Initial

Application Part I

Received 4/26/21

This application is placed in file for record. It MAY or MAY NOT have been reviewed to be determined Administratively Complete

ORJN	MY-21010)5-C-1080			101300 1101 25, 2017
RECEIVED:	4/26/21	REVIEWER:	TYPE: SWD	APP NO: pBL2	2121740106
	1:	NEW MEXICO OIL - Geological & El 220 South St. Francis D	CONSERVATION ngineering Bure prive, Santa Fe, N	DIVISION au – MM 87505	
		ADMINISTRATIVE	APPLICATION CH	HECKLIST	
	THIS CHECKLIST F	IS MANDATORY FOR ALL ADMINIS REGULATIONS WHICH REQUIRE PRO	RATIVE APPLICATIONS FC CESSING AT THE DIVISION	OR EXCEPTIONS TO DIV LEVEL IN SANTA FE	ISION RULES AND
Applicant	Legacy Reserves L	Р		OGRID N	umber:
Well Name	E Lea Unit #10D			API: 30-025-	20506
Pool: Propos	ed: Lea: Devonian			Pool Cod	e: 37590
SUBMIT A 1) TYPE O A. Lo B. C [1	F APPLICATIO cation – Spac DNSL heck one only Comminglin DHC I] Injection –	D COMPLETE INFORMAT INDIC N: Check those which c cing Unit – Simultaneous NSP (project AREA) y for [1] or [11] ng – Storage – Measurer CTB PLC Disposal – Pressure Incree	ION REQUIRED TO CATED BELOW Upply for [A] Dedication NSP(proration PC DLS [ease - Enhanced		SWD-2443
2) NOTIFIC A. B. C. D. E. F. G. H.	CATION REQU Offset opera Royalty, ove Application Notification Notification Surface own For all of the No notice re	IRED TO: Check those w tors or lease holders rriding royalty owners, re requires published notic and/or concurrent app and/or concurrent app ler above, proof of notifice quired	rhich apply. evenue owners e roval by SLO roval by BLM ation or publicatio	on is attached,	FOR OCD ONLY Notice Complete Application Content Complete

3) **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Matthew Dickson

Print or Type Name

12/16/2020 Date

(432) 212-5698

Phone Number

mdickson@legacyreserves.com e-mail Address

APPLICATION FOR AUTHORIZATION TO INJECT

	AT LICENTON FOR AUTHORIZATION TO INDET
I.	PURPOSE: Secondary Recovery Pressure Maintenance XDisposal Storage Application qualifies for administrative approval? XYes No
II.	OPERATOR:Legacy Reserves LP
	ADDRESS:303 W. Wall Street, Suite 1800, Midland, Texas 79701
	CONTACT PARTY:Randall Hicks (agent)PHONE: _202 266 5004
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? YesYesNo If yes, give the Division order number authorizing the project:No
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: Matthew Dickson TITLE:

E-MAIL ADDRESS: ____mdickson@legacyreserves.com_

SIGNATURE:

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

_DATE: _Dec. 16, 2020____

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

 ft^3 ft3 ft^3 RANGE 34E Method Determined: Method Determined: WELL CONSTRUCTION DATA Method Determined: (Perforated or Open Hole; indicate which) TOWNSHIP Casing Size: Casing Size: Casing Size: 20S Intermediate Casing **Production Casing** Injection Interval Surface Casing or or or feet to SX. SX. SX. SECTION 13 See Attachments INJECTION WELL DATA SHEET Cemented with: Cemented with: Top of Cement: Cemented with: Top of Cement: Top of Cement: Hole Size: Total Depth: Hole Size: UNIT LETTER Hole Size: Г WELL NAME & NUMBER: ____Lea Unit #10 SWD_ WELL LOCATION: ____1980' FNL & 1980' FWL FOOTAGE LOCATION WELLBORE SCHEMATIC Legacy Reserves LP OPERATOR:

Side 1

SHEET
ATA
D
Ţ
VEL
5
5
CTI
NJE
4

Side 2

III. WELL DATA

A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include

1. Lease name; Well No.; Location by Section, Township and Range; and footage location within the section

Lease Name: Lea Unit #10 Unit Letter F, Section 13, T20S R34E, 1,980 FNL, 1,980 FWL

Kenneth Smith, Inc. owns the surface upon which the SWD is located

2. Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined

The attached Wellbore Data Sheet provides all of the design specifics required and a tabulation of these data are shown on the diagram. The well was originally drilled in 1963. Well boring diagrams are provided showings both its current status and with modifications to convert it to an SWD.

The formation tops for the Lea Unit #10 SWD were established during the drilling of the well and were provided by Geologist Mark McGraw.

3. A description of the tubing to be used including its size, lining material, and setting depth

3-1/2" internal plastic coated tubing with setting depth of 14,308'.

4. The name, model, and setting depth of the packer used or a description of any other seal system or assembly used

An Arrowset 1-X Nickel Coated Injection Packer will be set at 14,280'.

B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well.

Lea Unit #10 Sec13 Twp 20S Rge 34E						
	GL	3654				
Geologist	КВ	3677				
Mark McGraw						
	MD	SS				
Rustler	1703	1974				
Salt	2059	1618				
Salt Base	3299	378				
Yates	3494	183				
Seven Rivers	3626	51				
Capitan Reef	3900	-223				
Delaware	5198	-1521				
Bell Canyon	5539	-1862				
Cherry Canyon	6508	-2831				
Brushy Canyon	7115	-3438				
Bone Spring	8241	-4564				
Avalon	8818	-5141				
1st Bone Spring	9486	-5809				
2nd Bone Spring	10044	-6367				
3rd Bone Spring	10763	-7086				
Wolfcamp	11024	-7347				
Strawn	11993	-8316				
Atoka	12279	-8602				
Morrow	12663	-8986				
Mississippian	13506	-9829				
Woodford	14098	-10421				
Devonian	14278	-10601				

Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.

(1) The name of the injection formation and, if applicable, the field or pool name

The proposed injection interval is the Devonian formation in an open-hole interval.

(2) The injection interval and whether it is perforated or open-hole.

The depth interval of the open-hole injection is 14,308-14,438 (130 feet).

(3) State if the well was drilled for injection or, if not, the original purpose of the well.

The well was originally drilled for oil production.

(4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations

The Bone Spring perforated intervals are: 9519'-9.606'; 9,625'-9,657'; 10,181'-10,186'; and 10,192-10,212. They will be Isolated and squeezed off in the redevelopment of the well. This will be done in two stages using 100 sacks of cement for each stage.

The Pennsylvanian perforated intervals are: 12,880'-12,897'; 12,908'-12,913'; and 13,100'-13,114'. They were squeezed off in August 1974. 80 sacks of Class"H" cement with 0.8% Halad 9 were used in the interval. W.O.C. was for 24 hours with the perfs then tested for 30 minutes at 3,000 psi successfully. The cement was drilled through the interval of 12,749 – 13,119'. An earlier Marathon Oil Company well boring diagram and the Sundry Notice for the squeeze of the Pennsylvanian perforated intervals are included as OCD attachments.

(5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

Overlying Oil & Gas Zone (Using KB of 3627'):

Brushy	7115
Canyon	
Avalon	8818
1st Bone	9486
Spring	20. V
2nd Bone	10044
Spring	
3rd Bone	10763
Spring	
Wolfcamp	11024
Morrow	12663

Underlying Oil & Gas Zones:

There are no underlying oil and gas zones.

IV. Is this an expansion of an existing project No.

V. Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review

Plate 1a identifies all OCD listed wells and API numbers and shows circles with radii of 0.5 (2640'), 1.0 (5280'), and 2.0 miles (10,560'). Note that where numerous wells are closely spaced, the API number may not be labeled for clarity. New wells, active wells, plugged wells, and canceled wells have color-coded symbols. Plate 1b shows only new and active wells and circles with radii of 0.5 (2640') and 1.0 miles (5280').

Plate 2 identifies the leases within a 1-mile radius of the proposed SWD as well as leases within the 0.5-mile radius area of review.

- Plate 2a presents the lease numbers for the SLO and BLM oil and gas leases. Also shown is mineral rights owned by the U.S. that are unleased at this time.
- Plate 2b presents land ownership for the same area and identifies the oil and gas mineral rights ownership.

