Initial

Application

Part I

Received: <u>08/21/2019</u>

This application is placed in file for record. It MAY or MAY NOT have been reviewed to be determined Administratively Complete

V
4
-
m
0
$\overline{}$
-
0
-
0
S
-
5
00
7
=
\circ
>
Ď.
U
d)
>
E.
S
0
α

25050 (52			
RECEIVED:	REVIEWER:	TYPE: SWD	APP NO:
08/21/2019		3000	pMAM1923349493
·			

- Geological & Engine 1220 South St. Francis Drive,	eering Bureau –
ADMINISTRATIVE APPL	CATION CHECKLIST
THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE REGULATIONS WHICH REQUIRE PROCESSING	APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND
Applicant: COG OPERATING, LLC	OGRID Number: 229137
Well Name: COONSKIN 28 FEE SWD #1	API:
Pool:	Pool Code:Pool Code:
SUBMIT ACCURATE AND COMPLETE INFORMATION F	
1) TYPE OF APPLICATION: Check those which apply A. Location – Spacing Unit – Simultaneous Dedi NSL NSP (PROJECT AREA)	for [A] SWD-2253
B. Check one only for [1] or [11] [1] Commingling – Storage – Measurement DHC DCTB PLC PC [11] Injection – Disposal – Pressure Increase – WFX PMX SWD DIPI	OLS OLM Enhanced Oil Recovery EOR PPR
 NOTIFICATION REQUIRED TO: Check those which of A. Offset operators or lease holders B. Royalty, overriding royalty owners, revenued. C. Application requires published notice D. Notification and/or concurrent approval. E. Notification and/or concurrent approval. F. Surface owner G. For all of the above, proof of notification of the proval. H. No notice required 	by SLO by BLM Notice Complete Application Content Complete
3) CERTIFICATION: I hereby certify that the informatic administrative approval is accurate and complete understand that no action will be taken on this approvaling a notifications are submitted to the Division.	to the best of my knowledge. Lalso
Note: Statement must be completed by an individue	al with managerial and/or supervisory capacity.
	8/21/2019
PAUL PORTER	Date
Print or Type Name	
	575.748.6940
1 al X	Phone Number
Signature	PPorter @concho com e-mail Address
	with the second way

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

FORM C-108 Revised June 10, 2003

APPLICATION FOR AUTHORIZATION TO INJECT

	MI DICHTON TOR NO THOMBATTON TO MUDEL
I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? X Yes No
II.	OPERATOR: COG OPERATING, LLC
	ADDRESS: One Concho Center, 600 W. Illinois Ave., Midland, TX 79701
	CONTACT PARTY: Paul Porter PHONE: 575.748.6940
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: PAUL PORTERTITLE: General Manager of New Mexico
	SIGNATURE:DATE: 8/21/2019
*	E-MAIL ADDRESS: PPorter@concho.com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,
- (4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

C-108 Application for Authorization to Inject Coonskin 28 Fee SWD 1 1130' FNL, 1960' FWL Unit C, Section 28, T24S, R35E Lea County, NM

COG Operating, LLC, proposes to drill the captioned well to 19,550' for salt water disposal service into the Devonian/Silurian from approximately 17,400' to 19,550'.

Should this well undergo a mechanical integrity issue while in service in the future, it will be taken out of service immediately per UIC rules and repaired as quickly as possible. The water going to this well will be diverted to other SWD wells via pipeline if applicable; otherwise it will be trucked to other SWD wells. If necessary, producing wells serviced by this SWD well will be curtailed and/or shut-in until this well is repaired.

- III. Well data is attached. A fishing risk assessment is attached.
- IV. This is not an expansion of an existing project.
- V. Map is attached.
- VI. No wells within the 1 mile radius area of review penetrate the proposed injection zone.
- VII. 1. Proposed average daily injection rate = 25,000 BWPD
 Proposed maximum daily injection rate = 40,000 BWPD
 - 2. Closed system
 - 3. Proposed maximum injection pressure = 3480 psi (0.2 psi/ft. x 17,400' ft.)
 - 4. Source of injected water will be Delaware, Bone Spring and Wolfcamp produced water. No compatibility problems are expected. Analyses of Delaware, Bone Spring and Wolfcamp waters from analogous source wells are attached. An appropriate chemical treatment program will be put in place should scale formation become apparent.
- VIII. The injection zone is the Devonian/Silurian, a mixture of non-hydrocarbon bearing limestone and dolomite from 17,400' to 19,550'. Any underground water sources will be shallower than 610', the estimated top of the Rustler Anhydrite. The estimated top of the Devonian is 17,590' and the Fusselman is 18,685'. The proposed permitted injection interval has been expanded upwards and downwards to account for geologic uncertainty.
 - IX. The Devonian/Silurian injection interval will be acidized with approximately 40,000 gals of 20 % HCl acid.
 - X. Well logs will be filed with the Division. A section of open hole log across the Devonian/Silurian from the Reno Com 1 located about 3.5 miles southeast in Unit D, Section 11, T25S, R35E is attached.

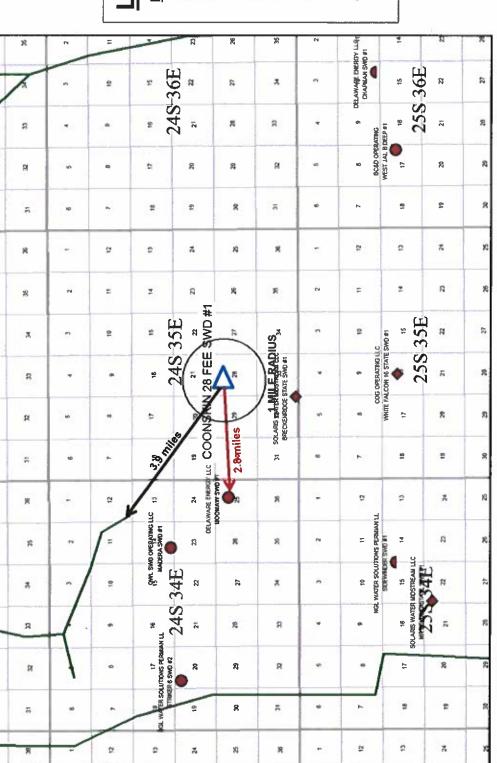
XI.	There are no fresh water wells within a mile of the proposed SWD well from the NMOS records.	E
XII.	After examining the available geologic and engineering data, no evidence was found of faults or any other hydrologic connection between the disposal zone and any undergroun sources of drinking water.	_
	, Facilities Engineering Advisor,	
	A seismicity assessment is attached.	
VIII	Proof of Nation is attached	

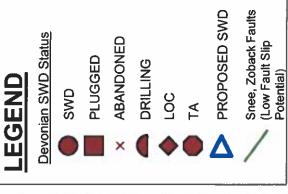
COG Operating LLC Coonskin 28 Fee SWD #1 C-108 Attachment May 23, 2019

Statement Regarding Seismicity and Disposal Well Location

COG Operating LLC interpreted faults based on licensed 3D seismic data in the area around our proposed SWD. Our investigation of the deep formations does not indicate nearby faults or structures in the immediate area that would increase the chances of induced seismicity.

A recent paper by Snee and Zoback titled, "State of Stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity", was published in the February 2018 edition of The Leading Edge. The authors evaluated the strike-slip probability of known Permian Basin faults. The nearest fault is located approximately 3.9 miles Northwest of our proposed SWD (see map). The study predicts that this fault has a less than 10% probability of being critically stressed as to create an induced seismicity event. The primary reason for the low probability is the relationship of the strike of the fault to the regional maximum stress orientation (N 75 degrees E).

