3R - 425

RP WORKPLAN

02/22/2011

Terry S. Lauck Site Manager

ConocoPhillips Company Risk Management & Remediation 420 South Keeler Avenue Bartlesville, OK 74004 Phone: 918.661.0935

E-mail: Terry.S.Lauck@conocophillips.com

Mr. Glenn von Gonten Acting Environmental Bureau Chief State of New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis DR Santa Fe, NM 87505

February 22, 2011

Re: Remediation Plan for San Juan 29-7 Unit 37 (API No. 30-039-07643)

OCD Case No. 3R-425

Dear Mr. von Gonten:

Pursuant to your January 31, 2011 letter to Ms. Kelsi Harrington, of ConocoPhillips, enclosed is a document describing ConocoPhillips' subsurface assessment plan for the San Juan 29-7 Unit 37 gas well site. The plan also lists some potential remediation options. A complete evaluation of potential remedies will be conducted once the areal extent of hydrocarbon-impacted soil and groundwater is determined. The next phase of subsurface assessment is currently scheduled for the week of February 28, 2010.

ConocoPhillips will endeavor to keep NMOCD and Mr. Richard Hodgson, the surface owner, apprised of progress on this project. Please feel free to contact me if you have any questions.

Sincerely,

Terry S. Lauck

Cc: Mr. Brandon Powell, NMOCD - Aztec District Office

Mr. Richard Hodgson

Remediation Plan Monitoring Well Installation and Groundwater Monitoring

San Juan 29-7 Unit 37 Rio Arriba County, New Mexico API No. 30-039-07643 OCD Case No. 3R-425

Prepared for:

ConocoPhillips Company

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004 (918) 661-0935 office

Prepared by:

Tetra Tech

6121 Indian School Road NE, Suite 200 Albuquerque, NM 87110 (505) 237-8440

February 2011

complex world

CLEAR SOLUTIONS**

TABLE OF CONTENTS

1.0	PURPOSE AND NEED	l
2.0	SITE HISTORY	
	2.1 Site Activities	2
3.0	SCOPE OF WORK	5
	3.1 Pre Field Work Preparation	
	3.2 Site Investigation	
.•	3.2.1 Soil Boring Advancement and Soil Sample Collection	
	3.2.2 Groundwater Monitoring Well Construction	
	3.2.3 Investigation Derived Waste	
	3.2.4 Groundwater Monitoring	7
	3.3 Reporting	8
4 0	QUALITY ASSURANCE AND QUALITY CONTROL	
	ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS	10
6.0	REMEDIATION OPTIONS	11
	6.1 Soil Vapor Extraction	11
	6.2 Chemical Oxidation	
	6.3 Monitored Natural Attenuation	
7.0	REFERENCES	
LI2	ST OF FIGURES	
Figu	re I – Site Location Map	
Figui	re 2 – Soil Boring and Proposed Monitoring Well Location Map	
Figui	re 3 – Typical Monitoring Well Completion Diagram	

APPENDICES

Appendix A – Analytical Results Summary Tables

Appendix B - B-I Soil Boring Log

Appendix C – Soil Boring Log, Soil Sampling, Monitoring Well Completion, Groundwater Sampling Field Forms

Appendix D – Laboratory Analytical Report

1.0 PURPOSE AND NEED

This document presents the scope of work to be performed at the ConocoPhillips Company; (ConocoPhillips) San Juan 29-7 Unit 37 gas well production facility (Site) located within Unit Letter N, Section 12, Township 29N, Range 07W, Rio Arriba County, New Mexico (Latitude: 36.73552° N; Longitude: -107.52488° W) as seen in **Figure 1**. The Site is located on private land. The surface owner of the Site is Mr. Richard Hodgson.

This work is being conducted as follow-up to a hydrocarbon release in August of 2010 and subsequent excavation and vertical soil impact delineation. All work will follow New Mexico Oil Conservation Division (NMOCD) guidelines. The NMOCD is located at 1220 South St. Francis Drive, Santa Fe, NM 87505.

2.0 SITE HISTORY

The chronology of activities previously performed at the Site is presented below. The proposed scope of work for the Site is presented following the chronology section.

2.1 Site Activities

The following table summarizes activities that have occurred at the Site regarding the response to the August 2010 release discovery.

DATE	ACTIVITY
August 26, 2010	ConocoPhillips discovered a leaking inspection plate gasket on the
	condensate tank. All fluid was contained within the berm but none was
· 数据 据 # 2 表 2 字 2 字 2 。	recovered. Inventory reconciliation revealed a discrepancy of
•	approximately 23 bbls.
September 16, 2010	Initial C-141 Release Notification and Corrective Action form for soil
i MCGCC-y Cascass	impacts was submitted to the NMOCD by ConocoPhillips.
September 24, 2010	Envirotech, Inc. (Envirotech) of Farmington, NM conducted a brief site
appet of the section	assessment and confirmation sampling of an excavation at the site with
	the dimensions of 60 feet long (north to south) by 20 feet wide (east to
	west) with a total depth on the north end of approximately 34 feet
Berton 197	below ground surface (bgs). Soil samples collected from the bench,
the second secon	north wall, and excavation bottom exceeded NMOCD Guidelines for
	Remediation of Leaks, Spills and Releases field screening limits. Samples
	from the east, west, north, south, bench and bottom of the excavation
	were collected in laboratory prepared containers, transported on ice to
·	Envirotech and analyzed for benzene, toluene, ethylbenzene, and total
· · · · · · · · · · · · · · · · · · ·	xylenes (BTEX) by EPA Method 8021, total petroleum hydrocarbons (TPH) by EPA Method 8015. Analytical results were above regulatory
	standards for both BTEX and TPH for the north wall and excavation
	bottom samples. The north wall sample was also above regulatory
	standards for benzene (Appendix A and D). Excavation was to
	continue.
November 10, 2010	Envirotech performed another round of confirmatory sampling of the
	excavation at the site. Excavation dimensions as of this date had reached
	60 feet long by 40 feet wide and 34 feet below ground surface. Samples
	were collected from the east, west, south, north, bottom half of south
	and bottom half of north walls. All samples except for bottom half of
	south and north walls were below NMOCD field screening limits.
	Samples from the bottom half of south and north walls were collected in
	laboratory prepared containers, transported on ice to Envirotech and
	analyzed for BTEX and TPH by EPA Methods 8021 and 8015
	respectively. Analytical results from the bottom half of north wall sample
	were above regulatory standards for benzene, BTEX and TPH. Analytical

Creamy.

	(November 10, 2010 continued) results from the bottom half of south
	wall sample were above the regulatory standard for TPH. The maximum
	practical extent had been reached to the north and the bottom of the
	excavation so further delineation by excavation was not possible in
	those directions. Staining above the level of the excavation bench on the
	south wall was also observed on this date. A sample collected from the
	area of staining was field screened and was above the range of the
Landy State of the State of the Land of th	photo-ionization organic vapor detector (PID). Further excavation to
	the south was required. The northern part of the excavation was
	backfilled with verbal approval from Brandon Powell of the NMOCD.
November 23, 2010	Envirotech performed additional confirmation sampling at the site. A
November 25, 2010	composite sample was collected from the south wall and was above
	· •
	regulatory standards for both field screening and laboratory analysis for
	benzene, BTEX and TPH. Excavation was to continue to the south.
December 3, 2010	Envirotech completed confirmation sampling on a second excavation
Control Contro	area to the south of the original excavation. The dimensions of the
	southern excavation were approximately 47 feet long by 40 feet wide
A CONTROL OF SAME AND A CONTROL OF THE CONTROL OF T	and approximately 30 feet bgs. Samples were collected from the south,
estados de la medica de la	east, and west walls in addition to sample from the bottom of the
THE WEST WEST STATE STORY	l · · · · · · · · · · · · · · · · · · ·
E TEL	, , , , , , , , , , , , , , , , , , , ,
,	bottom of the excavation was above field screening limits and therefore
	was packed into laboratory prepared containers and transported on ice
The second second second second second	to Envirotech for analysis of BTEX and TPH by EPA Methods 8021 and
	8015 respectively. Analytical results for the south excavation bottom
,	sample were above the regulatory standard for TPH. The maximum
	practical vertical extent of the south excavation had been reached.
January 3, 2011	Backfilling of the entire area, both north and south excavations, to
	within six feet of the ground surface was completed.
January 12 - 14,	One soil boring, B-1, was advanced to a total depth of 123.5 feet from
2011	the top of the backfilled excavation by Enviro Drill, Inc., with oversight
	by Tetra Tech, Inc. PID readings were above field screening levels until
	total depth was reached. Groundwater was encountered at
	approximately 105 feet below the top of the backfilled excavation and
	approximately III feet bgs. Both soil samples and a groundwater sample
	were collected in laboratory prepared containers, packed on ice and
	sent under chain of custody documentation to Southern Petroleum
	Laboratories (SPL) in Houston, TX to be analyzed for BTEX and TPH by
	EPA Methods 8260B (methanol extraction) and 8215B respectively for
	both soil and groundwater . The groundwater sample was also analyzed
	for polynuclear aromatic hydrocarbons (PAH) by EPA Method 8270C.
	Analytical results for a soil sample collected from 30-32 feet below the
	top of excavation was above NMOCD regulatory standards for BTEX
:	and TPH. Groundwater analytical results were above New Mexico
	Water Quality Control Commission standards for benzene, toluene,
	ethylbenzene and total xylenes (Appendix A and D). Soil boring B-I
	, , , , , , , , , , , , , , , , , , , ,

	(January 12-14, 2011 continued) was backfilled with bentonite and grout by Enviro-Drill.
January 27, 2011	Backfilling of the remainder of the open excavation was completed.
January 28, 2011	Initial C-141 Release Notification and Corrective Action form for groundwater impacts was submitted to the NMOCD by ConocoPhillips.
January 31, 2011	ConocoPhillips receives a letter from Glenn Von Gonten of the NMOCD outlining the requirement to submit a Remediation Plan within 30 days of this date.

3.0 SCOPE OF WORK

The Scope of Work for Site activities is described below. Work conducted at the Site will consist of field preparation prior to the start of work (Section 3.1); a Site investigation (Section 3.2) consisting of soil boring advancement and soil sample collection (Section 3.2.1); soil boring completion to groundwater monitoring wells (Section 3.2.2); proper handling and disposal of investigation-derived waste (Section 3.2.3); and groundwater monitoring (Section 3.2.4). Reporting is discussed in Section 3.3, and quality assurance/quality control (QA/QC) is discussed in Section 4.0. Section 5.0 discusses additional measures to delineate soil and groundwater impacts. Section 6.0 discusses possible future remediation options which will be determined following monitoring well installation and initial soil and groundwater sampling. References used for completion of this report are noted in section 7.0. Figure 1 is a Site location map, Figure 2 displays the Site layout and proposed location of groundwater monitoring wells to be installed, and Figure 3 is a diagram of typical monitoring well completion. Appendices follow the Figures and include:

- Appendix A Analytical Results Summary Tables
- Appendix B B-I Soil Boring Log
- Appendix C Soil Boring Log, Soil Sampling, Monitoring Well Completion,
 Groundwater Sampling Field Forms
- Appendix D Laboratory Analytical Reports

3.1 Pre Field Work Preparation

The proposed groundwater monitoring well location map (**Figure 2**) will be reviewed and approved by ConocoPhillips Risk Management and Remediation personnel and San Juan Business Unit personnel. Once these well locations have been approved, New Mexico One-Call will be contacted to perform a utility locate within a 450 foot radius from the San Juan 29-7 Unit 37 wellhead. Additionally, monitoring well installation permits will be acquired by Enviro-Drill Inc. of Albuquerque, NM (Enviro-Drill), and a site specific Health and Safety Plan (HASP) will be prepared by Tetra Tech prior to the start of field work.

3.2 Site Investigation

3.2.1 Soil Boring Advancement and Soil Sample Collection

The subject Site is scheduled to have four (4) soil borings completed into two-inch diameter groundwater monitoring wells in order to define the groundwater flow direction and to determine the extent of petroleum hydrocarbon-impacts to groundwater. Borings will be advanced until auger refusal is met or until a sufficient depth into groundwater is achieved. Depth to groundwater at the Site is expected to be found at approximately 110 feet bgs.

41.CHB9

Prior to the start of drilling operations, each boring location will be pre-cleared in order to insure that no underground utilities within the Site will be damaged by drilling equipment. Pre-clearing of each boring will be performed by Riley industrial Services of Farmington, New Mexico, using a vacuum truck and water pressure to advance each hole to approximately ten (10) inches in diameter and five (5) feet deep. Two soil samples will be collected from the vadose zone to just above the water table and the lithology of each borehole recorded to total depth during the advancement of each boring using split spoon sampling techniques. The soil samples collected from the vadose zone will be field screened with a PID using the heated headspace method. The results will be recorded on the boring log, and the soil sample with the highest PID reading as well as the sample collected from directly above the groundwater interface will be submitted to Accutest Laboratories of Houston, TX to be analyzed for the following parameters:

- Volatile Organic Compounds (VOCs), EPA Method 8260B
- Polynuclear Aromatic Hydrocarbons (PAHs), EPA Method 8270C
- Total petroleum hydrocarbons (TPH), EPA Method 8015B
- Total metals aluminum, boron, iron, arsenic, barium, cadmium, chromium, cobalt, selenium, silver, zinc by EPA Method 6010B and mercury by EPA Method 7471A
 - General chemistry (as described in 40 CFR 136.3), including
 - Alkalinity, EPA Method SM2320B
 - o Bromide, chloride, fluoride, orthophosphate, sulfate, nitrate/nitrite, EPA Method 300.0
 - Bicarbonate/carbonate, EPA Method 310.1
 - o pH, EPA Method 4500-HB
 - Specific conductance, EPA Method E120.1

3.2.2 Groundwater Monitoring Well Construction

Enviro-Drill will be utilized as the drilling contractor at the Site, and drilling operations will be supervised by Tetra-Tech personnel. Groundwater monitoring wells will be constructed using two-inch diameter polyvinyl chloride (PVC) casing and at least 15 feet of PVC, 0.010 inch slot screen (approximately 10 feet of the screen to be installed below the water table). The installed groundwater monitoring wells will contain a sand filter pack to 2-feet above the top of the screen, with a sand collar above the filter pack. A two-foot bentonite seal will be placed on top of the sand collar, followed by cement grouting to the land surface. Each well will be completed with a locking, stick-up well monument set in a 3-foot by 3-foot concrete pad (**Figure 3**). The ground water monitoring wells will be developed using a surge block and bailer or purge pump, and the wells will be incorporated into a semi-annual groundwater monitoring program initially.

3.2.3 Investigation Derived Waste

All well development water will be placed into the on-Site produced water tank. Soil cuttings will be placed on polyethylene sheeting and will be covered in the event of precipitation during field activities. Once each soil boring is complete, a representative sample of soil cuttings from each soil boring will be field screened using a PID and will be spread on-Site if the results are less than 100 ppm. In the event that soil cutting PID results are greater than 100 ppm, soil cuttings will be containerized in 55 gallon drums and transported by Envirotech to the Envirotech Soil Remediation Facility (or other ConocoPhillips-approved waste disposal facility).

3.2.4 Groundwater Monitoring

During the first regularly scheduled semi-annual groundwater monitoring event covered under this work plan, an expanded baseline groundwater parameter list will be submitted for a laboratory analysis. Constituents of concern (COCs) detected in groundwater at concentrations above the New Mexico Water Quality Control Commission (NMWQCC) Groundwater Quality Standards during the first groundwater monitoring event will be carried to a concentration of the New Mexico Water and the first groundwater monitoring event will be carried to a concentration of the New Mexico Water Quality Control Commission (NMWQCC) and the first groundwater monitoring event will be carried to a concentration of the first groundwater monitoring events.

The baseline parameter list for groundwater includes analyses of the following parameters:

- VOCs, EPA Method 8260B
- PAHs, EPA Method 8270C
- TPH, gasoline range organics (GRO), EPA Method 8015B
- TPH, diesel range organics (DRO), EPA Method 8015B
- Dissolved metals aluminum, boron, iron arsenic, barium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver and zinc by EPA Method 6010B
- Total metals mercury by EPA Method 7470A
- General chemistry (as described in 40 CFR 136.3), including
 - Alkalinity, EPA Method SM2320B
 - Bromide ,chloride, fluoride, orthophosphate, sulfate, nitrate/nitrite, EPA Method 300.0
 - Bicarbonate/carbonate, EPA Method 310.1
 - o pH, EPA Method 4500-HB
 - Specific conductance, EPA Method E120.1
 - o TDS, EPA Method SM2540C
 - Hardness, EPA Method SM2430C

Semi-annual groundwater sampling will be conducted in March and September of 2011 at the Site. A dedicated, 1.5 inch polyethylene bailer will be used to purge and sample each well. A groundwater sample will be collected once specific conductance, pH, dissolved oxygen, and temperature are determined to have stabilized (within a 10% margin) or once three well

volumes have been purged. Records of each sampling event will be kept on Tetra Tech groundwater sampling forms and in a bound field notebook. Groundwater samples will be containerized in bottles supplied by Accutest Laboratories of Houston, Texas. The groundwater samples will be placed on ice in a cooler under chain of custody documentation and submitted to the laboratory for analysis. Groundwater samples will be shipped by overnight courier.

