3R - 340

SEP 2010 GWMR

02/02/2011

3R340

QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY

RANDLEMAN No.1 PRODUCTION FACILITY SAN JUAN COUNTY, NEW MEXICO

OCD # 3RP-340-0 API # 30-045-10698

Prepared for:

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690090

February 2011

TABLE OF CONTENTS

4.0	REF	ERENCES	5
3.0	co	NCLUSIONS AND RECOMMENDATIONS	4
	2.3	Groundwater Sampling Analytical Results	3
•	2.2	Groundwater Sampling Methodology	3
	2.1	Monitoring Summary	2
2.0	МО	NITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS	2
	1.1	Site Background	l
1.0	INT	RODUCTION	I

FIGURES

- 1. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map September 2010
- 5. BTEX Groundwater Concentration Map September 2010
- 6. Sulfate, Chloride, and TDS Isopleth Map September 2010

TABLES

- I. Site History Timeline
- 2. Groundwater Elevation Data Summary (June 2009 September 2010)
- 3. Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
- 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June 2009 September 2010)

APPENDICES

- Appendix A Groundwater Sampling Field Forms
- Appendix B Groundwater Laboratory Analytical Report

Tetra Tech, Inc. i February 15, 2011

QUARTERLY GROUNDWATER MONITORING REPORT RANDLEMAN NO.1, SAN JUAN COUNTY, NEW MEXICO SEPTEMBER 2010

1.0 INTRODUCTION

This report discusses the groundwater sampling event performed by Tetra Tech, Inc. (Tetra Tech) on September 20, 2010 at the ConocoPhillips Company Randleman No. I site located outside of Aztec, New Mexico (Site). The Site is situated on private land in Section 13, Township 31N, Range 11W, of San Juan County, New Mexico. A site location map and detail map are included as **Figures I** and **2**, respectively.

1.1 Site Background

The historical timeline for the Site is summarized below, and is also presented in Table 1.

In April 1997, an unlined surface impoundment (**Figure 2**) was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman No. 3 site (Williams 2002). Three monitor wells were installed at the Site on May 14, 1997, and quarterly groundwater monitoring was conducted through March 1998. Evaluation of groundwater monitoring results initiated another excavation in April 1998 of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002). Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site. In June 2002, OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitor wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in **Figure 2**.

On February 23, 2009, a release of approximately 60 barrels of condensate occurred as a result of a hole in an on-Site production tank. Envirotech Inc. of Farmington, NM (Envirotech) excavated an area of approximately 42 ft. x 5 l ft. x 7 ft. deep on February 26, 2009. Seven composite soil samples were collected during excavation activities and were field analyzed for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) Method 418.1. Additionally, samples were field analyzed for organic vapors using a photoionization detector (PID) and heated headspace techniques. TPH results ranged from 8 to 1,080 parts per million (ppm) in the walls of the excavation. Organic vapor concentrations ranged from 6.8 ppm to 898 ppm. Due to levels of TPH and organic vapors above OCD action levels, the excavation was

Tetra Tech, Inc. 1 February 15, 2011

continued on February 27, 2009 (Envirotech, 2009). The total area of excavation measured 81 ft \times 43 ft \times 20 ft. deep. The excavation area is depicted in **Figure 2**.

On March 2, 2009, groundwater was found seeping into the southeast corner of the excavation at a depth of approximately 20 feet bgs. A vacuum truck operated by Rock Springs was contracted by Envirotech to collect groundwater from the excavation. After removal of accumulated groundwater, Envirotech obtained a soil sample from the southeast corner of the excavation at a depth of 20 feet bgs. TPH and organic vapor results were found to be above OCD action levels. During field analysis of the soil sample, groundwater continued to seep into the excavation. Groundwater was again removed from the excavation, and additional excavation was performed to obtain a soil sample below OCD action levels. A groundwater sample was collected and sent for laboratory analysis of volatile organic compounds by EPA Method 8260B. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above NMWQCC groundwater quality standards. Soon after the groundwater sample was taken, the excavation caved in making further water removal via the vacuum truck impossible (Envirotech, 2009). The excavation area is depicted in **Figure 2**.

A total of 611 cubic yards of soil were removed from the Site and were transported to an OCD-permitted facility; clean fill was obtained from the landowner to backfill the excavation. Envirotech recommended the installation of groundwater monitor wells at the Site under OCD guidelines (Envirotech, 2009).

Tetra Tech installed four groundwater monitor wells at the Site between June 9, 2009 and June 10, 2009. A generalized geologic cross section was produced using soil boring data collected during monitoring well installation (**Figure 3**). Following drilling activities in June 2009, the casings for Site monitor wells were surveyed using an arbitrary reference-elevation of 100 feet above mean sea level (amsl). Data obtained from the Site survey is used in conjunction with quarterly monitoring data to produce groundwater elevation maps for the Site (**Figure 4**). Groundwater flow direction at the Site is to the east/southeast.

Tetra Tech began conducting groundwater monitoring events at the Site on June 12, 2009. Hydrocarbon absorbent socks were placed in Monitor Wells MW-2 and MW-3 on June 18, 2009 due to the presence of a spotty, discontinuous light non-aqueous phase liquid (LNAPL) sheen present in purge water during sampling. The socks were removed during the March 2010 sampling event. Since the removal of the socks, LNAPL has not been detected in MW-2 or in MW-3. Soil and groundwater samples were also collected from the Kiffen Canyon Wash on October 21, 2009 and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX). In both the soil and groundwater collected from Kiffen Canyon Wash, BTEX constituents were found to be below standards.

2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS

2.1 Monitoring Summary

Tetra Tech, Inc. 2 February 15, 2011

A groundwater sampling event was conducted at the Site on September 20, 2010. Bridge work near the Site resulted in ground shift near Monitoring Well MW-3 and caused the well casing to raise. The vault lid would no longer shut properly. As a result, the PVC had to be cut and the site was completely re-surveyed. The lock and cap were missing from Monitor Well MW-4; this was reported and replaced while on site. Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2, MW-3 and MW-4, depth to groundwater in each well was measured using a dual interface probe (Table 2). A groundwater elevation contour map reflecting September 20, 2010 groundwater elevation is presented as Figure 4.

2.2 Groundwater Sampling Methodology

During the September 20, 2010 groundwater monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene dedicated bailer. While bailing each well, groundwater parameters were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory (SPL) of Houston, Texas.

September 2010 groundwater samples were analyzed for BTEX by EPA Method 8260B; sulfate and chloride by EPA Method E300.0; TDS by EPA Method 2540C; and dissolved manganese by EPA Method 6010B (Table 3). A summary of analytical results from the September 20, 2010 sampling event is displayed in Table 4. Tetra Tech has prepared Table 4 as a historical analytical results table to include all quarterly analytical parameters to help document trends in constituent concentrations over time. Results from future groundwater monitoring events at the Site will be compiled in this table.

2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedances of NMWQCC groundwater quality standards in Site monitoring wells are discussed below.

Chloride

The NMWQCC domestic water supply groundwater quality standard for chloride is 250 milligrams per liter (mg/L); in September 2010, the groundwater sample collected from MW-4, the up-gradient monitoring well, was found to contain chloride at concentration of 2,640 mg/L.

Sulfate

The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater samples collected in September 2010 from Monitor Well MW-1, MW-2, and MW-4 were found to contain sulfate at concentrations of 1,710 mg/L, 1,390 mg/L, and

Tetra Tech, Inc. 3 February 15, 2011

3,260 mg/L, respectively. Sulfate concentrations increased in wells MW-1, MW-2, and MW-4 but decreased to below NMWQCC standards in MW-3

Manganese

The NMWQCC domestic water supply groundwater quality standard for manganese is 0.2 milligrams per liter (mg/L). In September 2010, groundwater samples collected from monitor wells MW-1, MW-2, MW-3 and MW-4 were found to contain concentrations of manganese above the standard at 0.207 mg/L, 2.7 mg/L, 0.818 mg/L, and 1.24 mg/L, respectively. Manganese concentrations in MW-1 and MW-3 were below NMWQCC standards in the June 2010 sampling event but have increased to once again exceed standards.

Benzene

 $_{\odot}$ The human health NMWQCC groundwater quality standard for benzene is 10 μg/L. Benzene concentrations measured in the September 2010 sampling event were found to all be below NMWQCC standards. This is the first sampling event with benzene below standards in all monitoring wells.

Total Xylenes

The human health NMWQCC groundwater quality standard for total xylenes is 620 μg/L.
 The September 2010 groundwater samples collected from all Monitor Wells were below the NMWQCC standard for total xylenes; representing the third quarter of NMWQCC compliance for total xylenes at the Site.

Total Dissolved Solids

The human health NMWQCC groundwater quality standard for total dissolved solids is 1,000 mg/L. The September 2010 groundwater samples collected from Monitor Wells MW-2, MW-2, MW-3 and MW-4 were above the standard with concentrations of 4,070 μg/L, 2,440 μg/L, 2,840 μg/L and 9,550 μg/L, respectively. It should be noted that the up-gradient well, MW-4, consistently contains TDS concentrations at much higher levels than the other Site monitoring wells.

The corresponding laboratory analytical report for the September 2010 groundwater sampling event, including quality control summaries, is included in **Appendix B**. A map showing BTEX concentrations in groundwater from Site monitoring wells during the April 2010 groundwater sampling event is included as **Figure 5**. An isopleths map showing sulfate, chloride, and TDS concentrations is presented as **Figure 6**.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater analytical results indicate that all constituents of concern are consistently below NMWQCC groundwater quality

Tetra Tech, Inc. 4 February 15, 2011

standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

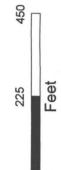
4.0 REFERENCES

- Envirotech Incorporated (2009). Spill Cleanup Report, Located at: Burlington Resources [sic] Randleman #1 Well Site, Section 13, Township 31N, Range 11W, San Juan County, New Mexico. Prepared for ConocoPhillips. Report Dated February 2009. 3 pp (not including Figures, Tables, and Appendices).
- New Mexico Energy, Minerals and Natural Resources Department (2002). Case # 3R0-340, Randleman #1 Dehy Pit, San Juan County [sic], New Mexico. Letter from NMEMNRD to Williams Field Services. Dated June 14, 2002. 6 pp.
- Williams Environmental Services (2002). Randleman #1 Pit Remediation and Closure Report. Prepared for the New Mexico Oil Conservation Division. Report Dated February 11, 2002. 3 pp (not including Figures, Tables, and Appendices).

