RECEIVED: 6/28/2019	REVIEWER:	TYPE: SWD	APP NO:	: pKAM1928233159_SWD2304
	NEW MEXI - Geolog	ABOVE THIS TABLE FOR OCD D CO OIL CONSERVA ical & Engineering	ATION DIVIS Bureau –	
This Che	ADMINIST REGULATIONS WHICH F	RATIVE APPLICATI ALL ADMINISTRATIVE APPLICA REQUIRE PROCESSING AT THE	ON CHECKL ATIONS FOR EXCEPT DIVISION LEVEL IN	SUS IST TIONS TO DIVISION RULES AND SANTA FE
Applicant: Vell Name: vool:			Q P	DGRID Number: API: vool Code:
SUBMIT ACCURAT	e and complete in	IFORMATION REQUI	RED TO PROC DW	CESS THE TYPE OF APPLICATION
1) TYPE OF APPLICA A. Location – NS B. Check one [1] Comm [I] Injectio	ATION: Check those Spacing Unit – Simu L NSP only for [1] or [1] ingling – Storage – N DHC CTB I OHC PTB	e which apply for [A Itaneous Dedicatio PROJECT AREA) Measurement PLC PC C Sure Increase – Enha SWD [IPI E] P(proration unit) DLS OLM anced Oil Re OR PPR	SD 1 covery <u>FOR OCD ONLY</u>
2) NOTIFICATION R A. Offset o B. Royalty, C. Applica D. Notifica E. Notifica F. Surface G. For all o H. No notic	EQUIRED TO: Check perators or lease ho overriding royalty of tion requires publish tion and/or concur tion and/or concur owner f the above, proof of ce required	those which apply olders owners, revenue ow ned notice rent approval by SL rent approval by BL of notification or pu	r. rners .0 .M iblication is a	Notice Complete Application Content Complete ttached, and/or,
3) CERTIFICATION : administrative a	I hereby certify that	the information sul	bmitted with he best of m	this application for v knowledge, Lalso

understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Print or Type Name

Date

Phone Number

DISTRICT I 1625 N. French Dr., Hobbs, NM 86240 Phone (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 86210 Phone (575) 748-1283 Fax: (575) 748-9720

DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone (505) 334-6176 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone (506) 476-3460 Fax: (506) 476-3462 State of New Mexico Energy, Minerals and Natural Resources Department Form C-102 Revised August 1, 2011

Submit one copy to appropriate District Office

OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

□ AMENDED REPORT

API	Number			Pool Code	Pool Name						
Property (Code			В	Property Name BAYSIDE STATE SWD				Well Nu 1	ımber	
OGRID No	0.			SOLA	^{0per} RIS WA	^{ator Nam} TER M	IDSTREAM		Elevad 323	Elevation 3235'	
					Surfa	ce Loca	ation		•		
UL or lot No.	Section	Township	Range	Lot Idn	Feet fro	om the	North/South line	Feet from the	East/West line	County	
М	2	25 S	35 E		28	32	SOUTH	225	WEST	LEA	
			Bottom	Hole Lo	ocation 1	lf Diffe	rent From Sur	face			
UL or lot No.	Section	Township	Range	Lot Idn	Feet fro	om the	North/South line	Feet from the	East/West line	County	
Dedicated Acre	e Ioint o	r Infill Co	nsolidation	Code 0	rder No						
Dedicated Acres	s Joint o		isonuation		idei No.						
NO ALLO	WABLE W	VILL BE AS	SSIGNED	TO THIS	COMPLE	TION U	UNTIL ALL INTER	ESTS HAVE BE	EN CONSOLIDA	ATED	
		ORAN	ION-STAN	IDARD U	NIT HAS	BEEN	APPROVED BY	THE DIVISION			
N:425789.1 E:846588.2 (NAD 83)				N:425812.8 E:849228.1 (NAD 83)			N:425836.6 E:851867.8 (NAD 83)	OPERATO	R CERTIFICAT	TION	
LOT 4	 	<i>L0T</i>	 		.0T 2	 	LOT 1	I hereby certify that the information contained herein is true and complete to the best of my knowledge and belief, and th this organization either owns a working interest or unLEAsed mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such a mineral or working interes or to a voluntary pooling agreement or a compulsory pooling order heretofore entered the division.			
			 					Signature Printed Name Email Address		Date	
N:423111.4 E:846612.6 (NAD 83)			 	?		 	N:423166.2 E:851899.9 (NAD 83)	SURVEYO I hereby certify on this plat was actual surveys supervison, and correct to the UM Date Surveyo Signature & S Professional	R CERTIFICAT that the well locate s plotted from field made by me or that the same is best of my belie 22, 20, 19 42, 20, 19 54, 54 54, 54 54, 54 54, 54 54 54 54 54 54 54 54 54 54 54 54 54 5	TION tion shown t notes of under my true and f.	
SURFACE LC Lat - N 32. Long - W 103 NMSPCE- N 42. (NAD-83 225) CN E:846634.1 CN E:846634.1	+ <u>CCATION</u> .152898* .346128* 20760.3 46857.0 5) 			N:420507.9 E:849278.1 (NAD 83)		- + - 	N:420528. E:851929. (NAD 83)	Certificate 1 D 0' 1000' SCA	2000' 3000' LLE: 1" = 2000'	7977 4000'N	

P.O. Box 1786	
1120 N. West Count	ly Rd.
Hobbs, New Mexico	88241
(575) 393-7316 -	Office
(575) 392-2206 -	Fax
basinsurveys.com	

0' 1000' 2000' 3000' 4000' SCALE: 1" = 2000' W.O. Number: JG - 34646 Survey Date: 06-23-2019 YELLOW TINT - USA LAND BLUE TINT - STATE LAND NATURAL COLOR - FEE LAND

BAYSIDE STATE SWD 1

Located 282' FSL & 225' FWL Section 2, Township 25 South, Range 35 East, N.M.P.M., Lea County, New Mexico.

P.O. Box 1786	
1120 N. West Count	y Rd.
Hobbs, New Mexico	8824
(575) 393-7316 -	Office
(575) 392-2206 -	Fax
basinsurveys.com	

0' 1000' 2000' 3000' 400 SCALE: 1" = 2000'	0' 1
W.O. Number: JG – 34646	
Survey Date: 06-23-2019	
YELLOW TINT – USA LAND BLUE TINT – STATE LAND NATURAL COLOR – FEE LAND	

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL **RESOURCES DEPARTMENT**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No
II.	OPERATOR: _Solaris Water Midstream, LLC
	ADDRESS:907 Tradewinds Blvd, Suite B, Midland, TX 79706
	CONTACT PARTY:Randall Hicks (Agent) PHONE:505 238 9515
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? YesXNo If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,

- 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
- *VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
- IX. Describe the proposed stimulation program, if any.
- *X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
- *XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
- XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
- XIII. Applicants must complete the "Proof of Notice" section on the reverse side of this form.
- XIV. Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

NAME:

SIGNATURE:

TITLE: Agent_____

DATE: 6/25/19

E-MAIL ADDRESS: R@rthicksconsult.com

Randall Hicks

If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

- III. WELL DATA
- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

OPERATOR: __Solaris Water Midstream, LLC_

WELL NAME & NUMBER: _Bayside State SWD #1_

WELL LOCATION:	282 FSL 225 FWL	М	2	258	<u>3</u> 5E
	FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
<u>WELL</u>	<u>WELLBORE SCHEMATIC</u>		<u>WELL Co</u> Surface	<u>ONSTRUCTION DA</u> Casing	<u>TA</u>
		Hole Size:See	Attachments	Casing Size:	
		Cemented with:	SX.	or	ft ³
		Top of Cement:		Method Determine	ed:
			<u>Intermedia</u>	te Casing	
		Hole Size:		Casing Size:	
		Cemented with:	SX.	or	ft ³
		Top of Cement:		Method Determine	ed:
			Productio	n Casing	
		Hole Size:		Casing Size:	
		Cemented with:	SX.	or	ft ³
		Top of Cement:		Method Determine	ed:
		Total Depth:			
			Injection	Interval	
			fee	t to	

(Perforated or Open Hole; indicate which)

Side 1

INJECTION WELL DATA SHEET

Tuł	Ding Size:See AttachmentsLining Material:
Typ	De of Packer:
Pac	ker Setting Depth:
Oth	her Type of Tubing/Casing Seal (if applicable):
	Additional Data
1.	Is this a new well drilled for injection?X_YesNo
	If no, for what purpose was the well originally drilled?
2.	Name of the Injection Formation:Proposed: SWD, Devonian-Silurian
3.	Name of Field or Pool (if applicable):
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) usedNo
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: _See Attachments

.

Attachments to C-108

Copy of well bore diagram

Section III-XII Written descriptions to supplement C-108 Plates referenced in written descriptions Tables referenced in written descriptions OSE well logs referenced in written descriptions

Section XIII Proof of Notice

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include
- 1. Lease name; Well No.; Location by Section, Township and Range; and footage location within the section

Lease Name: Bayside State SWD #1 Unit Letter M, Section 2, T25S R35E, **282** FSL, **225** FWL

2. Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined

The attached Wellbore Data Sheet provides all the design specifics required and a tabulation of these data are shown on the diagram.