Table 1 and Table 2 identify all affected persons within a 1 mile radius

- Table 1 lists all of the Oil and Gas Well Operators shown on Plate 1a within the circle having a 0.5-mile radius.
- Table 2 lists all lease numbers, lessees, lessors/mineral interests and surface owners (affected persons) within the 1.0-mile radius shown on Plate 2a.
- VI. Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail

Table 1 shows that there are no wells that penetrate the proposed injection zone within the 0.5-mile radius AOR.

VII. Attach data on the proposed operation, including:

1. Proposed average and maximum daily rate and volume of fluids to be injected

Proposed Maximum Injection Rate: 20,000 bbl/day Proposed Average Injection Rate: 9,000 bbl/day

2. Whether the system is open or closed

This will be a closed system. The Lea Unit #10 will receive produced water only from closed containments which are registered or permitted under Rule 34.

3. Proposed average and maximum injection pressure

Proposed Maximum Injection Pressure: 2,800 psi Proposed Average Injection Pressure: 1,850 psi

4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water

The attached Table 3 "Produced Water Chemistry of Nearby Wells" provides the requisite analyses from all wells within T 20S, R 34E. The 1st, 2nd, and 3rd Bone Spring Formations will provide most of the produced water to the proposed SWD. At the time of writing, we are unaware of any problems associated with disposal of produced water derived from any of these formations into the Devonian injection zone.

5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).

Table 4 presents formational water quality data from the Go-Tech site for Devonian-Fusselman-Montoya producing wells. As stated above, we are unaware of any problems associated with disposal of produced water derived from the 1st, 2nd, and 3rd Bone Spring Formations into the Devonian injection zone.

*VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth.

The proposed injection interval is the Devonian Formation in an open-hole interval. The proposed injection interval in the Pre-Mississippian Carbonates is well cemented and will provide the necessary open hole integrity while allowing salt water to be injected. Because of the competency of the rock, the open hole section has very little chance of collapsing.

As indicated in Section III.A.2, the depth to the top of the Devonian is 14,278. The injection interval is 14,308-14,438 (130 feet), within the Devonian.

Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.

The locations of all water supply wells listed in public databases are shown in Plate 3b.

In this area of Lea County, the Chinle and/or Alluvium yield water to wells from 100-200 feet below the ground surface (bgs) to a depth of about 600 feet. The upper portion of the Rustler Formation yields fresh water to wells in Lea County and in the area of the Lea Unit #10. The depth interval of this potential source of fresh water is about 1700 to 1975 feet.

The OSE database contains no well information (e.g. driller's logs) for nearby wells. The closest wells with reported depths to water around the Lea Unit #10 are described below.

- The closest well is the Nate Well, about 0.56 miles to the east-northeast. Elevation of the water table was reported as 3,610' in 1968. Hence, the depth to water is about 48' as the Nate Well is at an elevation of 3,657'.
- Wells MISC-119 and USGS-15524 are about 1.7 miles east—northeast of the Lea Unit #10. Water elevations were reported as 3,636' and 3,659 feet respectively. Corresponding depths to water are 47' and about 37'.
- The Linam Well (USGS-15838) is about 1.75 miles to the northeast. A water table elevation of 3,622 feet was reported in 1996. Given the elevation of 3,679 feet, the depth to water is about 52'.
- USGS-15487 is 1.32 miles west of the Lea Unit #10.. The water table elevation was reported as 3,503 in 1996. With the elevation of 3,648', the depth to water is about 55'.
- The North Well (MISC-112) is located 1.68 miles southwest of Lea Unit #10. The water table elevation was reported as 3,441' in 1971. The depth to water is 214' given the well's elevation of 3,655'.
- The Herman Well (USGS-15973) is 2.77 miles to the southeast at an elevation of 3,730'. Elevation of the water table was reported as 3,663.71' in 1996. Hence, the depth to water is about 67 feet.

With the exception of The North Well, the five relatively shallow wells may access water in reworked Ogallala material mapped as eolian or older alluvial deposits on top of the Chinle formation (Plate 3b). The North Well's depth to water is consistent with accessing water from the Chinle formation.

At the Lea Unit #10, the Capitan Reef is at a depth of 3,900' to 5,198'. There are no wells accessing it for water within the area of review.

The location of nearby mapped surface water bodies are shown in Plate 4. The closest surface water bodies are intermittent ponds located about 1,300 feet to the southeast and about 3,700 feet to the north-northeast immediately south of a tank battery. The closest mapped water course is 2.5 miles to the south. More than 3 miles to the south, playas are present in a density of several per section.

IX. Describe the proposed stimulation program, if any

A cleanup acid job may be used to remove residual mud and drill cuttings from the formation. However, no other formation stimulation is currently planned.

*X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted)

Logs will be submitted to OCD upon redevelopment of the well.

*XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken

No active water supply wells with water chemistry data were identified within one mile of the proposed SWD. Data from various sources permit a conclusion that groundwater from the Alluvium and within the Chinle Formation is potable. In this area, groundwater in the underlying Rustler formation may be relatively brackish.

XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water

Randall T. Hicks, a Professional Geologist with decades of experience in hydrogeology, affirms, on behalf of Legacy Reserves LLC, that

- The USGS has mapped quaternary faults in New Mexico and no such faults are mapped in the area of the proposed Lea Unit #10 SWD¹ (Plate 5).
- The Texas Bureau of Economic Geology has mapped older faults (e.g. basement and Woodford) in New Mexico and the closest mapped fault is about 1.25-miles to the southwest² with another north-south oriented fault about 6.4 miles to the east (Plate 6).
- With respect to migration of produced water from the injection zone to underground sources of drinking water via faults or other natural conduits, the following conditions were considered
 - The lowest underground source of drinking water is the middle and upper Rustler Formation. The Rustler Formation is encountered from 1,680' below ground level to 2,036' feet below ground level.
 - While there are no wells accessing the Capitan Reef, the Lea Unit #10 passes through the Reef in the depth interval of 3,900'- 5,198'
 - More than 12,000 feet of sedimentary rock separates the bottom of the Rustler Formation and the top of the injection zone. More than 9000' feet of sedimentary rock separates the bottom of the Capitan Reef from the top

¹ https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf88412fcf

² Bureau of Economic Geology (Accessed April 2019). University of Texas at Austin. Basement Faults (Ewing 1990, Tectonic Map of Texas); Precambrian Faults (Frenzel et al. 1988, Figure 6); Woodord Faults (Comer 1991, plate 1). <u>Http://www.beg.utexas.edu/resprog/permianbasin/gis.htm</u>

of the injection zone. Many of the formations that lie between the injection zone and the bottom of the Capitan Reef and the lowermost aquifer (above the Reef) are permeable and contain oil, gas or water at various pressures. Any excursion of injected fluids from the Devonian disposal zone would undoubtedly enter these permeable formations prior to moving into the Capitan Reef or the Rustler Formation.

- There is no evidence that the pressure regime in the oil and gas reservoirs is sufficient to cause the upward migration of formation water through the overlying oil and gas zones into the Capitan Reef or further through the bedded salt and into the Rustler or Chinle aquifers.
- There is no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water

HOBBS OCD

 District I

 I625 N French Dr., Hobbs, NM \$8240

 Phone (\$75) 393-6161 Fax. (\$75) 393-0720

 District II

 811 S Hirst Si., Arresia, NM 88210

 Phone (\$75) 748-1283 Fax (\$75) 748-9720

 District III

 1000 Rio Brazos Road, Aztec, NM 87410

 Phone (\$50) 134-6178 Fax (\$05) 334-6170

 District IV

 1220 S, St Francis Dr., Santa Fe, NM 87505

 Phone (\$05) 476-3460 Fax (\$05) 476-3462

80

State of New Mexico OCInGE 2011nerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

API Number				³ Pool Code ³ Pool Name 37570 LEA: BONE SPRING						
4 Property	Code			³ Property Name					• Well Number	
30280			LEA UNIT					10		
⁷ OGRID 24097			LE	Operator 1 GACY RESERVES	Name OPERATING LP			⁹ Elevation 3654' GL		
					Surface I	Location				
UL or lot no.	Section	Township	Runge Lot Idn Feet from the North/South line Feet from the East/Wes					East/West line	County	
F	13	20S	34E	34E 1980 NORTH 1980 WEST LE/						
L	1	· · · · · · ·	" Bot	ttom Hole	e Location If	Different Fron	n Surface			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County	
12 Dedicated Acre	s ¹⁰ Joint o	r Infill " Co	onsolidation	Code 13 Or	der No.			·····		