3.3 Reporting

Semi-annual groundwater monitoring reports will be prepared for the Site. The first semiannual report will include a summary of the groundwater monitoring well installation and a brief narrative of the sampling events. In general, the reports will include the date(s) the events wastern about occurred, copies of sampling field forms from each sampling event, copies of laboratory chain-ofcustody documentation and results, laboratory quality assurance/quality control (QA/QC) documentation, tabulated groundwater elevations. soil results. groundwater concentration/elevation maps, a generalized geologic cross section, and a summary of key findings. Starting with the second semi-annual report, the groundwater elevations and groundwater which is analytical results from the previous quarter(s) will be tabulated with the results from the current quarter. For each monitoring event, a hard copy of the report will be submitted to the NMOCD.

Based on the extent of groundwater impacts determined by laboratory analysis, Site characterization and interpretation of analytical data by Tetra Tech, it is possible that the frequency of groundwater monitoring events may change. If the groundwater monitoring schedule is revised at any time, the NMOCD will be notified. Once groundwater results begin to approach compliance, quarterly sampling will begin. Following eight (8) quarters of compliance, no further action will be requested.

A C-141 form (Release Notification and Corrective Action) was completed and submitted to NMOCD for soil impacts at the Site by ConocoPhillips on September 16, 2010 and a C-141 form for groundwater impacts was submitted on January 28, 2011.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance evaluation will be conducted by the analytical laboratory on collected samples to check for accuracy, precision and reliability of each reported analyte concentration. Sample spiked-matrix batch samples will be analyzed to determine the accuracy of laboratory results. Quality assurance documentation will be provided on the laboratory report.

At least one field audit of investigation and sampling protocol will be conducted by the project manager during the period covered by this work plan. Variations from standard operating procedures will be documented and corrected, if necessary.

5.0 ADDITIONAL MEASURES TO DELINEATE SOIL AND GROUNDWATER IMPACTS

If impacts are not fully delineated following the initial monitoring well installation and sampling event, additional wells will be added to the site in order to achieve three (3) dimensional delineation. Proposed additional monitoring wells are shown on **Figure 2**. If necessary, those wells will be installed and sampled according to this plan.

6.0 REMEDIATION OPTIONS

Tetra Tech will evaluate the data collected from boring installation and monitoring well sampling to determine an appropriate remediation option based upon site characteristics, risk, landowner considerations, and NMOCD input.

6.1 Soil Vapor Extraction

Based on results of the initial monitoring well installation and soil and groundwater sampling events, soil vapor extraction (SVE) might be considered a viable option for in situ remediation. The details of this option will depend on investigation findings and will be discussed in detail if SVE becomes the clear path forward.

6.2 Chemical Oxidation

Based on results of the initial monitoring well installation and soil and groundwater sampling events, chemical oxidation might be considered a viable option for in situ remediation. This would involve using a drill rig to advance several injection points in and around the impacted area in order to deliver an oxidizing compound to soil and groundwater. The network of monitoring wells would be used to monitor effects and progress and determine need for additional treatments.

6.3 Monitored Natural Attenuation

Based on results of the initial monitoring well installation and soil and groundwater sampling events, monitored natural attenuation might be considered a viable option for in situ remediation. The network of installed monitoring wells would be used to evaluate the physical, chemical, and biological processes that contribute to naturally occurring biodegradation and other non destructive attenuation mechanisms.

7.0 REFERENCES

Envirotech Incorporated (2010). Confirmation Sampling Report for ConocoPhillips Company San Juan 29-7 Unit 37, Section 12, Township 29N, Range 7W, Rio Arriba County, New Mexico. Prepared for ConocoPhillips. Report Dated January 11, 2011. 5 pp (not including Figures, Tables, and Appendices).

New Mexico Oil Conservation Division (1993). Guidelines for Remediation of Leaks, Spills and Releases. August 13, 1993. 16 pp. (not including Appendices).

FIGURES

I.) Site Location Map

Boring Location and Proposed Monitoring Well Location Map

3.) Typical Monitoring Well Completion Diagram

February 23, 2011

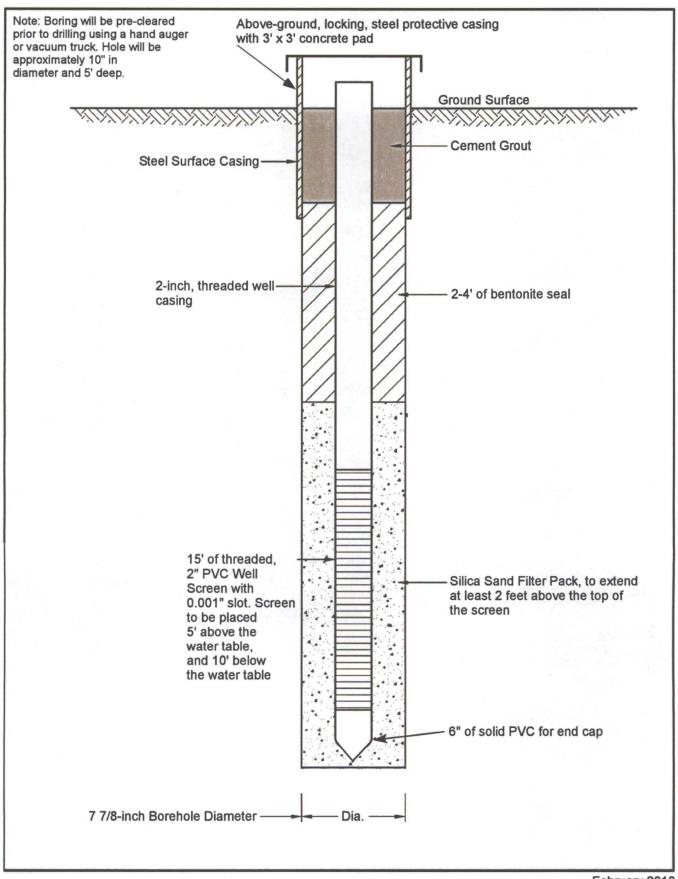
FIGURE 1.

Site Location Map

ConocoPhillips Company San Juan 29-7 Unit 37 Rio Arriba County, NM

ConocoPhillips Company San Juan 29-7 Unit 37 Site Location

Latitude: 36.73552° N Longitude: -107.52488° W



TETRA TECH, INC.

February 2010

APPENDIX A

Analytical Results Summary Tables

Table 1, Summary of Analytical Results

Confirmation Sampling Report San Juan 29-7 #37 (hBr) Project No. 92115-1437 November 2010 ConocoPhillips

:	,	BTEX (ppm)	Benzene (ppm)	TPH (ppm)	Organic Vapors	
- 1	Date	EPA Method 8021	EPA Method 8021	EPA Method 418.1	(mdd)	EPA Method 8015
	NA	50	10	100	100	100
		Northern I	Northern Excavation Samples			
	9/24/2010	0.189	0.0133	100	454	4.6
رب ا	9/24/2010	SN	SN	44	46	SN
	9/24/2010	ND	QN	72	312	QN
	9/24/2010	SN	SN	28	24.4	SN
	9/24/2010	266	15.9	6,400	2060	34,800
	9/24/2010	50.1	0.155	2,670	1680	1,270
	11/10/2010	SN	SN	16	47.8	SN
	11/10/2010	35.9	0.29	2680	OVR	1,440
	11/10/2010	SN	SN	80	8.7	SN
	11/10/2010	NS	NS	44	21.6	SN
	11/10/2010	193	12.6	24,200	1725	30,600
	11/23/2010	31.5	0.005	2500	364	487
		Southern	Southern Excavation Samples			
	12/3/2010	177	1.29	19,600	218	5,530
	12/3/2010	NS	NS	99	12.0	SN
·	12/3/2010	NS	NS	92	6.0	SN
	12/3/2010	NS	SN	-80	7.0	SN

Values in BOLD are above Regulatory Limits

NS = Not Sampled

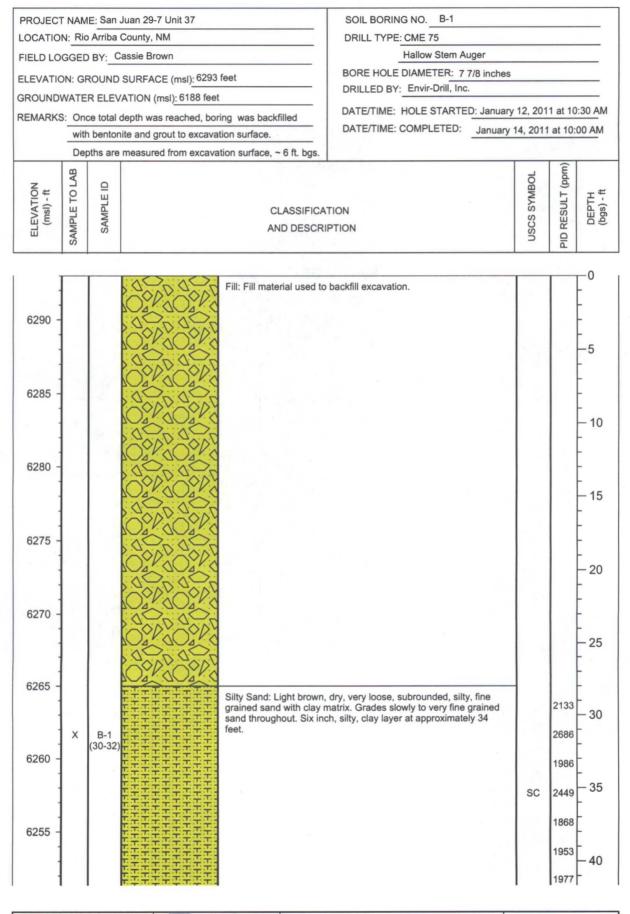
ND = Non detect

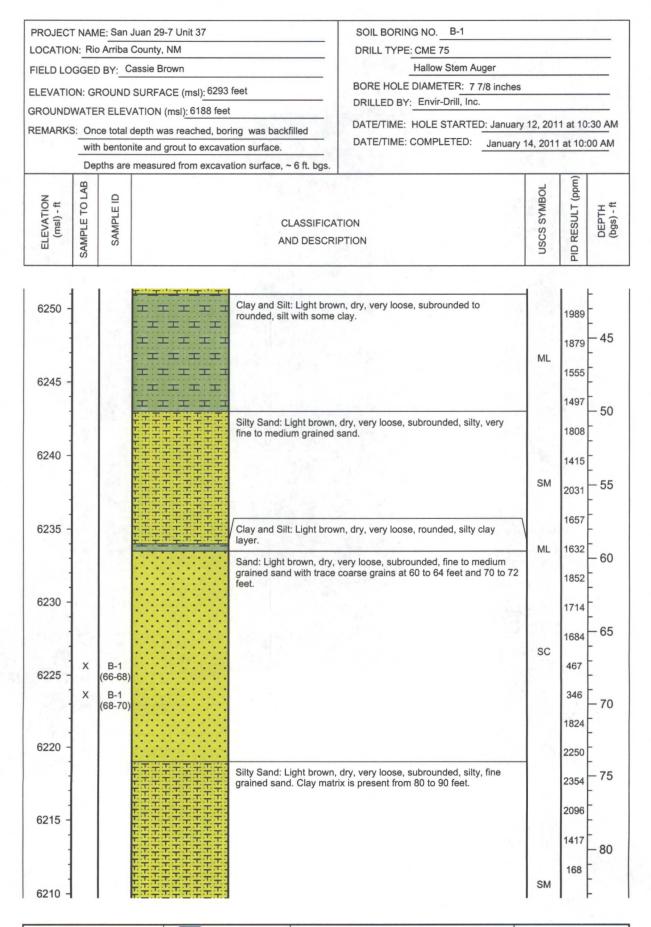
ConocoPhillips Company San Juan 29-7 Unit 37

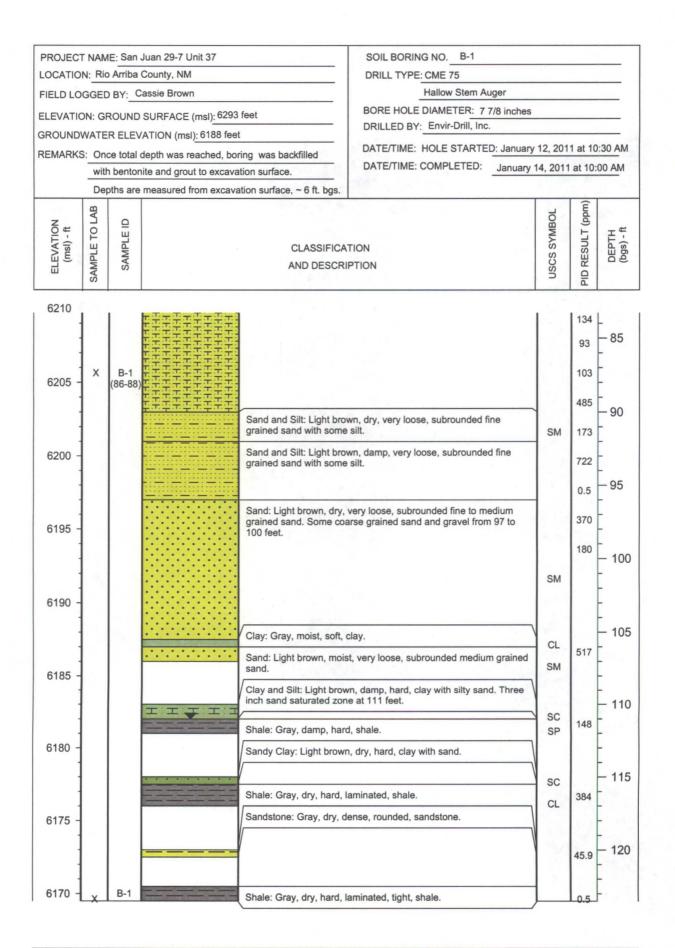
Table 2. San Juan 29-7 Unit 37 Site Soil Boring Laboratory Analytical Results for B-1

Constituent	<u>ient</u>				Sample ID (soil sa	soil samples collecte	amples collected January 11th-14th, 2011	2011)		
VOCs (BTEX only)	Method	Units	B-1 (30-32 feet)	B-1 (66-68 feet)	B-1 (68-70 feet)	B-1 (86-88 feet)	B-1 (88-90 feet)	B-1 (92-94 feet)	B-1 (122.5-123.5 feet)	NMOCD
Benzene	8260B	mg/kg - dry	0.25	< 0.0064	< 0.0058	< 0.0054	< 0.0056	< 0.0056	< 0.005	10
Toluene	8260B	mg/kg - dry	48	0.11	0.014	< 0.0054	< 0.0056	900.0	960:0	NE
Ethylbenzene	8260B	mg/kg - dry	11	0.082	< 0.0058	< 0.0054	< 0.0056	< 0.0056	0.022	NE
Total Xylenes	8260B	mg/kg - dry	374	1.88	680.0	< 0.0054	0.017	0.017	0.347	NE
Total BTEX	8260B	mg/kg - dry	433.25	2.072	0.103	< 0.0054	0.017	0.023	0.465	50
Petroleum Hydrocarbons	Method	Units	B-1 (30-32 feet)	B-1 (66-68 feet)	B-1 (68-70 feet)	B-1 (86-88 feet)	B-1 (88-90 feet)	B-1 (92-94 feet)	B-1 (122.5-123.5 feet)	NMOCD
TPH Gasoline Range	8015B	mg/kg - dry	5300	14	0.35	< 0.1	< 0.1	0.14	0.11	100
TPH Diesel Range	8015B	mg/kg - dry	380	11	12	< 5	< 5	< 5	ND	20

Table 3. San Juan 29-7 Unit 37 Site Groundwater Sample from B-1 (collected from drill rig augers in boring)


			611	(6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Sample ID	
			(collected January 14th,	
Constituent	<u>lent</u>		2011)	
VOCs (BTEX only)	Method	Units	B-1 Water	NWWQCC Standard
Benzene	8260B	hg/L	930	10
Toluene	809Z8	hg/L	15000	150
Ethylbenzene	809Z8	hg/L	1400	. 052
Total Xylenes	8260B	hg/L	18800	620
SVOCs	Method	Units	B-1 Water	NMWQCC Standard
Naphthalenes	8270C	µg/L	< 10	30
Petroleum Hydrocarbons	Method	Units	B-1 Water	NMWQCC Standard
TPH Gasoline Range	8015B	mg/L	73	NE
TPH Diesel Range	8015B	mg/L	1.4	ЭN
Irn Diesel Kalige	90100	IIIy/L	1.4	_


NMOCD = New Mexico Oil Conservation Division recommended action level
NMWQCC = New Mexico Water Quality Control Commission Standard
Results shown in **BOLD** type are in exceedance of NMOCD recommended soil action levels or NMWQCC groundwater standards


B = soil boring

VOCs = Volatile organic compounds
SVOCs = Semi-volatile organic compounds
mg/kg - dry = Milligrams per kilogram (parts per million), analyzed after residual water removed from the soil µg/L = Micrograms per liter (parts per billion)
NE = Not established

APPENDIX BB-I Soil Boring Log

APPENDIX C

Soil Boring Log, Soil Sampling, Monitoring Well Completion and Groundwater Sampling Field Forms

Lithology Record

Project/Client:

Borehole: Geologist:

Date: Driller:

:

ਰ
0
ے
₹
Φ
5
_

% Rec. (ft/ft) 5 Page_ noijemiołni lenoilibb^A Plasticity Dry Strength nedium medium medium nedium high v. high nigh v. high high v. high snouesomo aminated fissured Structure lensed ensed Cementation & Type Calcareous Calcareous CHOOSE: CHOOSE strong subangular subrounded Angularity/Shape of subrounded p_{ariicles} subrounded subrounded subangular subangular elongated subangular elongated elongated elongated rounded papuno. rounded papuno. angular angular ngular angular (pues Cohesive Soils Density of Nonn. dense m. dense m. dense m. dense dense '. dense dense '. dense v. dense dense . v. loose /. loose loose. dense dense oose oose Cohesive Soils (Clay) Consistency of firm (stiff) firm (stiff) firm (stiff) firm (stiff) hard v. hard v. hard hard /. hard v. soft v. soft v. soft ard soft soft Moisture Content day damp moist dry damp moist damb moist damb moist wet sat. wet sat. Color Naca Class Description bne ameN quora 읊 Interval (ft.) Z z z z Blow Ct. Sample: Y Analytes: Blow Ct. Sample: Y Blow Ct. Sample: Y Analytes: Sample: Y Analytes: Analytes: Time:

TETRATECH, INC.