The formation tops were established by Jim Brannigan, R.G. CPG. Tops were picked in part by using the Florida Exploration Co. #1 Reno in Section 11(D)-T25S-R35E, and GeoMap tops.

3. A description of the tubing to be used including its size, lining material, and setting depth

5-1/2" (20#) internal plastic coated tubing swaged down to 5" (18#) with setting depth of 19,136'

4. The name, model, and setting depth of the packer used or a description of any other seal system or assembly used

Halliburton BWS or equivalent packer set at %ž ' \$ feet.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name

The proposed injection intervals include the Devonian and Fusselman Formations in an open-hole interval.

Formation	GL	3233	
Tops	КВ	3263	
	SS	TVD	
Rustler	2383	880	
T/Salt	2033	1230	
B/Salt	-1792	5055	
Lamar			
Bell Canyon	-1967	5230	
Cherry Canyon	-3017	6280	
Brushy Canyon	-4492	7755	
Bone Spring	-5807	9070	
1st BS Sand	-7092	10355	
2nd BS Sand	-7867	11130	
3rd BS Sand	-8667	11930	
Wolfcamp	-8927	12190	
Penn			
Cisco			
Canyon			
Strawn	-9542	12805	
Atoka	-9812	13075	
Morrow	-10617	13880	
Morrow Clastics			
Morrow Lower	40.400	45755	
Barnett	-12492	15/55	
	-13517	17100	
Devenian	-13917	17180	
Eucoolman	-14107	19690	
T/Montova	-16167	10/30	
Simpson	-16542	19805	
Ellenburger	-17117	20380	
Gtanite		20000	
Injection Interval	17430	19230	
TD	10	230	

(2) The injection interval and whether it is perforated or open-hole.

The depth interval of the open-hole injection interval is 17430-19230 (1800 feet).

The proposed injection intervals include the formations below the top of the Devonian. The highly cemented carbonates of the Devonian and Fussleman will provide favorable open hole integrity which to inject salt water without concern of the open hole section collapsing.

(3) State if the well was drilled for injection or, if not, the original purpose of the well.

The well will be drilled for disposal.

(4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations

There are no perforated intervals, only the open-hole completion described above.

(5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

Overlying Oil & Gas Zones:

Formation	GL	3233	
Tops	КВ	3263	Т
	SS	TVD	V E
Bell Canyon	-1967	5230	
Cherry Canyon	-3017	6280	
Brushy Canyon	-4492	7755	
Bone Spring	-5807	9070	
1st BS Sand	-7092	10355	ι
2nd BS Sand	-7867	11130	
3rd BS Sand	-8667	11930	
Wolfcamp	-8927	12190	
Strawn	-9542	12805	
Atoka	-9812	13075	
Morrow	-10617	13880	

The next higher petroleum reservoir is the Morrow, which lies about 1675 feet above the top of the Devonian injection zone.

Underlying Oil & Gas Zones: None exist in this general area.

 ${\sf IV}_{\sf No}$. Is this an expansion of an existing project ${\sf No}_{\sf No}$

V. Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review

Plate 1a identifies all OCD listed wells and API numbers and shows circles with radii of 0.5, 1.0, and 2.0 miles around the proposed SWD. Note that where numerous wells are closely-spaced, the API number may not be labeled for clarity. New wells, active wells, plugged wells, and canceled wells have color-coded symbols.

Plate 1b shows only new and active wells and circles with radii of 0.5 and 1.0 miles.

Table 1 lists all of the wells shown on Plate 1a within the circle having a 2.0 mile radius listed on the OCD database.

Plate 2a shows all of the leases and the leaseholder name within the 2-mile area of review. Leases of private minerals are not available on readily available public record, therefore identification of any mineral lessees on the private land (gray stippled) is not presented in Plate 2a. Note that some public land is not leased (e.g. NE quarter of Section 16, 2.5 miles north of the Bayside SWD location) and is shown in gray.

Plate 2b shows the surface ownership based upon data from the Lea County Assessor's Office.

Tabular listing of all mapped leases and surface ownership are presented in

Table 2a BLM leases

Table 2b State of NM leases

Table 2cSurface Owners

The State of New Mexico owns the surface upon which the SWD is located.

VI. Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail

Table 1 presents information on all wells in the OCD database within the 2-mile Area of Review. One plugged Morrow gas well was drilled to a total depth of 19170 into the Fusselman Formation. Information from Table 1 on this well is summarized below.

30-025-26867	PACIFIC ENTERPRISES OIL CO (USA)	RENO COM #001
D-11-25S-35E	Drilled 7/20/1980	Plugged 6/22/1990

The OCD database contains information on this well at: <u>http://ocdimage.emnrd.state.nm.us/imaging/WellFileView.aspx?RefType=WF&RefID=</u> 30025268670000

Attached to this submission is the 1990 plugging report and schematic submitted to BLM and OCD.

VII. Attach data on the proposed operation, including:

1. Proposed average and maximum daily rate and volume of fluids to be injected

Proposed Maximum Injection Rate: 40,000 bbl/day Proposed Average Injection Rate: 30,000 bbl/day

2. Whether the system is open or closed

This is will be an open system. All Solaris SWDs may receive produced water from recycling storage facilities, such as in-ground containments or above-ground steel-walled containments, which are registered or permitted under Rule 34.

3. Proposed average and maximum injection pressure

Proposed Maximum Injection Pressure: ' ž , * psi Proposed Average Injection Rate: 2,800 psi

4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water

The attached Table 3 (also presented in the C-108 for the Solaris Raven State SWD #1 and Eagle State SWD #1) provides the analyses of produced water that would be typical of the water injected into the proposed SWD. The Delaware – Brushy Canyon, Avalon, and Bone Springs and Wolfcamp producing zones will provide the produced water to the proposed SWD. At the time of writing, we are unaware of any problems associated with disposal of produced water derived from these formations into the Devonian/Fusselman injection zone.

5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).

Table 4 presents formational water quality data from the Go-Tech site for Devonianproducing wells. The value of these data for the purpose of evaluating potential problems relating to the injection of produced water into the proposed injection interval is probably poor. As stated above, we are unaware of any problems associated with disposal of produced water into the Devonian/Fusselman injection zone.

*VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth.

The proposed injection intervals include the Devonian and Fusselman Formations in an open-hole interval. The highly cemented carbonate nature of these Formations indicate

that favorable open-hole integrity will exist, allowing for the saltwater to be injected without concern of collapse in the open-hole injection interval.

As indicated in Section III.A.2, the approximate depth to the top of the Devonian and the bottom of the Fusselman are 18,680 and 19,430 respectively. The depth of the injection interval of 17430-19230 (1,800 feet) is contained within these formations.

Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.

As shown on Plate 3a, the Ogallala Formation, Alluvium and the Chinle Formation yield water to supply wells in this area of southern Lea County. In the immediate area of the Bayside SWD (Plate 3b), the closest mapped water wells are about 1/4 miles south (Misc-294 and CP-624). Examination of Google Earth images suggest that Misc-294 is probably mapped correctly as evidence of stock watering is obvious at this location. The OSE database reports that Well CP-624 is a dry hole to a total depth of 510 feet.

Mapped wells USGS-15013 and USGS-1508/Misc-293 are less than 1 mile distant from the SWD to the south and northwest respectively. Examination of Google Earth images provided no evidence of USGS-15013 to the south, and we believe it is mis-located and is the same well as Misc-294. USGS-1508 is a windmill that appears to be abandoned based upon examination of Google Earth images.

The Ogallala Aquifer is not mapped within the AOR. The mapped outcrop of the Chinle one mile east of the Bayside SWD suggests saturated thickness of any alluvium would be restricted to major drainages, such as Antelope Wash. The Bayside State SWD does not lie within Antelope Wash or a tributary and, therefore, does not overlie any alluvium and shallow groundwater.

In this area of Lea County, the Chinle yields water to wells, but the data from CP-624 suggests the depth to a water bearing unit in the Chinle lies below 510 feet. According to Plate 3a, the elevation of groundwater in the Chinle is about 3020 feet above sea level. The Bayside State SWD#1 is at an elevation of 3235, which provides an estimate of the depth to water of (3235-3020=) 215 feet. Given the "dry hole" (CP-624), water in the Chinle may be under pressure.

The upper portion of the Rustler Formation yields fresh water to wells in Eddy County and in the area of the Bayside SWD, the depth interval of this potential source of fresh water is about 880-1230 feet. We believe it highly unlikely that the Rustler contains potable water. Nevertheless, setting surface casing to a depth of 1180 is prudent.

The locations of all water supply wells listed in public databases are shown in Plate 3b. As stated above, there are no active water supply wells within 1 mile of the proposed location. About 1.4 miles northwest of the SWD location three wells are mapped. We believe USGS 15016 may be an active well at a ranch house and Misc-310/USGS-15007 are the same well located at what appears to be an abandoned stock trough.

The location of nearby mapped surface water bodies are shown in Plate 4.

In the area of the Bayside SWD, the depth interval of the Rustler is about 880-1230 feet, according to the BLM and OCD and, we agree with this assessment. The bottom of the Rustler Formation is characterized by evaporates (anhydrite) and is not considered an underground source of drinking water. Thus, in this area, surface casing required by OCD to prevent impairment of fresh water runs from ground surface to a depth of 1180 feet at the proposed Bayside SWD.