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

16			"OPERATOR CERTIFICATION
			I hereby certify that the information contained herein is true and complete to the
			best of my knowledge and helief, and that this organization either owns a working
	1980		Interest or unleased mineral interest in the land uncluding the proposed bottom hole
			location or has a right to drill this well at this location pursuant to a contract with
			an owner of such a muteral or working interest, or to a voluntary pooling
			ngreement or a computory pyolowy anter heretafure entered by the days on
			V 10/05/11
			Sugginger Date
			Signature
			D. PATRICK DARDEN, P.F.
1			Printed Name
1980'			alad - Ola what
			E-mail Address
	1111111111		
		•	"SURVEYOR CERTIFICATION
			I hereby certify that the well location shown on this plat was
			plotted from field notes of actual surveys made by me or under
			my supervision, and that the same is true and correct to the best
			of un balant
			of my benef
			 Date of Survey
			Signature and Scal of Professional Surveyor
		•	
			Ceruficate Number

Lea Unit #10

				Carl and	• • •	
Form 5-331 (May 1963)		UN SED STATES AE OF THE INTER	SUBMIT IN TRIP	'TE• re-	Form approve Budget Burea 5. LEASE DESIGNATION NM 09005 04	ed. u No. 42-R1424. AND BERIAL NO 53434
(Do not us	SUNDRY NOT	CES AND REPORTS als to drill or to deepen or plug	ON WELLS back to a different reservoir.		6. IF INFIAN, ALLOTTEE	OR TEIBE NAME
1. OIL X G WELL X W	AS OTHER				7. UNIT AGREEMENT NAS Lea Unit	ME
2. NAME OF OPERA Marathon	Oil Company				8. FARM OF LEASE NAM Lea Unit	E.
P. O. Box	2409, Hobbs,	New Mexico 88240	State requirements.*		10 10. FIELD AND FOOL, OF	WILDCAT
See also space At surface 1980' FNL	& 1980' FWL			-	Devonian 11. SEC., T., E., M., OR BI SURVEY OR AREA Sec. 13, T-2	le. and 20S, R-34E
14. PERMIT NO. Current		15. ELEVATIONS (Show whether D 3674' DF	P, RT, GR, etc.)		12. COUNTY OF PARISH Lea	13. STATE New Mexico
16. TEST WATER S FRACTCRE TREA SHOOT OR ACID REPAIR WELL	Check Ap NOTICE OF INTEND	DIODINATE BOX TO INDICATE NON TO: ULL OB ALTER CASING ULTIPLE COMPLETE BANDON® HANGE PLANS	Nature of Notice, Report, SC WATER SHUT-OFF FRACTURE TREATMENT SHOOTING OR ACIDIZING (Other) Abandon		ier Data it report of: repairing w Altering ca Abandonmen <u>& Recomplete</u> multiple completion of	T [•]
(Other) 17. DESCRIEE PROPO proposed wor nent to this w	SED OR COMPLETED OPER rk. If well is direction work.) *	ATIONS (Clearly state all pertine) nally drilled, give subsurface loce	t details, and give perthent d tions and measured and true v	completi lates, in ertical (cn Report and Log forn cluding estimated date depths for all markers	m.) of starting any and zones perti-
Pullin at 465'. R with 2 7/8" casing with 10 joints o lead seal c tension and Went in with .8% Ha O.K. Drill Ran 3	g out of hole an impression . Pulled 2 3/ spear. Pulle f 7". Set 7" asing bowl on set OCT slips n hole and squ lad 9. W.O.C. ed cement 12,7 1/2" tubing wi	with 2 7/8" tubing block which showed '8" tubing out of ho ed slips free with 1 bridge plug at 750' 11 joints 7", N-80, s. Nippled up and t teezed Penn perfs 12 24 hours and teste '49-13,118'. th 12 gas-lift valv	and Otis dual prod casing parted at 4 ele. Pulled Series 25,000#. Pulled o . Ran in hole wit 29#, 8R casing. ested to 1000#. H 2,890-13,114' with ed perfs to 3000# p res and Otis packer	uctic 65'. 1500 ut wi h 7" Set a eld (80 sa si fo . Se	on packer, pac Finished out Spool. Caug ith cut-off jo X 8 1/4" doub at 472'. Pull D.K. acks Class "H" or 30 minutes.	<pre>ker hung of hole ght 7" oint and ole slip, ed 110,000# ' cement Held 6403'.</pre>

On 24-hour test 5-10-74, well produced 220 BO and 1,185 BW by gas lift. Prior to workover to abandon Penn gas perfs and single well as Devonian completion with 3 1/2" tubing, well was producing 98 BOPD and 714 BWPD.

18. I hereby certify that the foregoing is true and correct SIGNED	TITLE	Operations Superintendent	DATE August 27, 1974
(This space for Federal or State office use)			
APPROVED BY CONDITIONS OF APPROVAL, IF ANY:	TITLE	The states and a state	DATE
*Se	e Instruc	tions on Reverse Side	
	•	$\bigvee \mathbb{I} = \bigcup_{i=1}^{n} \mathbb{I} = \bigcup_{i=1}^{n} \mathbb{I}$	

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

November 19, 2020

Hobbs News Sun 201 N. Thorp P.O. Box 850 Hobbs, N.M. 88240

LEGAL NOTICE

Legacy Reserves LP, 303 W.Wall Street, Ste. 1800, Midland, TX 79701is filing Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Lea Unit #10 SWD will be located 1,980 feet from the North line and 1,980 feet from the West line, Section 13, Township 20 South, Range 34 East, Lea County, New Mexico.

Produced water from Legacy Reserves LP operations will be disposed into the Devonian Formation at a depth of 14,308 feet to 14,438 feet at a maximum surface pressure of 2,800 psi and an average injection rate of 9,000 barrels per day. The proposed SWD well is located approximately 23 miles northwest of Eunice, New Mexico.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, NM 87505 (505) 476-3460 within 15 days of the date of this notice.

Additional information can be obtained by contacting Mr. Randall Hicks, agent for Legacy Reserves LP, at 505-238-9515.

Sincerely, R.T. Hicks Consultants

Randall Hicks Principal

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated November 22, 2020 and ending with the issue dated November 22, 2020.

Alipsing

Publisher

Sworn and subscribed to before me this 22nd day of November 2020.

ARR

Business Manager

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL NOTICE November 22, 2020

Legacy Reserves LP, 303 W.Wall Street, Ste. 1800, Midland, TX 79701 is filing Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Lea Unit #10 SWD will be located 1,980 feet from the North line and 1,980 feet from the West line, Section 13, Township 20 South, Range 34 East, Lea County, New Mexico.

feet from the North line and 1,980 feet from the West line, Section 13, Township 20 South, Range 34 East, Lea County, New Mexico. Produced water from Legacy Reserves LP operations will be disposed into the Devonian Formation at a depth of 14,308 feet to 14,438 feet at a maximum surface pressure of 2,800 psi and an average injection rate of 9,000 barrels per day. The proposed SWD well is located approximately 23 miles northwest of Eunice, New Mexico.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, NM 87505 (505) 476-3460 within 15 days of the date of this notice.

Additional information can be obtained by contacting Mr. Randall Hicks, agent for Legacy Reserves LP, at 505-238-9515.

Sincerely, R.T. Hicks Consultants Randall Hicks Principal #36018

67115764

00248638

RANDALL HICKS R.T. HICKS CONSULTANTS, LTD 901 RIO GRANDE BLVD NM SUITE F-142 ALBUQUERQUE, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW 🛦 Suite F-142 🛦 Albuquerque, NM 87104 🛦 505.266.5004 🛦 Since 1996 Artesia 🛦 Carlsbad 🛦 Durango 🛦 Midland

November 19, 2020

NOTIFICATION TO INTERESTED PARTIES Via U.S. Certified Mail – Return Receipt Requested

To Whom It May Concern:

Legacy Reserves LP, Midland, Texas, has made application to the New Mexico Oil Conservation Division to modify for salt water disposal, the Lea Unit #10 SWD. The proposed operation will be for produced water disposal from Legacy Reserves LP operations. As indicated in the notice below, the well is in Section 13, Township 20 South, Range 34 East, Lea County, New Mexico.

The published notice states that the interval will be from 14,308 feet to 14,438 feet into the Devonian Formation.

LEGAL NOTICE

Legacy Reserves LP, 303 W.Wall Street, Ste. 1800, Midland, TX 79701is filing Form C-108 (Application for Authorization to Inject) with the New Mexico Oil Conservation Division seeking administrative approval for a salt water disposal well. The proposed well, the Lea Unit #10 SWD will be located 1,980 feet from the North line and 1,980 feet from the West line, Section 13, Township 20 South, Range 34 East, Lea County, New Mexico.

