# 3R - 084

# DEC 2010 GWMR

# 06/10/2011





June 10, 2011

Mr. Glenn von Gonten State of New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

> RE: Farmington B-Com Number IE Natural Gas Well Site, Farmington, New Mexico. December 2010 Quarterly Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed please find a copy of the above-referenced document as compiled by Tetra<sup>1</sup> Tech, Inc., for this Farmington area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly & Blanchard

Kelly E. Blanchard Project Manager/Geologist

Enclosures (1)

Cc: Brandon Powell, NMOCD, Aztec, NM Terry Lauck, ConocoPhillips RM&R

# QUARTERLY GROUNDWATER MONITORING REPORT FEBRUARY 2011 SAMPLING EVENT

# FARMINGTON B COM NO. IE NATURAL GAS WELL SITE FARMINGTON, SAN JUAN COUNTY, NEW MEXICO

OCD # 3R0084 API # 30-045-24774

Prepared for:

ConocoPhillips

420 South Keeler Avenue Bartlesville, OK 74004

**Prepared by:** 



6121 Indian School Rd. NE Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 8690096.100

March 2011

# TABLE OF CONTENTS

| 1.0 | INT | RODUCTION                               | 1 |
|-----|-----|-----------------------------------------|---|
|     | 1.1 | Site History                            | I |
| 2.0 | MET | HODOLOGY AND RESULTS                    | 2 |
|     | 2.1 | Groundwater Monitoring Methodology      | 2 |
|     | 2.2 | Groundwater Sampling Analytical Results | 2 |
| 3.0 | CON | NCLUSIONS                               | 3 |
| 4.0 | REF | ERENCES                                 | 3 |

## FIGURES

| 1. | Site | Location | Map |
|----|------|----------|-----|
|----|------|----------|-----|

- 2. Site Layout Map
- 3. Site Cross-Section
- 4. Groundwater Elevation Contour Map
- 5. BTEX Concentration Map
- 6. B-COM #IE MW-I and MW-6 Hydrograph

## TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Summary (May 2005 February 2011)
- 3. Groundwater Laboratory Analytical Results Summary (February 1998 February 2011)

## APPENDICES

Appendix A. Groundwater Sampling Field Forms

Appendix B. Laboratory Analytical Report

Appendix C. Historical Analytical Data

# QUARTERLY GROUNDWATER MONITORING REPORT B COM NO.IE NATURAL GAS WELL SITE FARMINGTON, NEW MEXICO FEBRUARY 2011

## **1.0 INTRODUCTION**

This report presents the results of quarterly groundwater monitoring completed by Tetra Tech, Inc. (Tetra Tech) on February 7, 2011, at the ConocoPhillips Company Farmington B Com No. 1E remediation site in Farmington, New Mexico (Site).

The Site is located on private property in southeast Farmington, New Mexico, near the corner of East Murray Drive and South Carlton Avenue. The Site consists of a gas production well and associated equipment and installations. The location and general features of the Site are presented as **Figures 1** and **2**, respectively. A generalized cross section of the site is included as **Figure 3**.

## I.I Site History

The history of the Site is outlined on Table I and discussed in more detail in the following paragraphs.

Conoco Inc., predecessor to ConocoPhillips Company, owned the property and operated the gas well between July 1991 and January 1997. Merrion Oil & Gas Company is the current property owner and well operator. A Phase II Environmental Site Assessment associated with the property transfer was conducted by On Site Technologies, Limited (On Site) in March 1997. Soil hydrocarbon impacts were confirmed north of a production storage tank and west of a separator/dehydrator pit (**Figure 2**). Impacts were described by On Site as limited to a former unlined pit area with hydrocarbon migration primarily occurring vertically through the soil profile due to the porous and permeable subsurface soils; lateral migration was considered minimal (On Site, 1997). Soil excavation of the two impacted areas occurred in September 1997. A total of 906 cubic yards of impacted soil were removed from two excavation areas. Of the 906 cubic yards, 328 were transported offsite and 578 were screened and placed back into the excavated areas along with clean fill. During backfill activities, approximately 10 gallons of liquid fertilizer was sprayed into both excavations to enhance insitu degradation of residual hydrocarbons (On Site, 1997).

Groundwater Monitor Wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6 were installed at the Site in February and August 1998 under the supervision of On Site. During 1998 and 1999, results from groundwater samples collected from MW-2 through MW-6 did not have benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. On Site then requested that groundwater quality monitoring in Monitor Wells MW-2 through MW-6 be discontinued. The request was approved by the New Mexico Energy, Minerals, and Natural Resources Department (NMEMNRD) in a letter to Ms. Shirley Ebert of Conoco Inc. (NMEMNRD, 2000). Although Monitor Wells MW-2 through MW-6 showed no hydrocarbon impacts during 1998 and 1999, light non-aqueous phase liquid (LNAPL) has

1

Quarterly Groundwater Monitoring Report B Com No.1E, Farmington, New Mexico OCD # 3R0084

been present in MW-I since its installation and recovery has been ongoing. Souder Miller and Associates (SMA) placed active and passive skimmers in MW-I in May 2004. The passive skimmer collected a small amount of LNAPL; the active skimmer did not collect any LNAPL. SMA determined that an active skimmer was not a viable method of LNAPL recovery in MW-I and proposed passive skimming or periodic hand bailing.

Tetra Tech began groundwater quality monitoring at the site in May 2005. Most recently, groundwater quality monitoring took place on February 7, 2011. This is the first quarter that dissolved manganese was tested.

## 2.0 METHODOLOGY AND RESULTS

## 2.1 Groundwater Monitoring Methodology

## **Groundwater Elevation Measurements**

On February 7, 2011, groundwater elevation measurements were recorded for Monitor Wells MW-1 and MW-6 using a dual interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater elevation contour map is presented as **Figure 4**. Based on the February 7, 2011 monitoring data, groundwater flow remains to the west and is consistent with recent and historical records at the Site. The Animas River is approximately <sup>3</sup>/<sub>4</sub> miles from the Site and flows west as well.

#### Groundwater sampling

Groundwater samples were obtained from Monitor Wells MW-1 and MW-6 on February 7, 2011, this represents the eleventh round of consecutive quarterly groundwater monitoring at the Site. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Southern Petroleum Laboratories in Houston, Texas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260B, and for dissolved iron and manganese according to EPA Method 6010B. Groundwater sampling field forms are included as **Appendix A**.

## 2.2 Groundwater Sampling Analytical Results

The NMWQCC mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC).

### • Volatiles (BTEX)

A hydrocarbon sheen was encountered in MW-I during the February 2011 sampling event. Laboratory analysis of a groundwater sample from MW-I revealed that benzene toluene and total xylenes were not present above laboratory detection limits (1.0 ug/L). NMWQCC groundwater quality standards for benzene, toluene, and total xylenes are 10 µg/L, 750 µg/L, and 620 µg/L, respectively. Ethylbenzene was detected at a

concentration of 26  $\mu$ g/L; the NMWQCC groundwater quality standard for ethylbenzene is 750  $\mu$ g/L.

#### Dissolved Manganese

 The groundwater quality standard for dissolved manganese is 0.2 milligrams per liter (mg/L). Groundwater samples collected from Monitor Wells MW-1 and MW-6 were found to contain dissolved manganese at concentrations of 0.459 mg/L and 0.543 mg/L, respectively.

**Table 3** presents the laboratory analytical results. The laboratory analytical reports are included as **Appendix B**, and a BTEX concentration map is included as **Figure 5**. The SMA historical analytical data is attached as **Appendix C**.

## 3.0 CONCLUSIONS

Although a hydrocarbon sheen was observed in Monitor Well MW-I during the February 2011 monitoring event, BTEX constituents were below laboratory detection limits. The LNAPL sheen has been intermittently detectable during quarterly groundwater pumping events since 2005 and is shown in a hydrograph of groundwater elevations in MW-I and MW-6 (**Figure 6**). Generally, if MW-I does not have an oil absorbent sock, a hydrocarbon sheen or measureable LNAPL is observed at various times of the year and at various depths.

Groundwater analytical results for Monitor Wells MW-I and MW-6 continue to show BTEX concentrations below NMWQCC groundwater quality standards. To date, BTEX levels in MW-1 have been below NMWQCC groundwater quality standards since April 2009. Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater sample analytical results indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards or have reached Site-Blanchard specific background levels. Please contact Kelly at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

3

## 4.0 **REFERENCES**

New Mexico Energy, Minerals, and Natural Resources Department. (2000). Re: Farmington B Com #1E Well Site. Letter to Ms. Shirley Ebert, Conoco, Inc. December 13, 2000.

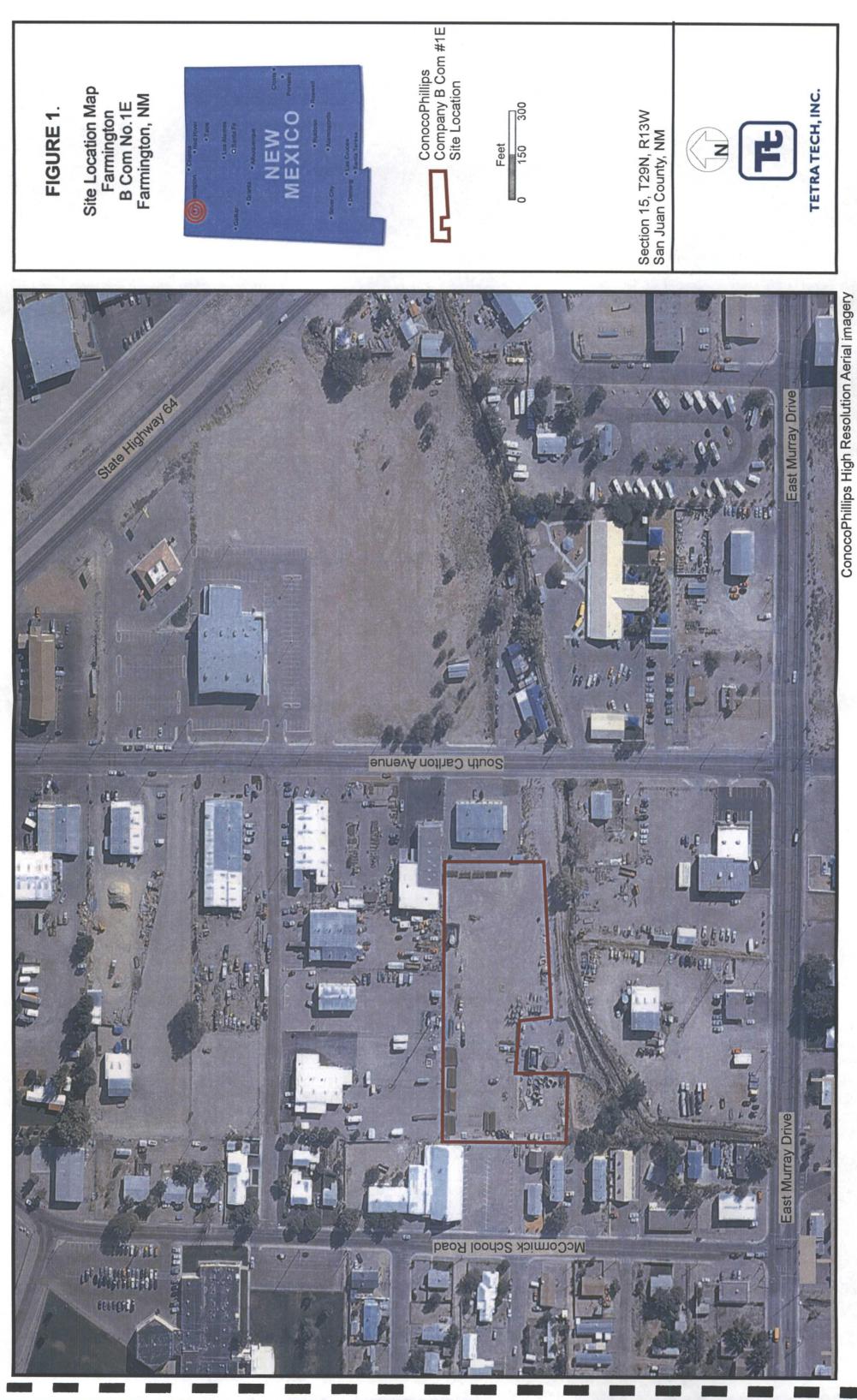
On-Site Technologies, Ltd. (1997). Annual Summary, Pit Closures and Groundwater Impact Updates, State of New Mexico, 1996. Prepared for Conoco Inc., Midland Division. Report dated April 22, 1997. 21 pp.