- IX. Describe the proposed stimulation program, if any A cleanup acid job may be used to remove mud and drill cuttings from the formation. However, no other formation stimulation is currently planned.
- *X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted)

Logs will be submitted to OCD upon completion of the well.

<u>*</u>XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken

Two water supply wells were identified within one mile of the proposed SWD from public data bases. As discussed above, these are not active wells. Nevertheless, data from various sources permit a conclusion that groundwater within the Chinle Formation in this area is potable. In this area, groundwater in the underlying Rustler formation is probably relatively brackish.

XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water

Randall T. Hicks, a Professional Geologist with decades of experience in hydrogeology, affirms, on behalf of Solaris Water Midstream, that

- The USGS has mapped quaternary faults in New Mexico and no such faults are mapped in the area of the proposed Bayside State SWD 1¹
- The Texas Bureau of Economic Geology has mapped older faults (e.g. basement and Woodford) in New Mexico and the closest mapped fault is 7 miles to the east²

¹ <u>https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf88412fcf</u>

² Bureau of Economic Geology (Accessed April 2019). University of Texas at Austin. Basement Faults (Ewing 1990, Tectonic Map of Texas); Precambrian Faults (Frenzel et al. 1988, Figure 6); Woodord Faults (Comer 1991, plate 1). <u>Http://www.beg.utexas.edu/resprog/permianbasin/gis.htm</u>

- With respect to migration of produced water from the injection zone to underground sources of drinking water via faults or other natural conduits, the following conditions were considered
 - The lowest underground source of drinking water is the middle and upper Rustler Formation.
 - More than 17,000 feet of sedimentary rock separates the bottom of the Rustler Formation and the top of the injection zone. Many of the formations that lie between the injection zone and the lowermost aquifer are permeable and contain oil, gas or water at various pressures. Any excursion of injected fluids from the injection zone would undoubtedly enter these permeable formations prior to moving through the lowpermeability salt zone that underlies the Rustler Formation.
 - There is no evidence that the pressure regime in the oil and gas reservoirs is sufficient to cause the upward migration of formation water through the bedded salt and into the Rustler or Chinle aquifers.
- There is no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water

Form 3160-5 (December 1989)	UN DEPARTME BUREAU OF	ITED STATES NT OF THE INTERIOF LAND MANAGEMEN	R IT	Z 5. Lea	FORM APPROVED Budget Bureau No. 1004-0 Expires: September 30, 19 se Designation and Serial 1)135 990 No.
Do not use this	SUNDRY NOTICES form for proposals to c Use "APPLICATION F	S AND REPORTS ON drill or to deepen or ree OR PERMIT—" for such	WELLS entry to a different i n proposals	eservoir.	3RM-1538	<u>1-1120</u> 1 ame
	SUBM	T IN TRIPLICATE		7. If U	Init or CA, Agreement De	signation
1. Type of Well Oil Gi Well XXW 2. Name of Operator Pac	ell Other	es Oil Co. U.S	. A.	8. Well 9. API	Name and No. // Reno-Comm#1 Well No.	523
3. Address and Telepho P	ne No. 0. Box 3083, Midl	and, Texas 79701	(915) 684-38	61 10. Fie	ld and Pool, or Explorator	ry Area
4. Location of Well (Fr	wtage, Sec., T., R., M., or Survey	Description)		Hu	nphreys-Mil	<u>ls-Morro</u>
. 12 	00' FNL & 1200' FW c. 11, T-25-S, R-3	IL Unit D		Le	a, N. M	
12. CHEC	K APPROPRIATE BO	K(s) TO INDICATE NA	ATURE OF NOTIC	E, REPORT, OF	I OTHER DATA	
	OF SUBMISSION		ТҮРЕ С	DF ACTION		
Noti	ce of Intent sequent Report	X Ahan Recor Plugg	donment mpletion çing Back ıg Repati		Change of Plans New Construction Non Routine Fracturing Water Shut-Off	
X. Fina	d Ahandonment Notice	Alter	ing Casing r (Note: Recom	Report results of multiple pletion Report and Log fe	Conversion to Injection	pletion or
13. Describe Proposed o give subsurface	r Completed Operations (Clearly stat locations and measured and true ve	e all pertinent details, and give perti- rtical depths for all markers and z	inent dates, including estimate ones pertinent to this work.)	ad date of starting any prop *	losed work. If well is direct	nonany drined,
6/19/90 6/20/90 6/20/90 6/21/90 6/21/90 6/21/90 6/22/90	Baker Model D. Plug @ 12,5 Plug @ 8,0 Plug @ 5,1 Plug @ 3,5 Plug @ 1,2 Plug @ 4 Plug @ 50 5 26867	B. Permian PK 50' 150 SKS 90' 80 SKS 04' 75 SKS 70' 50 SKS 00' 50 SKS 65" 50 SKS nrf 10 SKS	R. @ 14,490' Cement Cement Cement Cement Cement Cement	20SKS T&G @ 1 T&G @ T&G Plug T&G Plug	1,680' @ 4,925' @ 345 JI 0 4, M 30	RECEIVED
14. I hereby certify the	it the foregoing is true and correct				······································	
Signed	+ Athing	1 itle	Engineering Te	ech	Date 7-10-90)
(This space for Fe Approved by Conditions of appr	deral or State office use)	[2] Title	999 EUKA E 6515.697 3		Date 7-17-9	10
Title 1814/50 State or representations as to applicable restored	2 a well bord. 1901. απί i a crime fell any pe Any, mello de listigarisdiction	cson knowingly and willfully to un	ake to any department or age	acy of the United States a	ny 64 . fictitions of fraud	Julent statements

~~.

1

.

· • • • • •

EXHIBIT "A" ROBERT E. LANDRETH RENO FEDERAL COM. NO. 1 1200' FNL & 1200' FWL, Sec. 11, T25S, R35E Lea County, NM

7

Spud Date: 7-20-80 Plug Date: 6-22-90

Plug Size & Depth	Existing Casing & Cement Plugs	Bit	Casing	Depth	Cement
0 sks. @ surface 0 sks. 465' to 345' (tagged)		26"	20'' 94#	415'	850 sks.
0 sks. spotted @ 1200' across top of Salt)	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
0 sks. spotted @ 3570' across base of Salt)					
5 Sks. 5104' to 4925' (tagged)		17 ¹ 2"	13-3/8" 54#-72#	5,029'	6,000 sks.
0 sks. spotted @ 8090' across DV tool)		· .			
50 sks. 12,550' to 1,680' (tagged)		12 ¹ z"	10-3/4" 51#-60.7#	12,429'	Two Stages 1838 sks. & 1585 sks.
aker Model D.B. Perm. kr @ 14,490' capped /20 sks. cmt.	Perfs: 15,246'-49' 15,260'-68' 15,390'-98'				
IBP @ 16,665' capped /17' cmt.		9½"	7-3/4" 46.1#	12,091'to 16,829'	1130 sks.
		6፟፟፟ጟ"	5'' 18#–23#	16,667'tc 19,170'	235 sks.

Plates

- Plate 1 OCD wells within the area of review
- Plate 2 Mineral leases within the area of review
- Plate 3 Water supply wells within the area of review
- Plate 4 Surface water within the area of review

EOG RESOURCES INC

FRANKLIN MOUNTAIN ENERGY 2, LLC

AMEREDEV NEW MEXICO, LLC.

FRANKLIN MOUNTAIN ENERGY 2, LLC

EOG Y RESOURCES INC EOG A RESOURCES INC EOG M RESOURCES INC

> EOG Y RESOURCES INC EOG A RESOURCES INC EOG M RESOURCES INC

ico BLM and SLO Leases within 2 Miles	Plate 2a
Solaris Water Midstream Bayside State SWD #1	June 2019

Tables

- Table 1OCD wells within the area of review
- Table 2aBLM leases within the area of review
- Table 2bState leases within the area of review
- Table 2cSurface Owner
- Table 3Produced Water Chemistry of Nearby Wells
- Table 4Available Devonian formational water quality data