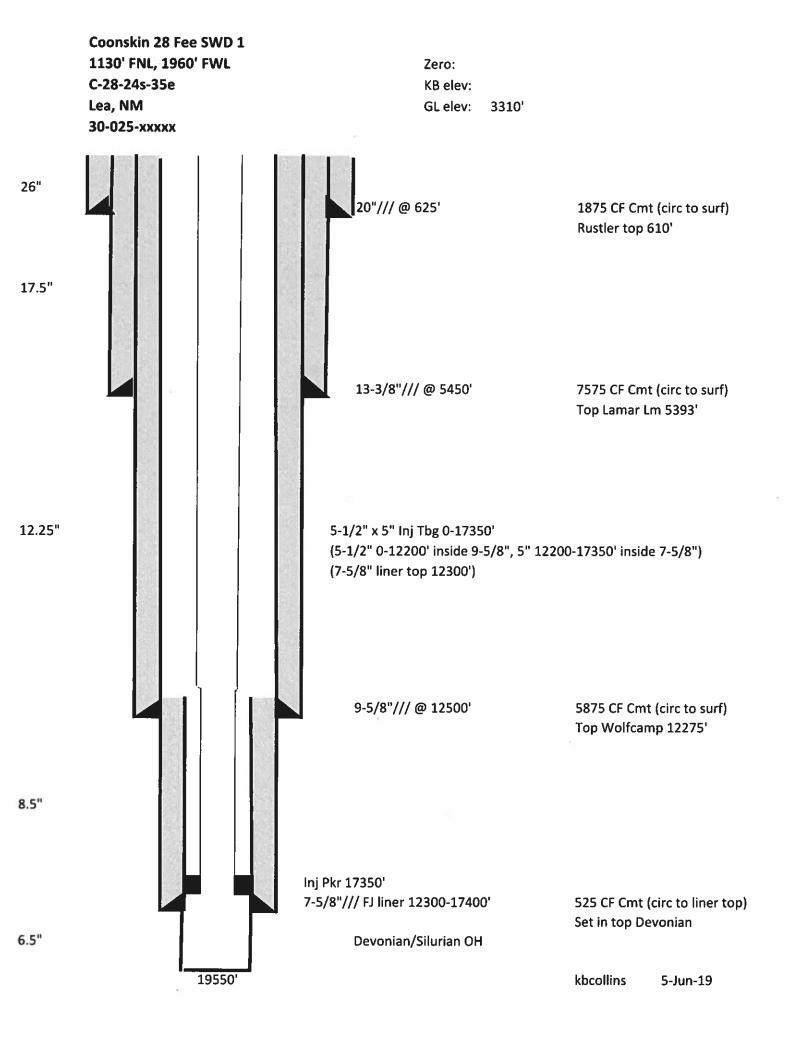

The proposed Coonskin 28 Fee SWD #1 is located 2.8 miles away from the nearest active Devonian SWD well (see map) and no active, permitted or pending Devonian SWD applications within the one mile radius.


Regards,

Carrie M. Martin

Staff Geologist COG Operating LLC cmartin@concho.com 432-221-0479

COONSKIN 28 FEE SWD #1



III.

WELL DATA

INJECTION WELL DATA SHEET

Operator:

COG Operating, LLC

Well Name & Number: Coonskin 28 Fee SWD 1

Well Location:

1130' FNL, 1960' FWL, Unit C, Section 28, T24S, R35E

Wellbore Schematic: See attached schematic

Surface Casing:

Hole Size: 26"

Casing Size: 20" @ 625'

Cemented with: 1875 cubic feet Top of Cement: Surface by design

Intermediate Casing:

Hole Size: 17-1/2"

Casing Size: 13-3/8" @ 5450' Cemented with: 7575 cubic feet Top of Cement: Surface by design

Intermediate Casing:

Hole Size: 12-1/4"

Casing Size: 9-5/8" @ 12500' Cemented with: 5875 cubic feet Top of Cement: Surface by design

Production Casing:

Hole Size: 8-1/2"

Casing Size: 7-5/8" flush joint liner @ 12300-17400'

Cemented with: 525 cubic feet Top of Cement: Liner top by design

Injection Interval:

17400' to 19550' (6-1/2" open hole)

Injection Tubing/Packer:

Tubing Size: 5-1/2" 0-12200' inside 9-5/8" casing, 5" from 12200-17350' inside 7-5/8" casing

Lining Material: Internally fiberglass lined

Type of Packer: Nickel plated or CRA 10K permanent packer

Packer Setting Depth: 17350'

Other Type of Tubing/Casing Seal: Not Applicable

Additional Data:

- Is this a new well drilled for injection? Yes
 If no, for what purpose was well originally drilled? N/A
- 2. Name of Injection Formation: Devonian/Silurian
- 3. Name of Field or Pool (if applicable): SWD: Devonian
- 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e., sacks of cement or plug(s) used. No
- 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:

Overlying: Possible Delaware 5475-9025', Bone Spring 9100-12275', Wolfcamp 12275-13400', possible Strawn 13500+, possible Atoka 13850'+, possible Morrow 14800'+

Underlying: None

Fishing Risk Assessment Coonskin 28 Fee SWD 1

Note: All fishing procedures are subject to well conditions. Expert judgement and experience are required and there are too many combinations of possible fishing operations options to list below. Fishing techniques are determined on a case-by-case, day-by-day basis.

5" Injection Tubing Inside of 7-5/8" Casing

```
7-5/8"/39ppf casing: ID = 6.625", Drift ID = 6.500"
5"/18ppf/L80/TCPC FG-lined injection tubing: Tube/body OD = 5.000", Cplg OD = 5.700"
Clearance between body OD of tubing and drift ID of casing = 1.500"
```

The proposed downhole configuration allows for effective, straightforward tubing fishing operations.

Tubing will have a floating seal assembly landed in seal bore extensions below the packer which will allow a simple straight pull to separate the tubing from the packer.

For washover operations:

- 6-3/8" washpipe: OD = 6.375", ID = 5.625", Drift ID = 5.500"
- OD of washpipe is less than drift ID of casing (6.500" drift ID vs 6.375" washpipe OD)
- Drift ID of washpipe is greater than OD of 5" tubing (5.500" drift ID vs 5.000" Tubing OD)
- Drift ID of washpipe is slightly less than coupling OD of 5" tubing (washpipe 5.500" drift ID vs 5.700" tubing coupling OD---0.200" difference). If necessary to wash over the coupling, would use a mill on the end of the washpipe to mill off the 0.200" dimensional difference in such a way:
 - 1. To allow a 6.625" Series 150 spiral grapple overshot turned down from 6.625" OD to 6.5" OD to catch the milled down coupling (mill coupling to 5.5" or less OD).
 - 2. To allow a 5.875" OD Series 150 spiral grapple overshot to catch the 5" body of the tubing (mill coupling to 5" tube OD).

For fishing operations with overshot:

- 5" tube/body can be fished with 5.875" OD Series 150 spiral grapple overshot (5.875" overshot OD vs 6.5" casing drift ID).
- 5.700" OD TCPC coupling can be milled down and fished as described above in "washover operations."

For fishing operations with spear:

• Fiberglass liner can be milled out, or torn out with a spear, to allow a releasable spear assembly to grasp the ID of the injection tubing.

Fishing Risk Assessment Coonskin 28 Fee SWD 1

Note: All fishing procedures are subject to well conditions. Expert judgement and experience are required and there are too many combinations of possible fishing operations options to list below. Fishing techniques are determined on a case-by-case, day-by-day basis.

5-1/2" Injection Tubing Inside of 9-5/8" Casing

```
9-5/8"/53.5 ppf casing: ID = 8.535", Drift ID = 8.379"
5-1/2"/20ppf/P110/TCPC FG-lined injection tubing: Tube/body OD = 5.500", Cplg OD = 6.250"
Clearance between body OD of tubing and drift ID of casing = 2.879"
```

The proposed downhole configuration allows for effective, straightforward tubing fishing operations.

Tubing will have a floating seal assembly landed in seal bore extensions below the packer which will allow a simple straight pull to separate the tubing from the packer.

For washover operations:

- 7-3/8" washpipe: OD = 7.375", ID = 6.625", Drift ID = 6.500"
- OD of washpipe is less than drift ID of casing (8.379" drift ID vs 7.375" washpipe OD)
- Drift ID of washpipe is greater than OD of 5-1/2" tubing (6.500" drift ID vs 5.500" Tubing OD)
- Drift ID of washpipe greater than OD of 5-1/2" tubing coupling (6.500" drift ID vs 6.250" Tubing Coupling OD)

For fishing operations with overshot:

- 5-1/2" tube/body can be fished with 6.625" OD Series 150 spiral grapple overshot (6.625" overshot OD vs 8.379" casing drift ID).
- 6.250" OD TCPC coupling can be fished with 7.375" OD Series 150 spiral grapple overshot (7.375" overshot OD vs 8.379" casing drift ID).

For fishing operations with spear:

• Fiberglass liner can be milled out, or torn out with a spear, to allow a releasable spear assembly to grasp the ID of the injection tubing.

V.

MAP

1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161. Fax: (575) 393-0720. District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District.[]] 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone. (505) 476-3460 Fax: (505) 476-3462

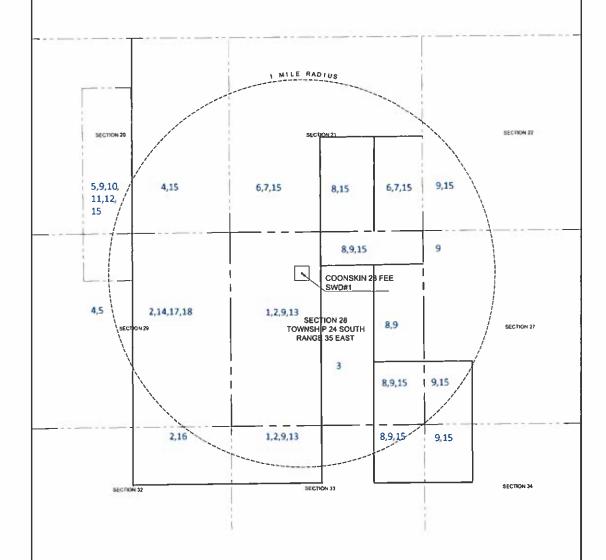
District IV

State of New Mexico Energy, Minerals & Natural Resources Department **OIL CONSERVATION DIVISION** 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

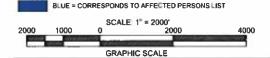
☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT


1 /	API Numbe	r		² Pool Code							
⁴ Property (Code				Property !				* Well Number		
				CO	UNSKIN 28	FEE SWD					
OGRID!	No.				* Operator !				20	Elevation	
	- 1			(COG OPERA	ATING, LLC				3310'	
					" Surface I	Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South fine	Feet from the	East	/West line	County	
С	28	24S	35E		1135	NORTH	1963	WE	≅ST	LEA	
			" Bo	ttom Hol	e Location If	Different From	n Surface				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East	/West line	County	
12 Dedicated Acres	Joint o	r Infill	Consolidation	Code 15 Ore	der No.	<u> </u>					

division.