TE TETRATECH	SOIL SAMPLIN	G FIELD FORM
Project No.	Project Name:	Date:
Station:		
Sampled By:	Mean Time:	SMS Control No.:
Record No.:	Sample Purpose:	
SAMPLES COLLE		
Туре:	Color:	USCS Classification
% Clay	☐ Dry	GW SW ML
% Silt	. Moist	GP SP CL
% Sand	Saturated	GM' SM OL
% Gravel		GC SC MH CH
SAMPLING PATTERN S	KETCH	ОН
	ft	Sample depth PT
	"	Sample deput
		Sample volume
		☐ Primary sample
		·
	#	☐ Duplicate sample
		Other
	 	
	1	
Containers:	· · · · · · · · · · · · · · · · · · ·	Analysis:
□250 mL plastic		☐ Metals
LIZOV IIIL piastic		LI METAIS
□500 mL plastic	·	Radionuclides
☐1000 mL plastic		Anions
□Other	· .	Other
		· · · · · · · · · · · · · · · · · · ·
Comments:		
		. ,
		,
Reviewed by:	· ·· · · · · · · · · · · · · · · · · ·	Date:
tovicinea by		Date.

approx. 3 ft.

Stickup (feet):

1	TE.

TETRATECH, INC.

Well Completion Diagram

			1 1 1	1
Job Name				Steel Casing
	5			Other:
	ϵ			
		· · ·		Casing:
	<u> </u>	 	.	ft. to
Field Geologist_				inch diame
Driller_				Borehole:
Equipment_				ft. to
Materia	als			Outer Casing:
Damada		Eilter Deel		ft. to
Pounds _				Concrete: approx. 4' v
Pounds _	<u> </u>			ft. to
Gallons _	·	Grout		Grout:
Pounds	· · · · · · · · · · · · · · · · · · ·	Concrete		ft. to
Feet of nati	ive fill/ slough			
Feet of _	inch pvc	Blank Casing	100 July	Bentonite Seal:
Feet of _	inch	Slotted Screen		ft. to
Feet of		Outer Casing		Filter Pack:
Feet of	* ·	Sump/ Silt Trap		ft. to
Placement Method				Slotted Screen:
- Notes				ft. to
) -				Native fill/ slough:
	•			ft. to
Develo	opment			8 inch diameter
Method				Borehole:
Date				Sump/ Silt Trap:
	gallons			ft. to
_				· · · · ·
Notes_				

TŁ	TETRATECH, INC.

WATER SAMPLING FIELD FORM

Project Name					Page		of	
Project No.								
Site Location								
Site/Well No.	MW -	Coded/ Replicate l	No.		Date			
Weather		Time Sam Began	pling		Time Sampling Completed	-		·
			EVACUATI	ON DATA				
Description of	Measuring Point (MP)	Top of Casing						
Height of MP A	Above/Below Land Surf	face	<u> </u>	MP Elevation				
Total Sounded	Depth of Well Below N	MP		Water-Level Ele	evation			
	_Depth to Water Belov			Diameter of Cas Gallons Pumpe	sing <u>2"</u>			
	_ Water Column in			Prior to Samplir	a, Danoa			·
	Gallons per	Foot		Caralina Duma	Intolog Catting			
	Gallons in	Well		Sampling Pump (feet below land	surface)			
Purging Equip	ment Purge pump	o / Bailer		,	· · · · · · · · · · · · · · · · · · ·		·	·
			SAMPLING DATA/FI					
Time	Temperature (°C)	pН	Conductivity (µS/cm ³	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
							<u> </u>	
Sampling Equi	pment	Purge Pump/Bai	ler	- L				
Constitu	uents Sampled		Container Description	<u>n</u> .		Pres	<u>ervative</u>	
								
		·		· ···			:	·
Remarks						•		
Sampling Pers	onnel							
			Well Casing	g Volumes				
	Gal./ft. 1 1/4" = 0 1 1/2" = 0		2" = 0.16 2 ½" = 0.24	3" = 3" ½ =	0.37 0.50	4" = 0.65 6" = 1.46		

APPENDIX D

Laboratory Analytical Reports

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

1

Date Reported:

12/20/2010

Sample ID:

Bench

Date Sampled:

9/24/2010

Sample Matrix: Preservative:

Soil Cool Date Analyzed:
Analysis Needed:

9/24/2010 TPH-418.1

Condition:

Cool and Intact

Parameter	(mg/kg)	(mg/kg)
	Concentration	Limit
		Det.

Total Petroleum Hydrocarbons

100

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Sarah Rowland, EIT

Printed

neview

Toni McKnight, EIT

Printed

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:

ConocoPhillips

92115-1437

Sample No.:

Project #:

Sample ID:

West Wall

Date Reported:

12/20/2010

Sample Matrix:

Soil

Date Sampled: Date Analyzed: 9/24/2010 9/24/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

			Det.
	į.	Concentration	Limit
Parameter		(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Sarah Rowland, EIT

Printed

Toni McKnight, EIT

Printed

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

Sample ID:

East Wall

Date Reported:

12/20/2010 9/24/2010

Sample Matrix:

Soil

Date Sampled: Date Analyzed:

9/24/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

, , , , , , , , , , , , , , , , , , , ,	-		Det.
		Concentration	Limit
Parameter		(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

72

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Sarah Rowland, EIT

Printed

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

Date Reported:

12/20/2010

Sample ID:

South Wall

Sample Matrix:

Soil

Date Sampled:

9/24/2010

Preservative:

Cool

Date Analyzed: Analysis Needed: 9/24/2010 TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

28

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Sarah Rowland, EIT

Printed

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

5

Date Reported:

Sample ID:

North Wall

12/20/2010 9/24/2010

Sample Matrix:

Soil

Date Sampled: Date Analyzed:

9/24/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

			Det.
		Concentration	 Limit
Parameter	i i i i i i i i i i i i i i i i i i i	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

6,400

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Sarah Rowland, EIT

Printed

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

6

Data Basadad

12/20/2010

Sample ID:

Ţ.,

Date Reported:

12/20/2010

Sample Matrix:

Bottom Soil Date Sampled: Date Analyzed:

9/24/2010

Preservative:

Cool

Analysis Needed:

9/24/2010 TPH-418.1

Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

2,670

5.0

ND = Parameter not detected at the stated detection limit.

References

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Aryalyst

Review

Sarah Rowland, EIT

Printed

Toni McKnight, EIT

CONTINUOUS CALIBRATION EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Cal	. 1			٠.
Cal	. 1	l }?	316	Э.

24-Sep-10

	Standard	Concentration	: ::	 				
	Concentration	Reading		 	٠.			
Parameter	mg/L	mg/L	:	 . •			·:	. :
TPH	100	•						
	158	161						
	500							
	1000					•		

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

anna Oldenia for	12/20/2010
ynalyst	Date
Sarah Rowland, EIT	
Print Name	
Toni Melnight	12/20/2010
Review	Date

Print Name

Client:

Sample No.: Sample ID:

Sample Matrix:

Preservative:

Condition:

ConocoPhillips

South Wall

Soil

Cool

Cool and Intact

Project #:

Date Reported:

Date Sampled:

Date Analyzed: Analysis Needed:

11/10/2010

TPH-418.1

92115-1437

12/20/2010

11/10/2010

		Det.
4	Concentration	Limit
1_		
Parameter	(mg/kg)	(mg/kg)
An area a present the second		

Total Petroleum Hydrocarbons

16

5.0

ND = Parameter not detected at the stated detection limit.

_Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn S. Jones, EIT

Printed

Toni McKnight, EIT

Client::

ConocoPhillips

Project #:

92115-1437

Sample No.:

2

Date Reported:

12/20/2010

Sample ID:

South Bottom

Date Sampled:

11/10/2010

Sample Matrix:

Soil Cool Date Analyzed:

11/10/2010

Preservative: Condition:

Cool and Intact

Analysis Needed: T

TPH-418.1

				٠.
		• '		
		٠.		
_		100		_
	20	ror	20	tor

Concentration (mg/kg)

Limit (mg/kg)

Det.

Total Petroleum Hydrocarbons

5,680

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Robyn S. Jónes, EIT

Printed

Review

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.: Sample ID:

North Wall

Date Reported:

12/20/2010

Sample Matrix:

Soil

Date Sampled: Date Analyzed:

11/10/2010

Preservative:

Cool

Analysis Needed:

11/10/2010 TPH-418.1

Condition:

Cool and Intact

	•		Det.
		Concentration	Limit
Parameter		(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

80

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Robyn S. Jones, EIT

Printed

Heview

Toni McKnight, EIT

Client:

ConocoPhillips

Sample No.:

Sample ID:

Sample Matrix:

Preservative: Condition:

Soil Cool

E+W Walls

Cool and Intact

Project #:

92115-1437

Date Reported:

12/20/2010

Date Sampled: Date Analyzed: 11/10/2010

Analysis Needed:

11/10/2010 TPH-418.1

* * * * * * * * * * * * * * * * * * * *	 		 Det.
	 •	Concentration	Limit
Parameter	 	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn S. Jones, EIT

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

5

Date Reported:

12/20/2010

Sample ID:

North Bottom

Date Sampled:

11/10/2010

Sample Matrix:

Soil Cool Date Analyzed:

Analysis Needed:

11/10/2010 TPH-418.1

Preservative: Condition:

Cool and Intact

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

24,200

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyet

Robyn S. Jones, EIT

Printed

Review

Toni McKnight, EIT

CONTINUOUS CALIBRATION EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Cal. Date:

10-Nov-10

Standard	Concentration	
Concentration Parameter mg/L	Reading mg/L	
TPH 100		
246 500	238	
1000	•	

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

_ UMV N A	12/20/2010
Analyst Robyn S. Jones, EIT	Date
Print Name Tons Mclough D	12/20/2010
Review	Date
Toni McKnight, EIT	

Print Name

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

1.

Date Reported: 12/20

12/20/2010

Sample ID:

South Wall Soil Date Sampled:

11/23/2010

Sample Matrix:

Soil

Date Analyzed:

11/23/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

		1	Det.
		Concentration	Limit
Parameter	·	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

2,500

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Analyst

Scott Gonzales, FT

Printed

Heview

Toni McKnight, EIT

CONTINUOUS CALIBRATION EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Cal. Date:

23-Nov-10

	to the specifical fields.	and the second second	<u> </u>
Standard Concentration	Concentration Reading		ima e i i i i i i i i i i i i i i i i i i
Parameter mg/L	mg/L		en e
TPH 100			
246 500 1000	250		

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

Soft	$\frac{2}{2}$	12/20/2010
Analyst		Date
Scott Gonz	ales, FT	
Print Name		
Im I	White	12/20/2010
Review		Date

Print Name

Client:

ConocoPhillips

Sample No.: Sample ID:

Sample Matrix:

Preservative: Condition:

Bottom

Soil

Cool

Cool and Intact

Project #:

Date Reported:

Date Sampled:

Date Analyzed: Analysis Needed: 12/3/2010 12/3/2010

TPH-418.1

92115-1437

12/20/2010

	1	Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

19,600

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn S. Jones, EIT

Printed

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

2

Sample ID:

West Wall

Date Reported:

12/20/2010

Sample Matrix:

Soil

Date Sampled: Date Analyzed: 12/3/2010

12/3/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

			Det.
		Concentration	Limit
Parameter	·	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

56

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn S. Jones, EIT

Printed

Toni McKnight, EIT

Client:

ConocoPhillips

Sample No.:

Project #: 92115-1437

Sample ID:

East Wall

12/20/2010

Sample Matrix:

Soil

Date Reported: Date Sampled: Date Analyzed:

12/3/2010 12/3/2010

Preservative:

Cool

Analysis Needed:

TPH-418.1

Condition:

Cool and Intact

٠, '			'1 .
			Det.
:		Concentration	Limit
٠,	Parameter	(mg/kg)	(mg/kg)
٠,,,	الما المناسب المناسب المعرفين والمناسب المناسب المعمومة المعروض والمراج والمناسب والمراج والمر		

Total Petroleum Hydrocarbons

76

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Robyn S. Jones, EIT

Toni McKnight, EIT

Client:

ConocoPhillips

Project #:

92115-1437

Sample No.:

1

Date Reported:

12/20/2010

Sample ID:

South Wall

Date Sampled: 12/3

12/3/2010

Sample Matrix: Preservative:

Soil Cool Date Analyzed:

12/3/2010

Condition:

ب00l

Analysis Needed:

TPH-418.1

Condition

Cool and Intact

	<u> </u>		Det.
		Concentration	Limit
Parameter	the second second	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

80

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

San Juan 29-7 #37 (hBr)

Instrument calibrated to 200 ppm standard. Zeroed before each sample

Anatyst/

Robyň S. Jones, EIT

Printed

LICAICA

Toni McKnight, EIT

CONTINUOUS CALIBRATION EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Cal	•	$\overline{}$	_		_
(. 2)			-	ТΩ	•

3-Dec-10

Parameter	Standard Concentration mg/L	Concentration Reading mg/L		
	i de la compania del compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania			
TPH	100			
	246	261		
	500			•
	1000	•		•

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

X On which	12/20/2010
Analyst	Date
Robyn S. Jones, EIT	
Print Name	
Tom Milmall	12/20/2010
Review	Date
Toni McKnight, EIT	

Print Name

Client.	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bottom	Date Reported:	09-28-10
Laboratory Number:	55957	Date Sampled:	09-24-10
Chain of Custody No:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Extracted:	09-24-10
Preservative:	Cool	Date Analyzed:	09-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

- Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	1,240	0.2	
Diesel Range (C10 - C28)	26.2	0.1	
Total Petroleum Hydrocarbons	1,270		

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bench	Date Reported:	09-28-10
Laboratory Number:	55958	Date Sampled:	09-24-10
Chain of Custody No:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Extracted:	09-24-10
Preservative:	Cool	Date Analyzed:	09-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	3.7	0.2	
Diesel Range (C10 - C28)	0.9	0.1	
Total Petroleum Hydrocarbons	4.6		

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	North Wall	Date Reported:	09-28-10
Laboratory Number:	55959	Date Sampled:	09-24-10
Chain of Custody No:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Extracted:	09-24-10
Preservative:	Cool	Date Analyzed:	09-27-10
Condition	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	34,200	0.2
Diesel Range (C10 - C28)	596	0.1
Total Petroleum Hydrocarbons	34,800	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

	•		•
Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	East Wall	Date Reported:	09-28-10
Laboratory Number:	55960	Date Sampled:	09-24-10
Chain of Custody No:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Extracted:	09-24-10
Preservative:	Cool . ,	Date Analyzed:	09-27-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)	
Gasoline Range (C5 - C10)	ND	0.2	
Diesel Range (C10 - C28)	ND ND	0.1	
Total Petroleum Hydrocarbons	ND		

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	09-27-10 QA/QC	Date Reported:	09-28-10
Laboratory Number:	55957	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A :	Date Analyzed:	09-27-10
Condition:	N/A	Analysis Requested:	TPH

	Control of the Contro	I-Cal Date	PI-CallRF	C-Cal RF	% Difference	Accept: Range
ų.	Gasoline Range C5 - C10	09-27-10	9.9960E+002		0.04%	0 - 15%
	Diesel Range C10 - C28	09-27-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L-/mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1
Total Petroleum Hydrocarbons	ND	

Duplicate Conc. (mg/Kg) =	Sample	Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	1,240	1,240	0.0%	0 - 30%
Diesel Range C10 - C28	26.2	26.4	0.1%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	% Recovery	Accept. Range.
Gasoline Range C5 - C10	1,240	250	1,470	98.7%	75 - 125%
Diesel Range C10 - C28	26.2	250	280	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 55940-55941, 55957-55962, 55965