Tetra Tech, Inc. 5 February 15, 2011

FIGURES

- I. Site Location Map
 - 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map September 2010
- 5. BTEX Groundwater Concentration Map September 2010
- 6. Sulfate, Chloride, and TDS Isopleth Map September 2010


FIGURE 1.

Site Location Map ConocoPhillips Randleman No. 1 Aztec, NM

ConocoPhillips
Randleman No.1 Site Location

TETRA TECH, INC.

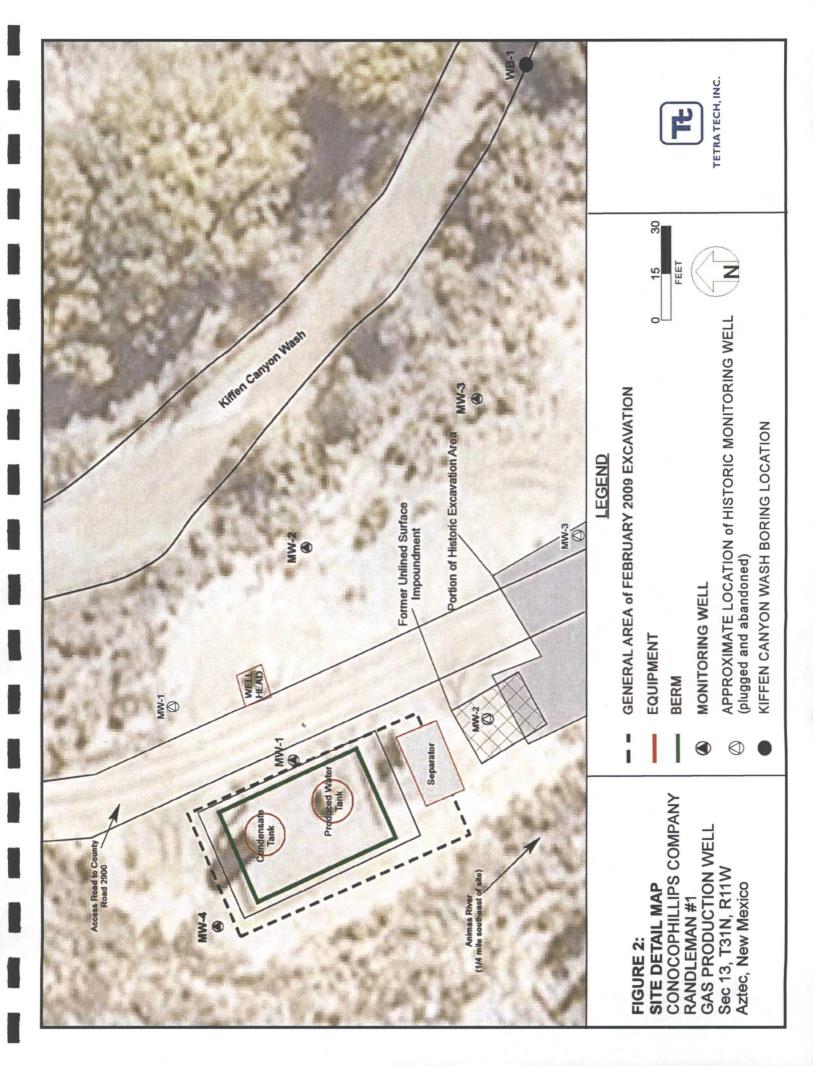
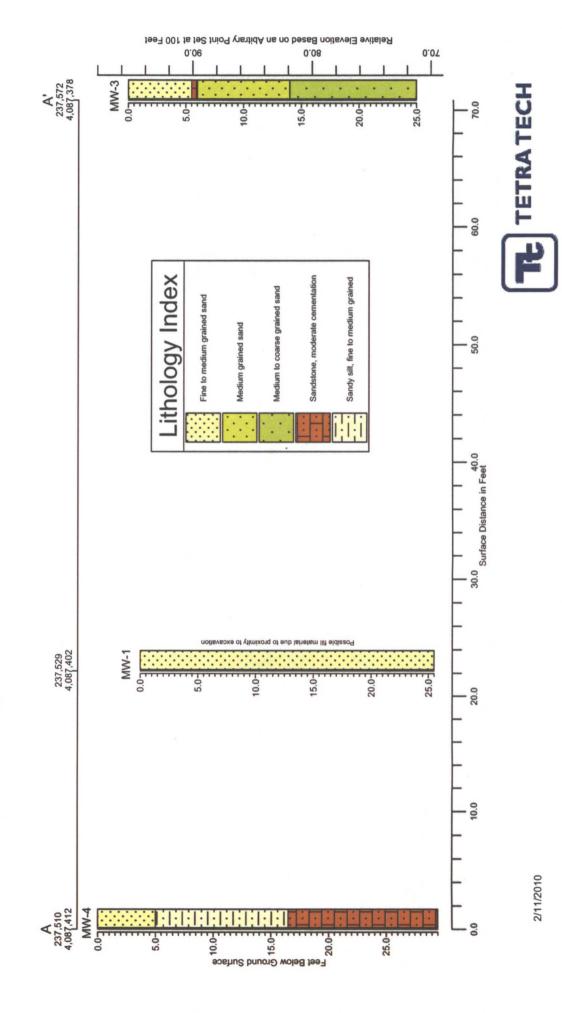
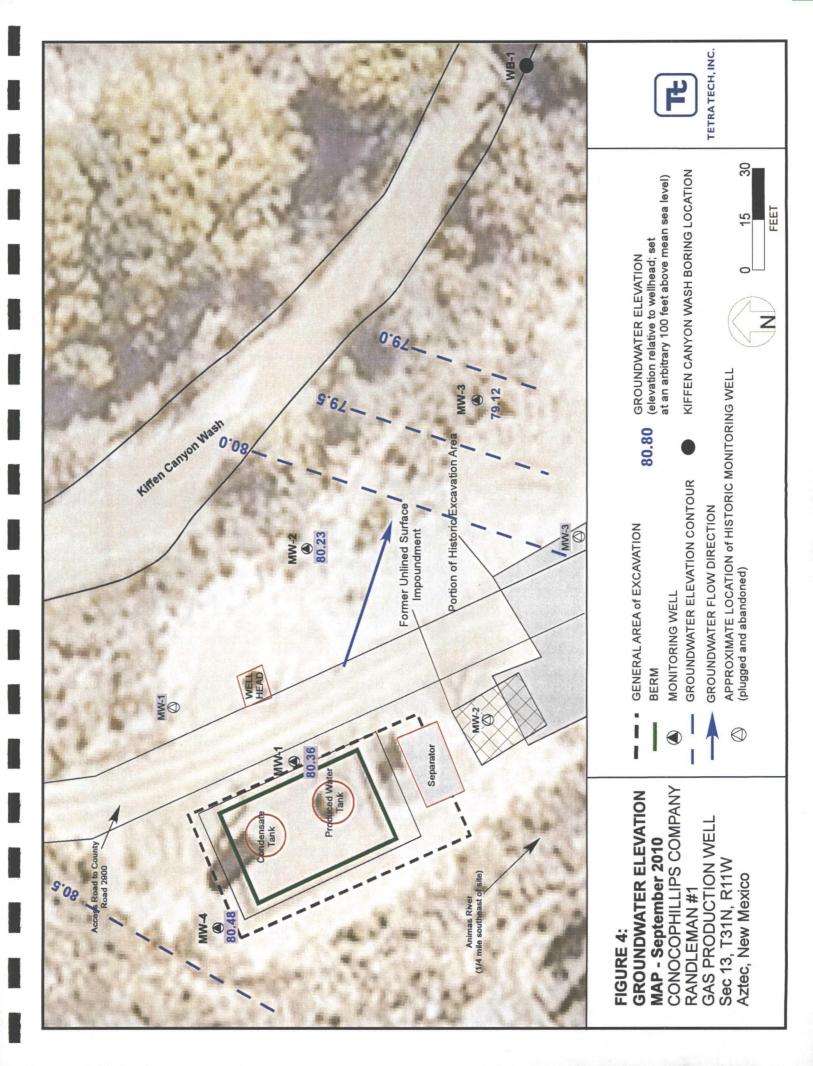
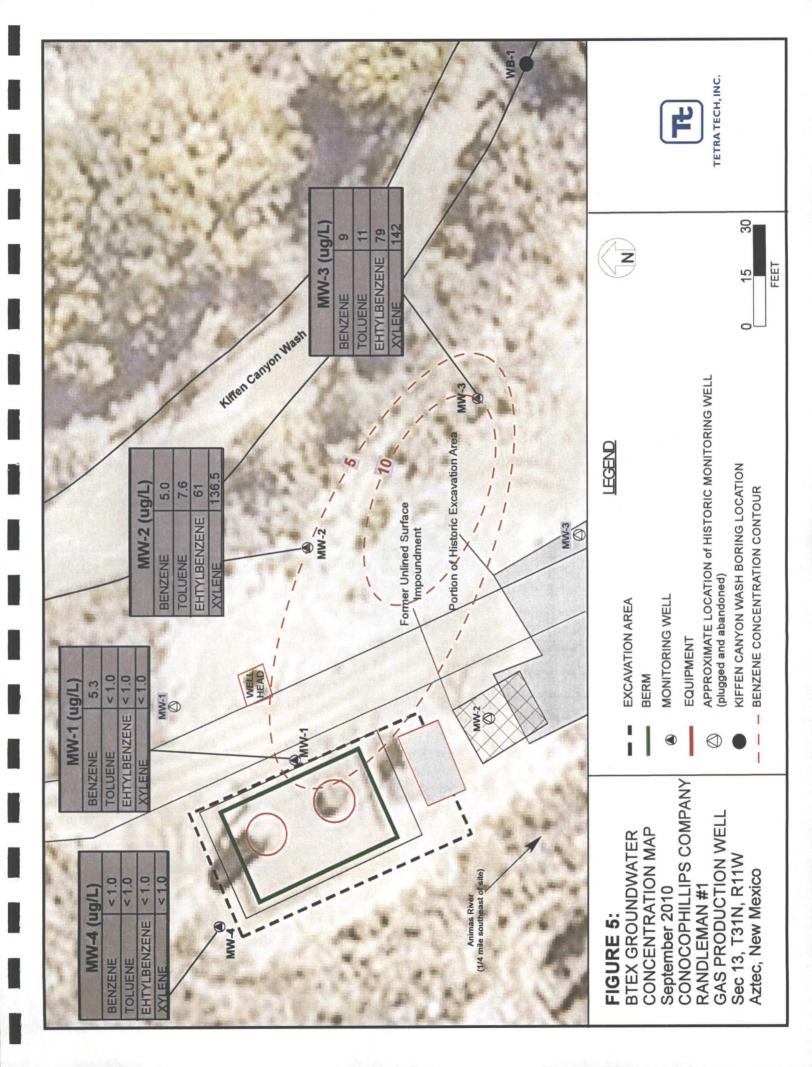
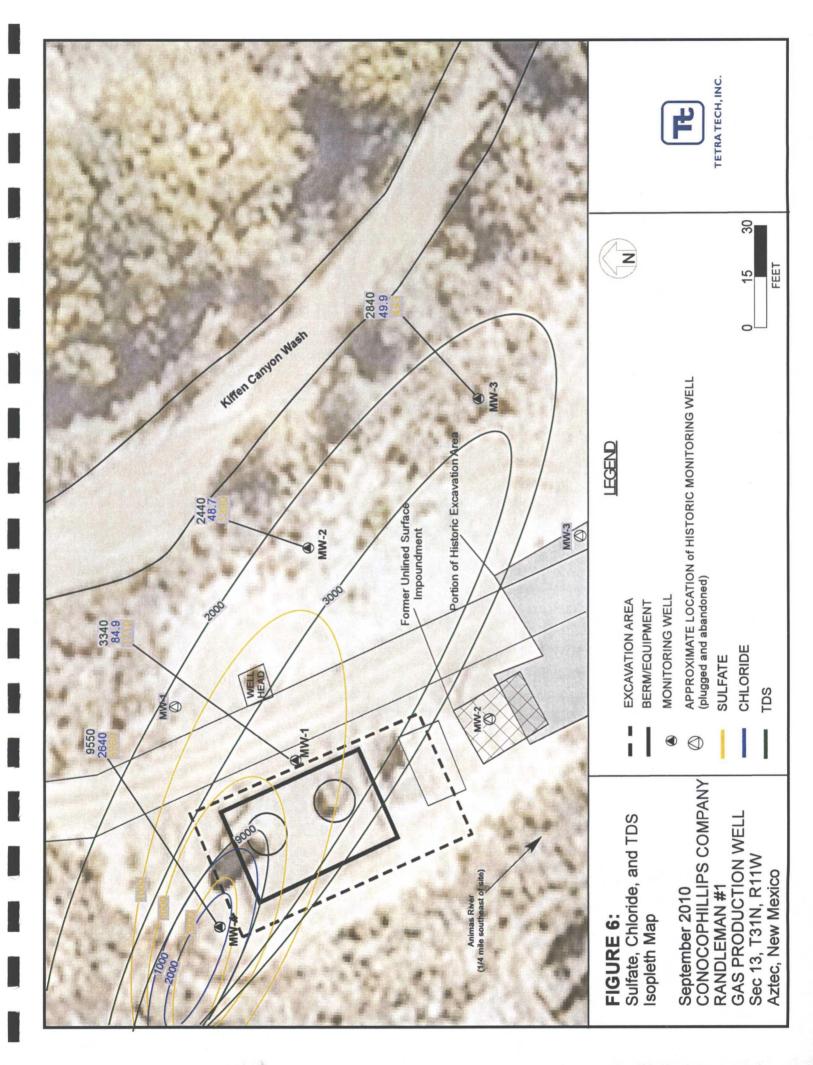