1963'	S.L. SEE -O DETAIL "A"	Ď	DETAIL "A" 3311.3' 400' 3309.9' \$ O S.L. 3308.6' 3309.0'	**OPERATOR CERTIFICATION I hereby certify that the information contained herein is true and complete to the best of my horododge and belief, and that this organization either come a working inferest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this will at this his attempuration to a contract with an ornice of such a introduction working interest, or to a visionary produce oppressment or a computance probling caster heretofore entered by the division
NAD 27 GR A: FOUND N 430913.3 B: FOUND N 433555.7 C: FOUND N 436196.1 D: FOUND N 436211.5 E: FOUND N 436243.2 F: FOUND N 433602.6 G: FOUND N 430964.6 H: FOUND	ER DATA RID - NM EAST 2" IRON PIPE 2 - E 794795.3 1" IRON PIPE 7 - E 794773.0 2" IRON PIPE 1 - E 794750.6 1" IRON PIPE 5 - E 797387.3 2" IRON PIPE 2 - E 800020.4 1" IRON PIPE 3 - E 800045.3 2" IRON PIPE 0 - E 800071.1 1" IRON PIPE 2 - E 797434.9	8 LAT: 32.1 GEODE NAD 83 GR SURFACI N 435077.6 LAT: 32.1 CONG: 103 GEODE NAD 83 GR SURFACI N 435136.4 LAT: 32.1	ETIC DATA 8D - NM EAST E LOCATION 5 - E 796720.2 19250756° N .37416518° W ETIC DATA 8D - NM EAST E LOCATION 6 - E 837905.9 19341083° N .50776132° W	Frinted Name E-mail Address **SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief, 7-11-2019 Date of Survey Signature and Seal of Polica



SECTION NO. 28 TOWNSHIP 24 SOUTH RANGE 35 EAST N. M. P. M. NEW MEXICO LEA COUNTY, NEW MEXICO

NOTE: RESEARCH AND TITLE PROVIDED BY OTHERS, BISON CREEK LAND SERVICES, LLC IS NOT LABLE AND/OR RESPONSIBLE FOR ANY TITLE ERRORS OR OMISSIONS RELATED TO THIS PLAT.

NOTE: BASIS OF BEARINGS ARE THE NEW MEXICO STATE PLANE COORDINATE SYSTEM EAST ZONE NAD 27 AND COORDINATES AND DISTANCES ARE OF GRID VALUES. DISTANCES MUST BE MULTIPLIED BY A COMBINED SCALE FACTOR OF 0.99984743 TO OBTAIN SURFACE DISTANCES.

NEW MEXICO DAMAGE PREVENTION CONSTRUCTION NOTE: UNDER GROUND UTILITIES MUST BE VERIFIED BY CONTRACTOR PRIOR TO EXCAVATING.

SCALE 1** 2000 DATE: 04:05/19
DRWN: DV APP 10: JPK CREW: RJR

AFE NO.

CONCHO OPERATING, LLC.
EXHIBIT OF PROPOSED
COONSKIN 28 FEE SWD #1
(1 MILE RADIUS)
LOCATED IN
SECTION 28.
TOWNSHIP 24 SOUTH,
RANGE 35 EAST.
N. M. P. M. NEW MEXICO

Coonskin 28 Fee SWD #1

located in 28-24S-35E, Lea County, New Mexico

Affected Persons

No.	Name	Address	Phone Number	Owner Type	S-T-R	Notes
1	Oion Hartman	7689 Pine Grave Ave Kingman, AZ 86401	928-692-4788	Drillsite Surface Owner	W2 28-245-35E	
2	COG Operating, LLC	One Concho Center 600 West Illinois Avenue Midland, TX 79701	432-221-0500	Operator	E2 29-24S-35E W2 28-24S-35E NE4 32-24S-35E NW4 33-24S-35E	APIs: 30-025-43779 30-025-42783 30-025-42782 30-025-43683 30-025-45052 30-025-45050 30-025-45051 30-025-45048 30-025-43299
3	Tap Rock Resources, LLC	602 Park Point Drive Suite 200 Golden, CO 80401	720-772-5090	Operator	W2E2 28-24S-35E NE4 33-24S-35E	30-025-44915 30-025-44656 30-025-44969
4	COG Operating, LLC	One Concho Center 600 West Illinois Avenue Midland, TX 79701	432-221-0500	Working Interest/ Leasehold	E2 20-24S-35E W2 29-24S-35E	
5	COG Production LLC	One Concho Center 600 West Illinois Avenue Midland, TX 79701	432-221-0500	Working Interest/ Leasehold	E2W2 20-24S-35E	
6	XTO Holdings, LLC	22777 Springwoods Village Pkwy Spring, TX 77389	817-870-2800	Working Interest/ Leasehold	W2, NE4 & E2SE 21-24S-35E	
7	Occidental Permian, LP	S E. Greenway Plaza Suite 110 Houston, TX 77046	713-552-8811	Working Interest/ Leasehold	W2, NE4 & E2SE 21-24S-35E	
8	MRC Permian Company	5400 LBJ Freeway, Suite 1500 Dallas, TX 75240	972-371-5200	Working Interest/ Leasehold	W2SE 21-24S-35E E2E2 28-24S-35E E2NE4 33-24S-35E	

9	Tap Rock Resources, LLC	502 Park Point Drive Suite 200 Golden, CO 80401	720-772-5090	Working Interest/ Leasehold	W2 22-24S-35E E2W2 20-24S-35E W2 27-24S-35E NW4NW4 34-24S-35E W2,E2E2 28-24S-35E NW4,E2NE4 33-24S-35E	
10	Crown Oil Partners VI, LLC	PO Box 50820 Midland, TX 79710	432-683-2950	Working Interest	E2W2 20-24S-35E	
11	Topwater Resources LLC	4747 Research Forest Dr #180 The Woodlands, TX 77381	214-435-0710	Working Interest	E2W2 20-24S-35E	
12	Crump Energy Partners III, LLC	PO Box 50820 Midland, TX 79710	432-683-2950	Working Interest	E2W2 20-24S-35E	
13	Delaware Hops, LLC	50 Kennedy Plaza 18th Floor Providence, RI 02903	401-751-1700	Working Interest	W2 28-245-35E NW4 33-245-35E	
14	Chevron USA, Inc.	15 Smith Road Midland, Texas 79705	432-498-8600	Working Interest	E2 29-24S-35E	Also Unleased Mineral Interest in E2 29-24S-35E
15	United States of America, through the Bureau of Land Management	New Mexico State Office 301 Dinosaur Trail Santa Fe, NM 87508	505-954-2000 blm_nm_commen ts@blm.gov	Mineral	22-24S-35E All 20-24S-35E All 21-24S-35E W2 29-24S-35E N2NE4 & E2SE4 28-24S-35E NE4NE4 33-24S-35E W2SW4 27-24S-35E NW4NW4 34-24S-35E	
16	State of New Mexico by and through the Commissioner of Public Lands	310 Old Santa Fe Trail Santa Fe, NM 87501	508-827-5760	Mineral	NE4 32-24S-35E	
17	Riverbend Oil and Gas IX, LLC	500 Dallas Street, Suite 1250 Houston, TX 77002	713-874-9000 www.rboil.com	Mineral	E2 29-245-35E	Unleased only as to depths below the base of the Wolfbone
18	Bugling Bull Investments, LLC	4747 Research Forest Dr. #180-315 The Woodlands, TX 77381	214-435-2710	Mineral	E2 29-24S-35E	Unleased only as to depths below the base of the Wolfbone

VI.

No Wells Penetrate Proposed Disposal Interval Within One Mile Area of Review

VII.