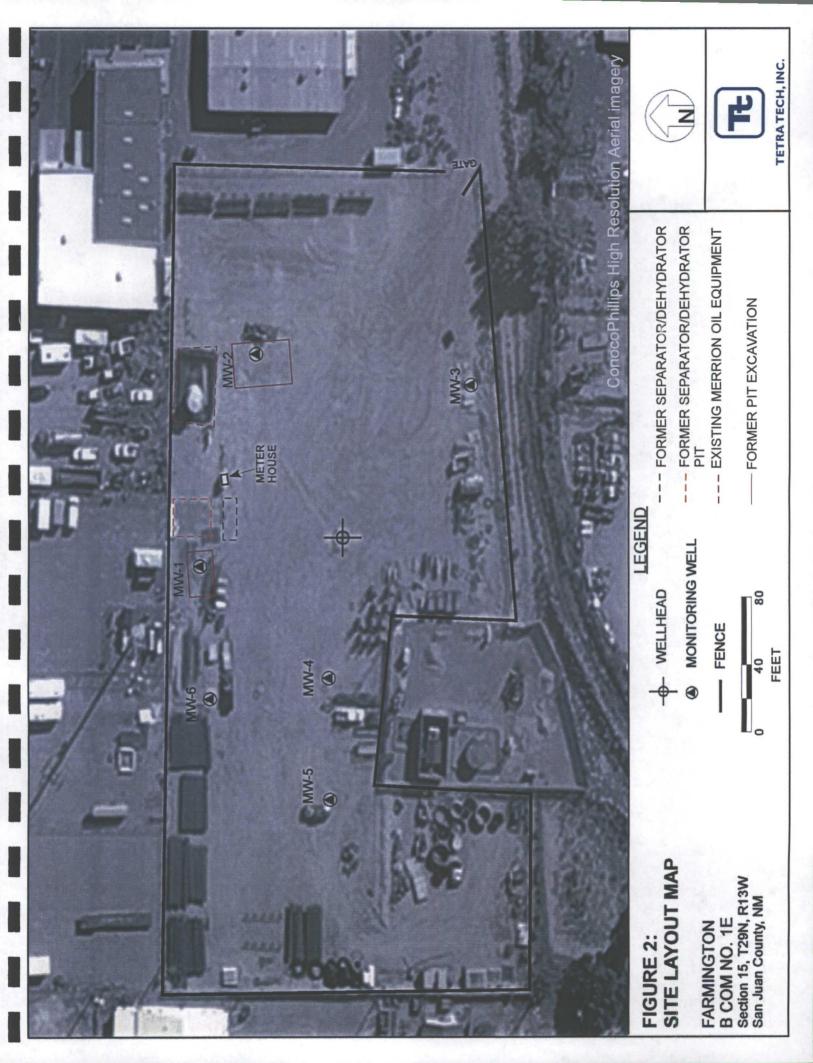
On-Site Technologies, Ltd. (1997). Re: Remediation Summary Farmington B Com #1E. . Letter Attn: Mr. Neal Goates, Senior Environmental Specialist, Conoco, Inc. November 26, 1997.

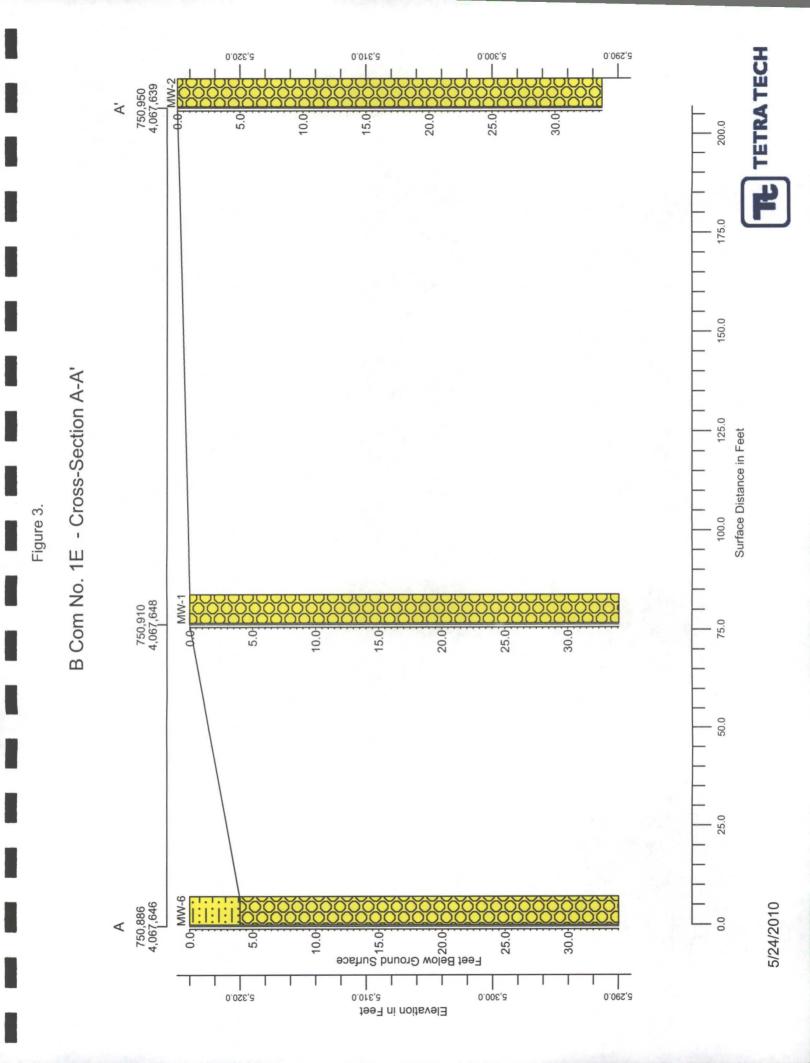
L

# **FIGURES**

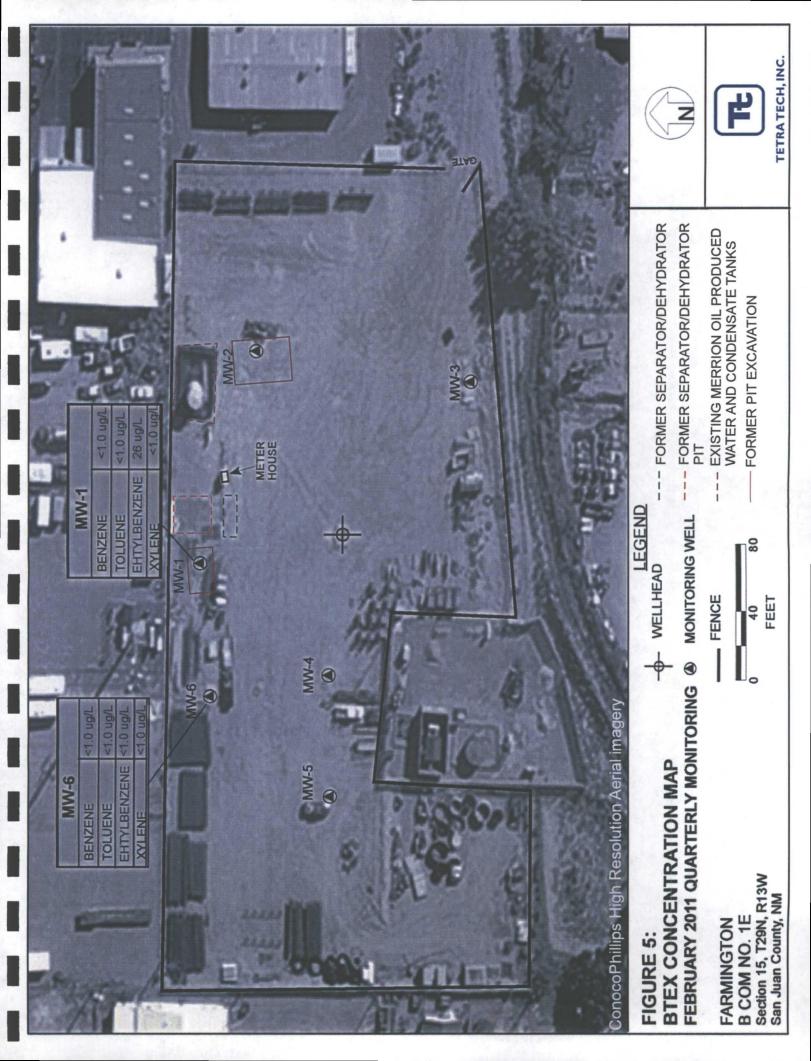
I. Site Location Map


2. Site Layout Map

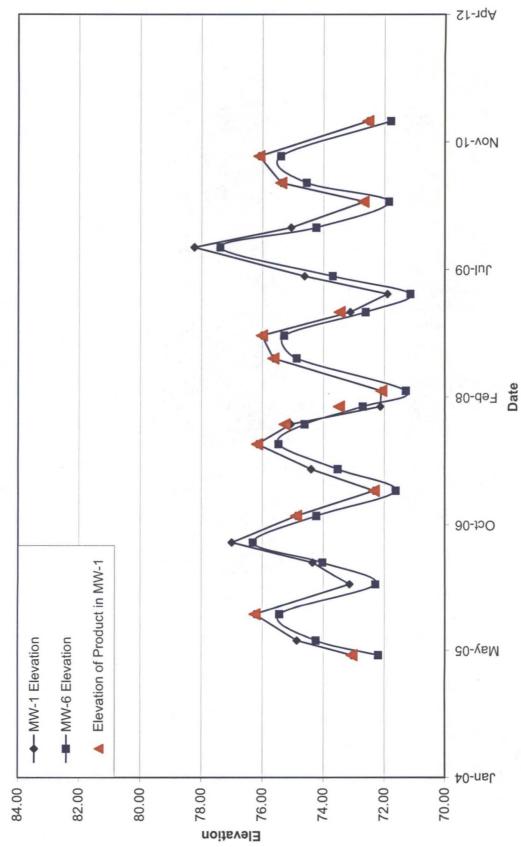

3. Site Cross-Section


4. Groundwater Elevation Contour Map

5. BTEX Concentration Map


6. B-COM #IE Hydrograph
















# TABLES

1. Site History Timeline

2. Groundwater Elevation Summary (May 2005 – December 2010)

3. Laboratory Analytical Data Summary (February 1998 – December 2010)

.

**Date/Time Period** Event/Action Description Pioneer Production Corp. completed the Farmington B-COM No. 1E February 18, 1982 Well Completed gas production well Conoco Inc. purchases wellsite from Mesa Operating Limited July 1, 1991 Conoco Inc. well purchase Partnership of Amarillo, Texas Conoco Inc. sold the property and mineral lease to Merrion Oil & January 1, 1997 Change of ownership Gas Co. Phase II Environmental Site Assessment is conducted by On Site Technologies. Three test holes advanced with Auger refusal encountered at 7 feet below ground surface (bgs) due to gravel and March, 1997 Site Assessment cobbles. No samples collected. On Site Technologies later excavates four additional test holes ranging in depth from 14 to 19 feet bgs. Soil samples are collected from each excavation. TPH and BTEX contamination is found in the vicinity of a former unlined pit. On Site Technologies oversees soil excavation of two pits. 906 cubic yards of impacted soil were removed; of which 328 were disposed of offsite and 578 cubic yards were placed back in the pits September, 1997 Soil Excavation along with clean fill. Approximately 10 gallons of liquid fertilizer was sprayed into each pit during backfill. Six monitor wells (MW-1 through MW-6) installed at the site under February and August 1998 Monitor Well Installation the supervision of On Site Groundwater Removal from First removal of groundwater - 160 gallons removed by vacuum October 29, 2004 Monitor Well MW-1 truck operated by Riley Industrial Services of Farmington, NM Groundwater Removal from 40 gallons removed by vacuum truck operated by Riley Industrial November 1, 2004 Monitor Well MW-1 Services of Farmington, NM Groundwater Removal from 150 gallons removed by vacuum truck operated by Riley Industrial December 3, 2004 Monitor Well MW-1 Services of Farmington, NM Tetra Tech begins guarterly monitoring at the site. Groundwater May 9th and 10th, 2005 Monitor Well Sampling samples collected from Monitor Wells MW-1 and MW-6. A sheen is noted in MW-1; an oil absorbant sock is placed in the well. Groundwater Removal from 138 gallons removed by vacuum truck operated by Riley Industrial July 6, 2005 Monitor Well MW-1 Services of Farmington, NM Groundwater Removal from Groundwater samples collected from Monitor Wells MW-1 and MW-October 19, 2005 Monitor Well MW-1 and Monitor 6. 186 gallons removed from MW-1; a sheen is observed in purge Well Sampling water and oil absorbant sock is replaced. 144 gallons removed by vacuum truck operated by Riley Industrial February 16, 2006 Services of Farmington, NM 152 gallons removed by vacuum truck operated by Riley Industrial May 15, 2006 Groundwater Removal from Services of Farmington, NM Monitor Well MW-1 457 gallons removed by vacuum truck operated by Riley Industrial August 2, 2006 Services of Farmington, NM 423 gallons removed by vacuum truck operated by Riley Industrial November 14, 2006 Services of Farmington, NM Third sampling of monitor wells MW-1 and MW-6 conducted by November 14, 2006 Monitor Well Sampling Tetra Tech 220 gallons removed vacuum truck operated by Riley Industrial February 20, 2007 Services of Farmington, NM 364 gallons removed by vacuum truck operated by Riley Industrial May 15, 2007 Groundwater Removal from Services of Farmington, NM 684 gallons removed by vacuum truck operated by Riley Industrial Monitor Well MW-1 August 21, 2007 Services of Farmington, NM 651 gallons removed by vacuum truck operated by Riley Industrial November 7, 2007 Services of Farmington, NM Fourth sampling of monitor wells MW-1 and MW-6 conducted by November 7, 2007 Monitor Well Sampling Tetra Tech 149 gallons removed by vacuum truck operated by Riley Industrial Groundwater Removal from January 16, 2008 Monitor Well MW-1 Services of Farmington, NM 93 gallons removed by vacuum truck operated by Riley Industrial Groundwater Removal from March 18, 2008 Monitor Well MW-1 Services of Farmington, NM July 24, 2008 Monitor Well Sampling Initiation of quarterly sampling for Monitor Wells MW-1and MW-6