Figure 3. Randleman #1 - Cross-Section A-A'

TABLES

- 1. Site History Timeline
- 2. Groundwater Elevation Data Summary (June 2009 September 2010)
- Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
 - 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters
 (June 2009 September 2010)

Table 1. Randleman No. 1 Site History Timeline

_	DATE	ACTIVITY
	September 20, 1951	Well spudded by Southern Union Gas Company.
	August 1, 1952	Well acquired by Aztec Oil and Gas Company.
	December 1, 1976	Southland Royalty Company acquired Aztec Oil and Gas Company.
	November 22, 1985	Southland Royalty Company acquired by Burlington Resources.
Barton Carles of the	April 1, 1997	An unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site.
	May 14, 1997	Three groundwater monitor wells were installed at the Site. Groundwater monitoring was initiated on a quarterly basis through March 1998.
_	April 1, 1998	Evaluation of groundwater monitoring results initiated another excavation of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002).
and the engine of themselves	February 1, 2002	Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater quality monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status for the Site.
	June 1, 2002	OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in Figure 2.
	March 31, 2006	ConocoPhillips Company acquired Burlington Resources and all assets.
	February 23, 2009	Approximately 60 barrels of condensate were found to have spilled from a hole located on the back side of an on-Site condensate tank into the bermed area. The spilled fluids remained in the berm and none of the condensate was recovered. Form C-141 stated that the spill impacted the soil on the ground surface around the tank, that the production tank was to be removed, and the affected soils were to be excavated.
	d (4.44 - 12.44 - 1.44	Envirotech Inc. of Farmington, NM (Envirotech) performed the soil excavation and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. 7 composite
A TO A SECULO SE	February 26, 2009	soil samples were collected from the excavation and were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. Additionally, organic vapors were measured using a Photoionization Detector (PID). TPH results ranged from 8 parts per million (ppm) in the north wall sample to 1,080 ppm in the south wall sample. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm from the north wall sample, to 898 ppm in the south wall sample. Due to high levels of TPH and organic vapors, the excavation was continued on February 27, 2009.
	February 27, 2009	Envirotech continued the excavation and sampling activities. Samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. The final excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). Eight soil samples were collected and analyzed in the field for TPH and organic vapors. Excavation continued until all samples were found to be below 100 ppm for both TPH and organic vapors.
	March 2, 2009	Groundwater began to seep into the southeast corner of the excavation at 20 feet bgs. A vacuum truck was contracted to remove groundwater from the excavation. After removal of groundwater, a soil sample from the southeast corner of the excavation was collected. TPH and organic vapor results were found to be above OCD action levels. More water was then removed from the excavation, and additional soil removal was performed. A groundwater sample was collected from the area where water continued to seep into the excavation, and was analyzed for volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal impossible (Envirotech, 2009). A total of 611 cubic yards of soil were romoved from the Site. Clean fill was used to backfill the excavation.
	June 9 through 11, 2009	Tetra Tech installed four groundwater monitor wells at the Site; MW-1, MW-2, MW-3 and MW-4.
	June 12, 2009	Tetra Tech conducted the first groundwater monitoring event at the Site.
_	June 17, 2009	Depth to water measurements were taken by Tetra Tech in Site monitor wells to determine if hydrocarbons were accumulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3.
		~

Table 1. Randleman No. 1 Site History Timeline

June 18, 2009	Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Tetra Tech.
September 23, 2009	Second quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
October 1, 2009	Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located downgradient and east of the Site. Groundwater and soil samples collected from boring.
December 16, 2009	Third quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
April 1, 2010	Fourth quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
June 9, 2010	Fifth quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
September 20, 2010	Sixth quarterly groundwater monitoring event at the Site conducted by Tetra Tech. Lock and cap were observed missing from MW-4 -this was reported and replaced while on site. The ground near MW-3 has shifted and the casing is sticking out of the completion. As a result, the PVC had to be cut and the site was completely re-surveyed by Tetra Tech.