Water Analysis Produced and Receiving Formation Water

Permian Basin Area Laboratory 2101 Market Street, Midland, Texas 79703

Upstream Chemicals

REPORT DATE:

5/11/2018

COMPLETE WATER ANALYSIS REPORT SSP v.2010

CUSTOMER: DISTRICT: COG OPERATING LLC

AREA/LEASE:
SAMPLE POINT NAME

KING TUT KING TUT FED 3H BTRY ACCOUNT REP: SAMPLE ID: SAMPLE DATE: ANALYSIS DATE:

ANALYST:

KENNETH MORGAN 201701012804 3/21/2017 3/24/2017 SVP

SITE TYPE: SAMPLE POINT DESCRIPTION:

FACILITY

TRANSFER PUMP

COG OPERATING LLC, KING TUT, KING TUT FED 3H BTRY

FIELD DA	TA		BEET STATE OF THE STATE OF		ANALYSIS OF S	AMPLE		
			ANIONS:	mg/L	meq/L	CATIONS	mg/L	meq/L
Initial Temperature (*F):		250	Chloride (Cl'):	152606.2	4304.8	Sodium (Na*):	74498.5	3241.9
Final Temperature (°F):		80	Sulfate (SO ₄ ²):	461.4	9.6	Potassium (K*):	1381.8	35.3
Initial Pressure (psi):		100	Borate (H ₃ BO ₃):	170.9	2.8	Magnesium (Mg ² *): 2495.8	205.4
Final Pressure (psl):		15	Fluoride (F'):	ND		Calcium (Ca ²⁺):	15329.6	765.0
			Bromide (Br):	ND		Strontium (Sr2*):	724.2	16.5
pH:			Nitrite (NO ₂):	ND		Barlum (Ba ² *):	1,8	0.0
pH at time of sampling:		6.8	Nitrate (NO ₁):	ND		iron (Fe ² *):	43.2	1.5
			Phosphate (PO ₄ ³):	ND		Manganese (Mn ² *)): 2.6	0.1
			Silica (SIO ₂):	ND		Lead (Pb ² *):	0.0	0.0
						Zinc (Zn²*):	0.0	0.0
ALXALINITY BY TITRATION:	ng/L	meq/L						
Bicarbonate (HCO ₁):	36.6	0.6				Aluminum (Al1+):	0.0	0.0
Carbonate (CO ₃ ² '):	ND					Chromium (Cr3):	ND	
Hydroxide (OH):	ND					Cobalt (Co2+):	ND	
			ORGANIC ACIDS:	mg/L	meq/L	Copper (Cu ² *):	0.0	0.0
aqueous CO ₂ (ppm):		1050.0	Formic Acid:	ND		Molybdenum (Mo	²·): 0.0	0.0
aqueous H ₂ S (ppm):		0.0	Acetic Acid:	ND		Nickel (NI2*):	ND	
aqueous O2 (ppb):		ND	Propionic Acid:	ND		Tin (Sn2"):	ND	
			Butyric Acid:	ND		Titanium (Ti ^{2*}):	ND	
Calculated TDS (mg/L):		247582	Valeric Acid:	ND		Vanadium (V2):	ND	
Density/Specific Gravity (g/c	m³):	1.1573				Zirconium (Zr2-):	ND	
Measured Specific Gravity		1.1683				Lithium (Li):	ND	
Conductivity (mmhos):		ND						
Resistivity:		ND				Total Hardness:	49434	N/A
MCF/D:		No Data						
BOPD:		No Data						
BWPD:		No Data	Anion/Cation Ratio:		1.01	ND	= Not Determined	

SCALE DISDUCTIONS BASED ON FISH DEPONDED DATA SUTHER MODELING MAY BE RECURSED FOR VALIDATION OF SCALE DESCRICTION RESULTS

Condi	tions	Barite (Baso _d)	Calcite ((CaCO ₂)	Gypsum (Ca	SO ₄ -2H ₂ O)	Anhydrite	(CaSO ₄)
Temp	Press.	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)
B0"F	15 psi	0.40	0.646	1 16	7.579	-0 15	0.000	-0.23	0.000
99°F	24 psi	0.28	0.509	1.18	7.675	-0.14	0.000	-0.14	0.000
118'F	34 psi	0.16	0.334	1.20	7.774	-0.14	0.000	-0.06	0.000
137°F	43 psi	0.05	0.115	1.22	7.857	-0.15	0.000	0.03	13.651
156'F	53 psi	-0.06	0.000	1.23	7.925	-0.15	0.000	0 11	51 143
174°E	62 psi	-0.16	0.000	1.24	7.980	-0.16	0.000	0.20	82.865
193°F	72 ps	-0 25	0.000	1.25	8.022	-0.17	0.000	0.28	109.409
212'F	81 psi	-0.34	0.000	1.25	8.058	-0.19	0.000	0.37	131.297
231'F	91 psi	-0.42	0.000	1.26	8.083	-0.20	0.000	0.46	149.069
250°F	100 ps	-0.50	0.000	1.26	8.095	-0.22	0.000	0.55	163.281

Conditions		Celestite (SrSO ₄)		Halite	Halite (NaCl)		Iron Sulfide (FeS)		ate (FeCO ₂)
Temp	Press.	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)
80*F	15 psi	0 34	123.094	-0.45	0.000	-7.90	0.000	0.19	1.935
99°F	24 psi	0.34	125.716	-0.46	0.000	-8.04	0.000	0.27	2.698
118'F	34 psi	0.35	126.379	-0.48	0.000	-8.15	0.000	0.34	3.330
137°F	43 psi	0.35	126.223	-0.49	0.000	-8.24	0.000	0.39	3.801
156*F	53 psi	0.35	126.022	-0.50	0.000	-8.32	0 000	0.43	4.122
174'F	62 psi	0.35	126.264	-0.51	0.000	-8.38	0.000	0.45	4.307
193'F	72 psi	0.35	127.203	-0.53	0.000	-8.43	0.000	0.45	4.367
212°F	81 psi	0.36	128.885	-0.54	0.000	-8.47	0.000	0.44	4.316
231°F	91 ps	0.36	131.186	-0.55	0.000	-8.51	0.000	0.42	4.148
250°F	100 psi	0.37	133.846	-0.56	0.000	-8.54	0.000	0.38	3.848

Note 1. When assessing the seventy of the scale problem, both the saturation index 🚳 and amount of scale must be considered

Note 2. Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the eight (II) scales

Note 3 Saturation Index predictions on this sheet use pH and alkalinity, %CO₂ is not included in the calculations

Permian Basin Area Laboratory 2101 Market Street, Midland, Texas 79703

Upstream Chemicals

REPORT DATE:

5/16/2018

COMPLETE WATER ANALYSIS REPORT SSP v.2010

CUSTOMER:
DISTRICT:
AREA/LEASE:
SAMPLE POINT NAME

SAMPLE POINT DESCRIPTION:

SITE TYPE:

COG OPERATING LLC
NEW MEXICO
WINDWARD
WINDWARD FED 2H
WELL SITES

WELL HEAD

ACCOUNT REP: SAMPLE ID: SAMPLE DATE: ANALYSIS DATE: ANALYST: KENNETH MORGAN 201501048297 12/11/2015 12/16/2015 SAMUEL NEWMAN

COG OPERATING LLC, WINDWARD, WINDWARD FED 2H

FIEL	D DATA		STATE OF THE PARTY OF		ANALYSIS OF	SAMPLE	the today.	0.00
			ANIONS:	mg/L	meq/L	CATIONS:	mg/L	meq/L
initial Temperature (°F):		250	Chloride (CI):	89914.5	2536.4	Sodium (Na*):	46148.7	2008.2
Final Temperature (*F):		82	Sulfate (SO ₄ ² '):	1031.7	21.5	Potassium (K'):	902.9	23.
Initial Pressure (psi):		100	Borate (H ₃ BO ₃):	187.2	3.0	Magnesium (Mg²*):	855.0	70.4
Final Pressure (psi):		15	Fluoride (F'):	NĐ		Calcium (Ca ^{2*}):	6890.6	343.
			Bromide (Br'):	ND		Strontium (Sr2*):	278.9	6.4
pH:			Nitrite (NO2):	ND		Barium (Ba ² *):	0.0	0.0
pH at time of sampling:		7.1	Nitrate (NO3):	ND		Iron (Fe ²⁺):	89.1	3.2
			Phosphate (PO ₄ ³):	ND		Manganese (Mn ²):	1.8	0.
			Silica (SiO ₂):	ND		Lead (Pb2*):	ND	
						Zinc (Zn²*):	0.0	0.0
ALKALINITY BY TITILATION:	mg/L	meq/L						
Bicarbonate (HCO,):	170.0	2.8				Aluminum (Al ³⁺):	ND	
Carbonate (CO ₃ ²):	ND					Chromium (Cr ³⁺):	ND	
Hydroxide (OH):	ND					Cobalt (Co2+):	ND	
			ORGANIC ACIDS:	mg/L	meq/L	Copper (Cu ²⁺):	ND	
aqueous CO ₂ (ppm):		240.0	Formic Acld:	ND		Molybdenum (Mo ^{2*}):	ND	
equeous H ₂ S (ppm):		0.0	Acetic Acid:	ND		Nickel (Ni ^{2*}):	ND	
aqueous O2 (ppb):		ND	Propionic Acid:	ND		Tin (Sn²*):	ND	
			Butyric Acid:	ND		Titanium (Ti ²⁺):	ND	
Calculated TDS (mg/L):		146283	Valeric Acid:	ND		Vanadium (V²'):	ND	
Density/Specific Gravity ((g/cm³):	1.0934				Zirconium (Zr2*):	ND	
Measured Specific Gravit	У	1.1045				Lithium (Li):	ND	
Conductivity (mmhos):		ND						
Resistivity:		ND				Total Hardness:	21067	N/
MCF/D:		No Data						
BOPD:		No Data						
BWPD:		No Data	Anion/Cation Ratio:		1.04	ND = Not D	etermined	

SCALE PREDICTIONS BASED ON FIELD PROVIDED DATA, FUTHER MODELING MAY BE REQUIRED FOR VALIDATION OF SCALE PREDICTION RESULTS