Table 1. Site History Timeline - Farmington B Com No. 1E

October 22, 2008

Monitor Well Sampling

Continuation of quarterly sampling for Monitor Wells MW-1 and MW-

| Date/Time Period   | Event/Action          | Description                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| January 21, 2009   | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-<br>6. Free product found in MW-1; oil absorbent sock placed in the well.                                                                                                                       |  |  |  |  |  |  |
| April 1, 2009      | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-<br>6. No free product detected in MW-1.                                                                                                                                                        |  |  |  |  |  |  |
| June 10, 2009      | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-<br>6. No free product detected in MW-1.                                                                                                                                                        |  |  |  |  |  |  |
| October 1, 2009    | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-<br>6. No free product detected in MW-1. <b>First quarter of compliance</b><br>with all COCs bellow NMWQCC standards.                                                                           |  |  |  |  |  |  |
| December 17, 2009  | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-6. No free product detected in MW-1. <b>Second quarter of compliance</b> with all COCs bellow NMWQCC standards.                                                                                 |  |  |  |  |  |  |
| March 29, 2010     | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-<br>6. A thin hydrocarbon sheen is detected in MW-1. <b>Third quarter of</b><br><b>compliance</b> with all COC's below NMWQCC standards.                                                        |  |  |  |  |  |  |
| June 11, 2010      | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-6. A thin hydrocarbon sheen is detected in MW-1. Fourth quarter of compliance with all COC's below NMWQCC standards                                                                             |  |  |  |  |  |  |
| September 24, 2010 | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-6. A thin hydrocarbon sheen is detected in MW-1. Fifth quarter of compliance with all COC's below NMWQCC standards.                                                                             |  |  |  |  |  |  |
| February 7, 2011   | Monitor Well Sampling | Continuation of quarterly sampling for Monitor Wells MW-1 and MW-6. A thin hydrocarbon sheen is detected in MW-1. Sixth quarter of compliance with NMWQCC standards for BTEX; however, dissolved manganese concentrations in MW-1 and MW-6 were above standards. |  |  |  |  |  |  |

Table 1. Site History Timeline - Farmington B Com No. 1E

ľ

H

## Table 2. Farmington B Com #1E Groundwater Elevation Summary

| Well ID | Total Depth<br>(ft. bgs) | Screen Interval<br>(ft) | *Elevation<br>(ft.) (TOC) | Date<br>Measured      | Depth to Water<br>(ft. below<br>TOC) | Depth to<br>Product (ft.<br>below TOC)** | Relative<br>Groundwater<br>Elevation (ft TOC) |
|---------|--------------------------|-------------------------|---------------------------|-----------------------|--------------------------------------|------------------------------------------|-----------------------------------------------|
|         |                          |                         |                           | 5/9/2005              | 28.30                                | Sheen                                    | 73.07                                         |
|         |                          |                         |                           | 7/6/2005              | 26.50                                | NA                                       | 74.87                                         |
|         |                          |                         | 10/19/2005                | 25.12                 | Sheen                                | 76.25                                    |                                               |
|         |                          |                         |                           | 2/16/2006             | 28.23                                | NA                                       | 73.14                                         |
|         |                          |                         |                           | 5/15/2006             | 27.02                                | NA                                       | 74.35                                         |
|         |                          |                         |                           | 8/2/2006              | 24.37                                | NA                                       | 77.00                                         |
|         |                          |                         |                           | 11/14/2006            | 26.48                                | Sheen                                    | 74.89                                         |
|         |                          |                         |                           | 2/20/2007             | 29.03                                | Sheen                                    | 72.34                                         |
|         |                          |                         |                           | 5/15/2007             | 26.97                                | NA                                       | 74.40                                         |
|         |                          |                         |                           | 8/21/2007             | 25.20                                | Sheen                                    | 76.17                                         |
|         |                          |                         |                           | 11/7/2007             | 26.30                                | 26.1                                     | 75.07                                         |
|         | 04.00                    | 40.00.04.00             | 404.07                    | 1/16/2008             | 29.24                                | 27.88                                    | 72.13                                         |
| MW-1    | 34.09                    | 19.09 - 34.09           | 101.37                    | 3/18/2008             | 29.27                                | 29.27                                    | 72.10                                         |
|         |                          |                         |                           | 7/24/2008             | 25.73                                | Sheen                                    | 75.64                                         |
|         |                          |                         |                           | 10/22/2008            | 25.35                                | Sheen                                    | 76.02                                         |
|         |                          |                         |                           | 1/21/2009             | 28.25                                | 27.90                                    | 73.12                                         |
|         |                          |                         |                           | 4/1/2009              | 29.47                                | NA                                       | 71.90                                         |
|         |                          |                         |                           | 6/10/2009             | 26.75                                | NA                                       | 74.62                                         |
|         |                          |                         |                           | 10/1/2009             | 23.14                                | NA                                       | 78.23                                         |
|         |                          |                         |                           | 12/17/2009            | 26.31                                | NA                                       | 75.06                                         |
|         |                          | •                       |                           | 3/29/2010             | 28.71                                | 28.68                                    | 72.66                                         |
|         | ,                        |                         |                           | 6/11/2010             | 25.98                                | Sheen                                    | 75.39                                         |
|         |                          |                         |                           | 9/24/2010             | 25.26                                | Sheen                                    | 76.11                                         |
|         |                          |                         |                           | 2/7/2011              | 28.83                                | Sheen                                    | 72.54                                         |
|         |                          |                         |                           | 5/9/2005              | 27.28                                | NA                                       | 74.29                                         |
|         |                          |                         |                           | 7/6/2005              | 25.52                                | NA                                       | 76.05                                         |
|         |                          |                         |                           | 10/19/2005            | 23.32                                | NA                                       | 77.27                                         |
| 1       |                          |                         |                           | 2/16/2006             | 27.38                                | NA                                       | 74.19                                         |
|         |                          |                         |                           | 5/15/2006             | 25.62                                | NA                                       | 75.95                                         |
|         |                          |                         |                           | 8/2/2006              | 23.51                                | NA                                       | 78.06                                         |
|         |                          |                         |                           | 11/14/2006            | 26.08                                | NA                                       | 75.49                                         |
|         |                          |                         |                           | 2/20/2007             | 28.13                                | NA                                       | 73.44                                         |
|         |                          |                         |                           | 5/15/2007             | 25.86                                | NA                                       | 75.71                                         |
|         |                          |                         |                           | 8/21/2007             |                                      | NA                                       | 77.12                                         |
|         |                          |                         |                           | 11/7/2007             | 24.45<br>25.31                       | NA                                       | 76.26                                         |
|         |                          |                         |                           | 1/16/2008             | 25.31                                | NA                                       | 76.20                                         |
| MW-2    | 33.72                    | 18.72 - 33.72           | 101.57                    | ,3/18/2008            | 28.68                                | NA                                       | 74.30                                         |
|         |                          |                         |                           | 7/24/2008             | 20.00                                | NA                                       | 76.80                                         |
|         |                          |                         |                           | 10/22/2008            | 24.77                                | NA                                       | 77.02                                         |
|         |                          |                         |                           | 1/21/2009             | 24.33                                | NA                                       | 74.34                                         |
|         |                          |                         |                           | 4/1/2009              | 28.76                                | NA                                       | 72.81                                         |
|         |                          |                         |                           | 6/10/2009             | 25.76                                | NA                                       | 75.81                                         |
|         |                          |                         |                           | 10/1/2009             | 22.22                                | NA                                       | 79.35                                         |
|         |                          |                         |                           | 12/17/2009            | 25.62                                | NA NA                                    | 75.95                                         |
|         |                          |                         | ł                         | 3/29/2010             |                                      |                                          |                                               |
|         |                          |                         |                           | 6/11/2010             | 27.96                                | NA ·                                     | 73.61                                         |
|         |                          |                         |                           | 9/24/2010             | 24.99                                | NA                                       | 76.58                                         |
|         |                          |                         |                           | 9/24/2010<br>2/7/2011 | 24.54<br>28.22                       | NA<br>NA                                 | 77.03<br>73.35                                |

I

1 of 3

## Table 2. Farmington B Com #1E Groundwater Elevation Summary

| Well ID | Total Depth<br>(ft. bgs) | Screen Interval<br>(ft) | *Elevation<br>(ft.) (TOC) | Date<br>Measured | Depth to Water<br>(ft. below<br>TOC) | Depth to<br>Product (ft.<br>below TOC)** | Relative<br>Groundwater<br>Elevation (ft TO |
|---------|--------------------------|-------------------------|---------------------------|------------------|--------------------------------------|------------------------------------------|---------------------------------------------|
|         |                          |                         |                           | 5/9/2005         | 27.81                                | NA                                       | 74.29                                       |
|         |                          |                         |                           | 7/6/2005         | 26.03                                | NA                                       | 76.07                                       |
|         |                          |                         |                           | 10/19/2005       | 25.06                                | NA                                       | 77.04                                       |
|         |                          |                         |                           | 2/16/2006        | 28.57                                | NA                                       | 73.53                                       |
|         |                          |                         |                           | 5/15/2006        | 26.15                                | NA                                       | 75.95                                       |
|         |                          |                         |                           | 8/2/2006         | 23.83                                | NA                                       | 78.27                                       |
|         |                          |                         |                           | 11/14/2006       | 26.75                                | NA                                       | 75.35                                       |
|         |                          |                         |                           | 2/20/2007        | 29.31                                | NA                                       | 72.79                                       |
|         |                          |                         |                           | 5/15/2007        | 26.23                                | NA                                       | 75.87                                       |
|         |                          |                         |                           | 8/21/2007        | 25.00                                | NA                                       | 77.10                                       |
|         |                          |                         |                           | 11/7/2007        | 26.12                                | NA                                       | 75.98                                       |
| MAN O   | 20.44                    | 47.44 00.44             | 102.4                     | 1/16/2008        | 28.46                                | NA                                       | 73.64                                       |
| MW-3    | 32.44                    | 17.44 - 32.44           | 102.1                     | 3/18/2008        | 29.97                                | NA                                       | 72.13                                       |
|         |                          |                         |                           | 7/24/2008        | 25.27                                | NA                                       | 76.83                                       |
|         |                          |                         |                           | 10/22/2008       | 25.35                                | NA                                       | 76.75                                       |
|         |                          |                         |                           | 1/21/2009        | 28.56                                | NA                                       | 73.54                                       |
|         |                          |                         |                           | 4/1/2009         | 30.20                                | NA                                       | 71.90                                       |
|         |                          |                         |                           | 6/10/2009        | 26.55                                | NA                                       | 75.55                                       |
|         |                          |                         |                           | 10/1/2009        | 23.00                                | NA                                       | 79.10                                       |
|         |                          |                         | · •                       | 12/17/2009       | 26.86                                | NA                                       | 75.24                                       |
|         |                          |                         |                           | 3/29/2010        | 29.41                                | NA                                       | 72.69                                       |
|         |                          |                         |                           | 6/11/2010        | 25.62                                | NA                                       | 76.48                                       |
|         |                          |                         |                           | 9/24/2010        | 25.23                                | NA                                       | 76.87                                       |
|         |                          |                         | ł                         | 2/7/2011         | 29.47                                | NA                                       | 72.63                                       |
|         |                          |                         |                           | 5/9/2005         | 28.73                                | NA                                       | 72.67                                       |
|         |                          |                         |                           | 7/6/2005         | 26.66                                | NA                                       | 74,74                                       |
| •       |                          |                         |                           | 10/19/2005       |                                      |                                          |                                             |
|         |                          |                         |                           | 2/16/2006        | 25.62                                | NA<br>NA                                 | 75.78                                       |
|         |                          |                         |                           | 5/15/2006        | 28.91                                |                                          | 72.49<br>74.54                              |
|         |                          |                         |                           | 8/2/2006         | 26.86                                | NA                                       |                                             |
|         |                          |                         |                           | 11/14/2006       | 24.59                                | NA                                       | 76.81                                       |
|         |                          |                         |                           | 2/20/2007        | 27.02                                | NA                                       | 74.38                                       |
|         |                          |                         |                           |                  | 29.61                                | NA                                       | 71.79                                       |
|         |                          |                         |                           | 5/15/2007        | 27.25                                | NA                                       | 74.15                                       |
|         |                          |                         |                           | 8/21/2007        | 25.56                                | NA                                       | 75.84                                       |
|         |                          |                         |                           | 11/7/2007        | 26.50                                | NA                                       | 74.90                                       |
| MW-4    | 32.72                    | 17.72 - 32.72           | 101.4                     | 1/16/2008        | 28.55                                | NA                                       | 72.85                                       |
|         |                          |                         |                           | 3/18/2008        | 29.99                                | NA                                       | 71.41                                       |
|         |                          |                         |                           | 7/24/2008        | 26.02                                | NA                                       | 75.38                                       |
|         |                          |                         |                           | 10/22/2008       | 25.84                                | NA                                       | 75.56                                       |
|         |                          |                         |                           | 1/21/2009        | 28.69                                | NA                                       | 72.71                                       |
|         |                          |                         |                           | 4/1/2009         | 30.22                                | NA                                       | 71.18                                       |
|         |                          |                         |                           | 6/10/2009        | 27.31                                | NA                                       | 74.09                                       |
|         |                          |                         |                           | 10/1/2009        | 23.80                                | NA                                       | 77.60                                       |
|         |                          |                         |                           | 12/17/2009       | 27.07                                | NA                                       | 74.33                                       |
|         |                          |                         |                           | 3/29/2010        | 29.51                                | NA                                       | 71.89                                       |
|         |                          |                         | ,                         | 6/11/2010        | 26.43                                | NA                                       | 74.97                                       |
|         |                          |                         |                           | 9/24/2010        | 25.70                                | NA                                       | 75.70                                       |
|         | ļ                        |                         |                           | 2/7/2011         | 29.49                                | NA                                       | 71.91                                       |