Produced water from Legacy Reserves LP operations will be disposed into the Devonian Formation at a depth of 14,308 feet to 14,438 feet at a maximum surface pressure of 2,800 psi and an average injection rate of 9,000 barrels per day. The proposed SWD well is located approximately 23 miles northwest of Eunice, New Mexico.

Interested parties wishing to object to the proposed application must file with the New Mexico Oil Conservation Division, 1220 S. St. Francis Dr., Santa Fe, NM 87505 (505) 476-3460 within 15 days of the date of this notice.

You have been identified as a party who may be interested as an offset lessee or operator. IF YOU WOULD LIKE AN ELECTRONIC COPY OF THE ENTIRE PERMIT PACKAGE, PLEASE SEND YOUR REQUEST TO r@rthicksconsult.com (request a read receipt to avoid your email becoming stuck in spam).

Thank you for your attention in this matter.

Sincerely, R.T. Hicks Consultants

Randall Hicks Principal

Legacy Reserves Operating, LP Lea Unit #10 SWD 303 W. Wall St. Suite 1800 Midland, TX 79701

Marathon Oil Permian LLC Lea Unit #10 SWD 5555 San Felipe St. Houston, TX 77056

Kenneth Smith Inc. Lea Unit #10 SWD 267 Smith Ranch Rd. Hobbs, NM 88240

Bureau of Land Management Lea Unit #10 SWD 620 E. Greene Street Carlsbad, NM 88220-6292

New Mexico State Land Office Lea Unit #10 SWD 310 Old Santa Fe Trail Santa Fe, NM 87501

Table 1 New Mexico Oil and Gas Producers within 0.5 miles radius of Lea Unit #10

PoolID	[37570] LEA, BONE SPRING; [37584] LEA, DELAWARE, NORTHEAST; [80040] LEA, PENN (GAS)		[37570] LEA, BONE SPRING	[37570] LEA, BONE SPRING; [37590] LEA, DEVONIAN	[37570] LEA, BONE SPRING; [37584] LEA, DELAWARE, NORTHEAST; [37590] LEA, DEVONIAN	[37570] LEA, BONE SPRING	[37570] LEA, BONE SPRING
Vertical Depth	14,454	0	10,981	14,435	14,408	10,977	10,905
UL-S-T-R	N-13-20S-34E	C-13-20S-34E	N-12-20S-34E	J-13-20S-34E	B-13-20S-34E	M-12-20S-34E	C-13-20S-34E
District	Hobbs	Hobbs	Hobbs	Hobbs	Hobbs	Hobbs	Hobbs
Well Name	LEA UNIT #011	LEA FEDERAL UNIT #026C	LEA UNIT #031H	LEA UNIT #003	LEA UNIT #009	LEA UNIT #030H	LEA UNIT #033H
Status	F	υ	A	A	A	Р	А
Well Type	Gas	oil	oil	oil	Oil	Oil	Oil
OGRID Name	LEGACY RESERVES OPERATING, LP	SAMSON RESOURCES CO	LEGACY RESERVES OPERATING, LP	LEGACY RESERVES OPERATING, LP	LEGACY RESERVES OPERATING, LP	LEGACY RESERVES OPERATING, LP	LEGACY RESERVES OPERATING, LP
OGRID	240974	20165	240974	240974	240974	240974	240974
API	30-025-20338	30-025-38008	30-025-40699	30-025-20038	30-025-02432	30-025-40698	30-025-42343

October 2020

Table 2 Oil and Gas Mineral Interests and Affected Persons within 1-mile Radius

	SMITH, KENNETH SMITH, KENNETH BLM (U.S.) SMITH, KENNETH BLM (U.S.)	SMITH, KENNETH SMITH, KENNETH BLM (U.S.) SMITH, KENNETH SMITH, KENNETH SMITH, KENNETH SMITH, KENNETH SMITH, KENNETH	MITH, KENNETH MITH, KENNETH BLM (U.S.) BLM (U.S.) BLM (U.S.) MITH, KENNETH SMITH, KENNETH SMITH, KENNETH SMITH, KENNETH MARATHON OIL MARATHON OIL	, KENNETT- , KENNETT-	티티이이미이이미이미 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
	┨-┨-┨	+++++++		B SMITH SMITH SMITH SMITH SMITH SMITH SMITH SMITH SMITH SMITH	BLM (U. SMITH, KENN U. SMITH, KENN SMITH, KENN SMITH KENN SMIT
BLM (U.S.) BLM (U.S.)	BLM (U.S.) BLM (U.S.) BLM (U.S.)	BLM (U.S.) BLM (U.S.) BLM (U.S.) BLM (U.S.) BLM (U.S.) BLM (U.S.) BLM (U.S.)	BLM (U.S.) BLM (U.S.)	BLM (U.S.) BLM (U.S.)	BLM (U.S.) BLM (U.S.)
RESERVES OPERATING LP RESERVES OPERATING LP	RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP	RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP HOG SERVES OPERATING LP HOG	RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP PARTNERSHIP LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP ODUCTION CO LEGACY RESERVES OPERATING LP	RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP SERVES OPERATING LP SERVES OPERATING LP HOG PARTNERSHIP LP RESERVES OPERATING LP PARTNERSHIP LP RESERVES OPERATING LP ODUCTION CO LEGACY RESERVES OPERATING LP ODUCTION CO LEGACY RESERVES OPERATING LP FINLEY JAMES D FINLEY JAMES D RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP	RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP RESERVES OPERATING LP SERVES OPERATING LP HOG PARTNERSHIP LP PARTNERSHIP LP RESERVES OPERATING LP HOG PARTNERSHIP LP RESERVES OPERATING LP ODUCTION CO LEGACY RESERVES OPERATING LP ODUCTION CO LEGACY RESERVES OPERATING LP RESERVES OPERATING LP
LEGACY RES LEGACY RES	LEGACY RES LEGACY RES LEGACY RES	LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES	LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RES PAI LEGACY RESE PAI LEGACY RESE PAI BP AMERICA PRODI	LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RESER LEGACY RESER LEGACY RESER PAI EGACY RESER PAI LEGACY RESER PAI BP AMERICA PRODI BP AMERICA PRODI	LEGACY RES LEGACY RES LEGACY RES LEGACY RES LEGACY RESER LEGACY RESER PAI PAI EGACY RESER PAI LEGACY RESER PAI LEGACY RES REACY RES LEGACY RES LEGACY RES REACY RES LEGACY RES L
NMNM 0001747	NMNM 00021278 NMNM 00021278 NMNM 0001747 NMNM 0001747	NMNM 0002127B NMNM 0002127B NMNM 0001247 NMNM 0002127B NMNM 0002127B NMNM 0001747 NMNM 0001747 NMNM 0001747	NMNM 0002127B NMNM 0002127B NMNM 0001247 NMNM 0002127B NMNM 0002127B NMNM 0001747 NMNM 0001747 NMNM 0003085 NMNM 0053434 NMNM 0053434 NMNM 0053434	NMNIM 0002127B NMNIM 0002127B NMNIM 0002127B NMNIM 0002127B NMNIM 0001747 NMNIM 0001747 NMNIM 0001747 NMNIM 0003085 NMNIM 0003085A NMNIM 0003085A NMNIM 0003085A NMNIM 0003085A NMNIM 0003085A NMNIM 0003085A NMNIM 00030854 NMNIM 00030854 NMNIM 00030854	NIMNIM 0002127B NIMNIM 0002127B NIMNIM 0002127B NIMNIM 0002127B NIMNIM 0001747 NIMNIM 0001747 NIMNIM 0003085 NIMNIM 0003085A NIMNIM 0003085A NIMNIM 0003085A NIMNIM 0003085A NIMNIM 00034344 NIMNIM 0053434 NIMNIM 0053434
٩	Z W ¬ Ľ	z w ¬ Ľ ∑ O – ¬	z ┉ ¬ ╙ ⅀ O – ¬ z ⊻ Δ ∝		
	12 12 12 12 12 12 12 12 12 12 12 12 12 1	12 12 12 12 12 12 12 12 12 13	12 12 12 12 12 13 13 13 13 13 13 13 13	12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	L2 13 13 13 13 13 13 13 13 13 13
	34E 34E 34E 34E 34E				34E 34E 34E 34E 34E 34E 34E 34E 34E 34E
		34E 34E 34E 34E 34E 34E 34E 34E 34E 34E	34E 34E 34E 34E 34E 34E 34E 34E 34E 34E	348 348 348 348 348 348 348 349 349 349 349 349 349 349 349 349 349	

