design for the landfill sideslopes, consists of the following components below the waste:



The liner design for the landfill floor from top to bottom, consists of the following components below the waste:



#### 3.1 Calculation of Tensile Stresses in Geosynthetics and Sideslope Liner Stability

External shear forces will develop on the 4H:1V sideslopes assuming the placement of an initial 2-foot lift of protective soil and 10-foot lift of waste; assuming the lifts are unsupported and no adhesion. Unbalanced forces, due to assumed unsupported placement of the 2-foot protective soil layer and 10-foot waste layer, must be supported by liner components above the interface with the least amount of frictional resistance.

Interface friction angles  $(\Phi)$  and adhesion (as determined by direct shear testing) for geosynthetics will vary depending on the normal load applied to the geosynthetics. Interface friction angles and adhesion for C.K. Disposal was found based on direct shear testing on similar "silty sand" soil.

#### Table 3.1 – Geosynthetic Interface Friction Angles and Adhesions,

Coogynthetic to Coogynthetic Interface	Mohr-Coulomb Failure Envelope	
Geosynthetic to Geosynthetic Interface	Ф	Adhesion
Protective Soil Layer (SM) to Geocomposite	32°	0
Geocomposite to Double-Sided Textured HDPE FML ⁽¹⁾	26.3°	0
Double-Sided Textured HDPE FML to Nonwoven Geotextile of GCL	27.3°	0
Nonwoven Geotextile of GCL to Subgrade Soil (undrained)	28.2°	87

#### Sideslope Liner System

⁽¹⁾Average of direct shear testing values on geocomposite to double-sided texture HDPE FML

#### Table 3.2 – Geosynthetic Interface Friction Angles and Adhesions,

#### **Floor Liner System**

Coogunthatia to Coogunthatia Interface	Mohr-Coulomb Failure Envelope	
Geosynthetic to Geosynthetic Interface	Ф	Adhesion
Protective Soil Layer (SM) to Geocomposite	32°	0
Geocomposite to Smooth HDPE ⁽¹⁾	$8^{\circ} - 12^{\circ}$ Average = $10^{\circ}$	0
Geonet to Smooth HDPE FML ⁽¹⁾	$5^{\circ} - 19^{\circ}$ Average = $12^{\circ}$	0
Nonwoven Geotextile of GCL to Subgrade Soil (undrained)	28.2°	87

⁽¹⁾Reference 9

#### 3.2 Tensile Stress in Liner System

Tensile stresses in the liner system were calculated based on the assumption that waste will be placed in 10-foot thick lifts, are unsupported, and have no adhesion. The liner system must support the weight of the 10-foot thick waste lift.

#### Side Slope Liner Stability

The following calculations were performed with guidance from Reference 6. Using this guide, tensile stresses and shear stresses carried by the upper geomembrane were calculated. Waste will be placed in 10-foot lifts.

$$W_w = \frac{1}{2}\gamma_w H(H/\tan\beta) + \frac{1}{2}\gamma_s H(H/\tan\beta)$$

Where:

 $W_w$  = weight of lift per unit width

H = lift height

 $\beta$  = slope angle

 $\gamma_{\rm w}$  = unit weight of waste

 $W_w = \frac{1}{2}(74)(8)(8/\tan 14.04) + \frac{1}{2}(110)(2)(2/\tan 14.04) = 10,349 \text{ lbs/ft}$ 

$$T_{w} = K_{o}\sigma_{v}tan\Phi_{w}H$$
$$K_{o} = 1 - sin(\Phi_{w})$$
$$\sigma_{v} = 1/2\gamma_{w}H$$

Where:

 $T_w$  = frictional resistance force per unit width

 $\sigma_h$  = horizontal stress of waste lift

 $\Phi_w$  = waste friction angle

 $K_o$  = coefficient of earth pressure at rest

 $\sigma_v$  = vertical stress of waste lift

 $T_w = K_o \sigma_v \tan \Phi_w h_w + K_o \sigma_v \tan \Phi_s h_s$  $T_w = (1 - \sin 33)1/2(74)(8)\tan(33)(8) + (1 - \sin(33))(1/2(110)(2))\tan(33)(2)$ 

 $T_w = 700 \ lbs/ft + 65 \ lbs/ft$ 

 $T_w = 765 \ lbs/ft$ 

 $W_{net} = W_w - T_w$ 

Where:

 $W_{net}$  = net weight of waste  $W_{net}$  = 10,349 lbs/ft - 765 lbs/ft  $W_{net}$  = 9,584 lbs/ft

Given the net weight, we can find the normal and shear force of the weight.

 $N = W_{net} \cos\beta = (9,584 \text{ lb/ft})\cos(14.04)$  $P = W_{net} \sin\beta = (9,584 \text{ lb/ft})\sin(14.04)$ N = 9,297.7 lb/ftP = 2,323 lb/ft

The critical interface of the liner system occurs at the geocomposite to double-sided textured HDPE interface.  $F_1$  is calculated for geomposite to protective soil and  $F_2$  is calculated for geocomposite to double-sided textured HDPE.

$$\begin{split} F_1 &= Ntan \delta_1 = 9,297.7 \ tan(32) \\ F_2 &= Ntan \delta_2 = 9,297.2 \ tan(26.3) \\ F_1 &= 5,809.8 \ lbs/ft \\ F_2 &= 4,595.2 \ lbs/ft \\ F_1 &- F_2 &= 5,809.8 \ lbs/ft - 4,595.2 \ lbs/ft = 1,212.6 \ lbs/ft = 101.2 \ lbs/in \end{split}$$

According to Reference 10, there is a direct relationship between the CBR puncture resistance value and the wide width tensile strength of geotextiles. The equation below shows the relationship.

$$T_f = F_p / \pi r$$

Where:

 $T_f$  = tensile force per unit width of fabric

 $F_p$  = puncture breaking force = 575 lbs for GSE 8oz/yd² geotextile

r = radius of puncturing rod = 25 mm = 0.98 in

 $T_f = 575 \text{ lbs/}\pi(0.98 \text{ in}) = 186.76 \text{ lbs/in}$ 

 $F.S. = (T_f)/(F_1 - F_2) = 186.76 \text{ lbs/in}/101.2 \text{ lbs/in} = 1.85$ 

The Factor of Safety for the critical interface is 1.85, therefore the liner system is adequate.

#### 3.3 Calculation of Tensile Stresses in Geosynthetics due to Equipment Loading

A Caterpillar D6E dozer or equivalent will be used to place protective soil layer up the sideslope a sufficient distance to accommodate an approximate 10-foot lift of waste placed on the landfill floor.

- Unit weight of protective soil =  $110 \text{ lbs/ft}^3 \text{ dry density}$
- Internal friction angle of protective soil =  $33^{\circ}$
- Critical liner interface friction angle occurs between the HDPE geonet and the double-sided textured HDPE liner =  $26.3^{\circ}$
- Equipment loading assuming a D6N dozer:
  - $\circ$  Weight = 36,943 lbs
  - $\circ$  Track width = 24 in = 2 feet
  - Pressure distribution, assume a 2H:IV distribution; therefore, width acting on geomembrane = 20 feet
- Tensile forces acting on geomembrane:
  - $\circ$  Protective soil layer,  $F_{soil}$
  - D6E dozer, F_{dozer}
- Total resisting forces:
  - Geonet interface friction, F_{geonet}
  - Soil buttress friction at toe of slope, F_{buttress}

The minimum interface friction angle for the liner system is  $26.3^{\circ}$  and occurs between the geocomposite and the double-sided textured geomembrane.

Tensile forces acting on geomembrane:

 $F_{soil} = h_{lift}$  (unsupported slope length) (unit weight of protective soil) (sin(slope angle))

 $F_{soil} = (2 \text{ ft})(70 \text{ ft})(110 \text{ lbs/ft}^3)(\sin(14.04^\circ))$ 

Fsoil = 3,736 lbs/ft

 $F_{dozer} = [(dozer weight) / (width acting on geocomposite)] (sin(14.04^{\circ}))$ 

 $F_{dozer} = [0.5(36,943 \text{ lbs}) / 20 \text{ ft}] (\sin(14.04^{\circ}))$ 

 $F_{dozer} = 448 \ lbs/ft$ 

Total tensile force acting on geocomposite = 3,736 lbs/ft + 448 lbs/ft = 4,184 lbs/ft

Total resisting forces acting on geomembrane:

 $F_{geomembrane}$  = (weight of protective soil + weight of dozer) (cos(slope angle)) (tan(interface friction angle))

 $F_{geomembrane} = [(2 \text{ ft})(70 \text{ ft})(110 \text{ lbs/ft}^3) + (36,943 \text{ lbs} / 20 \text{ ft})] (\cos 14.04^\circ) (\tan 26.3^\circ)$ 

 $F_{geomembrane} = 8,269 \text{ lbs/ft}$ 

 $F_{buttress} = [[cos(internal friction angle of soil)] / [cos(internal friction angle of soil + slope angle)]] [[(unit weight of soil) (thickness of soil)² / sin 2 (slope angle)] tan(internal friction angle of soil)]$ 

 $F_{\text{buttress}} = \left[ \left[ \cos(33^{\circ}) / \cos(33^{\circ} + 14.04^{\circ}) \right] \left[ (110 \text{ lbs/ft}^3(2 \text{ ft})^2) / \sin(2(14.04^{\circ})) \right] \right] \\ \left[ \tan(33^{\circ}) \right]$ 

 $F_{buttress} = 747 \ lbs/ft$ 

Total resisting force acting on geomembrane = 8,269 lbs/ft + 747 lbs/ft = 9,016 lbs/ft

To summarize, tensile stress in geocomposite = 4,184 lbs/ft - 9,016 lbs/ft = -4,832 lbs/ft. A negative tensile stress indicates the geocomposite is not in tension.

#### 3.4 Anchor Trench Pullout Analysis

The anchor trench detail is shown in Attachment B, Figure 501 –Liner & Leachate Collection Details. To establish the static equilibrium equation, two imaginary and frictionless pulleys are assumed at the top edge and the bottom corner of the anchor trench. The friction force above a runout geosynthetic is always neglected in the anchor trench.

#### 3.5 Geocomposite: Double-Sided Textured Geomembrane Interface

 $\Sigma F_H = 0$  yields the following equation for the calculation of T (where T = geocomposite tensile force per unit width lbs/ft:

 $T = \frac{(Y_s)(d_{cs})(L_{ro})(\tan\delta_c) + [(1-\sin\Theta)((Y_s)(d_{cs}+0.5d_{AT}))d_{AT} + Y_s(d_{cs}+d_{AT})L_{AT}](\tan\delta_c + \tan\delta_f)}{2((1-\sin\Theta)((1-\sin\Theta)((Y_s))d_{AT} + Y_s(d_{cs}+d_{AT}))d_{AT})}$ 

$$\cos\beta$$
-( $\sin\beta$ )( $\tan\delta_c$ )

Where:

 $Y_s$  = unit weight of cover and backfill soil = 110 lbs/cf dry density

 $d_{cs} = depth of cover soil = 2 feet$ 

 $L_{ro} = runout \ length = 2 \ feet$ 

 $\delta_c$  = friction angle between the GCC and underlying soil = 28.2°

 $\Theta$  = internal friction angle of compacted backfill soil in anchor trench = 35°

 $d_{AT}$  = depth of anchor trench = 2 feet

 $L_{AT}$  = width of anchor trench = 2 feet

 $\delta_f$  = interface friction angle between the geomembrane and the compacted backfill soil =  $32^\circ$ 

 $\beta$  = sideslope angle, measured from horizontal = 14.04°

T = T

 $\cos 14.04^{\circ} - (\sin 14.04^{\circ})(\tan 28.2^{\circ})$ 

T = 1,884 lbs/ft = 157 lbs/in

The anchor trench can withstand greater yield strength than the geomembrane.

#### 3.6 Geosynthetic Slippage Analysis

To determine the factor of safety for slippage and subsequent tension in the liner geosynthetics, the method of active and passive wedges, shown in Reference 1, was used. This calculation utilizes the passive wedge which supports the sidelsope active wedge, consistent with actual field conditions. These calculations were performed along the geomembrane covered slope. To be conservative, the lowest interface friction angles (residual strength values) for the sidelsope liner system; and peak strength values for the floor liner system were used. These values taken are  $\delta_A = 20.1^\circ$  for the interface friction angle between the geomembrane on the sidelsope. Interface friction angle between the geomembrane on the floor was used. The total height of the active wedge is the maximum height of waste over the liner system sloped portion.

# Lea County, New MexicoEngineering Design CalculationsC.K. Disposal E & P Landfill and Processing FacilityAttachment MPermit No. TBDMay 2016

For the purposes of this calculation, the following assumptions and nomenclature were used from the literature:

$\mathbf{W}_{\mathbf{P}} =$	Total weight of the passive wedge
$N_P =$	Normal force acting on the bottom of the passive wedge
$F_P =$	Frictional force acting on the bottom of the passive wedge (parallel to the bottom of the passive wedge)
$E_{HP} =$	Normal force from the active wedge acting on the passive wedge
$E_{VP} =$	Frictional force acting on the side of the passive wedge
$FS_P =$	Factor of safety for the passive wedge
$\delta_P$ =	Minimum interface friction angle of multi-layer liner components beneath the passive wedge = $10^{\circ}$ (assumed interface friction angle between the geotextile of the GCL and the smooth HDPE geomembrane)
$\Phi_S =$	Friction angle of the solid waste = $33^{\circ}$
<i>a</i> =	Angle of the waste slope, measured from horizontal
Ф=	Angle of the landfill cell subgrade, measured from horizontal = $1.15^{\circ}$
$W_A =$	Weight of the active wedge
$\mathbf{W}_{\mathrm{T}} =$	Total weight of active and passive wedges
$N_A =$	Normal force acting on the bottom of the active wedge
$F_A =$	Frictional force acting on the bottom of the active wedge (parallel to the bottom of the active wedge)
$E_{HA} =$	Normal force from the active wedge acting on the active wedge, $E_{HA} = E_{HP}$
E _{VA} =	Frictional force acting on the side of the active wedge, $E_{VA} = E_{VP}$
FS _A =	Factor of safety for the active wedge
b =	Horizontal length of active wedge (cell sideslope at maximum depth) = 280 ft

[Continued on next page]

[Continued from previous page]

$b_P =$	Horizontal length of the passive wedge = $420$ feet
$h_t =$	Total height of the wedges $= 140$ feet
$\delta_A =$	Minimum interface friction angle of multi-layer liner components beneath the active wedge = $26.3^{\circ}$
$\beta =$	Angle of sideslope, measured from the horizontal = $14.04^{\circ}$
FS =	Factor of safety for the entire solid waste mass

The active wedge is considered first:

 $W_A = 1/2((b^*h_a^*y)+(b^*h_b^*y))$ 

$$W_A = 1/2(280 \text{ft}*70 \text{ft}*74(\text{lbs/ft}^3)+280 \text{ ft}*70 \text{ ft}*74(\text{lbs/ft}^3))=1,450,400 \text{ lbs/ft}$$

The passive wedge is then considered by multiplying the cross sectional area by the unit weight of waste:

 $W_P = 1/2(b_P*h_t*y) = W_P = 1/2(420ft*140ft*74(lbs/ft^3)) = 2,175,600 lbs/ft$ 

 $W_T = 1,450,400 \text{ lbs/ft} + 2,175,600 \text{ lbs/ft} = 3,626,000 \text{ lbs/ft}$ 

Factor of safety:

 $aFS^3 + bFS^2 + cFS + d = 0$ 

Where:

 $a = W_A \sin \beta \cos \Theta + W_P \cos \beta \sin \Theta = 394,155 \text{ lbs/ft}$ 

 $b = (W_A tan \delta_P + W_P tan \delta_A + W_T tan @_S) sin\beta sin\Theta - (W_A tan \delta_A + W_P tan \delta_P) cos\beta cos\Theta = -1,049,414 lbs/ft$ 

 $\label{eq:constraint} \begin{array}{l} c = -[W_T tan \mathbb{Q}_S(sin\beta\ cos\Theta\ tan \delta_P + cos\beta\ sin\Theta\ tan \delta_A) + (W_A\ cos\beta\ sin\Theta + W_P\ sin\beta\ cos\Theta)\ tan \delta_A\ tan \delta_P] = -174,586\ lbs/ft \end{array}$ 

$$d = W_T \cos\beta \cos\Theta \tan\delta_A \tan\delta_P \tan \Theta_S = 199,037 \text{ lbs/ft}$$

and:

 $\beta = 14.04^{\circ}$  - sideslope angle

 $\Theta = 1.15^{\circ}$  - subgrade angle

 $\delta_P = 10^\circ$  - minimum friction angle of bottom liner system

[Continued on next page]

[Continued from previous page]

 $\delta_A = 26.3^\circ$  - minimum friction angle of sideslope liner system

 $Q_S = 33^\circ$  - friction angle of waste

 $aFS^3 + bFS^2 + cFS + d = 0$ 

 $394,155FS^3 - 1,049,414FS^2 - 174,586FS + 199,037 = 0$ 

This equation is then solved by trial and error using an Excel spreadsheet. Table 3.4 shows results:

Assumed FS	Result
1	-630,808
2.75	20,075
2.76	-10,105

# Table 3.4 – Translational Failure AnalysisFactor of Safety Summary

This factor of safety against translational geosynthetic failure considering active and passive soil wedges is 2.75. This indicates the passive wedge will support the sideslopes active wedge without slipping. Therefore, the geosynthetic liner system is not in tension, and the proposed liner system design is compatible with calculated external forces.

#### 3.7 Minimum Liner Thickness

According to Reference 6, "liner deformation can result from differential setting of subgrade soils, from localized settlement of soft areas beneath the liner, or from other anomalous conditions, wherein settlement places the liner in tension. Adequate thickness must be provided to resist potential damaging deformation within a margin of safety."

The landfill is located on the west flank of a topographic high ridge, locally named Rattlesnake Ridge, otherwise known as the Dockum Red Bed Ridge or Red Bed Ridge. Given the stability of the location and the proposed engineered liner foundation, it is not anticipated that soft areas or sinkholes will be encountered. The landfill liner system consists of a multilayer system shown below. The foundation will be constructed with 6-inches recompacted subgrade (90% of ASTM D698) supporting the liner system. The following is the floor liner system:



For conservatism, only one layer of geomembrane was analyzed to determine the minimum thickness. As stated above, the liner system will be a multiple liner system and is therefore capable of withstanding more forces than just a single liner system. The resulting required thickness that is calculated for a single liner will be a conservative value given the landfill's multiple liner system.

"The required thickness for a synthetic liner can be calculated using the equation below for localized settlement. It is a one-dimensional force balance at equilibrium in the x – direction

with the geomembrane tension resolved into its horizontal and vertical components", (Reference 6).

$$t_{reqd} = \frac{\sigma_n x (\tan \delta_u + \tan \delta_L)}{\sigma_{allow} (\cos \beta - \sin \beta \tan \delta_L)}$$

Where:

t = liner thickness (inches)

 $\sigma_n$  = applied overburden pressure = 81.7 psi (See calculations below)

 $\beta$  = angle of force applied to synthetic liner = 45° (Reference 6)

 $\sigma_{allow} =$  liner allowable stress at yield = 2100 psi (Reference 6)

x = mobilized liner deformation = 1.695 inches (See calculation below)

 $\delta_U$  = friction angle between the liner and the upper interface = 10° (Table 3.2)

 $\delta_L$  = friction angle between the liner and the lower interface = 12° (Table 3.2)

$$\sigma_n = H_w \gamma$$

 $\sigma_n = H_w \gamma_w + H_s \gamma_s$ 

Where:

 $H_w = height of waste = 150 ft$ 

 $\gamma_{\rm w}$  = unit weight of waste

 $H_s$  = height of soil (protective cover, intermediate cover, and final cover)

 $\gamma_s = unit weight of waste$ 

 $\sigma_n = (150 \text{ ft})(74 \text{pcf}) + 6 \text{ ft} (110 \text{ pcf})$ 

$$\sigma_n = 11,760 \text{ lbs/ft}^2 = 81.7 \text{ psi}$$

Using the equation given for 60-mil liner for embedment depth that is provided by Reference 6 we can use the following equation calculate a value for "x".

$$x = 13.15e^{-0.0236\sigma_n}$$

Where:

x = mobilized liner deformation

 $\sigma_n$  = applied overburden pressure = 81.7 psi

$$x = 13.15e^{-0.0236(81.7)}$$
$$x = 1.91$$

# Lea County, New MexicoEngineering Design CalculationsC.K. Disposal E & P Landfill and Processing FacilityAttachment MPermit No. TBDMay 2016

Typical values for "x" can range from 2-inches to 10-inches; therefor, a value of x = 2 was used for the calculation.  $\beta$  was estimated to be 45° as the worst case scenario (Reference 6).

$$t_{reqd} = \frac{81.7\text{psi} * 2\text{in} * (\tan 10^\circ + \tan 12^\circ)}{2100 \text{ psi} * (\cos 45^\circ - \sin 45^\circ \tan 12^\circ)}$$
$$t_{reqd} = 0.0543 \text{ inches} = 54.3 \text{ mils}$$

Since the calculated minimum liner thickness of 54.3 mils is less than the 60 mils used to calculate embedment depth, the 60 mil liner thickness is acceptable.

 $FS = (t_{60mil})/(t_{reqd}) = 60 \text{ mils}/54.3 \text{ mils} = 1.10$ 

The liner thickness calculation above only assumes a single liner system. The landfill is designed as a multiple Geosynthetic liner system which will add additional liner support.

### 4.0 EROSION CALCULATIONS

The purpose of erosion calculation is to determine potential soil losses due to wind and rainfall erosion during operations and following final cap installation. Erosion calculations project the soil loss from rainfall at approximately 4.51 tons/acre/year (t/a/y), which is below the NRCS established criterion of 5.0 t/a/y. The wind erosion loss from the site is estimated at 1.2 t/a/y, also below the NRCS established criterion of 2.5 t/a/y. The total soil loss from the site potentially caused by water and wind erosion is calculated at 5.71 t/a/y.

#### 4.1 Rainfall Erosion Loss Calculations

Revised Universal Soil Loss Equations (RUSLE) was used to model rainfall erosion:

 $A = R \times K \times LS \times C$ 

Where:

A = soil loss per unit area, typically in t/a/y

 $\mathbf{R} = rainfall/runoff$  factor, which varies with location and climate

K = soil erodibility factor, which depends on soil type

LS = topographic factor that accounts for the site slope gradient and length

C = cover factor that accounts for ground cover (bare slope = 1)

	Final Cover Crown	Final Cover Sideslope	Total	
RUSLE Soil Loss	0.19	4.32	4.51	

#### **Engineering Design Calculations** Lea County, New Mexico C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Table 4.1							
RUSLE Equation							
R	-	Rainfall Value					
	=	45	for this area	Fig 2-1 NRCS Agricultural Handbook #703			
K	-	Soil Erodibility Factor		From Soil Survey local soils (silty clay loam) and table			
		0.15		8.4, page 261, Hann, Barfield text			
L	-	Slope Length Factor					
	=	(L/72.6) ^M		eq 4-1, NRCS Agricultural Handbook #703			
		L =	horizontal slope length in feet				
		L =	400				
		M =	slope length exponent	table 8.6, page 263, Haan, Barfield text			
		M =	0.64				
	=	2.98					
S	-	Slope Factor					
	=	(16.8 sin(Q))- 0.5	for slopes sin Q > 0.09	eq. 4-5 NRCS Agricultural Handbook #703			
		Q =	slope angle				
		Q =	14.04 degrees	degrees = 0.24504423 radians			
	=	3.58					
C	-	Covering Management Fa	actor				
	=	0.06		see C factor calculation sheet			
Р	-	Support Practices Factor					
	=	1		Conservative Estimate			
A	-	Calculated Soils loss in tons/acre-year					
	=	RKLSCP					
	=	4.32	tons/acre/year				

#### Lea County, New Mexico Engine C.K. Disposal E & P Landfill and Processing Facility Permit No. TBD

Table 4.2							
C - Factor Calculation							
C _{niu} - prior land use subfactor	Cate - prior land use subfactor						
= 1 for rangeland	table 8-10.B	, page 271, I	Hann, Barfield text				
•							
C _{cc} - canopy cover subfactor	From Soil Su	rvey local so	oils (sand) and table 8.4, page 261,				
	Hann, Barfield text						
$= 1-F_{c}^{*} \exp(-0.1H)$	eq 8.52, pag	e 270, Hann	, Barfield text				
F _c = fraction of surface covered by ca	nopy						
FC = 0.5	conservative	e estimate					
H = average canopy height in feet	_						
H = 1	conservative	e estimate fo	or root depth				
= 0.55	-						
C _{sc} - surface cover subfactor							
$= \exp[-bR_{c}(6/6+R_{G}))^{0.08}]$	eq. 8.53, page 270, Hann, Barfield text						
b = constant							
b = 4.5							
R _c = fraction ground cover	conservative estimate taken and adjusted from value of						
R _c = 0.5	R _c = 0.5						
R _G = surface roughness variable	eq. 8.55, pag	ge 271, Haar	n, Barfield text				
$R_G = (25.4 * R_R - 6)*(1 - exp(-0.0015R_S))$	*(exp(-0.14P _T	))					
R _R =	random rou	ghness					
R _R =	0.8 conservative estimate - Ag. Handbook #703						
R _s =	total root and buried residue [lb/acre]						
R _s =	1200	Table 8.10, j	page 271, Haan, Barfield text				
P _T =	average yearly rainfall						
P _T =	11.72	inches	National Weather Service Data				
R _g =	2.32						
= 0.11							
C _{SR} - surface roughnes subfactor	-						
= exp(-0.026*R _G ) R _G = surface roughness variable	eq. 8.62, pag	ge 273 in Ha	an, Barfield text see above for				
R _G = 2.32	R _G = 2.32 references and equation						
= 0.94							
C _{SR} - soil moisture subfactor	soil moisture subfactor						
= 1 for rangeland	see page 273 in Haan, Barfield text						
C - Cover Management Factor							
$= C_{PLU}C_{CC}C_{SC}C_{SR}C_{SM}$	$= C_{PLU}C_{CC}C_{SC}C_{SR}C_{SM}$						
= 0.06 **							
**Recommendations of George Foster of the Agricultural Research Service is to use a minimum value of 0.005. Therefore,							
f necessary, for conservative estimates, use a C value of 0.005							

#### 4.2 Wind Erosion Loss Calculations

Purpose: to estimate the quantity of soil loss as a result of wind using the Wind Erosion Equation (WEQ).