Tetra Tech, Inc.

ł

2 of 3

# Table 2. Farmington B Com #1E Groundwater Elevation Summary

| Well ID | Total Depth<br>(ft. bgs) | Screen Interval<br>(ft) | *Elevation<br>(ft.) (TOC) | Date<br>Measured | Depth to Water<br>(ft. below<br>TOC) | Depth to<br>Product (ft.<br>below TOC)** | Relative<br>Groundwater<br>Elevation (ft TOC) |
|---------|--------------------------|-------------------------|---------------------------|------------------|--------------------------------------|------------------------------------------|-----------------------------------------------|
|         |                          |                         |                           | 5/9/2005         | 28.50                                | NA                                       | 72.02                                         |
|         |                          |                         |                           | 7/6/2005         | 26.32                                | NA                                       | 74.20                                         |
|         |                          |                         |                           | 10/19/2005       | 25.30                                | NA                                       | 75.22                                         |
|         |                          |                         |                           | 2/16/2006        | 28.62                                | NA                                       | 71.90                                         |
|         |                          |                         |                           | 5/15/2006        | 26.55                                | NA                                       | 73.97                                         |
|         |                          |                         |                           | 8/2/2006         | 24.23                                | NA                                       | 76.29                                         |
|         |                          |                         |                           | 11/14/2006       | 27.67                                | NA                                       | 72.85                                         |
|         |                          |                         | ,                         | 2/20/2007        | 29.34                                | NA                                       | 71.18                                         |
| •       |                          | (                       |                           | 5/15/2007        | 27.04                                | NA                                       | 73.48                                         |
|         |                          |                         |                           | 8/21/2007        | 25.21                                | NA                                       | 75.31                                         |
|         |                          |                         |                           | 11/7/2007        | 26.13                                | . NA                                     | 74.39                                         |
| MW-5    | 34.09                    | 19.09 - 34.09           | 100.52                    | 1/16/2008        | 28.18                                | NA ·                                     | 72.34                                         |
| 10100-0 | 54.05                    | 19.09 - 34.09           | 100.52                    | 3/18/2008        | 29.65                                | NA                                       | 70.87                                         |
|         |                          |                         |                           | 7/24/2008        | 25.73                                | NA                                       | 74.79                                         |
|         |                          |                         |                           | 10/22/2008       | 25.49                                | NA                                       | 75.03                                         |
|         |                          |                         |                           | 1/21/2009        | 28.38                                | NA                                       | 72.14                                         |
|         |                          |                         |                           | 4/1/2009         | 29.92                                | NA                                       | 70.60                                         |
|         |                          |                         |                           | 6/10/2009        | 27.09                                | NA                                       | 73.43                                         |
|         |                          |                         |                           | 10/1/2009        | 23.50                                | NA                                       | 77.02                                         |
|         | •                        |                         |                           | 12/17/2009       | 26.77                                | NA                                       | 73.75                                         |
|         |                          |                         |                           | 3/29/2010        | 29.21                                | NA                                       | 71.31                                         |
|         |                          |                         |                           | 6/11/2010        | 26.16                                | NA                                       | 74.36                                         |
|         |                          |                         |                           | 9/24/2010        | 25.31                                | NA                                       | 75.21                                         |
|         |                          |                         |                           | 2/7/2011         | 29.13                                | NA                                       | 71.39                                         |
|         |                          |                         |                           | 5/9/2005         | 29.94                                | · NA                                     | 72.20                                         |
|         | •                        |                         |                           | . 7/6/2005       | 27.89                                | NA                                       | 74.25                                         |
|         | · ·                      |                         | •                         | 10/19/2005       | 26.70                                | NA                                       | 75.44                                         |
|         |                          |                         |                           | 2/16/2006        | 29.85                                | NA                                       | 72.29                                         |
|         |                          | ,<br>                   |                           | 5/15/2006        | 28.11                                | NA                                       | 74.03                                         |
|         |                          |                         |                           | 8/2/2006         | 25.83                                | NA -                                     | 76.31                                         |
|         |                          |                         |                           | 11/14/2006       | 27.91                                | NA                                       | 74.23                                         |
|         |                          |                         |                           | 2/20/2007        | 30.52                                | NA                                       | 71.62                                         |
|         |                          |                         | . *                       | 5/15/2007        | 28.61                                | NA                                       | 73.53                                         |
|         |                          |                         |                           | 8/21/2007        | 26.67                                | NA                                       | 75.47                                         |
|         |                          |                         |                           | 11/7/2007        | 27.52                                | NA                                       | 74.62                                         |
|         | <b>0</b> 4 00            |                         | 400.44                    | 1/16/2008        | 29.43                                | NA                                       | 72.71                                         |
| MW-6    | 34.02                    | 19.02 - 34.02           | 102.14                    | 3/18/2008        | 30.85                                | NA                                       | 71.29                                         |
|         |                          | 4                       |                           | 7/24/2008        | 27.26                                | NA                                       | 74.88                                         |
|         |                          |                         |                           | 10/22/2008       | 26.85                                | NA                                       | 75.29                                         |
|         | . ·                      |                         |                           | 1/21/2009        | 29.52                                | NA                                       | 72.62                                         |
|         |                          |                         |                           | 4/1/2009         | 31.00                                | NA                                       | 71.14                                         |
|         |                          |                         |                           | 6/10/2009        | 28.44                                | NA                                       | 73.70                                         |
|         |                          |                         |                           | 10/1/2009        | 24.75                                | NA                                       | 77.39                                         |
|         |                          |                         |                           | 12/17/2009       | 27.90                                | NA                                       | 74.24                                         |
|         |                          |                         |                           | 3/29/2010        | 30.29                                | NA                                       | 71.85                                         |
|         |                          |                         |                           | 6/11/2010        | 27.58                                | NA                                       | 74.56                                         |
|         |                          |                         |                           | 9/24/2010        | 26.74                                | NA                                       | 75.40                                         |
|         |                          |                         |                           | 2/7/2011         | 30.35                                | NA                                       | 71.79                                         |

ft. = Feet TOC = Top of casing

bgs = below ground surface

NA - not applicable or not measured.

\* Relative Elevation
 \*\* Where non-aqueous phase liquid (NAPL) is present greater than sheen, depth to water equals the Top of Casing elevation minus the depth to water, plus the NAPL thickness multiplied by 0.79.

| Well ID     | Date       | Benzene (μg/L) | Toluene (μg/L) | Ethylbenzene<br>(µg/L) | Xylenes (μg/L)  | Nitrate as N<br>(mg/L)          | Sulfate (mg/L) | lron<br>(mg/L) | Dissolved<br>Manganese<br>(mg/L) |
|-------------|------------|----------------|----------------|------------------------|-----------------|---------------------------------|----------------|----------------|----------------------------------|
|             | 2/19/1998  | 210            | · 34           | 370                    | 2,044           | NS                              | NS             | NS             | NS                               |
|             | 6/12/1998  |                |                | 3" fr                  | ee product in b | bailer - not sar                | npled          |                |                                  |
|             | 9/15/1998  |                |                |                        | free product    | <ul> <li>not sampled</li> </ul> |                |                |                                  |
|             | 12/29/1998 | 350            | BDL            | 420                    | 2,800           | NS                              | NS             | NS             | NS                               |
|             | 1/22/2004  |                |                |                        | free product    | <ul> <li>not sampled</li> </ul> |                |                |                                  |
|             | 5/9/2005   | 17             | <0.7           | 74                     | 250             | <0.40                           | 77.8           | 14.9*          | NS                               |
|             | 10/19/2005 | 34             | <1.0           | 170                    | 1400            | 0.15                            | 39.9           | 15*            | NS                               |
|             | 11/14/2006 | 18             | <0.7           | 190                    | 1600            | <0.015                          | 145            | 8.8*           | NS                               |
|             | 11/7/2007  | 7              | <0.7           | 120                    | 250             | <0.015                          | 38.4           | 6.4*           | NS                               |
|             | 7/24/2008  | <5.0           | <5.0           | 90                     | 35              | <0.5                            | 4.76           | 17.2*          | NS                               |
| MW-1        | Duplicate  | <5.0           | <5.0           | 110                    | 59              | NS                              | NS             | NS             | NS                               |
| 141 4 4 - 1 | 10/22/2008 | <5.0           | <5.0           | 88                     | 165             | <0.5                            | 17             | 21.1*          | NS                               |
|             | Duplicate  | <5.0           | <5.0           | 95                     | 186             | NS                              | NS             | NS             | NS                               |
| •           | 1/21/2009  |                |                |                        | free product    | - not sampled                   |                |                |                                  |
|             | 4/1/2009   | <5.0           | <5.0           | 11                     | <5.0            | NS                              | NS             | 5.26*          | NS                               |
|             | 6/10/2009  | <5.0           | <5.0           | . 96                   | <5.0            | NS                              | NS             | 9.8*           | NS                               |
|             | 10/1/2009  | 1.3            | <1.0           | 58                     | 142             | - NS                            | NS             | 0.233          | NS                               |
|             | 12/17/2009 | 1.4            | <1.0           | 100                    | 2.8             | NS                              | NS             | 0.521 ,        | NS                               |
|             | 3/29/2010  | <1.0           | <1.0           | 51                     | <1.0            | NS                              | NS             | 0.0803         | NS                               |
|             | 6/11/2010  | 1.1            | <1.0           | 98                     | 1.8             | NS                              | NS             | 0.0217         | NS                               |
|             | 9/24/2010  | <1.0           | <1.0           | 92                     | 27.8            | NS                              | NS             | 0.0285         | NS                               |
|             | 2/7/2011   | <1.0           | <1.0           | 26                     | <1.0            | NS                              | NS             | NS             | 0.459                            |
|             | 9/15/1998  | BDL            | BDL            | BDL                    | BDL             | NS                              | NS             | NS             | NS                               |
|             | 12/29/1998 | BDL            | BDL            | BDL                    | BDL             | NS                              | NS             | NS             | NS                               |
|             | 3/3/1999   | BDL            | BDL            | BDL                    | BDL             | NS                              | NS             | NS             | NS                               |
|             | 6/15/1999  | BDL            | BDL            | BDL                    | BDL             | NS                              | NS             | NS             | NS                               |
|             | 9/15/1999  | BDL            | 0.7            | 1.1                    | BDL             | NS                              | NS             | NS             | NS                               |
|             | 12/14/1999 | BDL            | 1.8            | 0.7                    | 1.9             | NS                              | NS             | NS             | NS                               |
|             | 1/22/2004  | BDL            | BDL            | BDL                    | BDL             | ` NS                            | NS             | NS             | NS                               |
|             | 5/9/2005   | <0.5           | <0.7           | <0.8                   | <0.8            | <0.4                            | 97             | 15.9*          | NS                               |
|             | 10/19/2005 | <0.5           | <0.7           | <0.8                   | <0.8            | 5.4                             | 52.6           | 1.4*           | NS                               |
|             | 11/14/2006 | <0.5           | <0.7           | <0.8                   | 1               | <0.015                          | 159            | 5.8*           | NS                               |
|             | 11/7/2007  | <0.5           | <0.7           | <0.8                   | <0.8            | <0.015                          | 112            | 3*             | NS                               |
| MW-6        | 7/24/2008  | <5.0           | <5.0           | <5.0                   | <5.0            | <0.5                            | 44.4           | 28.5*          | NS                               |
|             | 10/22/2008 | <5.0           | <5.0           | <5.0                   | <5.0            | <0.5                            | 43.7           | 1.77*          | NS                               |
|             | 1/21/2009  | <5.0           | <5.0           | <5.0                   | <5.0            | <0.5                            | 31.1           | 9.59*          | NS                               |
|             | 4/1/2009   | <5.0           | <5.0           | <5.0                   | <5.0            | NS                              | NS             | 16.2*          | NS                               |
|             | 6/10/2009  | <5.0           | <5.0           | <5.0                   | <5.0            | NS                              | NS             | 3.86*          | NS                               |
|             | 10/1/2009  | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | <0.02          | NS                               |
|             | 12/17/2009 | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | 0.0511         | NS                               |
|             | 3/29/2010  | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | < 0.0200       | NS                               |
|             | 6/11/2010  | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | < 0.0200       | NS                               |
|             | 9/24/2010  | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | <0.0200        | NS                               |
|             | 2/7/2011   | <1.0           | <1.0           | <1.0                   | <1.0            | NS                              | NS             | NS             | 0.543                            |
| NMWQCC      |            | 10 (µg/L)      | 750 (µg/L)     | 750 (µg/L)             | 620 (µg/L)      | 10 (mg/L)                       | 600 (mg/L)     | 1 (mg/L)       | 0.2 (mg/L                        |