API	OGRID	OGRID Name	Well Type	Status	Well Name	UL-S-T-R	Total Depth	Associated Pools
30-025-08685	214263	PRE-ONGARD WELL OPERATOR	0	Р	PRE-ONGARD WELL #001	P-11-25S-35E	5148	
30-025-20441	214263	PRE-ONGARD WELL OPERATOR	0	Р	PRE-ONGARD WELL #001	O-14-25S-35E	350	
30-025-26867	16801	PACIFIC ENTERPRISES OIL CO (USA)	G	Р	RENO COM #001	D-11-25S-35E	19170	[78875] HUMPHREYS MILL, MORROW (GAS)
30-025-27890	214263	PRE-ONGARD WELL OPERATOR	0	Р	PRE-ONGARD WELL #001	H-12-25S-35E	3700	
30-025-35322	229137	COG OPERATING LLC	0	A	OXY BANANA GIRL FEDERAL #002	K-10-25S-35E	16075	[97225] WILDCAT S253510K, STRAWN (GAS)
30-025-35408	192463	OXY USA WTP LIMITED PARTNERSHIP	G	С	OXY BANANA GIRL #003	H-09-25S-35E	0	
30-025-42520	7377	EOG RESOURCES INC	0	A	WHEATFIELD 16 STATE #701H	B-16-25S-35E	12438	[17980] DOGIE DRAW, WOLFCAMP
30-025-42787	7377	EOG RESOURCES INC	0	С	WHEATFIELD 16 STATE #702C	B-16-25S-35E	0	[17980] DOGIE DRAW, WOLFCAMP
30-025-43085	270329	ENDURANCE RESOURCES LLC	0	С	WHITE FALCON 16 STATE #002C	C-16-25S-35E	0	[97779] DOGIE DRAW, DELAWARE
30-025-43108	373908	Franklin Mountain Energy 2 LLC	0	A	PARADE BWY STATE #001H	2-02-25S-35E	8987	[98185] WC-025 G-09 S253502B, LWR BONE SPRIN; [98187] WC-025 G-09 S253502D, UPR WOLFCAMP
30-025-43117	373908	Franklin Mountain Energy 2 LLC	0	A	COUNTY FAIR BTY STATE #001H	4-02-25S-35E	12012	[98187] WC-025 G-09 S253502D, UPR WOLFCAMP
30-025-43922	373908	Franklin Mountain Energy 2 LLC	0	A	PROXY WCA STATE COM #001H	M-36-24S-35E	11954	[98187] WC-025 G-09 S253502D, UPR WOLFCAMP
30-025-43924	229137	COG OPERATING LLC	0	A	MONTERA FEDERAL #023H	N-10-25S-35E	12315	[17980] DOGIE DRAW, WOLFCAMP
30-025-43930	229137	COG OPERATING LLC	0	A	WHITE FALCON 16 FEDERAL COM #011H	C-16-25S-35E	12327	[97088] WC-025 G-08 S2535340, BONE SPRING
30-025-43931	229137	COG OPERATING LLC	0	A	WHITE FALCON 16 FEDERAL COM #021H	C-16-25S-35E	12513	[17980] DOGIE DRAW, WOLFCAMP
30-025-43932	229137	COG OPERATING LLC	0	A	WHITE FALCON 16 FEDERAL COM #022H	C-16-25S-35E	12584	[17980] DOGIE DRAW, WOLFCAMP
30-025-44224	373908	Franklin Mountain Energy 2 LLC	0	N	PARADE WCB STATE COM #001H	2-02-25S-35E	0	[98187] WC-025 G-09 S253502D, UPR WOLFCAMP
30-025-44225	373908	Franklin Mountain Energy 2 LLC	0	N	PARADE WCXY STATE COM #001H	2-02-25S-35E	0	[98187] WC-025 G-09 S253502D, UPR WOLFCAMP
30-025-44655	372043	TAP ROCK OPERATING, LLC	0	С	MAN HANDS 24S35E3427 #217C	F-34-24S-35E	0	[98098] WC-025 G-09 S243532M, WOLFBONE
30-025-45274	229137	COG OPERATING LLC	0	N	FEZ FEDERAL COM #601H	N-09-25S-35E	0	[98098] WC-025 G-09 S243532M, WOLFBONE
30-025-45275	229137	COG OPERATING LLC	0	N	FEZ FEDERAL COM #602H	N-09-25S-35E	0	[98098] WC-025 G-09 S243532M, WOLFBONE
30-025-45277	229137	COG OPERATING LLC	0	N	FEZ FEDERAL COM #701H	N-09-25S-35E	0	[98098] WC-025 G-09 S243532M, WOLFBONE
30-025-45346	371643	SOLARIS WATER MIDSTREAM, LLC	S	N	SCREECH STATE SWD #001	A-16-25S-35E	0	[97869] SWD, DEVONIAN-SILURIAN

Table 2a NM BLM Oil and Gas Leases

Serial Number	Name 1	Acres
NMNM 045706	OCCIDENTAL PERMIAN LP	1400
NMNM 101608	COG OPERATING LLC	1600
NMNM 101609	CHEVRON USA INC	1920
NMNM 120912		120
NMNM 125657	V-F PETROLEUM INC	321.72
NMNM 125658	EOG Y RESOURCES INC	640
NMNM 127447	EOG Y RESOURCES INC	2443.45

Table 2b NM SLO Oil and Gas Leases

OGRID	OGRID Name	Lease	Status	Acres
7377	EOG RESOURCES INC	VB19710001	Active	320
25575	EOG Y RESOURCES, INC.	VB19720001	Active	320
328094	FRANKLIN MOUNTAIN ENERGY 2, LLC	V092360003	Active	80
328094	FRANKLIN MOUNTAIN ENERGY 2, LLC	V092560003	Active	560
328094	FRANKLIN MOUNTAIN ENERGY 2, LLC	VB21170003	Active	321.66
328094	FRANKLIN MOUNTAIN ENERGY 2, LLC	VB21210003	Active	40
328094	FRANKLIN MOUNTAIN ENERGY 2, LLC	VB21210003	Active	281.78

UPC	Parcel Code	Name	Address 1	Address 2	City	State	Zip	Acres	Township	Range	Section
4206145262272	4000516900001	DESTINY MANAGEMENT INC	1004 N BIG SPRING	STE 220	MIDLAND	ТΧ	79701	624.803	25	35	04
4209146312215	4000516980001	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	309.94	25	35	12
4210146255186	4000517040001	DINWIDDIE CATTLE COMPANY LLC	PO BOX 963		CAPITAN	NM	88316	325.577	25	36	07
4209145398265	4000517050002	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	319.908	25	35	01
4209147266398	4000517050004	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	319.637	25	35	13
4208147400463	4000517050005	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	80.076	25	35	14
4210145267266	4000517050008	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	644.19	25	36	06
4209145134267	4000517060004	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	320.5032765	25	35	01
4208147465330	4000517060005	DINWIDDIE CATTLE COMPANY LLC		PO BOX 963	CAPITAN	NM	88316	40.04391807	25	35	14
4206146266265	4000517880002	QUAIL RANCH LLC	PO BOX 2795		RUIDOSO	NM	88355	640.856	25	35	09
4208146698465	4000518890012	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ТΧ	75104	40.026	25	35	11
4208146328113	4000518890009	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	282.102	25	35	11
4207147287155	4000518890014	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ТΧ	75104	359.955	25	35	15
4208147278949	4000518890010	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	200.246	25	35	14
4208147693400	4000518890013	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ТΧ	75104	80.07	25	35	14
4207146267463	4000518890015	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	159.928	25	35	10
4207146265199	4000518890011	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ТΧ	75104	479.903	25	35	10
4207144223310	4000518890006	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	480	24	35	34
4208144266267	4000518890007	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ТΧ	75104	640	24	35	35
4206144269263	4000518890005	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	625.052	24	35	33
4207145309161	4000518890008	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ΤХ	75104	355.874	25	35	03
4208146134267	4000518890016	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	TX	75104	160.206	25	35	11
4208146331259	4000518890009	NEW MEXICO TEN LTD	BOX 305		CEDAR HILL	ΤХ	75104	413.225	25	35	11