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bottom	Date Reported:	09-28-10
Laboratory Number:	55957	Date Sampled:	09-24-10
Chain of Custody:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Analyzed:	09-27-10
Preservative:	Cool	Date Extracted:	09-24-10
Condition:	Intact	Analysis Requested:	BTEX
•		Dilution:	10

Parameter			Concentration (ug/Kg)	Det. Limit (ug/Kg)	ï
			·	,	
Benzene	•	f	155	0.9	
Toluene		4	8,040	1.0	
Ethylbenzene			2,780	1.0	
p,m-Xylene		1	31,900	1.2	
o-Xylene		1	7,240	0.9	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	100 %	
	1,4-difluorobenzene	97.0 %	
•	Bromochlorobenzene	104 %	

50,100

References:

Total BTEX

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bench	Date Reported:	09-28-10
Laboratory Number:	55958	Date Sampled:	09-24-10
Chain of Custody:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Analyzed:	09-27-10
Preservative:	Cool	Date Extracted:	09-24-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Concentration	Det. Limit
(ug/Kg)	(ug/Kg)
13.3	0.9
10.6	1.0
ND	1.0
92.6	1.2
72.5	0.9
	92.6

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	Fluorobenzene	100 %	
	1,4-difluorobenzene	96.5 %	
	Bromochlorobenzene	105 %	

189

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA;

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments: San Juan 29-7 #37 (hBr)

Analyst

Review

Total BTEX

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	North Wall	Date Reported:	09-28-10
Laboratory Number:	55959	Date Sampled:	09-24-10
Chain of Custody:	10401	Date Received:	09-24-10
Sample Matrix:	Soil ,	Date Analyzed:	09-27-10
Preservative:	Cool	Date Extracted:	09-24-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

Parameter	 Concentration (ug/Kg)	Det. Limit (ug/Kg)	
•			

Benzene	15,900	0.9
Toluene	205,000	1.0
Ethylbenzene	5,240	1.0
p,m-Xylene	17,200	1.2
o-Xylene	22,600	0.9
•		

Total BTEX 266,000

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter		Percent Recovery	
	Fluorobenzene	115 %	
-	1,4-difluorobenzene	125 %	
-	Bromochlorobenzene	114 %	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
•	East Wall	•	
Sample ID:	East wall	Date Reported:	09-28-10
Laboratory Number	55960	Date Sampled:	09-24-10
Chain of Custody:	10401	Date Received:	09-24-10
Sample Matrix:	Soil	Date Analyzed:	09-27-10
Preservative:	Cool	Date Extracted:	09-24-10
Condition:	Intact	Analysis Requested:	BTEX
,		Dilution:	10

		Det.	
	Concentration	Limit	
Parameter	(ug/Kg)	(ug/Kg)	
			······································

Benzene	•	ND '	0.9
Toluene	·	ND	1.0
Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	ND	1.0
p,m-Xylene	,)	ND	1.2
o-Xylene		ND	0.9
Total BTEX		ND	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	99.3 %
	1,4-difluorobenzene	96.2 %
•	Bromochlorobenzene	99.3 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Raviow

Client:	N/A		Project #:		N/A	
Sample ID:	0927BBLK QA/Q	C '	Date Reported:		09-28-10	
Laboratory Number:	55957		Date Sampled:		N/A	
Sample Matrix:	Soil		Date Received:		N/A	
Preservative:	N/A		Date Analyzed:		09-27-10	
Condition:	N/A		Analysis:		BTEX	
			Dilution:		10	
Calibration and Detection Limits (ug/L)	l-cal RF	G-Cal RF: Accept: Ran	And the second second second	Blank Conc	Detect. Limit	
Benzene /	6.1329E+005	6.1452E+005	0.2%	ND .	0.1	
Toluene	6.7571E+005	6.7706E+005	0.2%	ND	0.1	
10140110			A 60/	AID	0.4	
Ethylbenzene	6.1630E+005	6:1754E+005	0.2%	ND	0.1	
	6.1630E+005 1.4869E+006	6:1754E+005 1.4898E+006	0.2% 0.2%	ND ND	0.1 0.1	

Duplicate Conc. (ug/Kg) Sample Duplicate %Diff. Accept Range Detect. Limit									
Benzene	, 155	152	1.4%	0 - 30%	0.9				
Toluene	8,040	8,030	0.1%	0 - 30%	1.0				
Ethylbenzene	2,780	2,760	0.7%	0 - 30%	1.0				
p,m-Xylene	31,900	32,000	0.3%	0 - 30%	1.2				
o-Xylene	7,240	7,290	0.7%	0 - 30%	0.9				

Spike Conc. (ug/Kg) Sample Amount Spiked Spiked Sample % Recovery Accept Range 1								
Benzene	155	500	655	100%	39 - 150			
Toluene	8,040	500	8,560	100%	46 - 148			
Ethylbenzene	2,780	500	3,230	98.5%	32 - 160			
p,m-Xylene	31,900	1000	32,700	99.4%	46 - 148			
o-Xylene	7,240	500	7,760	100%	46 - 148			

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution,

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 55940-55941, 55962, 55965, 55957-55960

Analyst

CHAIN OF CUSTODY RECORD

· ~	\$78-89 (30)		1 to	196 July 1968	8 895	200	etc.	Page State	i i i iki	2600	6 mi 464					新工程的 工程	90.55	A Committee of the Comm	ביר
			le Intact			×	X	X		·					Time (5;20				28-080
		Å	looQ el	gmeS	\times	×	×	×	,								<u> </u>		ACCENT Printing • Form 28-0807
															Date 1/24/6	<u>.</u>			tutting
		1													20 /2				ENT P
			र इंडर क्यून पुरु व अस्ति विद्या	, v					-						2,				ACC
	ERS		BOIR	СНГО				·							. ^,	>			
	MET		(1.814) H9T												,		<u> </u>	
١	PAR/	and the state of t		HA9															
3	ANALYSIS / PARAMETERS		7/H rtiw	TCLP										·					-
	NALY			IDF		·							,					.5	5
	∢		noinA \	Cation	·						- 3				1				5750 US Highway of Frammigion, NM 67401 • 505-552-0019 • IAD @ GIVILOGED FIRE COMP
	•	S	steM 8	AROR	:	:													
		8560)	Method) 00A											ture)	(ture)	(ture)	tory and	
'	^	18021)	(Methoc	X3T8	×	×	×	×							Received by: (Signature)	Received by: (Signature)	Received by: (Signature)	environ Laboratory	3
1		(3108	horiseM	I) H9T	×	×	><	又	-						ă Tă). A	1 by: (
)				ative								<u> </u>			T See	N S	Selvec	Og	20-00
		\downarrow		No./Volume Preservative of Hgg, Hg	 						 				He He	V E	P. P.		5
	0.7		-	ешл						·				·	Time	?		And	70 M
	7	}		No.Volume of	/402]		 		ŀ					F 7	2		()	Z .
5	٠ ۴				+	S	s s	s s	e SD	9 2	, s	S S	8 3	e sa	9 1	2			
	71°4 - 1 00		*.	Sample Matrix	Sludge Aqueous	Sludge	Studge Aqueous	Sludge Aqueous	Sludge	Studge	Sludge	Sludge	Sludge Aqueous	Sludge Aqueous	Date	5			2
ו	: 10 (10			San						1	'		_			 	-		Medy
	locati	Pr Name:	37	<u> </u>	3		<u>(8)</u>		Solid	Solid Solid	Soil	Solid	Soil	Solid					5 [2]
		i i i i	五	o,	5	3	85	B										708	9
			92115-1437	Lab No.	55957	35958	2505F	001555						į,					"
	Project Name / Location:	Sampler Name:	Client No.:		100	an	131	1	<u> </u>	<u> </u>	<u> </u>	1			-				
F			-	Sample Time	15			_											
3					<u></u>		<u> </u>			ļ	 -				9				
		1	n v	Sample Date	न्त		<u> </u>	->							<u>@</u>	<u> </u>	<u>ē</u>		Ċ.
	<u>خ</u> <u>ت</u>	1		03	6				.0	geologic (Sec.				1	gnatt A	Ag	gnatu	10 /	30
	ă	<u>}</u>	:. Q	<u> </u>			-5	=		ri V	ļ.				. (Si	(S)	(S)		2-
	- (dres	ono	Sample No./ Identification	ک ا	1-5	محر	3							he L	in a contract of the contract	thed t		- X
		Client Address:	Client Phone No.:	San	Better	Bench	North Wal	East Wal						9	Relinquished by: (Signatura)	Relinquished by: (Signature)	Relinquished by: (Signature)	a	
	5 C	<u>/ ธี</u>	[₹		8	ريم		ा ख				<u></u>			<u>a</u>	New Year	<u>8</u>		

	,		
Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	South Bottom	Date Reported:	11-11-10
Laboratory Number:	56448	Date Sampled:	11-10-10
Chain of Custody No:	10701	Date Received:	11-10-10
Sample Matrix:	Soil	Date Extracted:	11-10-10
Preservative:	Cool	Date Analyzed:	11-11-10
· Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	1,360	0.2
Diesel Range (C10 - C28)	82.3	0.1
Total Petroleum Hydrocarbons	1,440	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	North Bottom	Date Reported:	11-11-10
Laboratory Number:	56449	Date Sampled:	11-10-10
Chain of Custody No:	10701	Date Received:	11-10-10
Sample Matrix:	Soil	Date Extracted:	11-10-10
Preservative:	Cool	Date Analyzed:	11-11-10
- Condition: 19-4-1	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	29,000	0.2
Diesel Range (C10 - C28)	1,630	0.1
Total Petroleum Hydrocarbons	30,600	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	11-11-10 QA/QC	Date Reported:	11-11-10
Laboratory Number:	56446	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	11-11-10
Condition:	N/A	Analysis Requested:	TPH

	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept. Range
Gasoline Range C5 - C10	11-11-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	11-11-10	9.9960E+002	1:0000E+003	0.04%	0 - 15%

Blank Conc: (mg/L-img/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1

Duplicate Conc. (mg/Kg)	Sample	Duplicate	.% Difference	Accept Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28	ND	. ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	-Sample	Spike Added	Spike Result	% Recovery	Accept: Range
Gasoline Range C5 - C10	ND	250	252	101%	75 - 125%
Diesel Range C10 - C28	ND	250	252	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste;

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 56446-56452

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	South Bottom	Date Reported:	11-11-10
Laboratory Number:	56448	Date Sampled:	11-10-10
Chain of Custody:	1070 1	Date Received:	11-10-10
Sample Matrix:	Soil	Date Analyzed:	11-11-10
Preservative:	Cool	Date Extracted:	11-10-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		Dilution:	10
Parameter		Concentration (ug/Kg)	Det. Limit (ug/Kg)
Benzene	;	290	0.9
Toluene		7,800	1.0
Ethylbenzene	1	1,620	1.0
p,m-Xylene	<i>)</i>	22,200	1.2
o-Xylene	.)	4,040	0.9
Total BTEX	•	35,900	

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Para	ameter	Percent Recovery		
Fluc	probenzene	109	%	
1,4-	difluorobenzene	85.1	%	
Bro	mochlorobenzene	112	%	

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	North Bottom	Date Reported:	11-11-10
Laboratory Number:	56449	Date Sampled:	11-10-10
Chain of Custody:	10701	Date Received:	11-10-10
Sample Matrix:	Soil	Date Analyzed:	11-11-10
Preservative:	Cool	Date Extracted:	11-10-10
Condition:	Intact	Analysis Requested:	BTEX
		Dilution:	10

		Diluudii.	10	
	3		Det.	
		Concentration	Limit	
Parameter	Jan 14774	(ug/Kg)	(ug/Kg)	
				* •

Benzene	12,600	0.9
Toluene	140,000	1.0
Ethylbenzene	3,480	1.0
p,m-Xylene	13,600	1.2
o-Xylene	23,200	0.9

Total BTEX 193,000

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	104 %
	1,4-difluorobenzene	97.4 %
	Bromochlorobenzene	114 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

Client:	N/A	Project #:	N/A
Sample ID:	1111BBLK QA/QC	Date Reported:	11-11-10
Laboratory Number:	56446	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	11-11-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

CONTROL OF STREET, VICTOR OF STREET, GROUNDS	erine (v i k provinske provinske med a	Committee of the Commit	The second se		
Calibration and	- I-Cal RF:	C-Cal RF:	%Diff.	Blank	Detect.
Detection Limits (ug/L)				THE PARTY OF THE PARTY AND THE	
Control of the Contro		Accept Rang	Je U - 15%	Conc	Limit
The state of the s	** * * * * * * * * * * * * * * * * * *				
Partona	E 7804E 100E	E 7000E . 00E	0.20/	ND	0.4
Benzene	5.7804E+005	5.7920E+005	0.2%	ND	0.1
Toluene	6.1537E+005	6.1661E+005	0.2%	ND	0.1
Ethylbenzene	5.5975E+005	5.6087E+005	0.2%	ND	0.1
	3.33702.003	3.00076-003			0.1
p,m-Xylene	1.3109E+006	1.3135E+006	0.2%	ND	0.1
o-Xylene	5.1011E+005	5.1114E+005	0.2%	ND	0.1
	•				

Duplicate Conc. (ug/Kg)	Sample S. Du	plicate %	Diff. Accept Range	Detect#Limit
Benzene	ND	ND 0	.0% 0 - 30%	0.9
- Toluene	ND	ND 0.	.0% 0 - 30%	1.0
Ethylbenzene	ND	ND 0.	.0% 0 - 30%	1.0
p,m-Xylene	ND	ND 0.	.0% 0 - 30%	1.2
o-Xylene	2.2	2.0 9	.1% 0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Ame	ount Spiked Spi	ked Sample %	Recovery	Accept Range
Benzene	ND	500	529	106%	39 - 150
Toluene	, ND	500	561	112%	46 - 148
Ethylbenzene	ND	500	523	105%	32 - 160
p,m-Xylene	ND	1000	1,040	104%	46 - 148
o-Xylene	2.2	500	527	105%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: QA/QC for Samples 56446-56449

Analyst

CHAIN OF CUSTODY RECORD

			ويوم والمستبدر ورواد	4. k. 9.	I.					1		. 3		<u></u>	- 	``		
			e Intact		 	\times	_								Time) 		
			100D 9	Sampl	\times	×				ļ					4		_	.
~			Amil Lucy (f) (h)												Date 14 Andas			
10701		1	المرد المعدد الأواف المدا										_		<u>ح</u> 0			_
0						•												1
\	ERS		RIDE	СНГО														
	MET		(1.814) HGT								-						
	PARA			HA9		ļ												
	SIS /			TCLP														
\square	ANALYSIS / PARAMETERS			HCI	 	<u> </u>	,									3		
CHAIN OF CUSTODY RECORD	A		noinA \	and .	+										2	3		
Ö			lsteM 8	man styl	 	:				:					-			
Ш			Method		}					!				-	2	<u>9</u>	<u>6</u>	_€ ≥
Œ					 			-							Received by: (Signature)	Received by: (Signature)	Received by: (Signature)	envirotech Analytical Laboratory
>			oorteM)		· ,	X				!					× (Si		y: (Si	ပြာ နို
		(2108	Nethod		X	\triangle				<u> </u>					g (ved b	0 5
2				No./Volume Preservative of Hpd, Hpl					1						a 7	360e.	Зесеі	1 ≥ €
S	4			Pres E						[> 2
\supset	(h.R.	7		No.Volume of Containers	HOC	787								:	Time			⊆ <
U	37			S S														↓ ひ
上	#31	Roccile	¥ , , ,		Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Date	\$		m
	20-7	4)		Sample Matrix	Stu	Slu	Shu	Slu Aqu	Shu	Stu	Sluc	Slur	Siun	Stu Aqu		<u> </u>		
2	ation		1 ~	\\ \o \\ \		Pilos	Soii	Soil	Soil	Soil	Soil	Solid	Solid	Soil				
<u>₹</u>	Project Name / Location:		92115-1437		(S) (S)		Ø Ø	w w	0 0	w w	<u>י</u> אַ יּאַ	0 0	0,0	00				2 %
一天	am P.	Sampler Name: R. Jone	. , b	Lab No.	48	P4443	:	:				, ,						204 Cit
U	S SC	層り	S S	Lat	Shhas	366				 						-		502
	Proj V	Sampler Name: R. Jone S		<u>o</u>								•.«						Call Robyn w/ Results
:				Sample Time	13:4	01:81 01/01/11												\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0		<u> </u>	<u> </u>	0	10/								<	7	+		
4	9		-	Sample Date	1/10/	1/10/									ê N) ej	(eun	1 xh
力		•			٤	2	1	der accus							d at	E E	ignat	
	1 0	ιχ	.: 8	No./	150	affer							Agrap o		(S) A	رج کز: (S	oy: (S	1
N	1 2	ddres	hone	Sample No./ Identification	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8)								T T	D E	hed	DE
	Client:	Client Address:	Client Phone No.:	Sar	30th Botton 11/10/0 12:0	North Rotton		9					2 Stands (1		Relinquished by: (Signature	Relinquisted by: (Signature)	Relinquished by: (Signature)	
176	50	ច	ō	in the state of th	(1)		का <u>मार</u> ्था स्थापन	ing i	labora e voc		000 a me				B/(12	<u>@</u>	