## Table 3. Farmington B Com No.1E Groundwater Laboratory Analytical Results Summary

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million) μg/L = micrograms per liter (parts per billion) BDL = Below laboratory detection limits

<0.7 = Below laboratory detection limit of 0.7 µg/L

\* = Results reported for total ferrous iron, not comparable to NMWQCC standard for dissolved iron

NE=Not Established

NS = not sampled

GROUNDWA

· · · ·

APPENDIX A GROUNDWATER SAMPLING FIELD FORMS

.

| TETRA           | TECH, INC.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER SA                       | MPLING F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | vi                     | •              |               |
|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|----------------|---------------|
| Project Name    | B Com 1E                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page                                  | 1                      | of             | 2             |
| ₁act No.        | ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
| Site Location   | Farmington, NM                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
| Site/Well No.   | <u>MW-1</u>                           | Coded/<br>Replicate No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1200                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 2.7.                   | ![             |               |
| Weather         | Surry cold                            | Time Sampling<br>Began                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Sampling<br>Completed            |                        | 55             |               |
|                 | 5/-                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EVACUATION                     | DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |                | ,             |
| Description of  | Measuring Point (MP) Top              | of Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
| Height of MP A  | Above/Below Land Surface              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | MP Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · | •                      |                |               |
| Total Sounded   | Depth of Well Below MP                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .93                            | Water-Level Ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vation                                |                        |                |               |
| Held            | _ Depth to Water Below MF             | 1885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | Diameter of Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                | <u> </u>      |
| Wet             | Water Column in Wel                   | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | Gallons Pumped<br>Prior to Samplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                        |                |               |
|                 | -<br>Gallons per Foo                  | t C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ).16                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                     |                        |                |               |
|                 | Gallons in Wel                        | 011 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intake Setting<br>surface)            |                        |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -44                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
| Purging Equipr  | ment Purge pump / Ba                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                        |                |               |
| Time            | Temperature (°C)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NG DATA/FIELI                  | D PARAMETER<br>TDS (g/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S<br>DO (mg/L)                        | DO %                   | ORP (mV)       | Volume (gal.) |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
|                 |                                       | A CONTRACTOR OF THE CONTRACTOR | and and a second second second | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A CONTRACTOR AND A CONTRACTOR         | •                      |                |               |
|                 |                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | New Color Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                | <u></u>       |
|                 |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | and the second sec | a line transport                      |                        |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        | <u> </u>       |               |
| Sampling Equi   | pment Purg                            | e Pump/Bailer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                        |                |               |
| <u>Constitu</u> | uents Sampled                         | Conta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iner Description               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Prese                  | <u>rvative</u> |               |
| BTEX            | · · · · · · · · · · · · · · · · · · · | 3 40mL VOA's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCI                                   |                        |                |               |
| Dissolved Fe    | · · ·                                 | 1 16 oz plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | none                                  |                        |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
|                 | <i>ε</i> Λ , .                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                     | . 1                    |                |               |
| Remarks         | Broom 7 No                            | Paranole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is due                         | to Anor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . H201                                | s buck                 | ,<br>          |               |
| Sampling Pers   | onnel <u>Cassie Brown, C</u>          | hristine Mathews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>•</i>                              |                        |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Casing V                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        | _              |               |
|                 | Gal./ft. 1 ¼" = 0.077<br>1 ½" = 0.10  | 2" =<br>2 ½" =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.16<br>= 0.24               | 3" =<br>3"½ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 4" = 0.65<br>6" = 1.46 |                |               |
|                 | 1 /2 = 0.10                           | 2 72 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - U.24                         | J /2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                  | u – 1.40               |                |               |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                | •             |
|                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                        |                |               |

|                | A TECH, INC.                             |                     | WATER                 | SAMPLING F                         | IELD FOR                  | М             |                                       | ×             |
|----------------|------------------------------------------|---------------------|-----------------------|------------------------------------|---------------------------|---------------|---------------------------------------|---------------|
| Project Name   | B Com 1E                                 |                     |                       |                                    | Page                      | 2             | of <u>e</u>                           | 2             |
| . áct No.      |                                          |                     |                       | <u></u>                            |                           |               |                                       |               |
| Site Location  | Farmington, NM                           |                     |                       |                                    |                           |               |                                       |               |
| Site/Well No.  | MW-6                                     | Coded/<br>Replicate | No.                   |                                    | Date                      | 2.7.11        | 1                                     |               |
| Weather        | SUMAN 1520                               | Time San<br>Began   |                       | 0N DATA                            | Time Samplin<br>Completed | <sup>ig</sup> | 40                                    |               |
| Description of | Measuring Point (MP)                     | Top of Casing       |                       | •                                  |                           |               |                                       |               |
| Height of MP   | Above/Below Land Surf                    | ace                 |                       | MP Elevation                       | -                         |               |                                       |               |
| Total Sounde   | d Depth of Well Below N                  | /P                  |                       | Water-Level Ele                    | vation                    |               |                                       |               |
| Held           | _ Depth to Water Below                   | / MP                | 5                     | Diameter of Cas                    | <u>2"</u>                 |               | •                                     |               |
| Wet            | Water Column in                          | Well <u>3.6</u>     | 7                     | Gallons Pumper<br>Prior to Samplin |                           | 2.            | 0                                     |               |
|                | Gallons per                              | Foot                | 0.16                  |                                    |                           |               |                                       |               |
|                | Gallons in                               | Well 0.58           | $7\chi 3 =$           | Sampling Pump<br>(feet below land  | Intake Setting surface)   |               |                                       | >             |
| Purging Equip  | ment Purge pump                          | Bailer              | 1.7Le                 |                                    |                           | . •           |                                       |               |
| • · · · ·      |                                          | <u>ب</u>            | SAMPLING DATA/FI      |                                    | S                         |               |                                       |               |
| Time           | Temperature (°C)                         | pН                  | Conductivity (µS/cm   | <sup>3</sup> ) TDS (g/L)           | DO (mg/L)                 | DO %          | ORP (mV)                              | Volume (gal.) |
| 130            | 1.13                                     | 7.06                | 658                   | .503                               | 1.35                      | 13.8          | 110.2                                 | 1.0.75        |
| 132            | 11.21                                    | 7.03                | 655                   | .500                               | 1.03                      | 10.7          | 76.                                   | 1.25          |
| 35             | 1 1.16                                   | 7.04                | 653                   | . 499                              | 1.25                      | 17.9          | 50.0                                  | 1.15          |
| · · · · · ·    |                                          |                     |                       |                                    |                           |               |                                       |               |
| Sampling Equ   | ipment f                                 | Purge Pump/Ba       | iller                 |                                    |                           |               | · ·                                   | I             |
| -              | uents Sampled                            |                     | Container Descripti   | on                                 |                           | Prese         | ervative                              | <u> </u>      |
| BTEX           |                                          | 3 40mL V            |                       |                                    | HCI                       |               |                                       |               |
| Dissolved Fe   |                                          | 1 16 oz pl          | astic                 |                                    | none                      |               |                                       |               |
| L              |                                          |                     |                       |                                    |                           |               |                                       |               |
| Remarks        | well volume                              | is low.             | AzO is h              | oht braux                          | n oran                    | 02. N         | is odor                               | or            |
| Sampling Pers  | sonnel Cassie Brow                       | n, Christine Ma     | thews                 | J                                  |                           | <u>S</u>      | heen o                                | benved        |
|                |                                          |                     | Well Casing           | n Volumes                          |                           |               |                                       | .~            |
|                | Gal <i>l</i> ft. 1 <sup>.</sup> 1⁄4″ = 0 | .077                | 2" = 0.16             | _                                  | 0.37                      | 4" = 0.65     | 5                                     |               |
|                | 1 1/2" = 0                               |                     | $2\frac{1}{2} = 0.24$ | 3" ½ =                             |                           | 6" = 1.46     |                                       |               |
|                | L                                        |                     |                       |                                    |                           |               | · · · · · · · · · · · · · · · · · · · | 1             |

# APPENDIX B LABORATORY ANALYTICAL REPORT



Phone: (713) 660-0901 Fax: (713) 660-8975

## Certificate of Analysis

March 10, 2011

#### Workorder: H11020078

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: COP - B Com #1E Project Number: COP - B Com #1E Site: COP - B Com #1E, Farmington, NM PO Number: ENFOS NELAC Cert. No.: T104704205-09-3

# This Report Contains A Total Of 15 Pages

# **Excluding Any Attachments**

Report ID: H11020078\_6089 Printed: 03/10/2011 11:15



Phone: (713) 660-0901 Fax: (713) 660-8975

| Certificate of A |  |
|------------------|--|
|                  |  |
|                  |  |
|                  |  |
|                  |  |

| March 10, 2011                           | Workorder: H11020078                  |  |
|------------------------------------------|---------------------------------------|--|
| Kelly Blanchard                          | Project: COP - B Com #1E              |  |
| Tetra Tech<br>6121 Indian School Road NE | Project Number: COP - B Com #1E       |  |
| Suite 200<br>Albuguergue, NM 87110       | Site: COP - B Com #1E, Farmington, NM |  |
|                                          | PO Number: ENFOS                      |  |
|                                          | NELAC Cert. No.: T104704205-09-3      |  |
|                                          |                                       |  |

#### I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

#### II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

**III. GENERAL REPORTING COMMENTS:** 

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry " ).

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.



Phone: (713) 660-0901 Fax: (713) 660-8975

|                                          | Certificate of Analysis               |
|------------------------------------------|---------------------------------------|
| March 10, 2011                           | Workorder: H11020078                  |
| Kelly Blanchard                          | Project: COP - B Com #1E              |
| Tetra Tech<br>6121 Indian School Road NE | Project Number: COP - B Com #1E       |
| Suite 200<br>Albuquerque, NM 87110       | Site: COP - B Com #1E, Farmington, NM |
|                                          | PO Number: ENFOS                      |
|                                          | NELAC Cert. No.: T104704205-09-3      |
|                                          |                                       |

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures



Phone: (713) 660-0901 Fax: (713) 660-8975

## SAMPLE SUMMARY

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| Lab ID       | Sample ID  | Matrix | COC ID | Date/Time<br>Collected | Date/Time<br>Received |
|--------------|------------|--------|--------|------------------------|-----------------------|
| H11020078001 | MW-1       | Water  |        | 2/7/2011 11:55         | 2/8/2011 09:20        |
| H11020078002 | MW-6       | Water  |        | 2/7/2011 11:40         | 2/8/2011 09:20        |
| H11020078003 | Duplicate  | Water  |        | 2/7/2011 12:00         | 2/8/2011 09:20        |
| H11020078004 | Trip Blank | Water  |        | 2/7/2011 12:40         | 2/8/2011 09:20        |



Phone: (713) 660-0901 Fax: (713) 660-8975

## ANALYTICAL RESULTS

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| Lab ID:    | H11020078001 | Date/Time Received:  | 2/8/2011 09:20 | Matrix: | Water |
|------------|--------------|----------------------|----------------|---------|-------|
| Sample ID: | MW-1         | Date/Time Collected: | 2/7/2011 11:55 |         |       |