Table 3: Produced Water Chemistry of Nearby Wells

Raven SWD # 1

Well Name	API #	Sect. Twn.	Rng.	Unit Cty.	Formation	Sample Date	рН	TDS m/gL	Resistivity ohm_cm	Na mg/L	Ca mg/L	Fe mg/L	Mg mg/L	Mn mg/L	Cl mg/L	HCO3 mg/L	SO4 mg/L C	O2 mg/L
SALADO DRAW 6 FEDERAL #001H	3002541293	6 26S	34E	M Lea	BONE SPRING 3RD SAND	7/30/2014 0:00	6.6	99401.9	0.064	34493.3	3295	0.4	396.8	0.37	59986.5	109.8	710	70
SALADO DRAW 6 FEDERAL #001H	3002541293	6 26S	34E	M Lea	BONE SPRING 3RD SAND	8/19/2014 0:00	6.5	99612.7	0.064	34586.5	3244	10.3	417.7	0.39	59986.5	158.6	820	50
SALADO DRAW 6 FEDERAL #001H	3002541293	6 26S	34E	M Lea	BONE SPRING 3RD SAND	1/29/2014 0:00	6.7	95604		31066	3196	10	394	0.5	59071	183	0	100
SALADO DRAW 6 FEDERAL #001H	3002541293	6 26S	34E	M Lea	BONE SPRING 3RD SAND	11/24/2014 0:00	7				3289	0.3	474.5	0.38		219.6		300
SALADO DRAW 6 FEDERAL #001H	3002541293	6 26S	34E	M Lea	BONE SPRING 3RD SAND	12/11/2014 0:00	7	98321.4	0.065	33892.3	3267	9.5	534.7	0.39	59386.6	219.6	635	300
ICHABOD 7 FEDERAL #004H	3002540574	7 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	7/1/2014 0:00	6.3	232754.7		71556.2	15222.7	113.1	2609.4	4.05	140558	244	0	0
ICHABOD 7 FEDERAL #004H	3002540574	7 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	8/28/2012 0:00	7.3	204619		61053.4	13288	48	2261	2.5	124979	219.6	997	40
ICHABOD 7 FEDERAL #001H	3002540043	7 26S	34E	P Lea	AVALON UPPER	10/3/2014 0:00	8.25	1508.7	0.029	317.4	90.7	0	55.4	0	242.4	125	675	0
ICHABOD 7 FEDERAL #001H	3002540043	7 26S	34E	P Lea	AVALON UPPER	10/3/2014 0:00	5.97	220260.7	0.029	66687.9	13470	121.8	2827	3.42	134969.6	440	910	1400
ICHABOD 7 FEDERAL #001H	3002540043	7 26S	34E	P Lea	AVALON UPPER	11/24/2014 0:00	7				8614	33	1755	3.73		1403		2670
ICHABOD 7 FEDERAL #001H	3002540043	7 26S	34E	P Lea	AVALON UPPER	12/11/2014 0:00	7	225003.5	0.028	76053.3	8718	159.9	1414	3.26	136469.2	231.8	1395	900
ICHABOD 7 FEDERAL #004H	3002540574	7 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	7	229575.5	0.028	69087.1	15140	121	2391	3.91	140268.4	1202	490	850
ICHABOD 7 FEDERAL #001H	3002540043	7 26S	34E	P Lea	AVALON UPPER	4/4/2012 0:00	6.7	211246.6		71749.9	7064	68	1291	2	125645	1049.2	2840	50
RAGIN CAJUN 12 FEDERAL #002H	3002542256	12 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	7/16/2014 0:00	5.9	234275.2		66931.8	14864.3	58.2	2824.5	3.34	147046	244	36	540
RAGIN CAJUN 12 FEDERAL #001H	3002541188	12 26S	34E	O Lea	DELAWARE-BRUSHY CANYON	7/30/2014 0:00	5.8	234081.1	0.027	71944.4	14010	27	2679	2.9	143967.5	61	560	250
RAGIN CAJUN 12 FEDERAL #001H	3002541188	12 26S	34E	O Lea	DELAWARE-BRUSHY CANYON	8/19/2014 0:00	5.7	230390.5	0.028	68909	14660	37.6	3226	2.81	141968	109.8	635	450
RAGIN CAJUN 12 FEDERAL #001H	3002541188	12 26S	34E	O Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	6				12570	13.7	3244	3.51		170.8		790
RAGIN CAJUN 12 FEDERAL #001H	3002541188	12 26S	34E	O Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	6	232609.8	0.028	67144	17640	24.6	2789	3.69	143367.7	170.8	530	790
RATTLESNAKE 13 FEDERAL #002H	3002541247	13 26S	34E	B Lea	DELAWARE-BRUSHY CANYON	7/16/2014 0:00	6	227045.4		64080.1	14521.3	40.3	2543.8	3.57	143469	122	0	200
RAGIN CAJUN 13 FEDERAL #001H	3002541259	13 26S	34E	N Lea	DELAWARE-BRUSHY CANYON	7/16/2014 0:00	6.7	165212.8		45382.9	10714.8	38.4	1824.7	3.14	105060	244	18	370
RAGIN CAJUN 13 FEDERAL #002H	3002541273	13 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	7/16/2014 0:00	6.4	174604.2		49562.8	11420.3	45.7	1946.5	3.19	109315	231.8	18	380
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	7/30/2014 0:00	6.2	243517.1	0.026	73409.8	15800	18.8	2869	3.12	149966.2	48.8	560	200
RAGIN CAJUN 13 FEDERAL #001H	3002541259	13 26S	34E	N Lea	DELAWARE-BRUSHY CANYON	7/30/2014 0:00	6.2	194590.2	0.033	55244.8	15260	22.6	2592	2.88	119973	48.8	710	200
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	8/19/2014 0:00	5.8	237253.4	0.027	70270.3	16360	38.8	2889	3.2	145967.1	85.4	820	270
RAGIN CAJUN 13 FEDERAL #001H	3002541259	13 26S	34E	N Lea	DELAWARE-BRUSHY CANYON	8/19/2014 0:00	5.8	210915.4	0.03	60929	15360	24.4	2986	3.14	129970.7	85.4	820	350
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	9/19/2013 0:00	6.7	216889.9		61033	14133	57	2562	3.5	136770	146.4	603	30
RATTLESNAKE FEDERAL UNIT #006	3002537629	13 26S	34E	Lea		4/10/2007 0:00	5.1	242375.1		76077.6	12910	48	2499	2.5	148294	146	754	
RATTLESNAKE FEDERAL UNIT #006	3002537629	13 26S	34E	Lea		6/26/2014 0:00	6.1	262911.3		71964	24902.5	58.5	3835.8	8.29	159177	122	0	300
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	6/26/2014 0:00	5.8	294790.8		82865.5	25101.5	44.1	3824.7	8.14	178552	122	0	400
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	6/26/2014 0:00	6.5	243702.6		72700	17288.4	36.7	3113.4	3.64	147982	122	0	300
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	6				16550	44.6	3471	3.61		170.8		1000
RATTLESNAKE 13 FEDERAL #002H	3002541247	13 26S	34E	B Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	7				14830	18.4	3055	3.67		109.8		800
RAGIN CAJUN 13 FEDERAL #001H	3002541259	13 26S	34E	N Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	6				15880	22	3528	3.32		170.8		2720
RAGIN CAJUN 13 FEDERAL #002H	3002541273	13 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	6				16380	20.5	3296	3.57		122		1000
RATTLESNAKE 13 12 FEDERAL COM #001H	3002540912	13 26S	34E	P Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	6	237717.1	0.027	69712.7	16960	38.6	2793	3.53	145567.2	1220	490	1630
RATTLESNAKE 13 FEDERAL #002H	3002541247	13 26S	34E	B Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	6	232791.8	0.028	70589.6	15060	28.4	2458	3.37	143167.7	110	490	1220
RAGIN CAJUN 13 FEDERAL #001H	3002541259	13 26S	34E	N Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	6	196569.9	0.033	54329.2	16280	39.7	2864	3.09	121672.6	170.8	225.5	2720
RAGIN CAJUN 13 FEDERAL #002H	3002541273	13 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00	6	229426.7	0.028	69461.4	15070	28.3	2355	3.3	140968.2	146.4	600	800
RATTLESNAKE FEDERAL UNIT #006	3002537629	13 26S	34E	Lea		3/10/2009 0:00	6.5	272886.6		73385.1	23586	45	4070	7.5	168798	47	348	360
RATTLESNAKE FEDERAL UNIT #006	3002537629	13 26S	34E	Lea		4/4/2012 0:00	6	261471.6		66907.2	25146	42	4104	8.5	161186	24.4	1252	30
FIGHTING OKRA 18 FEDERAL COM #001H	3002540382	18 26S	34E	E Lea	AVALON UPPER	2/11/2015 0:00	8	201455.9	0.032	66908.6	9313	10	1603	1.6	121072.7	1024.8	940	1950
FIGHTING OKRA 18 FEDERAL COM #001H	3002540382	18 26S	34E	E Lea	AVALON UPPER	10/3/2014 0:00	7.5	163025.9	0.039	58095.8	4006	28.5	648.2	0.76	96978.1	915	2000	6
FIGHTING OKRA 18 FEDERAL COM #001H	3002540382	18 26S	34E	E Lea	AVALON UPPER	11/24/2014 0:00	7				7177	5.8	1445	1.3		976		1820
FIGHTING OKRA 18 FEDERAL COM #001H	3002540382	18 26S	34E	E Lea	AVALON UPPER	12/11/2014 0:00	7	196841.4	0.033	66599.5	7587	25.7	1213	1.25	118673.2	976	1300	1820
FIGHTING OKRA 18 FEDERAL COM #001H	3002540382	18 26S	34E	E Lea	AVALON UPPER	12/18/2014 0:00	7	196841.4	0.03	66599.5	7587	25.7	1.2	1.25	118673.2	976	1300	1820
GREEN WAVE 20 FEDERAL #001H	3002540383	20 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	8/28/2012 0:00	7.4	187609.5		56309.3	11773	57	2070	2.5	114435	134.2	1063	30
GREEN WAVE 20 FEDERAL #001H	3002540383	20 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	6/26/2014 0:00	6.5	234475		70222.2	15528.5	59.9	2566	3.5	143361	244	475	400
GREEN WAVE 20 FEDERAL #001H	3002540383	20 265	34E	M Lea	DELAWARE-BRUSHY CANYON	6/26/2014 0:00	6.5	234361.8		70222.2	15528.5	59.9	2566	3.54	143361	244	0	400
GREEN WAVE 20 FEDERAL #001H	3002540383	20 26S	34E	M Lea	DELAWARE-BRUSHY CANYON	11/24/2014 0:00	7				14710	38.6	2900	3.55		231.8		3000