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	South Wall	Date Reported:	11-29-10
Laboratory Number:	56562	Date Sampled:	11-23-10
Chain of Custody No:	10812	Date Received:	11-24-10
Sample Matrix:	Soil	Date Extracted:	11-29-10
Preservative:	Cool	Date Analyzed:	11-29-10
Condition:	Intact	Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	462	0.2
Diesel Range (C10 - C28)	25.4	0.1
Total Petroleum Hydrocarbons	487	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

SJ 29-7 #37

Analyst

Review

Ph (505) 632+0615 Fr (800) 362+1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	11-29-10 QA/QC	Date Reported:	11-29-10
Laboratory Number:	56527	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	11-29-10
Condition:	N/A	Analysis Requested:	TPH

	I-Cal Date	#Cal RF	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	11-29-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%
Diesel Range C10 - C28	11-29-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conce (mg/L=mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1

Duplicate Conc. (mg/Kg)	Sample -	Duplicate .	% Difference	Accept: Range
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%
Diesel Range C10 - C28 🐬	ND	ND	0.0%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Resült	% Recovery	Accept. Range
Gasoline Range C5 - C10	ND	250	242	96.6%	75 - 125%
Diesel Range C10 - C28	ND	250	231	92.3%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 56527-56529, 56558, 56561-56563

Analyst

ICAICAA

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

			•
Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	South Wall	Date Reported:	11-29-10
Laboratory Number:	56562	Date Sampled:	11-23-10
Chain of Custody:	10812	Date Received:	11-24-10
Sample Matrix:	Soil	Date Analyzed:	11-29-10
Preservative:	Cool	Date Extracted:	11-29-10
Condition:	Intact	Analysis Requested:	BTEX
	1	Dilution:	10

	1	Dilution:	10
	٠.	1	Det.
	•	Concentration	Limit
Parameter		(ug/Kg)	(ug/Kg)
Benzene	, 1	5.0	0.9
Toluene	1	1,580	1.0
Ethylbenzene	ì	1,020	1.0
p,m-Xylene	>	24,000	1.2
o-Xylene	ž r	4,900	0.9

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	89.5 %
	1,4-difluorobenzene	88.7 %
	Bromochlorobenzene	110 %

31,500

References:

Total BTEX

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

S J 29-7 #37

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	Project #:	N/A
Sample ID:	1129BBLK QA/QC	Date Reported:	11-29-10
Laboratory Number:	56560	Date Sampled:	N/A
Sample Matrix:	Soil	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	11-29-10
Condition:	N/A	Analysis:	BTEX
		Dilution:	10

The second secon			Direction.			4.
Calibration and	(FCa)RFI	C-Cal RF:	%Diff.	Blank	Detect.	
Detection Limits (ug/L)		Accept. Rang	je 0 = 15% 🔆 🦠	Conc :	Limit	
Benzene	3.3501E+005	3.3569E+005	0.2%	ND	0.1	
Toluene	3.7994E+005	3.8070E+005	0.2%	ND	0.1	
Ethylbenzene	3.4829E+005	3.4898E+005	0.2%	ND	0.1	
p,m-Xylene	8.2477E+005	8.2643E+005	0.2%	ND	0.1	
o-Xylene	2.9394E+005	2.9453E+005	0.2%	ND	0.1	

Duplicate Conc. (ug/Kg)		ole	Duplicate	%Diff.	Accept Range	Detect: Limit
Benzene	}	ND	ND	0.0%	0 - 30%	0.9
Toluene		235	222	5.6%	0 - 30%	1.0
Ethylbenzene		71.9	70.5	1.9%	0 - 30%	1.0
p,m-Xylene	•	1,260	1,310	4.0%	0 - 30%	1.2
o-Xylene	1	336	344	2.3%	0 - 30%	0.9

Spike Conc. (ug/Kg)	Sample Amo	ount Spiked Spi	ked Sample 🎉 🦘	Recovery	Accept Range
Benzene	, ND	500	591	118%	39 - 150
Toluene	235	500	703	95.6%	46 - 148
Ethylbenzene	71.9	500	650	114%	32 - 160
p,m-Xylene	1,260	1000	2,610	116%	46 - 148
o-Xylene	336	500	895	107%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 56560-56563, 56558

Analyst

Review

10812

CHAIN OF CUSTODY RECORD

	. 25.))	-					2.446.		ì							. F
Client:	-	P	Project Name / Location:	ocation:	131.33				ۆ -			. Z	V V	ANALYSIS / BADAMETERS	A A A C	TEDO					
Onaco Phillips	8		57 29	7-7	437	, and F primaries		· •				Ž	Ď	2		ב ב	•	n d	r		······································
Client Address:		Ö	Sampler Name: $S_{l_2} H$	ا حر	27 L			X(2108	<u> </u>	(0928		3					AMERICAN CO.			1	, ():
Client Phone No.:		ō	Client No.: 92/15-1	1437	* .		,	boriteN	(Method	Method	steM 8	noinA \	T/H diw		(r.8r4	RIDE			looD el	le intact	· . Чел .
Sample No./	Sample Date	Sample	Lab No.	S ≥	Sample Matrix		Preservat Hgd, HG) 20A		••	RCI TCLP	HAq) HGT	СНГО	A STATE		Sampl		second seguine
South Wall	00:91 (0:22-)1	(6:00	56563	Selection Select	Sludge Aqueous	1-407		. L			+ .	 		ł			£ .		>		241 (\$60) (1 \in \text{30})
				Solid	Studge Aqueous							:		:							25000
				Soil	Sludge Aqueous																Tar Tar Secretary
				Solid	Sludge Aqueous			,30° %		-											inner W. Beth
				Soil	Sludge Aqueous																og meneral se
				Solid	Sludge Aqueous		,		·												Comunitation.
				Soll	Sludge Aqueous												·				erne un tine"; p*
				Soil	Sludge Aqueous	-															gaga mendina a
				Soil	Sludge Aqueous	,									-						radioan rolly.
				Soil Solid	Sludge Aqueous											,					201-202
Relinquished by: (Signature)	atrure)	7			Date 1-2-/-1 0	Time 14:2.0	\$\frac{1}{2}	ived by	Received by: (Signature)	ature)	1,2							Date 11/24/10		Time 14:20	Jane 1 Samue
Helinquisped by: (Signature)	ature)						Rece	yed by	Received by: (Signature)	ature)		<u> </u>				i					
Relinquished by: (Signature)	ature)						Rece	ved by	Received by: (Signature)	ature)											The make

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

下25天

envirotech Analytical Laboratory ACCENT Printing • Form 28-0807

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bottom (South Exc)	Date Reported:	12-06-10
Laboratory Number:	56621	Date Sampled:	12-03-10
Chain of Custody No:	10842	Date Received:	12-03-10
Sample Matrix:	Soil	Date Extracted:	12-06-10
Preservative:	Cool	Date Analyzed:	12-06-10
Condition:	Intact	Analysis Requested:	8015 TPH

ting and the control of the control	and the second of the second o	
Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	5,450	0.2
Diesel Range (C10 - C28)	79.4	0.1
Total Petroleum Hydrocarbons	5,530	

ND - Parameter not detected at the stated detection limit.

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

EPA Method 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

Quality Assurance Report

Client:	QA/QC	Project #:	N/A
Sample ID:	12-06-10 QA/QC	Date Reported:	12-06-10
Laboratory Number:	56611	Date Sampled:	N/A
Sample Matrix:	Methylene Chloride	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	12-06-10
Condition:	N/A	Analysis Requested:	TPH

AND THE STATE OF T	I-Cal Date	I-Cal RF:	C-Cal RF:	% Difference	Accept Range
Gasoline Range C5 - C10	12-06-10			0.04%	0 - 15%
Diesel Range C10 - C28	12-06-10	9.9960E+002	1.0000E+003	0.04%	0 - 15%

Blank Conc. (mg/L-mg/Kg)	Concentration	Detection Limit
Gasoline Range C5 - C10	ND	0.2
Diesel Range C10 - C28	ND	0.1

Duplicate Conc. (mg/Kg)	Sample	Duplicate	% Difference	Accept Range
Gasoline Range C5 - C10	6,060	7,130	17.7%	0 - 30%
Diesel Range C10 - C28	340	363	6.7%	0 - 30%

Spike Conc. (mg/Kg)	Sample	Spike Added	Spike Result	%Recovery	Accept! Range
Gasoline Range C5 - C10	6,060	250	6,200	98.3%	75 - 125%
Diesel Range C10 - C28	340	250	595	101%	75 - 125%

ND - Parameter not detected at the stated detection limit.

References:

福州 产

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 56611, 56616-56621, 56626-56627

Analyst

Review

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 · lab@envirotech-inc.com envirotech-inc.com

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	ConocoPhillips	Project #:	92115-1437
Sample ID:	Bottom (South Exc)	Date Reported:	12-06-10
Laboratory Number:	56621	Date Sampled:	12-03-10
Chain of Custody:	10842	Date Received:	12-03-10
Sample Matrix:	Soil	Date Analyzed:	12-06-10
Preservative:	Cool .	Date Extracted:	12-06-10
Condition:	Intact	Analysis Requested:	BTEX
والمراجع والمراجع والمراجع والمراجع		Dilution:	10

·		Det.
•	Concentration	Limit
Parameter	(ug/Kg)	(ug/Kg)

Benzene		1,290	0.9
Toluene	•	65,000	1.0
Ethylbenzene		9,680	1.0
p,m-Xylene	•	81,800	1.2
o-Xylene	. 1	19,100	0.9

Total BTEX 177,000

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	89.9 %
•	1,4-difluorobenzene	96.5 %
	Bromochlorobenzene	91.7 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

San Juan 29-7 #37 (hBr)

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

ND

ND

0.1

0.1

Client	N/A	•	Project #:		N/A
Sample ID:	1206BBLK QA/Q(Date Reported:		12-06-10
Laboratory Number:	56611	•	Date Sampled:		N/A
Sample Matrix:	Soil	•	Date Received:		N/A
Preservative:	N/A		Date Analyzed:	•	12-06-10
Condition:	N/A		Analysis:		BTEX
•	r		Dilution:		0
Calibration and	I-Cál RF:	⊕(C-Cal RF:	%Diff.	Blank	Detect)
(Detection Limits (ug/L)		Accept Rar		(Conc	(Limit)
Benzene	4.0728E+005	4.0809E+005	0.2%	ND	0.1
Toluene	4.7872E+005	4.7968E+005	0.2%	ND	0.1
Ethylbenzene	4.4726E+005	4.4816E+005	0.2%	ND	0.1

1.0867E+006

4.1010E+005

0.2%

0.2%

Dúplicate Conc	(ug/Kg)	s, in Sa	ample)	Duplicate	%Diff.	Accept Range	Detect Limit	
Benzene	:			692	720	4.1%	0 - 30%	0.9	
Toluene				24,500	25,400	3.7%	0 - 30%	1.0	
Ethylbenzene				7,830	8,200	4.7%	0 - 30%	1.0	
p,m-Xylene				73,000	74,900	2.6%	0 - 30%	1.2	
o-Xylene	•			18,900	19,700	4.2%	0 - 30%	0.9	

Spike Conc: (ug/Kg)	Sample Amo	ount Spiked Sp	iked Sample %	Recovery	Accept Range
Benzene	; 692	500	1,150	96.5%	39 - 150
Toluene	24,500	500	27,200	109%	46 - 148
Ethylbenzene	7,830	500	9,430	113%	32 - 160
p,m-Xylene	73,000	1000	77,400	105%	46 - 148
o-Xylene	18,900	500	21,500	111%	46 - 148

ND - Parameter not detected at the stated detection limit.

Dilution: Spike and spiked sample concentration represent a dilution proportional to sample dilution.

1.0845E+006

4.0927E+005

References:

aligna Lagrania

John St.

p,m-Xylene

o-Xylene

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 56611, 56616-56621, 56626

Analyst

Review

	_	
	ľ	
	_	
Ì]	Ó
ì	Ī	ĺ
Ī	ĭ	
•	•	_
		<u> </u>
7	_	7
ì	_	
Ċ)
_		j
(J . I	
Ì	ı	
		<u> </u>
(_	4 :
1	2	
1		[
	Ì	<u></u>
(5
•		

	i Tanana ing tanan	ممر در ا	Acquire to the	ا د سدر		tin water		44		٠.	. 9***		۰.	**	Comments of the second second		1.2 + 5 3 (80.1 + 4	no go Marian agreement de l'
			Intact	smple	s >					,					Time S			
1,2	č.		looD	ample	s >										<u></u> _			
\sim		3- 4 to	e e e e e	and and											g]
10842	1		SAUTO PORT OF THE	· ⊬ ′,					ļ						Date (7/2)			
80																		1
	RS .		IDE	HLOF		 												
	ANALYSIS / PARAMETERS			b) Hd	- 		-											
	ARA	-		HA	+	-	-								1 7	1		
	IS/P		4/H /ti/			<u> </u>			<u> </u>					 	1 3			
	ALYS		477	CI	+			ļ			<u> </u>			 	13			
<u>C</u>	A .		noinA		+	,			-		<u> </u>		·					
	-					<u> </u>		_					<u> </u>		100			· · · -
			sisteM 8										-		ature)		e e	5 .2.
Œ) 	8 bortel		 _	 		ļ .	-	}			<u> </u>	-	and C	matri	matri	U g
>		T	bortieM						ļ						y: (Sign	is) .	is) :/	D &
	 	<u> </u>	ethod 8	W) Hd		<u> </u>	-		ļ			·			\ \frac{1}{2}	d be/	d be/	
CUSTODY RECORD	4, 3 7 (hBr)	4/10	- }	No.Volume Preservative	3										Received by: (Signature)	Received by: (Signature)	Received by: (Signature)	envirotech Analytical Laboratory
S	1	3	- }	- O	80 V	-	-	ļ				<u> </u>					-	 2
\supset	a	1 2	प्रदे	Volum	Containers	΄									Time [4:3]			C 4
O		F 3	'	<u>S</u>	<u>ş</u> 7		<u> </u>				· .				ļ <u>.</u>	ļ		Ψ
L L	79,7	- 12	427	0	Sludge	Sludge	Sludge	Sludge Aqueous	Sludge	Sludge Aqueous	Sludge	Sludge Aqueous	Sludge	Sludge	Date 1/3/10			m
CHAINO	20	1 3	1437	Sample	Slud	Se	S &	Sin	S &	35 €	Shu	Sign	Sign By	SP	12			
Z	ation		1 -			Soll	Soil	Soli	Solid	Soild	Solid	Solid	Soil	Solid]			
	Project Name / Location:		Client No. 15			1 "	0, 0,	0, 0,	0, 0,	0, 0,	07 03	0, 0,	0, 0,	0, 0,				:
さ	ame ~	15/5		Lab No.	5							-						
	ject P	Sampler Name:	1 20 1 25 1 25	בן!	10:32 (0,02)			,							Ι Ι΄			
	9) 🐒	, <u>p</u>	릗	2 2		<u> </u>					-			1_			
7		l		Sample	10.3	-			,									
7					17 Jala						1		65			k		12
V	1 <u>\$</u>	}		Sarr		L									ignature	nature	(fure)	
ナンニ	mt. Dhillros	3			\$	2			1	12.9*	(Page 2 22)				Sign Sign		Sign	
10-10	G	10 T	ON O	No.		,	ľ							^		Š	1 by: (1 -
		Addre	Phon	Sample No./	Hom (Sc										E /	lisher	iishec	1/ 6
	Sent (Client Address:	Client Phone No.:	jö :	Rolform (Science				ŀ					\	Bellinguishe	Relinquished by: (Si	Relinquished by: (Signature)	
	ا	10	10	Щ,	1,395,4	ger av de v	1	1 - 2/1 1 - 2/1	traus - 47		<u> </u>		<u></u>	<u> </u>	161	رمر	Œ	<u> </u>

ACCENT Printing • Form 28-0807

5796 US Highway 64 • Farmington, NM 87401 • 505-632-0615 • lab@envirotech-inc.com

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

11010416

Report To: San Juan 29-7 Unit 37 **Project Name:** Site: Albuquerque, NM Tetra Tech, Inc. **Cassandre Brown** Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: **Albuquerque** State: **New Mexico** NM <u>... 87110- ;</u> State Cert. No.: ph: (505) 237-8440 fax: **Date Reported:** 1/19/2011

This Report Contains A Total Of 30 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

1/19/2011

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number:

11010416

Report To: **Project Name:** San Juan 29-7 Unit 37 Site: Albuquerque, NM Tetra Tech, Inc. Cassandre Brown Site Address: 6121 Indian School Road, N.E. Suite 200 PO Number: **Albuquerque** State: **New Mexico** NM ... = . 87110- : State Cert. No.: ph: (505) 237-8440 fax: 1/19/2011 **Date Reported:**

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

Plastic containers were received for DRO and PAH analyses for sample "B1 (WATER)". Per Elessa Sommers' phone conversation with Christine Matthews on January 17, 2011, both analyses were performed.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

SW8015B Diesel Range Organics:

For all soil samples in this report, the sample pattern did not resemble a diesel pattern.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted for Batch ID: 104503. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

SW8270C Semivolatiles Organics (PAH):

Due to limited sample volume (16 oz), the reported limits are elevated for the PAH analysis by Method 8270C.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted for Batch ID: 104506. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

SW8260B Volatile Organics:

For sample "B-1 (30-32)", SPL ID: 11010416-03, the benzene result is reported with a "J" flag. The result is estimated because the reading was below the reporting limit on the 50X dilution. Dilutions were performed on the sample because of high concentrations of target analytes.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

500 Ovidenas

11010416 Page 1

1/19/2011

Erica Cardenas Project Manager

Date

Test results meet all requirements of NELAC, unless specified in the narrative.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: Conoco Phillips

Certificate of Analysis Number: 11010416

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL; Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Heartify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

50 Cordinas

11010416 Page 2

1/19/2011

Erica Cardenas

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Certificate of Analysis Number:

11010416

Report To:

Fax To:

Tetra Tech, Inc.