Wind Erosion Equation: E = f(I,K,C,L,V)

Where:

E = potential average annual soil loss (t/a/y)

I = soil erodibility index (t/a/y)

K = ridge roughness factor (0.5-1.0)

C = the climactic factor

L = unsheltered distance along prevailing wind erosion direction across area to be evaluated

V = equivalent vegetative cover

#### Find I:

The soil onsite primarily consists of silty sands of the soil type SM. The I value for silty sands is listed at 134 t/a/y.

I = 134

Find K:

The ridge roughness factor (K) is a measure of the effect from tilled ridges and planting implements. These reduce erosion by absorbing and deflecting wind energy and trapping blown particles. No wind-breaking ridges are planned for the final cover; therefore, a conservative K value of 1.0 has been chosen.

K = 1.0

Find C:

The climactic factor (C) is based on the average wind velocity and precipitation-evaporation index (PE index). The isolinear map of New Mexico (Agronomy Tech Note 27, June 1992) was used to find the C-value of 150 for the site.

C = 150

Find L:

L represents the longest unsheltered distance along the prevailing wind direction for the area to be evaluated. The prevailing wind direction was determined using data obtained from the New Mexico Climate Center at Hobbs Lea County Airport. There, the prevailing wind is from the south. The longest unsheltered distance is approximately 2,300 feet; therefore,

L = 2,300 feet

#### Find V:

The equivalent vegetative cover is a value that relates the kind, amount, and orientation of vegetative material to the equivalent in lbs/acre of a small grain residue reference condition. This reference condition is defined as 10-inch long stalks of small grain lying flat in rows spaced 10 inches apart, perpendicular to the direction of the wind.

The landfill vegetation plan required vegetation cover to be seeded per NRCS recommendations with blue and sideoats gramma grasses, as well as dropseed varieties. This plan will yield 1,500 - 2,000 lbs/acre of vegetative cover (assuming good germination and adequate precipitation). When this value is converted to the Blue Gamma equivalent, it yields an equivalent vegetative factor of over 10,000 lbs/acre. A highly conservative factor of 3,000 lbs/acre is therefore used for V.

#### V = 3,000 lbs/acre

#### Solve for E:

Using the E-Table, a value of E = 1.2 t/a/y of soil loss due to wind erosion is expected. This value is less than the NRCS recommended maximum value of 2.5 t/a/y.

## **5.0 SETTLEMENT CALCULATIONS**

The final cover slope, liner, and leachate collection piping after settlement must be consistent with the performance specifications for leachate collection and stormwater control. The following calculations show the designed grades for final cover and leachate collection system will allow adequate drainage even after settlement has occurred.

#### 5.1 Foundation Soils Settlement

The methodology for estimating floor potential settlement involves selecting points along the landfill floor surface, then computing settlement at each point, and evaluating the resultant change in surface elevation. Points were conservatively selected from a crosssection where the waste and fill material is thickest. Reference 1 presents a method to determine landfill foundation settlement that evaluates elastic, primary, and secondary settlement. The foundation soils at the C.K. Disposal site are predominately a mixture of sand with varying amounts of fines and clay. Recent laboratory testing evaluated a mixture of sands and silty sand (i.e., USCS Classifications SM) in the excavation area. SM soil properties are used in the following equations.

$$Ze = \left(\frac{\Delta\sigma}{Ms}\right)Ho$$

Where:

 $Z_e$  = elastic settlement of soil layer (ft)

H_o = initial thickness of soil layer (ft)

 $\Delta \sigma$  =increment of vertical effective stress, lb/ft²

 $Ms = constrained modulus of soil, lb/ft^2$ 

The constrained modulus is provided in this equation:

$$M_{S} = \frac{E_{S}(1-v_{s})}{(1+v_{s})(1-2^{*}v_{s})}$$

Where:

 $M_S = constrained modulus of soil, lb/ft^2$ 

 $E_s$  = elastic modulus of soil (lb/ft²) found using Reference 1

 $E_{s} = (4,700 \text{ psi} + 1,600 \text{ psi}) / 2 = 10,350 (144) = 1,490,400 \text{ lbs/ft}^{2}$ 

 $v_s$  = Poisson's Ratio for soil = 0.39, found using the same method to estimate the elastic modulus of soil

# Lea County, New MexicoEngineering Design CalculationsC.K. Disposal E & P Landfill and Processing FacilityAttachment MPermit No. TBDMay 2016

#### Elastic Foundation Soil Settlement

Thickness of Waste = 150 feet (assume entire thickness of waste from intermediate cover to top of protective soil layer; this provides a conservative analysis)

Unit Weight of Soil =  $110 \text{ lb/ft}^3$  dry density

Unit Weight of Waste =  $74 \text{ lb/ft}^3$ 

 $\Delta \sigma$ = (waste effective stress) + (protective soil layer effective stress) + (intermediate cover effective stress) + (final cover effective stress)

 $\Delta \sigma = (150 \text{ft})(74 \text{lb/ft}^3) + (2 \text{ft})(110 \text{lbs/ft}^3) + (1 \text{ft})(110 \text{lbs/ft}^3) + (3.0 \text{ft})(110 \text{lbs/ft}^3) = 11,760 \text{lbs/ft}^3$ 

 $M_{S} = \frac{1,490,400 \text{ lb/ft}^{2} (1-0.29)}{(1+0.29)(1-2*0.29)} = 1,953,090 \text{ lbs/ft}^{2}$ 

 $H_0$ =150 ft the full thickness of the compressible SM soils; the compressible soil is considered incompressible at the depth of 40 feet.

$$Ze = \left(\frac{11,760}{1,953,090}\right) 40ft = 0.241ft$$

The attached spreadsheet has settlement calculations for points shown in Figure 1. The required 2% slope of the leachate collection system is not adversely affected by foundation settlement. Table 5.1 summarizes the foundation soil settlement calculations.

#### 5.2 Waste Settlement Calculations

Estimated waste settlement points on the final cover surface were selected and settlement was computed at each point. Points were selected from Cross-Sections A-A and B-B (Figure 1). Reference 1 presents a method for determining settlement in landfills. This method is based on developed soils consolidation theory, which relates settlement to layer thickness and changes in void ratio.

The primary settlement is estimated using this equation:

$$\Delta H_{c} = C_{c} \left( \frac{H_{o}}{1 + e_{o}} \right) \log \left( \frac{\sigma_{i}}{\sigma_{o}} \right)$$

Where:

 $\Delta H_C$  = primary settlement

 $C_C/(1+e_o) = 0.006$  (Reference 11, Appendix D)

 $H_0$  = initial thickness of the waste layer before settlement (assume entire thickness of waste from intermediate cover to the top of protective soil layer; this provides a conservative analysis) = 157 ft

 $\sigma_o$  = previously applied pressure in waste layer (assumed to equal the compaction pressure = 1,000 lbs/ft²)

 $\sigma_i$  = total overburden pressure applied at the mid-level of the waste layer (lbs/ft²)

Long-term secondary settlement is estimated by the equation below:

$$\Delta H_{s} = C_{a} \left( \frac{H_{o}}{1 + e_{o}} \right) \log \left( \frac{t_{i}}{t_{o}} \right)$$

Where:

 $\Delta H_S$  = secondary settlement

 $C_a = 1/3 [C_C/(1+e_o)] = 0.002$  (Reference 11, Appendix D)

 $H_{O}$  = waste thickness at start of secondary settlement =  $H-H_{c}$ 

 $t_1$  = starting time of secondary settlement (1 year)

 $t_2$  = ending time of secondary settlement = assume 30 years

Settlement is estimated at key locations shown on the landfill Cross-Sections A-A and B-B (Figure 1). An example calculation is demonstrated as follows:

#### Primary Waste Settlement

Maximum Thickness of Waste = 150 feet

$$\Delta H_{c} = C_{c} \left( \frac{H_{o}}{1 + e_{o}} \right) \log \left( \frac{\sigma_{i}}{\sigma_{o}} \right)$$

Where:

$$\begin{split} &C_C/(1+e_o) = 0.006 \\ &H_O = 157 \text{ ft} \\ &\sigma_o = 1,000 \text{ lbs/ft}^2 \\ &\sigma_i = 0.5[(157 \text{ ft})(74 \text{ lbs/ft}^3) + 4.0 \text{ ft} (110 \text{ lbs/ft}^2)] = 6,029 \text{ lbs/ft}^2 \\ &\Delta H_C = 0.006 \text{ x } 157 \text{ x } \log \frac{6,029 \text{ lb/ft}^2}{1,000 \text{ lbs/ft}^2} \end{split}$$

 $\Delta H_C = 0.702 \text{ ft}$ 

Secondary Waste Settlement

 $H_0 = 157 \text{ ft} - 0.702 \text{ ft} = 156.298 \text{ ft}$ 

 $\Delta H_{S} = 0.002 \text{ x } 156.298 \text{ x } \log \frac{30 \text{ years}}{1 \text{ year}} = 0.46 \text{ ft}$ 

Total waste settlement = 0.735 ft + 0.46 ft = 1.2 ft

The waste settlement is 1.2 ft, which has nominal impact on the corresponding calculations for slope, runoff, etc. A summary of potential waste settlement is provided in Table 5.2.
### 5.3 Soil Cover Settlement Calculations

The final cover soil layer consisting of vegetative, barrier, and intermediate cover layers will also experience nominal settlement due to its own weight. The method for evaluating settlement of the soil cover and cushion layers is based on this equation:

Primary Soil Settlement

$$\Delta H_{\rm p} = C_{\rm c} \left( \frac{H_{\rm p}}{1 + e_{\rm s}} \right) \log \left( \frac{P_{\rm o} + \Delta P}{P_{\rm o}} \right)$$

 $C_C/(1+e_o) = 0.0006$ 

Thickness of Soil = (H) = 3.0 feet of final cover + 1 foot of intermediate cover soil + 2 feet of protective soil layer = 6 feet

Unit Weight of Soil =  $110 \text{ lbs/ft}^3 \text{ Dry Density}$ 

 $\Delta P = (3.0 \text{ ft})(110 \text{ lbs/ft}^3) + (1 \text{ ft})(110 \text{ lbs/ft}^3) + (2.0 \text{ ft})(110 \text{ lbs/ft}^3) = 660.0 \text{ lbs/ft}^2$ 

 $P_0 = (H/2)(110 \text{ lbs/ft}^3) = 3.0(110) = 330 \text{ lbs/ft}^2$ 

$$\Delta H_p = (0.006)(6.0 \text{ ft}) \log \left( \frac{330 \frac{\text{lbs}}{\text{ft}^2} + 660 \frac{\text{lbs}}{\text{ft}^2}}{330 \frac{\text{lbs}}{\text{ft}^2}} \right)$$

 $\Delta H_P = 0.017 \text{ ft}$ 

Secondary Soil Settlement

$$\Delta H_{s} = C_{s} \left( \frac{H_{o}}{1 + e_{s}} \right) \log \left( \frac{t^{2}}{t^{1}} \right)$$

$$\begin{split} C_A &= 1/3 [C_C/(1+e_o)] = 0.002 \\ H_O &= 6.0 \text{ ft} - 0.017 \text{ ft} = 5.983 \text{ ft} \\ \Delta H_S &= 0.002 \ (5.983 \text{ ft}) \log 30/1 = 0.018 \text{ ft} \end{split}$$

The maximum settlement of the final cover is the sum of primary and secondary settlement at point A21. The soil final cover layer settlement is equal to 0.017 ft + 0.018 ft = 0.035 ft. Table 5.3 summarizes the settlement in the final cover.

### 5.4 Conclusion

Settlement projections have been calculated for the landfill foundation, waste mass, and for landfill final soil cover. Settlement estimates include elastic deformation and both primary and secondary consolidation in the foundation soils, waste, and cover materials. The greatest value of projected settlement in both the foundation soils and waste occurs where waste thickness is greatest.

Maximum final settlement of landfill foundation, waste mass, and landfill cover is the sum of primary and secondary settlement. The foundation soil settlement is equal to 0.241 foot, waste settlement is equal to 1.2 feet, and final cover layer settlement is calculated at 0.035 foot. Maximum total settlement that could occur on the final cover is the sum of the foundation soil, waste, and cover settlement (i.e.: 0.241 ft + 1.2 ft + 0.035 ft = 1.476 ft).

The final cover slope, liner, and leachate collection pipe after settlement is adequate and consistent with the performance specifications for leachate collection system and stormwater controls and the New Mexico Oil Conservation Division.





# C. K. DISPOSAL E & P LANDFILL & PROCESSING FACILITY

NMED PERMIT NO.

NEW LANDFILL SITE & PROCESSING FACILITY

LEA COUNTY, NEW MEXICO





**FIGURE 1** 

 LIMIT OF WASTE
 EXISTING GRADE
 BASE GRADE
 TOP OF WASTE SETTLEMENT POINT LOCATION

DEPTH OF WASTE

	Table 5.1							
SETTLEME	ENT AND ANG	ULAR DISTC	ORTION OF F	OUNDATION	SOILS BETW	EEN POINTS	S; CROSS SEC	CTION A-A
Point Location	Total Settlement	Distance Between Points	Angular Distortion	Distortion Direction	Design Base Grade	Design Slope Between	Updated Base Grade	Update Slope Between
	(6)	(6)	(2()		Elevation	Points	Elevation	Points
۸1	(ft)	(ft)	(%)		(ft) 2271-16	(%)	(ft) 2271-11	(%)
AI	0.05	100	0.067	$\uparrow$	5571.10	25.00	5571.11	2.43
A2	0.12	100	0.007		3351.85	2.50	3351.73	2.15
	-	100	0.040	$\uparrow$				2.46
A3	0.16				3350.94	2.50	3350.78	
		100	0.035	$\uparrow$				2.46
A4	0.19				3353.01	2.50	3352.82	
		100	0.000	$\downarrow$				2.50
A5	0.18	400		•	3354.84	2.50	3354.66	0.50
• • •	0.21	100	0.000	个	2252.70	2.50	2252 55	2.50
Ab	0.21	100	0.000	•	3352.76	2.50	3352.55	2 50
Δ7	0.21	100	0.000	I	3350.67	2 50	3350.46	2.30
	0.21	100	0.000	$\uparrow$	3330.07	2.50	5550.40	2.50
A8	0.22	100	0.000		3352.05	2.50	3351.83	2.50
		100	0.000	$\uparrow$				2.50
A9	0.22				3354.13	2.50	3353.91	
		100	0.000	$\uparrow$				2.50
A10	0.22				3353.68	2.50	3353.46	
		100	0.000	$\uparrow$				2.50
A11	0.23				3351.62	2.50	3351.39	
		100	0.000	$\uparrow$				2.50
A12	0.24	100	0.000	•	3351.12	2.50	3350.88	2.50
A12	0.24	100	0.000	个	2252 12	2 50	2252.00	2.50
A13	0.24	100	0.000		3353.13	2.50	3352.89	2 50
Δ14	0.24	100	0.000	V	3354.46	2 50	3354 22	2.50
714	0.24	100	0.000	$\uparrow$	5554.40	2.50	5554.22	2.50
A15	0.24				3352.32	2.50	3352.08	
		100	0.000	$\downarrow$				2.50
A16	0.24				3350.18	2.50	3349.94	
		100	0.000	$\downarrow$				2.50
A17	0.23				3351.95	2.50	3351.72	
		100	0.000	$\downarrow$				2.50
A18	0.23		0.000		3353.98	2.50	3353.75	
A10	0.22	100	0.000	$\checkmark$	2252.02	2 50	2252.01	2.50
AI9	0.22	100	0.000	,l.	3333.03	2.50	3332.81	2 50
A20	0.22	100	0.000	V	3350.91	2 50	3350.69	2.50
	0.22	100	0.000	Ŷ	5550.51	2.50	5550.05	2,50
A21	0.22			*	3350.81	2.50	3350.59	
		100	0.000	$\downarrow$				2.50
A22	0.21				3352.77	2.50	3352.56	
		100	0.000	$\downarrow$				2.50
A23	0.21				3353.65	2.50	3353.44	
		100	0.000	$\downarrow$				2.50
A24	0.20				3351.62	2.50	3351.42	
	0.10	100	0.000	↓ ↓	22.02.07		22.0.15	2.50
A25	0.16	100	0.001	1	3349.62	2.50	3349.46	25.00
۸26	0.10	100	-0.001		2267.04	25.00	3366.04	25.00
A20	0.10	100	-0.001	J.	5507.04	23.00	5500.94	25.00
Δ27	0.02	100	5.001	¥	3392.04	25.00	3392.02	23.00
	0.02	1		1	0002.07	-0.00	3332.02	1

	Table 5.1 Continued							
SETTL	SETTLEMENT AND ANGULAR DISTORTION OF FOUNDATION SOILS BETWEEN POINTS; CROSS SECTION B-B							
Point Location	Total Settlement	Distance Between Points	Angular Distortion	Distortion Direction	Design Base Grade Elevation	Design Slope Between Points	Updated Base Grade Elevation	Update Slope Between Points
	(ft)	(ft)	(%)		(ft)	(%)	(ft)	(%)
B1	0.13				3371.57	25	3371.44	. ,
		100	0.203	$\uparrow$				24.80
B2	0.34				3346.59	25.00	3346.25	
		100	0.142	$\uparrow$				2.36
B3	0.48				3336.63	2.50	3336.15	
		100	0.094	$\uparrow$				2.41
B4	0.57				3338.64	2.50	3338.07	
		100	0.016	$\uparrow$				2.48
B5	0.59			•	3340.66	2.50	3340.07	
5.0	0.00	100	0.008	$\uparrow$		0.50		2.49
B6	0.60	100	0.000	•	3342.67	2.50	3342.07	2.40
07	0.60	100	0.008	T	2244.60	2 50	2244.00	2.49
В7	0.60	100	0.009		3344.09	2.50	3344.09	2.40
DQ	0.61	100	0.008	.1.	2246 70	2 50	2246.00	2.49
DO	0.01	100	0.008	<b></b>	3340.70	2.30	5540.05	2.40
RQ	0.62	100	0.008	I	33/8 69	2 50	33/8 07	2.49
65	0.02	100	0.008	<b>小</b>	5548.05	2.30	3348.07	2 / 9
B10	0.63	100	0.000	I	3350.68	2 50	3350.05	2.43
510	0.05	100	0.008	$\wedge$	3330.00	2.50	3330.03	2,49
B11	0.64	100	0.000		3352.66	2.50	3352.02	
		100	0.008	$\uparrow$				2.49
B12	0.64			· · ·	3354.65	2.50	3354.01	
		100	-0.002	$\downarrow$				2.50
B13	0.64				3352.96	2.50	3352.32	
		100	-0.002	$\downarrow$				2.50
B14	0.64				3350.95	2.50	3350.31	
		100	-0.002	$\rightarrow$				2.50
B15	0.64				3348.93	2.50	3348.29	
		100	-0.002	$\checkmark$				2.50
B16	0.63				3346.92	2.50	3346.29	
		100	-0.002	$\downarrow$				2.50
B17	0.63	100	0.000	1	3344.90	2.50	3344.27	
540	0.00	100	-0.002	$\checkmark$				2.50
B18	0.63	100	0.004	1	3342.89	2.50	3342.26	2.50
D10	0.62	100	-0.004	$\checkmark$	2240.97	2 50	2240.25	2.50
B19	0.62	100	0.001	1	3340.87	2.50	3340.25	2 50
P20	0.62	100	-0.001	$\checkmark$	2220.06	2 50	2220 24	2.50
DZU	0.02	100	0 0 0 0	1	5556.60	2.50	5556.24	2 50
R21	0.54	100	-0.000	¥	3336 81	2 50	3336 30	2.33
021	0.34	100	-0 171	٦.	5550.04	2.30	5550.50	25 17
B22	0.37	100	U.1/1	¥	3354.40	25.00	3354.03	20.17
		100	-0.201	$\checkmark$		_0.00		25.20
B23	0.16			*	3379.40	25.00	3379.24	
		I						

	Table 5.2						
WASTE SET	WASTE SETTLEMENT AND ANGULAR DISTORTION BETWEEN POINTS;						
	(	CROSS SECTION A-A					
Point	Total	Distance Between	Angular	Distortion			
Location	Settlement	Points	Distortion	Direction			
	(5+)	(5+)	(0/)				
A 1	(ft)	(ft)	(%)				
AI	0.08	100	0.21	<b></b>			
Δ2	0.39	100	0.51	I			
A2	0.39	100	0.22	<u>^</u>			
۵3	0.61	100	0.22	1			
	0.01	100	0.21	<b>小</b>			
Δ4	0.82	100	0.21	1			
,,,,	0.02	100	-0.04	J.			
A5	0.78	200	0.01	*			
		100	0.14	$\uparrow$			
A6	0.92		-				
		100	0.05	$\uparrow$			
A7	0.97						
		100	0.02	$\uparrow$			
A8	0.99						
		100	0.01	$\uparrow$			
A9	1.00						
		100	0.03	$\uparrow$			
A10	1.03						
		100	0.05	$\uparrow$			
A11	1.08						
		100	0.04	$\uparrow$			
A12	1.12						
		100	0.01	$\uparrow$			
A13	1.13						
		100	0.26	$\uparrow$			
A14	1.39						
		100	-0.25	$\checkmark$			
A15	1.14						
		100	-0.003	$\downarrow$			
A16	1.13						
		100	-0.04	$\downarrow$			
A17	1.09						
		100	-0.04	$\downarrow$			
A18	1.05	400	0.00				
410	1.00	100	-0.02	$\checkmark$			
A19	1.03	100	0.00	1			
120	1.02	100	0.00	$\checkmark$			
AZU	1.03	100	0.02	1			
٨ ٦ 1	1.00	100	-0.02				
AZI	1.00	100	_0.04	1			
۸۵۵	0.06	100	-0.04	V			
A22	0.50	100	-0.03	.1.			
Δ23	0 02	100	0.03	¥			
123	0.55	100	-0.06	لل ا			
A74	0.86	100	0.00	¥			
7,127	0.00	100	-0.21	٦.			
A25	0.65			¥			
		100	-0.35	$\downarrow$			
A26	0.30			*			
		100	-0.29	$\downarrow$			
A27	0.01		-	-			
i	i						

	Table 5.2 Continued						
WASTE SETTLEMENT AND ANGULAR DISTORTION BETWEEN							
	POINTS: CROSS SECTION B-B						
Point	Total	Distance Between	Angular	Distortion			
Location	Settlement	Points	Distortion	Direction			
	(ft)	(ft)	(%)				
B1	0.08						
		100	0.32	$\uparrow$			
B2	0.40						
		100	0.29	$\wedge$			
B3	0.69	100	0.25	I			
	0.05	100	0.21	•			
		100	0.21	T			
B4	0.90						
		100	0.038	$\uparrow$			
B5	0.94						
		100	0.018	$\uparrow$			
B6	0.96			-			
	0.50	100	0.018	<b>小</b>			
	0.07	100	0.018	1			
В7	0.97						
		100	0.018	个			
B8	0.99						
		100	0.018	$\uparrow$			
B9	1.01						
		100	0.019	个			
P10	1.02	100	0.015	1			
BIU	1.05	100	0.010	•			
		100	0.019	个			
B11	1.05						
		100	0.019	$\uparrow$			
B12	1.07						
		100	-0.006	$\downarrow$			
B13	1.06			-			
	2.00	100	-0.006	J			
D14	1.06	100	-0.000	v			
B14	1.06	100	0.000				
		100	-0.006	$\checkmark$			
B15	1.05						
		100	-0.006	$\checkmark$			
B16	1.04						
		100	-0.006	$\checkmark$			
B17	1 04			-			
017	1.04	100	0.006	1			
540	1.02	100	-0.006	$\vee$			
818	1.03						
		100	-0.010	$\checkmark$			
B19	1.02						
		100	-0.002	$\checkmark$			
B20	1.02						
-		100	-0 20	L			
D <b>7</b> 1	0.02	100	0.20	¥			
BZ1	0.82	400	0.00	 			
		100	-0.36	$\checkmark$			
B22	0.46						
		100	-0.35	$\checkmark$			
B23	0.11						

Table 5.3					
SOIL COV	/ER SETTLEME	NT AND ANGULAR I	DISTORTION	BETWEEN	
	POIN	ITS; CROSS SECTION	A-A		
Point	Total	Distance Between	Angular	Distortion	
Location	Settlement	Points	Distortion	Direction	
	(5+)	(6+)	(0/)		
۸1	(ft)	(ft)	(%)		
AI	0.15	100	0.26	•	
Δ2	0.39	100	0.20	1	
- 7.2	0.35	100	0.15	$\wedge$	
Δ3	0.54	100	0.15		
713	0.54	100	0.13	$\uparrow$	
A4	0.68	200	0110		
		100	-0.03	$\downarrow$	
A5	0.65			•	
		100	0.27	$\uparrow$	
A6	0.92				
		100	-0.15	$\downarrow$	
A7	0.77				
		100	0.01	$\uparrow$	
A8	0.78				
		100	0.01	$\uparrow$	
A9	0.79				
		100	0.02	$\uparrow$	
A10	0.81				
		100	0.03	$\uparrow$	
A11	0.84				
		100	0.02	$\uparrow$	
A12	0.86				
		100	0.01	$\uparrow$	
A13	0.86				
		100	0.15	$\uparrow$	
A14	1.01				
		100	-0.14	$\checkmark$	
A15	0.87				
		100	-0.144	$\downarrow$	
A16	0.87	100			
	0.04	100	0.00	$\checkmark$	
A17	0.84	100	0.02	1	
A10	0.82	100	-0.02	$\checkmark$	
AIO	0.82	100	0.02	1	
A10	0.91	100	-0.05	V	
A13	0.01	100	-0.01	J.	
Δ20	U 8 U	100	-0.01	¥	
	0.00	100	0.00	J	
A21	0.79	100	0.00	¥	
,,	0.75	100	-0.01	با	
A22	0.76	100	0.01	•	
	0.70	100	-0.03	Ŷ	
A23	0.75				
		100	-0.02	$\downarrow$	
A24	0.71			-	
		100	-0.17	$\downarrow$	
A25	0.57				
		100	-0.24	$\downarrow$	
A26	0.33				
		100	-0.29	$\downarrow$	
A27	0.04				