Cond	itions	Barite (Ba5O ₄)	Calcite (CaCO ₃)	Gypsum (Ca	SO4-5H5O)	Anhydrite	e (CaSO ₄)	
Temp	Press.	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	
82'F	15 psi		0.000	1.43	35.518	-0 18	0.000	-0 34	0.000	
101°F	24 psi		0.000	1.48	36.271	-0.17	0.000	-0.25	0.000	
119°F	34 psi		0.000	1 54	37 269	-0.16	0.000	-0.16	0.000	
138°F	43 psi		0.000	1.60	38.261	-0.15	0.000	-0.06	0.000	
157°F	53 psi		0.000	1.66	39.182	-0.15	0.000	0.04	39.216	
175°F	62 psi		0.000	1.72	40.019	-0.14	0.000	0.14	133.848	
194'F	72 psi		0.000	1 78	40.776	-0.13	0.000	0.24	211.707	
213°F	81 psi		0.000	1.84	41.510	-0.13	0.000	0.35	274.678	
231°F	91 psi		0.000	1.90	42.195	-0.13	0.000	0.45	324.816	
250°F	100 psi		0.000	1.96	42.808	-0.12	0.000	0.56	364.191	
Cond	itions	Celestite	(\$150)	Halite	(NaCl)	Iron Sulf	ide (FeS)	fron Carbonate (FeCO ₃)		
Temp	Press.	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	
82°F	15 psi	0.16	51.545	-1.13	0.000	-7.50	0.000	1.18	30.476	
101°F	24 psi	0.17	54.187	-1.14	0.000	-7.61	0.000	1.28	32.451	
119°F	34 psi	0.18	56.250	-1.15	0.000	-7.69	0.000	1.38	34.487	
138°F	43 psi	0.18	58.374	-1.16	0.000	-7.75	0.000	1.47	36.277	
157°F	53 psi	0.19	60.980	-1.17	0.000	-7.79	0.000	1.55	37,770	
175°F	62 psi	0.21	64.301	+1.17	0.000	-7.81	0.000	1.61	38.985	
194°F	72 psi	0.22	68 407	-1.18	0.000	-7.83	0.000	1.66	39.950	

Note 1 When assessing the seventy of the scale problem, both the saturation index (Si) and amount of scale must be considered

Note 2 Pracaptation of each scale is considered separately. Total scale will be less than the sum of the amounts of the eight (8) scales

0.26

0.29

73.238

78.634

84.362

-1.18

-1.18

-1.18

0.000

0.000

0.000

-7.84

-7.83

-7.82

0.000

0.000

1.70

1.73

1.75

40.777

41,446

41.931

Note 3. Saturation Index predictions on this sheet use pH and alkalimity, MCO₂ is not included in the calculations

81 psi

91 psi

100 psi

213°F

231°F

250'F

ScaleSoftPitzer 10 SSP2010

Permian Basin Area Laboratory 2101 Market Street, Midland, Texas 79703

Upstream Chemicals

REPORT DATE:

5/11/2018

COMPLETE WATER ANALYSIS REPORT SSP v.2010

CUSTOMER:
DISTRICT:
AREA/LEASE:
SAMPLE POINT NAME

COG OPERATING LLC WATER MANAGEMENT - PERMIAN VIKING HELMET STATE VIKING HELMET STATE COM 24H ACCOUNT REP: SAMPLE ID: SAMPLE DATE: ANALYSIS DATE: ANALYST: LARRY G HINES 201801021234 4/11/2018 4/16/2018 SP

SITE TYPE: V
SAMPLE POINT DESCRIPTION: V

WELL SITES WELL HEAD

COG OPERATING LLC, VIKING HELMET STATE, VIKING HELMET STATE COM 24H

FIELD	DATA		GARSTON TO	A PROPERTY OF THE PARTY OF THE	ANALYSIS OF SA	MPLE		
		17	ANIONS:	mg/L	meq/L	CATIONS:	mg/L	meq/L
initial Temperature (°F):		250	Chloride (Cl'):	80548.2	2272.2 S	odium (Na*):	46716.0	2032.9
Final Temperature (°F):		88	Sulfate (SO ₄ 2'):	1551.7	32.3 P	otassium (K*):	887.5	22.7
nitial Pressure (psi):		100	Borate (H ₁ BO ₁):	170.8	2.8 N	fagnesium (Mg²*):	684.8	56.4
Final Pressure (psi):		15	Fluoride (F'):	ND	c	alclum (Ca ² *):	5224.8	260.
			Bromide (Br):	ND	5	trontium (Sr²*):	209.4	4.
pH:			Nitrite (NO ₂):	ND	8	arlum (Ba²°):	0.0	0.
H at time of sampling:		6.8	Nitrate (NO ₃):	ND	li li	ran (Fe ²⁺):	126.5	4.
			Phosphate (PO,3):	ND	N	fanganese (Mn²*):	3.4	O.
			Silica (SIO ₂):	ИВ	L	ead (Pb²*):	0.0	0.
					Z	inc (Zn²*):	0.0	O.
ALKALINITY BY TITRATION:	mg/L	meq/L						
Bicarbonate (HCO ₃):	342.0	5.6			A	duminum (Al³*):	0.0	0.
Carbonate (CO,²):	ND				c	thromium (Cr³*):	ND	
Hydroxide (OH):	ND				c	obalt (Co²+):	ND	
20 500			ORGANIC ACIDS:	mg/L	meg/L C	Copper (Cu²-):	0.0	0.
aqueous CO ₂ (ppm):		220.0	Formic Acid:	ND	P.	//olybdenum (Mo ²⁺):	0.0	0.
aqueous H ₂ S (ppm):		0.0	Acetic Acid:	ND		lickel (Ni²*):	ND	
aqueaus O2 (ppb):		ND	Propionic Acid:	ND	T	โก (Sก ² *):	ND	
			Butyric Acid:	ND	T	itanium (Ti²'):	ND	
Calculated TDS (mg/L);		136294	Valeric Acid:	ND	٧.	/anadium (V ^{2*}):	ND	
Density/Specific Gravity ((g/cm³):	1.0879			7	Zirconium (Zr²*):	ND	
Measured Specific Gravity	ý	1.0961			L	.ithium (Li):	ND	
Conductivity (mmhos):		ND						
Resistivity:		ND			1	Total Hardness:	16122	N/
MCF/D:		No Data						
BOPD:		No Data						
BWPD:		No Data	Anion/Cation Ratio:		0.97	ND = Not i	Determined	

SCALE PREDICTIONS BASED ON FIELD PROVIDED DATA, FUTHER MODELING MAY BE REQUIRED FOR VALIDATION OF SCALE PREDICTION RESULTS

Press.	N N. P. 1851 D. V.			(CaCO ₃)	e)hadiu (~	50 ₄ -2H ₂ O)	Annyanta	(CaSO _a)
	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)
15 psi		0.000	1.26	69.277	-0.13	0.000	-0.27	0.000
24 ps		0.000	1.31	70.705	-0.12	0.000	-0.18	0.000
34 psi		0.000	1.38	72.857	-0.11	0.000	-0.09	0.000
43 psi		0.000	1.46	75.061	-0.10	0.000	0.00	4.176
S3 psi		0.000	1.54	77 135	-0.10	0.000	0.10	142.433
62 psi		0.000	1.62	79.035	-0.09	0.000	0.20	260.388
72 psi		0.000	1.70	80.758	-0.08	0.000	0.30	359.322
81 psi		0.000	1.78	82.441	-0.08	0.000	0.40	440.907
91 psi		0.000	1.87	84.028	-0.07	0.000	0.50	507.127
100 psi		0.000	1.95	85.448	-0.07	0.000	0.61	560.114
	24 psi 34 psi 43 psi 53 psi 62 psi 72 psi 81 psi 91 psi	24 psi 34 psi 43 psi 53 psi 62 psi 72 psi 81 psi 91 psi	24 psi 0.000 34 psi 0.000 43 psi 0.000 53 psi 0.000 62 psi 0.000 72 psi 0.000 81 psi 0.000 91 psi 0.000	24 psi 0.000 1.31 34 psi 0.000 1.38 43 psi 0.000 1.46 53 psi 0.000 1.54 62 psi 0.000 1.62 72 psi 0.000 1.70 81 psi 0.000 1.78 91 psi 0.000 1.87	24 psi 0.000 1.31 70.705 34 psi 0.000 1.38 72.857 43 psi 0.000 1.46 75.061 53 psi 0.000 1.54 77.135 62 psi 0.000 1.62 79.035 72 psi 0.000 1.70 80.758 81 psi 0.000 1.78 82.441 91 psi 0.000 1.87 84.028	24 psi 0.000 1.31 70.705 -0.12 34 psi 0.000 1.38 72.857 -0.11 43 psi 0.000 1.46 75.061 -0.10 53 psi 0.000 1.54 77.135 -0.10 62 psi 0.000 1.62 79.035 -0.09 72 psi 0.000 1.70 80.758 -0.08 81 psi 0.000 1.78 82.441 -0.08 91 psi 0.000 1.87 84.028 -0.07	24 psi 0.000 1.31 70.705 -0.12 0.000 34 psi 0.000 1.38 72.857 -0.11 0.000 43 psi 0.000 1.46 75.061 -0.10 0.000 53 psi 0.000 1.54 77.135 -0.10 0.000 62 psi 0.000 1.62 79.035 -0.09 0.000 72 psi 0.000 1.70 80.758 -0.08 0.000 81 psi 0.000 1.78 82.441 -0.08 0.000 91 psi 0.000 1.87 84.028 -0.07 0.000	24 psi 0.000 1.31 70.705 -0.12 0.000 -0.18 34 psi 0.000 1.38 72.857 -0.11 0.000 -0.09 43 psi 0.000 1.46 75.061 -0.10 0.000 0.00 53 psi 0.000 1.54 77.135 -0.10 0.000 0.10 62 psi 0.000 1.62 79.035 -0.09 0.000 0.20 72 psi 0.000 1.70 80.758 -0.08 0.000 0.30 81 psi 0.000 1.78 82.441 -0.08 0.000 0.40 91 psi 0.000 1.87 84.028 -0.07 0.000 0.50