Table 3: Produced Water Chemistry of Nearby Wells

Well Name	API #	Sect.	Twn.	Rng.	Unit	Cty.	Formation	Sample Date	рН	TDS m/gL	Resistivity ohm_cm	Na mg/L	Ca mg/L	Fe mg/L	Mg mg/L	Mn mg/L	Cl mg/L	HCO3 mg/L	SO4 mg/L	CO2 mg/L
GREEN WAVE 20 FEDERAL #001H	3002540383	20	26S	34E	М	Lea	DELAWARE-BRUSHY CANYON	12/11/2014 0:00		5 231803.9	0.028	70990.1	14540	94.2	2259	3.48	142367.9	219.6	425	3000
MEAN GREEN 22 FEDERAL #001H	3002541434	22	26S	34E	Р	Lea	DELAWARE-BRUSHY CANYON	2/11/2015 0:00	7.	5 179090	0.036	54833.4	11980	16.2	2048	3.12	108375.6	231.8	880	950
MEAN GREEN 27 FEDERAL #001	3002541433	22	26S	34E	Р	Lea		4/11/2014 0:00	6.	1 195378.7		56260.8	14430.4	43.9	2399.9	4	119789	122	0	300
MEAN GREEN 23 FEDERAL #001H	3002541292	23	26S	34E	Р	Lea	DELAWARE-BRUSHY CANYON	2/11/2015 0:00	7.	5 172606.4	0.037	56152.9	9156	24.6	1515	3.5	104576.4	183	675	1800
MEAN GREEN 26 FEDERAL #001H	3002541246	26	26S	34E	А	Lea	DELAWARE-BRUSHY CANYON	2/11/2015 0:00		8 189333.4	0.034	63479.7	8597	17.9	1409	2.89	114774.1	134.2	635	730
ARENA ROJA FEDERAL UNIT #005	3002538683	27	26S	35E	С	Lea		10/23/2008 0:00	6.9	5 53385.9		20219.9	117	24	154	1	31456	643	432	
ARENA ROJA FEDERAL UNIT #001	3002537257	27	26S	35E	J	Lea		9/29/2010 0:00	6.	2 36294.5		12733.6	905	17	152	0.4	21532	390	262	70
MIRO 35 FEDERAL #001	3002534897	35	26S	35E	D	Lea		7/22/2010 0:00	7.	4 94061.4		32889.3	2524	57	466	3	55859	183	1533	200

) # 1

Medianic Medianic		iu,	on anime	istindo nudo	Section for	ranship ranse	uni	li ^{tens}	ficon.	timo 250	and the second	lield	S. Marine	tido.	anne, acho	outron .	March March	olegale,	Pacific Ph	ide mp F	virin ohn cn	Conductivity	Sodium For F	alcium net secon net secon	Control Martin Mart	sultace ngt
							/	/						/					2. Sec.	, ²			· /			
MCKITTRICK FED #1	3001500135	/ 32.3651619	-104.3481293	25 22	25 25E	G 16	50N 2	2310E		IM	(DEVONIAN	í í	<u> </u>	DST	í –	(f	162	00	2/	f	<u> </u>	/ / 8762	290 117	/
MCKITTRICK FED #1	3001500135	32.3651619	-104.3481293	25 22	2S 25E	G 16	50N 2	2310E	EDDY I	M		DEVONIAN			DST				17	10				9389	664 98	32
CARNERO PEAK UT #001	3001510053	32.3534012	-104.4281158	31 22	2S 25E	A 66	0N 6	560E	EDDY I	M		DEVONIAN			DST				140	01				7236	515 148	\$7
CARNERO PEAK UT #001	3001510053	32.3534012	-104.4281158	31 22	2S 25E	A 66	ON 6	560E	EDDY I	M		DEVONIAN			DST				15	80				8126	336 146	57
CARNERO PEAK UT #001	3001510053	32.3534012	-104.4281158	31 22	2S 25E	A 66	ON 6	560E	EDDY I	M		DEVONIAN			DST				15	80				7853	487 148	<i>i</i> 8
BANDANA POINT UT #001	3001500044	32.2986107	-104.5515823	13 23	3S 23E	0 75	OS 1	1900E	EDDY I	IM	BANDANA POINT	DEVONIAN			DST				15	00				8020	500 119	0
TORTOISE ASB COM #001	3001510490	32.2766914	-104.5190887	29 2:	3S 24E	G 19	80N 2	2250E				DEVONIAN			DST				1/3	61				7760	490 310	0
REMUDA BASIN UNIT #001	3001510490	32.2700914	-104.5190887	29 23	35 24E 35 29E	I 19	80N 2	2250E			REMUDA	DEVONIAN			SWAB				150	82				37500	610 170	10
REMUDA BASIN UNIT #001	3001503691	32.2886238	-103.9360428	24 23	3S 29E	J 19	80S 1	1980E		M	REMUDA	DEVONIAN			SWAB				569	22				29000	1740 498	30
BELL LAKE UNIT #006	3002508483	32.3282585	-103.507103	6 23	3S 34E	0 66	OS 1	L980E	LEA I	M	BELL LAKE NORT	H DEVONIAN			HEATER TREATER			7	710	78				42200	500 100	00
ANTELOPE RIDGE UNIT #003	3002521082	32.2593155	-103.4610748	34 23	3S 34E	К 19	80S 1	L650W	LEA I	M	ANTELOPE RIDGE	DEVONIAN			UNKNOWN		11/14/1967 0:00	0 6.9	803	87				47900	476 90	00
ANTELOPE RIDGE UNIT #003	3002521082	32.2593155	-103.4610748	34 23	3S 34E	К 19	80S 1	L650W	LEA I	M	ANTELOPE RIDGE	DEVONIAN			UNKNOWN		11/14/1967 0:00	6.9	80:	87				47900	476 90	0
CLINE FEDERAL #001	3002510717	32.3025551	-103.1358261	. 14 23	3S 37E	K 19	80S 1	1980W	LEA I	M	CLINE	DEVONIAN			PRODUCTION TEST	PRODUCED			1189	79				71280	462 259	13
E C HILL B FEDERAL #001	3002510945	32.2658463	-103.1443634	34 23	3S 37E	A 81	ON 6	560E	LEA I	IM	TEAGUE	DEVONIAN			UNKNOWN				1129	59				67390	288 276	,5
E C HILL D FEDERAL #001	3002510947	32.2622147	-103.1443634	34 2:	3S 37E	H 21	31N 6	560E	LEA I		TEAGUE	DEVONIAN			UNKNOWN				350	39				147000	120 70	24
E C HILL D FEDERAL #004	3002510950	32.2053503	-103.1443634	34 2:	35 37E	A 99					TEAGUE	DEVONIAN							236.	10				147000	246 202	20
IURNEGAN POINT #001	3001500020	32.2043953	-104.0913207	5 24	43 22E 45 25E	F 20	05 6	560W		IM	WILDCAT	DEVONIAN			DST		12/14/1964 0:00	1 7	229	06				136964	198 251	11
JURNEGAN POINT #001	3001510280	32.2405243	-104.423912	5 24	4S 25E	M 66	05 6	560W		M	WILDCAT	DEVONIAN			DST		12/14/1964 0:00	, , ,	203	00				121100	175 222	20
WHITE CITY PENN GAS COM UNIT 1 #001	3001500408	32.1937523	-104.3088455	29 24	4S 26E	A 66	ON 6	560E	EDDY I	M		DEVONIAN	MH0	0408	152 DST		3/1/1960 0:00) 7 :	.012 60	0.36	75 2559	6 64 60	072 1002	132 10120	653 133	36
STATE B COM #001	3002509716	32.1794052	-103.2212524	36 24	4S 36E	C 60	ON 1	L880W	LEA I	M	CUSTER	DEVONIAN			UNKNOWN				176	34				107400	128 100)4
ELLIOTT H FEDERAL #001	3002512272	32.1756325	-103.0931931	. 31 24	4S 38E	H 19	80N 6	560E	LEA I	M	DOLLARHIDE	DEVONIAN			WELLHEAD				580	87						
ELLIOTT H FEDERAL #001	3002512272	32.1756325	-103.0931931	. 31 24	4S 38E	H 19	80N 6	560E	LEA I	M	DOLLARHIDE	DEVONIAN			WELLHEAD				570	18						
WEST DOLLARHIDE DEVONIAN UNIT #104	3002512297	32.1720123	-103.0761032	32 24	4S 38E	I 19	80S 6	560E	LEA I	M	DOLLARHIDE	DEVONIAN			WELLHEAD				508	58				30200	183 98	0
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226	125	5S 37E	E 19	80N 3	330W	LEA I	IM	JUSTIS NORTH	FUSSELMAN			DST		6/17/1961 0:00	0 6	808	80				46200	340 305	<u>,0</u>
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226		55 37E	E 19	80N 3	330W				FUSSELMAN			DST				849	00				48600	270 205	0
WESTATES FEDERAL #004	3002511389	32.101129	-103.1241220	1 23	55 37E	F 19	80N 3	3000			ILISTIS NORTH	FUSSELMAN			DST				80	00				41000	3/0 290	50
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226	125	55 37E	E 19	80N 3	330W	LEA	M	JUSTIS NORTH	FUSSELMAN			DST				770	00				44000	550 324	10
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226	1 25	5S 37E	E 19	80N 3	330W	LEA I	M	JUSTIS NORTH	FUSSELMAN			DST				1350	00				77000	650 581	10
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226	i 125	5S 37E	E 19	80N 3	330W	LEA I	M	JUSTIS NORTH	FUSSELMAN			DST				1140	00				65000	280 511	10
WESTATES FEDERAL #004	3002511389	32.161129	-103.1241226	1 25	5S 37E	E 19	80N 3	330W	LEA I	M	JUSTIS NORTH	FUSSELMAN			DST				1350	00				77000	500 532	20
WESTATES FEDERAL #008	3002511393	32.1621208	-103.1241226	1 25	5S 37E	E 16	20N 3	330W	LEA I	M	JUSTIS NORTH	FUSSELMAN			UNKNOWN				910	58				51020	376 478	<i>i</i> 3
WESTATES FEDERAL #008	3002511393	32.1621208	-103.1241226	125	5S 37E	E 16	20N 3	330W	LEA I	MM	JUSTIS NORTH	FUSSELMAN			UNKNOWN			+	868	47		+		50450	363 254	.4
	3002511398	32.1647491	-103.1273346	2 25	55 37E	A 66	3N 6	000E			JUSTIS NORTH	DEVONIAN						+	1053	50		+ $+$		59300	660 495	0
HALF STATE #003	3002511407	32.15/99/1	-103.1202430	22:	55 37E	H 16	50N	330E	FA I	IM		MONTOYA			WELLHEAD				6/0	16				45500	813 250	0
SOUTH JUSTIS UNIT #016F	3002511556	32.1312065	-103.1187744	13 24	55 37E	F 23	10N 1	1980W	EA	M	JUSTIS	FUSSFIMAN			UNKNOWN			+	57	75				34030	595 121	<u> </u>
LEARCY MCBUFFINGTON #008	3002511569	32.1239548	-103.118782	13 25	5S 37E	N 33	OS 1	1980W	LEA I	M	203MNTY, 259FS	LM FUSSELMAN	7052 MN1	1569			1/2/1900 0:00	7.6	.037 78 679	09	8142	9 67	2603	684 38887	742 248	39
LEARCY MCBUFFINGTON #008	3002511569	32.1239548	-103.118782	13 25	5S 37E	N 33	OS 1	L980W	LEA I	M	JUSTIS	MONTOYA			UNKNOWN				675	98				38880	742 248	39
A B COATES C FEDERAL #014	3002511736	32.118515	-103.1156082	24 25	5S 37E	G 16	50N 2	2310E	LEA I	M	JUSTIS	MONTOYA			UNKNOWN				392	61				22840	871 103	10
SOUTH JUSTIS UNIT #023C	3002511760	32.1067276	-103.1184616	25 25	5S 37E	C 66	0N 2	2080W	LEA I	M	JUSTIS	FUSSELMAN			SEPARATOR				638	17				35870	360 344	42
CARLSON A #002	3002511764	32.1003838	-103.1113434	25 25	5S 37E	I 23	10S 9	990E	LEA I	M	JUSTIS	FUSSELMAN			DST				2082	80				124000	510 340	0
STATE Y #009	3002511777	32.1058197	-103.1113434	25 25	5S 37E	A 99	ON S	990E	LEA I	M	JUSTIS	FUSSELMAN			DST		3/17/1961 0:00	7.3	219	70				129000	960 463	0
STATE Y #009	3002511777	32.1058197	-103.1113434	25 25	55 37E	A 99		990E	LEA I			FUSSELMAN	+ $+$ $-$				3/18/1961 0:00	5.8	1634	30		+ $+$		96000	290 378	<u>.0</u>
	3002511/84	32.096/56	-103.1113434	25 25	55 37E	P 99		190E				FUSSELMAN						+	1840	3U 06		+ $+$		112900	1080 10	·0 70
ARNOTT RAMSAY NCT-R #003	3002511818	32.0994835	-103.1050/23	28 25	55 37E	J 19		560E		MIM	CROSBY		8797 MINI1	1863	UNKNOWN		1/2/1900 0.00		142 70	00		+ $+$	172/1	5345 100292	476	5
ARNOTT RAMSAY NCT-B #003	3002511863	32.0922279	-103.1784439	32 23	55 37E	A 66	ON F	560E	EA	M	CROSBY	DEVONIAN	0757 101111	1303	UNKNOWN		1/2/1500 0.00		158	61		+ $+$	1/244	3343 100382	-70	┥ ┃
WEST DOLLARHIDE DEVONIAN UNIT #110	3002512386	32.1647377	-103.0797195	5 25	5S 38E	B 66	6N 1	L780E	LEA I	M	DOLLARHIDE	DEVONIAN			UNKNOWN				56	76						- I
FARNSWORTH FEDERAL #006	3002511950	32.0777245	-103.162468	4 26	6S 37E	A 66	0N 9	990E	EA I	M	CROSBY	DEVONIAN			UNKNOWN				319	31				20450	302 59	11
					_																					