Table F. 2 Cantinuad						
		Table 5.3 Continued	1			
SOIL COVER SETTLEMENT AND ANGULAR DISTORTION BETWEEN						
	POIN	ITS; CROSS SECTION	B-B			
				<b>a</b>		
Point	Total	Distance Between	Angular	Distortion		
Location	Settlement	Points	Distortion	Direction		
	(f+)	(f+)	(0/)			
	(11)	(11)	(%)			
B1	0.13					
		100	0.29	个		
B2	0.43					
		100	0.20	$\uparrow$		
B3	0.63					
		100	0.14	$\uparrow$		
R4	0.77			•		
	0.77	100	0.024	<b>小</b>		
	0.70	100	0.024	1		
85	0.79			•		
		100	0.011	个		
B6	0.80					
		100	0.011	$\uparrow$		
B7	0.81					
		100	0.011	$\uparrow$		
B8	0.82			•		
	0.02	100	0.011	<u>^</u>		
	0.84	100	0.011	1		
B9	0.84					
		100	0.011	$\uparrow$		
B10	0.85					
		100	0.011	$\uparrow$		
B11	0.86					
		100	0.012	$\uparrow$		
B12	0.87			•		
	0.07	100	-0.003			
D12	0.97	100	0.005	¥		
DID	0.87	100	0.002			
		100	-0.003	$\checkmark$		
B14	0.86					
		100	-0.003	$\downarrow$		
B15	0.86					
		100	-0.003	$\downarrow$		
B16	0.86					
		100	-0.003	J.		
B17	0.85	100	0.005	•		
01/	0.05	100	0.000	1		
<b>D</b> 10	0.07	100	-0.003	$\vee$		
В18	0.85					
		100	-0.006	$\downarrow$		
B19	0.84					
		100	-0.001	$\checkmark$		
B20	0.84					
		100	-0.13	۲		
B21	0.72		0.10	¥		
021	0.72	100	0.25	1		
	0.17	100	-0.25	$\vee$		
B22	0.47			L		
		100	-0.29	$\downarrow$		
B23	0.18					

# 6.0 GEONET COMPRESSION UNDER OVERBURDEN

C.K. Disposal will utilize a 200-mil geonet onsite for leachate collection. The site's leachate collection was modeled using the HELP Model. The HELP Model uses a hydraulic conductivity of 10 cm/sec for the estimated geocomposite flow rate. The geonet has a tendency to compress when subjected to weight and time. Table 6.1 shows how different loading on the geocomposite affects drainage. A sample calculation follows:

- 200-mil geonet
- $y_w = 74 \text{ pcf}$
- $y_s = 110 \text{ pcf}$
- Maximum height of waste over geocomposite = 160 feet
- 50% compressibility at 20,000 psf

 $t_o = t_i + (t_c - t_i)((P_o-P_i)/(P_t-P_i))$ 

Where:

 $t_o = thickness after loading$ 

 $t_c$  = thickness of geonet at 20,000 psf = 0.1 inch

 $t_i = initial \ thickness = 0.2 \ inch$ 

 $P_0 = loading on geocomposite = (160 \text{ ft})(74 \text{ pcf}) + (6 \text{ ft})(110 \text{ pcf}) = 12,500 \text{ lbs/ft}^2$ 

 $P_i = initial \ loading$ 

 $P_t = total compressibility$ 

$$\begin{split} t_o &= t_i + (t_c - t_i)((P_o - P_i) \ / \ (P_t - P_i)) \\ t_o &= 0.2 + (0.1 - 0.2)((12{,}500 - 0) \ / \ (20{,}000 - 0)) \\ t_o &= 0.1375 \ inch \end{split}$$

A factor of safety was assumed to be 1.5 to account for geotextile intrusion, creep deformation, chemical clogging, and biological clogging.

### 6.1 Transmissivity

 $T_{FS}=T/FS$ 

Where:

 $T_{FS} = transmissivity$  with factor of safety

T = transmissivity of geocomposite

FS = 1.5

 $T_{FS} = ((5.76E - 4 (Tenax Geocomposite testing)) / (1.5)$ 

 $T_{FS} = 3.84E - 4$ 

With maximum soil and waste profile weight applied to the geocomposite, a new hydraulic conductivity valve is calculated.

$$K = T_{FS} / t$$
  
K = (3.84E - 04m²/s) / (0.1375 in)

K = 10.99 cm/s

### 6.2 Summary

The assumed hydraulic conductivity of 10 cm/sec used in the HELP model is less than the value calculated after the geocomposite is subjected to the loading of the waste and cover soil. Therefore, the 10 cm/sec is a conservative representation of the C.K. Disposal leachate collection system. Table 6.1 is a detailed summary of the geocomposite compression calculation.

Base/Design Geocomposite:

GSE	Fahri	net	HE	
GGE	гари	net	FIF -	

T =	9.00E-05 m2/s	@	10,000 psf
t =	0.2 in	@	unloaded

#### 1. Geocomposite Thickness

Assume the geocomposite will undergo linear compression due to the weight of soil and waste.

Unloaded g Compressib	eocomposit pility at 20,0	e thickness = 000 psf =		0.2 50	in %
Unit weight Unit weight	of waste = of soil =		74.0 110	pcf = pcf	
Fill	d _w ¹	d _s ²	P ³	t ⁴	
Condition	(ft)	(ft)	(psf)	(in)	
Interim	40	3	3290	0.22	
Interim	80	3	6250	0.17	
Interim	120	3	9210	0.15	
Final	160	6	12500	0.14	

1,998 lb/CY





1. d_w is the depth of waste above the geocomposite

2. d_s is the depth of soil above the geocomposite

3. P is the pressure on the geocomposite due to the weight of the waste and soil.

4. t is the thickness of the geocomposite after being subjected to linear compression.

2. Factors of safety for Strength and Environmental Conditions.

	Fill Condition					
Factor of Safety	Interim (40' Waste)	Interim (80' Waste)	Interim (120' Waste)	Final (160' Waste)		
Geotextile Intrusion	1.0	1.10	1.10	1.25		
Creep Deformation	1.0	1.00	1.00	1.00		
Chemical Clogging	1.0	1.10	1.10	1.10		
Biological Clogging	1.0	1.10	1.10	1.10		
FS Factor	1.00	1.33	1.33	1.50		

#### 3. Compute the hydraulic conductivity

Fill	d _w	Р	t	T ¹	ES	T _{FS} ²	k ³
Condition	(ft)	(psf)	(in)	(m ² /s)	FS	(m ² /s)	(cm/s)
Interim	40	3290	0.22	8.10E-04	1.00	8.10E-04	14.73
Interim	80	6250	0.17	7.08E-04	1.33	5.32E-04	12.41
Interim	120	9210	0.15	6.04E-04	1.33	4.54E-04	11.60
Final	160	12500	0.14	5.76E-04	1.50	3.84E-04	10.99

1. T is the geocomposite Transmissivity value.

2.  $T_{\rm FS}$  is the geocomposite Transmissivity taking into account the FS.

3. k is the geocomposite hydraulic conductivity input

k = T_{FS}/t

# 7.0 GEOTEXTILE RETENTION

Retention design is typically based on an upper limit to the largest geotextile opening size. According to Carrol (1983), the design of the geotextile should have the following relationship:

 $O_{95} < (2-3) d_{85}$ 

Where:

 $O_{95}$  = apparent opening size

 $d_{85}$  = soil particle size in which 85% of the material by weight is finer

Based on the onsite soil testing, the  $d_{85}$  for the soil is approximately 0.2 mm. According to GSE documentation, the apparent opening size for the 8 oz geotextile is 0.1 mm to 0.2 mm.

$$O_{95} < (2-3) d_{85}$$
  
 $0.2 < (2.5)(0.2)$   
 $0.2 < 0.5$ 

### 7.1 Permittivity

Permittivity is defined by ASTM D4491 as "the volumetric flow rate of water per unit crosssectional area per unit head under laminar flow conditions in the normal direction through a geotextile." Designers rely primarily on the hydraulic conductivity of the geotextile, which is related to permittivity by the following equation:

 $\Psi = K/t$ 

Where:

 $\Psi$  = permittivity of the geotextile (sec⁻¹)

K = hydraulic conductivity of the geotextile (m/sec)

t = thickness of the geotextile (m)

According to GSE product specifications for the FabriNet 200-mil geocomposite, they specify the geotextile has a water flow rate of 95  $\text{gpm/ft}^2$ 

 $K = (95 \text{ gpm/ft}^2)(0.133681 \text{ ft}^2/\text{gal})(1 \text{ min} / 60 \text{ sec})(0.3048 / 1 \text{ ft})$ 

 $K=0.06\ m/s$ 

Geotextile thickness = 100 mil = 0.00254 meter

 $\Psi = K/t = (0.06 \text{ m/s} / 0.00254 \text{ m}) = 23.6 \text{ sec}^{-1}$ 

### 7.2 Porosity (Reference 7)

Reference 7 show that the porosity of geotextiles, geonets or geocomposites can be calculated by the equation below:

n = 1 - (M/pt)

Where:

n = porosity m = mass per unit area =  $8 \text{ oz/yd}^2 = 0.027 \text{ g/cm}^2$ p = density of polymeric compound = 0.94 t = thickness of geosynthetic material = 0.254 cm

Since the density of high density polyethylene is approximately constant around  $0.94 \text{ g/cm}^3$ , porosity of the material primarily depends on its thickness and mass per unit area. In general, the higher the M/t ratio, the higher the geosynthetic porosity.

$$\begin{split} n &= 1 - (M/pt) \\ n &= 1 - ((0.027 \text{ g/cm}^2) / (0.94 \text{ g/cm}^3)(0.254 \text{ cm})) \\ n &= 0.887 \end{split}$$

# 8.0 GEOTECHNICAL DESIGN – SLOPE STABILITY

Final cover slope stability was analyzed under static and pseudo-static conditions for the CK Disposal Facility. Both scenarios were analyzed for circular failure using Bishop and Janbu simplified calculation methods. Janbu simplified analysis was selected as a redundant check of the Bishop simplified method. Both static and pseudo-static scenarios were analyzed using Slide 7.0, a RocScience program. A summary table (below) of the analyses run on the critical cross section of the landfill shows that final cover slope design is adequate for static and pseudo-static conditions.

	<b>Bishop Simplified</b>	Janbu Simplified	
Static			
East Slope	2.544	2.635	
West Slope	2.598	2.590	
Pseudo-static			
East Slope	1.926	1.919	
West Slope	1.900	1.894	

 Table 8.0 – Factor of Safety

### 8.1 Model Input Parameters

Grab samples from geotechnical drilling investigations were obtained from the site and tested by Terra Testing, LLC in Lubbock, Texas. These soils were identified as "Caliche" Silty Sand, "Red Bed" Sand, and "Sand" Silty Sand. Drilling logs, from the monitor wells drilled at the site, identified clayey sand, silty sand, and claystone. In order to construct the in-situ soil profile, both clayey sand and silty sand were considered to be "Caliche" Silty Sand, which is non-plastic and has a dry density of 102.2-pcf. The full depth of excavation will take place in this soil. Because excavated soil will be used as final cover on side slopes and top slopes, the same soil parameters were applied to final cover slopes. Side slopes will have 4-feet of cover, and top slopes will have 5-feet of cover. A unit weight of 2,000 pounds per cubic yard was converted to 74-pcf and used for waste properties. This value is used consistently throughout this permit application. Because no cohesion information was known about waste profile in final slope conditions, a cohesion value of 0-psf was used for waste analysis.

Reference 8 presented a table outlining descriptive properties of rock. This table listed the typical density of clastic sedimentary rock as 130 to 150-pcf. A typical value of 140-pcf was assumed for claystone identified at this site. A very conservative cohesion value of 2,000-psf was input into the model for the cohesion value of claystone. Reference 8 is attached to this report in Appendix C.

### 8.2 Static Slope Stability

The East-West cross section of the landfill site was identified as the critical cross section for slope stability analysis. This cross section is also representative of the entire landfill, as

geometry is specified as uniform across all side slopes. RocScience Slide 7.0 was used to analyze the east and west side slopes of the East-West cross section. Although side slopes are specified as uniform, slight variations in perimeter drainage channels and transport roadways at the toe of slope warranted that each slope be checked for stability. Detailed Slide 7.0 model input information for static slope stability can be seen in Appendix A, along with Slide 7.0 output graphics.

### 8.3 Pseudo-static Slope Stability

The model input geometry and slopes identified for static slope stability were utilized for pseudo-static slope stability as well. The mapped Peak Ground Acceleration (PGA) at the site is 0.116 g (where  $g = 32.2 \text{ ft/s}^2$ ). A detailed report showing seismic properties of the location was generated at earthquake.usgs.gov and is attached in Appendix C. Per Reference 6 a typical horizontal seismic loading coefficient of 0.5*PGA was used. A conservative  $k_H$  of 0.8*PGA was used for this design. A vertical seismic loading coefficient of 0.66*k_H was also applied to the model.

The resulting seismic loading coefficients are  $k_H = 0.8$  and  $k_v = 0.5$ . When these parameters were input to the static slope stability model in Slide 7.0, Factors of Safety greater than 2.0 were resultant for both slopes. A minimum accepted Factor of Safety is 1.1 for pseudo-static slope stability. Detailed Slide 7.0 model input information for pseudo-static slope stability can be seen in Appendix A, along with Slide 7.0 output graphics

#### REFERENCES

- 1. Gray, Donald, Robert M. Koerner, and Xian Quede, *Geotechnical Aspects of Landfill Design and Construction*. New York: Prentice Hall, 2002. Print.
- 2. Handbook of PVC Design. Uni-Bell PVC Pipe Association, 2001. Print.
- 3. Parametrix, Inc. Solid Waste Landfill Design Manual. Washington State Department of<br/>Ecology.June1987.Web.3May2016.<https://fortress.wa.gov/ecy/publications/documents/87013.pdf>.
- 4. Driscopipe, Inc., Polyethylene Piping Systems Manual. 2008.
- 5. Chevron Phillips Chemical Company LP. *The Performance Pipe Engineering Manual*. CPChem Performance Pipe. Chevron Phillips, 2002. Web. 3 May 2016. <a href="http://www.cpchem.com/en-us/Pages/default.aspx">http://www.cpchem.com/en-us/Pages/default.aspx</a>>.
- 6. Richardson, Clinton P., *Municipal Landfill Design Calculations: An Entry Level Manual of Practice*. California: UBuildABook, LLC, 2009. Print.
- 7. Bachus, Robert, Mengjia Li, Dhani Narejo, Richard Thiel, and Te-Yang Soong, *GSE Drainage Design Manual*. GSE Environmental, June 2007. Web. 3 May 2016. <a href="https://www.gseworld.com/content/documents/product-sheets/Drainage_Design_Manual.pdf">https://www.gseworld.com/content/documents/product-sheets/Drainage_Design_Manual.pdf</a>>
- Koloski, Jon, Signmund Schwarz, and Donald Tubbs. *Geotechnical Properties of Geologic Materials*. Geotechnical Properties of Geologic Materials. 1989. Web. 3 May 2016. <u>http://www.tubbs.com/geotech/geotech.htm</u>
- 9. Sangeeta, Lewis P., and Hari D. Sharma, *Waste Containment Systems, Waste Stabilization and Landfills: Design and Evaluation.* New York: John Wiley and Sons. 1994. Print.
- 10. Koerner, Robert M., Designing with Geosynthetics. 6th ed., Vol. 1. 2012. Print.
- Coduto, Donald P., Man-chu R. Yeung, and William A. Kitch. *Geotechnical Engineering Principles and Practices*. 2nd ed. Upper Saddle River: Pearson Higher Education, 2011. Print.

# APPENDIX A STATIC MODEL INPUTS AND OUTPUTS



Method Name	Min FS
Bishop simplified	2.644
Janbu simplified	2.635

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
Waste		74	Mohr-Coulomb	0	33	None	0
Clayey Sand (SC)		102	Mohr-Coulomb	0	35	None	0
Claystone		140	Mohr-Coulomb	2000	35	None	0





3600 3800 4000		56	.750
1200 4400 460		2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5	.000 .250 .500 .750 .250 .500 .750 .000 .250 .500 .750 .000 .250 .500
00 4800	Safe	ty F 0 0 0 1 1 1	actor .000 .250 .500 .750 .000 .250 .500 .750

32,00

Method Name	Min FS
Bishop simplified	2.644
Janbu simplified	2.635

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
Waste		74	Mohr-Coulomb	0	33	None	0
Clayey Sand (SC)		102	Mohr-Coulomb	0	35	None	0
Claystone		140	Mohr-Coulomb	2000	35	None	0







# Slide Analysis Information CK Disposal Facility, East Slope

# **Project Summary**

File Name:	EAST SLOPE STATIC
Slide Modeler Version:	7.014
Project Title:	CK Disposal Facility, East Slope
Analysis:	Final Cover
Company:	Parkhill, Smith & Cooper Inc.
Date Created:	4/19/2016, 5:02:51 PM

### **General Settings**

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Left to Right
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

### **Analysis Options**

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

### Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Advanced Groundwater Method:	None

### **Random Numbers**

Pseudo-random Seed:10116Random Number Generation Method:Park and Miller v.3

### Surface Options

Surface Type:CircularSearch Method:Grid Search

Radius Increment:5Composite Surfaces:DisabledReverse Curvature:Invalid SurfacesMinimum Elevation:Not DefinedMinimum Depth:Not DefinedMinimum Area:Not DefinedMinimum Weight:Not Defined

#### Seismic

Advanced seismic analysis:NoStaged pseudostatic analysis:YesStaged pseudostatic method:Effective Stress

### **Material Properties**



Property	Waste	Clayey Sand (SC)	Claystone
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	74	102	140
Cohesion [psf]	0	0	2000
Friction Angle [deg]	33	35	35
Water Surface	None	None	None
Ru Value	0	0	0

### **Global Minimums**

#### Method: bishop simplified

FS	2.643640
Center:	2976.733, 4816.811
Radius:	1421.530
Left Slip Surface Endpoint:	2505.464, 3475.672
Right Slip Surface Endpoint:	2767.289, 3410.795
Resisting Moment:	9.04137e+007 lb-ft
Driving Moment:	3.42005e+007 lb-ft
Total Slice Area:	1153.23 ft2
Surface Horizontal Width:	261.825 ft
Surface Average Height:	4.40459 ft

#### Method: janbu simplified

FS	2.634950
Center:	2976.733, 4711.511
Radius:	1323.079
Left Slip Surface Endpoint:	2502.035, 3476.522
Right Slip Surface Endpoint:	2819.884, 3397.762
Resisting Horizontal Force:	112374 lb
Driving Horizontal Force:	42647.6 lb
Total Slice Area:	2221 ft2
Surface Horizontal Width:	317.85 ft
Surface Average Height:	6.98758 ft

#### Valid / Invalid Surfaces

#### Method: bishop simplified

Number of Valid Surfaces: 1741 Number of Invalid Surfaces: 905

#### Error Codes:

Error Code -102 reported for 6 surfaces Error Code -106 reported for 35 surfaces Error Code -107 reported for 12 surfaces Error Code -1000 reported for 852 surfaces

#### Method: janbu simplified

Number of Valid Surfaces: 1741 Number of Invalid Surfaces: 905

#### **Error Codes:**

Error Code -102 reported for 6 surfaces Error Code -106 reported for 35 surfaces Error Code -107 reported for 12 surfaces Error Code -1000 reported for 852 surfaces



The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

#### **Slice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 2.64364



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	4.77986	118.392	-19.2592	Clayey Sand (SC)	15.875	0	6.00498	15.875	22.6708	0	22.6708
2	4.77986	350.528	-19.0552	Clayey Sand (SC)	47.0472	0	17.7964	47.0472	67.1874	0	67.1874
3	4.77986	573.385	-18.8515	Clayey Sand (SC)	77.0329	0	29.139	77.0329	110.01	0	110.01
4	4.77986	786.997	-18.648	Clayey Sand (SC)	105.833	0	40.0331	105.833	151.138	0	151.138
5	4.77986	991.396	-18.4448	Clayey Sand (SC)	133.448	0	50.4789	133.448	190.575	0	190.575
6	5.31874	1299.76	-18.2304	Waste	146.824	0	55.5386	146.824	226.08	0	226.08
7	5.31874	1466.05	-18.0049	Waste	165.773	0	62.7063	165.773	255.258	0	255.258
8	5.31874	1623.24	-17.7796	Waste	183.729	0	69.4985	183.729	282.907	0	282.907
9	5.31874	1771.36	-17.5546	Waste	200.691	0	75.9146	200.691	309.026	0	309.026
10	5.31874	1910.44	-17.3299	Waste	216.661	0	81.9556	216.661	333.617	0	333.617
11	5.31874	2040.51	-17.1055	Waste	231.64	0	87.6216	231.64	356.682	0	356.682
12	5.31874	2161.62	-16.8813	Waste	245.627	0	92.9124	245.627	378.219	0	378.219
13	5.31874	2273.79	-16.6574	Waste	258.625	0	97.8291	258.625	398.234	0	398.234
14	5.31874	2377.04	-16.4338	Waste	270.633	0	102.371	270.633	416.724	0	416.724
15	5.31874	2471.42	-16.2104	Waste	281.651	0	106.539	281.651	433.69	0	433.69
16	5.31874	2556.96	-15.9873	Waste	291.681	0	110.333	291.681	449.134	0	449.134
17	5.31874	2633.68	-15.7644	Waste	300.722	0	113.753	300.722	463.057	0	463.057
18	5.31874	2701.61	-15.5418	Waste	308.776	0	116.8	308.776	475.457	0	475.457
19	5.31874	2760.78	-15.3194	Waste	315.842	0	119.472	315.842	486.339	0	486.339
20	5.31874	2811.22	-15.0972	Waste	321.921	0	121.772	321.921	495.7	0	495.7
21	5.31874	2852.96	-14.8753	Waste	327.014	0	123.698	327.014	503.541	0	503.541
22	5.31874	2886.02	-14.6536	Waste	331.119	0	125.251	331.119	509.862	0	509.862
23	5.31874	2910.44	-14.4321	Waste	334.238	0	126.431	334.238	514.666	0	514.666
24	5.31874	2926.22	-14.2109	Waste	336.371	0	127.238	336.371	517.951	0	517.951
25	5.31874	2933.42	-13.9898	Waste	337.518	0	127.672	337.518	519.715	0	519.715
26	5.31874	2932.03	-13.769	Waste	337.678	0	127.732	337.678	519.964	0	519.964
27	5.31874	2922.1	-13.5484	Waste	336.853	0	127.42	336.853	518.692	0	518.692
28	5.31874	2903.65	-13.328	Waste	335.041	0	126.735	335.041	515.904	0	515.904
29	5.31874	2876.69	-13.1078	Waste	332.243	0	125.676	332.243	511.596	0	511.596
30	5.31874	2841.26	-12.8878	Waste	328.459	0	124.245	328.459	505.769	0	505.769
31	5.31874	2797.37	-12.6679	Waste	323.689	0	122.441	323.689	498.424	0	498.424
32	5.31874	2745.04	-12.4483	Waste	317.932	0	120.263	317.932	489.56	0	489.56
33	5.31874	2684.31	-12.2289	Waste	311.189	0	117.712	311.189	479.177	0	479.177
34	5.31874	2615.18	-12.0096	Waste	303.458	0	114.788	303.458	467.273	0	467.273
35	5.31874	2537.68	-11.7905	Waste	294.74	0	111.49	294.74	453.848	0	453.848
36	5.31874	2451.84	-11.5716	Waste	285.035	0	107.819	285.035	438.904	0	438.904
37	5.31874	2357.66	-11.3529	Waste	274.341	0	103.774	274.341	422.438	0	422.438
38	5.31874	2255.17	-11.1343	Waste	262.659	0	99.3551	262.659	404.449	0	404.449
39	5.31874	2144.39	-10.9159	Waste	249.988	0	94.562	249.988	384.939	0	384.939
40	5.31874	2025.34	-10.6976	Waste	236.328	0	89.3949	236.328	363.905	0	363.905
41	5.31874	1898.03	-10.4796	Waste	221.678	0	83.8533	221.678	341.346	0	341.346
42	5.31874	1762.48	-10.2616	Waste	206.037	0	77.9369	206.037	317.261	0	317.261
43	5.31874	1618.71	-10.0438	Waste	189.404	0	71.6452	189.404	291.651	0	291.651
44	5.31874	1466.74	-9.82619	Waste	171.78	0	64.9786	171.78	264.512	0	264.512
45	5.31874	1306.58	-9.6087	Waste	153.164	0	57.9368	153.164	235.847	0	235.847
46	5.03522	1052.78	-9.39713	Clayey Sand (SC)	140.256	0	53.0541	140.256	200.301	0	200.301
47	5.03522	835.203	-9.19148	Clayey Sand (SC)	111.374	0	42.129	111.374	159.055	0	159.055
48	5.03522	608.108	-8.98595	Clayey Sand (SC)	81.1668	0	30.7027	81.1668	115.916	0	115.916
49	5.03522	371.507	-8.78054	Clayey Sand (SC)	49.633	0	18.7745	49.633	70.8819	0	70.8819
50	5.03522	125.416	-8.57524	Clayey Sand (SC)	16.7711	0	6.34394	16.7711	23.9512	0	23.9512