۲	v
C	כ
r	V
\$	_
č	D
4	ā
(5
÷	5
¢	د
c	٦

Table 2 Oil and Gas Mineral Interests and Affected Persons within 1-mile Radius

Legacy Reserves Operating, LP Lea Unit #10 SWD

4207115399641	4207115399641	4203116828709	4203116828709	4203116828709	4207115399641	4203116828709	4207115399641	4207115399641	4203116828709	4202118267266	4202118267266	4202118267266	4207117598130	4207117598130	4207117598130	4207117598130	4207117598130	4207117598130	4207117598130	4207117598130	4204116922586	4204116922586	4204116922586	4204116922586	4204116922586	4204116922586	4204116922586	4204116922586	4204118442779
BLM (U.S.)	BLM (U.S.)	SMITH, KENNETH INC	SMITH, KENNETH INC	SMITH, KENNETH INC	BLM (U.S.)	S & S INC	BLM (U.S.)	BLM (U.S.)	SMITH, KENNETH INC	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	S & S INC	BLM (U.S.)	S & S INC	S & S INC	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP	PEARL VALLEY LIMITED PARTNERSHIP				
BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	BLM (U.S.)	State (N.M.)
LEGACY RESERVES OPERATING LP FINLEY JAMES D COG OPERATING LLC	LEGACY RESERVES OPERATING LP FINLEY JAMES D COG OPERATING LLC	READ & STEVENS INC	MEWBOURNE OIL CO	MEWBOURNE OIL CO	READ & STEVENS INC	READ & STEVENS INC	LEGACY RESERVES OPERATING LP	READ & STEVENS INC	MEWBOURNE OIL CO	MEWBOURNE OIL CO	MEWBOURNE OIL CO	MEWBOURNE OIL CO	LEGACY RESERVES OPERATING LP HOG PARTNERSHIP LP	FINLEY JAMES D	LEGACY RESERVES OPERATING LP HOG PARTNERSHIP LP	LEGACY RESERVES OPERATING LP	LEGACY RESERVES OPERATING LP	COG OPERATING LLC LEGACY RESERVES OPERATING LP	LEGACY RESERVES OPERATING LP	LEGACY RESERVES OPERATING LP	LEGACY RESERVES OPERATING LP	COG OPERATING LLC MARATHON OIL CO	LEGACY RESERVES OPERATING LP	LEGACY RESERVES OPERATING, LP					
NMNM 0080262	NMNM 0080262	NMNM 078273	NMNM 123523	NMNM 123523	NMNM 078273	NMNM 078273	NMNM 0053434	NMNM 078273	NMNM 123523	NMNM 123524	NMNM 123524	NMNM 123524	NMNM 0001747	NMNM 0001747A	NMNM 0048579	NMNM 0001747A	NMLC 0065375A	NMLC 0065375A	NMLC 0066147D	NMLC 0065375A	NMLC 0065375A	NMLC 0065375A	NMLC 0066147A	NMLC 0065375A	OG55880002				
н	в	К	-	Р	ш	Z	A	C	0	A	8	н	ш	υ	В	Ш	ß	н	D	A	L	U	Ľ	Z	D	х	ш	Ψ	٥
14	14	14	14	14	14	14	14	14	14	23	23	23	24	24	24	24	24	24	24	24	18	18	18	18	18	18	18	18	19
34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	35E	35E	35E	35E	35E	35E	35E	35E	35E
20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S	20S

<u>M:\Leagacy\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx</u>

M:\Leagacy\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.apr

M:\Leagacy\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx

M:\Leagacv\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx

<u>M:\Leagacy\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx</u>

eagacylLeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx

_	ղՁա [−] əរeյլոs	200.675	579.069	279.71	0	811	170 34	454 376	332	220	3552	3532	1142	2750	1816	2500		670	992		1038	1096	1961	920	1038	729	2020	2243	1120	1304	1640	3647	4523	3430	3450	111.111
r, 2020	bicarbonate_mgL	CV VUV	1404.43	CE.641	0	532	456.96	424.56	465	146	462	681	634	185	208	170		1016	5196		1401	1272	227	1256	108	1145	1360	184	143	448	588	46	576	410	1003	423.42
Octobe	Carbonate_mgL	T			C		C	0	ſ																1									T	T	0
	chloride_mgL	071001	101140	162612	0	10950	14918.5	20219.7	97500	114800	4268	4440	16720	7600	132700	8000		108300	118100		25320	19020	18570	24000	89640	26440	9800	18020	14960	15690	17830	7932	16240	16580	C26C	268.268
	ງ ສີພ_ີອະອ ຕຣູ ສາຄສາຄ																																	T	T	33.033
	ງສີຫ_ຼູຕມisອກສຸຣຫ				0		284.58	512.972																												3.003
	וַגסט־שצּך	5 575	20128	3 67775	0		17.34	5.14																						-						4061.06
T.	ງສີm_muiວlຣວ	13149 5	VESE	73965	0		297.84	1247.99																												12.012
	ղՁա¯աnipos	51632.2	87777 9	125179	0		8847.48	10688.1																												0
	իցա_muiາธd						0.3978	2.056																												0.05005
)S, R 34E	ղՁա [—] sbt	152064	296822	340838		19994	24816.5	33296.1	156332	187065	12243	12946	29436	16150	214787	16595	15429	180701	202606	121800	44800	35094	33414	01774	14/229	0//04	20395	33638	26851	27892	1017A	101CC	335015	15475	9610	4910.55
n T 2(ųd	6.3	5.5	5.5			6.6	7.83															T											7 97	-	8.02
Table 3 ter Analysis fror	ətebəlqmes	5/9/2000 0:00	5/9/2000 0:00	5/9/2000 0:00	1/2/1900 0:00		6/18/1999 0:00	2/23/1998 0:00																										6/2/1965 0:00	4/26/1957 0:00	1/13/1998 0:00
d Wat	ətəte	WZ	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	MM	WN	WN	WN	WN	WN	MN	MN		MIN	NAM	WW		MN	WN	WN	MN	WN	NIN	INN	WN	WN	WN
oduce	ζοnuţλ	LEA	EA	LEA	LEA	EA	LEA	LEA	EA	LEA	EA	EA	LEA	LEA	EA	EA	EA	EA	EA	EA	EA	EA P	EA H	EA P	EA		EA	EA	EA	EA	L L	5		FA	EA	EA
Pr	wagti	W0861	370W	370W	SEDE	30E	1650E	30W	560W	56W	W0861	W0861	SEDE	560W	560W	560W	560W	560W	1980E	980E	198UE			ABOF	130F	1010	BULE	192E	192E	1750	310F	101E	1221	M06	BOE	650E
	suឱររ្	1800S	3 S066	2440N	1980S	330S	330S	330N	660N 6	2086S	660S	660S	1980N	1980S	1980S	1980S	1980S	1980S	1980S	19805	NOTO	NINTO	NOTO	RION	REON	2000	CUEE	SUEE	3305	NUCC	16505	20505	20022	16505	660N	330S
	tinu	×	Σ	ш	_	4	0	٥	_	_	z	z	Ŧ	_	_	_	_	_	_				. a		, <i>«</i>		5		2 4		<u> </u>		_		A	0
	เราชิต	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	34E	345	345	345	34F	R	34F	345	340	345	34E	346	34F	34F	SAF	34E	34E	34E
	didanwot	2 20S	2 205	2 20S	5 20S	2 20S	9 20S	0 205	1 205	1 205	1 205	1 20S	1 20S	2 20S	2 20S	2 20S	2 205	2 20S	2 20S	202	202 2	202	205	205	3 205	200	2012	202 0	202 2	202 0	5 205	5 205	200	2 205	1 205	9 205
	section				-	2	-	2			1	1	-	1	-	1	1	1						-		1	4 6	NC	7			6	n m	2	2	H
	əbutignol	-103.5331573	-103.5367584	-103.5367584	-103.5416641	-103.5426865	-103.5963821	-103.5899887	-103.5202942	-103.5206299	-103.5331192	-103.5331192	-103.524559	-103.520256	-103.520256	-103.520256	-103.520256	-103.520256	-103.5116501	TOCOTIC:COT-	-103 511673	-103 511673	-103.511673	-103.511673	-103.5121155	-103 5469742	24/C040.001-	100+020-001-	2004020101-	-103 5899506	-103.5297165	-103.525444	-103.525444	-103.5534439	-103.5588226	-103.5963821
	əbutitel	32.5999107	32.5976906	32.6028633	32.5713348	32.552269	32.5522652	32.5649757	32.6077957	32.6006813	32.5822411	32.5822411	32.5895081	32.5858536	32.5858536	32.5858536	32.5858536	32.5858536	32.5858536	000000000000000000000000000000000000000	37 5977162	32.5927162	32.5927162	32.5927162	32.578598	32 5522652	2002200.20	00001100.70	32.357/288	32.5504608	32.5268326	32.5285072	32.5285072	32.5558891	32.564064	32.5522652
	īqs	3002531696	3002532105	3002532466	3002502436	3002508462	3002526625	3002523861	3002502407	3002502408	3002502423	3002502423	3002502424	3002502427	3002502427	3002502427	3002502427	3002502427	3002502429	100020000	3002502431	3002502431	3002502431	3002502431	3002502432	3002502449	3002502461	1042022000	3002302461	3002502478	3002502511	3002502512	3002502512	3002521346	3002502439	3002526625
Leagcy Reserves LLC Lea Unit #10	əmsn lləw	MOBIL LEA STATE #001	MOBIL LEA STATE #003	MOBIL LEA STATE #005	HANSON A FEDERAL #001	PERRY FEDERAL #001	WEST LYNCH FEDERAL #001	WALLEN FEDERAL #001	TEXACO FEDERAL #001	K F QUAIL FEDERAL #001	ELLIOTT #001		LEA UNIT #004H	LEA UNIT #001	LEA UNIT #005		LEA UNIT #008	LEA UNIT #008	LEA UNIT #008	LEA UNIT #008	LEA UNIT #009	R AND B FEDERAL #001	CRUCES FEDERAL #DOS	CRITCES FEDERAL #DDS	CRUCES FEDERAL #005	WILLS A FEDERAL #001	NEAL #001	NEAL #002	NEAL #002	BALLARD DE FEDERAL #006	MUSE #001	WEST LYNCH FEDERAL #001				