OSE Well Logs

Revised June 1972

STATE ENGINEER OFFICE

WELL RECORD

御護御 御 가려 가지 가지 않는 것이다.		四日竹		
------------------------	--	-----	--	--

Section 1. GENERAL INFORMATION

A) Owner o Street or City and	f well Flori Post Office Ac StateN	ida Oil a ^{Idress} 900 Iidland,	nd Gas Vaughn Texas	Co. Bldg. 79701		0 [.]	wner's We	ll No.Reno	<u>Comm.</u> #
Vell was drille	d under Permit	No. CI	-624		_ and is located	in the:			
a. <u>SE</u>	¼NW ¼	4 <u>NW</u> 4	¼ of Sec	tion <u>11</u>	Township	255	Range	35E	_N.M.P.M.
b. Tract	No	of Map No.		of the					
c. Lot N Subdi	lo ivision, recorde	of Block No d in I	ea	of the	ounty.				
d. X= the	. <u> </u>	_ feet, Y=		feet, N.	M. Coordinate	System			Zone in Grant.
P) Drilling	Contractor	Abbott Br	'05 .			License No		WD-46	
ddress	P.O. Box	637, Hot	bs, Nev	v Mexico	88240	Electrise (40			
)rilling Began	7/14/80	<u>)</u> Comp	leted 7/	/17/80	_ Type tools	Cable	S	ize of hole	8in.
levation of la	nd surface or _			at wel	l is	ft. Total de	pth of we	<u>11 510</u>	ft.
ompleted we	ll is 🛣 si	hallow 🗆 ai	tesian.		Depth to water	upon comple	tion of we	IL DRY HO	D LE ft.
		Sect	ion 2. PRIN	CIPAL WATER	R-BEARING ST	TRATA			
Depth From	in Feet To	Thickness in Feet	I	Description of V	Water-Bearing F	formation	(Estimated Y gallons per m	ield inute)
				RY HOLE					
			Section	1 3. RECORD	OF CASING				
Diameter (inches)	Pounds per foot	Threads	Depth	in Feet	Length (feet)	Type of	Shoe	Perfora	itions
(1)1044037	P.11000	P ** 1111	roh	Bottom		<u> </u>		1.1011	

Section 4. RECORD OF MUDDING AND CEMENTING

Depth i	in Feet	Hole	Sacks	Cubic Feet	Method of Placement
From	Τo	Diameter	of Mud	of Cement	Method of Flacement
ľ					
				ì	

Section 5. PLUGGING RECORD

Plugging Contractor Abbott Bros.					
Address P.O. Box 637, Hobbs, New Mexico		Depth in Feet		Cubic Feet	
Plugging Method Ruble, cement plug at top, covered	INO,	Тор	Bottom	of Cement	
Date Well Plugged 7/17/80 w/dirt.	1				
Plugging approved by:	2				
	3				
State Engineer Representative	4			·	

FOR USE OF STATE ENGINEER ONLY

Date Received July 23, 1980

File No. CP-624

2 2

Quad __

_ FWL ____

_____ FSL_

...)

Use <u>OWD</u> Location No. 25.35.11.11444

Section	6.	LOG	OF	HOI	LΕ
---------	----	-----	----	-----	----

1

 Denth	in Feet	Thickness	Section 6, LOG OF HOLE
From	То	in Feet	Color and Type of Material Encountered
0	110	110	Fine sand
110	190	80	Red clay
190	210	20	Blue clay
210	510 [°]	300	Red clay
		•	
			DRY HOLE
<u></u>			
<u>++++++++++++++++++++++++++++++++</u>			
	<u> </u>	·	
·_···			
		· · · · · · · · · · · · · · · · · · ·	
<u> </u>			
		العلم المعلم المعلم معلم المعلم ا	7. REMARKS AND ADDITIONAL INFORMATION
	C	CONTECTION DE LA CONTEC	·
	egetina " erange" energe		
	\sim		
		R S S S S S	
	ì	i	· ·

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Murrell Abbott Driller 2.B

INSTRUCTIONS: This form should be eventued in triplicate, preferably typewritten, and multimitted to for appropriate district office of the State Engineer. A. tions, e: Section 5, shall be answered as completely accurate possible when any well is drilled, repaired or deepen then this form is used as a plugging record, only Section 1(a) and Section. Spineed be completed.

XIII. Applicants must complete the "Proof of Notice" section on the reverse side of this form.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

June 25, 2019

Hobbs News Sun 201 N. Thorp P.O. Box 850 Hobbs, N.M. 88240

LEGAL NOTICE

LEGAL NOTICE

Solaris Water Midstream, LLC, 907 Tradewinds Blvd., Suite B, Midland, TX 79706 filed Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Bayside SWD No. 1 will be located 282 feet from the South line and 225 feet from the West line, Section 2, Township 25 South, Range 35 East, Lea County, New Mexico. Produced water from area production will be commercially disposed into the Devonian and Fusselman formations at a depth of 17,430 feet to 19,230 feet at a maximum surface pressure of 3,486 psi and an average injection rate of 30,000 barrels per day. The proposed SWD well is located approximately 9 miles northeast of Jal, New Mexico.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, NM 87505 (505) 476-3460 within 15 days of the date of this notice.

Additional information can be obtained by contacting Mr. Randall Hicks, agent for Solaris Water Midstream, at 505-238-9515.