Global Minimum Query (janbu simplified) - Safety Factor: 2.63495

EAST SLOPE STATIC.slim



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	5.80225	229.894	-20.891	Clayey Sand (SC)	25.1884	0	9.55935	25.1884	35.9701	0	35.9701
2	5.80225	680.472	-20.6223	Clayey Sand (SC)	74.6527	0	28.3317	74.6527	106.607	0	106.607
3	5.80225	1112.68	-20.3541	Clayey Sand (SC)	122.227	0	46.3868	122.227	174.545	0	174.545
4	6.40397	1640.05	-20.0724	Waste	152.572	0	57.9032	152.572	234.925	0	234.925
5	6.40397	1988.25	-19.7775	Waste	185.209	0	70.2894	185.209	285.177	0	285.177
6	6.40397	2318.82	-19.483	Waste	216.285	0	82.0832	216.285	333.029	0	333.029
7	6.40397	2631.86	-19.1891	Waste	245.805	0	93.2864	245.805	378.482	0	378.482
8	6.40397	2927.46	-18.8957	Waste	273.769	0	103.899	273.769	421.541	0	421.541
9	6.40397	3205.71	-18.6029	Waste	300.179	0	113.922	300.179	462.208	0	462.208
10	6.40397	3466.71	-18.3105	Waste	325.039	0	123.357	325.039	500.486	0	500.486
11	6.40397	3710.55	-18.0186	Waste	348.348	0	132.203	348.348	536.378	0	536.378
12	6.40397	3937.3	-17.7273	Waste	370.11	0	140.462	370.11	569.886	0	569.886
13	6.40397	4147.05	-17.4363	Waste	390.325	0	148.134	390.325	601.014	0	601.014
14	6.40397	4339.89	-17.1459	Waste	408.996	0	155.22	408.996	629.762	0	629.762
15	6.40397	4515.89	-16.8559	Waste	426.123	0	161.72	426.123	656.135	0	656.135
16	6.40397	4675.14	-16.5663	Waste	441.707	0	167.634	441.707	680.132	0	680.132
17	6.40397	4817.7	-16.2772	Waste	455.751	0	172.964	455.751	701.757	0	701.757
18	6.40397	4943.66	-15.9885	Waste	468.254	0	177.709	468.254	721.009	0	721.009
19	6.40397	5053.08	-15.7002	Waste	479.218	0	181.87	479.218	737.893	0	737.893
20	6.40397	5146.03	-15.4124	Waste	488.643	0	185.447	488.643	752.406	0	752.406
21	6.40397	5222.59	-15.1249	Waste	496.531	0	188.44	496.531	764.552	0	764.552
22	6.40397	5282.83	-14.8378	Waste	502.881	0	190.85	502.881	774.331	0	774.331
23	6.40397	5326.8	-14.5511	Waste	507.695	0	192.677	507.695	781.744	0	781.744
24	6.40397	5354.57	-14.2648	Waste	510.973	0	193.921	510.973	786.792	0	786.792
25	6.40397	5366.21	-13.9788	Waste	512.714	0	194.582	512.714	789.474	0	789.474
26	6.40397	5361.77	-13.6932	Waste	512.919	0	194.66	512.919	789.791	0	789.791
27	6.40397	5341.31	-13.4079	Waste	511.589	0	194.155	511.589	787.744	0	787.744
28	6.40397	5304.89	-13.123	Waste	508.723	0	193.067	508.723	783.332	0	783.332
29	6.40397	5252.57	-12.8384	Waste	504.321	0	191.397	504.321	776.553	0	776.553
30	6.40397	5184.41	-12.5541	Waste	498.382	0	189.143	498.382	767.409	0	767.409
31	6.40397	5100.44	-12.2702	Waste	490.906	0	186.306	490.906	755.899	0	755.899
32	6.40397	5000.74	-11.9865	Waste	481.894	0	182.885	481.894	742.023	0	742.023
33	6.40397	4885.34	-11.7032	Waste	471.343	0	178.881	471.343	725.778	0	725.778
34	6.40397	4754.29	-11.4201	Waste	459.254	0	174.293	459.254	707.163	0	707.163
35	6.40397	4607.65	-11.1373	Waste	445.626	0	169.121	445.626	686.178	0	686.178
36	6.40397	4445.46	-10.8548	Waste	430.457	0	163.364	430.457	662.823	0	662.823
37	6.40397	4267.75	-10.5726	Waste	413.747	0	157.023	413.747	637.092	0	637.092
38	6.40397	4074.59	-10.2906	Waste	395.494	0	150.095	395.494	608.988	0	608.988
39	6.40397	3866	-10.0088	Waste	375.698	0	142.583	375.698	578.505	0	578.505
40	6.40397	3642.04	-9.72736	Waste	354.356	0	134.483	354.356	545.644	0	545.644
41	6.40397	3402.73	-9.4461	Waste	331.468	0	125.797	331.468	510.401	0	510.401
42	6.40397	3148.12	-9.16508	Waste	307.032	0	116.523	307.032	472.774	0	472.774
43	6.40397	2878.24	-8.88428	Waste	281.046	0	106.661	281.046	432.761	0	432.761
44	6.40397	2593.13	-8.6037	Waste	253.508	0	96.2098	253.508	390.358	0	390.358
45	6.40397	2292.82	-8.32332	Waste	224.416	0	85.169	224.416	345.561	0	345.561
46	6.40397	1977.35	-8.04314	Waste	193.769	0	73.538	193.769	298.371	0	298.371
47	6.40397	1646.75	-7.76316	Waste	161.564	0	61.3158	161.564	248.781	0	248.781
48	6.22271	1206.06	-7.48732	Clayey Sand (SC)	131.131	0	49.766	131.131	187.27	0	187.27
49	6.22271	736.949	-7.21561	Clayey Sand (SC)	80.2256	0	30.4467	80.2256	114.571	0	114.571
50	6.22271	248.818	-6.94406	Clayey Sand (SC)	27.1203	0	10.2925	27.1203	38.7309	0	38.7309

## **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 2.64364



Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	2505.46	3475.67	0	0	0
2	2510.24	3474	9.15869	0	0
3	2515.02	3472.35	35.0204	0	0
4	2519.8	3470.72	75.2752	0	0
5	2524.58	3469.11	127.719	0	0
6	2529.36	3467.51	190.253	0	0
7	2534.68	3465.76	290.916	0	0
8	2540	3464 03	398 653	0	0
9	2545.32	3462.33	511.527	0	0
10	2550.64	3460.64	627.714	0	0
11	2555.96	3458 98	745 5	0	0
12	2561.28	3457 35	863 285	0	0
13	2566.59	3455.73	979.577	0	0
14	2571.91	3454.14	1092.99	0	0
15	2577.23	3452.57	1202.26	0	0
16	2582.55	3451.03	1306.22	0	0
17	2587.87	3449.5	1403.8	0	0
18	2593.19	3448	1494.04	0	0
19	2598.51	3446.52	1576.11	0	0
20	2603.83	3445.06	1649.25	0	0
21	2609.14	3443.63	1712.82	0	0
22	2614.46	3442.22	1766.28	0	0
23	2619.78	3440.83	1809.19	0	0
24	2625.1	3439.46	1841.21	0	0
25	2630.42	3438.11	1862.11	0	0
26	2635.74	3436.79	1871.74	0	0
27	2641.06	3435.48	1870.06	0	0
28	2646.38	3434.2	1857.14	0	0
29	2651.69	3432.94	1833.13	0	0
30	2657.01	3431.7	1798.28	0	0
31	2662.33	3430.48	1752.96	0	0
32	2667.65	3429.29	1697.6	0	0
33	2672.97	3428.12	1632.74	0	0
34	2678.29	3426.96	1559.04	0	0
35	2683.61	3425.83	1477.21	0	0
36	2688.93	3424.72	1388.1	0	0
37	2694.24	3423.63	1292.62	0	0
38	2699.56	3422.56	1191.79	0	0
39	2704.88	3421.52	1086.73	0	0
40	2710.2	3420.49	978.629	0	0
41	2715.52	3419.49	868.798	0	0
42	2720.84	3418.5	758.623	0	0
43	2726.16	3417.54	649.589	0	0
44	2731.48	3416.6	543.271	0	0
45	2736.79	3415.68	441.339	0	0
46	2742.11	3414.78	345.551	0	0
47	2747.15	3413.94	245.327	0	0
48	2752.18	3413.13	162.79	0	0
49	2757.22	3412.33	100.492	0	0
50	2762.25	3411.55	61.0858	0	0
51	2767.29	3410.79	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 2.63495

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	2502.03	3476.52	0	0	0
2	2507.84	3474.31	24.1516	0	0
3	2513.64	3472.12	92.4141	0	0
4	2519.44	3469.97	198.775	0	0
5	2525.85	3467.63	377.41	0	0
6	2532.25	3465.33	583.618	0	0
7	2538.65	3463.06	812.074	0	0
8	2545.06	3460.83	1057.75	0	0
9	2551.46	3458.64	1315.9	0	0
10	2557.87	3456.49	1582.09	0	0
11	2564.27	3454.37	1852.14	0	0
12	2570.67	3452.28	2122.18	0	0
13	2577.08	3450.24	2388.6	0	0
14	2583 48	3448.23	2648.07	0	0
15	2589.40	3446.25	2897 53	0	0
15	2596.29	3440.23	313/ 18	0	0
10	2602.69	3447.51	3355 /0	0	0
18	2602.05	3442.4	3550 10	0	0
10	2615 5	3/38 7	37/3 27	0	0
20	2013.5	2436.7	2005.07	0	0
20	2021.9	2420.9	3903.97 4045 79	0	0
21	2020.51	2422.12	4045.76	0	0
22	2034.71	3433.4	4101.40	0	0
23	2641.12	3431.71	4251.99	0	0
24	2647.52	3430.04	4316.62	0	0
25	2653.92	3428.42	4354.82	0	0
26	2660.33	3426.82	4366.32	0	0
27	2666.73	3425.26	4351.09	0	0
28	2673.14	3423.74	4309.33	0	0
29	2679.54	3422.24	4241.46	0	0
30	2685.94	3420.78	4148.17	0	0
31	2692.35	3419.36	4030.36	0	0
32	2698.75	3417.96	3889.16	0	0
33	2705.16	3416.6	3725.94	0	0
34	2711.56	3415.28	3542.31	0	0
35	2717.96	3413.98	3340.07	0	0
36	2724.37	3412.72	3121.28	0	0
37	2730.77	3411.5	2888.22	0	0
38	2737.18	3410.3	2643.4	0	0
39	2743.58	3409.14	2389.52	0	0
40	2749.98	3408.01	2129.56	0	0
41	2756.39	3406.91	1866.68	0	0
42	2762.79	3405.84	1604.27	0	0
43	2769.2	3404.81	1345.97	0	0
44	2775.6	3403.81	1095.6	0	0
45	2782	3402.84	857.227	0	0
46	2788.41	3401.9	635.144	0	0
47	2794.81	3401	433.852	0	0
48	2801.22	3400.13	258.081	0	0
49	2807.44	3399.31	101.319	0	0
50	2813.66	3398.52	1.97501	0	0
51	2819.88	3397.76	0	0	0

# List Of Coordinates

#### **External Boundary**

Х	Y
105.01	3381.21
65	3372.05
61	3372.02
43.9	3376.3
0	3376.3

-	
0	3361
0	3336
0	3200
3000	3200
3000	3349
3000	3374
3000	3389.22
2962.33	3389.22
2902.33	3384.3
2862.33	3393.92
2834.14	3394.23
2497.32	3477.69
1486.5	3527.15
470.02	3466.33
133.49	3381.5

### **Material Boundary**



#### **Material Boundary**

х	Y
142.75	3381.59
142.75	3381.59
146.998	3382.66
468.81	3463.72
1486.54	3524.64
2498.75	3475.1
2820.46	3395.36
2824.68	3394.31

#### **Material Boundary**

х	Y
594.53	3353.96
594.61	3352.96

#### **Material Boundary**

х	Y
2150.44	3348.83
2150.52	3347.83

#### **Material Boundary**

Х	Υ
0	3336
3000	3349







# Slide Analysis Information CK Disposal Facility, West Slope

# **Project Summary**

File Name:	WEST SLOPE STATIC
Slide Modeler Version:	7.014
Project Title:	CK Disposal Facility, West Slope
Analysis:	Final Cover
Company:	Parkhill, Smith & Cooper Inc.
Date Created:	4/19/2016, 5:02:51 PM

### **General Settings**

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

### **Analysis Options**

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

### Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Advanced Groundwater Method:	None

### **Random Numbers**

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

## Surface Options

Surface Type:CircularSearch Method:Grid Search

Radius Increment:5Composite Surfaces:DisabledReverse Curvature:Invalid SurfacesMinimum Elevation:Not DefinedMinimum Depth:Not DefinedMinimum Area:Not DefinedMinimum Weight:Not Defined

#### Seismic

Advanced seismic analysis:NoStaged pseudostatic analysis:YesStaged pseudostatic method:Effective Stress

### **Material Properties**



Property	Waste	Clayey Sand (SC)	Claystone
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	74	102	140
Cohesion [psf]	0	0	2000
Friction Angle [deg]	33	35	35
Water Surface	None	None	None
Ru Value	0	0	0

### **Global Minimums**

#### Method: bishop simplified

FS	2.597510
Center:	-13.434, 4766.460
Radius:	1387.612
Left Slip Surface Endpoint:	172.744, 3391.395
Right Slip Surface Endpoint:	471.742, 3466.433
Resisting Moment:	1.33558e+008 lb-ft
Driving Moment:	5.14179e+007 lb-ft
Total Slice Area:	1814.38 ft2
Surface Horizontal Width:	298.998 ft
Surface Average Height:	6.06821 ft

#### Method: janbu simplified

FS	2.589740
Center:	-13.434, 4713.609
Radius:	1336.888
Left Slip Surface Endpoint:	158.650, 3387.842
Right Slip Surface Endpoint:	463.490, 3464.684
Resisting Horizontal Force:	99219 lb
Driving Horizontal Force:	38312.4 lb
Total Slice Area:	1944.05 ft2
Surface Horizontal Width:	304.84 ft
Surface Average Height:	6.37728 ft

#### Valid / Invalid Surfaces

#### Method: bishop simplified

Number of Valid Surfaces: 1761 Number of Invalid Surfaces: 885

#### Error Codes:

Error Code -102 reported for 9 surfaces Error Code -106 reported for 47 surfaces Error Code -107 reported for 1 surface Error Code -1000 reported for 828 surfaces

#### Method: janbu simplified

Number of Valid Surfaces: 1761 Number of Invalid Surfaces: 885

#### **Error Codes:**

Error Code -102 reported for 9 surfaces Error Code -106 reported for 47 surfaces Error Code -107 reported for 1 surface Error Code -1000 reported for 828 surfaces



The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

#### **Slice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 2.59751



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	6.89156	276.425	7.85437	Clayey Sand (SC)	27.0793	0	10.4251	27.0793	38.6725	0	38.6725
2	6.89156	816.889	8.14172	Clayey Sand (SC)	79.9182	0	30.7672	79.9182	114.133	0	114.133
3	6.89156	1332.55	8.42929	Clayey Sand (SC)	130.194	0	50.1226	130.194	185.931	0	185.931
4	5.93104	1492.46	8.69699	Waste	157.397	0	60.5953	157.397	242.366	0	242.366
5	5.93104	1744.86	8.94482	Waste	183.82	0	70.7678	183.82	283.052	0	283.052
6	5.93104	1985.71	9.19282	Waste	208.971	0	80.4505	208.971	321.78	0	321.78
7	5.93104	2215	9.44099	Waste	232.852	0	89.6443	232.852	358.553	0	358.553
8	5.93104	2432.7	9.68935	Waste	255.464	0	98.3496	255.464	393.372	0	393.372
9	5.93104	2638.79	9.93788	Waste	276.809	0	106.567	276.809	426.239	0	426.239
10	5.93104	2833.23	10.1866	Waste	296.888	0	114.297	296.888	457.157	0	457.157
11	5.93104	3016	10.4355	Waste	315.701	0	121.54	315.701	486.125	0	486.125
12	5.93104	3187.07	10.6846	Waste	333.25	0	128.296	333.25	513.148	0	513.148
13	5.93104	3346.41	10.934	Waste	349.535	0	134.565	349.535	538.224	0	538.224
14	5.93104	3494.01	11.1835	Waste	364.559	0	140.349	364.559	561.358	0	561.358
15	5.93104	3629.81	11.4332	Waste	378.32	0	145.647	378.32	582.547	0	582.547
16	5.93104	3753.8	11.6832	Waste	390.82	0	150.459	390.82	601.795	0	601.795
17	5.93104	3865.94	11.9334	Waste	402.06	0	154.787	402.06	619.103	0	619.103
18	5.93104	3966.2	12.1838	Waste	412.041	0	158.629	412.041	634.47	0	634.47
19	5.93104	4054.55	12.4345	Waste	420.762	0	161.987	420.762	647.899	0	647.899
20	5.93104	4130.95	12.6854	Waste	428.224	0	164.859	428.224	659.389	0	659.389
21	5.93104	4195.37	12.9365	Waste	434.428	0	167.248	434.428	668.941	0	668.941
22	5.93104	4247.77	13.188	Waste	439.373	0	169.152	439.373	676.555	0	676.555
23	5.93104	4288.11	13.4396	Waste	443.061	0	170.571	443.061	682.235	0	682.235
24	5.93104	4316.36	13.6915	Waste	445.491	0	171.507	445.491	685.975	0	685.975
25	5.93104	4332.48	13.9437	Waste	446.664	0	171.959	446.664	687.781	0	687.781
26	5.93104	4336.43	14.1962	Waste	446.579	0	171.926	446.579	687.65	0	687.65
27	5.93104	4328.16	14.449	Waste	445.236	0	171.409	445.236	685.581	0	685.581
28	5.93104	4307.64	14.702	Waste	442.635	0	170.407	442.635	681.576	0	681.576
29	5.93104	4274.83	14.9553	Waste	438.777	0	168.922	438.777	675.635	0	675.635
30	5.93104	4229.68	15.209	Waste	433.66	0	166.952	433.66	667.755	0	667.755
31	5.93104	4172.15	15.4629	Waste	427.285	0	164.498	427.285	657.938	0	657.938
32	5.93104	4102.19	15.7172	Waste	419.651	0	161.559	419.651	646.183	0	646.183
33	5.93104	4019.75	15.9717	Waste	410.757	0	158.135	410.757	632.487	0	632.487
34	5.93104	3924.79	16.2266	Waste	400.604	0	154.226	400.604	616.853	0	616.853
35	5.93104	3817.27	16.4819	Waste	389.19	0	149.832	389.19	599.278	0	599.278
36	5.93104	3697.12	16.7374	Waste	376.515	0	144.952	376.515	579.76	0	579.76
37	5.93104	3564.3	16.9933	Waste	362.578	0	139.587	362.578	558.299	0	558.299
38	5.93104	3418.77	17.2496	Waste	347.378	0	133.735	347.378	534.894	0	534.894
39	5.93104	3260.46	17.5062	Waste	330.915	0	127.397	330.915	509.545	0	509.545
40	5.93104	3089.32	17.7632	Waste	313.187	0	120.572	313.187	482.247	0	482.247
41	5.93104	2905.3	18.0205	Waste	294.194	0	113.26	294.194	453.001	0	453.001
42	5.93104	2708.34	18.2782	Waste	273.934	0	105.46	273.934	421.804	0	421.804
43	5.93104	2498.38	18.5363	Waste	252.407	0	97.1727	252.407	388.656	0	388.656
44	5.93104	2275.37	18.7948	Waste	229.61	0	88.3962	229.61	353.554	0	353.554
45	5.93104	2039.24	19.0537	Waste	205.543	0	79.1308	205.543	316.495	0	316.495
46	5.93104	1789.94	19.313	Waste	180.205	0	69.3761	180.205	277.48	0	277.48
47	5.93104	1527.4	19.5727	Waste	153.594	0	59.1312	153.594	236.503	0	236.503
48	5.78585	1173.42	19.8297	Clayey Sand (SC)	129.432	0	49.8293	129.432	184.84	0	184.84
49	5.78585	794.249	20.0838	Clayey Sand (SC)	87.5006	0	33.6863	87.5006	124.958	0	124.958
50	5.78585	368.807	20.3384	Clayey Sand (SC)	40.5804	0	15.6228	40.5804	57.9519	0	57.9519

Global Minimum Query (janbu simplified) - Safety Factor: 2.58974



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	6.5392	261.182	7.53699	Clayey Sand (SC)	27.001	0	10.4261	27.001	38.5604	0	38.5604
2	6.5392	772.586	7.81978	Clayey Sand (SC)	79.7654	0	30.8005	79.7654	113.914	0	113.914
3	6.5392	1262.05	8.10277	Clayey Sand (SC)	130.129	0	50.2479	130.129	185.839	0	185.839
4	6.05072	1531.26	8.37536	Waste	158.495	0	61.2011	158.495	244.054	0	244.054
5	6.05072	1809.16	8.63757	Waste	187.048	0	72.2266	187.048	288.02	0	288.02
6	6.05072	2074.38	8.89995	Waste	214.225	0	82.7207	214.225	329.868	0	329.868
7	6.05072	2326.87	9.16253	Waste	240.029	0	92.6846	240.029	369.6	0	369.6
8	6.05072	2566.63	9.4253	Waste	264.46	0	102.118	264.46	407.22	0	407.22
9	6.05072	2793.61	9.68827	Waste	287.521	0	111.023	287.521	442.73	0	442.73
10	6.05072	3007.79	9.95144	Waste	309.213	0	119.399	309.213	476.131	0	476.131
11	6.05072	3209.13	10.2148	Waste	329.537	0	127.247	329.537	507.424	0	507.424
12	6.05072	3397.62	10.4784	Waste	348.494	0	134.567	348.494	536.615	0	536.615
13	6.05072	3573.2	10.7423	Waste	366.086	0	141.36	366.086	563.702	0	563.702
14	6.05072	3735.86	11.0063	Waste	382.313	0	147.626	382.313	588.688	0	588.688
15	6.05072	3885.55	11.2706	Waste	397.177	0	153.366	397.177	611.576	0	611.576
16	6.05072	4022.24	11.5352	Waste	410.678	0	158.579	410.678	632.364	0	632.364
17	6.05072	4145.89	11.8	Waste	422.817	0	163.266	422.817	651.056	0	651.056
18	6.05072	4256.48	12.065	Waste	433.596	0	167.428	433.596	667.652	0	667.652
19	6.05072	4353.95	12.3303	Waste	443.013	0	171.065	443.013	682.153	0	682.153
20	6.05072	4438.26	12.5959	Waste	451.071	0	174.176	451.071	694.559	0	694.559
21	6.05072	4509.39	12.8618	Waste	457.77	0	176.763	457.77	704.873	0	704.873
22	6.05072	4567.28	13.1279	Waste	463.11	0	178.825	463.11	713.094	0	713.094
23	6.05072	4611.9	13.3943	Waste	467.091	0	180.362	467.091	719.223	0	719.223
24	6.05072	4643.2	13.661	Waste	469.713	0	181.375	469.713	723.262	0	723.262
25	6.05072	4661.13	13.9281	Waste	470.977	0	181.863	470.977	725.206	0	725.206
26	6.05072	4665.65	14.1954	Waste	470.883	0	181.826	470.883	725.061	0	725.061
27	6.05072	4656.72	14.463	Waste	469.43	0	181.265	469.43	722.823	0	722.823
28	6.05072	4634.28	14.731	Waste	466.619	0	180.18	466.619	718.494	0	718.494
29	6.05072	4598.28	14.9993	Waste	462.449	0	178.57	462.449	712.074	0	712.074
30	6.05072	4548.68	15.2679	Waste	456.921	0	176.435	456.921	703.56	0	703.56
31	6.05072	4485.42	15.5369	Waste	450.033	0	173.775	450.033	692.953	0	692.953
32	6.05072	4408.45	15.8062	Waste	441.785	0	170.59	441.785	680.252	0	680.252
33	6.05072	4317.71	16.0759	Waste	432.177	0	166.88	432.177	665.456	0	665.456
34	6.05072	4213.15	16.346	Waste	421.207	0	162.645	421.207	648.566	0	648.566
35	6.05072	4094.72	16.6164	Waste	408.877	0	157.883	408.877	629.58	0	629.58
36	6.05072	3962.35	16.8872	Waste	395.184	0	152.596	395.184	608.495	0	608.495
37	6.05072	3815.98	17.1584	Waste	380.127	0	146.782	380.127	585.31	0	585.31
38	6.05072	3655.56	17.43	Waste	363.706	0	140.441	363.706	560.025	0	560.025
39	6.05072	3481.01	17.702	Waste	345.92	0	133.573	345.92	532.639	0	532.639
40	6.05072	3292.29	17.9745	Waste	326.768	0	126.178	326.768	503.147	0	503.147
41	6.05072	3089.32	18.2473	Waste	306.248	0	118.254	306.248	471.552	0	471.552
42	6.05072	2872.03	18.5206	Waste	284.359	0	109.802	284.359	437.847	0	437.847
43	6.05072	2640.36	18.7943	Waste	261.1	0	100.821	261.1	402.032	0	402.032
44	6.05072	2394.23	19.0684	Waste	236.469	0	91.3099	236.469	364.107	0	364.107
45	6.05072	2133.58	19.343	Waste	210.465	0	81.2688	210.465	324.065	0	324.065
46	6.05072	1858.34	19.6181	Waste	183.085	0	70.6963	183.085	281.907	0	281.907
47	6.05072	1568.42	19.8936	Waste	154.329	0	59.5925	154.329	237.63	0	237.63
48	6.33036	1249.59	20.176	Clayey Sand (SC)	125.727	0	48.5481	125.727	179.542	0	179.542
49	6.33036	766.236	20.4653	Clayey Sand (SC)	76.9857	0	29.7272	76.9857	109.939	0	109.939
50	6.33036	259.346	20.7552	Clayey Sand (SC)	26.0203	0	10.0475	26.0203	37.1578	0	37.1578