Table 2. Groundwater Elevation Data Summary - ConocoPhillips Company Randleman No. 1

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				6/12/2009	13.98	81.21
				6/14/2009	13.96	81.23
			05,10	9/23/2009	13.97	81.22
MW-1	25.5	9-24	6.00	12/16/2009	14.30	80.89
				4/1/2010	14.39	08'08
		:		6/9/2010	13.99	81.20
			94.90	9/20/2010	14.54	80.36
				6/12/2009	15.57	81.22
				6/14/2009	15.63 ·	81.16
			96 79	9/23/2009	15.67	81.12
MW-2	23.80	8.9 - 23.8	2	12/16/2009	16.41	80.38
			•	4/1/2010	16.75	80.04
			,	6/9/2010	15.71	81.08
			96.51	9/20/2010	16.28	80.23
				6/12/2009	16.00	80.31
				6/14/2009	15.97	80.34
			06 31	9/23/2009	15.78	80.53
MW-3	22.00	6.5 - 21.5	-	12/16/2009	16.77	79.54
				4/1/2010	16.79	79.52
				6/9/2010	15.89	80.42
			96.07	9/20/2010	16.95	79.12
				6/12/2009	17.68	81.15
				6/14/2009	17.52	81.31
			98 83	9/23/2009	17.56	81.27
MW-4	29.50	11 - 26	2	12/16/2009	17.86	80.97
				4/1/2010	17.94	80.89
				6/9/2010	17.57	81.26
			98.54	9/20/2010	18.06	80.48

ft = Feet

TOC = Top of casing bgs = below ground surface # Elevation relative to an arbitrary data point of 100 feet; resurveyed during 9/20/10 sampling event

Table 3. ConocoPhillips Company - Randleman No. 1 - GroundwaterBaseline Analytical Results Summary - June 2009

Constituent			Sample	ID (samp	les collect	ed on June	12, 2009)	
						·		NMWQCC Groundwater
<u>lons</u>	Method	Units	MW-1	MW-2	MW-3	<u>Duplicate</u>	<u>MW-4</u>	Quality Standard
Bromide	E300.0	mg/L	< 0.5	<0.5	<0.5	NA	< 0.5	NE
Chloride	E300.0	mg/L	119	40.1	40.3	NA	2,310	250
Fluoride	E300.0	mg/L	0.518	0.621	<0.5	NA	0.652	1.6
Orthophospate (as P)	E300.0	mg/L	< 0.5	< 0.5	<0.5	NA	< 0.5	NE
Sulfate	E300.0	mg/L	1,690	1,360	1,510	-NA	4,190	600
Nitrate (as N)	E300.0	mg/L	0.78	0.52	< 0.5	NA	< 0.5	10
Nitrite (as N)	E300.0	mg/L	< 0.5	< 0.5	< 0.5	NA	< 0.5	NE
A CONTRACTOR OF THE STATE OF TH		1				B	· smar a	NMWQCC Groundwater
Metals, Total	Method	Units	MW-1	MW-2 <0.0002	MW-3 <0.0002	Duplicate	MW-4	Quality Standard
Mercury	SW7470A	mg/L	<0.0002 9.22*			NA NA	< 0.0002	NE NE
Aluminum Boron	SW6010B SW6010B	mg/L	0.135	2.99* <0.1	1.1* 0.107	NA NA	13.6*	NE NE
Calcium		mg/L	473	528	527	NA NA	0.523 496	NE NE
	SW6010B	mg/L	6.81*	3.7*	1.65*	NA NA	20*	NE NE
lron	SW6010B SW6010B	mg/L				NA NA	32.2	NE NE
Magnesium Detection	SW6010B	mg/L	27.1	19.7	23.9	NA NA	19.1	
Potassium		mg/L	7.31	7.53	6			NE NE
Sodium Strontium	SW6010B	mg/L	454	196	242	NA NA	2720	NE NE
	SW6010B	mg/L	8.51	8.54	10.5	NA NA	11.6	NE NE
Tin	SW6010B	mg/L	<0.005	<0.005	0.0061	NA NA	<0.005	NE NE
America	SW6020A	mg/L	< 0.005	<0.005	<0.005	NA NA	< 0.005	NE NE
Arsenic	SW6020A	mg/L	< 0.005	0.00759	< 0.005	NA NA	<0.005	NE NE
Barium	SW6020A	mg/L	0.0857	0.107	0.0537	NA NA	0.131	NE NE
Beryllium	SW6020A	mg/L	< 0.004	<0.004	<0.004	NA .	0.00468	NE NE
Cadmium	SW6020A	· mg/L	< 0.005	< 0.005	< 0.005	NA	<0.005	NE
Chromium	SW6020A	mg/L	0.00601	< 0.005	< 0.005	NA	0.117*	NE NE
Cobalt	SW6020A	mg/L	0.0157	< 0.005	< 0.005	NA	0.0312	NE
Copper	SW6020A	mg/L	0.022	0.00699	< 0.005	NA	0.041	NE
Lead	SW6020A	mg/L	0.0124	0.00561	< 0.005	NA	0.0418	NE
Manganese	SW6020A	mg/L	4.79*	3.56*	3*	NA	4.92*	NE
Molybdenum	SW6020A	mg/L	< 0.01	<0.01	<0.01	NA	0.0146	NE NE
Nickel	SW6020A	mg/L	0.0185	0.0107	0.00971	NA	0.0372	NE NE
Selenium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	0.00558	NE
Silver -	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE.
Thallium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	< 0.005	NE
Vanadium	SW6020A	mg/L	0.012	0.00592	< 0.005	NA	0.0269	NE
Zinc	SW6020A	mg/L	0.0322	0.0152	<0.01	ŅA	0.103	NE
·								NMWQCC Groundwater
SVOCS (detections only)	Method	Units	MW-1	MW-2	MW-3	<u>Duplicate</u>	MW-4	Quality Standard
2,4-Dimethylphenol	8270C	μg/L	<5	<5	18	NA	<5	NE
2-Methylnaphthalene	8270C	μg/L	<5	13	12	NA	<5	see
Naphthalene	8270C	μg/L	<5	14	20	NA	<5	below .
Sum of 2-Methylnaphthalene & Naphthalene	8270C	μg/L	I –	27	32	NA	_	30
Benzyl alcohol	8270C	μg/L	<5	6.8	<5	1	<5	NE
2-Methylphenol	8270C	μg/L	<5	<5	7.2	NA	<5	NE
3&4-Methylphenol	8270C	μg/L	<5	<5	8.3	NA	<5	NE
	1 .					1		NMWQCC Groundwater
VOCs (detections and BTEX only)	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
1,2,4-Trimethylbenzene	8260B	μg/L	< 5	300	440	NA	< 5	NE
1,3,5-Trimethylbenzene	8260B	μg/L	< 5	96	140	NA NA	< 5	NE.
4-Isopropyltoluene	8260B	μg/L	< 5	7.2	6.3	NA NA	< 5	NE NE
Isopropylbenzene	8260B	μg/L	< 5	24	46	NA.	< 5	NE NE
Naphthalene	8260B	μg/L	< 5	21	36	NA	< 5	30
n-Butylbenzene	8260B	μg/L	< 5	5.2	< 5	NA NA	< 5	NE NE
n-Propylbenzene	8260B	μg/L	< 5	25	48	NA NA	< 5	NE NE
sec-Butylbenzene	8260B	μg/L	< 5	6.6	6.1	NA NA	< 5	NE
Benzene	8260B	μg/L	5.1	9.4	10	10	< 5	10
Toluene	8260B	μg/L	7.6	1,100	1,400	1,400	< 5	750
Ethylbenzene	8260B	μg/L	< 5	180	490	540	< 5	750
Total Xylenes	8260B	μg/L	9.7	2,280	4,050	4,300	< 5	620
	1	 			.,500	7,777		NMWQCC Groundwater
,	Method	· Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
Othor `		UITIES	IALAA -	INI AA -T	141 AA - 2	Duplicate	HAI A.A.—44	Quanty Standard
Other Alkalinity (as Calcium Carbonata)			166	215	QQ.	NIA	200	l NE
Alkalinity (as Calcium Carbonate)	SM2320B	mg/L	165	215	99	NA NA	200	NE NE
			165 < 0.1 0.22	215 0.76 11	99 1.2 21	NA NA NA	200 < 0.1 < 0.1	NE NE NE

Notes:

MW = monitoring well

NMWQCC = New Mexico Water Quality Control Commission

Constituents in BOLD are in excess of NMWQCC groundwater quality standards

SVOCs = semi-volatile organic compounds

VOCs = volatile organic compounds

mg/L = milligrams per liter

μg/L = micrograms per liter P = phosphate

N = nitrogen

NE = not established

NA = not analyzed

^{* =} Concentration of total metals. Cannot be compared directly to the NMWQCC standard for dissolved metals; but were used to determine which metals to use dissolved metals analyses for during future quarterly sampling events.

Table 4. ConocoPhillips Randleman No. 1 - Quarterly Groundwater Analytical Results Summary

Weil ID	Date	Benzene (µg/L)	Totuene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	Naphthalene (µg/L)	Chloride (mg/L)	Suifate (mg/L)	Aluminum (mg/L)	iron (mg/L)	_Chromium (mg/L)	Manganese (mg/L)	Total Dissolved Solids (mg/L)
	6/14/2009	5.1	9.7	<5	9.7	< 5	119	1690	9.22	6.81*	.00601*	4.79*	NA
	9/23/2009	- 84	5.4	1.3	11.6	۲۰	80.5	1640	< 0.1	< 0.02	< 0.005	0.17	2880
MW.1	12/16/2009	2	۲>	<1	<1	NA	127	1960	٧N	NA	NA	0.108	3140
	4/1/2010	× 1,			. < 1	NA	72.3	1440	ΝA	NA	NA	0.0849	2850
	6/9/2010		~<1	· · · · · · · · · · · · · · · · · · ·	` <1	NA	83.8	1450	٧N	NA	NA	0.114	3340
	9/20/2010	5.3	<1	<1	<1	NA	84.9	1710	۷N	NA	NA	. 0.207	4070
	6/14/2009	9.4	1100	180	2280	21	40.1	1360	2.99*	3.7*	< 0.005*	3.56*	NA
	9/23/2009	7.7	,<1	110	720	16	39.4	1390	< 0.1	0.0239	< 0.005	6.82	2480
MW-2	12/16/2009	20	7.9	240	8.777	NA	63.3	1510	Ą	NA A	NA	5.26	2390
	4/1/2010	6	27	180	547	AN	. 26.5	1170	Ņ	NA	NA	4.1	2460
	6/9/2010	3.8	9.3	66	265.6	AN	48.7	1280	NA	NA	NA	3.24	2590
	9/20/2010	5.0	7.6	61	136.5	NA	48.7	1390	NA	NA	NA	2.7	2440
	6/14/2009	10	1400	490	4050	36	40.3	1510	1.1*	1.65*	< 0.005*	3*	NA
	9/23/2009	13	8.5	89	320	3.9	64.5	1500	< 0.1	0.0486	< 0.005	1.11	2720
MW-3	12/16/2009	18	17	96	280	ΑN	99.1	1920	Ą	NA	NA	0.932	2560
,	4/1/2010	18	76	190	590	ΑN	5.34	796	AN	NA	NA	1.04	1650
	6/9/2010	12	20	24	69	ΑN	30.8	989	AN	NA	NA	0.193	2200
	9/20/2010	9.0	11	79	142	NA	49.9	493	NA	NA	NA	0.818	2840
	6/14/2009	< 5	< 5	<.5	< 5	< 5	2310	4190	13.9*	20*	0.117*	4.92*	N V
	9/23/2009	,	· 1 ·	۲۰	۲۰	۲۰	2130	3320	< 0.1	0.0308	. < 0.005	2.73	8600
WW-4	12/16/2009	۲,	, 1	۲,	۲۰	NA	3430	4110	AN	NA	NA	1.8	9600
	4/1/2010	2	<u>,</u>	V	۲۰	Y.	2350	3110	Ā	NA	NA	1.52	8560
	6/9/2010			,	۲۰	Ā	2190	2710	NA	NA	NA	1.06	4720
	9/20/2010	•	۲۰	٠,	۲۷	NA V	2640	3260	NA	NA	NA	1.24	9550
NMWQCC	NMWQCC Standards	10 (µg/L)	750 (µg/L)	750 (µg/L)	620 (µg/L)	30 (µg/L.)	250 (mg/L.)	600 (mg/L)	5 (mg/L)	1 (mg/L)	0.05 (mg/L)	0.2 (mg/L)	1000 (mg/L)