## VOLATILES

| Analysis Desc: SW-846 8260B | SW-846 5030Analytical Ba<br>Batch: 3205 SW-846 826 |              | 4:18 by LK | -              |                                          |
|-----------------------------|----------------------------------------------------|--------------|------------|----------------|------------------------------------------|
| Parameters                  | Results<br>ug/I Qual                               | Report Limit | MDL        | DF R           | Batch Information<br>egLmt Prep Analysis |
| Benzene                     | ND                                                 | 1.0          | 0.13       | 1              | 3205                                     |
| Ethylbenzene                | 26                                                 | 1.0          | 0.48       | 1              | 3205                                     |
| Toluene                     | ND                                                 | 1.0          | 0.13       | 1              | 3205                                     |
| m,p-Xylene                  | ND                                                 | 1.0          | 0.58 ·     | · 1            | 3205                                     |
| o-Xylene                    | ND                                                 | 1.0          | 0.35       | 1              | 3205                                     |
| Xylenes, Total              | ND                                                 | 1.0          | 0.35       | <sup>'</sup> 1 | 3205                                     |
| 4-Bromofluorobenzene (S)    | 105 %                                              | 74-125       |            | 1              | 3205                                     |
| 1,2-Dichloroethane-d4 (S)   | 89.4 %                                             | 70-130       |            | 1              | 3205                                     |
| Toluene-d8 (S)              | 101 %                                              | 82-118       |            | 1              | 3205                                     |

## ICP DISSOLVED METALS

| Analysis Desc: SW-846 6010B                                                                                     | Preparation Batches:   |                 |               |    |             |            |                 |
|-----------------------------------------------------------------------------------------------------------------|------------------------|-----------------|---------------|----|-------------|------------|-----------------|
|                                                                                                                 | Batch: 2396 SW-846 301 | 0A on 02/08/201 | 1 15:00 by R_ | V  | Sec. of the | ,F         | - 140           |
|                                                                                                                 | Analytical Batches:    |                 |               |    |             |            |                 |
|                                                                                                                 | Batch: 1825 SW-846 601 | 0B on 02/18/201 | 1 22:02 by EB | G  |             |            |                 |
|                                                                                                                 |                        |                 |               |    |             |            | 5               |
| A CONTRACT OF | Results                | dia.            |               |    |             | Batch Info | A CONTRACTOR OF |
| Parameters                                                                                                      | mg/l Qual              | Report Limit    | MDL           | DF | RegLmt      | Prep A     | Analysis        |
| Manganese                                                                                                       | 0.459                  | 0.00500         | 0.000300      | 1  |             | 2396       | 1825            |



Phone: (713) 660-0901 Fax: (713) 660-8975

## **ANALYTICAL RESULTS**

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| Sample ID: MW-6 Date/Time Collected: 2/7/2011 11:40 |  |
|-----------------------------------------------------|--|

#### VOLATILES

| Analysis Desc: SW-846 8260B | SW-846 5030Analytical Ba      | tches:             |             |           |                                    |
|-----------------------------|-------------------------------|--------------------|-------------|-----------|------------------------------------|
|                             | Batch: 3205 SW-846 8260       | )B on 02/14/2011 1 | 4:44 by LKI | -         |                                    |
| Parameters                  | Results<br>t <b>ug/I</b> Qual | Report Limit       | MDL         | DF RegLmt | Batch Information<br>Prep Analysis |
| Benzene                     | ND                            | 1.0                | 0.13        | 1         | 3205                               |
| Ethylbenzene                | ND                            | 1.0                | 0.48        | 1         | 3205                               |
| Toluene                     | ND                            | 1.0                | 0.13        | 1         | 3205                               |
| m,p-Xylene                  | ND                            | 1.0                | 0.58        | 1         | 3205                               |
| o-Xylene                    | ND                            | 1.0                | 0.35        | 1         | 3205                               |
| Xylenes, Total              | ND                            | 1.0                | 0.35        | 1         | 3205                               |
| 4-Bromofluorobenzene (S)    | 101 %                         | 74-125             |             | 1         | . 3205                             |
| 1,2-Dichloroethane-d4 (S)   | 86 %                          | 70-130             |             | 1         | 3205                               |
| Toluene-d8 (S)              | 102 %                         | 82-118             |             | 1         | 3205                               |

### ICP DISSOLVED METALS

| Analysis Desc: SW-846/6010B | Preparation Batches:   |                 |               | F  | 1      |            |          |
|-----------------------------|------------------------|-----------------|---------------|----|--------|------------|----------|
|                             | Batch: 2396 SW-846 301 | 0A on 02/08/201 | 1 15:00 by R_ | V  |        |            |          |
|                             | Analytical Batches:    |                 |               |    |        |            |          |
|                             | Batch: 1825_SW-846 601 | 0B on 02/18/201 | 1 22:26 by EB | G  |        |            |          |
|                             |                        |                 |               |    | 12 A   | - 14 A     |          |
|                             | Results                | _               |               |    |        | Batch Info |          |
| Parameters                  | mg/l Qual              | Report Limit    | MDL           | DF | RegLmt | Ртер. /    | Analysis |
| Manganese                   | 0.543                  | 0.00500         | 0.000300      | 1  |        | 2396       | 1825     |



Phone: (713) 660-0901 Fax: (713) 660-8975

## ANALYTICAL RESULTS

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| Lab ID:    | H11020078003 | Date/Time Received:  | 2/8/2011 09:20 | Matrix: | Water |
|------------|--------------|----------------------|----------------|---------|-------|
| Sample ID: | Duplicate    | Date/Time Collected: | 2/7/2011 12:00 |         |       |

## VOLATILES

| Analysis Desc. SW-846 8260B | SW-846 5030Analytical Ba | tches:              |             |      |       |                                    |
|-----------------------------|--------------------------|---------------------|-------------|------|-------|------------------------------------|
|                             | Batch: 3205 SW-846 826   | 0B on 02/14/2011 12 | 2:59 by LKI |      |       |                                    |
| Parameters                  | Results<br>ug/l Qual     | Report Limit        | MDL         | DF R | egLmt | Batch Information<br>Prep Analysis |
| Benzene                     | ND                       | 1.0                 | 0.13        | 1    |       | 3205                               |
| Ethylbenzene                | 23                       | 1.0                 | 0.48        | 1    |       | 3205                               |
| Toluene                     | ND                       | 1.0                 | 0.13        | 1    |       | 3205                               |
| m,p-Xylene                  | ND                       | 1.0                 | 0.58        | 1    |       | 3205                               |
| o-Xylene                    | ND                       | 1.0                 | 0.35        | 1    |       | 3205                               |
| Xylenes, Total              | ND                       | 1.0                 | 0.35        | 1    |       | 3205                               |
| 4-Bromofluorobenzene (S)    | 100 %                    | 74-125              |             | 1    |       | 3205                               |
| 1,2-Dichloroethane-d4 (S)   | 88.8 %                   | 70-130              | ·           | 1    | · .   | 3205                               |
| Toluene-d8 (S)              | 100 %                    | 82-118              |             | 1    |       | 3205                               |

Report ID: H11020078\_6089 Printed: 03/10/2011 11:15



Phone: (713) 660-0901 Fax: (713) 660-8975

## ANALYTICAL RESULTS

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

|            |              |                      |                | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
|------------|--------------|----------------------|----------------|---------------------------------------|---------------------------------------|
| Sample ID: | Trip Blank   | Date/Time Collected: | 2/7/2011 12:40 |                                       |                                       |
| Lab ID:    | H11020078004 | Date/Time Received:  | 2/8/2011 09:20 | Matrix:                               | Water                                 |

#### VOLATILES

| Analysis Desc: SW-846 8260B | SW-846 5030Analytical B                   | atches:             |             | 6.1        |            |                   |
|-----------------------------|-------------------------------------------|---------------------|-------------|------------|------------|-------------------|
|                             | Batch: 3205 SW-846 82                     | 60B on 02/14/2011 1 | 5:10 by LKL |            | E          |                   |
|                             | 3. S. |                     |             | 1. A.      | - <b>1</b> |                   |
| and the other was in a star | Results                                   |                     |             |            |            | Batch Information |
| Parameters                  | ug/i Qual                                 | Réport Limit        | MDL         | DF         | RegLimt    | Prep Analysis     |
| Benzene                     | ND                                        | 1.0                 | 0.13        | 1          |            | 3205              |
| Ethylbenzene                | ND                                        | 1.0                 | 0.48        | 1          |            | 3205              |
| Toluene                     | ND ,                                      | 1.0                 | 0.13        | 1          |            | 3205              |
| m,p-Xylene                  | ND                                        | 1.0                 | 0.58        | 1          | •          | 3205              |
| o-Xylene                    | ND                                        | 1.0                 | 0.35        | . 1        |            | 3205              |
| Xylenes, Total              | ND                                        | 1.0                 | 0.35        | 1          |            | 3205              |
| 4-Bromofluorobenzene (S)    | 103 %                                     | 74-125              |             | 1          |            | 3205              |
| 1,2-Dichloroethane-d4 (S)   | 91 %                                      | 70-130              |             | , <b>1</b> |            | 3205              |
| Toluene-d8 (S)              | 103 %                                     | 82-118              |             | 1          |            | 3205              |