### **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 2.59751

Cline	х	Y	Interslice	Interslice	Interslice
Slice	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	172.744	3391.39	0	0	0
2	179.636	3392.35	35.0798	0	0
3	186.528	3393.33	134.587	0	0
4	193.419	3394.35	290.125	0	0
5	199.35	3395.26	429.631	0	0
6	205.281	3396.19	585.119	0	0
7	211.212	3397.15	753.412	0	0
8	217.143	3398.14	931.478	0	0
9	223.074	3399.15	1116.44	0	0
10	229.005	3400.19	1305.55	0	0
11	234.936	3401.26	1496.25	0	0
12	240.867	3402.35	1686.09	0	0
13	246.798	3403.47	1872.79	0	0
14	252.73	3404.61	2054.21	0	0
15	258.661	3405.79	2228.38	0	0
16	264.592	3406.99	2393.46	0	0
17	270.523	3408.21	2547.77	0	0
18	276.454	3409.47	2689.79	0	0
19	282.385	3410.75	2818.13	0	0
20	288.316	3412.05	2931.58	0	0
21	294.247	3413.39	3029.07	0	0
22	300.178	3414.75	3109.68	0	0
23	306.109	3416.14	3172.65	0	0
24	312.04	3417.56	3217.38	0	0
25	317.971	3419	3243.43	0	0
26	323.902	3420.48	3250.5	0	0
27	329.833	3421.98	3238.48	0	0
28	335.764	3423.51	3207.38	0	0
29	341.695	3425.06	3157.4	0	0
30	347.626	3426.65	3088.9	0	0
31	353.557	3428.26	3002.4	0	0
32	359.488	3429.9	2898.57	0	0
33	365.419	3431.57	2778.27	0	0
34	371.35	3433.27	2642.5	0	0
35	377.281	3434.99	2492.46	0	0
36	383.212	3436.75	2329.5	0	0
37	389.143	3438.53	2155.15	0	0
38	395.074	3440.34	1971.1	0	0
39	401.005	3442.18	1779.23	0	0
40	406.937	3444.06	1581.6	0	0
41	412.868	3445.96	1380.42	0	0
42	418.799	3447.88	1178.13	0	0
43	424.73	3449.84	977.299	0	0
44	430.661	3451.83	780.72	0	0
45	436.592	3453.85	591.356	0	0
46	442.523	3455.9	412.362	0	0
47	448.454	3457.98	247.084	0	0
48	454.385	3460.09	99.063	0	0
49	460.171	3462.17	1.71541	0	0
50	465.957	3464.29	-67.7247	0	0
51	471.742	3466.43	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 2.58974

Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
1	158.65	3387.84	0	0	0
2	165.189	3388.71	34.8704	0	0
3	171.729	3389.61	134.14	0	0
4	178.268	3390.54	289.969	0	0
5	184.319	3391.43	443.162	0	0
6	190.369	3392.35	615.798	0	0
7	196.42	3393.29	804.161	0	0
8	202.471	3394.27	1004.71	0	0
9	208.521	3395.27	1214.06	0	0
10	214.572	3396.31	1429.03	0	0
11	220.623	3397.37	1646.58	0	0
12	226.674	3398.46	1863.88	0	0
13	232.724	3399.58	2078.24	0	0
14	238 775	3400 73	2287.16	0	0
15	244 826	3401 9	2488 32	0	0
16	250 876	3403 11	2400.52	0	0
10	256 927	3404 34	2858.95	0	0
18	262 978	3405 61	3024.64	0	0
10	269.029	3406.9	3175.03	0	0
20	205.025	3408.22	3308 69	0	0
20	275.075	3400.22	3424 34	0	0
21	201.13	3403.38	3520.92	0	0
22	207.101	2/12 27	2507 51	0	0
25	295.251	2/12 21	2652 /	0	0
24	299.202	2413.01	2600 06	0	0
25	211 29/	2415.20	2701 12	0	0
20	217 /2/	2/10 21	2602 11	0	0
27	272 / 25	2/10 27	2662.01	0	0
20	220 526	2413.07	2610.06	0	0
20	335 586	3421.40	3536.98	0	0
21	241 627	2423.00	2442.25	0	0
32	347.688	3424.74	3320.05	0	0
32	347.000	3420.42	3107 77	0	0
24	250 780	2/20.13	2047.06	0	0
25	355.785	2429.07	2821 80	0	0
30	271 201	2/22/15	2001.03	0	0
27	277 042	2/25 20	2507.14	0	0
20	282 002	2433.23	2307.43	0	0
30	390.043	3430.06	202.02	0	0
35 40	306.043	3435.00	1869.59	0	0
40	402 144	3440.55	1645.98	0	0
41 //2	402.144	3111 95	1/21 37	0	0
42	408.195	3444.55	1108 78	0	0
43 AA	420 297	2///0 //2	981 /15/	0	0
44 // C	420.237	2/151 12	772 gc	0	0
45 16	420.347	2451.15	576 6/9	0	0
40	432.330	2455.25	306 757	0	0
47 70	430.443	2/157 6	330.737 727 21 A	0	0
40	444.455 150 02	5457.0 2150.07	237.314 177 7 <i>1</i> 7	0	0
49 50	450.05	2453.32	127.247 55 Q55	0	0
50	457.10	5402.29 2161 69	220.66	0	0
51	403.49	5404.08	0	0	U

# List Of Coordinates

### **External Boundary**

х	Y
105.01	3381.21
65	3372.05
61	3372.02
43.9	3376.3
0	3376.3

0	3361	
0	3336	
0	3200	
3000	3200	
3000	3349	
3000	3374	
3000	3389.22	
2962.33	3389.22	
2902.33	3384.3	
2862.33	3393.92	
2834.14	3394.23	
2497.32	3477.69	
1486.5	3527.15	
470.02	3466.33	
133.49	3381.5	

#### **Material Boundary**



#### **Material Boundary**

х	Y
142.75	3381.59
142.75	3381.59
146.998	3382.66
468.81	3463.72
1486.54	3524.64
2498.75	3475.1
2820.46	3395.36
2824.68	3394.31

#### **Material Boundary**

х	Y
594.53	3353.96
594.61	3352.96

#### **Material Boundary**

х	Y
2150.44	3348.83
2150.52	3347.83

#### **Material Boundary**

Х	Υ
0	3336
3000	3349
## APPENDIX B PSEUDO – STATIC MODEL INPUTS AND OUTPUTS



	_		
Janbu simplified	1.9	19	
	1 4 0	10	

Min FS

1.926

Method Name

Bishop simplified

Material Name	Color	Unit Weight (Ibs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Water Surface	Ru
Waste		74	Mohr-Coulomb	0	33	None	0
Clayey Sand (SC)		102	Mohr-Coulomb	0	35	None	0
Claystone		140	Mohr-Coulomb	2000	35	None	0

3400													
3200		·		• • • • • • • • • • • • • • • • •	1000	1200	1400	1600		1800		2200	
	200	400	600	000 Project	1000	1200	1400	1600		1000	2000	2200	24
				riojeci						CK Dispo	sal Facility, Ea	st Slope	
				Analysis Descri	otion						Final Cover		
			nco	Drawn By					Scale	1:2364	Company		





38,00

Method Name	Min FS
Bishop simplified	1.926
Janbu simplified	1.919

Material Name	Color	Unit Weight (lbs/ft3) Strength Type		Cohesion (psf)	Phi (deg)	Water Surface	Ru
Waste		74	Mohr-Coulomb	0	33	None	0
Clayey Sand (SC)		102	Mohr-Coulomb	0	35	None	0
Claystone		140	Mohr-Coulomb	2000	35	None	0







## Slide Analysis Information CK Disposal Facility, East Slope

## **Project Summary**

EAST SLOPE SEISMIC
7.014
CK Disposal Facility, East Slope
Final Cover
Parkhill, Smith & Cooper Inc.
4/19/2016, 5:02:51 PM

### **General Settings**

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Left to Right
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

## **Analysis Options**

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified
	Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

## **Groundwater Analysis**

Groundwater Method:Water SurfacesPore Fluid Unit Weight [lbs/ft3]:62.4Advanced Groundwater Method:None



#### **Random Numbers**

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

## Surface Options

Surface Type:	Circular
Search Method:	Grid Search
Radius Increment:	5
Composite Surfaces:	Disabled
Reverse Curvature:	Invalid Surfaces
Minimum Elevation:	Not Defined
Minimum Depth:	Not Defined
Minimum Area:	Not Defined
Minimum Weight:	Not Defined

#### Seismic

Advanced seismic analysis:	No
Staged pseudostatic analysis:	Yes
Staged pseudostatic method:	Effective Stress

### Loading

Seismic Load Coefficient (Horizontal): 0.08 Seismic Load Coefficient (Vertical): 0.05

## **Material Properties**

Property	Waste	Clayey Sand (SC)	Claystone
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	74	102	140
Cohesion [psf]	0	0	2000
Friction Angle [deg]	33	35	35
Water Surface	None	None	None
Ru Value	0	0	0

### **Global Minimums**

#### Method: bishop simplified



FS	1.925620
Center:	2976.733, 4816.811
Radius:	1421.530
Left Slip Surface Endpoint:	2505.464, 3475.672
Right Slip Surface Endpoint:	2767.289, 3410.795
Resisting Moment:	9.04137e+007 lb-ft
Driving Moment:	4.6953e+007 lb-ft
Total Slice Area:	1153.23 ft2
Surface Horizontal Width:	261.825 ft
Surface Average Height:	4.40459 ft

#### Method: janbu simplified

FS	1.919220
Center:	2976.733, 4711.511
Radius:	1323.079
Left Slip Surface Endpoint:	2502.035, 3476.522
Right Slip Surface Endpoint:	2819.884, 3397.762
Resisting Horizontal Force:	112374 lb
Driving Horizontal Force:	58552 lb
Total Slice Area:	2221 ft2
Surface Horizontal Width:	317.85 ft
Surface Average Height:	6.98758 ft

## Valid / Invalid Surfaces

#### Method: bishop simplified

Number of Valid Surfaces: 1741 Number of Invalid Surfaces: 905

#### Error Codes:

Error Code -102 reported for 6 surfaces Error Code -106 reported for 35 surfaces Error Code -107 reported for 12 surfaces Error Code -1000 reported for 852 surfaces

#### Method: janbu simplified

Number of Valid Surfaces:1741Number of Invalid Surfaces:905

#### Error Codes:

Error Code -102 reported for 6 surfaces Error Code -106 reported for 35 surfaces Error Code -107 reported for 12 surfaces Error Code -1000 reported for 852 surfaces

#### **Error Codes**

The following errors were encountered during the computation:



-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

#### Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.92562

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress Insfl	Pore Pressure [psf]	Effective Normal Stress Insfl
1	4.77986	118.392	-19.2592	Clayey Sand (SC)	15.875	0	8.2441	15.875	23.127	0	23.127
2	4.77986	350.528	-19.0552	Clayey Sand (SC)	47.0472	0	24.4322	47.0472	68.5621	0	68.5621
3	4.77986	573.385	-18.8515	Clayey Sand (SC)	77.0329	0	40.0042	77.0329	112.298	0	112.298
4	4.77986	786.997	-18.648	Clayey Sand (SC)	105.833	0	54.9605	105.833	154.333	0	154.333
5	4.77986	991.396	-18.4448	Clayey Sand (SC)	133.448	0	69.3013	133.448	194.668	0	194.668
6	5.31874	1299.76	-18.2304	Waste	146.824	0	76.2477	146.824	231.479	0	231.479
7	5.31874	1466.05	-18.0049	Waste	165.773	0	86.0881	165.773	261.441	0	261.441
8	5.31874	1623.24	-17.7796	Waste	183.729	0	95.4129	183.729	289.857	0	289.857
9	5.31874	1771.36	-17.5546	Waste	200.691	0	104.221	200.691	316.723	0	316.723
10	5.31874	1910.44	-17.3299	Waste	216.661	0	112.515	216.661	342.041	0	342.041
11	5.31874	2040.51	-17.1055	Waste	231.64	0	120.294	231.64	365.808	0	365.808
12	5.31874	2161.62	-16.8813	Waste	245.627	0	127.557	245.627	388.026	0	388.026
13	5.31874	2273.79	-16.6574	Waste	258.625	0	134.307	258.625	408.693	0	408.693
14	5.31874	2377.04	-16.4338	Waste	270.633	0	140.543	270.633	427.81	0	427.81
15	5.31874	2471.42	-16.2104	Waste	281.651	0	146.265	281.651	445.373	0	445.373
16	5.31874	2556.96	-15.9873	Waste	291.681	0	151.474	291.681	461.385	0	461.385
17	5.31874	2633.68	-15.7644	Waste	300.722	0	156.169	300.722	475.841	0	475.841
18	5.31874	2701.61	-15.5418	Waste	308.776	0	160.351	308.776	488.742	0	488.742
19	5.31874	2760.78	-15.3194	Waste	315.842	0	164.021	315.842	500.09	0	500.09
20	5.31874	2811.22	-15.0972	Waste	321.921	0	167.178	321.921	509.879	0	509.879
21	5.31874	2852.96	-14.8753	Waste	327.014	0	169.823	327.014	518.11	0	518.11
22	5.31874	2886.02	-14.6536	Waste	331.119	0	171.954	331.119	524.782	0	524.782
23	5.31874	2910.44	-14.4321	Waste	334.238	0	173.574	334.238	529.893	0	529.893
24	5.31874	2926.22	-14.2109	Waste	336.371	0	174.682	336.371	533.445	0	533.445
25	5.31874	2933.42	-13.9898	Waste	337.518	0	175.278	337.518	535.432	0	535.432
26	5.31874	2932.03	-13.769	Waste	337.678	0	175.361	337.678	535.855	0	535.855
27	5.31874	2922.1	-13.5484	Waste	336.853	0	174.932	336.853	534.713	0	534.713
28	5.31874	2903.65	-13.328	Waste	335.041	0	173.991	335.041	532.005	0	532.005
29	5.31874	2876.69	-13.1078	Waste	332.243	0	172.538	332.243	527.727	0	527.727
30	5.31874	2841.26	-12.8878	Waste	328.459	0	170.573	328.459	521.879	0	521.879
31	5.31874	2797.37	-12.6679	Waste	323.689	0	168.096	323.689	514.46	0	514.46
32	5.31874	2745.04	-12.4483	Waste	317.932	0	165.106	317.932	505.466	0	505.466
33	5.31874	2684.31	-12.2289	Waste	311.189	0	161.605	311.189	494.898	0	494.898
34	5.31874	2615.18	-12.0096	Waste	303.458	0	157.59	303.458	482.752	0	482.752
35	5.31874	2537.68	-11.7905	Waste	294.74	0	153.062	294.74	469.027	0	469.027



36	5.31874	2451.84	-11.5716	Waste	285.035	0	148.022	285.035	453.721	0	453.721
37	5.31874	2357.66	-11.3529	Waste	274.341	0	142.469	274.341	436.833	0	436.833
38	5.31874	2255.17	-11.1343	Waste	262.659	0	136.402	262.659	418.359	0	418.359
39	5.31874	2144.39	-10.9159	Waste	249.988	0	129.822	249.988	398.298	0	398.298
40	5.31874	2025.34	-10.6976	Waste	236.328	0	122.728	236.328	376.647	0	376.647
41	5.31874	1898.03	-10.4796	Waste	221.678	0	115.12	221.678	353.406	0	353.406
42	5.31874	1762.48	-10.2616	Waste	206.037	0	106.998	206.037	328.569	0	328.569
43	5.31874	1618.71	-10.0438	Waste	189.404	0	98.36	189.404	302.137	0	302.137
44	5.31874	1466.74	-9.82619	Waste	171.78	0	89.2076	171.78	274.105	0	274.105
45	5.31874	1306.58	-9.6087	Waste	153.164	0	79.5401	153.164	244.473	0	244.473
46	5.03522	1052.78	-9.39713	Clayey Sand (SC)	140.256	0	72.8368	140.256	207.482	0	207.482
47	5.03522	835.203	-9.19148	Clayey Sand (SC)	111.374	0	57.838	111.374	164.807	0	164.807
48	5.03522	608.108	-8.98595	Clayey Sand (SC)	81.1668	0	42.151	81.1668	120.144	0	120.144
49	5.03522	371.507	-8.78054	Clayey Sand (SC)	49.633	0	25.7751	49.633	73.4895	0	73.4895
50	5.03522	125.416	-8.57524	Clayey Sand (SC)	16.7711	0	8.70945	16.7711	24.8398	0	24.8398

#### Global Minimum Query (janbu simplified) - Safety Factor: 1.91922

Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	5.80225	229.894	-20.891	Clayey Sand (SC)	25.1884	0	13.1243	25.1884	36.5921	0	36.5921
2	5.80225	680.472	-20.6223	Clayey Sand (SC)	74.6527	0	38.8974	74.6527	108.5	0	108.5
3	5.80225	1112.68	-20.3541	Clayey Sand (SC)	122.227	0	63.6858	122.227	177.723	0	177.723
4	6.40397	1640.05	-20.0724	Waste	152.572	0	79.4969	152.572	239.848	0	239.848
5	6.40397	1988.25	-19.7775	Waste	185.209	0	96.5022	185.209	291.287	0	291.287
6	6.40397	2318.82	-19.483	Waste	216.285	0	112.694	216.285	340.316	0	340.316
7	6.40397	2631.86	-19.1891	Waste	245.805	0	128.075	245.805	386.937	0	386.937
8	6.40397	2927.46	-18.8957	Waste	273.769	0	142.646	273.769	431.15	0	431.15
9	6.40397	3205.71	-18.6029	Waste	300.179	0	156.407	300.179	472.954	0	472.954
10	6.40397	3466.71	-18.3105	Waste	325.039	0	169.36	325.039	512.347	0	512.347
11	6.40397	3710.55	-18.0186	Waste	348.348	0	181.505	348.348	549.33	0	549.33
12	6.40397	3937.3	-17.7273	Waste	370.11	0	192.844	370.11	583.903	0	583.903
13	6.40397	4147.05	-17.4363	Waste	390.325	0	203.377	390.325	616.063	0	616.063
14	6.40397	4339.89	-17.1459	Waste	408.996	0	213.105	408.996	645.81	0	645.81
15	6.40397	4515.89	-16.8559	Waste	426.123	0	222.029	426.123	673.142	0	673.142
16	6.40397	4675.14	-16.5663	Waste	441.707	0	230.149	441.707	698.059	0	698.059
17	6.40397	4817.7	-16.2772	Waste	455.751	0	237.467	455.751	720.56	0	720.56
18	6.40397	4943.66	-15.9885	Waste	468.254	0	243.981	468.254	740.641	0	740.641
19	6.40397	5053.08	-15.7002	Waste	479.218	0	249.694	479.218	758.303	0	758.303
20	6.40397	5146.03	-15.4124	Waste	488.643	0	254.605	488.643	773.542	0	773.542
21	6.40397	5222.59	-15.1249	Waste	496.531	0	258.715	496.531	786.357	0	786.357
22	6.40397	5282.83	-14.8378	Waste	502.881	0	262.024	502.881	796.745	0	796.745
23	6.40397	5326.8	-14.5511	Waste	507.695	0	264.532	507.695	804.705	0	804.705
24	6.40397	5354.57	-14.2648	Waste	510.973	0	266.24	510.973	810.233	0	810.233
25	6.40397	5366.21	-13.9788	Waste	512.714	0	267.147	512.714	813.329	0	813.329
26	6.40397	5361.77	-13.6932	Waste	512.919	0	267.254	512.919	813.988	0	813.988

Pares	SLIDE	INTERPRET 7.014										
	Si	ence							CK D	sposal Facility	, East Slope:	Page 6 of 11
	27	6.40397	5341.31	-13.4079	Waste	511.589	0	266.561	511.589	812.207	0	812.207
	28	6.40397	5304.89	-13.123	Waste	508.723	0	265.068	508.723	807.985	0	807.985
	29	6.40397	5252.57	-12.8384	Waste	504.321	0	262.774	504.321	801.316	0	801.316
	30	6.40397	5184.41	-12.5541	Waste	498.382	0	259.679	498.382	792.198	0	792.198
	31	6.40397	5100.44	-12.2702	Waste	490.906	0	255.784	490.906	780.629	0	780.629
	32	6.40397	5000.74	-11.9865	Waste	481.894	0	251.088	481.894	766.603	0	766.603
	33	6.40397	4885.34	-11.7032	Waste	471.343	0	245.591	471.343	750.117	0	750.117
	34	6.40397	4754.29	-11.4201	Waste	459.254	0	239.292	459.254	731.169	0	731.169
	35	6.40397	4607.65	-11.1373	Waste	445.626	0	232.191	445.626	709.752	0	709.752
	36	6.40397	4445.46	-10.8548	Waste	430.457	0	224.287	430.457	685.862	0	685.862
	37	6.40397	4267.75	-10.5726	Waste	413.747	0	215.581	413.747	659.496	0	659.496
	38	6.40397	4074.59	-10.2906	Waste	395.494	0	206.07	395.494	630.65	0	630.65
	39	6.40397	3866	-10.0088	Waste	375.698	0	195.756	375.698	599.317	0	599.317
	40	6.40397	3642.04	-9.72736	Waste	354.356	0	184.635	354.356	565.492	0	565.492
	41	6.40397	3402.73	-9.4461	Waste	331.468	0	172.71	331.468	529.173	0	529.173
	42	6.40397	3148.12	-9.16508	Waste	307.032	0	159.977	307.032	490.351	0	490.351
	43	6.40397	2878.24	-8.88428	Waste	281.046	0	146.438	281.046	449.022	0	449.022
	44	6.40397	2593.13	-8.6037	Waste	253.508	0	132.089	253.508	405.181	0	405.181
	45	6.40397	2292.82	-8.32332	Waste	224.416	0	116.931	224.416	358.823	0	358.823
	46	6.40397	1977.35	-8.04314	Waste	193.769	0	100.962	193.769	309.938	0	309.938
	47	6.40397	1646.75	-7.76316	Waste	161.564	0	84.1821	161.564	258.523	0	258.523
	48	6.22271	1206.06	-7.48732	Clayey Sand (SC)	131.131	0	68.3252	131.131	194.525	0	194.525
	49	6.22271	736.949	-7.21561	Clayey Sand (SC)	80.2256	0	41.8011	80.2256	119.057	0	119.057
	50	6.22271	248.818	-6.94406	Clayey Sand (SC)	27.1203	0	14.1309	27.1203	40.2632	0	40.2632