Jzm_ojeilus	1176	C/11	1407	1467	1488	1190	3100	1600	1700	4980	1000	900	006	2593	2765	701	10/	2511	1107	1336	1004			980	3050	2050	10505	3240	5810	5110	5320	4783	2544	4950	2400	2500	1121	2460	1030	CAAF	3400	4630	3780	1806	1079	Π	Τ	591
Л <u>г</u> ш_этеподтезіd	Vac	230	004 C1C	336	487	500	490	476	610	1740	500	476	476	462	788	170	246	198	175	653	128			183	340	840	340	550	650	280	500	376	363	660	1800	813	545	241	871	360	510	960	290	68	1089	476	+	302
Jgm_sbirolds	6369	70/0	2000	8176	7853	8020	7760	7780	37500	29000	42200	47900	47900	71280	0/390	147000	48	136964	121100	10120	107400			30200	46200	48500	46200	44000	77000	65000	77000	51020	50450	59300	45500	37000	34030	10000	22840	35870	124000	129000	96000	112900	15270	100382	T	20450
ปฐฑ_muizอกฐ ธ ต		T															T			132						T		T					T	T			103	100								5345		
Jgm_muioleo		T		T									T	T	T		T			1002						T	T							T	T	T	2603	5007								17244	T	Π
Jgm_muibo2																		T		6072						T		Ī						T	1								T			T	T	T
4_qm91_vityityobn02													T			T				64																	67	5										
tivit20000													T							25596																	81479	17440									T	Π
Tesistivity_ohm_cm_temp_F																				75																											T	
resistivity_ohm_cm				1																0,36																									Π		T	
Lgm_sbi	16200	17510	14601	15780	15580	15500	17861	15601	64582	56922	71078	80187	181081	117050	666711	236252	3110	229706	203100		176234	58687	57018	50858	84000	00000	80900	77600	135000	114000	135000	91058	86847	DCECUT	0////	01640	60629	67898	39261	63817	208280	219570	163430	184030	27506		10/861	31931
A_qm91_y1ivergoilio9q2																				60														T	T		78	2								20		
specificgravity																				1,012																	1.037									1,142		Π
년											~	6,9	7,0					7	2	7				ľ	o									T			7.6	2				7,3	6,8					
aupardures												00:0 /96	00:0 /06					964 0:00	964 0:00	960 0:00				001 0:00	00:0 100												00:0 006					961 0:00	961 0:00	1		00:0 006		
otopolaass												1/11/61	1/11/41					14/12/1	14/12/1	01/03/1				120/21	TIONIT					1							02/01/1					17/03/1	18/03/1			02/01/1		
		T	T	T	F					1	1	t	T	t	t	t				Π		1	1	1	t	T	F			1	1	t		t	t	t	t	t	T	F						†	t	Η
samplesource											EATER		DN TEST						1																					~				~				
	F	F	L	L.	E.	T	E	F	VAB	VAB	ATER TR	NAUNAN NAV		NNUMN	NNOWN	NWOWN	F	F	H	E	IKNOWN	ELLHEAD	ELLHEAD	T			H	T	H	F	E	NWOWN	T	IKNOWN	EI HEAD	IKNOWN		IKNOWN	IKNOWN	PARATOF	E.	F	T	PARATOF	IKNOWN	INNUMAN	IKNOWN	IKNOWN
qıdəp	ä	Ğ	ä	ő	ä	D	G	ő	NS 10	3	Ĩ	5 3	5 8		5	5	S	D	50	SO	5	3	33	3 2		10	DS	DS	5	8		5	5 2	3 =	53	15	7052	5	5	SE	DS	DS	DS	SE	IN LOLD	1.628	5	5
HODERLIOI	AN	AN	AN	AN	AN	AN	AN	AN	N	AN	AN	NN	NA	AN	AN	AN	AN	AN	AN	AN	AN	AN	AN	ADN	AAN	AAN	AAN	AAN	AAN	AAN	AAN	NAN	NAN	AA A	VA V	AAN	AAN	YA	YA	AAN	AAN	AAN	AAN	AAN	AN	AN NY	NN	AN
	DEVONI	DEVONI	DEVON	DEVON	DEVONI	DEVONI	DEVONI	DEVON	DEVON	DEVON	DEVON	DEVON	DEVON	DEVON	DEVONI	DEVONI	DEVONI	DEVONI	DEVONI	DEVONI	DEVONI	DEVONI	DEVON	IND A D	FUSSEL	FUSSELA	FUSSELN	FUSSELN	FUSSEL	FUSSELN	FUSSEL	FUSSEL	DEVIONI	MONTO	MONTO	FUSSEL	FUSSELN	MONTO	MONTO	FUSSELN	FUSSELA	FUSSELN	FUSSELA	FUSSELA	DEVON	DEVONI	DEVON	DEVONI
						F				2	E																										SLM											
blait						VIO AN			*	A NOD	DE BUDG	PE RIDG						Т	L			HDE		NORTH	NORTH	VORTH	NORTH	NORTH	NORTH	NORTH	NORTH	HINON	NUNTH	ORTH	ORTH		N, 259F										HIDE	
						BANDA			REMUD	REMUD	VNITELO	ANTELO	CLINE	TEAGUE	TEAGUE	TEAGUE		WILDCA	WILDCA		CUSTER	DOLLAR	DOLLAR	ILISTIS I	JUSTIS	JUSTIS	JUSTIS	JUSTIS I	JUSTIS	I SITSUL	SILSUL		SITZUL	USTIS N	USTIS N	JUSTIS	TNME02	JUSTIS	CROSBY	CRUSEL	DOLLAR	CROSBY						
state	WN	WN	WN	WN	WN	WN	WN	WN		MN	INN	WN	WN	WN	WN	MN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	WN	MN	WN	WN
Âjunoə	EDDY	EDDY	EDDY	EDDY	EDDY	EDDY	EDDY	EDDY	EDDY		LEA	IFA	LEA	LEA	LEA	LEA	EDDY	EDDY	EDDY	EDDY	LEA	LEA .	LEA	LEA	LEA	LEA	LEA	LEA	LEA	TEA			EA	TEA	TEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA	LEA
tian	5	5	A	A	A	0	5	<u>ں</u>				. ×	~	A	Ŧ	A	u	¥	Σ	A	0	<u>-</u>	I _				ш	ш	w				A	_	Ŧ	u	z	z	IJ	U	_	A	A	٩.		4		A
range	25E	25E	25E	25E	25E	23E	24E	24E	205	34F	345	34E	37E	37E	37E	37E	22E	25E	25E	26E	365	385	385	37E	37E	37E	37E	37E	37E	37E	3/E	375	376	37E	37E	37E	37E	37E	37E	37E	37E	37E	37E	37E	375	375	38E	37E
qidznwot	5 225	5 225	1 225	1 225	1 225	3 235	9 235	235	222 4	235	235	4 235	4 235	4 23S	4 23S	4 235	2 24S	5 24S	5 24S	9 245	6 245	242	242 2	1 255	1 255	1 255	1 255	1 255	1 255	1 255	1 255	1 255	2 255	2 255	2 255	3 255	3 255	3 255	4 255	5 255	5 255	5 255	5 255	5 255	8 255	255	5 255	4 265
noitoes	35 2	35 2	53 3	53 3	53	14	2	00	10		2 12	22	1	15 3	17 3	50 3	20 2	0	00	38 2	910	2 5	2 2	6	65	65	66	66	6	5	200	2 2	2 00	1	E	1 1	1 1	1 69	36 2	202	54 2	2	2 2	2 0	8 6	2 10	9	0
api	0015001	0015001	0015100	0015100	0015100	0015000	0015104	0015104	JULED260	SPECTOR SPECTOR	10252105	70252108	30251071	0251094	00251094	00251095	0015000	00151021	00151028	0015004(0025097	7715700	2715200	00251138	30251135	00251138	00251138	00251131	0025113	00251130	102113000	20751130	70251135	20251140	70251256	20251155	00251156	0025115t	0025117	00251176	00251176	0025117.	0025117.	00251178	0025118	0251186	0251238	00251195
	m	3(3(Э	m	ñ	m	E C				3 M	m	3(3(3(3(ñ	3(ñ	m	n	n m	30	3(3(3(ñ	m	5	0		m	30	m	3(3(3(Э́Е	я	ñ	3	Ĩ	m	n R	30)E	m
																				1			04	5																							5	
ల	$\ $																			NIT 1 #0(UNIT #1																		I						UNIT #1	
lina me			-	-	-	10	10	10	100	-	#003	#003		1	1	4				COM UI			ONIAN	04	04	04	64	64	40	5	5 80	80		E #002		16F	800# N	800# N	#014	SBC					F00# F	3 #003	'ONIAN	4006
wel	1#0	1#0	UT #00.	UT #00.	UT #00	IT UT #0	COM #0	LINIT HC	UNIT #	#006	E UNIT	E UNIT	#001	RAL #00	RAL #00	RAL #00	m	NT #001	NT #001	N GAS	100	DAI HOO	IDE DEV	RAL #00	ERAL #0	ERAL #0	ERAL #0	ERAL #0	ERAL #0	DAL #0	BAL HO	RAL #00	-	M STAT	33	INIT #01	FINGTO	FINGTO	EDERAL	INIT #02	2			1004	V NCT-B	V NCT-E	IDE DEV	EDERAL
	RICK FE	RICK FE	3O PEAK	3O PEAK	RO PEAK	NA POIN	ISE ASB (A BASIN	A BASIN	KE UNIT	DE RIDO	PE RIDG	EDERAL	B FEDE	D FEDE	D FEDE	CHE #00	SAN POL	SAN POIL	CITY PEA	# WOO R	n rene	OLLARH	TES FEDE	TES FEDI	TES FEDI	TES FEDI	TES FEDI	TES FEDI	TEC CENE	TFS FFDF	TES FEDE	11 A #00.	EXICO B.	TATE #00	JUSTIS L	MCBUF.	MCBUF.	ATES C F	JUSTIS L	00# Y NO	600#	600#	1 57 9 NO	LUUT RAMSA	RAMSA	OLLARH	VORTH F
	MCKITI	MCKITI	CARNE	CARNE	CARNE	BANDA	TORTO	BEMIN	REMUD	BELLIA	ANTELC	ANTELC	CLINE F	E C HILL	E C HILL	E C HILI	HUAPA	JURNEL	JURNEC	WHITE	SIAIE		WESTD	WESTA	WESTA	WESTA	WESTA	WESTA	WESTA	WESTA	WESTA	WESTA	STATE N	NEW M	HALE S	SOUTH	LEARCY	LEARCY	A B CO	SOUTH	CARLSC	STATE	STATE	CORRECT	ARNOT	ARNOT	WEST D	FARNSV