Phone: (713) 660-0901 Fax: (713) 660-8975

## QUALITY CONTROL DATA

| QC Batch: MSV/32                                                                                                                                                                                                                                                                                |                                                                                          |                                                          | -                                            |                                                                | W-846 8260B                                                                                  |                                                                                 |                                              |            |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|------------|------------------|
| QC Batch Method: SW-846                                                                                                                                                                                                                                                                         | 5030                                                                                     |                                                          | Prepa                                        | aration: 02                                                    | 2/14/2011 00:00 by                                                                           | LKL                                                                             |                                              |            |                  |
| Associated Lab Samples:                                                                                                                                                                                                                                                                         | H11020078001                                                                             | H1102007                                                 | 78002 H                                      | 111020078003                                                   | H11020078004                                                                                 | H11020131                                                                       | 001 I                                        | H110201    | 31002            |
| METHOD BLANK: 93173                                                                                                                                                                                                                                                                             |                                                                                          |                                                          |                                              |                                                                |                                                                                              |                                                                                 |                                              |            |                  |
| Analysis Date/Time Analyst:                                                                                                                                                                                                                                                                     | 02/14/2011 11                                                                            | :39 LKL                                                  |                                              |                                                                |                                                                                              |                                                                                 |                                              |            |                  |
|                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                          | Bla                                          | nk                                                             | Reporting                                                                                    |                                                                                 |                                              |            |                  |
| Parameter                                                                                                                                                                                                                                                                                       | Units                                                                                    | •                                                        | Res                                          | ult Qualifiers                                                 | Limit                                                                                        |                                                                                 |                                              | •          |                  |
| Benzene                                                                                                                                                                                                                                                                                         | ug/l                                                                                     |                                                          | N                                            | ID                                                             | 1.0                                                                                          |                                                                                 | ··· ·                                        |            |                  |
| Ethylbenzene                                                                                                                                                                                                                                                                                    | . ug/l                                                                                   |                                                          | N                                            | ID                                                             | 1.0                                                                                          |                                                                                 |                                              |            |                  |
| Toluene                                                                                                                                                                                                                                                                                         | ug/i                                                                                     |                                                          | Ν                                            | ID                                                             | 1.0                                                                                          |                                                                                 |                                              |            |                  |
| m,p-Xylene                                                                                                                                                                                                                                                                                      | ug/l                                                                                     |                                                          | •                                            | ID                                                             | 1.0                                                                                          |                                                                                 |                                              |            |                  |
| o-Xylene                                                                                                                                                                                                                                                                                        | ug/l                                                                                     |                                                          |                                              | ID ·                                                           | 1.0                                                                                          |                                                                                 |                                              |            |                  |
| Kylenes, Total                                                                                                                                                                                                                                                                                  | ug/l                                                                                     | •                                                        |                                              | ID ·                                                           | 1.0                                                                                          |                                                                                 |                                              |            |                  |
| I-Bromofluorobenzene (S)                                                                                                                                                                                                                                                                        | -%                                                                                       |                                                          |                                              | 03                                                             | 74-125                                                                                       |                                                                                 |                                              |            |                  |
| 1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                                                                                       | %                                                                                        |                                                          | 91                                           |                                                                | 70-130                                                                                       |                                                                                 |                                              | •          |                  |
| Toluene-d8 (S)                                                                                                                                                                                                                                                                                  | %                                                                                        |                                                          |                                              | 02                                                             | 82-118                                                                                       |                                                                                 |                                              |            |                  |
|                                                                                                                                                                                                                                                                                                 |                                                                                          | .'                                                       |                                              | <br>,                                                          |                                                                                              |                                                                                 |                                              |            |                  |
| ······································                                                                                                                                                                                                                                                          |                                                                                          |                                                          |                                              |                                                                |                                                                                              |                                                                                 |                                              |            |                  |
| ABORATORY CONTROL SA                                                                                                                                                                                                                                                                            | MPLE: 93174                                                                              |                                                          |                                              |                                                                |                                                                                              |                                                                                 |                                              |            |                  |
| Analysis Date/Time Analyst:                                                                                                                                                                                                                                                                     | 02/14/2011                                                                               | 11:13 LKL                                                |                                              | · .                                                            | •••                                                                                          |                                                                                 |                                              |            |                  |
|                                                                                                                                                                                                                                                                                                 | •                                                                                        |                                                          | Spik                                         | e LCS                                                          | LCS                                                                                          | % Re                                                                            | c                                            |            |                  |
| Parameter                                                                                                                                                                                                                                                                                       | Units                                                                                    |                                                          | Cond                                         | c. Result                                                      | t % Rec                                                                                      | Limi                                                                            | ts                                           |            |                  |
| Benzene                                                                                                                                                                                                                                                                                         | ug/l                                                                                     |                                                          | 2                                            | 0 19.4                                                         | 97.0                                                                                         | 74-12                                                                           | 3                                            |            |                  |
| Ethylbenzene                                                                                                                                                                                                                                                                                    | ug/l                                                                                     |                                                          | 2                                            | 0 21.5                                                         | 5 107                                                                                        | 72-12                                                                           | 7                                            |            |                  |
| Toluene                                                                                                                                                                                                                                                                                         | ug/l                                                                                     |                                                          | 2                                            | 0 21.0                                                         | ) 105                                                                                        | 74-12                                                                           | 6                                            |            |                  |
|                                                                                                                                                                                                                                                                                                 | ug/l                                                                                     |                                                          | 4                                            | 0 43.0                                                         | 100                                                                                          | 71-12                                                                           | 0                                            |            |                  |
| m,p-xylene                                                                                                                                                                                                                                                                                      | ~g.,                                                                                     |                                                          |                                              | 0 43.0                                                         | ) 108                                                                                        |                                                                                 | 9                                            |            |                  |
|                                                                                                                                                                                                                                                                                                 | ug/l                                                                                     |                                                          | 2                                            |                                                                |                                                                                              | 74-13                                                                           | -                                            |            |                  |
| o-Xylene                                                                                                                                                                                                                                                                                        | •                                                                                        |                                                          |                                              | 0 21.8                                                         | 3 109                                                                                        |                                                                                 | 0                                            |            | 1                |
| o-Xylene<br>Xylenes, Total                                                                                                                                                                                                                                                                      | ug/l                                                                                     |                                                          | 2                                            | 0 21.8                                                         | 3 109                                                                                        | 74-13                                                                           | 0 · .<br>0                                   |            | V<br>·           |
| o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)                                                                                                                                                                                                                                          | ug/l<br>ug/l                                                                             |                                                          | 2                                            | 0 21.8                                                         | 3 109<br>9 108                                                                               | 74-13<br>71-13                                                                  | 0<br>0<br>5                                  |            | ۱                |
| o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)                                                                                                                                                                                                             | ug/I<br>ug/I<br>%                                                                        |                                                          | 2                                            | 0 21.8                                                         | 3 109<br>9 108<br>104                                                                        | 74-13<br>71-13<br>74-12                                                         | 0<br>0<br>5<br>0                             |            | ۱                |
| o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)                                                                                                                                                                                           | ug/I<br>ug/I<br>%<br>%                                                                   | 93175                                                    | 2                                            | 0 21.8                                                         | 3 109<br>9 108<br>104<br>92.3                                                                | 74-13<br>71-13<br>74-12<br>70-13<br>82-11                                       | 0<br>0<br>5<br>0                             |            | \                |
| o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF                                                                                                                                                               | ug/I<br>ug/I<br>%<br>%<br>%                                                              |                                                          | 2                                            | 0 21.8<br>0 64.79                                              | 8 109<br>9 108<br>104<br>92.3<br>102                                                         | 74-13<br>71-13<br>74-12<br>70-13<br>82-11                                       | 0<br>0<br>5<br>0                             |            | 1                |
| p-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF<br>MS Analysis Date/Time Analy                                                                                                                                | ug/l<br>ug/l<br>%<br>%<br>?IKE DUPLICATE<br>st: 02/1                                     | : 93175<br>4/2011 13:24<br>4/2011 13:51                  | 2<br>6                                       | 0 21.8<br>0 64.79                                              | 8 109<br>9 108<br>104<br>92.3<br>102                                                         | 74-13<br>71-13<br>74-12<br>70-13<br>82-11                                       | 0<br>0<br>5<br>0                             |            | Y<br>• • •       |
| o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF<br>MS Analysis Date/Time Analy                                                                                                                                | ug/l<br>ug/l<br>%<br>%<br>?IKE DUPLICATE<br>st: 02/1                                     | 4/2011 13:24<br>4/2011 13:51                             | 2<br>6                                       | 0 21.8<br>0 64.79<br>93176                                     | 8 109<br>9 108<br>104<br>92.3<br>102<br>Original: H1                                         | 74-13<br>71-13<br>74-12<br>70-13<br>82-11<br>1020078003                         | 0<br>0<br>5<br>0<br>8                        |            | Mav              |
| p-Xylene<br>Kylenes, Total<br>I-Bromofluorobenzene (S)<br>I,2-Dichloroethane-d4 (S)<br>foluene-d8 (S)<br>MATRIX SPIKE & MATRIX SP<br>MS Analysis Date/Time Analy<br>MSD Analysis Date/Time Ana                                                                                                  | ug/l<br>ug/l<br>%<br>%<br>?IKE DUPLICATE<br>st: 02/1                                     | 4/2011 13:24                                             | 2<br>6                                       | 0 21.8<br>0 64.79                                              | B 109<br>108<br>104<br>92.3<br>102<br>Original: H1                                           | 74-13<br>71-13<br>74-12<br>70-13<br>82-11<br>1020078003                         | 0<br>0<br>5<br>0<br>8                        | RPD        |                  |
| p-Xylene<br>Kylenes, Total<br>I-Bromofluorobenzene (S)<br>I,2-Dichloroethane-d4 (S)<br>Foluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF<br>MS Analysis Date/Time Analy<br>MSD Analysis Date/Time Ana                                                                                                  | ug/l<br>ug/l<br>%<br>%<br>PIKE DUPLICATE<br>st: 02/1<br>lyst: 02/1                       | 4/2011 13:24<br>4/2011 13:51<br>Original                 | 2<br>6<br>LKL<br>LKL<br>Spike                | 0 21.8<br>0 64.79<br>93176<br>MS MS                            | 109<br>108<br>104<br>92.3<br>102<br>Original: H1<br>D MS                                     | 74-13<br>71-13<br>74-12<br>70-13<br>82-11<br>1020078003<br>MSD<br>% Rec         | 0<br>0<br>5<br>0<br>8                        | RPD<br>3.3 | Max<br>RPD<br>20 |
| p-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF<br>MS Analysis Date/Time Analy<br>MSD Analysis Date/Time Ana<br>Parameter<br>Benzene                                                                          | ug/I<br>ug/I<br>%<br>%<br>PIKE DUPLICATE<br>st: 02/1<br>Iyst: 02/1<br>Units              | 4/2011 13:24<br>4/2011 13:51<br>Original<br>Result       | 2<br>6<br>LKL<br>LKL<br>Spike<br>Conc.       | 0 21.6<br>0 64.79<br>93176<br>MS MS<br>Result Resu             | 109<br>108<br>104<br>92.3<br>102<br>Original: H1<br>Original: H1<br>MS<br>Nt % Rec<br>7 95.1 | 74-13<br>71-13<br>74-12<br>70-13<br>82-11<br>1020078003<br>MSD<br>% Rec<br>98.3 | 0<br>0<br>5<br>8<br>8<br>% Rec<br>Limit      |            | RPD<br>20        |
| m,p-Xylene<br>o-Xylene<br>Xylenes, Total<br>4-Bromofluorobenzene (S)<br>1,2-Dichloroethane-d4 (S)<br>Toluene-d8 (S)<br>MATRIX SPIKE & MATRIX SF<br>MS Analysis Date/Time Analy<br>MSD Analysis Date/Time Analy<br>MSD Analysis Date/Time Ana<br>Parameter<br>Benzene<br>Ethylbenzene<br>Toluene | ug/I<br>ug/I<br>%<br>%<br>%<br>PIKE DUPLICATE<br>st: 02/1<br>lyst: 02/1<br>Units<br>ug/I | 4/2011 13:24<br>4/2011 13:51<br>Original<br>Result<br>ND | 2<br>6<br>LKL<br>LKL<br>Spike<br>Conc.<br>20 | 0 21.8<br>0 64.79<br>93176<br>MS MS<br>Result Resu<br>19.0 19. | 109<br>108<br>104<br>92.3<br>102<br>Original: H1<br>Original: H1<br>% Rec<br>7 95.1<br>0 102 | 74-13<br>71-13<br>74-12<br>70-13<br>82-11<br>1020078003<br>MSD<br>% Rec<br>98.3 | 0<br>0<br>5<br>0<br>8<br>8<br>% Rec<br>Limit | 3.3        | RPD              |

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H11020078\_6089

Printed: 03/10/2011 11:15



Phone: (713) 660-0901 Fax: (713) 660-8975

## QUALITY CONTROL DATA

#### Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| MATRIX SPIKE & MATRIX SPI      | 93176 |                    | Original:      | H11020078003 |               |             |              |                |     |            |
|--------------------------------|-------|--------------------|----------------|--------------|---------------|-------------|--------------|----------------|-----|------------|
| MS Analysis Date/Time Analyst: |       | 02/14/2011 13:24   | LKL            |              |               |             |              |                |     |            |
| MSD Analysis Date/Time Anal    | yst:  | 02/14/2011 13:51   | LKL            |              |               |             |              |                |     |            |
| Parameter                      | Units | Original<br>Result | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limit | RPD | Max<br>RPD |
| o-Xylene                       | ug/l  | ND                 | 20             | 20.3         | 19.7          | 101         | 98.4         | 35-175         | 3.1 | 20         |
| Xylenes, Total                 | ug/l  | ND                 | 60             | 59.74        | 57.6          | 99.6        | 96.0         | 35-175         | 3.6 | 20         |
| 4-Bromofluorobenzene (S)       | %     | 100                |                |              |               | 105         | 104          | 74-125         |     |            |
| 1,2-Dichloroethane-d4 (S)      | %     | 88.8               |                |              |               | 90.2        | 91.1         | 70-130         |     |            |
| Toluene-d8 (S)                 | %     | 100                |                |              |               | 104         | 100          | 82-118         |     |            |

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.



Phone: (713) 660-0901 Fax: (713) 660-8975

## QUALITY CONTROL DATA

|                                                                                | 3 Com #1E            |                                          |               |                              | Proj              | ect Number     | : COP - E | 3 Com #1   |
|--------------------------------------------------------------------------------|----------------------|------------------------------------------|---------------|------------------------------|-------------------|----------------|-----------|------------|
| QC Batch: DIGM/239<br>QC Batch Method: SW-846 30<br>Associated Lab Samples: H1 | 010A                 | Analysis Meth<br>Preparation:<br>1078002 |               | 846 6010B<br>8/2011 15:00 by | R_V               |                |           |            |
| METHOD BLANK: 92477                                                            |                      |                                          |               |                              |                   |                |           |            |
| Analysis Date/Time Analyst:                                                    | 02/18/2011 21:50 EBG | i                                        |               |                              |                   |                |           |            |
| Parameter                                                                      | Units                | Blank<br>Result Quali                    | fiers         | Reporting<br>Limit           |                   |                |           |            |
| Manganese                                                                      | mg/l                 | ND                                       |               | 0.00500                      |                   | . ·            |           |            |
| LABORATORY CONTROL SAMI<br>Analysis Date/Time Analyst:<br>Parameter            |                      | G<br>Spike<br>Conc.                      | LCS<br>Result | LCS<br>% Rec                 |                   | Rec            |           |            |
| Manganese                                                                      | mg/l                 | 0.10                                     | 0.1002        | 100                          | . <sup>.</sup> 80 | -120           |           |            |
| MATRIX SPIKE & MATRIX SPIKI                                                    | E DUPLICATE: 92479   | 92480                                    |               | Original: H1                 | 1020078001        |                |           |            |
|                                                                                |                      |                                          |               |                              |                   |                | •         |            |
|                                                                                |                      |                                          |               |                              |                   |                |           |            |
|                                                                                |                      |                                          |               |                              | •                 |                |           |            |
| MS Analysis Date/Time Analyst:<br>MSD Analysis Date/Time Analys<br>Parameter   |                      |                                          | MSD<br>Result | MS<br>% Rec                  | MSD<br>% Rec      | % Rec<br>Limit | RPD       | Max<br>RPD |

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.