Explanation

ND = Not Detected

NWWQCC = New Mexico Water Quality Control Commission

MWWQCC = New Mexico Water Quality Control Commission

MQL = milcrograms per liter (parts per million)

MA = Not Analyzed

QQT = Relow laboratory detection limit of QT ugL

Bold = concentrations that exceed the NMWQCC limits

* = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals

12/30/2010

APPENDICES

APPENDIX A

Groundwater Sampling Field Forms

TETRATECH, IN	c.
---------------	----

WATER SAMPLING FIELD FORM

Project Name	Randleman 1			Page	1	of <u>4</u>
ject No.	<u> </u>					•
Site Location	Aztec, NM	·				
Site/Well No.	MW-1	·. ————	· · · · · · · · · · · · · · · · · · ·		12011	2
Weather	Overrast	Time Sampling Began		Time Samplin Completed	g	1010
١.		EVACUATION	ON DATA			,
Description o	f Measuring Point (MP) To	op of Casing			. —	
Height of MP	Above/Below Land Surface)	MP Elevation	95	. 19	
	d Depth of Well Below MP	-25.5- 23.68	Water-Level E	levation	20.0	<u>a5</u>
Held	Depth to Water Below I	. A	Diameter of Ca	_		
Wet	Water Column in W	O (A	Gallons Pumpe Prior to Sampli	ad/Bailed	4.5	
	Gallons per Fo					
	•	/ell_1.4(a/B=		p Intake Setting d surface)		
Purging Equi		7 (1 23)	(rece bolow lan			
Pulging Equi	pment Purge pump (B					
Time	Temperature (°C)	pH Conductivity (µS/cm	TDS (g/L)	DO (mg/L)	DO %	ORP (mV) Volume (gal.)
1005	15.48	6.80 3299	2,143	3.95	39.0	65.7 3.75
1006	15.92	6,77 3232	3.172	OP6 3.13	31.9	70.7 4.25
1008	15.68	6.75 3230	2.099	2.89	29.8	76.8 4.50
Sampling Equ	uipment <u>Pr</u>	urge Pumb/Bailer				
Cons	tituents Sampled	Container Descripti	<u>ion</u>		Preser	rvative
BTEX		3 40mL VOAs	·	HCI		
Chloride, Sul	fate, TDS	32 oz Plastic	· <u>-</u>	None	:	
Dissolved MN	1	16 oz Plastic		None		
Remarks	H20 is	light brown, u	of fines	. No od	α	strenobserve
Sampling Per	rsonnel	3 CB	· · · · · · · · · · · · · · · · · · ·			
		Well Casing	g Volumes			
•	Gal./ft. 11/4" = 0.0		_	= 0.37	4" = 0.65	1
	1 1/3" = 0.1		3" 1/3 =	· ·	6" = 1.46	

TE TETRA	TECH, INC.	;·	WATER S	AMPLING F	IELD FOR	M		
Project Name	Randleman 1				Page	2	of	4
Site Location	Aztoc NM							
Site/Well No.		Coded/ Replicate	No.		Date 9/	2010)	
Weather	overcast	Time Sar Began	mpļing -		Time Samplin		1040	- 1+4-0.770
· · · · · · · · · · · · · · · · · · ·			EVACUATIO	N DATA				
Description of	Measuring Point (MP)	Top of Casing						
Height of MP A	Above/Below Land Surfa	ace		MP Elevation	91	0.79		* ge_11-*
Total Sounded	Depth of Well Below N	1P - 23.8	-710.39	Water-Level E	evation	80.E	:	
Held	Depth to Water Belo	1 12	28	Diameter of Ca Gallons Pumpe Prior to Sampli	ed/Bailed		001100	
Purging Equip	- Gallons pe Gallons i	r Foot	0.16 171043 (A. B.S.)	Sampling Pum (feet below lan	o Intake			
em to a tento Talento este.			AMPLING DATA/FIEI	D PARAMETER	S			
Time	Temperature (°C)	, pH	Conductivity (µS/cm		DO (mg/L)	DO %	ORP (mV)	Volume (gal.
1034	13.13	7,45	2294	1,491	238	22.8	-233.9	4.0
1036	12.99	7.45	2285	1.485	231	223	-244.4	4,25
1037	13.06	7.44	2282	1.484	2,27	213	- <i>244</i> ,8	4.15
		1						
Sampling Equi	pment	Purge Pump/B	ailer					
	tuents Sampled		Container Description			Draco	rvative	
BTEX	toenis Sampleo	3 40mL \	•.	<u></u>	HCI	11000	Tauva	_1551- 1
Chloride, Sulfa		32 oz Pla			None			

Sampling Perso	onnel _	UM \$	<u>CR</u>	U			
Ì		. ,		Weil Casing	Volumes		7
	Gal./ft.	1 1/4" = 0.077	2"	= 0.16	3" = 0.37	4" = 0.65	
		114" = 0.10	2 16"	= 0.24	3" 14 = 0.50	$6^{0} = .1.46$	1

None

16 oz Plastic

Dissolved MN

Remarks

Te TETRA	TECH, INC.	• .	WATER SA	MPLING FI	ELD FORM	A .		•
Project Name	Randleman 1	· · · · · · · · · · · · · · · · · · ·			Page	3	of	4
ject No.								
Site Location	Aztec, NM							
Site/Well No.	MW-3	Coded/ Replicate No.		>		20/10		·.
Weather	overcast	Time Samplir Began	ig	· 	Time Sampling Completed	$\frac{10}{10}$	55	·
. \			EVACUATION	DATA				
Description of	Measuring Point (MP) To	p of Casing		·				
Height of MP A	Above/Below Land Surface	_3,		MP Elevation	9	6.31	••	e e e e
Total Sounded	Depth of Well Below MP	- 22 - 6	24.57	Water-Level Elev		79.3	36	
Held	Depth to Water Below N	AP Maga		Diameter of Casi	2"			
Wet			<u>2 </u>	Gallons Pumped Prior to Sampling	(Bailed)	.76	59016	MS
<u></u>	- Gallons per Fo	/	0.16				John	/1 ()
•	Gallons in W	1	<u>-3,51</u>	Sampling Pump (feet below land				
Purging Equip		N. Carrier		(ioot boion iaita				Felge
		SAME	PLING DATA/FIELD	PARAMETERS				
Time	Temperature (°C)		nductivity (µS/cm ³)	TDS (g/L)	DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
1050	13.06	7,21	7:231	1,483	13.02	108	-2023	3.0
1051	13,73	7,22	1282	1,485	602	6109	-284	3,25
1059	13,72,	7,23	2282	1,48	5,30	613	-2766	3,50
			-		_			

Sampling Equipment	Purge Pump/Bailer / /		
Constituents Sampled	Container Description		Preservative
BTEX	3 40mL VOAs	HCI	17 D 2
Chloride, Sulfate, TDS	32 oz Plastic	None	
Dissolved MN_	16 oz Plastic	None	·

Remarks Water is black with strong hydroianom (Sulfer orlor Sampling Personnel M & CB

 Well Casing Volumes

 Gal./ft.
 1 ½" = 0.077
 2" = 0.16
 3" = 0.37
 4" = 0.65

 1 ½" = 0.10
 2 ½" = 0.24
 3" ½ = 0.50
 6" = 1.46

				·				
TETRA	TECH, INC.	· .	WATER S	AMPLING F	IELD FORI	И		
Project Name	Randleman 1				Page	4	of .	4
ject No.								
Site Location	Aztec, NM	<u> </u>	·	·				
Site/Weil No.	MW-4	Coded/ Replicate	• No.		Date <u>9/</u>	2dio		
Weather	Overcas	Time Sar Began			Time Sampling Completed	0	155	·
\			EVACUATIO	N DATA				•
Description of	Measuring Point (MP)	Top of Casing	· · · · · · · · · · · · · · · · · · ·					
Height of MP	Above/Below Land Surf	ace	·	MP Elevation	99	3.83		<u></u> .
Total Sounded	d Depth of Well Below N	4P <u>-29:5</u>	-28.21	Water-Level Ele	vation	<u>80.</u>	77	
Held	_ Depth to Water Belo	w MP	00 R.06	Diameter of Cas Gallons Pumper	sing 2"		eli e	,
Wet	_ Water Column in	Well - - -	4=1015	Prior to Samplin		10 9	allons	
	Gallons pe	r Foot	0.16	Complian Dump	Intaka Cattina	U		
· •- •	Gallons in	Well - 1-1-2	3373=	Sampling Pump (feet below land	surface)			
Purging Equip	ment Purge pump	(Bailer)	25 AF G	(8)				
		S	A Z X S = CAMPLING DATA/FIEI	LD PARAMETER	3		•	All designations of the control of t
Time	Temperature (°C)	pН	Conductivity (µS/cm3		DO (mg/L)	DO %	ORP (mV)	Volume (gal.)
(9956)	4.8	7.22	11678	17,59	2.60	27.1	116	4,25
0952	- 19.77	7,23	11683	7,592	2,30	23,9	-23,4	4,5
0954	14,85	7,20	111003	7,541	2.38	24,9	-24.9	4,75
								50
Sampling Equ	ipment	Purge Pump	ailer					
Const	ituents Sampled	. ;	Container Description	<u>n</u>		Prese	rvative	•
BTEX		3 40mL \	/OAs		HCI			
Chloride, Sulfa	ate, TDS'	32 oz Pla	astic		None			