## **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.92562



12505.463475.6700022510.2434748.68912032515.023472.3533.14410042519.83470.7271.06970052524.583467.51178.6780062529.363467.51178.6780072534.683465.76228.6310092545.323462.33510.73300102550.643460.64631.02300112555.963458.98753.08800122561.283457.35875.2800132566.593455.771996.06300142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400202603.833445.061696.0800212269.143443.631763.3900222614.463442.221820.3400232619.783440.631961.4400242625.13439.461901.440025263.043435.481937.1500262635.743436.791936.8800272641.063435.48 </th <th>Slice Number</th> <th>X coordinate [ft]</th> <th>Y coordinate - Bottom [ft]</th> <th>Interslice Normal Force [lbs]</th> <th>Interslice Shear Force [lbs]</th> <th>Interslice Force Angle [degrees]</th>	Slice Number	X coordinate [ft]	Y coordinate - Bottom [ft]	Interslice Normal Force [lbs]	Interslice Shear Force [lbs]	Interslice Force Angle [degrees]
22510.2434748.689120032515.023472.3533.14410042519.83470.7271.0697052524.583469.11120.276062529.363467.51178.678072534.683462.33510.733002545.323462.33510.7330102550.643460.64631.0230112559.653455.73996.0630122561.283457.35875.280132566.593455.73996.0630142571.913454.141114.010152577.233452.571227.810162582.553451.031336.250172587.873449.51438.240022603.833445.061696.080192598.513446.521689.890212609.14343.631763.390222614.463442.221820.340232619.78340.831866.480242625.13439.461901.440252630.74343.6791936.880262635.743432.941903.06026267.013431.71869.080292651.693432.941903.460292651.653429.291769.020 <td< td=""><td>1</td><td>2505.46</td><td>3475.67</td><td>0</td><td>0</td><td>0</td></td<>	1	2505.46	3475.67	0	0	0
32515.02 $3472.35$ $33.1441$ 0042519.8 $3470.72$ $71.0697$ 0052524.58 $3469.11$ $120.276$ 006 $2529.36$ $3467.51$ $178.678$ 007 $2534.68$ $3465.76$ $282.631$ 008 $2540$ $3464.03$ $393.978$ 009 $2545.32$ $3462.33$ $510.733$ 0010 $2550.64$ $3460.64$ $631.023$ 0011 $2555.96$ $3455.73$ $966.63$ 0012 $2561.28$ $3457.73$ $966.63$ 0013 $2566.59$ $3455.73$ $966.63$ 0014 $2571.91$ $3454.14$ $1114.01$ 0015 $2577.23$ $3452.57$ $1227.81$ 0016 $2582.55$ $34451.03$ $1336.25$ 0017 $2587.87$ $3449.5$ $1438.24$ 0020 $22603.83$ $3444.52$ $1618.98$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ 1901.440025 $2630.42$ $3436.79$ 1936.880026 $2635.74$ $3436.79$ 1936.8800	2	2510.24	3474	8.68912	0	0
42519.8 $3470.72$ $71.0697$ 005 $2524.88$ $3469.11$ $120.276$ 06 $2529.36$ $3467.51$ $178.678$ 07 $2534.68$ $3465.76$ $222.631$ 08 $2540$ $3464.03$ $393.978$ 009 $2545.32$ $3462.33$ $510.733$ 0010 $2550.64$ $3460.64$ $631.023$ 0011 $2555.96$ $3458.98$ $753.088$ 0012 $2561.28$ $3457.35$ $875.28$ 0013 $2566.59$ $3455.73$ $996.063$ 0014 $2571.91$ $3454.14$ $1114.01$ 0015 $2577.23$ $3452.57$ $1227.81$ 0016 $2582.55$ $3451.03$ $1336.25$ 0017 $2587.87$ $3449.52$ $1618.98$ 0020 $2603.83$ $3445.52$ $1618.98$ 0021 $2609.14$ $3444.52$ $1820.34$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.63$ $1901.44$ 0024 $2625.1$ $3439.46$ $1901.44$ 0025 $2630.42$ $3432.94$ $1937.15$ 0026 $22651.69$ $3432.94$ $1937.15$ 0028 $2646.38$ $3432.42$ $1225.83$ 0029 </td <td>3</td> <td>2515.02</td> <td>3472.35</td> <td>33.1441</td> <td>0</td> <td>0</td>	3	2515.02	3472.35	33.1441	0	0
5       2524.58       3469.11       120.276       0       0         6       2529.36       3467.51       178.678       0       0         7       2534.68       3465.76       282.631       0       0         8       2540       3464.03       393.978       0       0         9       2545.32       3462.33       510.733       0       0         11       2550.64       3460.64       631.023       0       0         12       2561.28       3457.35       875.28       0       0         13       2566.59       3455.73       996.063       0       0         14       2571.91       3451.14       1114.01       0       0         15       2577.23       3452.57       1227.81       0       0         16       2582.55       3451.03       1336.25       0       0       0         19       2587.87       3449.5       1618.98       0       0       0         20       2603.83       3445.06       1696.08       0       0       0         21       2609.14       3443.63       1763.39       0       0       0       0 <td< td=""><td>4</td><td>2519.8</td><td>3470.72</td><td>71.0697</td><td>0</td><td>0</td></td<>	4	2519.8	3470.72	71.0697	0	0
62529.363467.51 $178.678$ 0072534.683465.76282.6310092545.323462.33510.73300102550.643460.64631.02300112555.963458.98753.08800122561.283457.35875.2800132566.593455.73996.06300142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743430.481824.2500282661.633432.941903.0600292651.603432.941903.0600312662.333430.481824.2500322657.013429.291769.0200332	5	2524.58	3469.11	120.276	0	0
7       2534.68       3465.76       282.631       0       0         8       2540       3464.03       393.978       0       0         9       2545.32       3462.33       510.733       0       0         10       2550.64       3460.64       631.023       0       0         11       2555.96       3458.98       753.088       0       0         12       2561.28       3457.35       875.28       0       0         13       2566.59       3452.57       127.81       0       0         15       2577.23       3425.75       127.81       0       0         16       2582.55       3451.03       1336.25       0       0         18       2593.51       3446.52       1618.98       0       0         20       2603.83       3445.06       1696.08       0       0       0         21       2609.14       3443.63       1763.39       0       0       0       0       0       0       0       0       0       0       2       2       2614.46       3442.22       1820.34       0       0       0       0       0       0       0 <td>6</td> <td>2529.36</td> <td>3467.51</td> <td>178.678</td> <td>0</td> <td>0</td>	6	2529.36	3467.51	178.678	0	0
825403464.03393.9780092545.323462.33510.73300102550.643460.64631.02300112555.963458.98753.08800122561.283457.35875.2800132566.593455.73996.06300142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423435.481937.1500262645.383434.21925.8300272641.063435.481937.1500282667.653429.291769.0200312662.33340.481343.71869.080322667.653429.291769.0200332672.973428.121703.93003426	7	2534.68	3465.76	282.631	0	0
9 $2545.32$ $3462.33$ $510.733$ 0010 $2550.64$ $3460.64$ $631.023$ 0011 $2555.96$ $3458.98$ $753.088$ 0012 $2561.28$ $3457.35$ $875.28$ 0013 $2566.59$ $3455.73$ $996.063$ 0014 $2571.91$ $3454.14$ $1114.01$ 0015 $2577.23$ $3452.57$ $1227.81$ 0016 $2582.55$ $3451.03$ $1336.25$ 0017 $2587.87$ $3449.5$ $1438.24$ 0018 $2593.19$ $3448$ $1532.78$ 0020 $2603.83$ $3445.06$ $1696.08$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ 1901.440025 $2630.42$ $3435.48$ 1937.150026 $2635.74$ $3430.48$ $1824.25$ 0027 $2641.06$ $3435.48$ 1937.150028 $2666.33$ $3432.94$ 1903.060030 $2675.01$ $3431.7$ $1869.08$ 0031 $2662.33$ $3426.96$ $1629.64$ 0035 $2683.61$ $3422.42$ $1703.93$ 0	8	2540	3464.03	393.978	0	0
10 $2550.64$ $3460.64$ $631.023$ 0011 $2555.96$ $3458.98$ $753.088$ 0012 $2561.28$ $3457.35$ $875.28$ 0013 $2566.59$ $3455.73$ $996.063$ 0014 $2571.91$ $3454.14$ $1114.01$ 0015 $2577.23$ $3452.57$ $1227.81$ 0016 $2582.55$ $3451.03$ $1336.25$ 0017 $2587.87$ $3449.5$ $1438.24$ 0018 $2593.19$ $3444$ $516.08$ 0020 $2603.83$ $3445.06$ $1696.08$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ 1901.440025 $2630.42$ $3438.11$ $1924.95$ 0026 $2635.74$ $3436.79$ $1936.88$ 0027 $2641.06$ $3432.94$ $1903.06$ 0028 $2646.38$ $3434.2$ $1925.83$ 0030 $2657.01$ $3431.7$ $1869.08$ 0031 $2662.33$ $3420.49$ $1903.96$ 0033 $2672.97$ $3422.92$ $1769.02$ 0034 $2267.65$ $3422.94$ $1039.34$ 0	9	2545.32	3462.33	510.733	0	0
112555.963458.98753.08800122561.283457.35 $875.28$ 00132566.593455.73996.06300142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743436.791936.8800272641.063435.481937.1500282665.693432.941903.0600302657.013431.71869.0800312662.333430.481824.2500332672.973428.121703.9300342678.293426.961629.6400352683.613422.831546.900362688.933424.721456.540037	10	2550.64	3460.64	631.023	0	0
122561.283457.35875.2800132566.593455.73996.0630142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800202603.833449.061696.0800212609.143444.3631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743436.791936.8800272641.063435.481937.1500282646.383434.21925.8300302657.013431.71869.0800312662.333420.921769.0200332672.973428.121709.0200342678.293426.961629.6400352683.613425.831546.900362688.933424.721456.5400372694.243425.651256.8600382699.56	11	2555.96	3458.98	753.088	0	0
132566.593455.73960.06300142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423435.481937.1500262635.743436.791936.8800272641.063435.481937.1500282646.383432.941903.0600302657.013431.71869.0800312662.333420.481824.2500322667.653429.291769.0200332672.973428.121703.9300342678.293426.961629.6400352688.613425.831546.900362688.933424.721456.5400382699.563422.561256.8600392	12	2561.28	3457.35	875.28	0	0
142571.913454.141114.0100152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800192585.513446.521618.9800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743436.791936.8800272641.063435.481937.1500282646.383434.21925.8300302657.013431.71869.0800312662.333430.481824.2500322667.653429.291769.0200332672.973426.961629.6400352688.613425.831546.900362688.933424.721456.5400372694.243423.631559.5100382699.563422.561256.86003927	13	2566.59	3455.73	996.063	0	0
152577.233452.571227.8100162582.553451.031336.2500172587.873449.51438.2400182593.1934481532.7800192598.513446.521618.9800202603.833445.061696.0800212609.143443.631763.3900222514.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743436.791936.8800272641.063435.481937.1500282646.383434.21925.8300292651.693432.941903.0600302657.013431.71869.0800312662.333446.961629.6400322667.653422.991769.0200332672.973426.361629.6400352683.613425.831546.900362688.933424.721456.5400372694.243423.631359.5100382699.563422.561256.86003927	14	2571.91	3454.14	1114.01	0	0
16 $2582.55$ $3451.03$ $1336.25$ 0017 $2587.87$ $3449.5$ $1438.24$ 0018 $2593.19$ $3448$ $1532.78$ 0019 $2598.51$ $3446.52$ $1618.98$ 0020 $2603.83$ $3445.06$ $1696.08$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ 1901.440025 $2630.42$ $3438.11$ $1924.95$ 0026 $2635.74$ $3436.79$ $1936.88$ 0027 $2641.06$ $3435.48$ $1937.15$ 0028 $2646.38$ $3434.2$ $1925.83$ 0030 $2657.01$ $3431.7$ $1869.08$ 0031 $2662.33$ $3430.48$ $1824.25$ 0032 $2667.65$ $3422.94$ $1703.93$ 0033 $2672.97$ $3426.96$ $1629.64$ 0035 $2683.61$ $3425.43$ $1359.51$ 0036 $2688.93$ $3424.72$ $1456.54$ 0037 $2694.24$ $3423.63$ $1359.51$ 0038 $2699.56$ $3422.56$ $1256.86$ 0039 $2704.88$ $3424.52$ 100	15	2577.23	3452.57	1227.81	0	0
172587.873449.51438.2400182593.1934481532.7800192598.513446.521618.9800202603.833445.061696.0800212609.143443.631763.3900222614.463442.221820.3400232619.783440.831866.4800242625.13439.461901.4400252630.423438.111924.9500262635.743436.791936.8800272641.063435.481937.1500282646.383434.21925.8300302657.013431.71869.0800312662.333440.481824.2500322667.653429.291769.0200332672.973428.121703.9300342678.293426.961629.6400352683.613425.831546.900362688.933424.721456.5400372694.243423.631359.5100382699.563422.561256.8600392704.883412.521149.7200412715.523419.49927.050042272	16	2582.55	3451.03	1336.25	0	0
18 $2593.19$ 3448 $1532.78$ 0019 $2598.51$ $3446.52$ $1618.98$ 0020 $2603.83$ $3445.06$ $1696.08$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ $1901.44$ 0025 $2630.42$ $3438.11$ $1924.95$ 0026 $2635.74$ $3436.79$ $1936.88$ 0027 $2641.06$ $3435.48$ $1937.15$ 0028 $2646.38$ $3434.2$ $1925.83$ 0029 $2651.69$ $3432.94$ $1903.06$ 0030 $2657.01$ $3431.7$ $1869.08$ 0031 $2662.33$ $3430.48$ $1824.25$ 0032 $2667.65$ $3429.29$ $1769.02$ 0033 $2672.97$ $3428.12$ $1703.93$ 0034 $2678.29$ $3426.96$ $1629.64$ 0035 $2683.61$ $3425.83$ $1546.9$ 0036 $2688.93$ $3424.72$ $1456.54$ 0037 $2694.24$ $3422.65$ $1256.86$ 0038 $2699.56$ $3422.56$ $1256.86$ 0039 $2704.88$ $3415.5$ $814.281$	17	2587.87	3449.5	1438.24	0	0
192598.51 $3446.52$ $1618.98$ 0020 $2603.83$ $3445.06$ $1696.08$ 0021 $2609.14$ $3443.63$ $1763.39$ 0022 $2614.46$ $3442.22$ $1820.34$ 0023 $2619.78$ $3440.83$ $1866.48$ 0024 $2625.1$ $3439.46$ $1901.44$ 0025 $2630.42$ $3438.11$ $1924.95$ 0026 $2635.74$ $3436.79$ $1936.88$ 0027 $2641.06$ $3435.48$ $1937.15$ 0028 $2666.38$ $3432.94$ $1903.06$ 0030 $2657.01$ $3432.94$ $1903.06$ 0031 $2662.33$ $3430.48$ $1824.25$ 0032 $2667.65$ $3429.29$ $1769.02$ 0033 $2672.97$ $3428.12$ $1703.93$ 0034 $2678.29$ $3426.96$ $1629.64$ 0035 $2683.61$ $3425.83$ $1346.9$ 0036 $2688.93$ $3424.72$ $1456.54$ 0037 $2694.24$ $3423.63$ $1359.51$ 0038 $2699.56$ $3422.56$ $1256.86$ 0039 $2704.88$ $3421.52$ $1149.72$ 0041 $2715.52$ $3419.49$ $927.05$ 0042 $2720.84$ $3418.5$ $814.281$	18	2593.19	3448	1532.78	0	0
20 $2603.83$ $3445.06$ $1696.08$ $0$ $21$ $2609.14$ $3443.63$ $1763.39$ $0$ $22$ $2614.46$ $3442.22$ $1820.34$ $0$ $23$ $2619.78$ $3440.83$ $1866.48$ $0$ $24$ $2625.1$ $3439.46$ $1901.44$ $0$ $25$ $2630.42$ $3438.11$ $1924.95$ $0$ $26$ $2635.74$ $3436.79$ $1936.88$ $0$ $27$ $2641.06$ $3435.48$ $1937.15$ $0$ $28$ $2646.38$ $3434.2$ $1925.83$ $0$ $0$ $29$ $2651.69$ $3432.94$ $1903.06$ $0$ $0$ $30$ $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $41$ $2715.22$ $3412.48$ $0$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $44$ $2771.48$ $3416$	19	2598.51	3446.52	1618.98	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	2603.83	3445.06	1696.08	0	0
22 $2614.46$ $3442.22$ $1820.34$ $0$ $0$ $23$ $2619.78$ $3440.83$ $1866.48$ $0$ $0$ $24$ $2625.1$ $3439.46$ $1901.44$ $0$ $0$ $25$ $2630.42$ $3438.11$ $1924.95$ $0$ $0$ $26$ $2635.74$ $3436.79$ $1936.88$ $0$ $0$ $27$ $2641.06$ $3435.48$ $1937.15$ $0$ $0$ $28$ $2646.38$ $3434.2$ $1925.83$ $0$ $0$ $29$ $2651.69$ $3432.94$ $1903.06$ $0$ $0$ $30$ $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $44$ $2731.48$ $341$	21	2609.14	3443.63	1763.39	0	0
23 $2619.78$ $3440.83$ $1866.48$ $0$ $0$ $24$ $2625.1$ $3439.46$ $1901.44$ $0$ $0$ $25$ $2630.42$ $3438.11$ $1924.95$ $0$ $0$ $26$ $2635.74$ $3436.79$ $1936.88$ $0$ $0$ $27$ $2641.06$ $3435.48$ $1937.15$ $0$ $0$ $28$ $2646.38$ $3434.2$ $1925.83$ $0$ $0$ $29$ $2651.69$ $3432.94$ $1903.06$ $0$ $0$ $30$ $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $44$ $2731.48$ $341$	22	2614.46	3442.22	1820.34	0	0
24 $2625.1$ $3439.46$ $1901.44$ $0$ $0$ $25$ $2630.42$ $3438.11$ $1924.95$ $0$ $0$ $26$ $2635.74$ $3436.79$ $1936.88$ $0$ $0$ $27$ $2641.06$ $3435.48$ $1937.15$ $0$ $0$ $28$ $2646.38$ $3434.2$ $1925.83$ $0$ $0$ $29$ $2651.69$ $3432.94$ $1903.06$ $0$ $0$ $30$ $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $44$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414$	23	2619.78	3440.83	1866.48	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	2625.1	3439.46	1901.44	0	0
26       2635.74       3436.79       1936.88       0       0         27       2641.06       3435.48       1937.15       0       0         28       2646.38       3434.2       1925.83       0       0         30       2657.01       3432.94       1903.06       0       0         31       2662.33       3430.48       1824.25       0       0         32       2667.65       3429.29       1769.02       0       0         33       2672.97       3428.12       1703.93       0       0         34       2678.29       3426.96       1629.64       0       0         35       2683.61       3425.83       1546.9       0       0         36       2688.93       3424.72       1456.54       0       0         37       2694.24       3423.63       1359.51       0       0         38       2699.56       3422.56       1256.86       0       0         39       2704.88       3421.52       1149.72       0       0         41       2715.52       3419.49       927.05       0       0         42       2720.84       3418.5	25	2630.42	3438.11	1924.95	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	2635.74	3436.79	1936.88	0	0
28 $2646.38$ $3434.2$ $1925.83$ $0$ $0$ $29$ $2651.69$ $3432.94$ $1903.06$ $0$ $0$ $30$ $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $40$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $43$ $2726.16$ $3417.54$ $702.567$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $47$ $2747.15$ $3413.94$ $280.882$ $0$ $0$ $48$ $2752.18$ $3413$	27	2641.06	3435.48	1937.15	0	0
292651.693432.941903.0600302657.013431.71869.0800312662.333430.481824.2500322667.653429.291769.0200332672.973428.121703.9300342678.293426.961629.6400352683.613425.831546.900362688.933424.721456.5400372694.243423.631359.5100382699.563422.561256.8600392704.883421.521149.7200402710.23420.491039.3400412715.523419.49927.0500422720.843418.5814.28100432726.163417.54702.56700442731.483416.6593.53400452736.793415.68488.90800462742.113414.78390.51100472747.153413.94280.88200482752.183413.13190.74900492757.223412.33122.82200	28	2646.38	3434.2	1925.83	0	0
30 $2657.01$ $3431.7$ $1869.08$ $0$ $0$ $31$ $2662.33$ $3430.48$ $1824.25$ $0$ $0$ $32$ $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $40$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $43$ $2726.16$ $3417.54$ $702.567$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $48$ $2752.18$ $3413.13$ $190.749$ $0$ $0$ $49$ $2757.22$ $3412.33$ $122.822$ $0$ $0$	29	2651.69	3432.94	1903.06	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	2657.01	3431.7	1869.08	0	0
32 $2667.65$ $3429.29$ $1769.02$ $0$ $0$ $33$ $2672.97$ $3428.12$ $1703.93$ $0$ $0$ $34$ $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $40$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $47$ $2747.15$ $3413.94$ $280.882$ $0$ $0$ $48$ $2752.18$ $3412.33$ $122.822$ $0$ $0$	31	2662.33	3430.48	1824.25	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	2667.65	3429.29	1769.02	0	0
34 $2678.29$ $3426.96$ $1629.64$ $0$ $0$ $35$ $2683.61$ $3425.83$ $1546.9$ $0$ $0$ $36$ $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $40$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $43$ $2726.16$ $3417.54$ $702.567$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $47$ $2747.15$ $3413.94$ $280.882$ $0$ $0$ $48$ $2752.18$ $3413.13$ $190.749$ $0$ $0$	33	2672.97	3428.12	1703.93	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	2678.29	3426.96	1629.64	0	0
36 $2688.93$ $3424.72$ $1456.54$ $0$ $0$ $37$ $2694.24$ $3423.63$ $1359.51$ $0$ $0$ $38$ $2699.56$ $3422.56$ $1256.86$ $0$ $0$ $39$ $2704.88$ $3421.52$ $1149.72$ $0$ $0$ $40$ $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $43$ $2726.16$ $3417.54$ $702.567$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $47$ $2747.15$ $3413.94$ $280.882$ $0$ $0$ $48$ $2752.18$ $3412.33$ $122.822$ $0$ $0$	35	2683.61	3425.83	1546.9	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	2688.93	3424.72	1456.54	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	2694.24	3423.63	1359.51	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	2699.56	3422.56	1256.86	0	0
40 $2710.2$ $3420.49$ $1039.34$ $0$ $0$ $41$ $2715.52$ $3419.49$ $927.05$ $0$ $0$ $42$ $2720.84$ $3418.5$ $814.281$ $0$ $0$ $43$ $2726.16$ $3417.54$ $702.567$ $0$ $0$ $44$ $2731.48$ $3416.6$ $593.534$ $0$ $0$ $45$ $2736.79$ $3415.68$ $488.908$ $0$ $0$ $46$ $2742.11$ $3414.78$ $390.511$ $0$ $0$ $47$ $2747.15$ $3413.94$ $280.882$ $0$ $0$ $48$ $2752.18$ $3413.13$ $190.749$ $0$ $0$ $49$ $2757.22$ $3412.33$ $122.822$ $0$ $0$	39	2704.88	3421.52	1149.72	0	0
412715.523419.49927.0500422720.843418.5814.28100432726.163417.54702.56700442731.483416.6593.53400452736.793415.68488.90800462742.113414.78390.51100472747.153413.94280.88200482752.183413.13190.74900492757.223412.33122.82200	40	2710.2	3420.49	1039.34	0	0
42       2720.84       3418.5       814.281       0       0         43       2726.16       3417.54       702.567       0       0         44       2731.48       3416.6       593.534       0       0         45       2736.79       3415.68       488.908       0       0         46       2742.11       3414.78       390.511       0       0         47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	41	2715.52	3419.49	927.05	0	0
43       2726.16       3417.54       702.567       0       0         44       2731.48       3416.6       593.534       0       0         45       2736.79       3415.68       488.908       0       0         46       2742.11       3414.78       390.511       0       0         47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	42	2720.84	3418.5	814.281	0	0
44       2731.48       3416.6       593.534       0       0         45       2736.79       3415.68       488.908       0       0         46       2742.11       3414.78       390.511       0       0         47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	43	2726.16	3417.54	702.567	0	0
45       2736.79       3415.68       488.908       0       0         46       2742.11       3414.78       390.511       0       0         47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	44	2731.48	3416.6	593.534	0	0
46       2742.11       3414.78       390.511       0       0         47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	45	2736.79	3415.68	488.908	0	0
47       2747.15       3413.94       280.882       0       0         48       2752.18       3413.13       190.749       0       0         49       2757.22       3412.33       122.822       0       0	46	2742.11	3414.78	390.511	0	0
48         2/52.18         3413.13         190./49         0         0           49         2757.22         3412.33         122.822         0         0	47	2/4/.15	3413.94	280.882	0	0
49 2/5/.22 3412.33 122.822 0 0	48	2752.18	3413.13	190.749	0	0
	49	2151.22	3412.33	122.822	0	U
50 2702.25 5411.55 75.9151 0 0	5U 51	2702.23	3411.35 2/10 70	U 1216'67	0	



Global Minimum Query (janbu simplified) - Safety Factor: 1.91922



Slico	х	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Humber	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	2502.03	3476.52	0	0	0
2	2507.84	3474.31	23.26	0	0
3	2513.64	3472.12	88.859	0	0
4	2519.44	3469.97	190.821	0	0
5	2525.85	3467.63	374.056	0	0
6	2532.25	3465.33	585.722	0	0
7	2538.65	3463.06	820.39	0	0
8	2545.06	3460.83	1072.93	0	0
9	2551.46	3458.64	1338.5	0	0
10	2557.87	3456.49	1612.55	0	0
11	2564.27	3454.37	1890.82	0	0
12	2570.67	3452.28	2169.32	0	0
13	2577.08	3450.24	2444.36	0	0
14	2583.48	3448.23	2712.5	0	0
15	2589.89	3446.25	2970.58	0	0
16	2596.29	3444.31	3215.73	0	0
17	2602.69	3442.4	3445.32	0	0
18	2609.1	3440.53	3657	0	0
19	2615.5	3438.7	3848.69	0	0
20	2621.9	3436.9	4018.53	0	0
21	2628.31	3435.13	4164.97	0	0
22	2634.71	3433.4	4286.69	0	0
23	2641 12	3431 71	4382.61	0	0
24	2647 52	3430.04	4451 93	0	0
25	2653.92	3438 42	4494.08	0	0
25	2660.33	3426.82	4508 74	0	0
20	2666 73	3425.26	4305.74	0	0
2,	2673 14	3423.20	4455.50	0	0
20	2679.14	3422.74	4388 38	0	0
30	2685.94	3/20 78	4366.50	0	0
30	2692.35	3/19 36	4175 97	0	0
32	2698.75	3/17 96	4173.57	0	0
22	2038.75	2417.50	2866.84	0	0
34	2703.10	3410.0	3679 6	0	0
25	2711.50	2/12 09	2/72	0	0
30	2717.90	2413.50	22/0 12	0	0
30	2724.37	3/11 5	3010.20	0	0
20	2730.77	2410.2	2750 1	0	0
20	2737.18	3410.3	2739.1	0	0
40	2743.38	2409.14	2430.34	0	0
40	2749.98	3406.01	1060 52	0	0
41	2750.39	2400.91	1600.32	0	0
42	2702.79	2402.04	1090.20	0	0
43	2709.2	3404.81	1424	0	0
44	2775.0	3403.81	1105.74	0	0
45	2/82	3402.84	919.08	0	U
46	2788.41	3401.9	090.281	0	U
4/	2/94.81	3401	482.226	U	U
48	2801.22	3400.13	300.437	0	U
49	2807.44	3399.31	130.739	0	U
50	2813.66	3398.52	23.3118	0	0
51	2819.88	3397.76	0	0	0



#### CK Disposal Facility, East Slope: Page 10 of 11

## List Of Coordinates

### **External Boundary**

E.