Phone: (713) 660-0901 Fax: (713) 660-8975

## Legend

## (S) - Indicates analyte is a surrogate

| Qualifier | Qualifier Description                                     |  |
|-----------|-----------------------------------------------------------|--|
| *         | Recovery/RPD value outside QC limits                      |  |
| +         | DCS Concentration                                         |  |
| В         | Analyte detected in the Method Blank                      |  |
| C .       | MTBE results were not confirmed by GCMS                   |  |
| D         | Recovery out of range due to dilution                     |  |
| Ε         | Results exceed calibration range                          |  |
| Н         | Exceeds holding time                                      |  |
| . 1       | Estimated value, between MDL and PQL (Florida)            |  |
| J         | Estimated value                                           |  |
| JN        | The analysis indicates the presence of an analyte         |  |
| MI        | Matrix Interference                                       |  |
| Ν         | Recovery outside of control limits                        |  |
| NC        | Not Calculable (Sample Duplicate)                         |  |
| NC        | Not Calculated - Sample concentration > 4 times the spike |  |
| ND        | Not Detected at reporting Limits                          |  |
| Р         | Pesticide dual column results, greater then 25%           |  |
| Q         | Received past holding time                                |  |
| TNTC      | Too numerous to count                                     |  |
| U         | Not Detected at reporting Limits                          |  |



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H11020078 : COP - B Com #1E

Project Number: COP - B Com #1E

| Lab ID       | Sample ID  | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|--------------|------------|-----------------|-----------|-------------------|---------------------|
| H11020078001 | MW-1       | SW-846 3010A    | DIGM/2396 | SW-846 6010B      | ICP/1825            |
| H11020078002 | MW-6       | SW-846 3010A    | DIGM/2396 | SW-846 6010B      | ICP/1825            |
| H11020078001 | MW-1       | SW-846 5030     | MSV/3204  | SW-846 8260B      | MSV/3205            |
| H11020078002 | MW-6       | SW-846 5030     | MSV/3204  | SW-846 8260B      | MSV/3205            |
| H11020078003 | Duplicate  | SW-846 5030     | MSV/3204  | SW-846 8260B      | MSV/3205            |
| H11020078004 | Trip Blank | SW-846 5030     | MSV/3204  | SW-846 8260B      | MSV/3205            |



Phone: (713) 660-0901 Fax: (713) 660-8975

## Sample Receipt Checklist

| WorkOrder:                                            | H11020078                                                 | Received By          | LOG            |   |
|-------------------------------------------------------|-----------------------------------------------------------|----------------------|----------------|---|
| Date and Time                                         | 02/08/2011 09:20                                          | Carrier Name:        | FEDEXS         |   |
| Temperature:                                          | 3.5/3.5°C                                                 | Chilled By:          | Water Ice      |   |
| 1. Shipping container/co                              | oler in good condition?                                   |                      | YES            |   |
| 2. Custody seals intact of                            | on shipping container/cooler?                             |                      | YES            |   |
| 3. Custody seals intact of                            | on sample bottles?                                        |                      | Not Present    |   |
| 4. Chain of custody pres                              | ent?                                                      |                      | YES            |   |
| 5. Chain of custody sign                              | ed when relinquished and received?                        |                      | YES            |   |
| 6. Chain of custody agree                             | es with sample labels?                                    |                      | YES            |   |
| 7. Samples in proper co                               | ntainer/bottle?                                           |                      | YES            | - |
| 8. Samples containers ir                              | itact?                                                    |                      | YES            |   |
| 9. Sufficient sample volu                             | me for indicated test?                                    |                      | YES            |   |
| 10. All samples received                              | within holding time?                                      |                      | YES            |   |
| 11. Container/Temp Blank                              | temperature in compliance?                                |                      | YES            |   |
| 12. Water - VOA vials hav                             |                                                           |                      | YES            |   |
| 1) 1 Trip Blank vial wa<br>13. Water - Preservation o | is received broken.<br>checked upon receipt(except VOA*)? |                      | Not Applicable |   |
| *VOA Preservation Ch                                  | necked After Sample Analysis                              |                      |                |   |
| SPL Representative:                                   | Elessa Sommers                                            | Contact Date & Time: | 2/9/2011 13:11 |   |

 Client Name Contacted:
 Kelly Blanchard

 Client Instructions:
 Notified client by e-mail that one of two vials was received broken for the Trip Blank.



Phone: (713) 660-0901 Fax: (713) 660-8975

| and Caused Record<br>and Caused Record<br>The part of Caused Record<br>The part o | Kush TAT requires prior notice |                                                                                                                  | 2 Business Days Standard 1 Fe | Requested TAT Speci                 | Please Filer Metals |  | ショール・う 知業 あたからかっか しいきのう しいいん | mw-6     | MW-1       | The Blank                | on the Duplica                                                                                                                                                                                                                                                                                                                                        | M10-3  | M = I         | Noice To: (COOCOMPLITIOS   | Site Location: Francing (17)  | merve B-Com                 | Innerfax: USDS-Z37-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cur Albuquergan                                                                                  | Client Name Tetra Tech, | Annu sis Reques                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|---------------------|--|------------------------------|----------|------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|----------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|
| Image: Stress     Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed by:                         | and the second | MAN MONTHAN IN                | al Reporting Requirements           | before availisis    |  |                              | 111 11/2 | 27111 1155 | 11-11-124                | He 2/7/11 1700                                                                                                                                                                                                                                                                                                                                        |        | 12/7/11 115   | P                          | , MIN                         | · ] - ;-                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                         | SPL, Inc.<br>Analysis Request & Chain of Custody Record.                                                        |
| Al Derection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | date SIL                       | date 111                                                                                                         |                               |                                     | boratory remarks:   |  |                              |          | T N X W T  |                          | NIM X IVI                                                                                                                                                                                                                                                                                                                                             |        | S I X W N     | comp grab                  | vater<br>sludge               | S=soi<br>E=e                | etration (and ) ncore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | il A=a                                                                                           | matrix bo               | in the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | È                                                                                                                | ting 2. Received by           | Special Detection Limits (specify): |                     |  |                              |          | 1601       | X 2 1 0h /               | / 40 1 3 3                                                                                                                                                                                                                                                                                                                                            | 140133 | K IS   194  / | 1=1<br>8=80<br>1=H0<br>3=H | liter<br>iz 16=<br>C1<br>2SO4 | 4=40<br>=16oz<br>2=H<br>X=0 | z 40<br>X=ot<br>NO3<br>ther C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =vial<br>her<br><del>X= N(</del>                                                                 | size presi              | H11020078                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inn WWW                        | e anton sugar status                                                                                             |                               | PM review (mittal):                 |                     |  |                              |          |            | ni ya Alerika ya Alerika | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |        |               | )<br>                      | <u></u>                       |                             | <u>n nordere de la composition d</u> | 2<br>8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | Requested Analysis      | 01                                                                                                              |

## Report ID: H11020078\_6089

# APPENDIX C HISTORICAL ANALYTICAL DATA

# Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

| Sample ID#            | Monitor<br>Well | Remarks                              | BTEX per EPA 8020<br>(ppb) |         |              |              |  |  |  |  |
|-----------------------|-----------------|--------------------------------------|----------------------------|---------|--------------|--------------|--|--|--|--|
|                       |                 | 1997 THUR HING 플라이션 17, 프라 프라이션 1993 | Benzene                    | Toluene | Ethylbenzene | Total-Xylene |  |  |  |  |
| 9802020-01A           | MW#1            | On Site Lab.                         | 210.0                      | 34.0    | 370.0        | 2044.0       |  |  |  |  |
| 3" of free<br>product | in the bailer   |                                      |                            |         |              |              |  |  |  |  |
| Not Sampled           | free product    | in well                              |                            |         |              |              |  |  |  |  |
| 9812053-04A           |                 | -                                    | 350,0                      | BDL     | 420          | 2800.0       |  |  |  |  |
| Water                 | Samples         | Taken                                | in                         | 1999    |              |              |  |  |  |  |
| Not Sampled           | free product    | in well                              |                            |         | ,            |              |  |  |  |  |
|                       | <b>林市</b> 市和考虑  |                                      |                            |         |              |              |  |  |  |  |
| 802020-02A            | MW#2            | On Site Lab.                         | 2.4                        | 5.3     | 16.0         | 470.0        |  |  |  |  |
| B06055-02A            |                 |                                      | 0.8                        | 2.7     | 32.0         | 171.0        |  |  |  |  |
| 9809035-01A           | · · · · ·       |                                      | 1.3                        | 2.5     | 39.0         | 33.3         |  |  |  |  |
| 9812053-05A           |                 | х.                                   | BDL                        | 0.6     | 2.1          | 35.0         |  |  |  |  |
| 903012-05A            |                 |                                      | BDL                        | BDL     | 64           | 119.0        |  |  |  |  |
| 9906055-05A           |                 | · .                                  | BDL ·                      | BDL     | BDL          | BDL          |  |  |  |  |
| 9909054-05A           |                 |                                      | BDL                        | BDL     | 4.1          | 68.1         |  |  |  |  |
| 912018-05A            |                 |                                      | BDL                        | BDL     | 1.8          | 36.4         |  |  |  |  |
| 0401011-004A          |                 | lina ba Lab                          | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
|                       |                 |                                      |                            |         |              |              |  |  |  |  |
| 802020-03A            | MW#3            | On Site Lab.                         | 0.9                        | 1.2     | 1.6          | 5.3          |  |  |  |  |
| 806055-01A            | • .             |                                      | BDL                        | BDL     | 0.5          | 2.0          |  |  |  |  |
| 9809035-02A           |                 |                                      | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
| 812053-06A            |                 |                                      | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
| 903012-04A            |                 |                                      | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
| 9906055-04A           |                 |                                      | BDL                        | 0.9     | 3.1          | 56.0         |  |  |  |  |
| 9909054-04A           |                 |                                      | BDL                        | 0.6     | BDL          | BDL          |  |  |  |  |
| 912018-04A            |                 |                                      | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
| 0401011-002A          |                 | lina ba Lab                          | BDL                        | BDL     | BDL          | BDL          |  |  |  |  |
| Action                | Levels          |                                      | 10.0                       | 750.0   | 750.0        | 620.0        |  |  |  |  |

## Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

| ample ID#           | Monitor | Remarks                               |      | BT      | EX per EPA 802 | 20    |
|---------------------|---------|---------------------------------------|------|---------|----------------|-------|
|                     | Well    |                                       |      |         | (ppb)          |       |
| 9809035-03A         | MW#4    | On Site Lab.                          | BDL  | BDL     | BDL            | BDL   |
| B12053-03A          |         |                                       | BDL  | BDL     | 0.6            | BDL   |
| 903012-03A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9906055-03A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9909054-03A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 912018-03A          |         |                                       | BDL  | 0.7     | BDL.           | BDL   |
| 0003041-01A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 0006009-02A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 009020*01A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| <b>01011-003A</b>   |         | lina ba Lab                           | BDL  | BDL     | BDL            | BDL   |
|                     |         |                                       |      |         |                |       |
| 809035-04A          | MW#5    | On Site Lab.                          | BDL  | BDL     | BDL            | BDL   |
| 812053-02A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9903012-02A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9906055-02A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 909054-02A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9912018-02A         |         |                                       | BDL  | 0.8     | BDL            | BDL   |
| <u>0</u> 003041-02A |         | · .                                   | BDL  | BDL     | BDL            | BDL   |
| 006009-01A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 912018-05A          |         |                                       | BDL  | BDL     | 1.8            | 36,4  |
| 0401011-005A        | [       | lina ba Lab                           | BDL  | BDL     | BDL            | BDL   |
|                     |         | A Zin George Sie                      |      |         |                |       |
| 809035-05A          | MW#6    | On Site Lab.                          | BDL  | BDL     | BDL            | BDL   |
| 9812053-01A         |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9903012-01A         |         | · · · · · · · · · · · · · · · · · · · | BDL  | BDL     | BDL            | BDL   |
| 906055-01A          |         |                                       | BDL  | BDL     | BDL            | BDL   |
| 9909054-01A         |         |                                       | BDL  | 0.7     | 1.1            | BDL   |
| 9912018-01A         |         |                                       | BDL  | 1.8     | 0.7            | 1.9   |
| 101011-006A         |         | lina ba Lab                           | BDL  | BDL     | BDL            | BDL   |
| Action              | Levels  |                                       | 10.0 | - 750.0 | 750.0          | 620,0 |

# Table 2 BTEX Ground Water Analytical Summary Farmington B Com 1E Unit O, Sec. 15 T29N, R13W

| Sample ID#  |      | Remarks     | Anions | lron<br>ppm | BOD     | COD                                                                                                            |
|-------------|------|-------------|--------|-------------|---------|----------------------------------------------------------------------------------------------------------------|
|             | MW#1 | lina ba Lab | _      |             | Sampled | the second s |
| 0401011-004 | MW#2 | · · · ·     | 65.1   | BDL         |         |                                                                                                                |
| 401011-002  | MW#3 |             | 73.3   | BDL         |         |                                                                                                                |
| 401011-003  | MW#4 | ,           | 67.7   | BDL         |         |                                                                                                                |
| 0401011-005 | MW#5 |             | 86.8   | BDL         |         |                                                                                                                |
| 0401011-006 | MW#6 |             | 28.2   | 0.194       |         | 1                                                                                                              |

a