Sampling Pers	onnel _	Cosm	Grun		Christine 1	Mathei	1/5
				Well Ca	asing Volumes		
	Gal./ft.	1 1/4" = 0.077	2"	= 0.16	3"	= 0.37	4" = 0.65
		1 ½" = 0.10	2 1/2"	= 0.24	3" 1⁄2	= 0.50	6" = 1.46

Ng oder ov steen absence

16 oz Plastic

Dissolved MN

APPENDIX B

Groundwater Laboratory Analysis Report

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

October 7, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10090508

Project: Randleman #1

Project Number: Randleman #1

Site: Randleman #1

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-3

This Report Contains A Total Of 25 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

October 7, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Workorder: H10090508

Project: Randleman #1

Project Number: Randleman #1

Site: Randleman #1
PO Number: ENFOS

NELAC Cert. No.: T104704205-09-3

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

There were no exceptions noted.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD, will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

Report ID: H10090508_6089

Printed: 10/07/2010 17:15

Page 2 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

October 7, 2010

Kelly Blanchard Tetra Tech 6121 Indian School Road NE Suite 200

Albuquerque, NM 87110

Workorder: H10090508

Project: Randleman #1

Project Number: Randleman #1

Site: Randleman #1

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-3

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10090508_6089

Printed: 10/07/2010 17:15

Page 3 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received	
H10090508001	MW-4	Water		9/20/2010 09:55	9/21/2010 09:25	
H10090508002	MW-1	Water		9/20/2010 10:10	9/21/2010 09:25	
H10090508003	MW-2	Water		9/20/2010 10:40	9/21/2010 09:25	,
H10090508004	MW-3 (98.90%) (1.10%) (1.10%) (1.10%)	Water		9/20/2010 10:55	9/21/2010 09:25	1
H10090508005	Duplicate	Water		9/20/2010 11:00	9/21/2010 15:11	i
H10090508006	Trip Blank	Water	•	9/20/2010 14:15	9/21/2010 15:11	

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508001

Date/Time Received: 9/21/2010 09:25

Matrix:

Water

Sample ID: MW-4

Date/Time Collected: 9/20/2010 09:55

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:					
	Batch: 2675 SW-846 826	0B on 09/30/2010 1	14:11 by LK	T	100		
Parameters 1	Results ug/l Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis	
Benzene	ND ;	1.0	0.13	1	100 C. C. C. C. C. S.	2675	
Ethylbenzene	ND ·	1.0	0.48	1		2675	
Toluene	ND 🚁	1.0	0.13	1		2675	
m,p-Xylene	ND	1.0	0.58	1		2675	
o-Xylene	ND %	1.0	0.35	1		2675	
Xylenes, Total	ND 5	1.0	0.35	1		2675	
4-Bromofluorobenzene (S)	99.6 % 5	74-125		. 1		2675	
1,2-Dichloroethane-d4 (S)	108 % 5	70-130		· 1		2675	
Toluene-d8 (S)	97.9 %	82-118		1		2675	

ICP DISSOLVED METALS

Manganese	. 1.24 (0	0.00500 0.000300	1	. 20	82 1641
Parameters	mg/I Qual Repo	ort Limit MDL	DF	RegLmt Pre	ep Analysis
	Results			A Section of the Contract of t	h Information
	Batch: 1641 . SW-846 6010B on 0	9/30/2010 21/21 by Et	56		
	Control Control Control	0.000.0040.04.04.5	20		
	Analytical Batches:	and the second			
The second second	Batch: 2082 SW-846 3010A on 0	9/22/2010 10:30 by R	_V		
Analysis Desc: SW-846 6010B	Preparation Batches:	2.5			
IOF DIGGOLVED MILIALS					

Analysis Desc: EPA 300.0	Analytical Batches:					
	Batch: 1475 EPA 300.0 on	10/04/2010 19:06	by GLN D	F = 500.		a figure
	Batch: 1476 EPA 300.0 on	10/04/2010 23:19	by GLN D	F = 500.		
The state of the s	Results	DANI-N	MDI	D.F.	Deel est	Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Chloride	. 2540	250	63.0	500		1475
Sulfate	3260	250	21.8	500		1476

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:
,000 - 000 - 000 - 000	Constitution of the second sec
	Batch: 1816 SM 2540 C on 09/22/2010 12:00 by MMAL
	The state of the s
	Results Batch Information
Parameters	mg/l Qual Report Limit MDL DF RegLmt Prep Analysis

Report ID: H10090508_6089

Printed: 10/07/2010 17:15

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508001

Date/Time Received: 9/21/2010 09:25

Water

Matrix:

Sample ID: MW-4

Date/Time Collected: 9/20/2010 09:55

		Results					Batch Ir	nformation
Parameters		Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Residue, Filterable (TDS)	į.	9550	100	39.4	10			1816

8880 Interchange Drive Houston, TX 77054

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508002

Date/Time Received: 9/21/2010 09:25

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 9/20/2010 10:10

VOLATILES

Analysis Desc: SW-846 82608		SW-846 5030Analytical Ba Batch: 2675 SW-846 826		17:15 by LK	T		
Parameters.		Results ug/j Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene		5.3	1.0	0.13	1		2675
Ethylbenzene		ND	1.0	0.48	1		2675
·Toluene		ND	1.0	0.13	1		2675
m,p-Xylene		ND	1.0	0.58	1		2675
o-Xylene		ND 5	1.0	0.35	1		2675
Xylenes, Total		ND :	1.0	0.35	1		. 2675
4-Bromofluorobenzene (S)	ı	105 % 🤥	74-125		1		2675
1,2-Dichloroethane-d4 (S)	1	104 % 😘	70-130		1		2675
Toluene-d8 (S)		102 %	82-118		1		2675

ICP DISSOLVED METALS

Analysis Desc: SW-846 601	0B F	Preparation Batches:						
	E	Batch: 2082 SW-846 3010	A on 09/22/201	0 10:30 by R <u>-</u> V	1			
TO A A SECURIT OF THE SECURITY OF		Analytical Batches:						
		Batch: 1641 SW-846 6010	B on 09/30/201	0 21:27 by EB0	G			
		Results	5.85				Batch Inf	formation
Parameters		mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Manganese	Ç.	0.207 i	0.00500	0.000300	.1		2082	1641

Analysis Desc: EPA 300:0	- Analytical Batches:	Paragraphic Street				
	Batch: 1475 EPA 300.0 on	10/04/2010 19:23	by GLN D	F = 20.		
	Batch: 1476 EPA 300.0 on	10/04/2010 23:36	by GLN D	F = 500.		
and the second s	Results		1450		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	ch Information
Parameters	mg/I Qual	Report Limit	MDL	DF F	RegLmt P	rep Analysis
Chloride	84.9	10.0	2.52	20		1475
Sulfate	1710	250	21.8	500		1476

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:
	Batch: 1816 SM 2540 C on 09/22/2010 12:00 by MMAL
Space State Compact of State of	Results Batch Information
Parameters	mg/l Qual Report Limit MDL DF RegLmt Prep Analysis
	mgn con represent the contract of the contract

Report ID: H10090508_6089

Printed: 10/07/2010 17:15

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508002

Date/Time Received: 9/21/2010 09:25

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 9/20/2010 10:10

, .								
	Results					Batch Information		
Parameters		Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Residue, Filterable (TDS)	•	4070 ,	100	39.4	10			1816.