Table 4 - Chemistry of Produced Water from Formations

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996

April 22, 2021

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

RE: Legacy Reserves LP; Lea Unit #10 SWD Unit Letter F, Section 13, T20S R34E, Lea County

Dear Sir or Madam:

On behalf of Legacy Reserves LP, R.T. Hicks Consultants is providing data and an opinion regarding the probability that injection of wastewater in the above referenced well at the proposed rates will cause seismic events of sufficient magnitude to create damage. We are in the process of developing an evaluation of the nature of the confining layers and nearby faults that are not shown in public databases. One key point that is not emphasized sufficiently in the application is the base of the proposed injection zone is 1900 feet above the top of the Ellenburger. Thus, the thickness of the underlying confining layer is significantly greater than other Devonian SWDs. Another important element of the proposed supplemental information is the nature of the 130-foot injection zone at the top of the Devonian. The injection zone is the reservoir from which oil wells have produced crude, natural gas, and water. In part, Legacy will be re-filling the depleted production zone with injected water from their production elsewhere.

We believe presentation of data and interpretations in the forthcoming supplemental submission is critical to determining the utility of employing the Stanford FSP tool to predict the potential of induced seismicity.

We relied upon the following data to develop our opinions presented herein:

- Data on the thickness and lithology of the Simpson Group from the Texas Bureau of Economic Geology¹
- State of stress in the Permian Basin, Texas and New Mexico: Implications for induced seismicity, Jens-Erik Lund Snee and Mark D. Zoback, The Leading Edge, February 2018²
- Plate 5, which is reproduced from the Snee and Zoback publication, which uses the following references
 - Crone, A. J., and R. L. Wheeler, 2000, Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front; U.S. Geological Survey Open-File Report.

¹ <u>http://www.beg.utexas.edu/resprog/permianbasin/PBGSP_members/writ_synth/Simpson.pdf</u>

² <u>https://scits.stanford.edu/sites/default/files/3702_tss_lundsnee_v2.pdf</u>

- Ewing, T. E., R. T. Budnik, J. T. Ames, and D. M. Ridner, 1990, Tectonic map of Texas: Bureau of Economic Geology, University of Texas at Austin.
- Green, G. N., and G. E. Jones, 1997, e digital geologic map of New Mexico in ARC/INFO format: U.S. Geological Survey Open-File Report.
- Ruppel, S. C., R. H. Jones, C. L. Breton, and J. A. Kane, 2005, Preparation of maps depicting geothermal gradient and Precambrian structure in the Permian Basin: USGS Order no. 04CRSA0834 and Requisition no. 04CRPR01474.
- NMOCD database of oil and gas wells
- Plate 5, which shows the distribution of active and new SWD wells in the area of the proposed AWR Disposal SWD well
- Stratigraphic and lithologic information from two deep wells in the Delaware Basin
- The USGS database of quaternary faults in New Mexico³.

The USGS database did not identify any Quaternary faults in southern Lea County.

Plate 5 reproduces Figure 3 of the 2018 publication of Snee and Zoback and shows

- 1. Fault traces based upon the references provided above for which Dr. Snee and Dr. Zoback provide a value of the fault slip potential (FSP)
- 2. The closest areas of documented seismic activity include a magnitude 3.0-3.9 earthquake that occurred since 2005 about 28 miles southwest of the proposed Lea Unit #10. There was an event of magnitude 2.0 2.9 reported about 35 miles south of the Lea Unit #10 between 1970 and 2004. There was an event of magnitude 2.0 2.9 and an event of magnitude 3.0-3.9 reported about 31 miles to the south between 1970 and 2004. Figure 5 also shows two seismic events about 35 miles southeast.
- 3. Although Plate 5 does not show faults that may be identified in confidential seismic data owned by oil and gas operators, the closest mapped basement fault that was re-activated during Woodford time is about 8 miles to the east and southeast of the Lea Unit #10. This fault exhibits a low FSP (less than 10% to the east and less than 15% to the southeast) based upon the modeling and analysis of Snee and Zoback referenced above (also see Plate 6)
- 4. Other mapped faults in southern Lea County shown on Plate 5 also show a low FSP.