Condi	tions	Celestite	(\$6504)	Halite	(NaCl)	Iron Sulf	ide (Fe5)	Iron Carbonate (FeCO _J)			
Temp	Press.	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)	Index	Amt (ptb)		
88*F	15 psi	0.19	50.203	-1.20	0.000	-7.79	0.000	1.31	61.325		
106°F	24 ps	0.20	52.071	-1.21	0.000	-7.88	0.000	1.40	64.099		
124°F	34 ps	0.21	53.663	-1.22	0.000	-7.92	0.000	1.51	67.134		
142°F	43 psi	0.22	55.383	-1.22	0.000	-7.94	0.000	7.61	69.838		
160°F	S3 psi	0.23	57.491	-1.23	0.000	-7.95	0.000	1.71	72 110		
178°F	62 psi	0.24	60.125	-1.23	0.000	-7.94	0.000	1.79	73.969		
196°F	72 psi	0 26	63.318	-1.24	0.000	-7.93	0.000	1.85	75.466		
214°F	81 psi	0.28	67.017	-1.24	0.000	-7.91	0.000	1.91	76 785		
232°F	91 psi	0.30	71.103	-1.24	0.000	-7.88	0.000	1.97	77.898		
250°F	100 psi	0.33	75.415	-1.24	0 000	-7.84	0.000	2.01	78.761		

Note 1 When assessing the seventy of the scale problem, both the saturation index (SI) and amount of scale must be considered

Note 2. Precipitation of each scale is considered separately. Total scale will be less than the sum of the amounts of the eight (B) scales

Note 3. Saturation Index predictions on this sheet use pH and alkalizaty; %CO₂ is not included in the calculations

Devonian (Receiving Formation) Sec 19-195-32e

Geolex, Inc.

February, 2017

8.0 RESERVOIR CHARACTERISTICS

8.1 FORMATION FLUID CHEMISTRY

Following the drilling of the 6-inch open-hole section the injection zone was swabbed and 10 samples were sent to Cardinal Laboratories in Hobbs, NM. The laboratory report and analysis, along with a summary table of the results that depict the concentrations of all analytes is included in Appendix D. The average concentrations for major constituents within the formation water in the entire injection interval are as follows:

Chloride: 23,700 mg/L TDS: 42,750 mg/L

Diesel Range Organics: 5.7 mg/L Extended Range Organics: 2.7 mg/L

pH: 6.5

Total Alkalinity: 613 mg/L

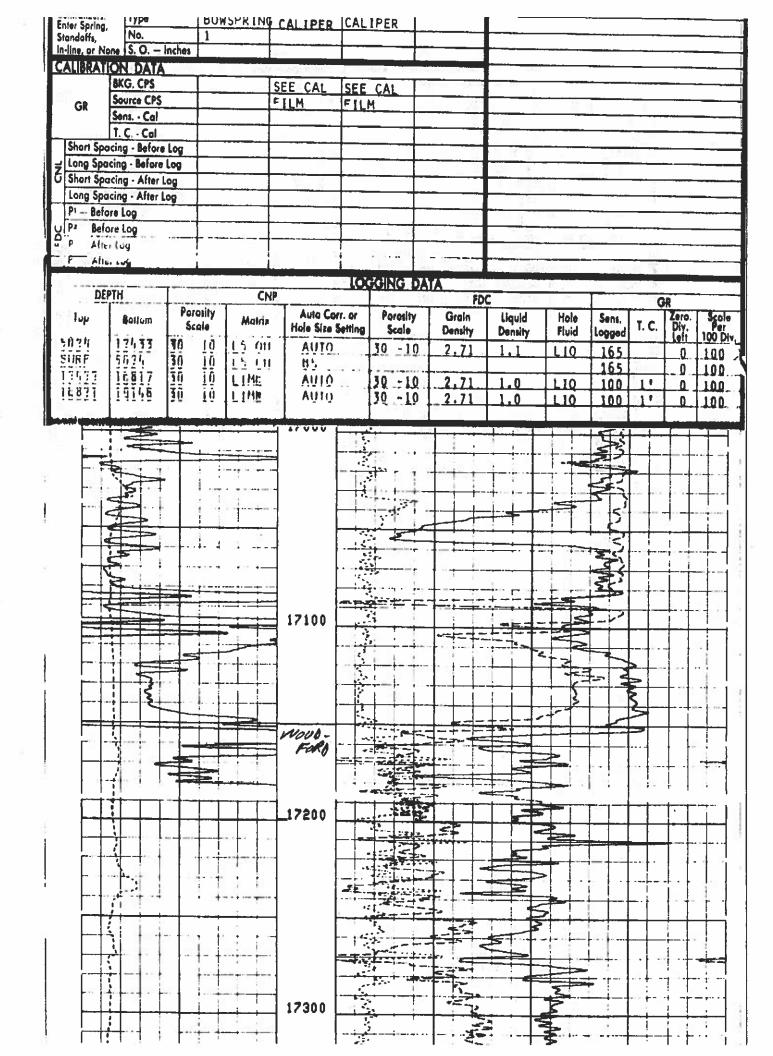
The maximum concentrations for major constituents within the formation water in the entire injection interval are as follows:

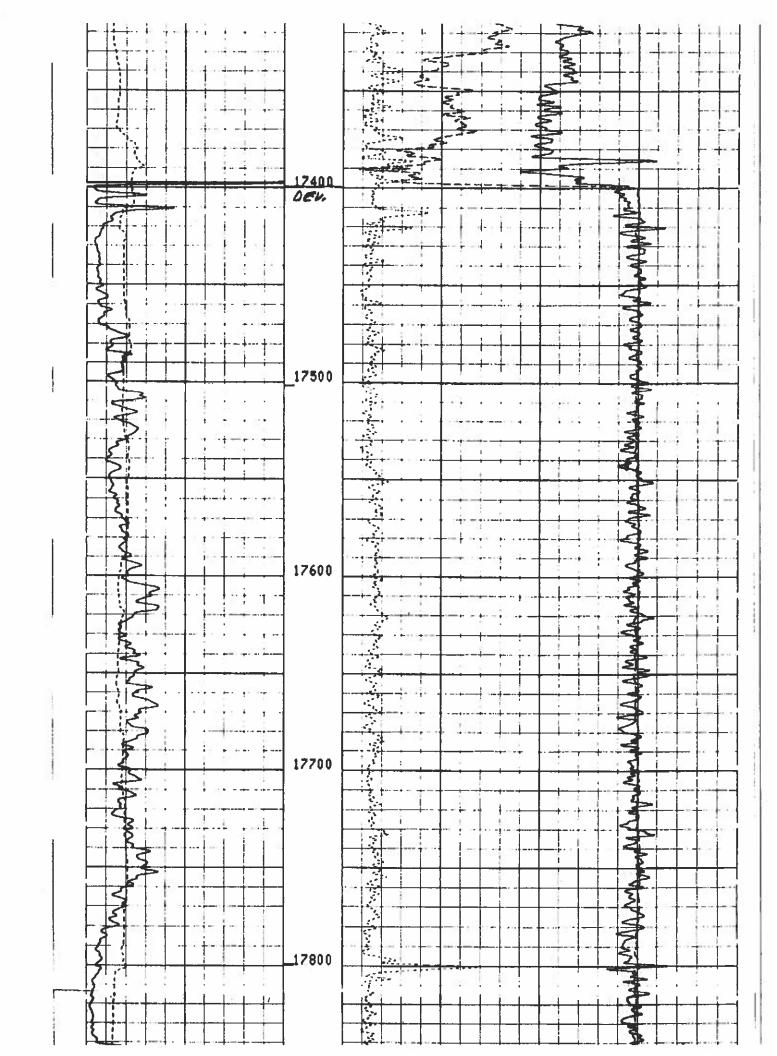
Chloride: 27,000 mg/L TDS: 44,700 mg/L

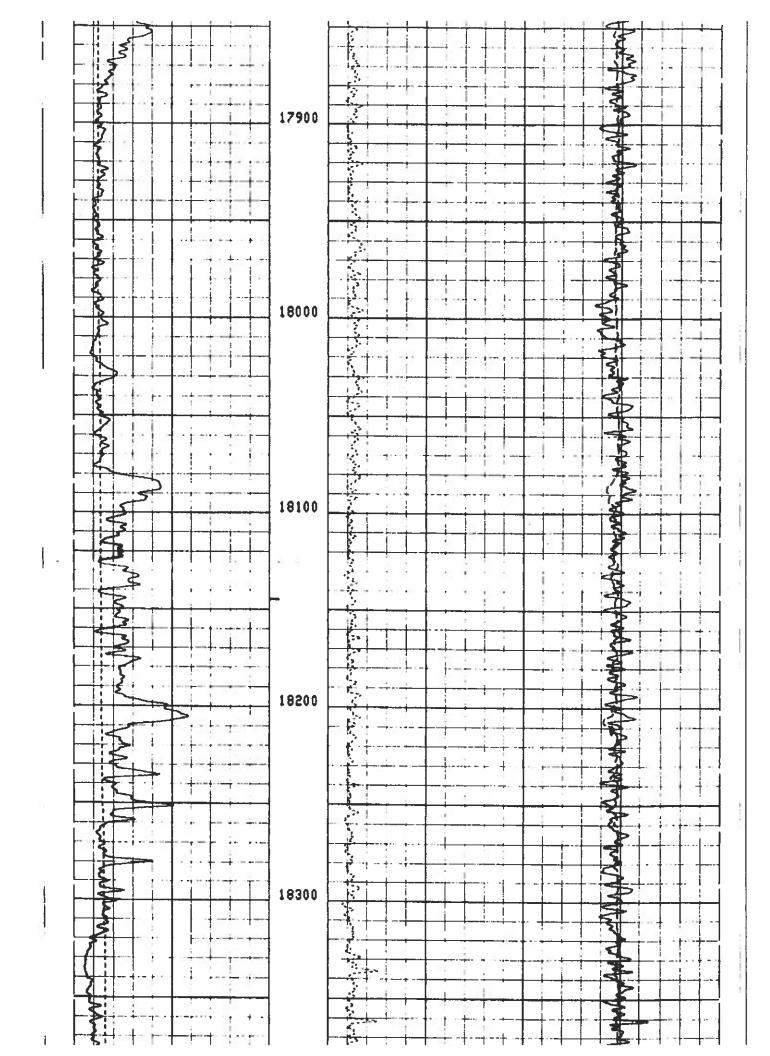
Diesel Range Organics: 20.5 mg/L Extended Range Organics: 5.6 mg/L

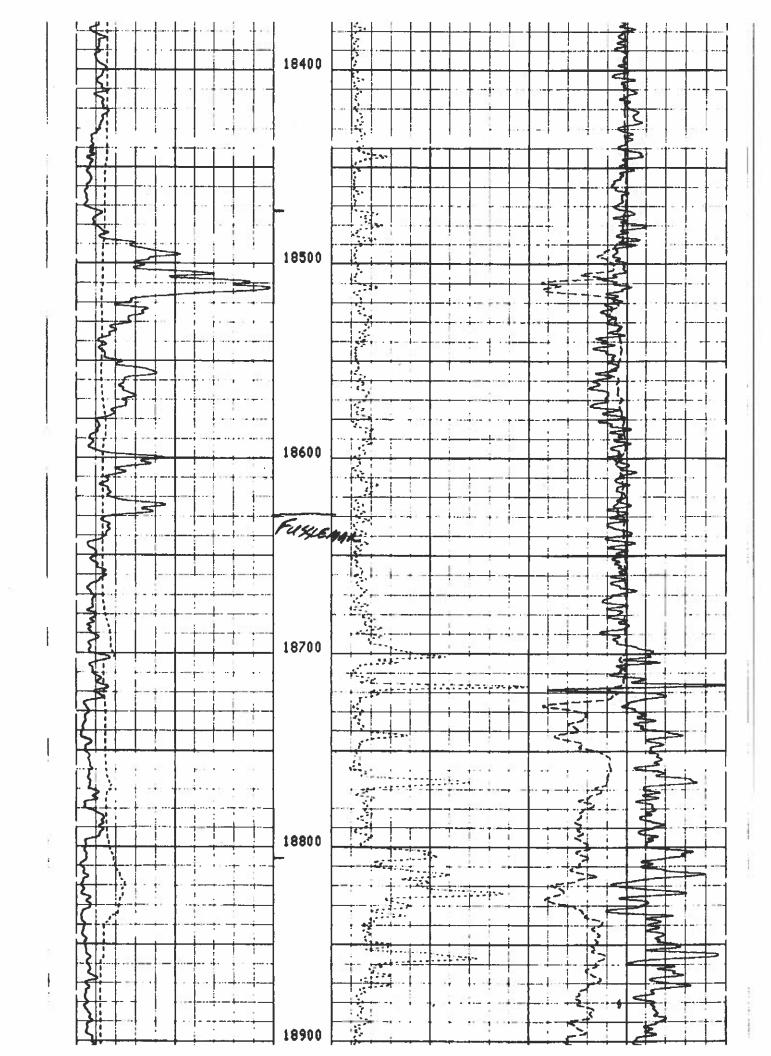
pH: 6.7

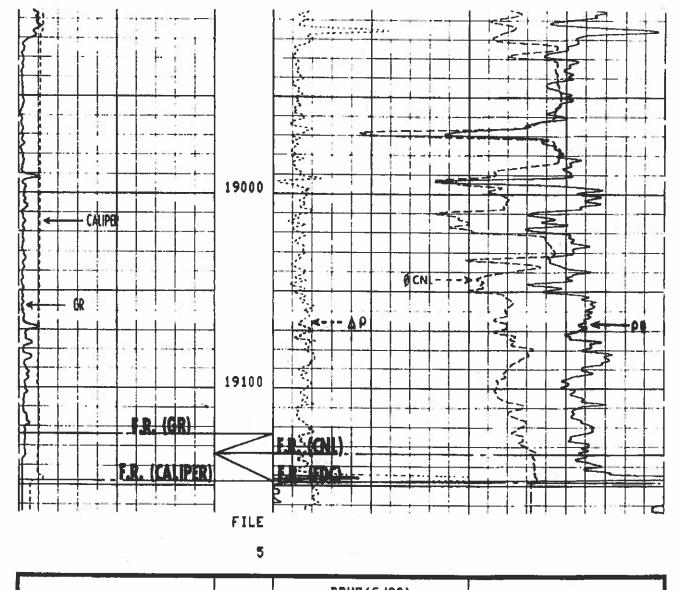
Total Alkalinity: 670 mg/L


The results of the formation water analysis support and confirm the conclusions presented from the geophysical logs, mud log, and sidewall cores that the injection zone clearly does not contain recoverable hydrocarbons. Included in Appendix D is Geolex's No Recoverable Hydrocarbon Summary report, which was required by the BLMs COA, and submitted to the BLM and NMOCD.




X.


Log Section Across Proposed Devonian Injection Interval


Witnessed By	ghon	ac. Temp.	Logger on Bottom		arce: Kmf Kmc		Rinf @ Meas. Temp.	@ Meas. Temp.	e of Sample	Fluid Loss		Type Fluid in Hole	Logger			0	Ì	Depth—Driller	Run No.	Date	Drilling Measured From	Permanent Datum:					L.F D-11-	T268	R35E ROBE ENO I	RT E	RAI	NDRI	ETH M#	5"	00FW		
NEVECE IN	Hogas	7.	2100	03 @160 F			. 061 @ 75 F	ᆈ	אר ו אפ	5	9-2-35	12 1/4	6	73-3/805030	China	12433	12434	12455		0-16-20	X.0	S			ERIAL NO SEC	П	1200 F	YINUK	۵		<u>!</u>	1629	TANAM!			perger	
REISINCER	8022 MONA	206	S-11 000 11-5	a		@				0 00	2 C AC 2 C	1/2	12422		12422	16918	1682)	05571	110000					=	TWP.		FNL 6 1200°	LEA	VILIGAT			4.2		40		. F ()	COMPE
	8022 MONA	232		- 04		0	9 6	2	7.10	2000	OI BKI	12		3	16821	POTE		Variation .	70-7-1	100	rerm. Darum	32		35-8	MANGE			STATE MEN				•	ENATIONS TOLOGO			TION 5	PENSATE
				®	oi	Sie G	000	1	20.1	- 1	Ļ	st	180	30		1		Ί			G 3200	32.27	ŀ	UN 1	SHC	TO/11	Other Services:	MEX ICO					Variation V	73.6	•	NSITY	FITRAN
	i,	EAL	ár)	A.S.	7 10	Agrica Company			111	y w	êH.	nlahr	le,	020	ПĢ	n e	lile	50	Oil					la v	ere	tur	nishe	d by	the	custo	ome	1 1 mm	,	(MI)	***		
RUN			- 11	_						VE			T	ΓW	0	_			TH	έlξ	E						=0							., ,.			-
Servi Fluid	ce (el MGI	r N	D.	-			4		43(JLI		D.	+	E 1 1	LL			1	511			4	_			\Box	Ty	oe Lo	9	Dep	th	Ţ					
Salin	itγ,	PPN						7		120		0			<u> </u>		<u> </u>		FU 43			\dashv		_		\dashv			+			+			_	50	
Spee									3(30				j	30	2.1			_				*		+			十				\vdash	
EQU Dens.	P	1EN	Щ)ĀĪ	A		_	_	6:	7				. 1.			П					V.		-					工			1		_			
Jens.								\dashv		52				54 51					91 51			\dashv	_			4	_		\bot			\bot					
Dens.					-			+		61	l	-		+2	9				12	9		\dashv			_	-			+-		_	+-				-	_
Dens.	Se	nde							3(7				22			_		22		_	\dashv				\dashv	93	M.	75.				-				
Dens.										+2!	,				89			1	541	89		寸					TATE OF	TACK!	191								
Dens.	-		itor		_	_		4	18					16		_			16	3													5	_			
Neut.	_				_	_	_	-	62	9(_			34		_			1	A 4		-				4											
Veut.							-	\dashv		84					91 22		_		125			+	_			4	_										
		libro				_				60			+	, ₍₎ ,	<u> </u>				30 : 13 :			\dashv				\dashv	-			_							
JEC:-										03		NY.S		2					2					_						_					-		-
GR C	uı.		_		-	_	_	-+				-										+				-1											_
GR C	oriz							_1)54	<u> </u>		_19	12				_1.) Z •	4		- 1															
GR C	oriz Rec	ord	ır (T	TR)			di	1	96) <u>2</u> / 9(324 19(~~~				_	•	_	_					_