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508003

Date/Time Received: 9/21/2010 09:25

Matrix:

Water

Sample ID: MW-2

Date/Time Collected: 9/20/2010 10:40

VOLATILES

Analysis Desc: SW-846 8260B		SW-846 5030Analytical Ba	atches:					
		Batch: 2675 SW-846 8260B on 09/30/2010 17:46 by LKT						
Parameters		Results ug/l .Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis	
Benzene	1	5.0	1.0	0,13	1		2675	
Ethylbenzene		61	1.0	0.48	1		2675	
Toluene		- 7.6 ∋	1.0	0.13	1		2675	
m,p-Xylene	;	130	1.0	0.58	1		2675	
o-Xylene	:	6.5	1.0	0.35	1		2675	
Xylenes, Total		136.5 ∋	1.0	0.35	1		2675	
4-Bromofluorobenzene (S)		110 %	- 74-125		1		2675	
1,2-Dichloroethane-d4 (S)	1	100 %	70-130		1		2675	
Toluene-d8 (S)		97.3 %	82-118		1		2675	

ICP DISSOLVED METALS

Manganese .	2.70	0.00500	0.000300	1		2082	1641
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
A property of the second	Results					Batch In	formation
a service and the service and							
	Batch: 1641 SW-846 6010	0B on 09/30/201	0 20:26 by EB	G			
A STORAGE	Analytical Batches:						
	Batch: 2082 SW-846 3010	0A on 09/22/201	0 10:30 by R_	V			
Analysis Desc: SW-846 6010B	Preparation Batches:		17.000				

Analysis Desc. EPA 300.0	Analytical Batches:					
	Batch: 1475 EPA 300.0 or	i 10/04/2010 21:36	by GLN D	F = 10.		
	Batch: 1476 EPA 300.0 or	10/04/2010 23:53	by GLN D	F = 500.		
	Results					Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Chloride	25.5	5.00	1.26	10		1475
Sulfate	1390	250	21.8	500		1476

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:	
	Batch: 1816 SM 2540 C on 09/22/2010 12:00 by MMAL	
Parameters	Results mg/I Qual Report Limit MDL	Batch Information DF RegLmt Prep Analysis

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508003

Date/Time Received: 9/21/2010 09:25

Water

Matrix:

Sample ID: MW-2

Date/Time Collected: 9/20/2010 10:40

	Results					Batch II	nformation
Parameters	Qual	Report Limit	MDL	· DF	RegLmt	Prep	Analysis
Residue, Filterable (TDS)	2440	100	39.4	10			1816

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

Lab ID: -

H10090508004

Date/Time Received: 9/21/2010 09:25

Matrix:

Water

Sample ID: MW-3

Date/Time Collected: 9/20/2010 10:55

VOLATILES

Analysis Desc: SW-846 8260B		SW-846 5030Analytical Batches: Batch: 2675 SW-846 8260B on 09/30/2010 18:16 by LKT							
Parameters			Results		Report Limit	Committee and the second section of the second	DF	RegLmt	Batch Information Prep Analysis
Benzene	. ,		9.0	٠;	1.0	0.13	1		2675
Ethylbenzene			79		1.0	0.48	1		2675
Toluene			11	•	1.0	0.13	1		. 2675
m,p-Xylene	T.		88	٠	1.0	0.58	1		2675
o-Xylene	4		54	1	1.0	0.35	1		2675
Xylenes, Total			142	,	1.0	0.35	1		2675
4-Bromofluorobenzene (S)			105 %	j	74-125		1		2675
1,2-Dichloroethane-d4 (S)	1		102 %	·;	70-130		1	•	2675
Toluene-d8 (S)			99.3 %	•	82-118		1		2675

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:						
(HE)	Batch: 2082 SW-846 3010	A on 09/22/201	0 10:30 by R_\	1			
programme and the second se	Analytical Batches:		47				
Harmon States	Batch: 1641 SW-846 6010	B on 09/30/201	0 21:33 by EB	3			
Parameters	Results mg/l , Qual	Report Limit	MDL	DF	RegLmt	Batch Info Prep /	000000000000000000000000000000000000000
Manganese	. 0.818 ! -	0.00500	0.000300	1		2082	1641

Analysis Desc: EPA 300.0	Analytical Batches:					
	Batch: 1475 EPA 300.0 or	10/04/2010 23:01	by GLN D	F = 20.		We see the
	Batch: 1476 EPA 300.0 or	10/05/2010 00:44	by GLN D	F = 500.		
The first state of the state of	Results					Batch Information
Parameters	mg/j Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Chloride	49.9	10.0	2.52	20		1475
Sulfate	493	250	21.8	500		1476

WET CHEMISTRY

Analysis Desc: SM 2540 C	Analytical Batches:			
Allalysis Desc. SW 2040 G	Analytical Datches.			
	D. J. L. 4040. DM-0540.0	40.00 t 343441		
	Batch: 1816 SM 2540 C on 09/22/2010	12:UU DY MMAL		
	· ·			
	Results		Batch Informa	ition
Parameters	ma/I Qual Report Limit	MDL DF	RegLmt Prep Anal	lucia.
Falalitaters	mg/ Qual Report Limit	L WIDL OF	Regulii Fieb Aliai	iyala

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID: H10090508004 Date/Time Received: 9/21/2010 09:25

Matrix:

Water

--Sample ID: MW-3

Date/Time Collected: 9/20/2010 10:55

	Results					Batch II	nformation
Parameters	Qual	Report Limit	MDL	DF.	RegLmt	Prep	Analysis
Residue, Filterable (TDS)	2840	100	39.4	10			1816

Page 12 of 25

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508005

Date/Time Received: 9/21/2010 15:11

Matrix:

Water

Sample ID: Duplicate

Date/Time Collected: 9/20/2010 11:00

VOLATILES

Analysis Desc: SW-846 8260B	er en	SW-846 5030Analytical Ba	tches:						
		Batch: 2675 SW-846 8260B on 09/30/2010 18:47 by LKT							
Parameters		Results ug/I . Qual	Report Limit	MDL	DF RegLm	Batch information it Prep Analysis			
Benzene		8.4	1.0	0.13	1	2675			
Ethylbenzene		78	1.0	0.48	1	2675			
Toluene		11 🚶	1.0	0.13	1	2675			
m,p-Xylene		86	1.0	0.58	1	2675			
o-Xylene	!	51 🤙	1.0	0.35	1	2675			
Xylenes, Total		137 🗓	1.0	0.35	1	2675			
4-Bromofluorobenzene (S)		121 % 🗇	74-125		1	2675			
1,2-Dichloroethane-d4 (S)	1	102 %	70-130		· 1	2675			
Toluene-d8 (S)		102 % ·	82-118		1	2675			

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

Lab ID:

H10090508006

Date/Time Received: 9/21/2010 15:11

Matrix: Water

Sample ID: Trip Blank

Date/Time Collected: 9/20/2010 14:15

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	tches:			•	
	Batch: 2675 SW-846 826	0B on 09/30/2010	13:40 by LK	Г		
Parameters	Results ug/l: Qual	Report Limit	MDL	DF	RegLmt	Batch Information Prep Analysis
Benzene	ŅD :	1.0	0.13	1		2675
Ethylbenzene	ND	1.0	0.48	1		2675
Toluene	ND	1.0	0.13	1		2675
m,p-Xylene	ND ·	1.0	0.58	1		2675
o-Xylene	ND	1.0	0.35	1		2675
Xylenes, Total	ND	1.0	0.35	1		. 2675
4-Bromofluorobenzene (S)	109 %	74-125		1		2675
1,2-Dichloroethane-d4 (S)	103 %	70-130		1		2675
Toluene-d8 (S)	103 %	82-118		1		2675

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

QC Batch:

MSV/2674

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

09/30/2010 00:00 by LKT

H10090508004

H10090508005

Associated Lab Samples:

H10090438008 H10090508006 H10090508001 5 H10090580001

H10090508002 H10090580002 H10090508003 H10090580003

H10090580006

H10090581005

H10090624004

H10090580005

METHOD BLANK: 73074

Analysis Date/Time Analyst:

09/30/2010 09:59 LKT

Parameter		Units	Blank Result Qualifiers	Reporting Limit		
Benzene)	ug/l	√ ND	1.0		
Ethylbenzene	j.	ug/l	ND	1.0		
Toluene	i	ug/l	ND	1.0	•	
m,p-Xylene	,	ug/l	ND	1.0		
o-Xylene)	ug/l	ND	1.0	•	
Xylenes, Total	ì	ug/l	ND	1.0		
4-Bromofluorobenz	zenė (S)	%.	108	74-125	•	
1,2-Dichloroethane	e-d4 (S)	%	 103	70-130	,	
Toluene-d8 (S)	I	%	101	82-118		•

LABORATORY CONTROL SAMPLE: 73075

Analysis Date/Time Analyst:

09/30/2010 09:29 LKT

			Spike	LCS	LCS	% Rec	
Parameter	Units		Conc.	Result	% Rec	Limits	
Benzene	ug/l		20	18.3	91.7	74-123	
Ethylbenzene	ug/l	;	20	18.5	92.4	72-127	
Toluene	ug/l		20	18.4	91.8	74-126	
m,p-Xylene	ug/l	,	40	37.7	94.2	71-129	
o-Xylene	ug/l	1	20	19.3	96.5	74-130	
Xylenes, Total	ug/l)	60	57.0	95.0	71-130	
4-Bromofluorobenzene (S)	%	5			110	74-125	
1,2-Dichloroethane-d4 (S)	%	;			96.5	70-130	
Toluene-d8 (S)	%.	3			101	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 73078

73079

Original: H10090508001

MS Analysis Date/Time Analyst:

09/30/2010 14:42 LKT

MSD Analysis Date/Time Analyst:

09/30/2010 15:13 LKT

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	МĎ	20	18.4	17.2	92.0	85.9	70-124	6.9	20
Ethylbenzene	ug/l	ND	20	18.6	18.6	93.0	92.8	35-175	0.2	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089

Page 15 of 25

Printed:

10/07/2010 17:15

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 73078

73079

Original: H10090508001

MS Analysis Date/Time Analyst:

09/30/2010 14:42 LKT

MSD Analysis Date/Time Analyst:

09/30/2010 15:13 LKT

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RI	PD	Max RPD
Toluene	ug/l	ND	20	18.2	17.4	91.2	87.1	70-131	4.6	20
m,p-Xylene	ug/l	ND	40	35.4	34.3	88.5	85.6	35-175 · 3	3.3	20
o-Xylene	ug/l	ND	20	19.2	18.2	96.1	91.2	35-175	5.3	20
Xylenes, Total	ug/l	ND	60	54.63	52.49	91.1	87.5	35-175	4.0	20
4-Bromofluorobenzene (S)	%	3 99.6				116	115	74-125		
1,2-Dichloroethane-d4 (S)	%	108				97.6	103	70-130		
Toluene-d8 (S)	%	[,] 97.9				99.7	101	82-118		•

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder; H10090508: Randleman #1

Project Number: Randlemán #1

QC Batch:

DIGM/2082

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

09/22/2010 10:30 by R_V

Associated Lab Samples: 1

H10090508001

H10090508003

H10090508004

METHOD BLANK: 70771

Analysis Date/Time Analyst:

09/30/2010 20:14 EBG

H10090508002

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Manganese

mg/l

ND

0.00500

LABORATORY CONTROL SAMPLE: 70772

Analysis Date/Time Analyst:

09/30/2010 20:20 EBG

Spike

LCS

LCS

% Rec

Parameter

Units

Conc.