Sincerely, R.T. Hicks Consultants

Randall Hicks Principal

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

June 27, 2019

NOTIFICATION TO INTERESTED PARTIES Via U.S. Certified Mail – Return Receipt Requested

To Whom It May Concern:

Solaris Water Midstream, LLC, Midland, Texas, has made application to the New Mexico Oil Conservation Division to drill and complete, for salt water disposal, the Bayside SWD No. 1. The proposed commercial operation will be for produced water disposal from area operators. As indicated in the notice below, the well is located in Section 2, Township 25 South, Range 35 East in Lea County, New Mexico.

The published notice states that the interval will be from 17,430 feet to 19,230 feet into the Devonian and Fusselman Formations.

Following is the notice published in the Hobbs News Sun, Hobbs, New Mexico on or about June 29, 2019.

LEGAL NOTICE

Solaris Water Midstream, LLC, 907 Tradewinds Blvd., Suite B, Midland, TX 79706 filed Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Bayside SWD No. 1 will be located 282 feet from the South line and 225 feet from the West line, Section 2, Township 25 South, Range 35 East, Lea County, New Mexico. Produced water from area production will be commercially disposed into the Devonian and Fusselman formations at a depth of 17,430 feet to 19,230 feet at a maximum surface pressure of 3,486 psi and an average injection rate of 30,000 barrels per day. The proposed SWD well is located approximately 9 miles northeast of Jal, New Mexico.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, NM 87505 (505) 476-3460 within 15 days of the date of this notice.

You have been identified as a party who may be interested as an offset lessee or operator.

Thank you for your attention in this matter.

Sincerely, R.T. Hicks Consultants

Randall Hicks Principal

34	CERTIF Domestic Ma	IED MAIL® REC	EIPT
19	For delivery int	ormation, visit our website a	at www.usps.com®.
105	Certified Mail Fee	FICIAL	USE
40 0000 J	Extra Services & Fees Return Receipt (hard; Return Receipt (elect) Certified Mail Restrict Adult Signature Requi Adult Signature Restric Postage	(check box, add fee as appropriate) sorpy) and Delivery and Delivery ted Delivery ted Delivery ted Delivery	Postmark Here
1	Total Postage	TAP ROCK OPERAT	ING, LLC
5	Sent To	602 Park Paint of	SWD #1
	Street and Apt.	Suite 200	
~		Goldon CO as	

•

.

* *

- 1

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

June 27, 2019

Mr. Phillip Goetze, P.G. New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Solaris Water Midstream LLC, Bayside State SWD#1 UL M, Section 2 T25S R35E, Lea County

Dear Mr. Goetze:

On behalf of AWR Disposal LLC, R.T. Hicks Consultants is providing data and an opinion regarding the probability that injection of wastewater in the above referenced well at the proposed rates will cause seismic events of sufficient magnitude to create damage. It is our understanding that OCD is interested in such an opinion as part of the SWD approval process. We elected to provide this opinion as a separate submission as the C-108 does not specifically require such an opinion.

We relied upon the following data to develop our opinion

- State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity, Jens-Erik Lund Snee and Mark D. Zoback, The Leading Edge, February 2018¹
- Plate 5, which is reproduced from the Snee and Zoback publication, which uses the following references
 - Crone, A. J., and R. L. Wheeler, 2000, Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front; U.S. Geological Survey Open-File Report.
 - Ewing, T. E., R. T. Budnik, J. T. Ames, and D. M. Ridner, 1990, Tectonic map of Texas: Bureau of Economic Geology, University of Texas at Austin.
 - Green, G. N., and G. E. Jones, 1997, e digital geologic map of New Mexico in ARC/INFO format: U.S. Geological Survey Open-File Report.
 - Ruppel, S. C., R. H. Jones, C. L. Breton, and J. A. Kane, 2005, Preparation of maps depicting geothermal gradient and Precambrian structure in the Permian Basin: USGS Order no. 04CRSA0834 and Requisition no. 04CRPR01474.
 - NMOCD database of oil and gas wells
- Plate 5, which shows the distribution of active and new SWD wells in the area of the proposed AWR Disposal SWD well
- Stratigraphic and lithologic information from two deep wells in the Delaware Basin
- Data on the thickness and lithology of the Simpson Group from the Texas Bureau of Economic Geology²

¹ https://scits.stanford.edu/sites/default/files/3702 tss lundsnee v2.pdf

² <u>http://www.beg.utexas.edu/resprog/permianbasin/PBGSP_members/writ_synth/Simpson.pdf</u>

June 24, 2019 Page 2

Plate 5 reproduces Figure 3 of the 2018 publication of Snee and Zoback and shows

- 1. Fault traces based upon the references provided above for which Dr. Snee and Dr. Zoback provide a value of the fault slip potential (FSP)
- 2. Areas of documented seismic activity, and a magnitude 2.0-2.9 earthquake that occurred between 1970-2004 about 6miles west of the proposed Bayside State SWD #1. A slightly larger magnitude and more recent seismic event is reported about 10 miles east of the Bayside State SWD #1 well location.
- 3. Although Plate 5 does not show faults that may be identified in confidential seismic data owned by oil and gas operators, the closest mapped basement fault that was re-activated during Woodford time is about 6 miles to the west) exhibits a low FSP (less than 5%) based upon the modeling and analysis of Snee and Zoback referenced above
- 4. Other mapped faults in southern Lea County shown on Plate 5 also show a low FSP, except for part of southwest-northeast trending fault about 32 miles north-northwest of the Bayside State SWD #1 well that has a FSP of about 25 - 33% in the central portion of this fault trace.

Plate 6 reproduces the major elements of Plate 5 in the inset map and also shows that within an 6-mile radius around the proposed Bayside State SWD #1, the OCD database shows about 2 active and 4 new Devonian SWDs, which translates into an average density of about one SWD for every 18 square miles.

Figure 4 from the referenced Bureau of Economic Geology (The Middle-Upper Ordovician Simpson Group of the Permian Basin: Deposition, Diagenesis, And Reservoir Development) is

attached to this letter and the portion of that figure for the Delaware Basin is shown to the right. In southern Lea County the mapped thickness appears to be 500-1500 feet thick (note one contour line appears to be missing on the map). This unit, which is clay-rich carbonate interbedded with shale and sandstone. provides an excellent permeability/pressure barrier between the injection zone and the basement faults that were re-activated during Woodford time.

Data from the Amoco Federal CW Com 1 (3002528119) show that the thickness of the Simpson in the Antelope Ridge area of Lea County (Section 3 24S 34E) is about 450 feet thick with. This is consistent with Figure 4 of the BEG paper (probably because this well was used to produce the isopach map).

CI = 100 ft in Oklahoma CI = 250 ft in Texas/New Mexico

confidential seismic data that AWR Disposal does not possess) near the Bayside State SWD #1 would be dominantly north-south normal faults, as is common in Lea County. The data on Plate

June 24, 2019 Page 3

6 permit a conclusion that faults near the Bayside State SWD #1 are also most likely to exhibit a low FSP, like the mapped faults shown on Plate 5.

Given the density of Devonian SWDs (planned/new and active) near the proposed Bayside State SWD #1 well and the high likelihood that any unmapped faults in the area would exhibit a low FSP, the probability that injection into the Bayside State State SWD #1 would cause an increase in pore pressure to trigger a seismic event of sufficient magnitude to cause damage is very low.

The users of this letter should recognize the uncertainties of using seismic maps of the Permian Basin to determine probability that injection of wastewater into a single SWD well could cause seismic events of sufficient magnitude to cause damage. However, on a regional basis injection by numerous wells into the Devonian/Fusselman/Montoya interval will raise the hydrostatic pressure. If pressure increases sufficiently, fluid could migrate from the injection zone along fault planes, up and down. Downward fluid migration will be intercepted first by the sandstone units of the Simpson Group. After fluid pressure increases in these sandstones, fluid would migrate downward into the Ellenberger Formation, which lies beneath the Simpson Group. This downward migration will next enter the permeable units of the Ellenberger and, over time, increase the fluid pressure. After fluid pressure in the Ellenberger is sufficiently large to cause downward migration along fault planes or other conduits, the migrating fluid will, in some areas, enter a thinner horizon of granite wash. Downward migrating fluids from the injection zone could then enter basement fault planes if the pressure in the granite wash horizon is sufficient, and reduce the frictional resistance (lubricate the faults). Reduction in the frictional force in faults due to fluid invasion can and has caused seismic events. In my opinion, the probability that injection into the Bayside State SWD will measurably contribute to the events described above and will cause a seismic event resulting in damage is so low as to be nil.

Sincerely, R.T. Hicks Consultants

Randall T. Hicks Principal

Copy: AWR Disposal LLC

Figure 4. Thickness map of Simpson Group modified from Texas Water Development Board (1972), Frenzel and others (1988), and Northcutt and Johnson (1997). Thousand-foot contour lines and locations of figure 5 cross sections shown in heavy red and blue lines, respectively. Note that contour interval is 100 ft for Oklahoma and 250 ft for Texas and New Mexico.

Seismicity: o Mw 2.0-2.9 O Since 2005 O Mw 3.0-3.9 O 1970-2004 O Mw 4.0+ Fault slip potential (%): 10 20 30 40 50+ 0

Seismic and Fault Slip Potential-Ewing et al. (1990), Green and Jones (1997), Ruppel et al. (2005), and the USGS Quaternary Faults and Folds Database (Crone and Wheeler, 2000).

M:\Solaris\SWD\Bayside\arcGISproBayside\arcGISproBayside.aprx