Х	Y
105.01	3381.21
65	3372.05
61	3372.02
43.9	3376.3
0	3376.3
0	3361
0	3336
0	3200
3000	3200
3000	3349
3000	3374
3000	3389.22
2962.33	3389.22
2902.33	3384.3
2862.33	3393.92
2834.14	3394.23
2497.32	3477.69
1486.5	3527.15
470.02	3466.33
133.49	3381.5

#### **Material Boundary**

Х	Y
133.49	3381.5
142.75	3381.59
149.94	3381.66
232.606	3361
275.18	3350.36
372.35	3348.37
594.61	3352.96
2150.52	3347.83
2372.79	3352.2
2595.06	3347.69
2633	3348.48
2735.51	3374
2817.33	3394.37
2824.68	3394.31
2834.14	3394.23

### **Material Boundary**



Х	Y
142.75	3381.59
142.75	3381.59
146.998	3382.66
468.81	3463.72
1486.54	3524.64
2498.75	3475.1
2820.46	3395.36
2824.68	3394.31

## **Material Boundary**

х	Y
594.53	3353.96
594.61	3352.96

### **Material Boundary**

х	Y
2150.44	3348.83
2150.52	3347.83

### **Material Boundary**

Х	Y
0	3336
3000	3349







## Slide Analysis Information CK Disposal Facility, West Slope

#### **Project Summary**

File Name:	WEST SLOPE SEISMIC
Slide Modeler Version:	7.014
Project Title:	CK Disposal Facility, West Slope
Analysis:	Final Cover
Company:	Parkhill, Smith & Cooper Inc.
Date Created:	4/19/2016, 5:02:51 PM

#### **General Settings**

Units of Measurement:	Imperial Units
Time Units:	days
Permeability Units:	feet/second
Failure Direction:	Right to Left
Data Output:	Standard
Maximum Material Properties:	20
Maximum Support Properties:	20

#### **Analysis Options**

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

#### Groundwater Analysis

Groundwater Method:	Water Surfaces
Pore Fluid Unit Weight [lbs/ft3]:	62.4
Advanced Groundwater Method:	None

#### **Random Numbers**

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

## Surface Options

Surface Type:CircularSearch Method:Grid Search

Radius Increment:5Composite Surfaces:DisabledReverse Curvature:Invalid SurfacesMinimum Elevation:Not DefinedMinimum Depth:Not DefinedMinimum Area:Not DefinedMinimum Weight:Not Defined

#### Seismic

Advanced seismic analysis:NoStaged pseudostatic analysis:YesStaged pseudostatic method:Effective Stress

#### Loading

Seismic Load Coefficient (Horizontal):0.08Seismic Load Coefficient (Vertical):0.05

WEST SLOPE SEISMIC.slim

## **Material Properties**

Property	Waste	Clayey Sand (SC)	Claystone
Color			
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [lbs/ft3]	74	102	140
Cohesion [psf]	0	0	2000
Friction Angle [deg]	33	35	35
Water Surface	None	None	None
Ru Value	0	0	0

#### **Global Minimums**

#### Method: bishop simplified

FS	1.899610
Center:	-13.434, 4766.460
Radius:	1387.612
Left Slip Surface Endpoint:	172.744, 3391.395
Right Slip Surface Endpoint:	471.742, 3466.433
Resisting Moment:	1.33558e+008 lb-ft
Driving Moment:	7.03084e+007 lb-ft
Total Slice Area:	1814.38 ft2
Surface Horizontal Width:	298.998 ft
Surface Average Height:	6.06821 ft

#### Method: janbu simplified

FS	1.893970
Center:	-13.434, 4713.609
Radius:	1336.888
Left Slip Surface Endpoint:	158.650, 3387.842
Right Slip Surface Endpoint:	463.490, 3464.684
Resisting Horizontal Force:	99219 lb
Driving Horizontal Force:	52386.9 lb
Total Slice Area:	1944.05 ft2
Surface Horizontal Width:	304.84 ft
Surface Average Height:	6.37728 ft

#### Valid / Invalid Surfaces

#### Method: bishop simplified

Number of Valid Surfaces: 1761 Number of Invalid Surfaces: 885

#### Error Codes:

Error Code -102 reported for 9 surfaces Error Code -106 reported for 47 surfaces Error Code -107 reported for 1 surface Error Code -1000 reported for 828 surfaces

#### Method: janbu simplified

Number of Valid Surfaces:1761Number of Invalid Surfaces:885

#### Error Codes:

Error Code -102 reported for 9 surfaces

Error Code -106 reported for 47 surfaces Error Code -107 reported for 1 surface Error Code -1000 reported for 828 surfaces

#### **Error Codes**

The following errors were encountered during the computation:

-102 = Two surface / slope intersections, but resulting arc is actually outside soil region.

-106 = Average slice width is less than 0.0001 * (maximum horizontal extent of soil region). This limitation is imposed to avoid numerical errors which may result from too many slices, or too small a slip region.

-107 = Total driving moment or total driving force is negative. This will occur if the wrong failure direction is specified, or if high external or anchor loads are applied against the failure direction.

-1000 = No valid slip surfaces are generated at a grid center. Unable to draw a surface.

#### Slice Data

**Global Minimum Query (bishop simplified) - Safety Factor**: 1.89961



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	6.89156	276.425	7.85437	Clayey Sand (SC)	27.0793	0	14.2552	27.0793	40.1498	0	40.1498
2	6.89156	816.889	8.14172	Clayey Sand (SC)	79.9182	0	42.0708	79.9182	118.443	0	118.443
3	6.89156	1332.55	8.42929	Clayey Sand (SC)	130.194	0	68.5372	130.194	192.871	0	192.871
4	5.93104	1492.46	8.69699	Waste	157.397	0	82.8575	157.397	251.542	0	251.542
5	5.93104	1744.86	8.94482	Waste	183.82	0	96.7672	183.82	293.67	0	293.67
6	5.93104	1985.71	9.19282	Waste	208.971	0	110.007	208.971	333.737	0	333.737
7	5.93104	2215	9.44099	Waste	232.852	0	122.579	232.852	371.75	0	371.75
8	5.93104	2432.7	9.68935	Waste	255.464	0	134.482	255.464	407.712	0	407.712
9	5.93104	2638.79	9.93788	Waste	276.809	0	145.719	276.809	441.626	0	441.626
10	5.93104	2833.23	10.1866	Waste	296.888	0	156.289	296.888	473.496	0	473.496
11	5.93104	3016	10.4355	Waste	315.701	0	166.193	315.701	503.327	0	503.327
12	5.93104	3187.07	10.6846	Waste	333.25	0	175.431	333.25	531.123	0	531.123
13	5.93104	3346.41	10.934	Waste	349.535	0	184.004	349.535	556.884	0	556.884
14	5.93104	3494.01	11.1835	Waste	364.559	0	191.913	364.559	580.619	0	580.619
15	5.93104	3629.81	11.4332	Waste	378.32	0	199.157	378.32	602.325	0	602.325
16	5.93104	3753.8	11.6832	Waste	390.82	0	205.737	390.82	622.009	0	622.009
17	5.93104	3865.94	11.9334	Waste	402.06	0	211.654	402.06	639.675	0	639.675
18	5.93104	3966.2	12.1838	Waste	412.041	0	216.908	412.041	655.323	0	655.323
19	5.93104	4054.55	12.4345	Waste	420.762	0	221.499	420.762	668.956	0	668.956
20	5.93104	4130.95	12.6854	Waste	428.224	0	225.427	428.224	680.58	0	680.58
21	5.93104	4195.37	12.9365	Waste	434.428	0	228.693	434.428	690.195	0	690.195
22	5.93104	4247.77	13.188	Waste	439.373	0	231.296	439.373	697.804	0	697.804
23	5.93104	4288.11	13.4396	Waste	443.061	0	233.238	443.061	703.409	0	703.409
24	5.93104	4316.36	13.6915	Waste	445.491	0	234.517	445.491	707.014	0	707.014
25	5.93104	4332.48	13.9437	Waste	446.664	0	235.135	446.664	708.619	0	708.619
26	5.93104	4336.43	14.1962	Waste	446.579	0	235.09	446.579	708.227	0	708.227
27	5.93104	4328.16	14.449	Waste	445.236	0	234.383	445.236	705.843	0	705.843
28	5.93104	4307.64	14.702	Waste	442.635	0	233.014	442.635	701.464	0	701.464
29	5.93104	4274.83	14.9553	Waste	438.777	0	230.983	438.777	695.096	0	695.096
30	5.93104	4229.68	15.209	Waste	433.66	0	228.289	433.66	686.737	0	686.737
31	5.93104	4172.15	15.4629	Waste	427.285	0	224.933	427.285	676.392	0	676.392
32	5.93104	4102.19	15.7172	Waste	419.651	0	220.914	419.651	664.062	0	664.062
33	5.93104	4019.75	15.9717	Waste	410.757	0	216.232	410.757	649.747	0	649.747
34	5.93104	3924.79	16.2266	Waste	400.604	0	210.887	400.604	633.45	0	633.45
35	5.93104	3817.27	16.4819	Waste	389.19	0	204.879	389.19	615.171	0	615.171
36	5.93104	3697.12	16.7374	Waste	376.515	0	198.206	376.515	594.913	0	594.913
37	5.93104	3564.3	16.9933	Waste	362.578	0	190.87	362.578	572.676	0	572.676
38	5.93104	3418.77	17.2496	Waste	347.378	0	182.868	347.378	548.46	0	548.46
39	5.93104	3260.46	17.5062	Waste	330.915	0	174.202	330.915	522.267	0	522.267
40	5.93104	3089.32	17.7632	Waste	313.187	0	164.869	313.187	494.1	0	494.1
41	5.93104	2905.3	18.0205	Waste	294.194	0	154.871	294.194	463.956	0	463.956
42	5.93104	2708.34	18.2782	Waste	273.934	0	144.205	273.934	431.839	0	431.839
43	5.93104	2498.38	18.5363	Waste	252.407	0	132.873	252.407	397.748	0	397.748
44	5.93104	2275.37	18.7948	Waste	229.61	0	120.872	229.61	361.683	0	361.683
45	5.93104	2039.24	19.0537	Waste	205.543	0	108.203	205.543	323.646	0	323.646
46	5.93104	1789.94	19.313	Waste	180.205	0	94.8642	180.205	283.636	0	283.636
47	5.93104	1527.4	19.5727	Waste	153.594	0	80.8555	153.594	241.655	0	241.655
48	5.78585	1173.42	19.8297	Clayey Sand (SC)	129.432	0	68.1361	129.432	188.378	0	188.378
49	5.78585	794.249	20.0838	Clayey Sand (SC)	87.5006	0	46.0624	87.5006	127.296	0	127.296
50	5.78585	368.807	20.3384	Clayey Sand (SC)	40.5804	0	21.3625	40.5804	59.0115	0	59.0115

Global Minimum Query (janbu simplified) - Safety Factor: 1.89397



Slice Number	Width [ft]	Weight [lbs]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [psf]	Base Friction Angle [degrees]	Shear Stress [psf]	Shear Strength [psf]	Base Normal Stress [psf]	Pore Pressure [psf]	Effective Normal Stress [psf]
1	6.5392	261.182	7.53699	Clayey Sand (SC)	27.001	0	14.2563	27.001	40.0513	0	40.0513
2	6.5392	772.586	7.81978	Clayey Sand (SC)	79.7654	0	42.1155	79.7654	118.269	0	118.269
3	6.5392	1262.05	8.10277	Clayey Sand (SC)	130.129	0	68.707	130.129	192.863	0	192.863
4	6.05072	1531.26	8.37536	Waste	158.495	0	83.684	158.495	253.402	0	253.402
5	6.05072	1809.16	8.63757	Waste	187.048	0	98.7597	187.048	298.945	0	298.945
6	6.05072	2074.38	8.89995	Waste	214.225	0	113.109	214.225	342.256	0	342.256
7	6.05072	2326.87	9.16253	Waste	240.029	0	126.733	240.029	383.343	0	383.343
8	6.05072	2566.63	9.4253	Waste	264.46	0	139.633	264.46	422.209	0	422.209
9	6.05072	2793.61	9.68827	Waste	287.521	0	151.809	287.521	458.86	0	458.86
10	6.05072	3007.79	9.95144	Waste	309.213	0	163.262	309.213	493.298	0	493.298
11	6.05072	3209.13	10.2148	Waste	329.537	0	173.993	329.537	525.531	0	525.531
12	6.05072	3397.62	10.4784	Waste	348.494	0	184.002	348.494	555.559	0	555.559
13	6.05072	3573.2	10.7423	Waste	366.086	0	193.29	366.086	583.39	0	583.39
14	6.05072	3735.86	11.0063	Waste	382.313	0	201.858	382.313	609.025	0	609.025
15	6.05072	3885.55	11.2706	Waste	397.177	0	209.706	397.177	632.468	0	632.468
16	6.05072	4022.24	11.5352	Waste	410.678	0	216.834	410.678	653.726	0	653.726
17	6.05072	4145.89	11.8	Waste	422.817	0	223.244	422.817	672.8	0	672.8
18	6.05072	4256.48	12.065	Waste	433.596	0	228.935	433.596	689.695	0	689.695
19	6.05072	4353.95	12.3303	Waste	443.013	0	233.907	443.013	704.411	0	704.411
20	6.05072	4438.26	12.5959	Waste	451.071	0	238.162	451.071	716.954	0	716.954
21	6.05072	4509.39	12.8618	Waste	457.77	0	241.699	457.77	727.329	0	727.329
22	6.05072	4567.28	13.1279	Waste	463.11	0	244.518	463.11	735.534	0	735.534
23	6.05072	4611.9	13.3943	Waste	467.091	0	246.62	467.091	741.576	0	741.576
24	6.05072	4643.2	13.661	Waste	469.713	0	248.004	469.713	745.456	0	745.456
25	6.05072	4661.13	13.9281	Waste	470.977	0	248.672	470.977	747.176	0	747.176
26	6.05072	4665.65	14.1954	Waste	470.883	0	248.622	470.883	746.739	0	746.739
27	6.05072	4656.72	14.463	Waste	469.43	0	247.855	469.43	744.149	0	744.149
28	6.05072	4634.28	14.731	Waste	466.619	0	246.371	466.619	739.407	0	739.407
29	6.05072	4598.28	14.9993	Waste	462.449	0	244.169	462.449	732.515	0	732.515
30	6.05072	4548.68	15.2679	Waste	456.921	0	241.25	456.921	723.477	0	723.477
31	6.05072	4485.42	15.5369	Waste	450.033	0	237.614	450.033	712.292	0	712.292
32	6.05072	4408.45	15.8062	Waste	441.785	0	233.259	441.785	698.962	0	698.962
33	6.05072	4317.71	16.0759	Waste	432.177	0	228.186	432.177	683.491	0	683.491
34	6.05072	4213.15	16.346	Waste	421.207	0	222.394	421.207	665.879	0	665.879
35	6.05072	4094.72	16.6164	Waste	408.877	0	215.884	408.877	646.128	0	646.128
36	6.05072	3962.35	16.8872	Waste	395.184	0	208.654	395.184	624.239	0	624.239
37	6.05072	3815.98	17.1584	Waste	380.127	0	200.704	380.127	600.215	0	600.215
38	6.05072	3655.56	17.43	Waste	363.706	0	192.034	363.706	574.055	0	574.055
39	6.05072	3481.01	17.702	Waste	345.92	0	182.643	345.92	545.76	0	545.76
40	6.05072	3292.29	17.9745	Waste	326.768	0	172.531	326.768	515.334	0	515.334
41	6.05072	3089.32	18.2473	Waste	306.248	0	161.696	306.248	482.774	0	482.774
42	6.05072	2872.03	18.5206	Waste	284.359	0	150.139	284.359	448.083	0	448.083
43	6.05072	2640.36	18.7943	Waste	261.1	0	137.859	261.1	411.262	0	411.262
44	6.05072	2394.23	19.0684	Waste	236.469	0	124.854	236.469	372.31	0	372.31
45	6.05072	2133.58	19.343	Waste	210.465	0	111.124	210.465	331.229	0	331.229
46	6.05072	1858.34	19.6181	Waste	183.085	0	96.6673	183.085	288.018	0	288.018
47	6.05072	1568.42	19.8936	Waste	154.329	0	81.4844	154.329	242.678	0	242.678
48	6.33036	1249.59	20.176	Clayey Sand (SC)	125.727	0	66.3828	125.727	182.867	0	182.867
49	6.33036	766.236	20.4653	Clayey Sand (SC)	76.9857	0	40.6478	76.9857	111.92	0	111.92
50	6.33036	259.346	20.7552	Clayey Sand (SC)	26.0203	0	13.7385	26.0203	37.8093	0	37.8093

## **Interslice Data**

Global Minimum Query (bishop simplified) - Safety Factor: 1.89961

Cline	х	X Y		Interslice	Interslice
Slice	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	172.744	3391.39	0	0	0
2	179.636	3392.35	37.9568	0	0
3	186.528	3393.33	145.764	0	0
4	193.419	3394.35	314.516	0	0
5	199.35	3395.26	458.339	0	0
6	205.281	3396.19	618.532	0	0
7	211.212	3397.15	791.794	0	0
8	217.143	3398.14	974.981	0	0
9	223.074	3399.15	1165.11	0	0
10	229.005	3400.19	1359.35	0	0
11	234.936	3401.26	1555.03	0	0
12	240.867	3402.35	1749.63	0	0
13	246.798	3403.47	1940.81	0	0
14	252.73	3404.61	2126.36	0	0
15	258 661	3405 79	2304 25	0	0
16	264 592	3406 99	2472 59	0	0
17	270 523	3/08/21	2629.66	0	0
18	276.525	3409.21	2025:00	0	0
10	282 385	3/10 75	2903.9	0	0
20	202.505	2/12 05	2003.5	0	0
20	208.310	2/12 20	2116.26	0	0
21	294.247	2413.35	2106.92	0	0
22	300.178	2414.75	3190.82	0	0
23	306.109	3410.14	3259.03	0	0
24	312.04	3417.50	3302.38	0	0
25	317.971	3419	3326.44	0	0
26	323.902	3420.48	3330.93	0	0
27	329.833	3421.98	3315.74	0	0
28	335.764	3423.51	3280.93	0	0
29	341.695	3425.06	3226.72	0	0
30	347.626	3426.65	3153.48	0	0
31	353.557	3428.26	3061.79	0	0
32	359.488	3429.9	2952.36	0	0
33	365.419	3431.57	2826.07	0	0
34	371.35	3433.27	2684.01	0	0
35	377.281	3434.99	2527.4	0	0
36	383.212	3436.75	2357.66	0	0
37	389.143	3438.53	2176.36	0	0
38	395.074	3440.34	1985.27	0	0
39	401.005	3442.18	1786.33	0	0
40	406.937	3444.06	1581.66	0	0
41	412.868	3445.96	1373.55	0	0
42	418.799	3447.88	1164.49	0	0
43	424.73	3449.84	957.133	0	0
44	430.661	3451.83	754.345	0	0
45	436.592	3453.85	559.159	0	0
46	442.523	3455.9	374.806	0	0
47	448.454	3457.98	204.706	0	0
48	454.385	3460.09	52.476	0	0
49	460.171	3462.17	-40.2074	0	0
50	465.957	3464.29	-106.529	0	0
51	471.742	3466.43	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.89397

Slice Number	X coordinate	Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
	[ft]	[ft]	[lbs]	[lbs]	[degrees]
1	158.65	3387.84	0	0	0
2	165.189	3388.71	37.7016	0	0
3	171.729	3389.61	145.153	0	0
4	178.268	3390.54	314.039	0	0
5	184.319	3391.43	472.275	0	0
6	190.369	3392.35	650.486	0	0
7	196.42	3393.29	844.808	0	0
8	202.471	3394.27	1051.56	0	0
9	208.521	3395.27	1267.24	0	0
10	214.572	3396.31	1488.53	0	0
11	220.623	3397.37	1712.32	0	0
12	226.674	3398.46	1935.64	0	0
13	232.724	3399.58	2155.74	0	0
14	238.775	3400.73	2370.04	0	0
15	244.826	3401.9	2576.15	0	0
16	250.876	3403.11	2771.85	0	0
17	256.927	3404.34	2955.12	0	0
18	262.978	3405.61	3124.11	0	0
19	269.029	3406.9	3277.19	0	0
20	275.079	3408.22	3412.86	0	0
21	281.13	3409.58	3529.87	0	0
22	287.181	3410.96	3627.1	0	0
23	293.231	3412.37	3703.65	0	0
24	299.282	3413.81	3758.8	0	0
25	305.333	3415.28	3792.03	0	0
26	311.384	3416.78	3802.99	0	0
27	317.434	3418.31	3791.54	0	0
28	323.485	3419.87	3/5/./2	0	0
29	329.536	3421.46	3/01.//	0	0
30	335.580	3423.08	3624.12	0	0
31	341.637	3424.74	3525.41	0	0
32	347.688	3426.42	3406.44	0	0
33	353.739	3428.13	3268.26	0	0
34 25	359.789	3429.87	3112.08	0	0
35	271 201	3431.03	2939.32	0	0
30 27	3/1.091	3433.43	2751.02	0	0
37 20	202 002	3435.29	2550.8	0	0
20	200 042	2437.10	2338.91	0	0
10	206.004	3435.00	1901 1	0	0
40	390.094 402 144	2440.99	1660 21	0	0
41	402.144	2442.95	1420 7	0	0
42	406.195	2444.95	1420.7	0	0
43	414.240	2440.58	075 641	0	0
44 //	420.231	3443.U3 2151 13	761 056	0	0
45	420.347	3453.25	559 375	0	0
40 //7	432.330 A38 NNO	2/155 /1	27/ 501	0	0
47 48	444 499	3457 6	210 922	0	0
40 49	450.83	3459 92	105 918	0	0
50	457.16	3462.29	37.5923	0	0
51	463.49	3464.68	0	0	0

## List Of Coordinates

## **External Boundary**

Х	Y
105.01	3381.21
65	3372.05
61	3372.02
43.9	3376.3
0	3376.3

-	
0	3361
0	3336
0	3200
3000	3200
3000	3349
3000	3374
3000	3389.22
2962.33	3389.22
2902.33	3384.3
2862.33	3393.92
2834.14	3394.23
2497.32	3477.69
1486.5	3527.15
470.02	3466.33
133.49	3381.5

#### **Material Boundary**



#### **Material Boundary**

х	Y
142.75	3381.59
142.75	3381.59
146.998	3382.66
468.81	3463.72
1486.54	3524.64
2498.75	3475.1
2820.46	3395.36
2824.68	3394.31

#### **Material Boundary**

х	Y
594.53	3353.96
594.61	3352.96

#### **Material Boundary**

х	Y
2150.44	3348.83
2150.52	3347.83

#### **Material Boundary**

Х	Υ
0	3336
3000	3349

## APPENDIX C ROC SCIENCE SUPPORTING DOCUMENTATION

## **EUSGS** Design Maps Detailed Report

### 2009 NEHRP Recommended Seismic Provisions (32.43212°N, 103.12518°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

### Section 11.4.1 — Mapped Acceleration Parameters and Risk Coefficients

Note: Ground motion values contoured on Figures 22-1, 2, 5, & 6 below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain  $S_{SUH}$  and  $S_{SD}$ ) and 1.3 (to obtain  $S_{1UH}$  and  $S_{1D}$ ). Maps in the Proposed 2015 NEHRP Provisions are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

Figure 22–1: Uniform–Hazard (2% in 50–Year) Ground Motions of 0.2-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B



Figure 22–2: Uniform–Hazard (2% in 50–Year) Ground Motions of 1.0-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B



#### Design Maps Detailed Report



CRS = 0.871



CR1 = 0.907

#### 4/20/2016

#### Design Maps Detailed Report





Figure 22–6: Deterministic Ground Motions of 1.0-Second Spectral Response Acceleration (5% of Critical Damping), Site Class B



### Section 11.4.2 — Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification				
Site Class	$\overline{v}_{s}$	$\overline{N}$ or $\overline{N}_{ch}$	- S _u	
A. Hard Rock	>5,000 ft/s	N/A	N/A	
B. Rock	2,500 to 5,000 ft/s	N/A	N/A	
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf	
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf	
E. Soft clay soil	<600 ft/s	<15	<1,000 psf	
	Any profile with more that characteristics: • Plasticity index <i>PI</i> • Moisture content <i>v</i> • Undrained shear s	n 10 ft of soil ha > 20, v ≥ 40%, and trength $\overline{s}_{u}$ < 500	oving the D psf	
F. Soils requiring site response analysis in accordance with Section 21.1	See	e Section 20.3.1		

For SI:  $1ft/s = 0.3048 \text{ m/s} 11b/ft^2 = 0.0479 \text{ kN/m}^2$ 

Section 11.4.3 — Site Coefficients, Risk Coefficients, and Risk–Targeted Maximum Considered Earthquake ( $MCE_R$ ) Spectral Response Acceleration Parameters

Equation (11.4–1):	$C_{RS}S_{SUH} = 0.871 \times 0.224 = 0.195 g$	
Equation (11.4–2):	S _{SD} = 1.500 g	
$S_s \equiv$ "Lesser of values from Equat	ions (11.4–1) and $(11.4–2)'' = 0.195 g$	
Equation (11.4–3):	$C_{R1}S_{1UH} = 0.907 \times 0.048 = 0.044 \text{ g}$	
Equation (11.4–4):	$S_{1D} = 0.600 \text{ g}$	
$S_1 \equiv$ "Lesser of values from Equations (11.4–3) and (11.4–4)" = 0.044 g		

4/20/2016	
-----------	--

Site Class	Spectral Response Acceleration Parameter at Short Period				
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{s} = 0.75$	$S_{s} = 1.00$	S _s ≥ 1.25
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
Е	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				

Table 11.4–1: Site Coefficient  ${\rm F_a}$ 

Note: Use straight–line interpolation for intermediate values of  $\rm S_{s}$ 

For Site Class = D and  $\rm S_{s}$  = 0.195 g,  $\rm F_{a}$  = 1.600

Table 11.4–2: Site Coefficient F_v

Site Class	Spectral Response Acceleration Parameter at 1-Second Period				
	$S_{1} \leq 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 \ge 0.50$
А	0.8	0.8	0.8	0.8	0.8
В	1.0	1.0	1.0	1.0	1.0
С	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
Е	3.5	3.2	2.8	2.4	2.4
F		See Se	ection 11.4.7 of	ASCE 7	

Note: Use straight–line interpolation for intermediate values of  $S_1$ 

For Site Class = D and  $S_{_1}$  = 0.044 g,  $F_{_{\rm v}}$  = 2.400

Design Maps Detailed Report

Equation (11.4–5):	$S_{MS} = F_a S_S = 1.600 \times 0.195 = 0.312 g$	
Equation (11.4–6):	$S_{M1} = F_v S_1 = 2.400 \times 0.044 = 0.105 g$	
Section 11.4.4 — Design Spectral Acceleration Parameters		

Equation (11.4–7):  $S_{DS} = \frac{2}{3} S_{MS} = \frac{2}{3} \times 0.312 = 0.208 \text{ g}$ 

Equation (11.4–8):

 $S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 0.105 = 0.070 \text{ g}$ 

## Section 11.4.5 — Design Response Spectrum





## Section 11.4.6 — $MCE_{R}$ Response Spectrum

The  $MCE_{R}$  response spectrum is determined by multiplying the design response spectrum above by



# Section 11.8.3 — Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

Site Class	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA								
	PGA ≤ 0.10	PGA = 0.20	PGA = 0.30	PGA = 0.40	PGA ≥ 0.50				
А	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.2	1.2	1.1	1.0	1.0				
D	1.6	1.4	1.2	1.1	1.0				
Е	2.5	1.7	1.2	0.9	0.9				
F	See Section 11.4.7 of ASCE 7								

Table 11.8–1: Site Coefficient F_{PGA}

Note: Use straight-line interpolation for intermediate values of PGA

For Site Class = D and PGA = 0.116 g,  $F_{PGA} = 1.567$ 

**Mapped PGA** 

PGA = 0.116 g

Equation (11.8–1):

 $PGA_{M} = F_{PGA}PGA = 1.567 \times 0.116 = 0.183 g$ 

**Engineering Geology in Washington, Volume 1** 

Washington Division of Geology and Earth Resources Bulletin 78, 1989

## **Geotechnical Properties of Geologic Materials**

by

## JON W. KOLOSKI, <u>GeoEngineers, Inc.</u> SIGMUND D. SCHWARZ, <u>S D Schwarz and Associates</u> DONALD W. TUBBS, Tubbs Geosciences

#### INTRODUCTION

Engineering geologists and geotechnical engineers are an intregal part of the design team for virtually all modern engineering projects that involve site characterization and geotechnical design. Evaluation of alternative project sites or specific site selection usually requires data collection, analysis and explanation of physical site conditions to other members of a project design team. Because of the need to develop a mutual understanding of geologic conditions and the resulting implications for design criteria, a common understanding of the relationship between geologic origin and geotechnical properties is essential. It is imperative that the geologist and engineer work in close cooperation to assure the best product quality.