Result

% Rec

Limits

Manganese

mg/l

0.10

0.1002

100

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 70773

70774

Original: H10090508003

MS Analysis Date/Time Analyst:

09/30/2010 20:32 EBG

MSD Analysis Date/Time Analyst:

09/30/2010 20:38 EBG

Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	
Manganese	mg/l	2.7	0.10	2.85	2.80	NC	NC	75-125	NC	20	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089

Printed:

10/07/2010 17:15

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10090508 : Randleman #1

Project Number: Randleman #1

QC Batch:

IC/1475

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples: H10090508001

H10090508002

H10090508003

H10090508004

H10090682001

H10090689001

METHOD BLANK: 74036

Analysis Date/Time Analyst:

10/04/2010 08:05 GLN

Blank

Reporting

Parameter

Units

H10090698001

Result Qualifiers

keporung Limit

Chloride

mg/l

ND

0.500

LABORATORY CONTROL SAMPLE: 74037

Analysis Date/Time Analyst:

10/04/2010 08:22 GLN

Downston

. . ..

Spike

LCS

LCS

% Rec

Parameter

Units

Conc.

10

Result

% Rec 97.7 Limits

Chloride

mg/l

9.77

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 74038

74039

Original: H10090689001

MS Analysis Date/Time Analyst:

10/04/2010 15:23 GLN

MSD Analysis Date/Time Analyst:

10/04/2010 15:40 GLN

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max RPD
Chloride	mg/l	35.5	100	137.0	136.7	101	101	80-120 0.2	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10090508: Randleman #1

Project Number: Randleman #1

QC Batch:

IC/1476

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples: 1

H10090508001

H10090508002

H10090508003

H10090508004

METHOD BLANK: 74178

Analysis Date/Time Analyst:

10/04/2010 08:05 GLN

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Sulfate

mg/l

ND

0.500

LABORATORY CONTROL SAMPLE: 74179

Analysis Date/Time Analyst:

10/04/2010 08:22 GLN

Spike

LCS

LCS

% Rec

Parameter

Units

Conc.

Result

% Rec

Limits

Sulfate

mg/l

10

10.01

100

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 74180

74181

Original: H10090508003

MS Analysis Date/Time Analyst:

10/05/2010 00:10 GLN

MSD Analysis Date/Time Analyst:

10/05/2010 00:27 GLN

Original

Parameter

Result Units

Spike Conc.

MS Result

MSD Result % Rec % Rec

MS

101

% Rec

Max RPD

RPD

Sulfate 🗀

mg/l 1390 5000

6427

6455

101

MSD

Limit 80-120

0.4

20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089

Printed: 10/07/2010 17:15 Page 19 of 25

Phone: (713) 660-0901 Fax: (713).660-8975

Project Number: Randleman #1

RPD

10

Limit

95-107

% Rec

100

RPD

0.5

QUALITY CONTROL DATA

Workorder: H10090508: Randleman #1 QC Batch: WETS/1816 Analysis Method: SM 2540 C SM 2540 C QC Batch Method: H10090508004 **Associated Lab Samples:** H10090507001 H10090508001 H10090508002 H10090508003 METHOD BLANK: 70809 Analysis Date/Time Analyst: 09/22/2010 12:00 MMAL Blank Reporting **Parameter** Units **Result Qualifiers** Limit Residue, Filterable (TDS) ND 10.0 mg/l LABORATORY CONTROL SAMPLE & LCSD: 70810 70811 LCS Analysis Date/Time Analyst: 09/22/2010 12:00 MMAL LCSD Analysis Date/Time 09/22/2010 12:00 MMAL Spike LCS LCSD . LCS LCSD % Rec Max

SAMPLE DUPLICATE: 70812

Residue, Filterable (TDS)

Parameter

Units

mg/l

Conc.

200

Result

199.0

Original: H10090508001

200.0

Result % Rec

99.5

·. <		Original	DUP		Max		
Parameter	Units .	Result	Result	RPD	RPD	DF	
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	9550	9510	0.4	10	10 10	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10090508_6089 Page 20 of 25

10/07/2010 17:15 Printed:

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
*	Recovery/RPD value outside QC limits
+	DCS Concentration
В	Analyte detected in the Method Blank
С	MTBE results were not confirmed by GCMS
D	Recovery out of range due to dilution
Е	Results exceed calibration range
Н	Exceeds holding time
1	Estimated value, between MDL and PQL (Florida)
J	Estimated value
JN	The analysis indicates the presence of an analyte
MI	Matrix Interference
N	Recovery outside of control limits
NC	Not Calculable (Sample Duplicate)
NC	Not Calculated - Sample concentration > 4 times the spike
ND:	Not Detected at reporting Limits
Р	Pesticide dual column results, greater then 25%
Q	Received past holding time
TNTC	Too numerous to count
U	Not Detected at reporting Limits

Report ID: H10090508_6089

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA CROSS REFERENCE TABLE

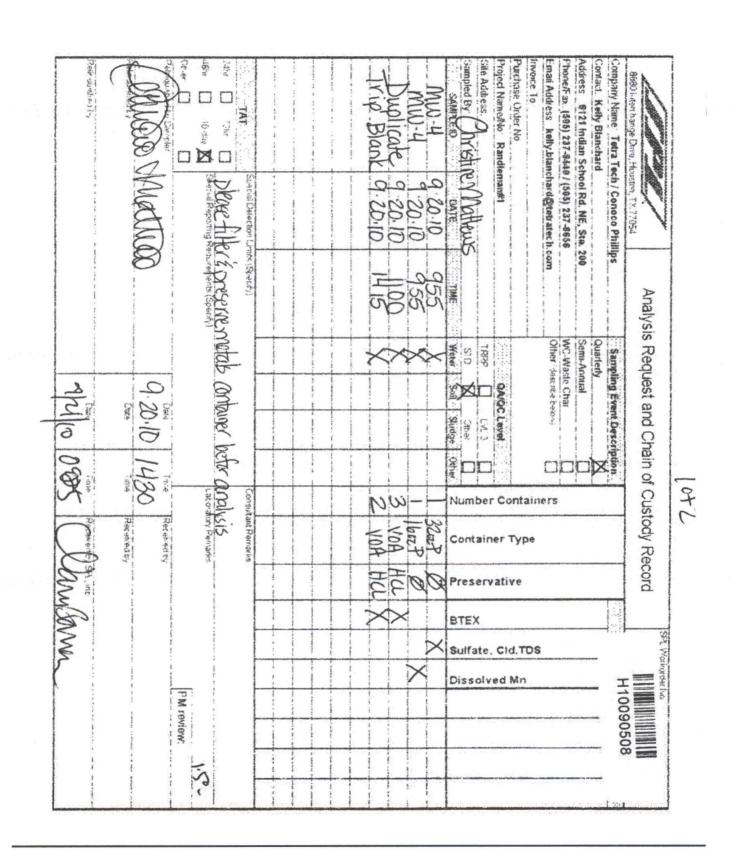
Workorder: H10090508: Randleman #1

Project Number: Randleman #1

ELab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10090508001	MW-4	SW-846 3010A	DIGM/2082	SW-846 6010B	ICP/1641
H10090508002	MW-1	SW-846 3010A	DIGM/2082	SW-846 6010B	ICP/1641
H10090508003	MW-2	SW-846 3010A	DIGM/2082	SW-846 6010B	ICP/1641
H10090508004	MW-3	SW-846 3010A	DIGM/2082	SW-846 6010B	ICP/1641
H10090508001	MW-4	SM 2540 C	WETS/1816		
H10090508002	MW-1	SM 2540 C	WETS/1816		
H10090508003	MW-2	SM 2540 C	WETS/1816		
H10090508004	MW-3	SM 2540 C	WETS/1816		
H10090508001	MW-4	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508002	MW-1	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508003	:MW-2"	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508004	MW-3	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508005	Duplicate	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508006	Trip Blank	SW-846 5030	MSV/2674	SW-846 8260B	MSV/2675
H10090508001	MW-4	EPA 300.0	IC/1475		
H10090508002	MW-1	EPA 300.0	IC/1475		
H10090508003	MW-2	EPA 300.0	IC/1475		•
H10090508004	MW-3	EPA 300.0	IC/1475		
H10090508001	MW-4	EPA 300.0	IC/1476		
H10090508002	MW-1	EPA 300.0	IC/1476		
H10090508003	MW-2	EPA 300.0	IC/1476		
H10090508004	MW-3	EPA 300.0	IC/1476		

Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist


Received By LOG WorkOrder: H10090508 **FEDEXS** Date and Time 09/21/2010 09:25 Carrier Name: Temperature: .1.5°C ∋ Chilled By: Water Ice Airbill - Temp: / 1. Shipping container/cooler in good condition? YE\$ YES Custody seals intact on shipping container/cooler? Not Present Custody seals intact on sample bottles? Chain of custody present? YES Chain of custody signed when relinquished and received? YES Chain of custody agrees with sample labels? YES YES Samples in proper container/bottle? YES Samples containers intact? YES Sufficient sample volume for indicated test? 10. All samples received within holding time? YES YES 11. Container/Temp Blank temperature in compliance? 12. Water - VOA vials have zero headspace? YES 13. Water - Preservation checked upon receipt(except VOA*)? YES *VOA Preservation Checked After Sample Analysis SPL Representative: Contact Date & Time:

Client Name Contacted:

Client Instructions:

Phone: (713) 660-0901 Fax: (713) 660-8975

Phone: (713) 660-0901 Fax: (713) 660-8975

STEX Sulfate, Cld, TDS PM review: PM review:
Sulfate, Cld, TDS