	DRHG(G/C3)	
	-0.050 0.4500	
CALI(IN)	RHUB(G/C3)	
6.000 16.00 Run S		000
GR (GAPI)	LNPHI()	
0.0 100.0	0.3000 -0,	100

XI.

Fresh Water Sample Analyses There Are No FW Wells Within 1 Mile from NMOSE Records

New Mexico Office of the State Engineer

Active & Inactive Points of Diversion

(with Ownership Information)

No PODs found

PLSS Search:

Section(s): 20, 21, 22, 27, 28, Township: 24S 29, 32, 33, 34

Range: 35E

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/10/19 11:41 AM

ACTIVE & INACTIVE POINTS OF DIVERSION

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated June 08, 2019 and ending with the issue dated June 08, 2019.

Publisher

Sworn and subscribed to before me this 8th day of June 2019.

Business Manager

My commission expires

danuary 29, 2023 (Seal)

CFFICIAL SEAL
GUSSIE BLACK
Notary Public
State of New Mexico
My Commission Expires

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICES JUNE 8, 2019

COG Operating LLC, 2208 W. Main Street, Artesia, New Mexico, 88210, has filled Form C-108 (Application for Authorization to Inject) with the New Mexico Oli Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Coonskin 28 Fee SWD No. 1, is located 1130' FNL and 1960' FWL. Section 28, Township 24 South, Range 35 East, Lea County, New Maxico. Disposal water will be sourced from area wells producing from the Delaware, Bone Spring and Wolfcamp formations. The disposal water will be in jected. Into the Devonian/Silurian formation at an estimated depth of 17,400' to 19,550' at a maximum surface pressure of 3480 pet and a maximum rate of 40,000 BWPD. The proposed SWD well is located approximately 13 miles weet/northweet of Jal. Any interested party who has an objection to this must give notice in writing to the Oil Conservation Division, 1220 South Saint Francis Street, Santa Fe, New Mexico, 87505, within fitneen (16) days of this notice. Any interested party with questions or comments may contact Brian Collins at COG Operating LLC, 2208 W. Maln Street, Artesia, New Mexico 88210, or call 576-748-6840.

02107967

00229343

COG OPERATING LLC 600 W. ILLINOIS AVENUE MIDLAND, TX 79701

HOBBS NEWS-SUN LEGAL NOTICES

COG Operating LLC, 2208 W. Main Street, Artesia, New Mexico, 88210, has filed Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed-well, the Coonskin 28 Fee SWD No. 1, is located 1130' FNL and 1960' FWL, Section 28, Township 24 South, Range 35 East, Lea County, New Mexico. Disposal water will be sourced from area wells producing from the Delaware, Bone Spring and Wolfcamp formations. The disposal water will be injected into the Devonian/Silurian formation at an estimated depth of 17,400' to 19,550' at a maximum surface pressure of 3480 psi and a maximum rate of 40,000 BWPD. The proposed SWD well is located approximately 13 miles west/northwest of Jal. Any interested party who has an objection to this must give notice in writing to the Oil Conservation Division, 1220 South Saint Francis Street, Santa Fe, New Mexico, 87505, within fifteen (15) days of this notice. Any interested party with questions or comments may contact Brian Collins at COG Operating LLC, 2208 W. Main Street, Artesia, New Mexico 88210, or call 575-748-6940.

Published in the Hobbs N	News-Sun	Hobbs,	New	Mexico
, 201	9.			

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M. Lea County, New Mexico

Dear Mr. McMillan

All Notices were mailed out to the affected parties on August 21, 2019. Please do not hesitate to contact me at (575) 748-6941 should you have any questions.

Sincerely,

Marissa Villa

Operations Engineering Technician

COG Operating, LLC 2208 West Main Artesia, NM 88210

Office: 575.748.6941 Fax: 575.746.2523

New Mexico Oil Conservation Division Attn: Phillip Goetze 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M. Lea County, New Mexico

Dear Mr. Goetze:

COG Operating LLC respectfully requests administrative approval for authorization to inject for the referenced well. Attached for your review is a copy of the C-108 application. Once we receive all the certified return receipts we will send you a copy.

Our geologic prognosis has the top of the Devonian at 17590' and Fusselman at 18685'. We're permitting the injection interval shallower and deeper than the prognosis just in case the formation tops are different than expected due to the lack of deep well control in this area.

Please do not hesitate to contact me at (575) 748-6940 should you have any questions.

Sincerely,

Paul Porter General Manager of New Mexico

Oil Conservation Division Attn: Paul Kautz 1625 North French Dr. Hobbs, NM 88240

RE: <u>Application For Authorization To Inject</u> Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M. Lea County, New Mexico

Dear Mr. Kautz:

COG Operating LLC respectfully requests administrative approval for authorization to inject for the referenced well. Attached for your review, is a copy of the C-108 application.

Our geologic prognosis has the top of the Devonian at 17590' and Fusselman at 18685'. We're permitting the injection interval shallower and deeper than the prognosis just in case the formation tops are different than expected due to the lack of deep well control in this area.

Please do not hesitate to contact me at (575) 748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Dion Hartman 7689 Pine Grave Ave Kingman, AZ 86401

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

311 ICTIEIY

Paul Porter

General Manager of New Mexico

Tap Rock Resources, LLC 602 Park Point Drive Suite 200 Golden, CO 80401

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

XTO Holdings, LLC 22777 Springwoods Village Pkwy Spring, TX 77389

RE: <u>Application For Authorization To Inject</u>

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

Occidental Permian, LP 5 E. Greenway Plaza Suite 110 Houston, TX 77046

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

MRC Permian Company 5400 LBJ Freeway, Suite 1500 Dallas, TX 75240

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Crown Oil Partners VI, LLC PO Box 50820 Midland, TX 79710

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

Topwater Resources LLC 4747 Research Forest Dr #180 The Woodlands, TX 77381

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Crump Energy Partners III, LLC PO Box 50820 Midland. TX 79710

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Delaware Hops, LLC 50 Kennedy Plaza 18th Floor Providence, RI 02903

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

Chevron USA, Inc. 15 Smith Road Midland, Texas 79705

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M. Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

United States of America, through the Bureau of Land Management New Mexico State Office 301 Dinosaur Trail Santa Fe, NM 87508

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico

State of New Mexico by and through The Commissioner of Public Lands 310 Old Santa Fe Trail Santa Fe. NM 87501

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Riverbend Oil and Gas IX, LLC 500 Dallas Street, Suite 1250 Houston, TX 77002

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M.

Lea County, New Mexico

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely

Paul Porter

General Manager of New Mexico

Bugling Bull Investments, LLC 4747 Research Forest Dr. #180-315 The Woodlands, TX 77381

RE: Application For Authorization To Inject

Coonskin 28 Fee SWD #1 1130' FNL, 1960' FWL Unit C. Section 28 Township

Unit C, Section 28, Township 24 South, Range 35 East, N.M.P.M. Lea County, New Mexico

3.

To Whom It May Concern:

Enclosed for your review is a copy of COG Operating LLC's C-108 Application to Inject for the above referenced well. We plan to drill this well for SWD service if our C-108 is approved. As a requirement of the New Mexico Oil Conservation Division, we are notifying you because you have been identified as the surface owner or an affected person within a one mile radius area of review. Any objections must be submitted in writing to NMOCD, 1220 S. St. Francis Drive, Santa Fe, New Mexico 87505. Objections must be received within fifteen (15) days of receipt of this letter.

Please do not hesitate to contact us at 575-748-6940 should you have any questions.

Sincerely,

Paul Porter

General Manager of New Mexico