Cassandre Brown

6121 Indian School Road, N.E.

Suite 200

Albuquerque NM

87110-

ph: (505) 237-8440

fax: (505) 881-3283

Project Name:

San Juan 29-7 Unit 37

Site:

Albuquerque, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

1/19/2011

Client Sampl	e ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
B-1 (66-68)		.11010416-01	Soil	01/14/2011 12:15	1/15/2011 9:15:00 AM		
B-1 (68-70)		11010416-02	Soil	01/14/2011 12:30	1/15/2011 9:15:00 AM		
B-1 (30-32)	1	11010416-03	Soil	01/14/2011 13:00	1/15/2011 9:15:00 AM		
B-1 (86-88) (1-11-5)		11010416-04	Soil	01/14/2011 13:50	1/15/2011 9:15:00 AM		
B-1 (88-90):/	the state of the state of	11010416-05	Soil .	01/14/2011 13:20	1/15/2011 9:15:00 AM		
B-1 (92-94)	; · · · · · · · · · · · · · · · · · · ·	11010416-06	Soil	01/14/2011 13:40	1/15/2011 9:15:00 AM		
B-1 (122.5-123.5)	4.009 Fig. 751	11010416-07	Soil	01/14/2011 10:00	1/15/2011 9:15:00 AM		
B-1 (WATER)	1.0	11010416-08	Water	01/14/2011 9:00	1/15/2011 9:15:00 AM		\top

a Cardinas

1/19/2011

Date

Erica Cardenas

Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen Quality Assurance Officer

Version 2.0 - Modified December 23, 2010

11010416 Page 3 1/19/2011 6:29:59 PM

Surr: 4-Bromofluorobenzene

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

01/17/11 21:40 WLV

5703145

Client Sample ID:B-1 (66-68) Collected: 01/14/2011 12:15 SPL Sample ID: 11010416-01

			Site: Albu	ıquerque	, NIVI				
Analyses/Method	Result	QUAL	Rep.Limit	D	il. Facto	r Date Ana	lyzed	Analyst	Seq. #
DIESEL RANGE ORGANICS				MCL	S	W8015B	Un	its: mg/kg	
Diesel Range Organics (C10-C28)	11		5		1	01/17/11	14:14	NW	5702801
Surr: n-Pentacosane	59.0		% 20-154		1	01/17/11	14:14	NW	5702801

SW3550B	01/17/2011 9:53	A_C	3 1	1.00					
ASOLINE RANGE	ORGANICS	. ,			MCL		SW8015B	Units: mg/kg	 I
Gasoline Range Orga	nics	14	;	2.5	,	25	01/17/11 2	1:40, WLV	5703145
Surr: 1.4 Diffuorobe	nzene :	104		% 63-1/12		25	01/17/11 2	1.40 M/LV	5703145

50-159

25

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	01/17/2011 13:55	XML	1.00

VOLATILE ORGA	ANICS BY METHOD 8260)B					MCL		SW8260B	Units: ug/kg	
Benzene	NE))		6.4		1	01/17/11	17:41 TLE	5702820
Ethylbenzene	82	2)		6.4		1	01/17/11	17:41 TLE	5702820
Toluene		0)		6.4		1	01/17/11	17:41 TLE	5702820
m,p-Xylene	1500	0	-: 1	,		290		50	01/17/11	17:00 LU_L	5703069
o-Xylene	380 and a pro-	0	Ç)		290		50	01/17/11	17:00 LU_L	5703069
Xylenes,Total	Millian (1994) 23 Jul 1880	0	•	Ţ		291		50	01/17/11	17:00 LU_L	5703069
Surr: 1,2-Dichlo	roethane-d4 93.5	5		1	%	78-116		50	01/17/11	17:00 LU_L	5703069
Surr: 1,2-Dichlo	roethane-d4 91.	1	* .: "_		%	71-130	•	1	01/17/11	17:41 TLE	5702820
Surr: 4-Bromofle	uorobenzene 102	2		,	%	74-125		50	01/17/11	17:00 LU_L	5703069
Surr: 4-Bromofle	uorobenzene 97.7	7)	%	65-131		1	01/17/11	17:41 TLE	5702820
Surr: Toluene-d	8 98.3	3			%	82-118		50	01/17/11	17:00 LU_L	5703069
Surr: Toluene-d	8 . 98.7	7			%	75-136		1	01/17/11	17:41 TLE	5702820

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5035A	01/14/2011 12:15	Field	1.28
SW 5035A	01/14/2011 12:15	Field	1.16

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 4 1/19/2011 6:30:11 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (68-70)

Collected: 01/14/2011 12:30

SPL Sample ID: 11010416-02

OILE. AIDUQUEIQUE, ITITI	Site:	Albug	uerque	, NM
--------------------------	-------	-------	--------	------

Analyses/Method	Result	QUAL	R	ep.Limit		Dil. Facto	or Date Ana	lyzed	Analyst	Seq. #
DIESEL RANGE ORGANICS					MCL	•	SW8015B	Ur	nits: mg/kg	
Diesel Range Organics (C10-C28)	12			5		1	01/17/11	15:14	NW	5702804
Surr: n-Pentacosane	73.8		%	20-154	_	1	01/17/11	15:14	NW	5702804

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 3550B	01/17/2011 9:53	A G	1.00

GASOLINE RANGE ORGANIC	CS	1.1	 			MCL	S	W8015B	Units: mg/kg	
Gasoline Range Organics		0.35			0.1		1	01/18/11	2:07 WLV	5703136
Surr: 1,4-Difluorobenzene		- 98.3	,	%	63-142		1	.01/18/11	2:07 WLV	5703136
Surr: 4-Bromofluorobenzene	• •	120	ì	%	50-159		1	01/18/11	2:07 WLV	5703136

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5030B	01/17/2011 13:57	XML	1.00

VOLATILE ORG	ANICS BY METHOD	8260E	3				MCL		SW8260B	Units: ug/kg	
Benzene		ND	•	:		5.8		1	01/17/11	18:24 TLE	570282
Ethylbenzene		ND		ì		5.8		1	01/17/11	18:24 TLE	570282
Toluene	7	- 14		1		5.8	-	1	01/17/11	18:24 TLE	5702821
m,p-Xylene		69		;		5.8		1	01/17/11	18:24 TLE	5702821
o-Xylene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20		i		5.8		1	01/17/11	18:24 TLE	5702821
Xylenes,Total	A Carlotte de la Company	89	-	- 1		5.8		1	01/17/11	18:24 TLE	5702821
Surr: 1,2-Dichlo	proethane-d4	91.1		i	%	71-130		1	01/17/11	18:24 TLE	5702821
Surr: 4-Bromofl	uorobenzene	92.8	-	ļ	%	65-131		1	01/17/11	18:24 TLE	5702821
Surr: Toluene-d	8	95.4		.	%	75-136		1	01/17/11	18:24 TLE	5702821

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5035A	01/14/2011 12:30	Field	1.16

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 5 1/19/2011 6:30:11 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (30-32) Collected: 01/14/2011 13:00 SPL Sample ID: 11010416-03

Site:	Albuaueraue.	NM

Analyses/Method	Result	QUAL	R	ep.Limit	ı	Dil. Fac	tor Date Ana	lyzed	Analyst	Seq. #
DIESEL RANGE ORGANICS					MCL		SW8015B	Ur	nits: mg/kg	
Diesel Range Organics (C10-C28)	380			50		10	01/17/11	17:55	NW	5702811
Surr: n-Pentacosane	115		%	20-154		10	01/17/11	17:55	NW	5702811

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3550B	01/17/2011 9:53	A G	1.00

GASOLINE RANGE ORGA	NICS						MCL	SW8015B	Units: mg/kg	
Gasoline Range Organics		5300				100	1000	01/18/11	10:23 WLV	5703142
Surr: 1,4-Difluorobenzene		113		:	.%	63-142	1000	√01/18/11	10:23 WLV	5703142
Surr: 4-Bromofluorobenzen	e ''':	277MI	* *		%	50-159	1000	01/18/11	10:23 WLV	5703142

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	01/17/2011 13:59	XML	1.00

VOLATILE ORGA	ANICS BY METH	OD 8260B	}				MCL	SW8260B	Units: ug/kg	
Benzene	e Secretary.	250 J	٠,	i		290	50	. 01/17/11	18:50 LU_L	5703071
Ethylbenzene		11000		:		290	50	01/17/11	18:50 LU_L	5703071
Toluene	a part far sata	48000		٠;		5800	1000	01/18/11	12:25 LU_L	5703255
m,p-Xylene	1374 T T T F E L	310000	•	·:		5800	1000	01/18/11	12:25 LU_L	5703255
o-Xylene	in the state of	64000	· 7 .	'j		5800	1000	01/18/11	12:25 LU_L	5703255
Xylenes,Total	04450 No. 123 F.	374000	1.5.	· -:;		5820	1000	01/18/11	12:25 LU_L	5703255
Surr: 1,2-Dichlor	roethane-d4	89.4		· ;	%	78-116	1000	01/18/11	12:25 LU_L	5703255
Surr: 1,2-Dichlor	roethane-d4	90.7		:	%	78-116	50	01/17/11	18:50 LU_L	5703071
Surr: 4-Bromoflu	ıorobenzene	102		:	%	74-125	1000	01/18/11	12:25 LU_L	.5703255
Surr: 4-Bromoflu	ıorobenzene	84.8			%	74-125	50	01/17/11	18:50 LU_L	5703071
Surr: Toluene-da	3	99.9			%	82-118	1000	01/18/11	12:25 LU_L	5703255
Surr: Toluene-da	3	109		;	%	82-118	50	01/17/11	18:50 LU_L	5703071

SW5035A 01/14/2011 13:00 Field	1.16

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 6 1/19/2011 6:30:12 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (86-88)

Collected: 01/14/2011 13:50

SPL Sample ID:

11010416-04

Site:	Albuquerque,	NM
-------	--------------	----

Analyses/Method	Result	QUAL	R	ep.Limit	Dil	l. Fact	tor Date Anal	yzed	Analyst	Seq. #
DIESEL RANGE ORGANICS					MCL		SW8015B	Ur	nits: mg/kg	
Diesel Range Organics (C10-C28)	ND			. 5		1	01/17/11	15:34	NW	5702805
Surr: n-Pentacosane	97.8		%	20-154		1	01/17/11	15:34	NW	5702805

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3550B	01/17/2011 9:53	A G	1.00

GASOLINE RANGE ORGANIC	S	1				MCL		SW8015B	Units: mg/l	kg
Gasoline Range Organics	NE)			0.1		1	01/17/11	23:14 WLV	5703130
Surr: 1,4-Difluorobenzene	. 98.6	3	1	%	63-142		1	01/17/11	23:14 WLV	5703130
Surr: 4-Bromofluorobenzene	, 99.8	3)	%	50-159		1	01/17/11	23:14 WLV	5703130

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	•	XML	1.00

VOLATILE ORGA	NICS BY METHO	D 8260B	3			-	MCL		SW8260B	Units: ug/kg	
Benzene		- ND		. 3		5.4		1	01/17/11	16:16 TLE	5702816
Ethylbenzene		· ND		. 1		5.4		1	01/17/11	16:16 TLE	5702816
Toluene	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ND	. ":	• •		5.4		1	01/17/11	16:16 TLE	- 5702816
m,p-Xylene		· ND		- 3		5.4		1	01/17/11	16:16 TLE	5702816
o-Xylene	.m 9/4 (×° 4×) ×	· ND		. 1		5.4		1	01/17/11	16:16 TLE	5702816
Xylenes,Total	J. 1. 18 8 1	· ND		- 1		5.4		1	01/17/11	16:16 TLE	5702816
Surr: 1,2-Dichlord	pethane-d4	89.7		. ;	%	71-130		1	01/17/11	16:16 TLE	5702816
Surr: 4-Bromoflue	orobenzene	· 89.2		٠,	%	65-131		1	01/17/11	16:16 TLE	5702816
Surr: Toluene-d8	15 174 114	97.0	-	j	%	75-136		1	01/17/11	16:16 TLE	5702816

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5035A	01/14/2011 13:50	Field	1.09

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 7 1/19/2011 6:30:13 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (88-90)

Collected: 01/14/2011 13:20

SPL Sample ID:

11010416-05

Site:	Albuc	uerque	. NM

Analyses/Method	Result	QUAL F	Rep.Limit	Di	l. Fact	or Date Ana	lyzed	Analyst	Seq.#
DIESEL RANGE ORGANICS		7724		MCL		SW8015B	Un	its: mg/kg	====
Diesel Range Organics (C10-C28)	- ND		5		1	01/17/11	15:55	NW	5702806
Surr: n-Pentacosane	104	%	20-154		1	. 01/17/11	15:55	NW	5702806
	_							- 1	

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3550B	01/17/2011 9:53	A_G	1.00

GASOLINE RANGE ORGANICS	- ;				MCL	5	SW8015B	Units: mg/kg	
Gasoline Range Organics	ND	:		0.1		1	01/18/1	1 0:41 WLV	5703133
Surr: 1,4-Difluorobenzene	101	j	%	63-142		1	. 01/18/1	1 0:41 WLV	5703133
Surr: 4-Bromofluorobenzene	96.4	j	%	50-159		1	01/18/1	1 0:41 WLV	5703133

Prep Method	Prep Date	Prep Initials	Prep Factor
SW5030B	01/17/2011 14:12	XML	1.00

OLATILE ORG	ANICS BY	METH	OD 8	3260B	3				MCL		SW8260B	Units: ug/kg	
Benzene	4 /11			ND	-	-7		5.1		1	01/17/11 1	6:37 TLE	5702817
Ethylbenzene				ND		;		5.1		1	01/17/11 1	6:37 TLE .	5702817
Toluene				ND		;		5.1		. 1	01/17/11 1	6:37 TLE	5702817
m,p-Xylene	:	٠.		17	•			5.1		. 1	01/17/11 1	6:37 TLE	5702817
o-Xylene	14: 1 Tea	٠	11.0	ND	,	. /		5.1		1	01/17/11 1	6:37 TLE	5702817
Xylenes,Total	9.	142		17	:.	/		5.1		1	01/17/11 1	6:37 TLE	5702817
Surr: 1,2-Dichlo	proethane-d4	. * *	_	93.5		1	%	71-130		1	01/17/11 1	6:37 TLE	5702817
Surr: 4-Bromofl	uorobenzene			91.7		· /	%	65-131		1	01/17/11 1	6:37 TLE	5702817
Surr: Toluene-d	18		. 1	94.2		7 -	%	75-136		1	01/17/11 1	6:37 TLE	5702817
Juil. Toluene-o			• :	34.2		1 .	/0	10-100		-, <u> </u>	01/17/11	U.ST TEE	

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5035A	01/14/2011 13:20	Field	1.02

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 8 1/19/2011 6:30:13 PM

8880 INTERCHANGE DRIVE HOUSTON, TX.77054 (713) 660-0901

Client Sample ID:B-1 (92-94)	Collected: 01/14/2011 13:40	SPL Sample ID:	11010416-06
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