Plate 6 reproduces the major elements of Plate 5 in the inset map and also shows additional faulting information. Along with the more recent faulting shown on Plate 5, it also includes Pre-Cambrian and basement faulting. As can be seen, the Lea Unit #10 is about 1.25 miles northeast of a northwest to southeast oriented Precambrian fault and is 6.4 miles southwest of a similar parallel Precambrian fault. These faults were not re-activated during Woodford time according to the work of Snee and Zoback.

Within T 20S, R 34E and T 20S R35E, T19 S R 34E, T19S R 35E, T21S R34E and T21S R35E, the OCD database shows ten (10) Devonian SWD wells. The closest of these wells is about 9,000 feet southwest of the Lea Unit #10. Ten wells within 144 square miles is not a high injection density.

³ https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf88412fcf

April 22, 2021 Page 3

Figure 4 from the referenced Bureau of Economic Geology (The Middle-Upper Ordovician Simpson Group of the Permian Basin: Deposition, Diagenesis, And Reservoir Development) is attached to this letter and the portion of that figure for the Delaware Basin is shown to the right. In southern Lea County the mapped thickness appears to be 500-1500 feet thick (note one contour line appears to be missing on the map). This unit, which is clay-rich carbonate interbedded with shale and sandstone, provides an excellent permeability/pressure barrier between the injection zone and the basement faults that were re-activated during Woodford time.

Data from the Amoco Federal CW Com 1 (30-025-28119) show that the thickness of the Simpson in the Antelope Ridge area of Lea County (Section 3 24S 34E) is about 450 feet thick with. This is consistent with Figure 4 of the BEG paper (probably because this well was used to produce the isopach map).

We contend that the data permit conclusion that faults near the Lea Unit #10 would be dominantly north-south normal faults, as is common in Lea County. The data on Plate 6 permit a conclusion that faults near the Lea Unit #10 SWD are also most likely to exhibit a low FSP, like the mapped faults shown on Plate 5.

Given the density of active Devonian SWDs near the proposed Lea Unit #10 SWD well and the high likelihood that any unmapped faults in the area would exhibit a low FSP, the probability that injection into the Lea Unit #10 SWD would cause an increase in pore pressure to trigger a seismic event of sufficient magnitude to cause damage is very low.

April 22, 2021 Page 4

The users of this letter should recognize the uncertainties of using seismic maps of the Permian Basin to determine probability that injection of wastewater into a single SWD well could cause seismic events of sufficient magnitude to cause damage. However, on a regional basis injection by numerous wells into the Devonian interval will raise the hydrostatic pressure. If pressure increases sufficiently, fluid could migrate from the injection zone along fault planes, up and down. Downward fluid migration will be intercepted first by the sandstone units of the Simpson Group. After fluid pressure increases in these sandstones, fluid would migrate downward into the Ellenberger Formation, which lies beneath the Simpson Group. This downward migration will next enter the permeable units of the Ellenberger and, over time, increase the fluid pressure. After fluid pressure in the Ellenberger is sufficiently large to cause downward migration along fault planes or other conduits, the migrating fluid will, in some areas, enter a thinner horizon of granite wash. Downward migrating fluids from the injection zone could then enter basement fault planes if the pressure in the granite wash horizon is sufficient and reduce the frictional resistance (lubricate the faults). Reduction in the frictional force in faults due to fluid invasion can and has caused seismic events.

In my opinion, the probability that injection into the Lea Unit #10 SWD will measurably contribute to the events described above and will cause a seismic event resulting in damage is so low as to be nil. Nevertheless, additional data and interpretation regarding the Simpson and Ellenburger Groups will be useful to OCD in the evaluation of the findings in this letter.

Sincerely, R.T. Hicks Consultants

Randall T. Hicks Principal

Copy: Legacy Reserves LP

M:\Leagacy\LeaUnit10\ArcGISProLeaUnit10\ArcGISProLeaUnit10.aprx

Oil and Gas (NMOCD)

- A Salt Water Injection, Active
- 🛆 Salt Water Injection, Cancelled
- A Salt Water Injection, New
- A Salt Water Injection, Plugged
- A Salt Water Injection, Temporarily Abandoned

Seismic and Fault Slip Potential-Ewing et al. (1990), Green and Jones (1997), Ruppel et al. (2005), and the USGS Quaternary Faults and Folds Database (Crone and Wheeler, 2000).

Figure 4. Thickness map of Simpson Group modified from Texas Water Development Board (1972), Frenzel and others (1988), and Northcutt and Johnson (1997). Thousand-foot contour lines and locations of figure 5 cross sections shown in heavy red and blue lines, respectively. Note that contour interval is 100 ft for Oklahoma and 250 ft for Texas and New Mexico.

Lea Unit #10

API #3002520506

Lat 32.574585 Lon -103.515465 1980 FNL & 1980 FWL Sec 13, T20S, R34E, Lea, NM

TD: 14,438' KB 23' Surface: 13 3/8", 48#, H-40 @ 853' Intermediate: 9 5/8", 36/40#, J-55/N-80 @ 5,161' Production: 7", 26#, N-80 @ 14,308'

Perfs: 9,519' – 9,606' Bone Spring 9,625' – 9,657' Bone Spring 10,181' – 10,186' Bone Spring 10,192' – 10,212' Bone Spring CIBP @ 12,850' w/35' cmt. on top = 12,815' 12,890' – 13,114' Penn 14,308' – 14,438' Devonian (Squeezed w/80 sx Class H)

Issue: Squeeze off Bone Spring perfs and drill out. Then open up Devonian open hole to get inj. rate.

Proposal:

- 1. Hot oil well 48 hrs. before rigging up.
- 2. MIRU PU
- 3. POH LD rods and pump.
- 4. POH LD production tbg.
- 5. Pick up work string w/BP perf. sub on btm. Hydrotest tbg. to 6,000 PSI. RIH to btm. Needs to be at least 10,212' in order to squeeze btm. perfs.
- 6. POH w/tbg.
- 7. RIH w/packer to 9,519'. Load annulus and test to 500 PSI. If it doesn't hold, find leak and notify Midland.
- 8. If casing tests good, POH w/pkr.
- 9. RIH w/threaded 7" cement retainer w/3 jts. FG tbg. on btm. to 10,130'. Pump 70 BW dn. tbg. and set retainer @ 10,130'. End of FG should be 10,222'. Sting out and back into retainer.
- 10. RU WTC equipment.
- 11. Attempt to load annulus and monitor. Squeeze perfs 10,181' 10,212' w/400 sx as per WTC procedure.
- 12. Reverse to clean fluid if possible. If not, pump 20 bbls dn. tbg. and POH, LD stinger.
- 13. RIH w/threaded 7" cement retainer w/6 jts. FG tbg. on btm. to 9,460'. Reverse 20 bbls. through retainer. Shut in BOP and est. rate into perfs. Set retainer @ 9,460'. End of FG should be 9,646'. Sting out and back into retainer. Pressure annulus to 300 PSI and monitor.
- 14. Squeeze perfs 9,519 9,657 w/200 sx as per WTC procedure.
- 15. Reverse to clean fluid. POH, LD stinger.
- 16. WOC 24 hrs.
- 17. RIH w/6 1/8" bit w/6 4 $\frac{1}{4}$ " DCs and WS.
- 18. Drill out CR @ 9,460' and cmt. down below 9,657'. Test to 500 PSI. Notify Midland and resqueeze if needed.
- 19. Drill out CR @ 10,130' and cmt. down below 10,212'. Test to 500 PSI. Notify Midland and resqueeze if needed.
- 20. Drill cement from 12,815' to CIBP @ 12,850'. Drill out CIBP.
- 21. Run bit through perfs. 12,890' 13,114'.
- 22. Press test Penn squeezed perfs 12,890' 13,114' to 300 PSI. Contact Midland with results.
- 23. Drill cement out of open hole to 14,438'.
- 24. POH LD bit and DC's.
- 25. RIH w/7" pkr. & set @ 14,210'. Perform step rate test to est. rate (10 BPM). Contact Midland with results.
- 26. RU acid pump and perform 15% NEFE acid job according to results.
- 27. POOH & laid down work string and tools.
- 28. PU and RIH w/3 ½" nickel coated AS1 pkr. w/2.81" profile nipple and on/off tool on 3 ½" L-80 IPC tbg.

- 29. Set pkr. @ 14,210'.
- 30. Test annulus to 500 PSI f/30 mins.
- 31. Release on/off tool.
- 32. Circulate packer fluid.
- 33. Reset on/off tool and retest.
- 34. RDMO PU.
- 35. Turn over to production.