Traditionally, the geologist's role has focused on identification of the geologic origin and distribution of earth materials. This includes both physical classification and interpretation of the processes of emplacement and modification. The product of a geologist's work within a project design team is often primarily qualitative, usually a map with appropriate descriptions. Such data must be translated into a quantitative form usable in engineering analysis and in design development and evaluation. The translation and quantification of geologic data for engineering purposes occurs over a wide range of scales. Discussion of the distribution of geologic materials and processes commonly involves a megascopic scale of feet or miles, while many engineering properties are discussed in microscopic context. A mutual understanding of terms, units and properties is essential for geologists and engineers to communicate effectively.

This paper relates the geologic characteristics and origin of earth materials commonly found in Washington to certain geotechnical properties. Four tables are presented in which descriptive and interpretive properties of soil and rock materials are correlated with their genetic classification.

The information presented in the tables is useful to indicate the general range of values for typical geotechnical properties, but is no substitute for site-specific laboratory and field information. The tables will be of some direct benefit to students and to geotechnical professionals who are new to the Pacific Northwest; among those with local experience they will serve mainly as a basis for ongoing argument.

The properties indicated in the tables are those most relevant to geotechnical considerations. The

values presented in the tables are based on a compilation of published and unpublished information and do not represent original research. These data have been compiled from field and laboratory tests performed over many years by engineers, geologists and geophysicists in both the government and private sectors.

Because of the extremely variable nature of geologic materials, the ranges presented in the tables should be considered representative, but not necessarily all inclusive. Where ranges are indicated, we estimate that roughly two-thirds of field or laboratory observations will fall within the indicated ranges. Some geologic categories are not described in the tables; for example, the tables include no discussion of fill materials or landslide deposits because it is the writers' opinion that these materials are too variable to be meaningfully included. Not all pertinent geotechnical properties are listed and some engineering projects will require information on properties not included in the tables. The design team collectively must evaluate what geological conditions might affect, or be affected by, the engineering project.

## **DESCRIPTION OF TABLES**

The four tables include summaries of descriptive and interpretive properties of soil and rock. The vertical organization of the tables is based on the genetic classification of the materials; descriptive and interpretive properties of general interest for engineering considerations are presented in the horizontal headings. Unified Soil Classification System (USCS) symbols are shown for soil materials and Unified Rock Classification System (URCS) symbols are indicated for rock materials. These classification systems are summarized in Figures 1 and 2. A generalized explanation of terms is presented below, but is not intended to rigorously define either the geologic categories or the geotechnical properties.

Classification		Grain	Sorting	Dry	Friction	Cohesion	Permeability	Storage	Seismic	Resistivity
Geologic	USCS	Size		Density	angle			capacity	velocity	
				(pcf)	(deg)	(psf)	(fpm)		(fps x 1000)	(ohm-m x 1000)
ALLUVIAL										
High Energy	GW,GP, GM	Med- Coarse	Med- Good	115- 130	30-35	0	0.01-10	0.1-0.3	1.5- 5dry 5- 7.5wet	0.3-30dry 0.2-20wet
Low Energy	ML,SM, SP,SW	Fine- Med	Med- Good	90-115	15-30	0-500	0.0001-0.1	0.05-0.2	1-4dry 3.5- 6wet	0.01- 10dry 0.001- 1wet
COLLUVIAL										
EOLIAN										
Dune Sand	SP	Medium	Very Good	90-110	30-35	0	0.01-0.1	0.1-0.3	1-2.5	0.5-100
Loess	ML, SM	Fine	Med- Good	80-100	20-30	500- 1000	0.001-0.01	0.05-0.1	0.75- 2.5	0.01-2
GLACIAL										

Table 1. Descriptive properties of soil; see Table 5 for classification

Till	SM, ML	Fine- Med	Poor	120- 140	35-45	1000- 4000	0-0.001	0-0.01	3.5-10	0.01-5
Outwash	GW,GP, SW,SP, SM	Med- Coarse	Poor- Good	115- 130	30-40	0-1000	0.01-10	0.01-0.3	4-6dry 5- 8.5wet	0.2-10dry 0.1-5wet
Glaciolacustrine	ML, SM,SP	Fine- Med	Good	100- 120	15-35	0-3000	0-0.1	0-0.1	2.5-8.5	0.001-2
LACUSTRINE										
Inorganic	ML,SM, MH	Fine	Good	70-100	5-20	0-200	0.0001-0.1	0.05-0.3	1-2.5	0.001-0.5
Organic	OL, PT	Fine- Med	Poor- Good	10-70	0-10	0-200	0.0001-1.0	0.05-0.8	0.5-1.5	0.001-0.5
MARINE										
High Energy	SW,GW, SP	Med- Coarse	Med- Good	115- 130	25-35	0	0.001-1.0	0.1-0.3	5-6	0-2
Low Energy	ML,SM, MH	Fine- Med	Med- Good	70-115	0-25	0-200	0.0001-0.1	0.05-0.3	2.5-5	0-0.5
RESIDUAL										
VOLCANIC										
Tephra	ML,SM	Fine- Med	Poor- Good	80-120	20-35	0-1000	0.0001-0.1	0.05-0.2	0.5-6	0.5-100
Lahar	SM,SW, GM	Fine- Coarse	Poor	80-130	25-40	0-1000	0.001-0.1	0.05-0.2	3.5-9	0.01-5

 Table 2. Interpretive properties of soil; see Table 5 for classification

Classification		Relative	Excavation	Moisture	Foundation	Cut	Seismic	Common
Geologic	USCS	erodibility	difficulty	sensitivity	support	slopes	hazards	uses
					(psf)	(%)		
ALLUVIAL								
High Energy	GW,GP, GM	Low	Low	Low	1500-2000	50-65	Low-Med	Aggregate, Fill
Low Energy	ML,SM, SP,SW	Med-High	Low	Med-High	500-1500	25-50	Med- High	Fill
COLLUVIAL								
EOLIAN								
Dune Sand	SP	High	Low	Low	500-1000	20-30	Low-Med	Fill, Industrial
Loess	ML,SM	Very High	Low	High	500-1000	25-50	Low-Med	
GLACIAL								
Till	SM,ML	Low-Med	Med-High	High	1500-5000	50-100	Low	Fill
Outwash	GW,GP, SW,SP, SM	Low-Med	Low-Med	Low-Med	1500-3000	50-70	Low	Aggregate, Fill
Glaciolacustrine	ML,SM, SP	Med-High	Medium	High	1000-2000	25-50	Med- High	Fill, Industrial
------------------	------------------------	----------	---------	----------	-----------	-------	--------------	----------------------
LACUSTRINE	ML,SM, MH,OL, PT	High	Low	High	0-500	0-25	High	PT: Soil additive
MARINE								
High Energy	SW,GW, SP	Medium	Low	Low	1000-2000	25-60	Low-Med	Fill
Low Energy	ML,SM, MH	High	Low	Med-High	0-500	0-25	High	Fill
RESIDUAL								
VOLCANIC								
Tephra	ML,SM	Low-High	Low	Low-High	500-1500	20-50	Low-Med	Fill, Industrial
Lahar	SM,GM	Med-High	Low-Med	Low-High	500-1500	25-50	Low-Med	Fill

Classificati	on	Density	Compressive	Discontinuities	Permeability	Storage	Seismic	Resistivity
Geologic	URCS		strength			capacity	velocity	
		(pcf)	(psi x 1000)				(fps x 1000)	(ohm-m x 1000)
IGNEOUS								
Intrusive	<u>OAAA</u> - <u>OCEB</u> -	150- 200	3-30	Joints	Low	Low	12-20	0.5-20
Extrusive	<u>OAAA</u> - <u>ODEE</u> -	120- 200	1-30	Joints, Voids, Flow Features	Low-High	Low- High	6-18	0.01-5
METAMORPHIC								
High Grade	<u>OAAA</u> - <u>OCED</u> -	150- 200	3-25	Joints, Foliation	Low	Low	12-20	0.05-20
Low Grade	<u>OBAA</u> - <u>OEEE</u> -	150- 200	0.5-15	Joints, Foliation	Low	Low	2.5-14	0.001-10
SEDIMENTARY								
Clastic	<u>OBCC</u> - <u>OEEE</u> -	130- 150	1-15	Joints, Bedding	Low-Med	Low-Med	5-14	0.001-10
Chemical	<u>OBCB</u> - <u>ODEC</u> -	140- 160	2-15	Joints, Bedding, Voids	Low-High	Low	4-15	0.05-50
Organic	<u>OCCD</u> - <u>ODEE</u>	80-100	0.5-5	Joints, Bedding, Voids	Low-Med	:Low	1.5-5.5	0.05 1

## Table 4. Interpretive properties of rock; see Table 6 for classification

Classificati	on	Excavation	Resistance	Foundation	Stability	Common
Geologic	URCS	difficulty	to weathering	support	in cuts	uses
IGNEOUS						
Intrusive	<u>OAAA</u> - <u>OCEB</u> -	High	High	Good	Good	Riprap, Aggregate, Building stone
Extrusive	<u>OAAA</u> - <u>ODEE</u> -	Med-High	Med-High	Usually Good	Med- Good	Riprap, Aggregate, Building stone
METAMORPHIC						
High Grade	<u>OAAA</u> - <u>OCED</u> -	High	High	Good	Good	Riprap, Aggregate, Building stone, Industrial
Low Grade	<u>OBAA</u> - <u>OEEE</u> -	Low-High	Low-Med	Usually Good	Poor- Good	Fill
SEDIMENTARY						
Clastic	<u>OBCC</u> - <u>OEEE</u> -	Low-High	Low-Med	Usually Good	Poor- Good	Building stone, Industrial
Chemical	<u>OBCB</u> - <u>ODEC</u>	Med-High	Low-High	Usually Good	Poor- Good	Riprap, Aggregate, Industrial, Building stone
Organic	<u>OCCD</u> - <u>ODEE</u> -	Low-Med	Low	Poor	Poor	Fuel

# Table 5. Unified Soil Classification System; from American Society forTesting and Materials, 1985

MA	JOR DIVISIO	NS	GROUP SYMBOL	GROUP NAME
	GRAVEL	CLEAN GRAVEL	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
COARSE GRAINED	MORE THAN 50% OF COARSE		GP	POORLY-GRADED GRAVEL
SOILS	FRACTION	GRAVEL WITH	GM	SILTY GRAVEL
MORE THAN	NO.4 SIEVE	FINES	GC	CLAYEY GRAVEL
50% RETAINED ON NO.200 SIEVE	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND
	MORE THAN 50% OF COARSE		SP	POORLY-GRADED SAND
	FRACTION	SAND WITH	SM	SILTY SAND
	SIEVE	FINES	SC	CLAYEY SAND
	SILT AND CLAY	INORGANIC	ML	SILT
EINE			CL	CLAY
GRAINED SOILS	LESS THAN 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY

MORE THAN 50% PASSES	SILT AND CLAY	INORGANIC	MH	SILT OF HIGH PLASTICITY, ELASTIC SILT
NO.200 SIEVE	LIQUID LIMIT 50 OR MORE		СН	CLAY OF HIGH PLASTICITY, FAT CLAY
		ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
HIC	GHLY ORGANIC SO	ILS	PT	PEAT

## Table 6. Unified Rock Classification System, from Williamson, 1984

	DEDDECI		Α	Micro Fresh Sta	te (MFS)		
	KEPKESI		В	Visually Fresh St	ate (VFS)		
DEGREE OF WEATHERING	ALT	ERED	С	Stained State (STS)			
	WEATHERED	>GRAVEL SIZE	D	Partly Decomposed State (PDS)			
		<sand size<="" td=""><td>Е</td><td>Completely Decompos</td><td>ed State (CDS)</td></sand>	Е	Completely Decompos	ed State (CDS)		
			А	>15000 psi (2)			
	REACTION T	O IMPACT OF	В	"Pits" (Tensional) (PQ)	8000 - 15000 psi <i>(2)</i>		
ESTIMATED STRENGTH	1 LB BALLPE	EEN HAMMER	CStained State (STS)iRAVEL SIZEDPartly Decomposed StateND SIZEECompletely Decomposed StateA"Rebounds" (Elastic) (RQ)>150A"Rebounds" (Elastic) (RQ)>150AMMERB"Pits" (Tensional) (PQ) $8000$ pC"Dents" (Compression) (DQ) $3000$ (DQ)D"Craters" (Shears) (CQ) $1000$ (CQ)(1)E"Moldable" (Friable) (MQ) $<100$ (CQ)(1)ESolid (Random Breakage)ASolid (Preferred Breakage)ABILITYDNonintersecting Open Plane (LPS)WATERDNonintersecting Open Plane (LPS)AGreater than 160 pc 	3000 - 8000 psi (2)			
			D	1000 - 3000 psi (2)			
	REMOLE	DING (1)	E	"Moldable" (Friable) (MQ)	<1000 psi (2)		
			Α	Solid (Random Breakage) (SRB)			
	VFRY LOW P	FRMFABILITY	В	Solid (Preferred Breakage) (SPB)			
DISCONTINUITIES			С	Solid (Latant Planes (LPS)	of Separation)		
			D	Nonintersecting Oper	ו Planes (2-D)		
			Е	Intersecting Open I	Planes (3-D)		
			Α	Greater than a	160 pcf		
			В	150 - 160	pcf		
UNIT WEIGHT			С	140 - 150	pcf		
			D	130 - 140	pcf		
			Е	Less than 13	30 pcf		
(1) Strength estimated by soil mechanics techniques			(2) stre	Approximate unconfine	d compressive		
SYMBOL NOTATION: <u>AAAA</u> IN ORDER <u>WEATHERING, STRENGTH, DISCONTINUITIES,</u> WEIGHT							

"O" IS USED AS A POSITION HOLDER

## **EXPLANATION OF TERMS**

## Soils

o Alluvial: Sediment deposited by streams.

- High Energy: Generally coarse sediment such as coarse sand, gravel, cobbles and boulders that have been deposited by fast moving water.

- Low Energy: Generally fine-grained soil such as fine sand and silt deposited by slow moving water.

o Colluvial: Generally heterogeneous soil aggregates that have been transported and deposited by mass wasting processes such as landslides, rockfalls and avalanches.

- o Eolian: Sediment transported and deposited by wind.
- Dune Sand: Sand-size sediment; typically deposited in dune forms.
- Loess: Fine-grained sediment; generally fine sand and silt.

o Glacial: Material deposited by or in association with glaciers.

- Till: Heterogeneous mixture of various particle sizes deposited directly by glacial ice.

- Outwash: High-energy sediment deposited by glacial meltwater.
- Glaciolacustrine: Low-energy sediment deposited in ice-marginal lakes.
- o Lacustrine: Sediment deposited in lakes.
- Nonorganic: Sediment composed primarily of silt, sand and clay.
- Organic: Peat and other predominantly organic sediment.

o Marine: Sediment deposited in a marine environment.

- High Energy: Generally coarse-grained material such as gravel and sand deposited by strong waves or currents.

- Low Energy: Generally fine-grained material such as silt and sand.

o Residual: Soil developed in place as the result of weathering or chemical decomposition of parent material.

o Volcanic: Deposits derived from volcanoes or other eruptive sources.

- Tephra: Airborne volcanic ejecta such as volcanic bombs, cinders and ash.
- Lahar: Mudflow composed largely of volcanic debris, or having primarily a volcanic origin.

#### **Bedrock**

o Igneous: Rock formed by solidification from a molten state.

- Intrusive: Rock such as granite that has solidified from a molten state below the ground surface.

- Extrusive: Rock such as basalt that has solidified after reaching the ground surface.

o Metamorphic: Rock derived from pre-existing rock by mineralogical and textural changes.

- High Grade: Metamorphic rock that has little resemblance to the original parent rock type.

- Low Grade: Metamorphic rock that is similar to the original parent rock type.

o Sedimentary: Rock deposited as sediment and subsequently lithified.

- Clastic: Rock such as shale, sandstone and conglomerate formed from fragments of pre-existing rocks.

- Chemical: Rock such as limestone formed by chemical precipitation.

- Organic: Rock such as coal formed largely or exclusively from organic material.

## **Descriptive Properties**

o USCS: Unified Soil Classification System (ASTM D 2487).

o URCS: Unified Rock Classification System (Williamson, 1984).

o Grain Size: The general category of particle sizes corresponding to terms used in the USCS.

o <u>Sorting</u>: Segregation by grain sizes. "Poor" means a wide range of grain sizes such as silty sandy gravel; "good" means a narrow range of grain sizes such as sand. No specific percentages are implied.

o Dry Density: Dry weight in pounds per cubic foot.

o Friction Angle: Angle of internal shearing resistance (phi) expressed in degrees.

o <u>Cohesion</u>: That part of the shear strength of soil or rock which does not depend on interparticle friction.

o <u>Permeability</u> (Hydraulic Conductivity): The ease with which water will move through soil interstices, expressed in feet per minute. For rock, variability is so great that it is expressed in the tables in dimensionless relative terms only. Negligible permeability is expressed as 0.

o <u>Storage Capacity</u> (Specific Yield): The volume of water that will drain from a unit volume of an unconfined aquifer.

o Seismic Velocity: Compressional seismic wave velocity in thousands of feet per second.

o <u>Resistivity</u>: Electrical resistance to direct current expressed in terms of thousands of ohm-meters.

o <u>Compressive Strength</u>: Load per unit area under which an unconfined block of rock fails (unconfined compressive strength), expressed in pounds per square inch.

o Discontinuities: Surfaces or voids that interrupt otherwise homogeneous rock masses.

#### **Interpretive Properties**

o <u>Relative Erodibility</u>: Susceptibility to erosion in terms of sediment yield per unit area.

o Excavation Difficulty: The relative difficulty of excavation by heavy equipment.

o <u>Moisture Sensitivity</u>: Susceptibility to significant changes in physical properties due to changes in water content. In general, sensitivity increases with increasing silt or clay content.

o <u>Foundation Support</u>: Typical allowable bearing value for shallow spread foundations, expressed in pounds per square foot. Assumes conventional cast-in-place concrete footings with embedment adequate for frost protection. Expressed in dimensionless relative terms only for rock.

o <u>Cut Slopes (Soil)</u>: Typical maximum inclination for permanent cut slopes less than 15 feet in height. Assumes no destabilizing factors such as adverse structural/stratigraphic or ground water conditions.

o <u>Stability in Cut Slopes (Rock)</u>: Relative stability of permanent cut slopes. Assumes no destabilizing factors such as adverse structural/stratigraphic or ground water conditions.

o Seismic Hazards: Relative association with earthquake-induced damage.

o Common Uses: Typical applications of economic importance.

o Resistance to Weathering: Relative resistance to mechanical or chemical deterioration.

#### DISCUSSION

#### **Descriptive Properties**

o The Unified Soil Classification System (USCS) does not recognize particles larger than 3 inches in diameter. Common usage extends it to materials including cobbles (3 to 12 inches) and boulders (greater than 12 inches).

o Cohesion is the result of soil structure and/or cementation. Some finite cohesion is generally present in loess, due to its unique granular structure and the common occurrence of minor cementation. Cohesion in till is a result of ice consolidation and a wide range of particle sizes, including a significant fraction of silt.

o Permeability differences reflect variations in gradation between geologic materials. Very high permeability is associated with high-energy alluvial deposits or glacial outwash where coarse, openwork gravel is common. Permeability in these deposits can vary greatly over short horizontal and vertical distances. Extremely low permeability is associated with poorly to moderately sorted materials that are ice-consolidated and contain a substantial fraction of silt and clay.

o Storage capacity reflects the volume of void space and the content of silt or clay within a soil deposit. Storage capacity is very small for poorly sorted or ice-consolidated, fine-grained materials such as till and glaciolacustrine deposits.

o Seismic velocities in soil can be affected by water content. Coarse-grained soils display significantly higher velocities when water saturated. Less velocity increase is associated with finer-grained soils. The electrical resistivity of soil and rock decreases with water content. Geophysical values are differentiated between wet and dry conditions where differences are significant and data is available.

## **Interpretive Properties**

o Erodibility is closely related to slope, vegetative cover, water concentration and numerous other factors in addition to geologic characteristics.

o Excavation difficulty is discussed in more detail in handbooks published by Caterpillar, Inc. (1987a, b). Note that the table entries for this category refer to unrestricted excavation. Restricted excavations such as trenches are normally more difficult than open cuts. Substantial variations from the indicated values should be expected based on site-specific factors.

o Satisfactory foundation performance includes consideration of numerous factors in addition to the indicated bearing values. These factors include settlement performance, general stability and effects of and on adjacent manmade or natural features.

o The design of safe cut slopes must consider site-specific details of soil and water conditions and their relationship to risk. For example, a maintenance risk is much less significant than a life-threatening risk. Therefore, rather than relying on physical properties, risk will often dictate slope design.

o Seismic hazards can be manifested in the form of ground shaking, liquefaction, ground rupture or displacement (e.g., landslides induced by seismic shaking). The extent to which the indicated geologic classifications are associated with seismic hazards is expressed in relative terms.

o Moisture sensitivity varies considerably within each geologic classification. For example, low-energy alluvial deposits characterized by clean, free-draining sand are not particularly moisture-sensitive while low-energy alluvial soils containing a substantial fraction of silt are extremely moisture-sensitive. Although not included as a specific interpretive category for rock, moisture sensitivity can also be important. The moisture sensitivity of rock is generally proportional to the amount of clay or silt produced by mechanical or chemical decomposition.

#### ACKNOWLEDGEMENTS

The writers wish to express appreciation to their colleagues in the geotechnical professions who over the years have shared information regarding geotechnical properties of geologic materials. Several organizations (GeoEngineers, Inc., Geo-Recon International Ltd., Shannon & Wilson, Inc., and the U.S. Army Corps of Engineers) made available to us specific information from their files. GeoEngineers, Inc., also provided assistance in manuscript preparation.

We are particularly grateful to Mr. George Yamane for his helpful review and comments during the

preparation of this paper.

#### REFERENCES

American Society for Testing and Materials, 1985, D 2487-83, Classification of Soils for Engineering Purposes: <u>Annual Book of ASTM Standards</u>, Vol. 04.08, pp 395-408.

Caterpillar Inc., 1987a, Caterpillar Performance Handbook, Edition 18: Caterpillar Inc., Peoria, 768 p.

Caterpillar Inc., 1987b, Caterpillar Performance Handbook, Hydraulic Excavators: Caterpillar Inc., Peoria, 176 p.

Williamson, D.A., 1984, Unified Rock Classification System: <u>Bulletin, Association of Engineering</u> <u>Geologists</u>, Vol. 21, No. 3, pp 345-354.

Return to Tubbs Geosciences' Library

## APPENDIX D

## GEOTECHNICAL ENGINEERING PRINCIPLES AND PRACTICES EXCERPT

Windowski Www.Binaile.1	$C_c/(1+e_0)$							
Soil Type	$D_{\rm r} = 0\%$	$D_{\rm f} = 20\%$	$D_{\rm r} = 40\%$	$D_{\rm r} = 60\%$	$D_{\rm r} = 80\%$	$D_{\rm r} = 100\%$		
Medium to coarse sand, some fine gravel (SW)	-		0.005	-	-	275		
Medium to coarse sand (SW/SP)	0.010	0,008	0.006	0.005	0.003	0.002		
Fine to coarse sand (SW)	0.011	0.009	0.007	0.005	0.003	0.002		
Fine to medium sand (SW/SP)	0.013	0.010	0.008	0.006	0.004	0.003		
Fine sand (SP)	0,015	0.013	0.010	0.008	0.005	0.003		
Fine sand with trace fine to coarse silt (SP-SM)		ios bi <del>s</del> tisch	0.011	Lara-para	-			
Find sand with little fine to coarse silt (SM)	0.017	0.014	0.012	0.009	0.006	0.003		
Fine sand with some fine to coarse silt (SM)	- j	be stiller and	0.014			-		

 TABLE 10.4
 Typical Consolidation Properties of Saturated Normally Consolidated Sandy Soils at Various

 Relative Densities^a
 Properties of Saturated Normally Consolidated Sandy Soils at Various

"Adapted from Burmister, 1962.

tests on samples reconstituted to various relative densities. Engineers can estimate the in situ relative density using the methods described in Chapter 4, then select an appropriate  $C_c/(1 + e_0)$  from this table. Note that all of these values are "very slightly compressible" as defined in Table 10.2.

For saturated overconsolidated sands,  $C_r/(1 + e_0)$  is typically about one-third of the values listed in Table 10.4, which makes such soils nearly incompressible. Compacted fills can be considered to be overconsolidated, as can soils that have clear geologic evidence of preloading, such as glacial tills. Therefore, many settlement analyses simply consider the compressibility of such soils to be zero. If it is unclear whether a soil is normally consolidated or overconsolidated, it is conservative to assume it is normally consolidated.

Very few consolidation tests have been performed on gravelly soils, but the compressibility of these soils is probably equal to or less than those for sand, as listed in Table 10.4.

Another characteristic of sands and gravels is their high hydraulic conductivity, which means any excess pore water drains very quickly. Thus, the rate of consolidation is very fast, and typically occurs nearly as fast as the load is applied. Thus, if the load is due to a newly placed fill, the consolidation of these soils may have little practical significance.

However, there are at least two cases where consolidation of coarse-grained soils can be very important and needs more careful consideration:

1. Loose sandy soils subjected to dynamic loads, such as those from an earthquake. They can experience very large and irregular settlements that can cause serious damage. Kramer (1996) discusses methods of evaluating this problem.