Shent Sample 10:6-1 (92-94)	Colle	ctea: 01/14/	2011 13.40	SPL Samp	ie ib:	410-00
	Site:	Albuque	rque, NM			
Analyses/Method Result QUA	AL Rep	.Limit	Dil. Factor	r Date Analyze	ed Analyst	Seq. #
DIESEL RANGE ORGANICS		М	CL S	W8015B	Units: mg/kg	-
Diesel Range Organics (C10-C28) ND		5	- 1	01/17/11 17:	:35 NW	570281
Surr: n-Pentacosane 76.7	% 2	20-154	1	01/17/11 17:	:35 NW	570281
Prep Method Prep Date Prep Ir	nitials Prep F	actor				
SW3550B 01/17/2011 9:53 A_G	1.00				_	
GASOLINE RANGE ORGANICS		M	CL_S	W8015B	Units: mg/kg	
Gasoline Range Organics 0.14		0.1	1	01/18/11 3:	:05 WLV	570313
Surr: 1,4-Difluorobenzene 98.7	ι % €	63-142	1	01/18/11 3:	.05 WLV	570313
Surr: 4-Bromofluorobenzene 101	% 5	50-159	1	01/18/11 3:	:05 WLV	570313
Prep Method Prep Date Prep Ir	nitials Prep F	actor				
SW5030B 01/17/2011 14:14 XML	1.00					
OLATILE ORGANICS BY METHOD 8260B		M	CL S	W8260B	Units: ug/kg	
Benzene ND	1	5.6	1	01/17/11 16:	:58 TLE	570281
Ethylbenzene ND	}	5.6	1	01/17/11 16:	:58 TLE	570281
Toluene 6	;	5.6	1	01/17/11 16:	:58 TLE	570281
m,p-Xylene 17	1	5.6	1	01/17/11 16:	:58 TLE	570281
o-Xylene ND	;	5.6 5.6	1	01/17/11 16: 01/17/11 16:		
m,p-xylene) i				:58 TLE	570281
o-Xylene ND	i	5.6	1	01/17/11 16:	:58 TLE :58 TLE	570281 570281
o-Xylene ND Xylenes,Total 17	; % 7	5.6 5.56	1 1	01/17/11 16: 01/17/11 16:	:58 TLE :58 TLE :58 TLE	570281 570281 570281 570281 570281

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5035A	01/14/2011 13:40	Field	1.11

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 9 1/19/2011 6:30:14 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (122.5-123.5) Collected: 01/14/2011 10:00 SPL Sample ID: 11010416-07

Site: Al	buquerque,	NM
----------	------------	----

Analyses/Method	Result	QUAL	R	ep.Limit	Dil	. Fact	tor Date Ana	lyzed	Analyst	Seq.#
DIESEL RANGE ORGANICS					MCL		SW8015B	Unit	ts: mg/kg	
Diesel Range Organics (C10-C28)	ND	•		5		1	01/17/11	16:15 I	NW	5702807
Surr: n-Pentacosane	93.5		%	20-154		1	01/17/11	16:15 I	NW	5702807

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3550B	01/17/2011 9:53	A_G	1.00

GASOLINE RANGE ORGANICS					MCL		SW8015B	Units: mg/k	g
Gasoline Range Organics	0.11			0.1		1	01/18/1	1 3:33 WLV	5703138
Surr: 1,4-Difluorobenzene	102		· %	63-142		. 1	01/18/1	1 3:33 WLV	5703138
Surr: 4-Bromofluorobenzene	97.2	•	%	50-159		1	01/18/1	1 3:33 WLV	5703138

Prep Method	Prep Date	Prep Initials	Prep Factor .
SW5030B	01/17/2011 14:15	XML	1.00

VOLATILE ORG	ANICS BY METHOD	8260B	}			MCL		SW8260B	Units: ug/kg	
Benzene		ND			5		1	01/17/11	17:20 TLE	5702819
Ethylbenzene		22	1		5		1	01/17/11	17:20 TLE	5702819
Toluene		96)		5		1	· 01/17/11	17:20 TLE	5702819
m,p-Xylene		300			5		1	01/17/11	17:20 TLE	5702819
o-Xylene		47	· · ·)		5		1	01/17/11	17:20 TLE	5702819
Xylenes,Total	4 11 14 1. L. 1 1 4 4.	347	- ·- 1		5		1	01/17/11	17:20 TLE	5702819
Surr: 1,2-Dichlo	proethane-d4	91.5	' E _ j	%	71-130		1	01/17/11	17:20 · TLE	5702819
Surr: 4-Bromofi	uorobenzene :	95.7	:	%	65-131		1	01/17/11	17:20 TLE	5702819
Surr: Toluene-d	18	98.5	٠. ;	%	75-136		1	01/17/11	17:20 TLE	5702819

Prep Method	Prep Date	Prep Initials	Prep Factor
SW 5035A	01/14/2011 10:00	Field	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 10 1/19/2011 6:30:15 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (WATER)

Collected: 01/14/2011 9:00

SPL Sample ID:

11010416-08

			Sit	e: Albu	querqu	ue, NM			
Analyses/Method	Result	QUAL	R	ep.Limit		Dil. Facto	r Date Anal	yzed Anai	lyst Seq.#
DIESEL RANGE ORGANICS					MCL	. S	W8015B	Units: m	ng/L
Diesel Range Organics (C10-C28)	1.4			0.11		1	01/17/11	20:16 NW	570326
Surr: n-Pentacosane	82.6		%	20-150		1	01/17/11	20:16 NW	570326

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	01/17/2011 14:07	MB1	1.05

GASOLINE RANGE ORGANICS				MCL		SW8015B	Uni	ts: mg/L	
Gasoline Range Organics	73		10	1	00	01/17/11	13:54	NMa	5703270
Surr: 1,4-Difluorobenzene	105	%	60-155	1	00	01/17/11	13:54	NMa	5703270
Surr: 4-Bromofluorobenzene	107	%	50-158	1	00	01/17/11	13:54	NMa	5703270
SEMIVOLATILES ORGANICS BY MET	THOD	8270C		MCL		SW8270C	Uni	ts: ug/L	
1-Methylnaphthalene	ND		10		1	01/17/11	22:18	S_G	5703109
2-Methylnaphthalene	ND	,)	10		1	01/17/11	22:18	s_g	5703109
Acenaphthene	ND	1 134 3	10		1	01/17/11	22:18	S_G	5703109
Acenaphthylene	ND)	10		1	01/17/11	22:18	S_G	5703109
Anthracene	ND)	10		1	01/17/11	22:18	S_G	5703109
Benz(a)anthracene	ND	1	10		1	01/17/11	22:18	S_G	5703109
Benzo(a)pyrene	ND	- 1	10		1	01/17/11	22:18	S_G	5703109
Benzo(b)fluoranthene	ND	- ' ' ')	10		1	01/17/11	22:18	S_G	5703109
Benzo(g,h,i)perylene	ND	martin series	10		1	01/17/11	22:18	S_G	5703109
Benzo(k)fluoranthene	ND	* *	10		1	01/17/11	22:18	S_G	5703109
Chrysene	ND	1	10		1	01/17/11	22:18	S_G	5703109
Dibenz(a,h)anthracene	ND	1	10		1	01/17/11	22:18	S_G	5703109
Dibenzofuran	ND	;	10		1	01/17/11	22:18	S_G	5703109
Fluoranthene	ND		10		1	01/17/11	22:18	S_G	5703109
Fluorene	ND	2	10		1	01/17/11	22:18	S_G	5703109
Indeno(1,2,3-cd)pyrene	ND)	10	•	1	01/17/11	22:18	s_G	5703109
Naphthalene	ND)	10		1	01/17/11	22:18	s_G	5703109
Phenanthrene	ND	,	10		1	01/17/11	22:18	S_G	5703109
Pyrene	ND)	10		1	01/17/11	22:18	S_G	5703109

45-108

41-113

43-122

%

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	01/17/2011 15:28	MB1	2.04

75.0

74.0

84.5

Qualifiers:

Surr: 2-Fluorobiphenyl

Surr: Nitrobenzene-d5

Surr: Terphenyl-d14

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

01/17/11 22:18 S_G

01/17/11 22:18 S_G

01/17/11 22:18 S_G

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 11 1/19/2011 6:30:16 PM

5703109

5703109

5703109

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:B-1 (WATER) Collected: 01/14/2011 9:00

SPL Sample ID:

11010416-08

· <u>_</u> _ ·			Sit	e: Albu	uquerque, NM			
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Factor	Date Analyz	ed Analyst	Seq. #
VOLATILE ORGANICS BY ME	THOD 8260B				MCL S	W8260B	Units: ug/L	
Benzene	930			. 10	- 10	01/17/11 16	:38 LT	5702648
Ethylbenzene	1400			10	10	01/17/11 16	:38 LT	5702648
Toluene	15000	.)		. 100	100	01/17/11 17	:31 LT	5702650
m,p-Xylene	16000	.: ")		200	100	01/17/11 17	:31 LT	5702650
o-Xylene	2800	1 1		100	100	01/17/11 17	':31 LT	5702650
Xylenes,Total	18800)		100	100	01/17/11 17	':31 LT	5702650
Surr: 1,2-Dichloroethane-d4	83.0	1	%	70-130	10	01/17/11 16	:38 LT	5702648
Surr: 1,2-Dichloroethane-d4	81.8	.)	%	70-130	100	01/17/11 17	':31 LT	5702650
Surr: 4-Bromofluorobenzene	129 MI	·* }	%	74-125	- 10	01/17/11 16	:38 LT	5702648
Surr: 4-Bromofluorobenzene	118	. }	%	74-125	100	01/17/11 17	:31 LT	5702650
Surr: Toluene-d8	110	J. 1 1	%	82-118	10	01/17/11 16	:38 LT	5702648
Surr: Toluene-d8	103	1	. %	82-118	100	01/17/11 17	:31 LT	5702650

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

11010416 Page 12 1/19/2011 6:30:16 PM

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

WorkOrder:

11010416

Lab Batch ID:

104488

Method Blank

HP_V_110117A-5702800

Units:

mg/kg

Lab Sample ID 11010416-01B

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

01/17/2011 13:54

Diesel Range Organics (C10-C28)

Surr: n-Pentacosane

Analyst:

NW

11010416-02B

B-1 (66-68)

Preparation Date:

01/17/2011 9:53

Prep By:

A_G Method: SW3510C

Result | Rep Limit

ND

71.7

B-1 (68-70)

11010416-03B

B-1 (30-32)

Analyte

20-154

11010416-04B

B-1 (86-88)

11010416-05B

B-1 (88-90)

11010416-06B

B-1 (92-94)

11010416-07B

B-1 (122.5-123.5)

Laboratory Control Sample (LCS)

RunID:

HP_V_110117A-5702799

Units:

mg/kg

Analysis Date: Preparation Date:

01/17/2011 13:14 01/17/2011 9:53

NW Analyst:

Prep By: A_G Method: SW3510C

	Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Rar	nge Organics (C10-C28)	33.3	28.5	85.7	57	150
Surr: n-	Pentacosane	1.66	1.35	81.4	20	154

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11010416-01

HP_V_110117A-5702802

Units:

mg/kg

RunID: Analysis Date:

01/17/2011 14:34

NW Analyst:

Preparation Date:

01/17/2011 9:53

Prep By:

A_G Method: SW3550B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics (C10-C28)	10.8	33.3	37.4	79.9	33.3	35.8	74.9	4.49	50	21	175
Surr: n-Pentacosane	ND	1.66	1.26	76.2	1.66	1.23	74.1	2.81	·30	20	154

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:21 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Diesel Range Organics

Method:

RunID:

SW8015B

WorkOrder:

Samples in Analytical Batch:

11010416

Lab Batch ID:

104503

Method Blank

HP_V_110117C-5703258

Units: mg/L

Lab Sample ID

Client Sample ID

Analysis Date: (

: 01/17/2011 19:16

Analyst: NW

11010416-08C

B-1 (WATER)

Preparation Date: 01/17/2011 14:07

Prep By: M

MB1 Method: SW3510C

_

D-1 (V

Analyte	Result	Rep Limit
Diesel Range Organics (C10-C28)	ND	0.10
Surr: n-Pentacosane	90.4	20-150

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP_V_110117C-5703259

Units:

mg/L

Analysis Date:

01/17/2011 19:36

Analyst: NW

Preparation Date:

01/17/2011 14:07

Prep By: MB1 Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Diesel Range Organics (C10-C28)	. :; 1.00	0.873	87.3	1.00	0.869	86.9	0.4	39	21	130
∴ Surr: n-Pentacosane	: 0.0500	., 0.0460	92.0	0.0500	0.0465	93.0	1.1	30	20	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 15

1/19/2011 6:30:21 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Gasoline Range Organics

Method:

RunID:

SW8015B

WorkOrder:

11010416

Lab Batch ID:

R314515

Method Blank

HP O_110117A-5703127

Units:

mg/kg WLV

Lab Sample ID 11010416-01C

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

01/17/2011 20:43

Analyst:

Method: SW5030B

11010416-02C

B-1 (66-68)

Preparation Date:

01/17/2011 20:43

Prep By:

11010416-03C

B-1 (68-70)

11010416-04C

B-1 (30-32) B-1 (86-88)

Result Rep Limit Analyte Gasoline Range Organics 0.10 ND Surr: 1,4-Difluorobenzene 100.0 63-142 Surr: 4-Bromofluorobenzene 102.8 50-159

11010416-05C 11010416-06C 11010416-07C B-1 (88-90) B-1 (92-94)

B-1 (122.5-123.5)

Methanolic Preparation Blank

RunID:

HP_O_110117A-5703128

Units:

mg/kg

WLV

Analysis Date: Preparation Date:

01/17/2011 21:11 01/17/2011 21:11 Analyst: Prep By:

Method: SW5030B

. Analyte	Result	Rep Limit
Gasoline Range Organics	ND	2.5
Surr: 1,4-Difluorobenzene	100.0	63-142
Surr: 4-Bromofluorobenzene	99.5	50-159

Laboratory Control Sample (LCS)

RuniD:

HP_O_110117A-5703141

Units:

mg/kg

Analysis Date: Preparation Date: 01/18/2011 9:47 01/18/2011 9:47

Analyst: WLV Prep By:

Method: SW5030B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	1.03	103	.70	130
Surr: 1,4-Difluorobenzene	0.100	0.109	109	63	142
Surr: 4-Bromofluorobenzene	0.100	0.113	113	50	159

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

11010416-04

HP_O_110117A-5703131 Units: mg/kg

Analysis Date:

01/17/2011 23:43

Analyst:

WLV

Preparation Date:

01/17/2011 14:10

Prep By:

XML Method: SW5030B

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected in The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.0 - Modified December 23, 2010

1/19/2011 6:30:22 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE

HOUSTON, TX 77054 (7.13) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis: Method: **Gasoline Range Organics**

SW8015B

WorkOrder:

11010416

Lab Batch ID:

R314515

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	1	1.12	108	1	1.13	109	0.791	50	26	147
Surr: 1,4-Difluorobenzene	. ND	0.1	0.104	104	0.1	0.105	105	0.383	30	63	142
Surr: 4-Bromofiuorobenzene	ND	0.1	0.108	108	0.1	0.108	108	0.555	30	50	159

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:22 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Gasoline Range Organics

Method:

SW8015B

WorkOrder:

11010416

Lab Batch ID:

R314525

Method Blank

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

HP_J_110117A-5703266

Units:

Analysis Date:

· 01/17/2011 11:07

NMa Analyst:

mg/L

11010416-08B

B-1 (WATER)

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.10
Surr: 1,4-Difluorobenzene	100.3	60-155
Surr: 4-Bromofluorobenzene	97.7	50-158

Laboratory Control Sample (LCS)

RunID:

HP_J_110117A-5703265

Units:

mg/L

Analysis Date:

01/17/2011 10:39

Analyst:

NMa

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1.00	0.973	97.3	42	136
Surr: 1,4-Difluorobenzene	0.100	0.107	107	. 60	155
Surr: 4-Bromofluorobenzene	0.100	0.103	103	50	158

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11010299-01

RunID:

HP_J_110117A-5703268

Units:

mg/L

Analysis Date:

01/17/2011 12:56

Analyst: NMa

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	5.26	25	27.9	90.4	25	29.2	95.6	4.57	36	22	174
Surr: 1,4-Difluorobenzene	ND	2.5	2.68	107	2.5	2.72	109	1.56	30	60	155
Surr: 4-Bromofluorobenzene	, ND	2.5	2.57	103	2.5	2.63	105	2.20	30	- 50	158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 18 1/19/2011 6:30:22 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Semivolatiles Organics by Method 8270C

Method:

SW8270C

WorkOrder:

11010416

Lab Batch ID:

104506

Method Blank

Units:

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

RuniD: J_110117B-5703108

01/17/2011 21:44

Analyst:

SG

11010416-08D

B-1 (WATER)

Preparation Date:

01/17/2011 15:28

Prep By:

MB1 Method: SW3510C

Analyte	Result	Rep Limit
1-Methylnaphthalene	. ND	5.0
2-Methylnaphthalene	ND	5.0
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Anthracene	ND	5.0
Benz(a)anthracene	ND	5.0
Benzo(a)pyrene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	5.0
Benzo(k)fluoranthene	ND	. 5.0
Chrysene	ND	5.0
Dibenz(a,h)anthracene	ND	5.0
Dibenzofuran	ND.	5.0
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Naphthalene	ND.	5.0
Phenanthrene	ND.	5.0
Pyrene	ND.	5.0
Surr: 2-Fluorobiphenyl	83.2	45-108
Surr: Nitrobenzene-d5	80.6	41-113
Surr: Terphenyl-d14	98.0	43-122

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RuniD:

J_110117B-5703106

Units:

Analysis Date:

01/17/2011 20:35

ug/L Analyst: S_G

Preparation Date:

01/17/2011 15:28

MB1 Method: SW3510C Prep By:

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
1-Methylnaphthalene	50.0	40.2	80.4	50.0	40.5	81.0	0.7	30	52	109
2-Methylnaphthalene	50.0	42.4	84.8	50.0	43.0	86.0	1.4	30	52	116
Acenaphthene	50.0	42.4	84.8	50.0	42.6	85.2	0.5	30	52	117
Acenaphthylene	50.0	42.3	84.6	50.0	42.2	84.4	0.2	30	53	122
Anthracene	50.0	41.5	83.0	50.0	41.1	82.2	1.0	30	49	126
Benz(a)anthracene	50.0	43.6	87.2	50.0	43.1	86.2	1.2	30	53	121

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:22 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis: Method:

Semivolatiles Organics by Method 8270C

SW8270C

WorkOrder:

11010416

Lab Batch ID:

104506

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RuntD:

J_110117B-5703106

Units: ug/L

Analysis Date:

01/17/2011 20:35

Analyst: S_G

Preparation Date:

01/17/2011 15:28

Prep By:

MB1 Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Benzo(a)pyrene	50.0	41.9	83.8	50.0	40.9	81.8	2.4	30	47	100
Benzo(b)fluoranthene	50.0	41.3	82.6	50.0	39.6	79.2	4.2	30	52	113
Benzo(g,h,i)perylene	50.0	43.1	86.2	50.0	42.4	84.8	1.6	30	52	121
Benzo(k)fluoranthene	50.0	39.1	78.2	50.0	38.9	77.8	0.5	30	54	117
Chrysene	50.0	42.8	∜85.6	50.0	42.7	85.4	0.2	30	53	117
Dibenz(a,h)anthracene	, 50.0	41.4	82.8	50.0	41.1	82.2	0.7	30	49	120
Dibenzofuran	50.0	42.9	. 85.8	50.0	43.1	86.2	0.5	30	55	119
Fluoranthene	50.0	42.5	85.0	50.0	42.2	.84.4	0.7	30	49	132
Fluorene	50.0	43.2	86.4	50.0	42.7	85.4	1.2	30	54	119
Indeno(1,2,3-cd)pyrene	50.0	; 43.6	87.2	50.0	43.9	87.8	0.7	30	50	129
Naphthalene	50.0	. 39.8	79.6	50.0	40.0	80.0	0.5	30	53	111
Phenanthrene	, 50.0	44.8	89.6	50.0	45.1	90.2	0.7	30	49	124
Pyrene	50.0	46.0	92.0	50.0	45.9	91.8	0.2	30	52	122
Surr: 2-Fluorobiphenyl	50.0	43.1	86.2	50.0	43.1	86.2	0.0	30	45	108
Surr: Nitrobenzene-d5	50.0	41.1	82.2	50.0	41.0	82.0	0.2	30	41	113
Surr: Terphenyl-d14	50.0	47.6	95.2	50.0	46.9	93.8	1.5	30	43	122

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 20 1/19/2011 6:30:23 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Volatile Organics by Method 8260B

Method:

Analysis Date:

RunID: M_110117A-5702386

SW8260B

01/17/2011 11:59

WorkOrder:

11010416

Lab Batch ID:

R314431

Method Blank

Units:

Analyst:

ug/kg TLE

Lab Sample ID 11010416-01A

Samples in Analytical Batch:

Client Sample ID B-1 (66-68)

11010416-02A

B-1 (68-70)

11010416-04A

B-1 (86-88)

11010416-05A

B-1 (88-90)

11010416-06A

B-1 (92-94)

11010416-07A

B-1 (122.5-123.5)

Analyte	Result	Rep Limit
Benzene	ND	5.0
Ethylbenzene	/ ND	5.0
Toluene	ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
Xylenes,Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	94.3	71-130
Surr: 4-Bromofluorobenzene	86.6	65-131
Surr: Toluene-d8	94.7	75-136

Laboratory Control Sample (LCS)

RunID:

M_110117A-5701939

Units:

ug/kg

Analysis Date:

01/17/2011 10:55

Analyst: TLE

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	17.6	87.9	64	130
Ethylbenzene ,	20.0	17.9	89.4	58	143
Toluene ,	20.0	16.9	84.7	63	139
m,p-Xylene	40.0	36.3	90.6	64	137
o-Xylene :	20.0	18.3	91.6	64	143
Xylenes,Total	60.0	54.6	91.0	64	143
Surr: 1,2-Dichloroethane-d4	50.0	47.2	94.4	71	130
Surr: 4-Bromofluorobenzene	50.0	47.6	95.3	65	131
Surr: Toluene-d8	50.0	46.4	92.9	75	136

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

H1101023900

RunID:

M_110117A-5702434

Units:

ug/kg

Analysis Date:

01/17/2011 14:08

Analyst:

TLE

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.0 - Modified December 23, 2010

1/19/2011 6:30:23 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

11010416

Lab Batch ID:

R314431

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	18.5	90.0	20	18.7	91.5	1.54	.21	49	135
Ethylbenzene	ND	20	19.2	94.9	20	18.6	91.8	3.26	30	39	135
Toluene	ND	20	17.8	86.6	20	17.3	. 84.4	2.49	21	49	133
m,p-Xylene	ND	40	41.9	98.6	40	39.0	91.4	7.12	30	32	140
o-Xylene	ND	20	21.8	99.1	20	19.8	89.4	9.34	30	36	142
Xylenes,Total	· ND	60	63.7	98.8	60	58.8	. 90.7	7.87	30	32	142
Surr: 1,2-Dichloroethane-d4	· ND	50	45.6	91.2	50	46.0	92.0	0.916	30	71	130
Surr: 4-Bromofluorobenzene	· ND	50	48.3	96.6	50	48.4	96.9	0.240	30	65	131
Surr: Toluene-d8	ND	50	46.2	92.5	50	46.0	92.1	0.447	30	75	136

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 22

1/19/2011 6:30:23 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

an Juan 29-7 Unit 37

WorkOrder:

11010416

Lab Batch ID:

R314436

Method Blank

MSDVOA3_110117A-5702533

Units: ug/L

LT

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

01/17/2011 11:43

Analyst:

11010416-08A

B-1 (WATER)

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1:.0
Xylenes, Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	80.4	70-130
Surr: 4-Bromofluorobenzene	110.1	74-125
Surr: Toluene-d8	107.8	82-118

Laboratory Control Sample (LCS)

RunID:

MSDVOA3_110117A-57025 Units:

ug/L

Analysis Date:

01/17/2011 10:45

Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	22.6	113	74	123
Ethylbenzene	20.0	19.3	96.6	72	127
Toluene	20.0	20.2	·101	74	126
m,p-Xylene	40.0	38.9	97.3	71	129
o-Xylene	20.0	19.1	95.7	74	130
Xylenes,Total :	60	58	97	71	130
Surr: 1,2-Dichloroethane-d4	50.0	40.1	80.1	70	· 130
Surr: 4-Bromofluorobenzene	50.0	59.2	118	74	125
Surr: Toluene-d8	50.0	51.8	104	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

11010309-02

RunID:

MSDVOA3_110117A-57026 Units:

mg/L

Analysis Date:

01/17/2011 15:45

Analyst: LT

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:24 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

11010416

Lab Batch ID:

R314436

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	0.02	0.0213	106	0.02	0.0208	104	2.37	22	70	124
Ethylbenzene	ND	0.02	0.0185	92.7	0.02	0.0177	88.3	4.87	20	76	122
Toluene	ND	0.02	0.0189	94.5	0.02	0.0182	91.2	3,60	24	80	. 117
m,p-Xylene	ND	0.04	0.0366	91.5	0.04	0.0350	87.4	4.64	20	· 69	127
o-Xylene	ND	0.02	0.0183	91.6	0.02	0.0175	87.7	4.42	20	.84	114
Xylenes,Total	ND	0.06	0.0549	91.6	0.06	0.0525	87.5	4.56	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	41.4	82.8	50	41.5	83.1	0.361	30	70	130
Surr: 4-Bromofluorobenzene	ND	-50	- 59.8	120	50	59.8	. 120	0.0174	30	74	125
Surr: Toluene-d8	: ND	50	50.6	101	50	50.3	101	0.699	30	82	118

Qualifiers

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 24

1/19/2011 6:30:24 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Conoco Phillips

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

01/17/2011 11:38

San Juan 29-7 Unit 37

WorkOrder:

11010416

Lab Batch ID:

R314510

Method Blank

Samples in Analytical Batch:

RunID: Analysis Date:

K_110117D-5703064

Units: Analyst: ug/kg LU_L

Lab Sample ID

Client Sample ID

11010416-01A

B-1 (66-68)

11010416-03A

B-1 (30-32)

Analyte	Result	Rep Limit
Benzene	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylene	ND	5.0
o-Xylene	ND	5.0
Xylenes, Total	ND	5.0
Surr: 1,2-Dichloroethane-d4	95.1	71-130
Surr: 4-Bromofluorobenzene	102.5	65-131
Surr: Toluene-d8	99.2	75-136

Methanolic Preparation Blank

RunID: K_110117D-5703065

Units:

ug/kg

Analysis Date:

01/17/2011 12:04

LU_L Analyst:

Analyte	Result	Rep Limit
Benzene	ND	250
Ethylbenzene	ND	250
m,p-Xylene	ND	250
o-Xylene	ND ND	250
Xylenes, Total	ND	250
Surr: 1,2-Dichloroethane-d4	93.3	78-116
Surr: 4-Bromofluorobenzene	103.4	74-125
Surr: Toluene-d8	100.2	82-118

Laboratory Control Sample (LCS)

RunID:

Analysis Date:

K_110117D-5703063 01/17/2011 11:12

Units: Analyst:

ug/kg

LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	20.0	19.4	97.1	74	123
Ethylbenzene i	20.0	20.1	101	72	127
m,p-Xylene	40.0	40.2	101	. 71	129
o-Xylene	20.0	19.9	99.4	74	130

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply. TNTC - Too numerous to count

11010416 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:24 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

San Juan 29-7 Unit 37

WorkOrder:

11010416

Lab Batch ID:

Laboratory Control Sample (LCS)

RunID:

K_110117D-5703063

R314510

Analysis Date:

01/17/2011 11:12

Units:

Analyst: LU_L

ug/kg

		*			
Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Xylenes,Total	60.0	60.1	100	71	130
Surr: 1,2-Dichloroethane-d4	50.0	47.2	94.3	78	116
Surr: 4-Bromofluorobenzene	50.0	50.3	101	74	125
Surr: Toluene-d8	50.0	48.5	97.1	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

H1101012900

RunID:

K_110117D-5703067

Units:

ug/kg

01/17/2011 15:40 Analysis Date:

Analyst: LU_L

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	1370000	1E+06	2330000	96.7	1E+06	2330000	96.3	0.181	22	70	124
Ethylbenzene	8790000	1E+06	9330000	N/C	1E+06	9490000	N/C	N/C	20	76	122
m,p-Xylene	5810000	2E+06	7420000	80.4	2E+06	7630000	90.9	2.80	20	69	127
o-Xylene	· ND	1E+06	1070000	107	1E+06	1030000	103	3.54	20	84	114
Xylenes,Total	5810000	3E+06	8490000	89.1	3E+06	8660000	94.9	2.03	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	3E+06	2300000	91.9	3E+06	2290000	91.6	0.311	30	78	116
Surr: 4-Bromofluorobenzene	. ND	3E+06	2690000	108	3E+06	2660000	106	1.22	- 30	74	125
Surr: Toluene-d8	ND	3E+06	2480000	99.1	3E+06	2500000	100	1.11	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values 1/19/2011 6:30:24 PM calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

11010416

Lab Batch ID:

R314523

Method Blank

ug/kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

RunID: K_110118A-5703253

01/18/2011 11:33

Analyst: LU L

Units:

11010416-03A

B-1 (30-32)

Analyte	Result	Rep Limit	
Toluene	ND	5,0	
m,p-Xylene	ND	5.0	
o-Xylene	ND	5.0	
Xylenes, Total	ND	5.0	
Surr: 1,2-Dichloroethane-d4	93.2	71-130	
Surr: 4-Bromofluorobenzene	101.3	65-131	
Surr: Toluene-d8	96.7	75-136	

Methanolic Preparation Blank

RunID:

K_110118A-5703254

Units:

ug/kg

Analysis Date:

01/18/2011 11:59

Analyst: LU_L

Analyte	Result	Rep Limit
Toluene	ND	250
m,p-Xylene	ND.	250
o-Xylene	ND	250
Xylenes, Total	ND	250
Surr: 1,2-Dichloroethane-d4	91.4	78-116
Surr: 4-Bromofluorobenzene	101.0	74-125
Surr: Toluene-d8	97.8	82-118

Laboratory Control Sample (LCS)

RunID:

K 110118A-5703252

Units:

ug/kg

Analysis Date:

01/18/2011 11:05

Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Toluene	20.0	20.4	102	74	126
m,p-Xylene	40.0	41.1	103	71	129
o-Xylene	20.0	20.8	104	74	130
Xylenes,Total	60.0	61.9	103	71	130
Surr: 1,2-Dichloroethane-d4	50.0	45.4	90.9	78	116

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

1/19/2011 6:30:25 PM

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Conoco Phillips San Juan 29-7 Unit 37

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

11010416

Lab Batch ID:

R314523

Laboratory Control Sample (LCS)

RunID:

K_110118A-5703252

Units:

ug/kg

Analysis Date:

01/18/2011 11:05

Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Surr: 4-Bromofluorobenzene	50.0	50.4	101	74	125
Surr: Toluene-d8	50.0	49.5	98.9	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Preparation Date:

11010296-08

RunID:

K_110118A-5703541

Units:

ug/kg-dry LU_L

Analysis Date:

01/18/2011 13:45 01/14/2011 11:31 Analyst: Prep By:

Method: SW5030B

Analyte -	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Toluene	. 2710	2380	4750	85.9	2380	4800	87.9	1.01	24	80	117
m,p-Xylene	1390	4750	6370	105	4750	6110	99.3	4.06	20	69	127
o-Xylene	684	2380	2970	96.4	2380	2940	95.2	0.981	20	84	114
Xylenes,Total	2080	7130	9340	102	7130	9050	97.9	- 3.07	- 20	69	127
Surr: 1,2-Dichloroethane-d4	ND	5940	5310	89.4	5940	5300	89.2	0.238	30	78	116
Surr: 4-Bromofluorobenzene	· ND	. 5940	5890	99.3	5940	5790	97.4	1.86	30	74	125
Surr: Toluene-d8	ND	5940	- 5640	94.9	5940	5700	96.0	1:13	30	82	118

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

11010416 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Version 2.0 - Modified December 23, 2010

1/19/2011 6:30:25 PM

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder: 11010416 Date and Time Received: 1/15/2011 9:15:00 AM Temperature: 2.0/2.0°C		Received By: Carrier name: Chilled by:	T_B Fedex-Priority Water Ice
1. Shipping container/cooler in good condition?	Yes 🗹	No 🗆	Not Present
2. Custody seals intact on shippping container/cooler?	Yes 🗹	No 🗆	Not Present
3. Custody seals intact on sample bottles?	Yes 🗆	No 🗆	Not Present
4. Chain of custody present?	Yes 🗸	No 🗌	
5. Chain of custody signed when relinquished and received?	Yeş 🗹	No 🗆	
6. Chain of custody agrees with sample labels?	Yes 🗹	No 🗆	
7. Samples in proper container/bottle? Received DRO and PAH in a 16oz plastic, sample put on hold.	Yes 🗌	No 🗹	•
8. Sample containers intact?	Yes 🗹	No 🗆	
9. Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
10. All samples received within holding time?	Yes 🗹	No 🗌	
11. Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗆	
12. Water - VOA vials have zero headspace?	Yes 🗹	No 🗌 VOA	Vials Not Present
13. Water - Preservation checked upon receipt (except VOA*)?	Yes	No 🖸	Not Applicable
*VOA Preservation Checked After Sample Analysis		10. 10.01	
SPL Representative: Client Name Contacted: Christine Matthews	Contact Date &	Time: 1/17/2011 12:0	00:00 PM
Non Conformance Issues:	•		
Client Instructions: Elessa Sommers discussed by phone the p client request.	lastic containers received	for DRO and PAH an	nalyses. Proceed with analyses per

	ChainofCustodyRecord	SPLWorkordertkurrber.		RequestedAndyss	X		H		3015 3015 3015 3015 3015 3015	EX E	Sol 4 bi	XXX	XXXX			XXX	XXXX			CK Sin Stronging Him Cultination	11 Glass 3. 11 Plastic 4. 11 A		Ime Receivedby.	Time Received by SPL, Inc.	_ 1	Page of
		TefraTechEMI	e Brown Emaito	Phane:(505)237-8440 Fox:	Address:s121indianSchoolRd, NE, Ste200	City:Albuquera.e State:NM ZpCode:87110	s:SanJuan29-7UniB7	stelocopan Rio Amba Colum	my which make the construction of the construc	Collected SompleType	SamplelD Date Time Comp Grap Water	X 921 H/1 (89-79) - 8	ρ	X, DOE1 H/1\26-0E/2 1-8	R-1 786-8811/1411350 X	\mathcal{Y}	X VITEI PI/1 (1/26), 1-3	B-1 (72.5-123.5) VH 1,000 X	B-1 (with My Miles) XX	TuncroundTimeRequiements Remarks	BottleTypes: 1:3/40	/ Which I Malke of 11/4/11	Reinguishedby.	Relinquished by Confe		